-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_affwild2_expw_affectnet.py
514 lines (372 loc) · 19.3 KB
/
train_affwild2_expw_affectnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
'''
Aum Sri Sai Ram
Authors: Darshan Gera and Dr. S. Balasubramanian, SSSIHL
Date: 28-09-2020
Email: [email protected]
Purpose: Perform training on Aff-Wild2 +ExpW+ Affectnet datasets
Note: Oversampling is not used in this case.
'''
# External Libraries
import argparse
import os,sys,shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
import math
import sklearn.metrics as sm
from PIL import Image
import util
#dataset class and model
import scipy.io as sio
import numpy as np
import pdb
from statistics import mean
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from models.attentionnet import AttentionBranch, RegionBranch, count_parameters
from models.resnet import resnet50
from dataset.affectwild2_expw_affectnet import ImageList # dataset class for AffWild2+ExpW+Affectnet datasets
from models.losses import *
#######################################################################################################################################
# Training settings
parser = argparse.ArgumentParser(description='AffectnetWild2 expression recognition')
# DATA
parser.add_argument('--root_path', type=str, default='../data/Affwild2/',
help='path to root path of images')
parser.add_argument('--database', type=str, default='affectwild2',
help='Which Database for train. (flatcam, ferplus, affectnet)')
parser.add_argument('--metafile', type=str, default = '../data/Affwild2/Annotations/annotations.pkl',
help='path to training list')
parser.add_argument('--test_list', type=str, default = '../data/Affwild2/Annotations/test_file.txt',
help='path to test list')
parser.add_argument('--epochs', default=60, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=128, type=int, metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('-b_t', '--batch-size_t', default=128, type=int, metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--weight-decay', '--wd', default= 1e-3, type=float, metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=100, type=int,metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', default='pretrainedmodels/vgg_msceleb_resnet50_ft_weight.pkl', type=str, metavar='PATH',
help='path to pretrained FR Model (default: none)')
parser.add_argument('-e', '--predict_test', default=0, type=int, help='predict score on test set(default=0)')
parser.add_argument('--model_dir','-m', default='', type=str, help='checkpoint path')
parser.add_argument('--imagesize', type=int, default = 224, help='image size (default: 224)')
parser.add_argument('--num_classes', type=int, default=7, help='number of expressions(class)')
parser.add_argument('--num_attentive_regions', type=int, default=25, help='number of non-overlapping patches(default:25)')
parser.add_argument('--num_regions', type=int, default=4, help='number of non-overlapping patches(default:4)')
parser.add_argument('--train_rule', default='None', type=str, help='data sampling strategy for train loader:Resample, DRW,Reweight, None')
parser.add_argument('--loss_type', default="CE", type=str, help='loss type:Focal, CE')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser.add_argument('--workers', type=int, default = 8,
help='how many workers to load data')
args = parser.parse_args()
#######################################################################################################################################
def main():
#Print args
global args, best_prec1
args = parser.parse_args()
print('\n\t\t\t\t Aum Sri Sai Ram\nFER on AffectWild2 using Local and global Attention along with region branch (non-overlapping patches)\n\n')
print(args)
print('\nimg_dir: ', args.root_path)
print('\ntrain rule: ',args.train_rule, ' and loss type: ', args.loss_type, '\n')
print('\n lr is : ', args.lr)
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
imagesize = args.imagesize
best_expr_f1 = 0
final_cm = 0
final_mcm = 0
best_prec1 = 0
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(p=0.5),
transforms.ColorJitter(brightness=0.4, contrast = 0.3, saturation = 0.25, hue = 0.05),
transforms.Resize((args.imagesize,args.imagesize)),
transforms.ToTensor(),
transforms.Normalize(mean,std)
])
valid_transform = transforms.Compose([
transforms.Resize((args.imagesize,args.imagesize)),
transforms.ToTensor(),
transforms.Normalize(mean,std)
])
val_data = ImageList(root=args.root_path, fileList = args.metafile, train_mode='Validation',
transform=valid_transform)
val_loader = torch.utils.data.DataLoader(val_data, args.batch_size, shuffle=False, num_workers=8)
train_dataset = ImageList(root=args.root_path, fileList = args.metafile,train_mode='Train',
