forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_pipeline.py
982 lines (814 loc) · 36.3 KB
/
data_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Asynchronous data producer for the NCF pipeline."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import atexit
import functools
import os
import sys
import tempfile
import threading
import time
import timeit
import traceback
import typing
from absl import logging
import numpy as np
from six.moves import queue
import tensorflow as tf, tf_keras
from tensorflow.python.tpu.datasets import StreamingFilesDataset
from official.recommendation import constants as rconst
from official.recommendation import movielens
from official.recommendation import popen_helper
from official.recommendation import stat_utils
SUMMARY_TEMPLATE = """General:
{spacer}Num users: {num_users}
{spacer}Num items: {num_items}
Training:
{spacer}Positive count: {train_pos_ct}
{spacer}Batch size: {train_batch_size} {multiplier}
{spacer}Batch count per epoch: {train_batch_ct}
Eval:
{spacer}Positive count: {eval_pos_ct}
{spacer}Batch size: {eval_batch_size} {multiplier}
{spacer}Batch count per epoch: {eval_batch_ct}"""
class DatasetManager(object):
"""Helper class for handling TensorFlow specific data tasks.
This class takes the (relatively) framework agnostic work done by the data
constructor classes and handles the TensorFlow specific portions (TFRecord
management, tf.Dataset creation, etc.).
"""
def __init__(self,
is_training,
stream_files,
batches_per_epoch,
shard_root=None,
deterministic=False,
num_train_epochs=None):
# type: (bool, bool, int, typing.Optional[str], bool, int) -> None
"""Constructs a `DatasetManager` instance.
Args:
is_training: Boolean of whether the data provided is training or
evaluation data. This determines whether to reuse the data (if
is_training=False) and the exact structure to use when storing and
yielding data.
stream_files: Boolean indicating whether data should be serialized and
written to file shards.
batches_per_epoch: The number of batches in a single epoch.
shard_root: The base directory to be used when stream_files=True.
deterministic: Forgo non-deterministic speedups. (i.e. sloppy=True)
num_train_epochs: Number of epochs to generate. If None, then each call to
`get_dataset()` increments the number of epochs requested.
"""
self._is_training = is_training
self._deterministic = deterministic
self._stream_files = stream_files
self._writers = []
self._write_locks = [
threading.RLock() for _ in range(rconst.NUM_FILE_SHARDS)
] if stream_files else []
self._batches_per_epoch = batches_per_epoch
self._epochs_completed = 0
self._epochs_requested = num_train_epochs if num_train_epochs else 0
self._shard_root = shard_root
self._result_queue = queue.Queue()
self._result_reuse = []
@property
def current_data_root(self):
subdir = (
rconst.TRAIN_FOLDER_TEMPLATE.format(self._epochs_completed)
if self._is_training else rconst.EVAL_FOLDER)
return os.path.join(self._shard_root, subdir)
def buffer_reached(self):
# Only applicable for training.
return (self._epochs_completed - self._epochs_requested >=
rconst.CYCLES_TO_BUFFER and self._is_training)
@staticmethod
def serialize(data):
"""Convert NumPy arrays into a TFRecords entry."""
def create_int_feature(values):
values = np.squeeze(values)
return tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
feature_dict = {
k: create_int_feature(v.astype(np.int64)) for k, v in data.items()
}
return tf.train.Example(features=tf.train.Features(
feature=feature_dict)).SerializeToString()
@staticmethod
def deserialize(serialized_data, batch_size=None, is_training=True):
"""Convert serialized TFRecords into tensors.
Args:
serialized_data: A tensor containing serialized records.
batch_size: The data arrives pre-batched, so batch size is needed to
deserialize the data.
is_training: Boolean, whether data to deserialize to training data or
evaluation data.
