-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathsolver.py
356 lines (281 loc) · 13.2 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
"""solver.py"""
from pathlib import Path
import torch
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision.utils import save_image
from models.toynet import ToyNet
from datasets.datasets import return_data
from utils.utils import rm_dir, cuda, where
from adversary import Attack
class Solver(object):
def __init__(self, args):
self.args = args
# Basic
self.cuda = (args.cuda and torch.cuda.is_available())
self.epoch = args.epoch
self.batch_size = args.batch_size
self.eps = args.eps
self.lr = args.lr
self.y_dim = args.y_dim
self.target = args.target
self.dataset = args.dataset
self.data_loader = return_data(args)
self.global_epoch = 0
self.global_iter = 0
self.print_ = not args.silent
self.env_name = args.env_name
self.tensorboard = args.tensorboard
self.visdom = args.visdom
self.ckpt_dir = Path(args.ckpt_dir).joinpath(args.env_name)
if not self.ckpt_dir.exists():
self.ckpt_dir.mkdir(parents=True, exist_ok=True)
self.output_dir = Path(args.output_dir).joinpath(args.env_name)
if not self.output_dir.exists():
self.output_dir.mkdir(parents=True, exist_ok=True)
# Visualization Tools
self.visualization_init(args)
# Histories
self.history = dict()
self.history['acc'] = 0.
self.history['epoch'] = 0
self.history['iter'] = 0
# Models & Optimizers
self.model_init(args)
self.load_ckpt = args.load_ckpt
if self.load_ckpt != '':
self.load_checkpoint(self.load_ckpt)
# Adversarial Perturbation Generator
#criterion = cuda(torch.nn.CrossEntropyLoss(), self.cuda)
criterion = F.cross_entropy
self.attack = Attack(self.net, criterion=criterion)
def visualization_init(self, args):
# Visdom
if self.visdom:
from utils.visdom_utils import VisFunc
self.port = args.visdom_port
self.vf = VisFunc(enval=self.env_name, port=self.port)
# TensorboardX
if self.tensorboard:
from tensorboardX import SummaryWriter
self.summary_dir = Path(args.summary_dir).joinpath(args.env_name)
if not self.summary_dir.exists():
self.summary_dir.mkdir(parents=True, exist_ok=True)
self.tf = SummaryWriter(log_dir=str(self.summary_dir))
self.tf.add_text(tag='argument', text_string=str(args), global_step=self.global_epoch)
def model_init(self, args):
# Network
self.net = cuda(ToyNet(y_dim=self.y_dim), self.cuda)
self.net.weight_init(_type='kaiming')
# Optimizers
self.optim = optim.Adam([{'params':self.net.parameters(), 'lr':self.lr}],
betas=(0.5, 0.999))
def train(self):
self.set_mode('train')
for e in range(self.epoch):
self.global_epoch += 1
correct = 0.
cost = 0.
total = 0.
for batch_idx, (images, labels) in enumerate(self.data_loader['train']):
self.global_iter += 1
x = Variable(cuda(images, self.cuda))
y = Variable(cuda(labels, self.cuda))
logit = self.net(x)
prediction = logit.max(1)[1]
correct = torch.eq(prediction, y).float().mean().data[0]
cost = F.cross_entropy(logit, y)
self.optim.zero_grad()
cost.backward()
self.optim.step()
if batch_idx % 100 == 0:
if self.print_:
print()
print(self.env_name)
print('[{:03d}:{:03d}]'.format(self.global_epoch, batch_idx))
print('acc:{:.3f} loss:{:.3f}'.format(correct, cost.data[0]))
if self.tensorboard:
self.tf.add_scalars(main_tag='performance/acc',
tag_scalar_dict={'train':correct},
global_step=self.global_iter)
self.tf.add_scalars(main_tag='performance/error',
tag_scalar_dict={'train':1-correct},
global_step=self.global_iter)
self.tf.add_scalars(main_tag='performance/cost',
tag_scalar_dict={'train':cost.data[0]},
global_step=self.global_iter)
self.test()
if self.tensorboard:
self.tf.add_scalars(main_tag='performance/best/acc',
tag_scalar_dict={'test':self.history['acc']},
global_step=self.history['iter'])
print(" [*] Training Finished!")