transform=train_transform)
cls_num_list = train_dataset.get_cls_num_list()
print('\nTrain cls num list:', cls_num_list)
if args.train_rule == 'None':
train_sampler = None
per_cls_weights = None
elif args.train_rule == 'Reweight':
train_sampler = None
beta = 0.9999 #0:normal weighting
effective_num = 1.0 - np.power(beta, cls_num_list)
per_cls_weights = (1.0 - beta) / np.array(effective_num)
per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list)
per_cls_weights = torch.FloatTensor(per_cls_weights).to(device)
if args.loss_type == 'CE':
criterion = nn.CrossEntropyLoss(weight=per_cls_weights).to(device)
elif args.loss_type == 'Focal':
criterion = FocalLoss(weight=per_cls_weights, gamma=2).to(device)
else:
warnings.warn('Loss type is not listed')
return
train_loader = torch.utils.data.DataLoader(train_dataset, args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
print('\nlength of AffectWild2 train Database: ' + str(len(train_dataset)))
print('\nlength of AffectWild2 valid Database: ' + str(len(val_loader.dataset)))
# prepare model
basemodel = resnet50(pretrained = False)
attention_model = AttentionBranch(inputdim = 512, num_regions = args.num_attentive_regions, num_classes = args.num_classes)
region_model = RegionBranch(inputdim = 1024, num_regions = args.num_regions, num_classes = args.num_classes)
basemodel = torch.nn.DataParallel(basemodel).to(device)
attention_model = torch.nn.DataParallel(attention_model).to(device)
region_model = torch.nn.DataParallel(region_model).to(device)
print('\nNumber of parameters:')
print('Base Model: {}, Attention Branch:{}, Region Branch:{} and Total: {}'.format(count_parameters(basemodel),count_parameters(attention_model), count_parameters(region_model), count_parameters(basemodel)+count_parameters(attention_model)+count_parameters(region_model)))
optimizer = torch.optim.SGD([{"params": basemodel.parameters(), "lr": 0.0001, "momentum":args.momentum,
"weight_decay":args.weight_decay}])
optimizer.add_param_group({"params": attention_model.parameters(), "lr": args.lr, "momentum":args.momentum,
"weight_decay":args.weight_decay})
optimizer.add_param_group({"params": region_model.parameters(), "lr": args.lr, "momentum":args.momentum,
"weight_decay":args.weight_decay})
if args.pretrained:
util.load_state_dict(basemodel,'pretrainedmodels/vgg_msceleb_resnet50_ft_weight.pkl')
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
basemodel.load_state_dict(checkpoint['base_state_dict'])
attention_model.load_state_dict(checkpoint['attention_state_dict'])
region_model.load_state_dict(checkpoint['region_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
print('\nTraining starting:\n')
for epoch in range(args.start_epoch, args.epochs):
# train for one epoch
train(train_loader, basemodel, attention_model, region_model, criterion, optimizer, epoch)
adjust_learning_rate(optimizer, epoch)
prec1, f1, cm = validate(val_loader, basemodel, attention_model, region_model, criterion, epoch)
print("Epoch: {} Validation Acc: {}, Validation f1:{} and Final score :{}".format(epoch, prec1, f1, 0.0033*prec1+0.67*f1))
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1 and f1 > best_expr_f1
best_prec1 = max(prec1.to(device).item(), best_prec1)
best_expr_f1 = max(f1, best_expr_f1)
save_checkpoint({
'epoch': epoch + 1,
'base_state_dict': basemodel.state_dict(),
'attention_state_dict': attention_model.state_dict(),
'region_state_dict': region_model.state_dict(),
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
}, is_best.item())
def train(train_loader, basemodel, attention_model, region_model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top2 = AverageMeter()
top5 = AverageMeter()
att_loss = AverageMeter()
region_loss = AverageMeter()
overall_loss = AverageMeter()
region_prec = []
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input = input.to(device)
target = target.to(device)
# compute output
attention_branch_feat, region_branch_feat = basemodel(input)
local_features_list, global_features, attention_preds = attention_model(attention_branch_feat)
region_preds = region_model(region_branch_feat)
#Attention Branch Loss: loss1
loss1 = criterion(attention_preds, target) #attention CELoss
#Region Branch Loss: loss2
for j in range(4):
if j == 0:
loss2 = criterion(region_preds[:,:,j], target) #region celoss loss from Ist region branch
else:
loss2 += criterion(region_preds[:,:,j], target) #region celoss loss for rest 3 regions from region branch
att_loss.update(loss1.item(), input.size(0))
region_loss.update(loss2.item(), input.size(0))
att_wt = 0.2
loss = att_wt * loss1 + (1 - att_wt) *loss2 # weights for both branches
overall_loss.update(loss.item(), input.size(0))
