forked from tranluan/Nonlinear_Face_3DMM
-
Notifications
You must be signed in to change notification settings - Fork 2
/
main_non_linear_3DMM.py
76 lines (61 loc) · 3.36 KB
/
main_non_linear_3DMM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import scipy.misc
import numpy as np
from model_non_linear_3DMM import DCGAN
from utils import pp, visualize, to_json
import tensorflow as tf
flags = tf.app.flags
flags.DEFINE_integer("epoch", 1000, "Epoch to train [25]")
flags.DEFINE_float("learning_rate", 0.0002, "Learning rate of for adam [0.0002]")
flags.DEFINE_float("beta1", 0.5, "Momentum term of adam [0.5]")
flags.DEFINE_integer("train_size", 5000000, "The size of train images [np.inf]")
flags.DEFINE_integer("batch_size", 64, "The size of batch images [64]")
flags.DEFINE_integer("sample_size", 64, "The size of batch samples images [64]")
flags.DEFINE_integer("image_size", 108, "The size of image to use (will be center cropped) [108]")
flags.DEFINE_integer("output_size", 224, "The size of the output images to produce [64]")
flags.DEFINE_integer("c_dim", 3, "Dimension of image color. [3]")
flags.DEFINE_boolean("is_with_y", True, "True for with lable")
flags.DEFINE_string("dataset", "celebA", "The name of dataset [celebA, mnist, lsun]")
flags.DEFINE_string("checkpoint_dir", "checkpoint", "Directory name to save the checkpoints [checkpoint]")
flags.DEFINE_string("samples_dir", "samples", "Directory name to save the image samples [samples]")
flags.DEFINE_boolean("is_train", False, "True for training, False for testing [False]")
flags.DEFINE_boolean("is_reduce", False, "True for 6k verteices, False for 50k vertices")
flags.DEFINE_boolean("is_crop", False, "True for training, False for testing [False]")
flags.DEFINE_boolean("visualize", False, "True for visualizing, False for nothing [False]")
flags.DEFINE_integer("gf_dim", 32, "")
flags.DEFINE_integer("gfc_dim", 512, "")
flags.DEFINE_integer("df_dim", 32, "")
flags.DEFINE_integer("dfc_dim", 512, "")
flags.DEFINE_integer("z_dim", 50, "")
flags.DEFINE_string("gpu", "1,2", "GPU to use [0]")
flags.DEFINE_boolean("is_using_landmark", False, "Using landmark loss [False]")
flags.DEFINE_boolean("is_pretrain", False, "Is in pretrain stage [False]")
flags.DEFINE_boolean("is_using_rescon", False, "Using rescontruction loss [False]")
FLAGS = flags.FLAGS
def main(_):
#pp.pprint(FLAGS.__flags)
pp.pprint(tf.app.flags.FLAGS.flag_values_dict())
if not os.path.exists(FLAGS.checkpoint_dir):
os.makedirs(FLAGS.checkpoint_dir)
if not os.path.exists(FLAGS.samples_dir):
os.makedirs(FLAGS.samples_dir)
gpu_options = tf.GPUOptions(visible_device_list =FLAGS.gpu, per_process_gpu_memory_fraction = 0.8, allow_growth = True)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options)) as sess:
dcgan = DCGAN(sess, FLAGS)
if FLAGS.is_train:
dcgan.train(FLAGS)
else:
dcgan.load(FLAGS.checkpoint_dir)
dcgan.test(FLAGS, True)
'''
if FLAGS.visualize:
to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
[dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
[dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
[dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
[dcgan.h4_w, dcgan.h4_b, None])
# Below is codes for visualization
OPTION = 2
visualize(sess, dcgan, FLAGS, OPTION)'''
if __name__ == '__main__':
tf.app.run()