def test(self):
self.set_mode('eval')
correct = 0.
cost = 0.
total = 0.
data_loader = self.data_loader['test']
for batch_idx, (images, labels) in enumerate(data_loader):
x = Variable(cuda(images, self.cuda))
y = Variable(cuda(labels, self.cuda))
logit = self.net(x)
prediction = logit.max(1)[1]
correct += torch.eq(prediction, y).float().sum().data[0]
cost += F.cross_entropy(logit, y, size_average=False).data[0]
total += x.size(0)
accuracy = correct / total
cost /= total
if self.print_:
print()
print('[{:03d}]\nTEST RESULT'.format(self.global_epoch))
print('ACC:{:.4f}'.format(accuracy))
print('*TOP* ACC:{:.4f} at e:{:03d}'.format(accuracy, self.global_epoch,))
print()
if self.tensorboard:
self.tf.add_scalars(main_tag='performance/acc',
tag_scalar_dict={'test':accuracy},
global_step=self.global_iter)
self.tf.add_scalars(main_tag='performance/error',
tag_scalar_dict={'test':(1-accuracy)},
global_step=self.global_iter)
self.tf.add_scalars(main_tag='performance/cost',
tag_scalar_dict={'test':cost},
global_step=self.global_iter)
if self.history['acc'] < accuracy:
self.history['acc'] = accuracy
self.history['epoch'] = self.global_epoch
self.history['iter'] = self.global_iter
self.save_checkpoint('best_acc.tar')
self.set_mode('train')
def generate(self, num_sample=100, target=-1, epsilon=0.03, alpha=2/255, iteration=1):
self.set_mode('eval')
x_true, y_true = self.sample_data(num_sample)
if isinstance(target, int) and (target in range(self.y_dim)):
y_target = torch.LongTensor(y_true.size()).fill_(target)
else:
y_target = None
x_adv, changed, values = self.FGSM(x_true, y_true, y_target, epsilon, alpha, iteration)
accuracy, cost, accuracy_adv, cost_adv = values
save_image(x_true,
self.output_dir.joinpath('legitimate(t:{},e:{},i:{}).jpg'.format(target,
epsilon,
iteration)),
nrow=10,
padding=2,
pad_value=0.5)
save_image(x_adv,
self.output_dir.joinpath('perturbed(t:{},e:{},i:{}).jpg'.format(target,
epsilon,
iteration)),
nrow=10,
padding=2,
pad_value=0.5)
save_image(changed,
self.output_dir.joinpath('changed(t:{},e:{},i:{}).jpg'.format(target,
epsilon,
iteration)),
nrow=10,
padding=3,
pad_value=0.5)
if self.visdom:
self.vf.imshow_multi(x_true.cpu(), title='legitimate', factor=1.5)
self.vf.imshow_multi(x_adv.cpu(), title='perturbed(e:{},i:{})'.format(epsilon, iteration), factor=1.5)
self.vf.imshow_multi(changed.cpu(), title='changed(white)'.format(epsilon), factor=1.5)
print('[BEFORE] accuracy : {:.2f} cost : {:.3f}'.format(accuracy, cost))
print('[AFTER] accuracy : {:.2f} cost : {:.3f}'.format(accuracy_adv, cost_adv))
self.set_mode('train')
def sample_data(self, num_sample=100):
total = len(self.data_loader['test'].dataset)
seed = torch.FloatTensor(num_sample).uniform_(1, total).long()
x = self.data_loader['test'].dataset.test_data[seed]
x = self.scale(x.float().unsqueeze(1).div(255))
y = self.data_loader['test'].dataset.test_labels[seed]
return x, y
def FGSM(self, x, y_true, y_target=None, eps=0.03, alpha=2/255, iteration=1):
self.set_mode('eval')
x = Variable(cuda(x, self.cuda), requires_grad=True)
