forked from blackfeather-wang/Dynamic-Vision-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels_deit.py
275 lines (222 loc) · 11.6 KB
/
models_deit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import torch
import torch.nn as nn
from functools import partial
from timm.models.vision_transformer import VisionTransformer, _cfg
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_
__all__ = [
'deit_tiny_patch16_224', 'deit_small_patch16_224', 'deit_base_patch16_224',
'deit_tiny_distilled_patch16_224', 'deit_small_distilled_patch16_224',
'deit_base_distilled_patch16_224', 'deit_base_patch16_384',
'deit_base_distilled_patch16_384',
]
class DistilledVisionTransformer(VisionTransformer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
num_patches = self.patch_embed.num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 2, self.embed_dim))
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity()
trunc_normal_(self.dist_token, std=.02)
trunc_normal_(self.pos_embed, std=.02)
self.head_dist.apply(self._init_weights)
def forward_features(self, x):
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# with slight modifications to add the dist_token
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
dist_token = self.dist_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, dist_token, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x[:, 0], x[:, 1]
def forward(self, x):
x, x_dist = self.forward_features(x)
x = self.head(x)
x_dist = self.head_dist(x_dist)
if self.training:
return x, x_dist
else:
# during inference, return the average of both classifier predictions
return (x + x_dist) / 2
class DVT_Deit_small_model(nn.Module):
def __init__(self, feature_reuse, relation_reuse, **kwargs):
super().__init__()
self.feature_reuse = feature_reuse
self.relation_reuse = relation_reuse
self.less_less_token = deit_small_less_less_token(feature_reuse=False,
relation_reuse=False,
**kwargs)
self.less_token = deit_small_less_token(feature_reuse=feature_reuse,
relation_reuse=relation_reuse,
**kwargs)
self.normal_token = deit_small(feature_reuse=feature_reuse,
relation_reuse=relation_reuse,
**kwargs)
def forward(self, x):
if self.feature_reuse == True and self.relation_reuse == True:
less_less_token_output, features_to_be_reused_list, relations_to_be_reused_list = self.less_less_token(x, features_to_be_reused_list=None, relations_to_be_reused_list=None)
less_token_output, features_to_be_reused_list, relations_to_be_reused_list = self.less_token(x, features_to_be_reused_list=features_to_be_reused_list, relations_to_be_reused_list=relations_to_be_reused_list)
normal_output, _, _ = self.normal_token(x, features_to_be_reused_list=features_to_be_reused_list, relations_to_be_reused_list=relations_to_be_reused_list)
elif self.feature_reuse == False and self.relation_reuse == True:
less_less_token_output, features_to_be_reused_list, relations_to_be_reused_list = self.less_less_token(x, features_to_be_reused_list=None, relations_to_be_reused_list=None)
less_token_output, features_to_be_reused_list, relations_to_be_reused_list = self.less_token(x, features_to_be_reused_list=None, relations_to_be_reused_list=relations_to_be_reused_list)
normal_output, _, _ = self.normal_token(x, features_to_be_reused_list=None, relations_to_be_reused_list=relations_to_be_reused_list)
elif self.feature_reuse == True and self.relation_reuse == False:
less_less_token_output, features_to_be_reused_list, relations_to_be_reused_list = self.less_less_token(x, features_to_be_reused_list=None, relations_to_be_reused_list=None)
less_token_output, features_to_be_reused_list, relations_to_be_reused_list = self.less_token(x, features_to_be_reused_list=features_to_be_reused_list, relations_to_be_reused_list=None)
normal_output, _, _ = self.normal_token(x, features_to_be_reused_list=features_to_be_reused_list, relations_to_be_reused_list=None)
else:
less_less_token_output, features_to_be_reused_list, relations_to_be_reused_list = self.less_less_token(x, features_to_be_reused_list=None, relations_to_be_reused_list=None)
less_token_output, features_to_be_reused_list, relations_to_be_reused_list = self.less_token(x, features_to_be_reused_list=None, relations_to_be_reused_list=None)
normal_output, _, _ = self.normal_token(x, features_to_be_reused_list=None, relations_to_be_reused_list=None)
return less_less_token_output, less_token_output, normal_output
@register_model
def DVT_Deit_small(**kwargs):
return DVT_Deit_small_model(feature_reuse=True, relation_reuse=True, **kwargs)
@register_model
def deit_small(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_small_less_token(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=23, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_small_less_less_token(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_tiny_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs):
model = DistilledVisionTransformer(
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_small_distilled_patch16_224(pretrained=False, **kwargs):
model = DistilledVisionTransformer(
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_distilled_patch16_224(pretrained=False, **kwargs):
model = DistilledVisionTransformer(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_patch16_384(pretrained=False, **kwargs):
model = VisionTransformer(
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_distilled_patch16_384(pretrained=False, **kwargs):
model = DistilledVisionTransformer(
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
if __name__=='__main__':
model = DVT_Deit_small()
# checkpoint = torch.load('2_checkpoint.pth', map_location=torch.device('cpu'))
# model.load_state_dict(checkpoint['model'], strict=True)
# print(model)
img = torch.rand(2, 3, 224, 224)
a, b, c = model(img)
print(a.size())
print(b.size())
print(c.size())