-
Notifications
You must be signed in to change notification settings - Fork 0
/
quantum programming
194 lines (136 loc) · 4.6 KB
/
quantum programming
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Define a composite quantum gate
def CompositeGate(q1, q2, q3):
H(q1) # Hadamard on q1
CX(q1, q2) # CNOT between q1 and q2
RZ(q3, theta=1.57) # Rotate q3 around the Z-axis
CX(q2, q3) # CNOT between q2 and q3
T(q1) # T gate on q1
# Apply the composite gate
CompositeGate(qubits[0], qubits[1], qubits[2])
# Define a dynamic gate
def DynamicGate(q1, q2, condition):
if condition == "high_fidelity":
CX(q1, q2)
elif condition == "low_fidelity":
SWAP(q1, q2)
else:
H(q1)
H(q2)
# Apply the dynamic gate
DynamicGate(qubits[0], qubits[1], condition="high_fidelity")
# Create entanglement in groups of qubits
group1 = qubits[0:64]
group2 = qubits[64:128]
Entangle(group1, group2)
print("Entanglement Success")
# Inspect a quantum register
state_info = InspectState(qubits)
print("Quantum State Info:", state_info)
# Monitor state transitions
for transition in MonitorTransitions(qubits):
print("State Transition:", transition)
# Create a quantum tensor
tensor = QuantumTensor(shape=(4, 4), data=[[0, 1], [1, 0], [0, 0], [1, 1]])
# Perform tensor operations
transposed_tensor = Transpose(tensor)
contracted_tensor = Contract(tensor, mode="inner")
# Generate and distribute quantum keys
key_manager = QuantumKeyManager(size=256, encryption="AES-512")
key_manager.GenerateKeys(users=["Alice", "Bob"])
# Use the keys securely
encrypted_message = Encrypt("message", key_manager.GetKey("Alice"))
decrypted_message = Decrypt(encrypted_message, key_manager.GetKey("Bob"))
print("Decrypted Message:", decrypted_message)
# Define a quantum-secure blockchain
blockchain = QuantumBlockchain(encryption="SHA-512", consensus="quantum_proof_of_work")
# Add transactions to the blockchain
transaction = {"from": "Alice", "to": "Bob", "amount": 100}
blockchain.AddTransaction(transaction)
# Mine and verify blocks
blockchain.MineBlock(miner="Charlie")
print("Blockchain State:", blockchain.GetState())
# Define a molecule
molecule H2O {
atoms = ["H", "O", "H"]
bonds = [("H", "O"), ("O", "H")]
}
# Simulate the molecule
simulation_result = SimulateMolecule(molecule, steps=100)
print("Simulation Result:", simulation_result)
# Simulate protein folding
protein = ProteinFolding(
sequence="AGCTTACGATCG",
quantum_model="QuantumFoldingNN"
)
folding_result = protein.Simulate()
print("Protein Folding Result:", folding_result)
# Analyze patient data using quantum-enhanced methods
patient_data = SecureTensor("patient_genomics.csv", encryption="RSA-2048")
# Perform a quantum-driven analysis
treatment_plan = QuantumAnalyze(patient_data, objective="optimize_treatment")
print("Treatment Plan:", treatment_plan)
# Optimize a financial portfolio
portfolio = QuantumPortfolio(
assets=["StockA", "StockB", "StockC"],
constraints={"max_risk": 0.05}
)
# Perform optimization
optimal_allocation = OptimizePortfolio(portfolio)
print("Optimal Allocation:", optimal_allocation)
# Test a quantum circuit
test_case QuantumCircuitTest {
circuit = Circuit(qubits)
AddGate(circuit, "H", qubits[0:256])
result = ExecuteCircuit(circuit)
assert(result.success)
}
RunTest(QuantumCircuitTest)
# Validate an entire workflow
workflow = QuantumWorkflow(
steps=[
"Initialize 256 qubits",
"Apply Hadamard gates",
"Entangle adjacent pairs",
"Measure all qubits"
]
)
# Execute and validate
workflow_result = ValidateWorkflow(workflow)
assert(workflow_result.success)
# Define and simulate a molecule
molecule CO2 {
atoms = ["C", "O", "O"]
bonds = [("C", "O"), ("C", "O")]
}
simulation_result = SimulateMolecule(molecule, steps=500)
print("Simulation Result:", simulation_result)
# Secure AI model definition
secure_model = SecureQuantumModel(
architecture="QuantumTransformer",
qubits=Register(256),
encryption="AES-256"
)
# Train with encrypted data
Train(secure_model, SecureTensor("training_data.csv"))
# Inference with secure input
result = Predict(secure_model, SecureTensor("new_input.csv"))
print("Prediction:", result)
# Stream quantum measurements
stream = QuantumStream(qubits, rate=1000) # 1000 measurements per second
for measurement in stream:
print("Measurement:", measurement)
# Execute tasks in parallel
parallel {
task1 = ExecuteCircuit(circuit1)
task2 = ExecuteCircuit(circuit2)
}
# Wait for results
results = WaitAll(task1, task2)
# Functional transformations
data_pipeline = [
Filter(lambda x: x.entanglement > 0.8),
Map(lambda x: x * 2),
Reduce(lambda acc, x: acc + x)
]
# Apply to quantum dataset
result = QuantumApply(data_pipeline, dataset)