From 0cd89e293b9775b805018df79fa94daf2865ce4d Mon Sep 17 00:00:00 2001 From: Fabian Emmerich Date: Thu, 26 Sep 2024 11:39:22 +0200 Subject: [PATCH] Fix readme --- README.md | 15 +++++++++++++-- 1 file changed, 13 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 36ccca7..bd1d739 100644 --- a/README.md +++ b/README.md @@ -12,12 +12,16 @@ Features In this README is a description of how to get the CliMetLab Plugin for A6. ## Installation + Via `pip` + ```commandline pip install climetlab-maelstrom-power-production ``` + or via [`poetry`](https://python-poetry.org/) -``` + +```bash git clone git@github.com:4castRenewables/climetlab-plugin-a6.git cd climetlab-plugin-a6 poetry install --no-dev @@ -26,6 +30,7 @@ poetry install --no-dev ## Datasets description There are five datasets: + - `maelstrom-constants-a-b` - `maelstrom-power-production` - `maelstrom-weather-model-level` @@ -41,6 +46,7 @@ Constants used for calculation of pressure at intermediate model levels. ```Python import climetlab as cml + production_data = cml.load_dataset("maelstrom-constants-a-b") ``` @@ -57,6 +63,7 @@ For a detailed description see the link above. ```Python import climetlab as cml + production_data = cml.load_dataset("maelstrom-power-production", wind_turbine_id=1) ``` @@ -73,6 +80,7 @@ For a detailed description see the link above. ```Python import climetlab as cml + weather_ml = cml.load_dataset("maelstrom-weather-model-level", date="2019-01-01") ``` @@ -88,6 +96,7 @@ For a detailed description see the link above. ```Python import climetlab as cml + weather_pl = cml.load_dataset("maelstrom-weather-pressure-level", date="2019-01-01") ``` @@ -103,6 +112,7 @@ For a detailed description see the link above. ```Python import climetlab as cml + weather_pl = cml.load_dataset("maelstrom-weather-surface-level", date="2019-01-01") ``` @@ -117,7 +127,8 @@ The climetlab python package allows easy access to the data with a few lines of ```Python !pip install climetlab climetlab-maelstrom-power-production import climetlab as cml -data = cml.load_dataset("maelstrom-power-production", date="2019-01-01") + +data = cml.load_dataset("maelstrom-weather-surface-level", date="2019-01-01") data.to_xarray() ```