-
Notifications
You must be signed in to change notification settings - Fork 18
/
Sound.cpp
438 lines (360 loc) · 12.8 KB
/
Sound.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
#include "Sound.hpp"
#include "load_wav.hpp"
#include "load_opus.hpp"
#include <SDL.h>
#include <list>
#include <cassert>
#include <exception>
#include <iostream>
#include <algorithm>
//local (to this file) data used by the audio system:
namespace {
//handy constants:
constexpr uint32_t const AUDIO_RATE = 48000; //sampling rate
constexpr uint32_t const MIX_SAMPLES = 1024; //number of samples to mix per call of mix_audio callback; n.b. SDL requires this to be a power of two
//The audio device:
SDL_AudioDeviceID device = 0;
//list of all currently playing samples:
std::list< std::shared_ptr< Sound::PlayingSample > > playing_samples;
}
//public-facing data:
//global volume control:
Sound::Ramp< float > Sound::volume = Sound::Ramp< float >(1.0f);
//global listener information:
Sound::Listener Sound::listener;
//This audio-mixing callback is defined below:
void mix_audio(void *, Uint8 *buffer_, int len);
//------------------------ public-facing --------------------------------
Sound::Sample::Sample(std::string const &filename) {
if (filename.size() >= 4 && filename.substr(filename.size()-4) == ".wav") {
load_wav(filename, &data);
} else if (filename.size() >= 5 && filename.substr(filename.size()-5) == ".opus") {
load_opus(filename, &data);
} else {
throw std::runtime_error("Sample '" + filename + "' doesn't end in either \".png\" or \".opus\" -- unsure how to load.");
}
}
Sound::Sample::Sample(std::vector< float > const &data_) : data(data_) {
}
void Sound::init() {
if (SDL_InitSubSystem(SDL_INIT_AUDIO) != 0) {
std::cerr << "Failed to initialize SDL audio subsytem:\n" << SDL_GetError() << std::endl;
std::cerr << " (Will continue without audio.)\n" << std::endl;
return;
}
//Based on the example on https://wiki.libsdl.org/SDL_OpenAudioDevice
SDL_AudioSpec want, have;
SDL_zero(want);
want.freq = AUDIO_RATE;
want.format = AUDIO_F32SYS;
want.channels = 2;
want.samples = MIX_SAMPLES;
want.callback = mix_audio;
device = SDL_OpenAudioDevice(nullptr, 0, &want, &have, 0);
if (device == 0) {
std::cerr << "Failed to open audio device:\n" << SDL_GetError() << std::endl;
std::cerr << " (Will continue without audio.)\n" << std::endl;
} else {
//start audio playback:
SDL_PauseAudioDevice(device, 0);
std::cout << "Audio output initialized." << std::endl;
}
}
void Sound::shutdown() {
if (device != 0) {
//stop audio playback:
SDL_PauseAudioDevice(device, 1);
SDL_CloseAudioDevice(device);
device = 0;
}
}
void Sound::lock() {
if (device) SDL_LockAudioDevice(device);
}
void Sound::unlock() {
if (device) SDL_UnlockAudioDevice(device);
}
std::shared_ptr< Sound::PlayingSample > Sound::play(Sample const &sample, float play_volume, float pan) {
std::shared_ptr< Sound::PlayingSample > playing_sample = std::make_shared< Sound::PlayingSample >(sample, play_volume, pan, false);
lock();
playing_samples.emplace_back(playing_sample);
unlock();
return playing_sample;
}
std::shared_ptr< Sound::PlayingSample > Sound::play_3D(Sample const &sample, float play_volume, glm::vec3 const &position, float half_volume_radius) {
std::shared_ptr< Sound::PlayingSample > playing_sample = std::make_shared< Sound::PlayingSample >(sample, play_volume, position, half_volume_radius, false);
lock();
playing_samples.emplace_back(playing_sample);
unlock();
return playing_sample;
}
std::shared_ptr< Sound::PlayingSample > Sound::loop(Sample const &sample, float play_volume, float pan) {
std::shared_ptr< Sound::PlayingSample > playing_sample = std::make_shared< Sound::PlayingSample >(sample, play_volume, pan, true);
lock();
playing_samples.emplace_back(playing_sample);
unlock();
return playing_sample;
}
std::shared_ptr< Sound::PlayingSample > Sound::loop_3D(Sample const &sample, float play_volume, glm::vec3 const &position, float half_volume_radius) {
std::shared_ptr< Sound::PlayingSample > playing_sample = std::make_shared< Sound::PlayingSample >(sample, play_volume, position, half_volume_radius, true);
lock();
playing_samples.emplace_back(playing_sample);
unlock();
return playing_sample;
}
void Sound::stop_all_samples() {
lock();
