-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
208 lines (175 loc) · 8.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import config
from dataset import open_set_folds, face_dataset
from model import fetch_encoder, head
from finetune import linear_probing, weight_imprinting, fine_tune
from utils import save_dir_far_curve, save_dir_far_excel
import os
import json
import pprint
import random
import argparse
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# for boolean parser argument
def str2bool(v):
if isinstance(v,bool):
return v
if v == "True":
return True
elif v == "False":
return False
else:
raise argparse.ArgumentTypeError("'True' or 'False' expected")
def False_or_float(v):
if v == "False":
return False
else:
return float(v)
parser = argparse.ArgumentParser()
# basic arguments
parser.add_argument("--device_id", type=int, default=0)
parser.add_argument("--lr",default=1e-3,type=float)
parser.add_argument("--batch_size",default=128,type=int)
parser.add_argument("--num_epochs",default=20,type=int,help="num_epochs for fine-tuning")
# dataset arguments
parser.add_argument("--dataset", type=str, default='CASIA', help="['CASIA','IJBC']")
parser.add_argument("--num_gallery", type=int, default=3, help="number of gallery images per identity")
parser.add_argument("--num_probe", type=int, default=5, help="maximum number of probe images per identity")
# encoder arguments
parser.add_argument("--encoder", type=str, default='Res50', help="['VGG19','Res50']")
parser.add_argument("--head_type", type=str, default='cos', help="['arc', 'cos', 'mag']")
# main arguments: classifier init / finetune layers / matcher
parser.add_argument("--classifier_init", type=str, default='WI',
help="['Random','LP','WI']") # Random Init. / Linear Probing / Weight Imprinting
parser.add_argument("--finetune_layers", type=str, default='None',
help="['None','Full','Partial','PA','BN']") # 'None' refers to no fine-tuning
parser.add_argument("--matcher", type=str, default='NAC',
help="['org','NAC','EVM']") # unused argument: refer to the results
# misc. arguments: no need to change
parser.add_argument("--arc_s",default=32,type=float,help="scale for ArcFace")
parser.add_argument("--arc_m",default=0.4,type=float,help="margin for ArcFace")
parser.add_argument("--cos_m",default=0.4,type=float,help="margin for CosFace")
parser.add_argument("--train_output",type=str2bool,default=False,
help="if True, train output layer")
args = parser.parse_args()
def main(args):
# check arguments
assert args.classifier_init in ['Random','LP','WI'], 'classifier_init must be one of ["Random","LP","WI"]'
assert args.finetune_layers in ['None','Full','Partial','PA','BN'], \
"finetune_layers must be one of ['None','Full','Partial','PA','BN']"
# fix random seed
SEED = 0
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
# set device
args.device = torch.device(args.device_id)
# result save directory
os.makedirs(f'results/{args.dataset}_{args.encoder}', exist_ok=True)
if args.finetune_layers == 'None':
exp_name = 'Pretrained'
else:
exp_name = f'{args.classifier_init}_{args.finetune_layers}'
save_dir = f'results/{args.dataset}_{args.encoder}/{exp_name}'
os.makedirs(save_dir, exist_ok=True)
print("results are saved at: ", save_dir)
# save arguments
argdict = args.__dict__.copy()
argdict['device'] = argdict['device'].type + f":{argdict['device'].index}"
with open(save_dir + '/args.txt', 'w') as fp:
json.dump(argdict, fp, indent=2)
# prepare dataset: config
data_config = config.data_config[args.dataset]
folds = open_set_folds(data_config["image_directory"], data_config["known_list_path"],
data_config["unknown_list_path"], args.num_gallery, args.num_probe)
'''
data preparation
'''
num_cls = folds.num_known
train_trf = transforms.Compose([
transforms.RandomResizedCrop(size=112, scale=(0.7, 1.)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(torch.FloatTensor([0.5, 0.5, 0.5]), torch.FloatTensor([0.5, 0.5, 0.5])),
])
eval_trf = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(torch.FloatTensor([0.5, 0.5, 0.5]), torch.FloatTensor([0.5, 0.5, 0.5])),
])
"""
prepare G, K, U sets for evaluation
increase batch_size for faster inference
"""
dataset_gallery = face_dataset(folds.G, eval_trf, img_size=112)
dataset_probe = face_dataset(folds.P, eval_trf, img_size=112)
data_loader_gallery = DataLoader(dataset_gallery, batch_size=256, shuffle=False, num_workers=4)
data_loader_probe = DataLoader(dataset_probe, batch_size=256, shuffle=False, num_workers=4)
'''
prepare encoder
'''
encoder = fetch_encoder.fetch(args.device, config.encoder_config,
args.encoder, args.finetune_layers, args.train_output)
'''
fine-tune
'''
if args.finetune_layers != "None": # for 'None', no fine-tuning is done
if args.head_type == "arc":
classifier = head.arcface_head(args.device, 512, num_cls, s=args.arc_s, m=args.arc_m, use_amp=True)
elif args.head_type == "cos":
classifier = head.cosface_head(512, num_cls, s=args.arc_s, m=args.cos_m)
elif args.head_type == "mag":
classifier = head.magface_head(args.device, 512, num_cls, s=args.arc_s, use_amp=True)
classifier.to(args.device)
# classifier initialization
if args.classifier_init == 'WI':
prototypes = weight_imprinting(args, encoder, data_loader_gallery, num_cls, 512)
classifier.weight = nn.Parameter(prototypes.T)
elif args.classifier_init == 'LP':
linear_probing(args, data_loader_gallery, encoder, classifier)
else:
pass # just use random weights for classifier
# set optimizer & LR scheduler
optimizer = optim.Adam([{"params": encoder.parameters(), "lr": args.lr},
{"params": classifier.parameters(), "lr": args.lr}],
weight_decay=1e-3)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.num_epochs)
# load training dataset (random shuffling & augmentation)
trainset_gallery = face_dataset(folds.G, train_trf, 112)
train_loader_gallery = DataLoader(trainset_gallery, batch_size=args.batch_size, shuffle=True, num_workers=4)
# finetune encoder
fine_tune(args, train_loader_gallery, encoder, classifier, optimizer, scheduler, verbose=True)
'''
evaluate encoder
'''
encoder.eval()
flip = transforms.RandomHorizontalFlip(p=1)
Gfeat = torch.FloatTensor([]).to(args.device)
Glabel = torch.LongTensor([])
for img, label in tqdm(data_loader_gallery):
img = img.to(args.device)
with torch.no_grad():
feat = 0.5 * (encoder(img) + encoder(flip(img)))
Gfeat = torch.cat((Gfeat, feat), dim=0)
Glabel = torch.cat((Glabel, label), dim=0)
Pfeat = torch.FloatTensor([]).to(args.device)
Plabel = torch.LongTensor([])
for img, label in tqdm(data_loader_probe):
img = img.to(args.device)
with torch.no_grad():
feat = 0.5 * (encoder(img) + encoder(flip(img)))
Pfeat = torch.cat((Pfeat, feat), dim=0)
Plabel = torch.cat((Plabel, label), dim=0)
Gfeat = Gfeat.cpu()
Pfeat = Pfeat.cpu()
# save results
save_dir_far_curve(Gfeat, Glabel, Pfeat, Plabel, save_dir)
save_dir_far_excel(Gfeat, Glabel, Pfeat, Plabel, save_dir)
if __name__ == '__main__':
pprint.pprint(vars(args))
main(args)