-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathLegendvolver.py
169 lines (142 loc) · 7.33 KB
/
Legendvolver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from tqdm import tqdm
import wandb, os
wandb.init(project="KANvolution_evaluation", entity="1ssb")
class Legendvolver(nn.Module):
def __init__(self, input_channels, layers_hidden, polynomial_order=3, base_activation=nn.SiLU):
super(Legendvolver, self).__init__()
self.input_channels = input_channels
self.layers_hidden = layers_hidden
self.polynomial_order = polynomial_order
self.base_activation = base_activation()
# Convolutional encoder for initial feature extraction
self.conv_layers = nn.Sequential(
nn.Conv2d(self.input_channels, 16, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2, 2),
)
# Compute the output size of conv layers to bridge to fully connected layers
self._compute_flat_features()
# Add parameters and normalization for polynomial-based hidden layers
self.base_weights = nn.ParameterList()
self.poly_weights = nn.ParameterList()
self.layer_norms = nn.ModuleList()
# Initialize the network for each layer pair in layers_hidden
for i, (in_features, out_features) in enumerate(zip([self.flat_features] + layers_hidden[:-1], layers_hidden)):
self.base_weights.append(nn.Parameter(torch.randn(out_features, in_features)))
self.poly_weights.append(nn.Parameter(torch.randn(out_features, in_features * (polynomial_order + 1))))
self.layer_norms.append(nn.LayerNorm(out_features))
# Initialize weights
for weight in self.base_weights:
nn.init.kaiming_uniform_(weight, nonlinearity='linear')
for weight in self.poly_weights:
nn.init.kaiming_uniform_(weight, nonlinearity='linear')
def _compute_flat_features(self):
# Dummy input to determine the size of the flattened features after convolutions
with torch.no_grad():
dummy_input = torch.zeros(1, self.input_channels, 28, 28)
dummy_output = self.conv_layers(dummy_input)
self.flat_features = int(torch.numel(dummy_output) / dummy_output.size(0))
def compute_legendre_polynomials(self, x, order):
# Efficiently compute Legendre polynomials within PyTorch framework
P0 = torch.ones_like(x)
if order == 0:
return P0.unsqueeze(-1)
P1 = x
legendre_polys = [P0, P1]
for n in range(1, order):
Pn = ((2.0 * n + 1.0) * x * legendre_polys[-1] - n * legendre_polys[-2]) / (n + 1.0)
legendre_polys.append(Pn)
return torch.stack(legendre_polys, dim=-1)
def forward(self, x):
x = x.to(self.base_weights[0].device)
x = self.conv_layers(x)
x = x.view(x.size(0), -1)
for i, (base_weight, poly_weight, layer_norm) in enumerate(zip(self.base_weights, self.poly_weights, self.layer_norms)):
base_output = F.linear(self.base_activation(x), base_weight)
x_normalized = 2 * (x - x.min(dim=1, keepdim=True)[0]) / (x.max(dim=1, keepdim=True)[0] - x.min(dim=1, keepdim=True)[0]) - 1
legendre_basis = self.compute_legendre_polynomials(x_normalized, self.polynomial_order)
legendre_basis = legendre_basis.view(x.size(0), -1)
poly_output = F.linear(legendre_basis, poly_weight)
x = self.base_activation(layer_norm(base_output + poly_output))
return x
class Trainer:
def __init__(self, model, device, train_loader, val_loader, optimizer, scheduler, criterion):
self.model = model.to(device)
self.device = device
self.train_loader = train_loader
self.val_loader = val_loader
self.optimizer = optimizer
self.scheduler = scheduler
self.criterion = criterion
def train_epoch(self, epoch):
self.model.train()
total_loss, total_accuracy = 0, 0
for images, labels in self.train_loader:
images, labels = images.to(self.device), labels.to(self.device)
self.optimizer.zero_grad()
outputs = self.model(images)
loss = self.criterion(outputs, labels)
loss.backward()
self.optimizer.step()
accuracy = (outputs.argmax(dim=1) == labels).float().mean().item()
total_loss += loss.item()
total_accuracy += accuracy
return total_loss / len(self.train_loader), total_accuracy / len(self.train_loader)
def validate_epoch(self):
self.model.eval()
val_loss, val_accuracy = 0, 0
with torch.no_grad():
for images, labels in self.val_loader:
images, labels = images.to(self.device), labels.to(self.device)
outputs = self.model(images)
val_loss += self.criterion(outputs, labels).item()
val_accuracy += (outputs.argmax(dim=1) == labels).float().mean().item()
return val_loss / len(self.val_loader), val_accuracy / len(self.val_loader)
def fit(self, epochs):
train_accuracies, val_accuracies = [], []
pbar = tqdm(range(epochs), desc="Epoch Progress")
for epoch in pbar:
train_loss, train_accuracy = self.train_epoch(epoch)
val_loss, val_accuracy = self.validate_epoch()
wandb.log({
"Train Loss": train_loss,
"Train Accuracy": train_accuracy,
"Validation Loss": val_loss,
"Validation Accuracy": val_accuracy
})
pbar.set_description(f"Epoch {epoch+1} | Train Loss: {train_loss:.4f} | Val Accuracy: {val_accuracy:.4f}")
self.scheduler.step()
train_accuracies.append(train_accuracy)
val_accuracies.append(val_accuracy)
return train_accuracies, val_accuracies
def train_and_validate(epochs=15):
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
trainset = torchvision.datasets.MNIST(root="./data", train=True, download=True, transform=transform)
valset = torchvision.datasets.MNIST(root="./data", train=False, download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)
valloader = DataLoader(valset, batch_size=64, shuffle=False)
model = Legendvolver(input_channels=1, layers_hidden=[256, 128, 10], polynomial_order=3)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3, weight_decay=1e-5)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.85)
criterion = nn.CrossEntropyLoss()
trainer = Trainer(model, device, trainloader, valloader, optimizer, scheduler, criterion)
train_accuracies, val_accuracies = trainer.fit(epochs)
model_save_dir = "./models"
os.makedirs(model_save_dir, exist_ok=True)
torch.save(model.state_dict(), os.path.join(model_save_dir, "trained_Legendvolver_model.pth"))
print(f"Train Accuracies: {train_accuracies}")
print(f"Validation Accuracies: {val_accuracies}")
wandb.finish()
if __name__ == "__main__":
train_and_validate()