"""
def _get_feature_map(batch_size, is_training=True):
"""Returns data format of the serialized tf record file."""
if is_training:
return {
movielens.USER_COLUMN:
tf.io.FixedLenFeature([batch_size, 1], dtype=tf.int64),
movielens.ITEM_COLUMN:
tf.io.FixedLenFeature([batch_size, 1], dtype=tf.int64),
rconst.VALID_POINT_MASK:
tf.io.FixedLenFeature([batch_size, 1], dtype=tf.int64),
"labels":
tf.io.FixedLenFeature([batch_size, 1], dtype=tf.int64)
}
else:
return {
movielens.USER_COLUMN:
tf.io.FixedLenFeature([batch_size, 1], dtype=tf.int64),
movielens.ITEM_COLUMN:
tf.io.FixedLenFeature([batch_size, 1], dtype=tf.int64),
rconst.DUPLICATE_MASK:
tf.io.FixedLenFeature([batch_size, 1], dtype=tf.int64)
}
features = tf.io.parse_single_example(
serialized_data, _get_feature_map(batch_size, is_training=is_training))
users = tf.cast(features[movielens.USER_COLUMN], rconst.USER_DTYPE)
items = tf.cast(features[movielens.ITEM_COLUMN], rconst.ITEM_DTYPE)
if is_training:
valid_point_mask = tf.cast(features[rconst.VALID_POINT_MASK], tf.bool)
fake_dup_mask = tf.zeros_like(users)
return {
movielens.USER_COLUMN:
users,
movielens.ITEM_COLUMN:
items,
rconst.VALID_POINT_MASK:
valid_point_mask,
rconst.TRAIN_LABEL_KEY:
tf.reshape(tf.cast(features["labels"], tf.bool), (batch_size, 1)),
rconst.DUPLICATE_MASK:
fake_dup_mask
}
else:
labels = tf.cast(tf.zeros_like(users), tf.bool)
fake_valid_pt_mask = tf.cast(tf.zeros_like(users), tf.bool)
return {
movielens.USER_COLUMN:
users,
movielens.ITEM_COLUMN:
items,
rconst.DUPLICATE_MASK:
tf.cast(features[rconst.DUPLICATE_MASK], tf.bool),
rconst.VALID_POINT_MASK:
fake_valid_pt_mask,
rconst.TRAIN_LABEL_KEY:
labels
}
def put(self, index, data):
# type: (int, dict) -> None
"""Store data for later consumption.
Because there are several paths for storing and yielding data (queues,
lists, files) the data producer simply provides the data in a standard
format at which point the dataset manager handles storing it in the correct
form.
Args:
index: Used to select shards when writing to files.
data: A dict of the data to be stored. This method mutates data, and
therefore expects to be the only consumer.
"""
if self._is_training:
mask_start_index = data.pop(rconst.MASK_START_INDEX)
batch_size = data[movielens.ITEM_COLUMN].shape[0]
data[rconst.VALID_POINT_MASK] = np.expand_dims(
np.less(np.arange(batch_size), mask_start_index), -1)
if self._stream_files:
example_bytes = self.serialize(data)
with self._write_locks[index % rconst.NUM_FILE_SHARDS]:
self._writers[index % rconst.NUM_FILE_SHARDS].write(example_bytes)
else:
self._result_queue.put((
data, data.pop("labels")) if self._is_training else data)
def start_construction(self):
if self._stream_files:
tf.io.gfile.makedirs(self.current_data_root)
template = os.path.join(self.current_data_root, rconst.SHARD_TEMPLATE)
self._writers = [
tf.io.TFRecordWriter(template.format(i))
for i in range(rconst.NUM_FILE_SHARDS)
]
def end_construction(self):
if self._stream_files:
[writer.close() for writer in self._writers]
self._writers = []
self._result_queue.put(self.current_data_root)
self._epochs_completed += 1
def data_generator(self, epochs_between_evals):
"""Yields examples during local training."""
assert not self._stream_files
assert self._is_training or epochs_between_evals == 1
if self._is_training:
for _ in range(self._batches_per_epoch * epochs_between_evals):
yield self._result_queue.get(timeout=300)
else:
if self._result_reuse:
assert len(self._result_reuse) == self._batches_per_epoch
for i in self._result_reuse:
yield i
else:
# First epoch.
for _ in range(self._batches_per_epoch * epochs_between_evals):
result = self._result_queue.get(timeout=300)
self._result_reuse.append(result)
yield result
def increment_request_epoch(self):
self._epochs_requested += 1
def get_dataset(self, batch_size, epochs_between_evals):
"""Construct the dataset to be used for training and eval.