for (auto &s : playing_samples) {
s->stop();
}
unlock();
}
void Sound::set_volume(float new_volume, float ramp) {
lock();
volume.set(new_volume, ramp);
unlock();
}
//------------------
void Sound::PlayingSample::set_volume(float new_volume, float ramp) {
Sound::lock();
if (!stopping) {
volume.set(new_volume, ramp);
}
Sound::unlock();
}
void Sound::PlayingSample::set_pan(float new_pan, float ramp) {
if (!(pan.value == pan.value)) return; //ignore if not in '2D' mode
Sound::lock();
pan.set(new_pan, ramp);
Sound::unlock();
}
void Sound::PlayingSample::set_position(glm::vec3 const &new_position, float ramp) {
if (pan.value == pan.value) return; //ignore if not in '3D' mode
Sound::lock();
position.set(new_position, ramp);
Sound::unlock();
}
void Sound::PlayingSample::set_half_volume_radius(float new_radius, float ramp) {
if (pan.value == pan.value) return; //ignore if not in '3D' mode
Sound::lock();
half_volume_radius.set(new_radius, ramp);
Sound::unlock();
}
void Sound::PlayingSample::stop(float ramp) {
Sound::lock();
if (!(stopping || stopped)) {
stopping = true;
volume.target = 0.0f;
volume.ramp = ramp;
} else {
volume.ramp = std::min(volume.ramp, ramp);
}
Sound::unlock();
}
//------------------
void Sound::Listener::set_position_right(glm::vec3 const &new_position, glm::vec3 const &new_right, float ramp) {
Sound::lock();
position.set(new_position, ramp);
//some extra code to make sure right is always a unit vector:
if (new_right == glm::vec3(0.0f)) {
right.set(glm::vec3(1.0f, 0.0f, 0.0f), ramp);
} else {
right.set(glm::normalize(new_right), ramp);
}
Sound::unlock();
}
//------------------------ internals --------------------------------
//helper: equal-power panning
inline void compute_pan_weights(float pan, float *left, float *right) {
//clamp pan to -1 to 1 range:
pan = std::max(-1.0f, std::min(1.0f, pan));
//want left^2 + right^2 = 1.0, so use angles:
float ang = 0.5f * 3.1415926f * (0.5f * (pan + 1.0f));
*left = std::cos(ang);
*right = std::sin(ang);
}
//helper: 3D audio panning
void compute_pan_from_listener_and_position(
glm::vec3 const &listener_position,
glm::vec3 const &listener_right,
glm::vec3 const &source_position,
float source_half_radius,
float *left, float *right
) {
glm::vec3 to = source_position - listener_position;
float distance = glm::length(to);
//start by panning based on direction.
//note that for a LR fade to sound uniform, sound power (squared magnitude) should remain constant.
if (distance == 0.0f) {
*left = *right = std::sqrt(2.0f);
} else {
//amt ranges from -1 (most left) to 1 (most right):
float amt = glm::dot(listener_right, to) / distance;
//turn into an angle from 0.0f (most left) to pi/2 (most right):
float ang = 0.5f * 3.1415926f * (0.5f * (amt + 1.0f));
*left = std::cos(ang);
*right = std::sin(ang);
//squared distance attenuation is realistic if there are no walls,
// but I'm going to use linear because it's sounds better to me.
// (feel free to change it, of course)
//want att = 0.5f at distance == half_volume_radius
float att = 1.0f / (1.0f + (distance / source_half_radius));
*left *= att;
*right *= att;
}
}
//helper: ramp updates...
constexpr float const RAMP_STEP = float(MIX_SAMPLES) / float(AUDIO_RATE);
//helper: ...for single values:
void step_value_ramp(Sound::Ramp< float > &ramp) {
if (ramp.ramp < RAMP_STEP) {
ramp.value = ramp.target;
ramp.ramp = 0.0f;
} else {
ramp.value += (RAMP_STEP / ramp.ramp) * (ramp.target - ramp.value);
ramp.ramp -= RAMP_STEP;
}
}
//helper: ...for 3D positions:
void step_position_ramp(Sound::Ramp< glm::vec3 > &ramp) {
if (ramp.ramp < RAMP_STEP) {
ramp.value = ramp.target;
ramp.ramp = 0.0f;
} else {
ramp.value = glm::mix(ramp.value, ramp.target, RAMP_STEP / ramp.ramp);
ramp.ramp -= RAMP_STEP;
}
}
//helper: ...for 3D directions:
void step_direction_ramp(Sound::Ramp< glm::vec3 > &ramp) {
if (ramp.ramp < RAMP_STEP) {
ramp.value = ramp.target;
ramp.ramp = 0.0f;
} else {
//find normal to the plane containing value and target:
glm::vec3 norm = glm::cross(ramp.value, ramp.target);
if (norm == glm::vec3(0.0f)) {
if (ramp.target.x <= ramp.target.y && ramp.target.x <= ramp.target.z) {
norm = glm::vec3(1.0f, 0.0f, 0.0f);
} else if (ramp.target.y <= ramp.target.z) {
norm = glm::vec3(0.0f, 1.0f, 0.0f);
} else {
