-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsignal_quality.py
219 lines (189 loc) · 8.46 KB
/
signal_quality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import bids
import argparse
import numpy as np
import pandas as pd
import neurokit2 as nk
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.signal import welch
from os.path import join, exists
#from scipy.stats import kurtosis, wilcoxon, ttest_rel
sns.set_context('talk')
# these are the command line imports
#bids_dir = '/Users/katherine.b/Dropbox/Data/ds001242'
parser = argparse.ArgumentParser(description='Accept BIDS directory, specify # slices if slice timing isn\' specified in BOLD sidecar.')
parser.add_argument('dset', type=str,
help='Valid BIDS dataset containing physiological data with PhysioComb derivatives (i.e., run physioComb.py first).')
parser.add_argument('--verbose', action='store_true',
help='Print filename as the script runs.')
args = parser.parse_args()
bids_dir = args.dset
if not exists(join(bids_dir, 'derivatives', 'PhysioComb')):
raise FileNotFoundError("Cannot find PhysioComb derivaties, please run physioComb.py.")
layout = bids.BIDSLayout(bids_dir, derivatives=True)
files = layout.derivatives['PhysioComb'].get(#return_type='filename',
extension='tsv',
desc='filtered',
invalid_filters='allow')
# read exp design from bids layout
runs = layout.get_runs()
tasks = layout.get_tasks()
subjects = layout.get_subjects()
sessions = layout.get_session()
# set up multiindex for comparing measures across filtered and unfiltered data
measures = ['kurtosis', 'zhao_quality', 'bpm_mean', 'bpm_sdev', 'snr', 'noise']
cols = ['']
if len(sessions) > 1:
index = pd.MultiIndex.from_product([subjects, sessions, tasks, runs])
else:
sessions = [1]
index = pd.MultiIndex.from_product([subjects, sessions, tasks, runs])
columns = pd.MultiIndex.from_product([measures, cols])
ktdf = pd.DataFrame(index=index, columns=columns)
# loop through filtered physio data and compute relevant outcomes
for file in files:
filename = file.filename
if args.verbose:
print(filename)
subject = file.entities['subject']
task = file.entities['task']
fs = file.get_metadata()['SamplingFrequency']
try:
run = file.entities['run']
except:
run = 1
try:
session = file.entities['session']
except:
session = 1
df = pd.read_table(file.path)
temp = df.filter(regex='cardiac.*', axis=1).kurtosis()
for col in temp.keys():
ktdf.loc[(subject, session, task, run), ('kurtosis', col)] = temp[col]
ktdf.loc[(subject, session, task, run), ('snr', col)] = np.var(np.abs(df[col])) / np.var(df[col])
try:
rpeaks, info = nk.ecg_peaks(df[col], sampling_rate=fs)
# Compute rate
ecg_rate = nk.ecg_rate(rpeaks, sampling_rate=fs, desired_length=len(df[col]))
q = nk.ecg_quality(df[col],
sampling_rate=fs,
method="zhao2018",
approach="fuzzy")
ktdf.at[(subject, session, task, run), ('zhao_quality', col)] = q
ktdf.at[(subject, session, task, run), ('bpm_mean', col)] = np.mean(ecg_rate)
ktdf.at[(subject, session, task, run), ('bpm_sdev', col)] = np.std(ecg_rate)
except Exception as e:
#print(e)
ktdf.at[(subject, session, task, run), ('zhao_quality', col)] = np.nan
ktdf.at[(subject, session, task, run), ('bpm_mean', col)] = np.nan
ktdf.at[(subject, session, task, run), ('bpm_sdev', col)] = np.nan
# and now do EDA
temp = df.filter(regex='scr.*', axis=1).kurtosis()
for col in temp.keys():
# compute noise power
f, Pxx = welch(df[col], fs, nperseg=8192)
noise_pct = np.trapz(Pxx[f > 0.4], f[f > 0.4]) / (np.trapz(Pxx, f))
