-
Notifications
You must be signed in to change notification settings - Fork 1
/
tidewave_usbl.py
295 lines (277 loc) · 10.3 KB
/
tidewave_usbl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import numpy as np
import matplotlib.pyplot as plt
import time
def constrain(val, min_val, max_val):
return min(max_val, max(min_val, val))
# Tidewave Class
class TideWave:
def __init__(self, H, X_max, Y_max, T_max) -> None:
# spacial paras, 2-dim
self.dx = 1
self.dy = 1 # spacial step
self.dt = 0.025 # not 1s for avoiding numerical overflow (NaN)
self.X_max = X_max
self.Y_max = Y_max
self.H = H
self.T_max = T_max
# nt
self.nx = int(self.X_max / self.dx)
self.ny = int(self.Y_max / self.dy)
self.nt = int(self.T_max / self.dt)
self.g = 9.8
self.eta0 = 5
# amplitude
self.w = 2 * np.pi / 200
# omega
def low_pass(self, v):
V = np.fft.fft(v)
frequencies = np.fft.fftfreq(len(v), 1 / 10)
filter_mask = np.abs(frequencies) <= 1
V_filtered = V * filter_mask
return np.real(np.fft.ifft(V_filtered))
def calc_tideWave(self):
# variables & boundary conditions
# initialize velocities by low-frequency noises
ux = (self.eta0 / 10) * np.random.normal(size=(self.nx,))
uy = (self.eta0 / 10) * np.random.normal(size=(self.ny,))
ux = self.low_pass(ux)
uy = self.low_pass(uy)
etax = np.zeros(self.nx + 1)
etay = np.zeros(self.ny + 1)
uxn = ux
uyn = uy
etaxn = etax
etayn = etay
upx = np.zeros((2, self.nx, self.nt))
upy = np.zeros((2, self.ny, self.nt))
self.etapx = np.zeros((2, self.nx + 1, self.nt))
self.etapy = np.zeros((2, self.ny + 1, self.nt))
for n in range(1, self.nt): # x-dim calculation
etax[self.nx] = self.eta0 * np.cos(self.w * n * self.dt - self.g)
etaxn[self.nx] = etax[self.nx]
for i in range(1, self.nx):
uxn[i] = -self.g * (etax[i + 1] - etax[i]) * self.dt / self.dx + ux[i]
etaxn[i] = -self.H * (uxn[i] - uxn[i - 1]) * self.dt / self.dx + etax[i]
ux = uxn
etax = etaxn
for k in [0, 1]:
upx[k, :, n] = ux
self.etapx[k, :, n] = etax
for n in range(1, self.nt): # y-dim calculation
etay[self.ny] = self.eta0 * np.cos(self.w * n * self.dt - self.g)
etayn[self.ny] = etay[self.ny]
for i in range(1, self.ny):
uyn[i] = -self.g * (etay[i + 1] - etay[i]) * self.dt / self.dy + uy[i]
etayn[i] = -self.H * (uyn[i] - uyn[i - 1]) * self.dt / self.dy + etay[i]
uy = uyn
etay = etayn
for k in [0, 1]:
upy[k, :, n] = uy
self.etapy[k, :, n] = etay
def get_tideHeight(self, x_r, y_r, t):
x_in = int(x_r * self.nx)
x_in = constrain(x_in, 0, self.etapx.shape[1] - 1)
y_in = int(y_r * self.ny)
y_in = constrain(y_in, 0, self.etapy.shape[1] - 1)
try:
return (
self.etapx[0, x_in, int(t / self.dt)]
+ self.etapy[0, y_in, int(t / self.dt)]
+ self.H
)
except:
return self.etapx[0, x_in, -1] + self.etapy[0, y_in, -1] + self.H
# USBL Class
class USBL:
def __init__(self) -> None:
