forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegformer.yml
160 lines (160 loc) · 4.8 KB
/
segformer.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
Collections:
- Metadata:
Training Data:
- ADE20k
Name: segformer
Models:
- Config: configs/segformer/segformer_mit-b0_512x512_160k_ade20k.py
In Collection: segformer
Metadata:
backbone: MIT-B0
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 19.49
lr schd: 160000
memory (GB): 2.1
Name: segformer_mit-b0_512x512_160k_ade20k
Results:
Dataset: ADE20k
Metrics:
mIoU: 37.41
mIoU(ms+flip): 38.34
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530-8ffa8fda.pth
- Config: configs/segformer/segformer_mit-b1_512x512_160k_ade20k.py
In Collection: segformer
Metadata:
backbone: MIT-B1
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 20.98
lr schd: 160000
memory (GB): 2.6
Name: segformer_mit-b1_512x512_160k_ade20k
Results:
Dataset: ADE20k
Metrics:
mIoU: 40.97
mIoU(ms+flip): 42.54
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106-d70e859d.pth
- Config: configs/segformer/segformer_mit-b2_512x512_160k_ade20k.py
In Collection: segformer
Metadata:
backbone: MIT-B2
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 32.38
lr schd: 160000
memory (GB): 3.6
Name: segformer_mit-b2_512x512_160k_ade20k
Results:
Dataset: ADE20k
Metrics:
mIoU: 45.58
mIoU(ms+flip): 47.03
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103-cbd414ac.pth
- Config: configs/segformer/segformer_mit-b3_512x512_160k_ade20k.py
In Collection: segformer
Metadata:
backbone: MIT-B3
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 45.23
lr schd: 160000
memory (GB): 4.8
Name: segformer_mit-b3_512x512_160k_ade20k
Results:
Dataset: ADE20k
Metrics:
mIoU: 47.82
mIoU(ms+flip): 48.81
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410-962b98d2.pth
- Config: configs/segformer/segformer_mit-b4_512x512_160k_ade20k.py
In Collection: segformer
Metadata:
backbone: MIT-B4
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 64.72
lr schd: 160000
memory (GB): 6.1
Name: segformer_mit-b4_512x512_160k_ade20k
Results:
Dataset: ADE20k
Metrics:
mIoU: 48.46
mIoU(ms+flip): 49.76
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055-7f509d7d.pth
- Config: configs/segformer/segformer_mit-b5_512x512_160k_ade20k.py
In Collection: segformer
Metadata:
backbone: MIT-B5
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 84.1
lr schd: 160000
memory (GB): 7.2
Name: segformer_mit-b5_512x512_160k_ade20k
Results:
Dataset: ADE20k
Metrics:
mIoU: 49.13
mIoU(ms+flip): 50.22
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235-94cedf59.pth
- Config: configs/segformer/segformer_mit-b5_640x640_160k_ade20k.py
In Collection: segformer
Metadata:
backbone: MIT-B5
crop size: (640,640)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (640,640)
value: 88.5
lr schd: 160000
memory (GB): 11.5
Name: segformer_mit-b5_640x640_160k_ade20k
Results:
Dataset: ADE20k
Metrics:
mIoU: 49.62
mIoU(ms+flip): 50.36
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243-41d2845b.pth