For local training, data is provided through Dataset.from_generator. For
remote training (TPUs) the data is first serialized to files and then sent
to the TPU through a StreamingFilesDataset.
Args:
batch_size: The per-replica batch size of the dataset.
epochs_between_evals: How many epochs worth of data to yield. (Generator
mode only.)
"""
self.increment_request_epoch()
if self._stream_files:
if epochs_between_evals > 1:
raise ValueError("epochs_between_evals > 1 not supported for file "
"based dataset.")
epoch_data_dir = self._result_queue.get(timeout=300)
if not self._is_training:
self._result_queue.put(epoch_data_dir) # Eval data is reused.
file_pattern = os.path.join(epoch_data_dir,
rconst.SHARD_TEMPLATE.format("*"))
dataset = StreamingFilesDataset(
files=file_pattern,
worker_job=popen_helper.worker_job(),
num_parallel_reads=rconst.NUM_FILE_SHARDS,
num_epochs=1,
sloppy=not self._deterministic)
map_fn = functools.partial(
self.deserialize,
batch_size=batch_size,
is_training=self._is_training)
dataset = dataset.map(map_fn, num_parallel_calls=16)
else:
types = {
movielens.USER_COLUMN: rconst.USER_DTYPE,
movielens.ITEM_COLUMN: rconst.ITEM_DTYPE
}
shapes = {
movielens.USER_COLUMN: tf.TensorShape([batch_size, 1]),
movielens.ITEM_COLUMN: tf.TensorShape([batch_size, 1])
}
if self._is_training:
types[rconst.VALID_POINT_MASK] = bool
shapes[rconst.VALID_POINT_MASK] = tf.TensorShape([batch_size, 1])
types = (types, bool)
shapes = (shapes, tf.TensorShape([batch_size, 1]))
else:
types[rconst.DUPLICATE_MASK] = bool
shapes[rconst.DUPLICATE_MASK] = tf.TensorShape([batch_size, 1])
data_generator = functools.partial(
self.data_generator, epochs_between_evals=epochs_between_evals)
dataset = tf.data.Dataset.from_generator(
generator=data_generator, output_types=types, output_shapes=shapes)
return dataset.prefetch(16)
def make_input_fn(self, batch_size):
"""Create an input_fn which checks for batch size consistency."""
def input_fn(params):
"""Returns batches for training."""
# Estimator passes batch_size during training and eval_batch_size during
# eval.
param_batch_size = (
params["batch_size"] if self._is_training else
params.get("eval_batch_size") or params["batch_size"])
if batch_size != param_batch_size:
raise ValueError("producer batch size ({}) differs from params batch "
"size ({})".format(batch_size, param_batch_size))
epochs_between_evals = (
params.get("epochs_between_evals", 1) if self._is_training else 1)
return self.get_dataset(
batch_size=batch_size, epochs_between_evals=epochs_between_evals)
return input_fn
class BaseDataConstructor(threading.Thread):
"""Data constructor base class.