# Preset comm. freq.
self.f = np.array([1.2e4, 1.4e4, 1.6e4, 1.8e4])
self.c = 1500
# wavelength
self.lamda = self.c / np.max(self.f)
self.d = 0.4 * self.lamda
# sampling freq.
self.f0 = 2.016e6
# cross-shape hydrophones array
self.hyd_posit = np.array(
[
[self.d / 2, 0, 0],
[-self.d / 2, 0, 0],
[0, self.d / 2, 0],
[0, -self.d / 2, 0],
]
)
# calculating SN Ratio
def calcSNR(self, f, b, d, format="active"):
# sonar power
SL = 145
lgNt = 17 - 30 * np.log10(f)
lgNs = 40 + 26 * np.log10(f) - 60 * np.log10(f + 0.03)
lgNw = 50 + 20 * np.log10(f) - 40 * np.log10(f + 0.4)
lgNth = -15 + 20 * np.log10(f)
NL = 10 * np.log10(
1000
* b
* (
10 ** (lgNt / 10)
+ 10 ** (lgNs / 10)
+ 10 ** (lgNw / 10)
+ 10 ** (lgNth / 10)
)
)
alpha = (
0.11 * ((f**2) / (1 + f**2))
+ 44 * ((f**2) / (4100 + f**2))
+ (2.75e-4) * (f**2)
+ 0.003
)
TL = 15 * np.log10(d) + alpha * (0.001 * d)
TS = 3
if format == "active":
SNR = SL - 2 * TL - NL + TS
elif format == "passive":
SNR = SL - TL + TS
else:
raise NotImplementedError
return SNR
# Measure the phase difference between the acoustic signal sent by sonar and the signal received with noise
def get_phasedelay(self, dist, idx=0): # idx -> AUV index
# generate original singal, 10T
t_length = int(10 * (self.f0 / self.f[idx]))
t = np.arange(t_length) / self.f0
# generate received signal,
real_det_t = dist / self.c
recv_signal = np.sin(2 * np.pi * self.f[idx] * (t - real_det_t))
# calculate SNR
SNR = self.calcSNR(self.f[idx] / 1000, 1, dist, format="active")
# add noise
noise = (10 ** (-SNR / 10)) * np.random.randn(t_length)
recv_signal += noise
A = np.column_stack(
(np.sin(2 * np.pi * self.f[idx] * t), np.cos(2 * np.pi * self.f[idx] * t))
)
coeffs, _, _, _ = np.linalg.lstsq(A, recv_signal, rcond=None)
sin_coeff, cos_coeff = coeffs
phase_diff = np.arctan2(cos_coeff, sin_coeff)
phase_diff = np.mod(phase_diff + np.pi, 2 * np.pi) - np.pi
return phase_diff
def time_estimate(self, signal, pulse):
N = len(signal)
M = len(pulse)
J = np.zeros(N - M + 1)
for n0 in range(N - M + 1):
signal_dat = signal[n0 : n0 + M]
J[n0] = np.dot(signal_dat, pulse)
# signal_matrix = np.lib.stride_tricks.sliding_window_view(signal, M)
# l = time.time()
# Compute the dot product for each shifted version with the pulse
# J = np.dot(signal_matrix, pulse)
# Find the index of the maximum value in J
n0hat = np.argmax(J)
time_delay = n0hat / self.f0
return time_delay
# time delay using correlation
def calc_timeDelay(self, real_t, f_idx=0):
ret_delayt = np.zeros_like(real_t)
K = 3
t_origin = np.linspace(
0, K * 2 * np.pi, int(K * self.f0 / self.f[f_idx]), dtype=np.float64
)
y_origin = np.sin(t_origin)
T = 2 * K / self.f[f_idx]
if real_t >= 1.0:
raise NotImplementedError # too large delay
y_rec1 = np.zeros(int(self.f0 * T))
y_rec2 = np.zeros(int(self.f0 * T))
