forked from WangHongxi2001/kalman-filter-C-implementation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkalman filter.c
439 lines (395 loc) · 17.5 KB
/
kalman filter.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/**
******************************************************************************
* @file kalman filter.c
* @author Hongxi Wang
* @version V1.1.5
* @date 2020/2/16
* @brief C implementation of kalman filter
******************************************************************************
* @attention
* 该卡尔曼滤波器可以在传感器采样频率不同的情况下,动态调整矩阵H R和K的维数与数值。
* This implementation of kalman filter can dynamically adjust dimension and
* value of matrix H R and K according to the measurement validity under any
* circumstance that the sampling rate of component sensors are different.
*
* 因此矩阵H和R的初始化会与矩阵P A和Q有所不同。另外的,在初始化量测向量z时需要额外写
* 入传感器量测所对应的状态与这个量测的方式,详情请见例程
* Therefore, the initialization of matrix P, F, and Q is sometimes different
* from that of matrices H R. when initialization. Additionally, the corresponding
* state and the method of the measurement should be provided when initializing
* measurement vector z. For more details, please see the example.
*
* 若不需要动态调整量测向量z,可简单将结构体中的Use_Auto_Adjustment初始化为0,并像初
* 始化矩阵P那样用常规方式初始化z H R即可。
* If automatic adjustment is not required, assign zero to the UseAutoAdjustment
* and initialize z H R in the normal way as matrix P.
*
* 要求量测向量z与控制向量u在传感器回调函数中更新。整数0意味着量测无效,即自上次卡尔曼
* 滤波更新后无传感器数据更新。因此量测向量z与控制向量u会在卡尔曼滤波更新过程中被清零
* MeasuredVector and ControlVector are required to be updated in the sensor
* callback function. Integer 0 in measurement vector z indicates the invalidity
* of current measurement, so MeasuredVector and ControlVector will be reset
* (to 0) during each update.
*
* 此外,矩阵P过度收敛后滤波器将难以再适应状态的缓慢变化,从而产生滤波估计偏差。该算法
* 通过限制矩阵P最小值的方法,可有效抑制滤波器的过度收敛,详情请见例程。
* Additionally, the excessive convergence of matrix P will make filter incapable
* of adopting the slowly changing state. This implementation can effectively
* suppress filter excessive convergence through boundary limiting for matrix P.
* For more details, please see the example.
*
* @example:
* x =
* | height |
* | velocity |
* |acceleration|
*
* KalmanFilter_t Height_KF;
*
* void INS_Task_Init(void)
* {
* static float P_Init[9] =
* {
* 10, 0, 0,
* 0, 30, 0,
* 0, 0, 10,
* };
* static float F_Init[9] =
* {
* 1, dt, 0.5*dt*dt,
* 0, 1, dt,
* 0, 0, 1,
* };
* static float Q_Init[9] =
* {
* 0.25*dt*dt*dt*dt, 0.5*dt*dt*dt, 0.5*dt*dt,
* 0.5*dt*dt*dt, dt*dt, dt,
* 0.5*dt*dt, dt, 1,
* };
*
* // 设置最小方差
* static float state_min_variance[3] = {0.03, 0.005, 0.1};
*
* // 开启自动调整
* Height_KF.UseAutoAdjustment = 1;
*
* // 气压测得高度 GPS测得高度 加速度计测得z轴运动加速度
* static uint8_t measurement_reference[3] = {1, 1, 3}
*
* static float measurement_degree[3] = {1, 1, 1}
* // 根据measurement_reference与measurement_degree生成H矩阵如下(在当前周期全部测量数据有效情况下)
* |1 0 0|
* |1 0 0|
* |0 0 1|
*
* static float mat_R_diagonal_elements = {30, 25, 35}
* //根据mat_R_diagonal_elements生成R矩阵如下(在当前周期全部测量数据有效情况下)
* |30 0 0|
* | 0 25 0|
* | 0 0 35|
*
* Kalman_Filter_Init(&Height_KF, 3, 0, 3);
*
* // 设置矩阵值
* memcpy(Height_KF.P_data, P_Init, sizeof(P_Init));
* memcpy(Height_KF.F_data, F_Init, sizeof(F_Init));
* memcpy(Height_KF.Q_data, Q_Init, sizeof(Q_Init));
* memcpy(Height_KF.MeasurementMap, measurement_reference, sizeof(measurement_reference));
* memcpy(Height_KF.MeasurementDegree, measurement_degree, sizeof(measurement_degree));
* memcpy(Height_KF.MatR_DiagonalElements, mat_R_diagonal_elements, sizeof(mat_R_diagonal_elements));
* memcpy(Height_KF.StateMinVariance, state_min_variance, sizeof(state_min_variance));
* }
*
* void INS_Task(void const *pvParameters)
* {
* // 循环更新
* Kalman_Filter_Update(&Height_KF);
* vTaskDelay(ts);
* }
*
* // 测量数据更新应按照以下形式 即向MeasuredVector赋值
* void Barometer_Read_Over(void)
* {
* ......