This class manages the control flow for constructing data. It is not meant
to be used directly, but instead subclasses should implement the following
two methods:
self.construct_lookup_variables
self.lookup_negative_items
"""
def __init__(
self,
maximum_number_epochs, # type: int
num_users, # type: int
num_items, # type: int
user_map, # type: dict
item_map, # type: dict
train_pos_users, # type: np.ndarray
train_pos_items, # type: np.ndarray
train_batch_size, # type: int
batches_per_train_step, # type: int
num_train_negatives, # type: int
eval_pos_users, # type: np.ndarray
eval_pos_items, # type: np.ndarray
eval_batch_size, # type: int
batches_per_eval_step, # type: int
stream_files, # type: bool
deterministic=False, # type: bool
epoch_dir=None, # type: str
num_train_epochs=None, # type: int
create_data_offline=False # type: bool
):
# General constants
self._maximum_number_epochs = maximum_number_epochs
self._num_users = num_users
self._num_items = num_items
self.user_map = user_map
self.item_map = item_map
self._train_pos_users = train_pos_users
self._train_pos_items = train_pos_items
self.train_batch_size = train_batch_size
self._num_train_negatives = num_train_negatives
self._batches_per_train_step = batches_per_train_step
self._eval_pos_users = eval_pos_users
self._eval_pos_items = eval_pos_items
self.eval_batch_size = eval_batch_size
self.num_train_epochs = num_train_epochs
self.create_data_offline = create_data_offline
# Training
if self._train_pos_users.shape != self._train_pos_items.shape:
raise ValueError(
"User positives ({}) is different from item positives ({})".format(
self._train_pos_users.shape, self._train_pos_items.shape))
(self._train_pos_count,) = self._train_pos_users.shape
self._elements_in_epoch = (1 + num_train_negatives) * self._train_pos_count
self.train_batches_per_epoch = self._count_batches(self._elements_in_epoch,
train_batch_size,
batches_per_train_step)
# Evaluation
if eval_batch_size % (1 + rconst.NUM_EVAL_NEGATIVES):
raise ValueError("Eval batch size {} is not divisible by {}".format(
eval_batch_size, 1 + rconst.NUM_EVAL_NEGATIVES))
self._eval_users_per_batch = int(eval_batch_size //
(1 + rconst.NUM_EVAL_NEGATIVES))
self._eval_elements_in_epoch = num_users * (1 + rconst.NUM_EVAL_NEGATIVES)
self.eval_batches_per_epoch = self._count_batches(
self._eval_elements_in_epoch, eval_batch_size, batches_per_eval_step)
# Intermediate artifacts
self._current_epoch_order = np.empty(shape=(0,))
self._shuffle_iterator = None
self._shuffle_with_forkpool = not stream_files
if stream_files:
self._shard_root = epoch_dir or tempfile.mkdtemp(prefix="ncf_")
if not create_data_offline:
atexit.register(tf.io.gfile.rmtree, self._shard_root)
else:
self._shard_root = None
self._train_dataset = DatasetManager(True, stream_files,
self.train_batches_per_epoch,
self._shard_root, deterministic,
num_train_epochs)
self._eval_dataset = DatasetManager(False, stream_files,
self.eval_batches_per_epoch,
self._shard_root, deterministic,
num_train_epochs)
# Threading details
super(BaseDataConstructor, self).__init__()
self.daemon = True
self._stop_loop = False
self._fatal_exception = None
self.deterministic = deterministic
def __str__(self):
multiplier = ("(x{} devices)".format(self._batches_per_train_step)
if self._batches_per_train_step > 1 else "")
summary = SUMMARY_TEMPLATE.format(
spacer=" ",
num_users=self._num_users,
num_items=self._num_items,
train_pos_ct=self._train_pos_count,
train_batch_size=self.train_batch_size,
train_batch_ct=self.train_batches_per_epoch,
eval_pos_ct=self._num_users,
eval_batch_size=self.eval_batch_size,
eval_batch_ct=self.eval_batches_per_epoch,
multiplier=multiplier)
return super(BaseDataConstructor, self).__str__() + "\n" + summary
@staticmethod
def _count_batches(example_count, batch_size, batches_per_step):
"""Determine the number of batches, rounding up to fill all devices."""
x = (example_count + batch_size - 1) // batch_size
return (x + batches_per_step - 1) // batches_per_step * batches_per_step
def stop_loop(self):
self._stop_loop = True
def construct_lookup_variables(self):
"""Perform any one time pre-compute work."""
raise NotImplementedError
def lookup_negative_items(self, **kwargs):
"""Randomly sample negative items for given users."""
raise NotImplementedError
def _run(self):
atexit.register(self.stop_loop)
self._start_shuffle_iterator()
self.construct_lookup_variables()
self._construct_training_epoch()
self._construct_eval_epoch()
for _ in range(self._maximum_number_epochs - 1):
self._construct_training_epoch()
self.stop_loop()
def run(self):
try:
self._run()
except Exception as e:
# The Thread base class swallows stack traces, so unfortunately it is
# necessary to catch and re-raise to get debug output
traceback.print_exc()
self._fatal_exception = e
sys.stderr.flush()
raise
def _start_shuffle_iterator(self):
if self._shuffle_with_forkpool:
pool = popen_helper.get_forkpool(3, closing=False)
else:
pool = popen_helper.get_threadpool(1, closing=False)
atexit.register(pool.close)
args = [(self._elements_in_epoch, stat_utils.random_int32())
for _ in range(self._maximum_number_epochs)]
imap = pool.imap if self.deterministic else pool.imap_unordered
self._shuffle_iterator = imap(stat_utils.permutation, args)
def _get_training_batch(self, i):
"""Construct a single batch of training data.
