Merge Sort
-
确定分界点:
mid = l + r >> 1
-
递归排序 left, right
-
归并, 合二为一
void merge_sort(int q[], int l, int r)
{
if (l >= r) return;
int mid = l + r >> 1;
merge_sort(q, l, mid);
merge_sort(q, mid + 1, r);
int k = 0, i = l, j = mid + 1;
while (i <= mid && j <= r)
// 需要一个temp数组
if (q[i] <= q[j]) tmp[k++] = q[i++];
else tmp[k++] = q[j++];
while (i <= mid) tmp[k ++ ] = q[i++];
while (j <= r) tmp[k ++ ] = q[j++];
// 每次递归都会有新的left, temp
for (i = l, j = 0; i <= r; i++, j ++) q[i] = tmp[j];
}
Quick Sort
- 确定分界点 q[l + r >> 1]
- 调整区间
- 递归处理左右两段
void quick_sort(int q[], int l, int r)
{
if (l >= r) return;
int i = l - 1, j = r + 1, x = q[l + r >> 1];
while (i < j)
{
do i ++ ; while (q[i] < x);
do j -- ; while (q[j] > x);
if (i < j) swap(q[i], q[j]);
}
quick_sort(q, l, j), quick_sort(q, j + 1, r);