forked from carpedm20/DCGAN-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample-lstm.py
91 lines (61 loc) · 2.53 KB
/
example-lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from tensorflow.models.rnn import rnn_cell, seq2seq
import tensorflow as tf
import numpy as np
import tempfile
seq_length = 5
batch_size = 64
vocab_size = 7
embedding_dim = 50
memory_dim = 100
number_of_items = 1# this is always one because of the softmax cross entropy in the loss function
sess = tf.InteractiveSession()
enc_inp = [tf.placeholder(tf.float32, shape=(batch_size,number_of_items),
name="inp-%i" % t)
for t in range(seq_length)]
labels = [tf.placeholder(tf.float32, shape=(batch_size,number_of_items),
name="labels-%i" % t)
for t in range(seq_length)]
weights = [tf.ones_like(labels_t, dtype=tf.float32)
for labels_t in labels]
# Decoder input: prepend some "GO" token and drop the final
# token of the encoder input
dec_inp = ([tf.zeros_like(enc_inp[0], dtype=np.float32, name="GO")]
+ enc_inp[:-1])
# Initial memory value for recurrence.
prev_mem = tf.zeros((batch_size, memory_dim))
cell = rnn_cell.BasicLSTMCell(memory_dim)
#enc_inp = np.tile(enc_inp, 2).tolist()
logits, state = seq2seq.basic_rnn_seq2seq(
enc_inp, dec_inp, cell)#, vocab_size, vocab_size)
for i, inp in enumerate(enc_inp):
print(i, inp)
print("logits", logits)
print('labels', labels)
loss = seq2seq.sequence_loss(logits, labels, weights)
summary_op = tf.scalar_summary("loss", loss)
square = tf.square(state)
sum = tf.reduce_sum(square)
magnitude = tf.sqrt(sum)
tf.scalar_summary("magnitude at t=1", magnitude)
learning_rate = 0.05
momentum = 0.9
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
train_op = optimizer.minimize(loss)
logdir = tempfile.mkdtemp()
print(logdir)
summary_writer = tf.train.SummaryWriter(logdir, sess.graph_def)
sess.run(tf.initialize_all_variables())
def train_batch(batch_size):
X = np.random.normal(0,0.5, (seq_length, batch_size, number_of_items))
Y = X[:]
feed_dict = {enc_inp[t]: X[t] for t in range(seq_length)}
feed_dict.update({labels[t]: np.roll(np.array(Y[t]), -1) for t in range(seq_length)})
_, loss_t, summary = sess.run([train_op, loss, summary_op], feed_dict)
return loss_t, summary
for t in range(500):
loss_t, summary = train_batch(batch_size)
summary_writer.add_summary(summary, t)
summary_writer.flush()
X_batch = np.random.normal(0,0.5,(seq_length, batch_size, number_of_items))
feed_dict = {enc_inp[t]: X_batch[t] for t in range(seq_length)}
logits_batch = sess.run(logits, feed_dict)