Args:
i: The index of the batch. This is used when stream_files=True to assign
data to file shards.
"""
batch_indices = self._current_epoch_order[i *
self.train_batch_size:(i + 1) *
self.train_batch_size]
(mask_start_index,) = batch_indices.shape
batch_ind_mod = np.mod(batch_indices, self._train_pos_count)
users = self._train_pos_users[batch_ind_mod]
negative_indices = np.greater_equal(batch_indices, self._train_pos_count)
negative_users = users[negative_indices]
negative_items = self.lookup_negative_items(negative_users=negative_users)
items = self._train_pos_items[batch_ind_mod]
items[negative_indices] = negative_items
labels = np.logical_not(negative_indices)
# Pad last partial batch
pad_length = self.train_batch_size - mask_start_index
if pad_length:
# We pad with arange rather than zeros because the network will still
# compute logits for padded examples, and padding with zeros would create
# a very "hot" embedding key which can have performance implications.
user_pad = np.arange(pad_length, dtype=users.dtype) % self._num_users
item_pad = np.arange(pad_length, dtype=items.dtype) % self._num_items
label_pad = np.zeros(shape=(pad_length,), dtype=labels.dtype)
users = np.concatenate([users, user_pad])
items = np.concatenate([items, item_pad])
labels = np.concatenate([labels, label_pad])
self._train_dataset.put(
i, {
movielens.USER_COLUMN:
np.reshape(users, (self.train_batch_size, 1)),
movielens.ITEM_COLUMN:
np.reshape(items, (self.train_batch_size, 1)),
rconst.MASK_START_INDEX:
np.array(mask_start_index, dtype=np.int32),
"labels":
np.reshape(labels, (self.train_batch_size, 1)),
})
def _wait_to_construct_train_epoch(self):
count = 0
while self._train_dataset.buffer_reached() and not self._stop_loop:
time.sleep(0.01)
count += 1
if count >= 100 and np.log10(count) == np.round(np.log10(count)):
logging.info(
"Waited {} times for training data to be consumed".format(count))
def _construct_training_epoch(self):
"""Loop to construct a batch of training data."""
if not self.create_data_offline:
self._wait_to_construct_train_epoch()
start_time = timeit.default_timer()
if self._stop_loop:
return
self._train_dataset.start_construction()
map_args = list(range(self.train_batches_per_epoch))
self._current_epoch_order = next(self._shuffle_iterator)
get_pool = (
popen_helper.get_fauxpool
if self.deterministic else popen_helper.get_threadpool)
with get_pool(6) as pool:
pool.map(self._get_training_batch, map_args)
self._train_dataset.end_construction()
logging.info("Epoch construction complete. Time: {:.1f} seconds".format(
timeit.default_timer() - start_time))
@staticmethod
def _assemble_eval_batch(users, positive_items, negative_items,
users_per_batch):
"""Construct duplicate_mask and structure data accordingly.
The positive items should be last so that they lose ties. However, they
should not be masked out if the true eval positive happens to be
selected as a negative. So instead, the positive is placed in the first
position, and then switched with the last element after the duplicate
mask has been computed.
Args:
users: An array of users in a batch. (should be identical along axis 1)
positive_items: An array (batch_size x 1) of positive item indices.
negative_items: An array of negative item indices.
users_per_batch: How many users should be in the batch. This is passed as
an argument so that ncf_test.py can use this method.
Returns:
User, item, and duplicate_mask arrays.