* INS_KF.MeasuredVector[0] = baro_height;
* }
* void GPS_Read_Over(void)
* {
* ......
* INS_KF.MeasuredVector[1] = GPS_height;
* }
* void Acc_Data_Process(void)
* {
* ......
* INS_KF.MeasuredVector[2] = acc.z;
* }
******************************************************************************
*/
#include "kalman filter.h"
uint16_t sizeof_float, sizeof_double;
static void H_K_R_Adjustment(KalmanFilter_t *kf);
void Kalman_Filter_Init(KalmanFilter_t *kf, uint8_t xhatSize, uint8_t uSize, uint8_t zSize)
{
sizeof_float = sizeof(float);
sizeof_double = sizeof(double);
kf->xhatSize = xhatSize;
kf->uSize = uSize;
kf->zSize = zSize;
kf->MeasurementValidNum = 0;
// measurement flags
kf->MeasurementMap = (uint8_t *)user_malloc(sizeof(uint8_t) * zSize);
memset(kf->MeasurementMap, 0, sizeof(uint8_t) * zSize);
kf->MeasurementDegree = (float *)user_malloc(sizeof_float * zSize);
memset(kf->MeasurementDegree, 0, sizeof_float * zSize);
kf->MatR_DiagonalElements = (float *)user_malloc(sizeof_float * zSize);
memset(kf->MatR_DiagonalElements, 0, sizeof_float * zSize);
kf->StateMinVariance = (float *)user_malloc(sizeof_float * xhatSize);
memset(kf->StateMinVariance, 0, sizeof_float * xhatSize);
kf->temp = (uint8_t *)user_malloc(sizeof(uint8_t) * zSize);
memset(kf->temp, 0, sizeof(uint8_t) * zSize);
// filter data
kf->FilteredValue = (float *)user_malloc(sizeof_float * xhatSize);
memset(kf->FilteredValue, 0, sizeof_float * xhatSize);
kf->MeasuredVector = (float *)user_malloc(sizeof_float * zSize);
memset(kf->MeasuredVector, 0, sizeof_float * zSize);
kf->ControlVector = (float *)user_malloc(sizeof_float * uSize);
memset(kf->ControlVector, 0, sizeof_float * uSize);
// xhat x(k|k)
kf->xhat_data = (float *)user_malloc(sizeof_float * xhatSize);
memset(kf->xhat_data, 0, sizeof_float * xhatSize);
Matrix_Init(&kf->xhat, kf->xhatSize, 1, (float *)kf->xhat_data);
// xhatminus x(k|k-1)
kf->xhatminus_data = (float *)user_malloc(sizeof_float * xhatSize);
memset(kf->xhatminus_data, 0, sizeof_float * xhatSize);
Matrix_Init(&kf->xhatminus, kf->xhatSize, 1, (float *)kf->xhatminus_data);
if (uSize != 0)
{
// control vector u
kf->u_data = (float *)user_malloc(sizeof_float * uSize);
memset(kf->u_data, 0, sizeof_float * uSize);
Matrix_Init(&kf->u, kf->uSize, 1, (float *)kf->u_data);
}
// measurement vector z
kf->z_data = (float *)user_malloc(sizeof_float * zSize);
memset(kf->z_data, 0, sizeof_float * zSize);
Matrix_Init(&kf->z, kf->zSize, 1, (float *)kf->z_data);
// covariance matrix P(k|k)
kf->P_data = (float *)user_malloc(sizeof_float * xhatSize * xhatSize);
memset(kf->P_data, 0, sizeof_float * xhatSize * xhatSize);
Matrix_Init(&kf->P, kf->xhatSize, kf->xhatSize, (float *)kf->P_data);
//create covariance matrix P(k|k-1)
kf->Pminus_data = (float *)user_malloc(sizeof_float * xhatSize * xhatSize);
memset(kf->Pminus_data, 0, sizeof_float * xhatSize * xhatSize);
