-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
57 lines (44 loc) · 2.35 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import argparse
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
from dataset import CIFAR10_
def config():
parser = argparse.ArgumentParser(description='SimSiam_CIFAR')
parser.add_argument('--train_batch_size',default=512,type=int)
parser.add_argument('--num_epochs',default=800,type=int,help='total training epochs')
parser.add_argument('--lr',default=3e-2,type=float,help='initial learning rate')
parser.add_argument('--momentum',default=0.9,type=float,help='momentum')
parser.add_argument('--weight_decay',default=5e-4,type=float,help='weight_decay')
parser.add_argument('--save_dir',default='./',type=str,help='checkpoint save directory')
parser.add_argument('--save_acc',default=80,type=int,help='save weight when above this accuracy')
args = parser.parse_args()
return args
def preprocess(args):
# CIFAR10 mean, std
CIFAR_mean = torch.FloatTensor([0.4914, 0.4822, 0.4465])
CIFAR_std = torch.FloatTensor([0.2023, 0.1994, 0.2010])
transform_train = transforms.Compose([
transforms.RandomResizedCrop(size=32, scale=(0.2, 1.)),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=CIFAR_mean, std=CIFAR_std),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=CIFAR_mean, std=CIFAR_std),
])
train_batch_size = args.train_batch_size
bank_batch_size = 500
query_batch_size = 100
trainset = CIFAR10_(root='./data',train=True,download=True,transform=transform_train)
bankset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_test)
queryset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
trainloader = DataLoader(trainset,batch_size=train_batch_size,shuffle=True,num_workers=4,pin_memory=False)
bankloader = DataLoader(bankset,batch_size=bank_batch_size,shuffle=False)
queryloader = DataLoader(queryset,batch_size=query_batch_size,shuffle=False)
classifier_trainloader = DataLoader(bankset,batch_size=bank_batch_size,shuffle=True)
return trainloader,bankloader,queryloader,classifier_trainloader