rt_idx = real_t * self.f0
int_rt_idx = int(rt_idx)
rt_idx -= int_rt_idx - 10
y_rec1[int(rt_idx) : int(rt_idx) + int(K * self.f0 / self.f[f_idx])] = y_origin
y_rec2[
int(rt_idx) + 1 : int(rt_idx) + int(K * self.f0 / self.f[f_idx]) + 1
] = y_origin
k_yrec2 = rt_idx - int(rt_idx)
y_rec = k_yrec2 * y_rec2 + (1 - k_yrec2) * y_rec1
SNR = self.calcSNR(
self.f[f_idx] / 1000, 1, real_t * self.c / 2, format="active"
)
r_SNR = 10 ** (-SNR / 10)
y_rec = y_rec + np.random.normal(0, r_SNR, size=y_rec2.shape)
return self.time_estimate(y_rec, y_origin) + (int_rt_idx - 10) / self.f0
def calcPosit(self, real_posit, idx=0):
calc_posit = np.zeros(3)
real_dposit = real_posit + self.hyd_posit
real_delayt = np.linalg.norm(real_dposit, axis=1) / self.c * 2
# calc delayt one by one
calc_phaset = np.array(
[self.get_phasedelay(real_delayt[i] * self.c / 2, idx) for i in range(4)]
)
# normalize phase
# dphasex = (
# np.arctan2(
# np.sin(calc_phaset[1] - calc_phaset[0]),
# np.cos(calc_phaset[1] - calc_phaset[0]),
# )
# / 2
# )
# dphasey = (
# np.arctan2(
# np.sin(calc_phaset[3] - calc_phaset[2]),
# np.cos(calc_phaset[3] - calc_phaset[2]),
# )
# / 2
# )
if abs(calc_phaset[0] - calc_phaset[1]) > np.pi:
calc_phaset[0] -= np.sign(calc_phaset[0] - calc_phaset[1]) * 2 * np.pi
if abs(calc_phaset[3] - calc_phaset[2]) > np.pi:
calc_phaset[3] -= np.sign(calc_phaset[3] - calc_phaset[2]) * 2 * np.pi
dphasex = calc_phaset[1] - calc_phaset[0]
dphasey = calc_phaset[3] - calc_phaset[2]
# time calc
calc_delayt = self.calc_timeDelay(real_delayt[0], f_idx=idx) / 2
# calculate position
calc_posit[0] = (
(self.c)
/ (2 * np.pi * self.f[idx] * self.d)
* (dphasex)
* (self.c * calc_delayt)
)
calc_posit[1] = (
(self.c)
/ (2 * np.pi * self.f[idx] * self.d)
* (dphasey)
* (self.c * calc_delayt)
)
calc_posit[2] = np.sqrt(
(self.c * calc_delayt) ** 2 - calc_posit[0] ** 2 - calc_posit[1] ** 2
)
return calc_posit
# Test
if __name__ == "__main__":
# ---- USBL ----
usbl = USBL()
# real_posit = np.array([34, 67, 100]) # feel free to change this
real_posit = np.array([-299, -19, 100])
pred_posit = usbl.calcPosit(real_posit, idx=0)
print('pred posit / m', pred_posit)
print('error / m', np.linalg.norm(pred_posit[:2] - real_posit[:2]))
# ---- TideWave ----
tidewave = TideWave(H=100, X_max=100, Y_max=100, T_max=200)
tidewave.calc_tideWave()
x = np.arange(tidewave.nx) * tidewave.dx
y = np.arange(tidewave.ny) * tidewave.dy
X, Y = np.meshgrid(x, y)
tw_height = np.zeros(X.shape)
for i in range(len(x)):
for j in range(len(y)):
tw_height[j, i] = (
tidewave.etapx[0, i, int(100 / tidewave.dt)]
+ tidewave.etapy[0, j, int(100 / tidewave.dt)]
)
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
ax.plot_surface(X, Y, tw_height, cmap="viridis")
ax.set_xlabel("x/m")
ax.set_ylabel("y/m")
ax.set_zlabel("Tidewave Height/m")
plt.show()