Matrix_Init(&kf->Pminus, kf->xhatSize, kf->xhatSize, (float *)kf->Pminus_data);
// state transition matrix F FT
kf->F_data = (float *)user_malloc(sizeof_float * xhatSize * xhatSize);
kf->FT_data = (float *)user_malloc(sizeof_float * xhatSize * xhatSize);
memset(kf->F_data, 0, sizeof_float * xhatSize * xhatSize);
memset(kf->FT_data, 0, sizeof_float * xhatSize * xhatSize);
Matrix_Init(&kf->F, kf->xhatSize, kf->xhatSize, (float *)kf->F_data);
Matrix_Init(&kf->FT, kf->xhatSize, kf->xhatSize, (float *)kf->FT_data);
if (uSize != 0)
{
// control matrix B
kf->B_data = (float *)user_malloc(sizeof_float * xhatSize * uSize);
memset(kf->B_data, 0, sizeof_float * xhatSize * uSize);
Matrix_Init(&kf->B, kf->xhatSize, kf->uSize, (float *)kf->B_data);
}
// measurement matrix H
kf->H_data = (float *)user_malloc(sizeof_float * zSize * xhatSize);
kf->HT_data = (float *)user_malloc(sizeof_float * xhatSize * zSize);
memset(kf->H_data, 0, sizeof_float * zSize * xhatSize);
memset(kf->HT_data, 0, sizeof_float * xhatSize * zSize);
Matrix_Init(&kf->H, kf->zSize, kf->xhatSize, (float *)kf->H_data);
Matrix_Init(&kf->HT, kf->xhatSize, kf->zSize, (float *)kf->HT_data);
// process noise covariance matrix Q
kf->Q_data = (float *)user_malloc(sizeof_float * xhatSize * xhatSize);
memset(kf->Q_data, 0, sizeof_float * xhatSize * xhatSize);
Matrix_Init(&kf->Q, kf->xhatSize, kf->xhatSize, (float *)kf->Q_data);
// measurement noise covariance matrix R
kf->R_data = (float *)user_malloc(sizeof_float * zSize * zSize);
memset(kf->R_data, 0, sizeof_float * zSize * zSize);
Matrix_Init(&kf->R, kf->zSize, kf->zSize, (float *)kf->R_data);
// kalman gain K
kf->K_data = (float *)user_malloc(sizeof_float * xhatSize * zSize);
memset(kf->K_data, 0, sizeof_float * xhatSize * zSize);
Matrix_Init(&kf->K, kf->xhatSize, kf->zSize, (float *)kf->K_data);
kf->S_data = (float *)user_malloc(sizeof_float * kf->xhatSize * kf->xhatSize);
kf->temp_matrix_data = (float *)user_malloc(sizeof_float * kf->xhatSize * kf->xhatSize);
kf->temp_matrix_data1 = (float *)user_malloc(sizeof_float * kf->xhatSize * kf->xhatSize);
kf->temp_vector_data = (float *)user_malloc(sizeof_float * kf->xhatSize);
kf->temp_vector_data1 = (float *)user_malloc(sizeof_float * kf->xhatSize);
Matrix_Init(&kf->S, kf->xhatSize, kf->xhatSize, (float *)kf->S_data);
Matrix_Init(&kf->temp_matrix, kf->xhatSize, kf->xhatSize, (float *)kf->temp_matrix_data);
Matrix_Init(&kf->temp_matrix1, kf->xhatSize, kf->xhatSize, (float *)kf->temp_matrix_data1);
Matrix_Init(&kf->temp_vector, kf->xhatSize, 1, (float *)kf->temp_vector_data);
Matrix_Init(&kf->temp_vector1, kf->xhatSize, 1, (float *)kf->temp_vector_data1);
kf->SkipEq1 = 0;
kf->SkipEq2 = 0;
kf->SkipEq3 = 0;
kf->SkipEq4 = 0;
kf->SkipEq5 = 0;
}
float *Kalman_Filter_Update(KalmanFilter_t *kf)
{
// 矩阵H K R根据量测情况自动调整
// matrix H K R auto adjustment
