-
Notifications
You must be signed in to change notification settings - Fork 1
/
Codes
28 lines (23 loc) · 808 Bytes
/
Codes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# we use keras at first step
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import os
direction = os.listdir("raw")
for item in direction:
name = item
datagen = ImageDataGenerator(
rotation_range = 40,
width_shift_range = 0.2,
height_shift_range = 0.2,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True,
fill_mode = "nearest")
# name and direction-----> Merged
img = load_img(os.path.join('raw', name))
x = img_to_array(img)
x = x.reshape((1,) + x.shape)
i = 0
for batch in datagen.flow(x, batch_size = 1, save_to_dir = 'new_augmented', save_prefix = "md", save_format = "jpg") :
i += 1
if i > 4 :
break