"""
items = np.concatenate([positive_items, negative_items], axis=1)
# We pad the users and items here so that the duplicate mask calculation
# will include padding. The metric function relies on all padded elements
# except the positive being marked as duplicate to mask out padded points.
if users.shape[0] < users_per_batch:
pad_rows = users_per_batch - users.shape[0]
padding = np.zeros(shape=(pad_rows, users.shape[1]), dtype=np.int32)
users = np.concatenate([users, padding.astype(users.dtype)], axis=0)
items = np.concatenate([items, padding.astype(items.dtype)], axis=0)
duplicate_mask = stat_utils.mask_duplicates(items, axis=1).astype(bool)
items[:, (0, -1)] = items[:, (-1, 0)]
duplicate_mask[:, (0, -1)] = duplicate_mask[:, (-1, 0)]
assert users.shape == items.shape == duplicate_mask.shape
return users, items, duplicate_mask
def _get_eval_batch(self, i):
"""Construct a single batch of evaluation data.
Args:
i: The index of the batch.
"""
low_index = i * self._eval_users_per_batch
high_index = (i + 1) * self._eval_users_per_batch
users = np.repeat(
self._eval_pos_users[low_index:high_index, np.newaxis],
1 + rconst.NUM_EVAL_NEGATIVES,
axis=1)
positive_items = self._eval_pos_items[low_index:high_index, np.newaxis]
negative_items = (
self.lookup_negative_items(negative_users=users[:, :-1]).reshape(
-1, rconst.NUM_EVAL_NEGATIVES))
users, items, duplicate_mask = self._assemble_eval_batch(
users, positive_items, negative_items, self._eval_users_per_batch)
self._eval_dataset.put(
i, {
movielens.USER_COLUMN:
np.reshape(users.flatten(), (self.eval_batch_size, 1)),
movielens.ITEM_COLUMN:
np.reshape(items.flatten(), (self.eval_batch_size, 1)),
rconst.DUPLICATE_MASK:
np.reshape(duplicate_mask.flatten(), (self.eval_batch_size, 1)),
})
def _construct_eval_epoch(self):
"""Loop to construct data for evaluation."""
if self._stop_loop:
return
start_time = timeit.default_timer()
self._eval_dataset.start_construction()
map_args = [i for i in range(self.eval_batches_per_epoch)]
get_pool = (
popen_helper.get_fauxpool
if self.deterministic else popen_helper.get_threadpool)
with get_pool(6) as pool:
pool.map(self._get_eval_batch, map_args)
self._eval_dataset.end_construction()
logging.info("Eval construction complete. Time: {:.1f} seconds".format(
timeit.default_timer() - start_time))
def make_input_fn(self, is_training):
# It isn't feasible to provide a foolproof check, so this is designed to
# catch most failures rather than provide an exhaustive guard.
if self._fatal_exception is not None:
raise ValueError("Fatal exception in the data production loop: {}".format(
self._fatal_exception))
return (self._train_dataset.make_input_fn(self.train_batch_size)
if is_training else self._eval_dataset.make_input_fn(
self.eval_batch_size))
def increment_request_epoch(self):
self._train_dataset.increment_request_epoch()
class DummyConstructor(threading.Thread):
"""Class for running with synthetic data."""
def __init__(self, *args, **kwargs):
super(DummyConstructor, self).__init__(*args, **kwargs)
self.train_batches_per_epoch = rconst.SYNTHETIC_BATCHES_PER_EPOCH
self.eval_batches_per_epoch = rconst.SYNTHETIC_BATCHES_PER_EPOCH
def run(self):
pass
def stop_loop(self):
pass
def increment_request_epoch(self):
pass
@staticmethod
def make_input_fn(is_training):
"""Construct training input_fn that uses synthetic data."""
def input_fn(params):
"""Returns dummy input batches for training."""
