-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtapm.py
87 lines (59 loc) · 2.99 KB
/
tapm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# -*- coding: utf-8 -*-
"""
Created on Fri Jul 3 23:48:28 2020
@author: Justin Yu, M.S. Financial Engineering, Stevens Institute of Technology
Trinomial tree pricing model for European and American call and put options
"""
import numpy as np
def tapm(S0,K,r,sigma,T,q,n,CallPut,EurAm):
'''
Trinomial Asset Pricing model for European and American Call and Put options
Args:
S0 - initial asset price
K - strike price
r - risk-free rate
sigma - volatility
T - time to maturity
q - dividend rate
n - number of time steps in the tree
CallPut - 'Call' or 'Put'
EurAm - 'European' or 'American'
Returns the option price estimated by the trinomial tree
'''
deltaT = T/n
deltaX = np.sqrt(deltaT*(sigma**2) + ((r-q-0.5*sigma**2)**2)*(deltaT**2))
u = np.exp(sigma*np.sqrt(3*deltaT)); d=1/u
D = r-q-(0.5*sigma**2)
#check for convergence
if deltaX < sigma*np.sqrt(3*deltaT):
deltaX = sigma*np.sqrt(3*deltaT)
pu = 0.5*(((sigma**2*deltaT +D**2*deltaT**2)/deltaX**2) + (deltaT*D/deltaX))
pm = 1 - ((deltaT*sigma**2 + D**2*deltaT**2)/deltaX**2)
pd = 0.5*(((sigma**2*deltaT +D**2*deltaT**2)/deltaX**2) - (deltaT*D/deltaX))
underlying = np.zeros((n+1,n+1,n+1))
underlying[0,0,0] = S0
for i in range(1,n+1):
underlying[i,0,0] = underlying[i-1,0,0]
for j in range(1,i+1):
underlying[i,j,0] = underlying[i-1,j-1,0]*u
for k in range(1,j+1):
underlying[i,j,k] = underlying[i-1,j-1,k-1]*d
optionval = np.zeros((n+1,n+1,n+1))
for i in range(n+1):
for j in range(i+1):
if CallPut == 'Call':
optionval[n,i,j] = max(0, underlying[n,i,j] - K)
elif CallPut == 'Put':
optionval[n,i,j] = max(0, K - underlying[n,i,j])
for i in range(n-1,-1,-1):
for j in range(i+1):
for k in range(j+1):
if CallPut == 'Call' and EurAm == 'European':
optionval[i,j,k] = np.exp(-r*deltaT)*(pu*optionval[i+1,j+1,k]+pm*optionval[i+1,j,k]+pd*optionval[i+1,j+1,k+1])
elif CallPut == 'Put' and EurAm == 'European':
optionval[i,j,k] = np.exp(-r*deltaT)*(pu*optionval[i+1,j+1,k]+pm*optionval[i+1,j,k]+pd*optionval[i+1,j+1,k+1])
elif CallPut == 'Call' and EurAm == 'American':
optionval[i,j,k] = max(0, underlying[i,j,k]-K, np.exp(-r*deltaT)*(pu*optionval[i+1,j+1,k]+pm*optionval[i+1,j,k]+pd*optionval[i+1,j+1,k+1]))
elif CallPut == 'Put' and EurAm == 'American':
optionval[i,j,k] = max(0, K-underlying[i,j,k], np.exp(-r*deltaT)*(pu*optionval[i+1,j+1,k]+pm*optionval[i+1,j,k]+pd*optionval[i+1,j+1,k+1]))
return optionval[0,0,0]