norm = glm::vec3(0.0f, 0.0f, 1.0f);
}
norm -= ramp.target * glm::dot(ramp.target, norm);
}
norm = glm::normalize(norm);
//find perpendicular to target in this plane:
glm::vec3 perp = glm::cross(norm, ramp.target);
//find angle from target to value:
float angle = std::acos(glm::clamp(glm::dot(ramp.value, ramp.target), -1.0f, 1.0f));
//figure out new target value by moving angle toward target:
angle *= (ramp.ramp - RAMP_STEP) / ramp.ramp;
ramp.value = ramp.target * std::cos(angle) + perp * std::sin(angle);
ramp.ramp -= RAMP_STEP;
}
}
//The audio callback -- invoked by SDL when it needs more sound to play:
void mix_audio(void *, Uint8 *buffer_, int len) {
assert(buffer_); //should always have some audio buffer
struct LR {
float l;
float r;
};
static_assert(sizeof(LR) == 8, "Sample is packed");
assert(len == MIX_SAMPLES * sizeof(LR)); //should always have the expected number of samples
LR *buffer = reinterpret_cast< LR * >(buffer_);
//zero the output buffer:
for (uint32_t s = 0; s < MIX_SAMPLES; ++s) {
buffer[s].l = 0.0f;
buffer[s].r = 0.0f;
}
//update global values:
float start_volume = Sound::volume.value;
glm::vec3 start_position = Sound::listener.position.value;
glm::vec3 start_right = Sound::listener.right.value;
step_value_ramp(Sound::volume);
step_position_ramp( Sound::listener.position);
step_direction_ramp( Sound::listener.right);
float end_volume = Sound::volume.value;
glm::vec3 end_position = Sound::listener.position.value;
glm::vec3 end_right = Sound::listener.right.value;
//add audio from each playing sample into the buffer:
for (auto si = playing_samples.begin(); si != playing_samples.end(); /* later */) {
Sound::PlayingSample &playing_sample = **si; //much more convenient than writing ** everywhere.
//Figure out sample panning/volume at start...
LR start_pan;
if (!(playing_sample.pan.value == playing_sample.pan.value)) {
//3D panning
compute_pan_from_listener_and_position(
start_position, start_right,
playing_sample.position.value,
playing_sample.half_volume_radius.value,
&start_pan.l, &start_pan.r);
step_position_ramp(playing_sample.position);
step_value_ramp(playing_sample.half_volume_radius);
} else {
//2D panning
compute_pan_weights(playing_sample.pan.value, &start_pan.l, &start_pan.r);
step_value_ramp(playing_sample.pan);
}
start_pan.l *= start_volume * playing_sample.volume.value;
start_pan.r *= start_volume * playing_sample.volume.value;
step_value_ramp(playing_sample.volume);
//..and end of the mix period:
LR end_pan;
if (!(playing_sample.pan.value == playing_sample.pan.value)) {
//3D panning
compute_pan_from_listener_and_position(
end_position, end_right,
playing_sample.position.value,
playing_sample.half_volume_radius.value,
&end_pan.l, &end_pan.r);
} else {
//2D panning
compute_pan_weights(playing_sample.pan.value, &end_pan.l, &end_pan.r);
}
end_pan.l *= end_volume * playing_sample.volume.value;
end_pan.r *= end_volume * playing_sample.volume.value;
//figure out a step to add at each sample so that pan will move smoothly from start to end:
LR pan = start_pan;
LR pan_step;
pan_step.l = (end_pan.l - start_pan.l) / MIX_SAMPLES;
pan_step.r = (end_pan.r - start_pan.r) / MIX_SAMPLES;
assert(playing_sample.i < playing_sample.data.size());
for (uint32_t i = 0; i < MIX_SAMPLES; ++i) {
//mix one sample based on current pan values:
buffer[i].l += pan.l * playing_sample.data[playing_sample.i];
buffer[i].r += pan.r * playing_sample.data[playing_sample.i];
//update position in sample:
playing_sample.i += 1;
if (playing_sample.i == playing_sample.data.size()) {
if (playing_sample.loop) {
playing_sample.i = 0;
} else {
break;
}
}
//update pan values:
pan.l += pan_step.l;
pan.r += pan_step.r;
}
if (playing_sample.i >= playing_sample.data.size()
|| (playing_sample.stopping && playing_sample.volume.value == 0.0f)) { //sample has finished
playing_sample.stopped = true;
//erase from list:
auto old = si;
++si;
playing_samples.erase(old);
} else {
++si;
}
}
/*//DEBUG: report output power:
float max_power = 0.0f;
for (uint32_t s = 0; s < MIX_SAMPLES; ++s) {
max_power = std::max(max_power, (buffer[s].l * buffer[s].l + buffer[s].r * buffer[s].r));
}
std::cout << "Max Power: " << std::sqrt(max_power) << "; playing samples: " << playing_samples.size() << std::endl; //DEBUG
*/
}