-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalculate_f1.py
269 lines (234 loc) · 11.2 KB
/
calculate_f1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch
from pytorch3d.ops import knn_points, sample_points_from_meshes
import jsonlines
from pytorch3d.structures import Meshes
from pytorch3d.io import load_obj
import numpy as np
import random
import os
from collections import defaultdict
from tqdm import tqdm
from tqdm.contrib.concurrent import process_map
import json
with open("data/text2shape-data/shapenet/preprocessed/exp_data/val_map.json", "r") as f:
data = json.load(f)
amap = {}
for item in data:
amap[item["model_id"]] = item["category"]
def _compute_sampling_metrics(pred_points, gt_points, thresholds=None, eps=1e-8):
"""
Compute metrics that are based on sampling points and normals:
- L2 Chamfer distance
- Precision at various thresholds
- Recall at various thresholds
- F1 score at various thresholds
- Normal consistency (if normals are provided)
- Absolute normal consistency (if normals are provided)
Inputs:
- pred_points: Tensor of shape (N, S, 3) giving coordinates of sampled points
for each predicted mesh
- pred_normals: Tensor of shape (N, S, 3) giving normals of points sampled
from the predicted mesh, or None if such normals are not available
- gt_points: Tensor of shape (N, S, 3) giving coordinates of sampled points
for each ground-truth mesh
- gt_normals: Tensor of shape (N, S, 3) giving normals of points sampled from
the ground-truth verts, or None of such normals are not available
- thresholds: Distance thresholds to use for precision / recall / F1
- eps: epsilon value to handle numerically unstable F1 computation
Returns:
- metrics: A dictionary where keys are metric names and values are Tensors of
shape (N,) giving the value of the metric for the batch
"""
metrics = {}
lengths_pred = torch.full(
(pred_points.shape[0],), pred_points.shape[1], dtype=torch.int64, device=pred_points.device
)
lengths_gt = torch.full(
(gt_points.shape[0],), gt_points.shape[1], dtype=torch.int64, device=gt_points.device
)
# For each predicted point, find its neareast-neighbor GT point
knn_pred = knn_points(pred_points, gt_points, lengths1=lengths_pred, lengths2=lengths_gt, K=1)
# Compute L1 and L2 distances between each pred point and its nearest GT
pred_to_gt_dists2 = knn_pred.dists[..., 0] # (N, S)
pred_to_gt_dists = pred_to_gt_dists2.sqrt() # (N, S)
# For each GT point, find its nearest-neighbor predicted point
knn_gt = knn_points(gt_points, pred_points, lengths1=lengths_gt, lengths2=lengths_pred, K=1)
# Compute L1 and L2 dists between each GT point and its nearest pred point
gt_to_pred_dists2 = knn_gt.dists[..., 0] # (N, S)
gt_to_pred_dists = gt_to_pred_dists2.sqrt() # (N, S)
# Compute precision, recall, and F1 based on L2 distances
for t in thresholds:
precision = 100.0 * (pred_to_gt_dists < t).float().mean(dim=1)
recall = 100.0 * (gt_to_pred_dists < t).float().mean(dim=1)
f1 = (2.0 * precision * recall) / (precision + recall + eps)
# metrics["Precision@%f" % t] = precision
# metrics["Recall@%f" % t] = recall
metrics["F1@%f" % t] = f1
# Move all metrics to CPU
# metrics = {k: v.cpu() for k, v in metrics.items()}
return f1
def _scale_meshes(pred_meshes, gt_meshes, scale):
if isinstance(scale, float):
# Assume scale is a single scalar to use for both preds and GT
pred_scale = gt_scale = scale
elif isinstance(scale, tuple):
# Rescale preds and GT with different scalars
pred_scale, gt_scale = scale
elif scale.startswith("gt-"):
# Rescale both preds and GT so that the largest edge length of each GT
# mesh is target
target = float(scale[3:])
bbox = gt_meshes.get_bounding_boxes() # (N, 3, 2)
long_edge = (bbox[:, :, 1] - bbox[:, :, 0]).max(dim=1)[0] # (N,)
scale = target / long_edge
if scale.numel() == 1:
scale = scale.expand(len(pred_meshes))
pred_scale, gt_scale = scale, scale
else:
raise ValueError("Invalid scale: %r" % scale)
pred_meshes = pred_meshes.scale_verts(pred_scale)
gt_meshes = gt_meshes.scale_verts(gt_scale)
return pred_meshes, gt_meshes
def _sample_meshes(meshes, num_samples):
"""
Helper to either sample points uniformly from the surface of a mesh
(with normals), or take the verts of the mesh as samples.
Inputs:
- meshes: A MeshList
- num_samples: An integer, or the string 'verts'
Outputs:
- verts: Either a Tensor of shape (N, S, 3) if we take the same number of
samples from each mesh; otherwise a list of length N, whose ith element
is a Tensor of shape (S_i, 3)
- normals: Either a Tensor of shape (N, S, 3) or None if we take verts
as samples.
"""
if num_samples == "verts":
normals = None
# if meshes.equisized:
# verts = meshes.verts_batch
# else:
verts = meshes.verts_list()
else:
verts, _ = sample_points_from_meshes(meshes, num_samples, return_normals=True)
return verts, None
def compare_meshes(
pred_meshes, pred_mesh_name, gt_meshes, gt_mesh_name, num_samples=10000, scale="gt-10", thresholds=None, reduce=False, eps=1e-8
):
"""
Compute evaluation metrics to compare meshes. We currently compute the
following metrics:
- L2 Chamfer distance
- Normal consistency
- Absolute normal consistency
- Precision at various thresholds
- Recall at various thresholds
- F1 score at various thresholds
Inputs:
- pred_meshes (Meshes): Contains N predicted meshes
- gt_meshes (Meshes): Contains 1 or N ground-truth meshes. If gt_meshes
contains 1 mesh, it is replicated N times.