if (kf->UseAutoAdjustment != 0)
H_K_R_Adjustment(kf);
else
{
memcpy(kf->z_data, kf->MeasuredVector, sizeof_float * kf->zSize);
memset(kf->MeasuredVector, 0, sizeof_float * kf->zSize);
}
memcpy(kf->u_data, kf->ControlVector, sizeof_float * kf->uSize);
if (kf->User_Func0_f != NULL)
kf->User_Func0_f(kf);
// 1. xhat'(k)= A·xhat(k-1) + B·u
if (!kf->SkipEq1)
{
if (kf->uSize > 0)
{
kf->MatStatus = Matrix_Multiply(&kf->F, &kf->xhat, &kf->temp_vector);
kf->temp_vector1.numRows = kf->xhatSize;
kf->temp_vector1.numCols = 1;
kf->MatStatus = Matrix_Multiply(&kf->B, &kf->u, &kf->temp_vector1);
kf->MatStatus = Matrix_Add(&kf->temp_vector, &kf->temp_vector1, &kf->xhatminus);
}
else
{
kf->MatStatus = Matrix_Multiply(&kf->F, &kf->xhat, &kf->xhatminus);
}
}
if (kf->User_Func1_f != NULL)
kf->User_Func1_f(kf);
// 预测更新
// 2. P'(k) = A·P(k-1)·AT + Q
if (!kf->SkipEq2)
{
kf->MatStatus = Matrix_Transpose(&kf->F, &kf->FT);
kf->MatStatus = Matrix_Multiply(&kf->F, &kf->P, &kf->Pminus);
kf->temp_matrix.numRows = kf->Pminus.numRows;
kf->temp_matrix.numCols = kf->FT.numCols;
kf->MatStatus = Matrix_Multiply(&kf->Pminus, &kf->FT, &kf->temp_matrix); //temp_matrix = F P(k-1) FT
kf->MatStatus = Matrix_Add(&kf->temp_matrix, &kf->Q, &kf->Pminus);
}
if (kf->User_Func2_f != NULL)
kf->User_Func2_f(kf);
if (kf->MeasurementValidNum != 0 || kf->UseAutoAdjustment == 0)
{
// 量测更新
// 3. K(k) = P'(k)·HT / (H·P'(k)·HT + R)
if (!kf->SkipEq3)
{
kf->MatStatus = Matrix_Transpose(&kf->H, &kf->HT); //z|x => x|z
kf->temp_matrix.numRows = kf->H.numRows;
kf->temp_matrix.numCols = kf->Pminus.numCols;
kf->MatStatus = Matrix_Multiply(&kf->H, &kf->Pminus, &kf->temp_matrix); //temp_matrix = H·P'(k)
kf->temp_matrix1.numRows = kf->temp_matrix.numRows;
kf->temp_matrix1.numCols = kf->HT.numCols;
kf->MatStatus = Matrix_Multiply(&kf->temp_matrix, &kf->HT, &kf->temp_matrix1); //temp_matrix1 = H·P'(k)·HT
kf->S.numRows = kf->R.numRows;
kf->S.numCols = kf->R.numCols;
kf->MatStatus = Matrix_Add(&kf->temp_matrix1, &kf->R, &kf->S); //S = H P'(k) HT + R
kf->MatStatus = Matrix_Inverse(&kf->S, &kf->temp_matrix1); //temp_matrix1 = inv(H·P'(k)·HT + R)
kf->temp_matrix.numRows = kf->Pminus.numRows;
kf->temp_matrix.numCols = kf->HT.numCols;
kf->MatStatus = Matrix_Multiply(&kf->Pminus, &kf->HT, &kf->temp_matrix); //temp_matrix = P'(k)·HT
kf->MatStatus = Matrix_Multiply(&kf->temp_matrix, &kf->temp_matrix1, &kf->K);
}
if (kf->User_Func3_f != NULL)
kf->User_Func3_f(kf);
// 4. xhat(k) = xhat'(k) + K(k)·(z(k) - H·xhat'(k))
if (!kf->SkipEq4)
{
kf->temp_vector.numRows = kf->H.numRows;
kf->temp_vector.numCols = 1;
kf->MatStatus = Matrix_Multiply(&kf->H, &kf->xhatminus, &kf->temp_vector); //temp_vector = H xhat'(k)
kf->temp_vector1.numRows = kf->z.numRows;
kf->temp_vector1.numCols = 1;
kf->MatStatus = Matrix_Subtract(&kf->z, &kf->temp_vector, &kf->temp_vector1); //temp_vector1 = z(k) - H·xhat'(k)