# Estimator passes batch_size during training and eval_batch_size during
# eval.
batch_size = (
params["batch_size"] if is_training else
params.get("eval_batch_size") or params["batch_size"])
num_users = params["num_users"]
num_items = params["num_items"]
users = tf.random.uniform([batch_size, 1],
dtype=tf.int32,
minval=0,
maxval=num_users)
items = tf.random.uniform([batch_size, 1],
dtype=tf.int32,
minval=0,
maxval=num_items)
if is_training:
valid_point_mask = tf.cast(
tf.random.uniform([batch_size, 1],
dtype=tf.int32,
minval=0,
maxval=2), tf.bool)
labels = tf.cast(
tf.random.uniform([batch_size, 1],
dtype=tf.int32,
minval=0,
maxval=2), tf.bool)
data = {
movielens.USER_COLUMN: users,
movielens.ITEM_COLUMN: items,
rconst.VALID_POINT_MASK: valid_point_mask,
}, labels
else:
dupe_mask = tf.cast(
tf.random.uniform([batch_size, 1],
dtype=tf.int32,
minval=0,
maxval=2), tf.bool)
data = {
movielens.USER_COLUMN: users,
movielens.ITEM_COLUMN: items,
rconst.DUPLICATE_MASK: dupe_mask,
}
dataset = tf.data.Dataset.from_tensors(data).repeat(
rconst.SYNTHETIC_BATCHES_PER_EPOCH * params["batches_per_step"])
dataset = dataset.prefetch(32)
return dataset
return input_fn
class MaterializedDataConstructor(BaseDataConstructor):
"""Materialize a table of negative examples for fast negative generation.
This class creates a table (num_users x num_items) containing all of the
negative examples for each user. This table is conceptually ragged; that is to
say the items dimension will have a number of unused elements at the end equal
to the number of positive elements for a given user. For instance:
num_users = 3
num_items = 5
positives = [[1, 3], [0], [1, 2, 3, 4]]
will generate a negative table:
[
[0 2 4 int32max int32max],
[1 2 3 4 int32max],
[0 int32max int32max int32max int32max],
]
and a vector of per-user negative counts, which in this case would be:
[3, 4, 1]
When sampling negatives, integers are (nearly) uniformly selected from the
range [0, per_user_neg_count[user]) which gives a column_index, at which
point the negative can be selected as:
negative_table[user, column_index]
This technique will not scale; however MovieLens is small enough that even
a pre-compute which is quadratic in problem size will still fit in memory. A
more scalable lookup method is in the works.
"""
def __init__(self, *args, **kwargs):
super(MaterializedDataConstructor, self).__init__(*args, **kwargs)
self._negative_table = None
self._per_user_neg_count = None
def construct_lookup_variables(self):
# Materialize negatives for fast lookup sampling.
start_time = timeit.default_timer()
inner_bounds = np.argwhere(self._train_pos_users[1:] -
self._train_pos_users[:-1])[:, 0] + 1
(upper_bound,) = self._train_pos_users.shape
index_bounds = [0] + inner_bounds.tolist() + [upper_bound]
self._negative_table = np.zeros(
shape=(self._num_users, self._num_items), dtype=rconst.ITEM_DTYPE)
# Set the table to the max value to make sure the embedding lookup will fail
# if we go out of bounds, rather than just overloading item zero.
self._negative_table += np.iinfo(rconst.ITEM_DTYPE).max
assert self._num_items < np.iinfo(rconst.ITEM_DTYPE).max
# Reuse arange during generation. np.delete will make a copy.
full_set = np.arange(self._num_items, dtype=rconst.ITEM_DTYPE)
self._per_user_neg_count = np.zeros(
shape=(self._num_users,), dtype=np.int32)
# Threading does not improve this loop. For some reason, the np.delete
# call does not parallelize well. Multiprocessing incurs too much
# serialization overhead to be worthwhile.
for i in range(self._num_users):
positives = self._train_pos_items[index_bounds[i]:index_bounds[i + 1]]
negatives = np.delete(full_set, positives)
self._per_user_neg_count[i] = self._num_items - positives.shape[0]
self._negative_table[i, :self._per_user_neg_count[i]] = negatives
logging.info("Negative sample table built. Time: {:.1f} seconds".format(
timeit.default_timer() - start_time))
def lookup_negative_items(self, negative_users, **kwargs):
negative_item_choice = stat_utils.very_slightly_biased_randint(
self._per_user_neg_count[negative_users])
return self._negative_table[negative_users, negative_item_choice]
class BisectionDataConstructor(BaseDataConstructor):
"""Use bisection to index within positive examples.