- num_samples: The number of samples to take on the surface of each mesh.
This can be one of the following:
- (int): Take that many uniform samples from the surface of the mesh
- 'verts': Use the vertex positions as samples for each mesh
- A tuple of length 2: To use different sampling strategies for the
predicted and ground-truth meshes (respectively).
- scale: How to scale the predicted and ground-truth meshes before comparing.
This can be one of the following:
- (float): Multiply the vertex positions of both meshes by this value
- A tuple of two floats: Multiply the vertex positions of the predicted
and ground-truth meshes by these two different values
- A string of the form 'gt-[SCALE]', where [SCALE] is a float literal.
In this case, each (predicted, ground-truth) pair is scaled differently,
so that bounding box of the (rescaled) ground-truth mesh has longest
edge length [SCALE].
- thresholds: The distance thresholds to use when computing precision, recall,
and F1 scores.
- reduce: If True, then return the average of each metric over the batch;
otherwise return the value of each metric between each predicted and
ground-truth mesh.
- eps: Small constant for numeric stability when computing F1 scores.
Returns:
- metrics: A dictionary mapping metric names to their values. If reduce is
True then the values are the average value of the metric over the batch;
otherwise the values are Tensors of shape (N,).
"""
if thresholds is None:
thresholds = [0.1, ] # , 0.3, 0.5] # [0.1, 0.2, 0.3, 0.4 0.5] before
if not os.path.exists(f"point_cache/{pred_mesh_name}.npy") or not os.path.exists(f"point_cache/{gt_mesh_name}.npy"):
pred_meshes, gt_meshes = _scale_meshes(pred_meshes, gt_meshes, scale)
if isinstance(num_samples, tuple):
num_samples_pred, num_samples_gt = num_samples
else:
num_samples_pred = num_samples_gt = num_samples
# num_samples_pred = num_samples_gt = 'verts'
###### sample_meshes Method 1 #####
pred_points = []
for pred_mesh in pred_meshes:
if os.path.exists(f"point_cache/{pred_mesh_name}.npy"):
pred_point = torch.from_numpy(np.load(f"point_cache/{pred_mesh_name}.npy"))
else:
pred_point, _ = _sample_meshes(pred_mesh, num_samples_pred)
os.makedirs("point_cache", exist_ok=True)
np.save(f"point_cache/{pred_mesh_name}.npy", pred_point.numpy())
pred_points.append(pred_point)
# convert to tensor
pred_points = torch.concat(pred_points)
###### sample_meshes Method 2 #####
# pred_points, pred_normals = _sample_meshes(pred_meshes, num_samples_pred)
if os.path.exists(f"point_cache/{gt_mesh_name}.npy"):
gt_points = torch.from_numpy(np.load(f"point_cache/{gt_mesh_name}.npy"))
else:
gt_points, _ = _sample_meshes(gt_meshes, num_samples_gt)
os.makedirs("point_cache", exist_ok=True)
np.save(f"point_cache/{gt_mesh_name}.npy", gt_points.numpy())
if torch.is_tensor(pred_points) and torch.is_tensor(gt_points):
gt_points = gt_points.expand(len(pred_meshes), -1, -1)
# We can compute all metrics at once in this case
f1 = _compute_sampling_metrics(
pred_points, gt_points, thresholds=thresholds
)
else:
raise NotImplementedError
return f1
def run_parallel(result):
# cat_id = result["cat_id"]
gt_id = result["groundtruth"].split("-")[0]
pred_ids = result["retrieved_models"]
if not os.path.exists(f"point_cache/{gt_id}.npy") or not os.path.exists(f"point_cache/{pred_ids[0]}.npy"):
gt_verts, gt_faces, _ = load_obj(
os.path.join("data/text2shape-data/ShapeNetCore.v2", amap[gt_id], gt_id, "models", "model_normalized.obj"),
load_textures=False) # verts, faces, aux
gt_mesh = Meshes(verts=[gt_verts], faces=[gt_faces.verts_idx])
pred_meshes_list = []
# for pred_id in pred_ids:
mesh = load_obj(os.path.join("data/text2shape-data/ShapeNetCore.v2", amap[pred_ids[0]], pred_ids[0], "models",
"model_normalized.obj"), load_textures=False) # verts, faces, aux
pred_meshes_list.append([mesh[0], mesh[1].verts_idx])
verts = [mesh[0] for mesh in pred_meshes_list]
faces = [mesh[1] for mesh in pred_meshes_list]
pred_meshes = Meshes(verts=verts, faces=faces)
else:
pred_meshes = [None]
gt_mesh = None
metrics = compare_meshes(pred_meshes, pred_ids[0], gt_mesh, gt_id)
return metrics.mean().item()
if __name__ == '__main__':
with jsonlines.open("nearest.jsonl") as reader:
results = list(reader)
new_results = []
for result in results:
gt_id = result["groundtruth"].split("-")[0]
pred_ids = result["retrieved_models"]
if gt_id not in amap:
continue
if not os.path.exists(os.path.join("data/text2shape-data/ShapeNetCore.v2", amap[gt_id], gt_id, "models", "model_normalized.obj")):
continue
new_results.append(result)
output = process_map(
run_parallel, new_results, chunksize=1, max_workers=10
)
print(sum(output) / len(output))
# for result in tqdm(results):
# run_parallel(result)