forked from facebookresearch/audiocraft
-
Notifications
You must be signed in to change notification settings - Fork 0
/
magnet_32khz.yaml
90 lines (75 loc) · 1.89 KB
/
magnet_32khz.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# @package __global__
# This is the training loop solver
# for the base MusicGen model (text-to-music)
# on monophonic audio sampled at 32 kHz
defaults:
- musicgen/default
- /model: lm/musicgen_lm
- override /dset: audio/default
- _self_
lm_model: transformer_lm_magnet
solver: magnet
autocast: true
autocast_dtype: float16
# EnCodec large trained on mono-channel music audio sampled at 32khz
# with a total stride of 640 leading to 50 frames/s.
# rvq.n_q=4, rvq.bins=2048, no quantization dropout
# (transformer_lm card and n_q must be compatible)
compression_model_checkpoint: //pretrained/facebook/encodec_32khz
efficient_attention_backend: xformers # restricted attention implementation supports only xformers at the moment
channels: 1
sample_rate: 32000
deadlock:
use: true # deadlock detection
dataset:
batch_size: 192 # 32 GPUs
sample_on_weight: false # Uniform sampling all the way
sample_on_duration: false # Uniform sampling all the way
optim:
epochs: 500
optimizer: dadam
lr: 1
ema:
use: true
updates: 10
device: cuda
logging:
log_tensorboard: true
schedule:
lr_scheduler: cosine
cosine:
warmup: 4000
lr_min_ratio: 0.0
cycle_length: 1.0
codebooks_pattern:
modeling: parallel
parallel:
empty_initial: -1
transformer_lm:
card: 2048
causal: false
subcodes_context: 5
compression_model_framerate: 50 # NOTE: Must match the actual frame rate of the used compression model
segment_duration: 0
span_len: -1
masking:
span_len: 3
generate:
lm:
max_prompt_len: null
max_gen_len: null
remove_prompts: false
use_sampling: true
temp: 3.0
top_k: 0
top_p: 0.9
max_cfg_coef: 10.0
min_cfg_coef: 1.0
decoding_steps: [60, 10, 10, 10]
anneal_temp: true
span_scoring: 'max'
span_arrangement: 'nonoverlap'
prompted_samples: false
samples:
prompted: false
unprompted: true