forked from rtqichen/ffjord
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_discrete_toy.py
186 lines (141 loc) · 6.19 KB
/
train_discrete_toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import argparse
import os
import time
import torch
import torch.optim as optim
import lib.layers as layers
import lib.toy_data as toy_data
import lib.utils as utils
from lib.visualize_flow import visualize_transform
from train_misc import standard_normal_logprob
from train_misc import count_parameters
SOLVERS = ["dopri5", "bdf", "rk4", "midpoint", 'adams', 'explicit_adams', 'fixed_adams']
parser = argparse.ArgumentParser('Continuous Normalizing Flow')
parser.add_argument(
'--data', choices=['swissroll', '8gaussians', 'pinwheel', 'circles', 'moons', '2spirals', 'checkerboard', 'rings'],
type=str, default='pinwheel'
)
parser.add_argument('--depth', help='number of coupling layers', type=int, default=10)
parser.add_argument('--glow', type=eval, choices=[True, False], default=False)
parser.add_argument('--nf', type=eval, choices=[True, False], default=False)
parser.add_argument('--niters', type=int, default=100001)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--test_batch_size', type=int, default=1000)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--weight_decay', type=float, default=0)
# Track quantities
parser.add_argument('--l1int', type=float, default=None, help="int_t ||f||_1")
parser.add_argument('--l2int', type=float, default=None, help="int_t ||f||_2")
parser.add_argument('--dl2int', type=float, default=None, help="int_t ||f^T df/dt||_2")
parser.add_argument('--JFrobint', type=float, default=None, help="int_t ||df/dx||_F")
parser.add_argument('--JdiagFrobint', type=float, default=None, help="int_t ||df_i/dx_i||_F")
parser.add_argument('--JoffdiagFrobint', type=float, default=None, help="int_t ||df/dx - df_i/dx_i||_F")
parser.add_argument('--save', type=str, default='experiments/cnf')
parser.add_argument('--viz_freq', type=int, default=1000)
parser.add_argument('--val_freq', type=int, default=1000)
parser.add_argument('--log_freq', type=int, default=100)
parser.add_argument('--gpu', type=int, default=0)
args = parser.parse_args()
# logger
utils.makedirs(args.save)
logger = utils.get_logger(logpath=os.path.join(args.save, 'logs'), filepath=os.path.abspath(__file__))
logger.info(args)
device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu')
def construct_model():
if args.nf:
chain = []
for i in range(args.depth):
chain.append(layers.PlanarFlow(2))
return layers.SequentialFlow(chain)
else:
chain = []
for i in range(args.depth):
if args.glow: chain.append(layers.BruteForceLayer(2))
chain.append(layers.CouplingLayer(2, swap=i % 2 == 0))
return layers.SequentialFlow(chain)
def get_transforms(model):
if args.nf:
sample_fn = None
else:
def sample_fn(z, logpz=None):
if logpz is not None:
return model(z, logpz, reverse=True)
else:
return model(z, reverse=True)
def density_fn(x, logpx=None):
if logpx is not None:
return model(x, logpx, reverse=False)
else:
return model(x, reverse=False)
return sample_fn, density_fn
def compute_loss(args, model, batch_size=None):
if batch_size is None: batch_size = args.batch_size
# load data
x = toy_data.inf_train_gen(args.data, batch_size=batch_size)
x = torch.from_numpy(x).type(torch.float32).to(device)
zero = torch.zeros(x.shape[0], 1).to(x)
# transform to z
z, delta_logp = model(x, zero)
# compute log q(z)
logpz = standard_normal_logprob(z).sum(1, keepdim=True)
logpx = logpz - delta_logp
loss = -torch.mean(logpx)
return loss
if __name__ == '__main__':
model = construct_model().to(device)
logger.info(model)
logger.info("Number of trainable parameters: {}".format(count_parameters(model)))
optimizer = optim.Adamax(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
time_meter = utils.RunningAverageMeter(0.98)
loss_meter = utils.RunningAverageMeter(0.98)
end = time.time()
best_loss = float('inf')
model.train()
for itr in range(1, args.niters + 1):
optimizer.zero_grad()
loss = compute_loss(args, model)
loss_meter.update(loss.item())
loss.backward()
optimizer.step()
time_meter.update(time.time() - end)
if itr % args.log_freq == 0:
log_message = (
'Iter {:04d} | Time {:.4f}({:.4f}) | Loss {:.6f}({:.6f})'.format(
itr, time_meter.val, time_meter.avg, loss_meter.val, loss_meter.avg
)
)
logger.info(log_message)
if itr % args.val_freq == 0 or itr == args.niters:
with torch.no_grad():
model.eval()
test_loss = compute_loss(args, model, batch_size=args.test_batch_size)
log_message = '[TEST] Iter {:04d} | Test Loss {:.6f}'.format(itr, test_loss)
logger.info(log_message)
if test_loss.item() < best_loss:
best_loss = test_loss.item()
utils.makedirs(args.save)
torch.save({
'args': args,
'state_dict': model.state_dict(),
}, os.path.join(args.save, 'checkpt.pth'))
model.train()
if itr % args.viz_freq == 0:
with torch.no_grad():
model.eval()
p_samples = toy_data.inf_train_gen(args.data, batch_size=2000)
sample_fn, density_fn = get_transforms(model)
plt.figure(figsize=(9, 3))
visualize_transform(
p_samples, torch.randn, standard_normal_logprob, transform=sample_fn, inverse_transform=density_fn,
samples=True, npts=800, device=device
)
fig_filename = os.path.join(args.save, 'figs', '{:04d}.jpg'.format(itr))
utils.makedirs(os.path.dirname(fig_filename))
plt.savefig(fig_filename)
plt.close()
model.train()
end = time.time()
logger.info('Training has finished.')