kf->temp_vector.numRows = kf->K.numRows;
kf->temp_vector.numCols = 1;
kf->MatStatus = Matrix_Multiply(&kf->K, &kf->temp_vector1, &kf->temp_vector); //temp_vector = K(k)·(z(k) - H·xhat'(k))
kf->MatStatus = Matrix_Add(&kf->xhatminus, &kf->temp_vector, &kf->xhat);
}
if (kf->User_Func4_f != NULL)
kf->User_Func4_f(kf);
// 5. P(k) = (1-K(k)·H)·P'(k) ==> P(k) = P'(k)-K(k)·H·P'(k)
if (!kf->SkipEq5)
{
kf->temp_matrix.numRows = kf->K.numRows;
kf->temp_matrix.numCols = kf->H.numCols;
kf->temp_matrix1.numRows = kf->temp_matrix.numRows;
kf->temp_matrix1.numCols = kf->Pminus.numCols;
kf->MatStatus = Matrix_Multiply(&kf->K, &kf->H, &kf->temp_matrix); //temp_matrix = K(k)·H
kf->MatStatus = Matrix_Multiply(&kf->temp_matrix, &kf->Pminus, &kf->temp_matrix1); //temp_matrix1 = K(k)·H·P'(k)
kf->MatStatus = Matrix_Subtract(&kf->Pminus, &kf->temp_matrix1, &kf->P);
}
}
else
{
// 无有效量测 仅预测
// xhat(k) = xhat'(k)
// P(k) = P'(k)
memcpy(kf->xhat_data, kf->xhatminus_data, sizeof_float * kf->xhatSize);
memcpy(kf->P_data, kf->Pminus_data, sizeof_float * kf->xhatSize * kf->xhatSize);
}
if (kf->User_Func5_f != NULL)
kf->User_Func5_f(kf);
// 避免滤波器过度收敛
// suppress filter excessive convergence
for (uint8_t i = 0; i < kf->xhatSize; i++)
{
if (kf->P_data[i * kf->xhatSize + i] < kf->StateMinVariance[i])
kf->P_data[i * kf->xhatSize + i] = kf->StateMinVariance[i];
}
if (kf->UseAutoAdjustment != 0)
{
memset(kf->R_data, 0, sizeof_float * kf->zSize * kf->zSize);
memset(kf->H_data, 0, sizeof_float * kf->xhatSize * kf->zSize);
}
memcpy(kf->FilteredValue, kf->xhat_data, sizeof_float * kf->xhatSize);
if (kf->User_Func6_f != NULL)
kf->User_Func6_f(kf);
return kf->FilteredValue;
}
static void H_K_R_Adjustment(KalmanFilter_t *kf)
{
kf->MeasurementValidNum = 0;
memcpy(kf->z_data, kf->MeasuredVector, sizeof_float * kf->zSize);
memset(kf->MeasuredVector, 0, sizeof_float * kf->zSize);
// 识别量测数据有效性并调整矩阵H R K
// recognize measurement validity and adjust matrices H R K
for (uint8_t i = 0; i < kf->zSize; i++)
{
if (kf->z_data[i] != 0)
{
// 重构向量z
// rebuild vector z
kf->z_data[kf->MeasurementValidNum] = kf->z_data[i];
kf->temp[kf->MeasurementValidNum] = i;
// 重构矩阵H
// rebuild matrix H
kf->H_data[kf->xhatSize * kf->MeasurementValidNum + kf->MeasurementMap[i] - 1] = kf->MeasurementDegree[i];
kf->MeasurementValidNum++;
}
}
for (uint8_t i = 0; i < kf->MeasurementValidNum; i++)
{
// 重构矩阵R
// rebuild matrix R
kf->R_data[i * kf->MeasurementValidNum + i] = kf->MatR_DiagonalElements[kf->temp[i]];
}
// 调整矩阵维数
// adjust the dimensions of system matrices
kf->H.numRows = kf->MeasurementValidNum;
kf->H.numCols = kf->xhatSize;
kf->HT.numRows = kf->xhatSize;
kf->HT.numCols = kf->MeasurementValidNum;
kf->R.numRows = kf->MeasurementValidNum;
kf->R.numCols = kf->MeasurementValidNum;
kf->K.numRows = kf->xhatSize;
kf->K.numCols = kf->MeasurementValidNum;
kf->z.numRows = kf->MeasurementValidNum;
}