y_true = Variable(cuda(y_true, self.cuda), requires_grad=False)
if y_target is not None:
targeted = True
y_target = Variable(cuda(y_target, self.cuda), requires_grad=False)
else:
targeted = False
h = self.net(x)
prediction = h.max(1)[1]
accuracy = torch.eq(prediction, y_true).float().mean()
cost = F.cross_entropy(h, y_true)
if iteration == 1:
if targeted:
x_adv, h_adv, h = self.attack.fgsm(x, y_target, True, eps)
else:
x_adv, h_adv, h = self.attack.fgsm(x, y_true, False, eps)
else:
if targeted:
x_adv, h_adv, h = self.attack.i_fgsm(x, y_target, True, eps, alpha, iteration)
else:
x_adv, h_adv, h = self.attack.i_fgsm(x, y_true, False, eps, alpha, iteration)
prediction_adv = h_adv.max(1)[1]
accuracy_adv = torch.eq(prediction_adv, y_true).float().mean()
cost_adv = F.cross_entropy(h_adv, y_true)
# make indication of perturbed images that changed predictions of the classifier
if targeted:
changed = torch.eq(y_target, prediction_adv)
else:
changed = torch.eq(prediction, prediction_adv)
changed = torch.eq(changed, 0)
changed = changed.float().view(-1, 1, 1, 1).repeat(1, 3, 28, 28)
changed[:, 0, :, :] = where(changed[:, 0, :, :] == 1, 252, 91)
changed[:, 1, :, :] = where(changed[:, 1, :, :] == 1, 39, 252)
changed[:, 2, :, :] = where(changed[:, 2, :, :] == 1, 25, 25)
changed = self.scale(changed/255)
changed[:, :, 3:-2, 3:-2] = x_adv.repeat(1, 3, 1, 1)[:, :, 3:-2, 3:-2]
self.set_mode('train')
return x_adv.data, changed.data,\
(accuracy.data[0], cost.data[0], accuracy_adv.data[0], cost_adv.data[0])
def save_checkpoint(self, filename='ckpt.tar'):
model_states = {
'net':self.net.state_dict(),
}
optim_states = {
'optim':self.optim.state_dict(),
}
states = {
'iter':self.global_iter,
'epoch':self.global_epoch,
'history':self.history,
'args':self.args,
'model_states':model_states,
'optim_states':optim_states,
}
file_path = self.ckpt_dir / filename
torch.save(states, file_path.open('wb+'))
print("=> saved checkpoint '{}' (iter {})".format(file_path, self.global_iter))
def load_checkpoint(self, filename='best_acc.tar'):
file_path = self.ckpt_dir / filename
if file_path.is_file():
print("=> loading checkpoint '{}'".format(file_path))
checkpoint = torch.load(file_path.open('rb'))
self.global_epoch = checkpoint['epoch']
self.global_iter = checkpoint['iter']
self.history = checkpoint['history']
self.net.load_state_dict(checkpoint['model_states']['net'])
self.optim.load_state_dict(checkpoint['optim_states']['optim'])
print("=> loaded checkpoint '{} (iter {})'".format(file_path, self.global_iter))
else:
print("=> no checkpoint found at '{}'".format(file_path))
def set_mode(self, mode='train'):
if mode == 'train':
self.net.train()
elif mode == 'eval':
self.net.eval()
else: raise('mode error. It should be either train or eval')
def scale(self, image):
return image.mul(2).add(-1)
def unscale(self, image):
return image.add(1).mul(0.5)
def summary_flush(self, silent=True):
rm_dir(self.summary_dir, silent)
def checkpoint_flush(self, silent=True):
rm_dir(self.ckpt_dir, silent)