all_predictions = torch.cat([attention_preds.unsqueeze(2), region_preds], dim=2)
avg_predictions = torch.mean(all_predictions, dim=2)
avg_prec = accuracy(avg_predictions,target,topk=(1,))
top1.update(avg_prec[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Training Epoch: [{0}][{1}/{2}]\t'
'att_loss ({att_loss.avg})\t'
'region_loss ({region_loss.avg})\t'
'overall_loss ({overall_loss.avg})\t'
'Prec1 ({top1.avg}) \t'.format(
epoch, i, len(train_loader),
att_loss=att_loss,region_loss=region_loss,overall_loss=overall_loss, top1=top1))
def statistic(target, predict):
precision = sm.precision_score(target, predict, average="macro", zero_division=1)
recall = sm.recall_score(target, predict, average="macro", zero_division=1)
F1_score = sm.f1_score(target, predict, average="macro", zero_division=1)
return precision, recall, F1_score
def val_accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
top1 = pred[:, 0].cpu().numpy()
target_np = target.view(-1).cpu().numpy()
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
cm = 0
#print(target_np.shape, top1.shape)
if top1.size == 0 and target_np.size == 0:
cm = 0
precision, recall, F1_score = -1, -1, -1
else:
cm = sm.confusion_matrix(target_np, top1, labels=range(7),normalize='all') #'true,'pred'
precision, recall, F1_score = statistic(target_np, top1)
return res, cm, precision, recall, F1_score
def validate(val_loader, basemodel, attention_model, region_model, criterion, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
att_loss = AverageMeter()
region_loss = AverageMeter()
overall_loss = AverageMeter()
#region_prec = []
mode = 'Testing'
# switch to evaluate mode
basemodel.eval()
attention_model.eval()
region_model.eval()
end = time.time()
cm = 0
f1 = AverageMeter()
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
data_time.update(time.time() - end)
input = input.to(device)
target = target.to(device)
attention_branch_feat, region_branch_feat = basemodel(input)
local_features_list, global_features, attention_preds = attention_model(attention_branch_feat)
region_preds = region_model(region_branch_feat)
#Attention Branch Loss: loss1
loss1 = criterion(attention_preds, target) #attention CELoss
#loss1 += criterion1(local_features_list, global_features) #attention mse loss
#Region Branch Loss: loss2
for j in range(4):
if j == 0:
loss2 = criterion(region_preds[:,:,j], target) #region celoss loss from Ist region branch
else:
loss2 += criterion(region_preds[:,:,j], target) #region celoss loss for rest 3 regions from region branch
att_loss.update(loss1.item(), input.size(0))
region_loss.update(loss2.item(), input.size(0))
att_wt = 0.2
loss = att_wt * loss1 + (1 - att_wt) * loss2 # weights for both branches
overall_loss.update(loss.item(), input.size(0))
all_predictions = torch.cat([attention_preds.unsqueeze(2), region_preds], dim=2)
avg_predictions = torch.mean(all_predictions, dim=2)
avg_prec, expr_cm, precision, recall, F1_score = val_accuracy(avg_predictions, target, topk=(1,))
top1.update(avg_prec[0], input.size(0))
f1.update(F1_score, input.size(0))
cm += expr_cm
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 1000 == 0:
print('{0} [{1}/{2}]\t'
'att_loss ({att_loss.avg})\t'
'region_loss ({region_loss.avg})\t'
'Prec@1 ({top1.avg})\t' 'F1 ({f1.avg})\t'
.format(mode, i, len(val_loader), att_loss=att_loss, region_loss=region_loss, top1=top1, f1=f1))
print('{0} [{1}/{2}]\t'
#'Time {batch_time.val} ({batch_time.avg})\t'
'att_loss ({att_loss.avg})\t'
'region_loss ({region_loss.avg})\t'
'overall_loss ({overall_loss.avg})\t'
'Prec@1 ({top1.avg})\t' 'F1 ({f1.avg})\t'
.format(mode, i, len(val_loader), att_loss=att_loss, region_loss=region_loss, overall_loss=overall_loss, top1=top1, f1=f1))
return top1.avg, f1.avg, cm
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
epoch_num = state['epoch']
full_filename = os.path.join(args.model_dir, str(epoch_num)+'_'+ filename)
full_bestname = os.path.join(args.model_dir, 'model_best.pth.tar')
torch.save(state, full_filename)
if epoch_num%1==0 and epoch_num>=0:
torch.save(state, full_filename)
if is_best:
#torch.save(state, full_bestname)
shutil.copyfile(full_filename, full_bestname)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed"""
print('\n******************************\n\tAdjusted learning rate: '+str(epoch) +'\n')
i = 0
for param_group in optimizer.param_groups:
if i == 0:
print('\tBase old lr is: ',param_group['lr'])
param_group['lr'] *= 0.95
print('\tBase new lr is: ',param_group['lr'])
else :
print('\tBranches old lr is: ',param_group['lr'])
param_group['lr'] *= 0.95
print('\tBranches new lr is: ',param_group['lr'])
i += 1
print('******************************')
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == "__main__":
main()
print("Process has finished!")