This class tallies the number of negative items which appear before each
positive item for a user. This means that in order to select the ith negative
item for a user, it only needs to determine which two positive items bound
it at which point the item id for the ith negative is a simply algebraic
expression.
"""
def __init__(self, *args, **kwargs):
super(BisectionDataConstructor, self).__init__(*args, **kwargs)
self.index_bounds = None
self._sorted_train_pos_items = None
self._total_negatives = None
def _index_segment(self, user):
lower, upper = self.index_bounds[user:user + 2]
items = self._sorted_train_pos_items[lower:upper]
negatives_since_last_positive = np.concatenate(
[items[0][np.newaxis], items[1:] - items[:-1] - 1])
return np.cumsum(negatives_since_last_positive)
def construct_lookup_variables(self):
start_time = timeit.default_timer()
inner_bounds = np.argwhere(self._train_pos_users[1:] -
self._train_pos_users[:-1])[:, 0] + 1
(upper_bound,) = self._train_pos_users.shape
self.index_bounds = np.array([0] + inner_bounds.tolist() + [upper_bound])
# Later logic will assume that the users are in sequential ascending order.
assert np.array_equal(self._train_pos_users[self.index_bounds[:-1]],
np.arange(self._num_users))
self._sorted_train_pos_items = self._train_pos_items.copy()
for i in range(self._num_users):
lower, upper = self.index_bounds[i:i + 2]
self._sorted_train_pos_items[lower:upper].sort()
self._total_negatives = np.concatenate(
[self._index_segment(i) for i in range(self._num_users)])
logging.info("Negative total vector built. Time: {:.1f} seconds".format(
timeit.default_timer() - start_time))
def lookup_negative_items(self, negative_users, **kwargs):
output = np.zeros(shape=negative_users.shape, dtype=rconst.ITEM_DTYPE) - 1
left_index = self.index_bounds[negative_users]
right_index = self.index_bounds[negative_users + 1] - 1
num_positives = right_index - left_index + 1
num_negatives = self._num_items - num_positives
neg_item_choice = stat_utils.very_slightly_biased_randint(num_negatives)
# Shortcuts:
# For points where the negative is greater than or equal to the tally before
# the last positive point there is no need to bisect. Instead the item id
# corresponding to the negative item choice is simply:
# last_postive_index + 1 + (neg_choice - last_negative_tally)
# Similarly, if the selection is less than the tally at the first positive
# then the item_id is simply the selection.
#
# Because MovieLens organizes popular movies into low integers (which is
# preserved through the preprocessing), the first shortcut is very
# efficient, allowing ~60% of samples to bypass the bisection. For the same
# reason, the second shortcut is rarely triggered (<0.02%) and is therefore
# not worth implementing.
use_shortcut = neg_item_choice >= self._total_negatives[right_index]
output[use_shortcut] = (
self._sorted_train_pos_items[right_index] + 1 +
(neg_item_choice - self._total_negatives[right_index]))[use_shortcut]
if np.all(use_shortcut):
# The bisection code is ill-posed when there are no elements.
return output
not_use_shortcut = np.logical_not(use_shortcut)
left_index = left_index[not_use_shortcut]
right_index = right_index[not_use_shortcut]
neg_item_choice = neg_item_choice[not_use_shortcut]
num_loops = np.max(
np.ceil(np.log2(num_positives[not_use_shortcut])).astype(np.int32))
for i in range(num_loops):
mid_index = (left_index + right_index) // 2
right_criteria = self._total_negatives[mid_index] > neg_item_choice
left_criteria = np.logical_not(right_criteria)
right_index[right_criteria] = mid_index[right_criteria]
left_index[left_criteria] = mid_index[left_criteria]
# Expected state after bisection pass:
# The right index is the smallest index whose tally is greater than the
# negative item choice index.
assert np.all((right_index - left_index) <= 1)
output[not_use_shortcut] = (
self._sorted_train_pos_items[right_index] -
(self._total_negatives[right_index] - neg_item_choice))
assert np.all(output >= 0)
return output
def get_constructor(name):
if name == "bisection":
return BisectionDataConstructor
if name == "materialized":
return MaterializedDataConstructor
raise ValueError("Unrecognized constructor: {}".format(name))