ktdf.loc[(subject, session, task, run), ('noise', col)] = noise_pct
# not all tasks will have all runs, sessions, etc.
# remove blank col created for purpose of multiindex
ktdf.dropna(how='all', inplace=True, axis=1)
ktdf.dropna(how='all', inplace=True, axis=0)
# save outcomes
ktdf.to_csv(join(bids_dir, 'derivatives', 'PhysioComb', 'cardiac_outcomes.tsv'), sep='\t')
filenames = layout.derivatives['PhysioComb'].get(return_type='filename',
extension='tsv',
desc='filtered',
invalid_filters='allow')
filenames = layout.get(return_type='filename',
extension='tsv',
suffix='physio',
invalid_filters='allow')
# write a corresponding sidecar
ktjson = {
'Description': '''Measures computed from cardiac data, both filtered and unfiltered,
for use in future analysis and to diagnose filtration efficacy.''',
'Sources': filenames,
}
cardiac_cols = list(ktdf.columns.get_level_values(1).unique())
# plots and comparisons
try:
good_peak_long = ktdf['zhao_quality'].melt(value_vars=ktdf['zhao_quality'].columns,
value_name='quality',
var_name='data')
loc = {'Unnacceptable': 'upper left',
'Barely acceptable': 'upper center',
'Excellent': 'upper right'}
# Find quality level with least # of runs
x = {}
for qual in ['Unnacceptable', 'Barely acceptable', 'Excellent']:
x[qual] = len(good_peak_long[good_peak_long['quality'] == qual].index)
least = list(dict(sorted(x.items(), key=lambda item: item[1])).keys())[0]
fig,ax = plt.subplots(figsize=(10,7))
sns.countplot(x='quality',
data=good_peak_long,
hue='data',
order=['Unnacceptable', 'Barely acceptable', 'Excellent'],
palette='cubehelix')
ax.legend(loc=loc[least])
fig.savefig(join(bids_dir, 'derivatives', 'PhysioComb', 'zhao_quality.png'), dpi=400, bbox_inches='tight')
except Exception as e:
print(e)
try:
bpm_long = ktdf['bpm_mean'].melt(value_vars=ktdf['bpm_mean'].columns,
value_name='bpm',
var_name='data')
fig,ax = plt.subplots(figsize=(10,7))
ax.set_xlim(left=bpm_long['bpm'].min() * 0.9, right=bpm_long['bpm'].max() * 1.1)
g = sns.histplot(x='bpm', data=bpm_long, hue='data', fill=True, alpha=0.5, palette='cubehelix')
fig.savefig(join(bids_dir, 'derivatives', 'PhysioComb', 'bpm.png'), dpi=400, bbox_inches='tight')
except Exception as e:
print(e)
try:
kurt_long = ktdf['kurtosis'].melt(value_vars=ktdf['kurtosis'].columns,
value_name='kurtosis',
var_name='data')
fig,ax = plt.subplots(figsize=(10,7))
ax.set_xlim(left=kurt_long['kurtosis'].min() * 0.9, right=kurt_long['kurtosis'].max() * 1.1)
g = sns.kdeplot(x='kurtosis',
data=kurt_long,
hue='data',
fill=True,
alpha=0.5,
bw_adjust=0.5,
palette='cubehelix')
fig.savefig(join(bids_dir, 'derivatives', 'PhysioComb', 'kurtosis.png'), dpi=400, bbox_inches='tight')
except Exception as e:
print(e)
try:
snr_long = ktdf['snr'].melt(value_vars=ktdf['snr'].columns,
value_name='snr',
var_name='data')
fig,ax = plt.subplots(figsize=(10,7))
ax.set_xlim(left=snr_long['snr'].min() * 0.9, right=snr_long['snr'].max() * 1.1)
g = sns.kdeplot(x='snr',
data=snr_long,
hue='data',
fill=True,
alpha=0.5,
bw_adjust=0.5,
palette='cubehelix')
fig.savefig(join(bids_dir, 'derivatives', 'PhysioComb', 'snr.png'), dpi=400, bbox_inches='tight')
except Exception as e:
print(e)
try:
noise_long = ktdf['noise'].melt(value_vars=ktdf['noise'].columns,
value_name='noise',
var_name='data')
fig,ax = plt.subplots(figsize=(10,7))
ax.set_xlim(0,1)
g = sns.kdeplot(x='noise',
data=noise_long,
hue='data',
fill=True,
alpha=0.5,
bw_adjust=0.5,
palette='cubehelix')
fig.savefig(join(bids_dir, 'derivatives', 'PhysioComb', 'noise.png'), dpi=400, bbox_inches='tight')
except Exception as e:
print(e)
# Use this to position the legend for this plot