-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodule.py
409 lines (321 loc) · 17 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import logging
import time
import numpy as np
import torch
import torch.nn as nn
from tgopt import TGOpt
class MergeLayer(torch.nn.Module):
def __init__(self, dim1, dim2, dim3, dim4):
super().__init__()
self.fc1 = torch.nn.Linear(dim1 + dim2, dim3)
self.fc2 = torch.nn.Linear(dim3, dim4)
self.act = torch.nn.ReLU()
torch.nn.init.xavier_normal_(self.fc1.weight)
torch.nn.init.xavier_normal_(self.fc2.weight)
def forward(self, x1, x2):
x = torch.cat([x1, x2], dim=1)
h = self.act(self.fc1(x))
return self.fc2(h)
class TimeEncode(torch.nn.Module):
def __init__(self, time_dim, factor=5):
super().__init__()
self.factor = factor
self.basis_freq = torch.nn.Parameter((torch.from_numpy(1 / 10 ** np.linspace(0, 9, time_dim))).float())
self.phase = torch.nn.Parameter(torch.zeros(time_dim).float())
def forward(self, ts):
# ts: [N, L]
batch_size = ts.size(0)
seq_len = ts.size(1)
ts = ts.view(batch_size, seq_len, 1) # [N, L, 1]
map_ts = ts * self.basis_freq.view(1, 1, -1) # [N, L, time_dim]
map_ts += self.phase.view(1, 1, -1)
harmonic = torch.cos(map_ts)
return harmonic
class ScaledDotProductAttention(torch.nn.Module):
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = torch.nn.Dropout(attn_dropout)
self.softmax = torch.nn.Softmax(dim=2)
def forward(self, q, k, v, mask=None):
attn = torch.bmm(q, k.transpose(1, 2))
attn = attn / self.temperature
if mask is not None:
attn = attn.masked_fill(mask, -1e10)
attn = self.softmax(attn) # [n * b, l_q, l_k]
attn = self.dropout(attn) # [n * b, l_v, d]
output = torch.bmm(attn, v)
return output
class MultiHeadAttention(nn.Module):
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
super().__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))
self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5), attn_dropout=dropout)
self.layer_norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.fc = nn.Linear(n_head * d_v, d_model)
nn.init.xavier_normal_(self.fc.weight)
def forward(self, q, k, v, mask=None):
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, _ = q.size()
sz_b, len_k, _ = k.size()
sz_b, len_v, _ = v.size()
residual = q
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk
k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk
v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv
mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
output = self.attention(q, k, v, mask=mask)
output = output.view(n_head, sz_b, len_q, d_v)
output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) # b x lq x (n*dv)
output = self.dropout(self.fc(output))
output = self.layer_norm(output + residual)
return output
class AttnModel(torch.nn.Module):
"""Attention based temporal layers"""
def __init__(self, feat_dim, edge_dim, time_dim, n_head=2, drop_out=0.1):
"""
args:
feat_dim: dim for the node features
edge_dim: dim for the temporal edge features
time_dim: dim for the time encoding
n_head: number of heads in attention
drop_out: probability of dropping a neural.
"""
super().__init__()
self.feat_dim = feat_dim
self.time_dim = time_dim
self.model_dim = (feat_dim + edge_dim + time_dim)
self.merger = MergeLayer(self.model_dim, feat_dim, feat_dim, feat_dim)
assert(self.model_dim % n_head == 0)
self.multi_head_target = MultiHeadAttention(n_head,
d_model=self.model_dim,
d_k=self.model_dim // n_head,
d_v=self.model_dim // n_head,
dropout=drop_out)
def forward(self, src, src_t, seq, seq_t, seq_e, mask):
""""Attention based temporal attention forward pass
args:
src: float Tensor of shape [B, D]
src_t: float Tensor of shape [B, Dt], Dt == D
seq: float Tensor of shape [B, N, D]
seq_t: float Tensor of shape [B, N, Dt]
seq_e: float Tensor of shape [B, N, De], De == D
mask: boolean Tensor of shape [B, N], where the true value indicate a null value in the sequence.
returns:
output: float Tensor of shape [B, D]
"""
src_ext = torch.unsqueeze(src, dim=1) # src [B, 1, D]
src_e_ph = torch.zeros_like(src_ext)
q = torch.cat([src_ext, src_e_ph, src_t], dim=2) # [B, 1, D + De + Dt] -> [B, 1, D]
k = torch.cat([seq, seq_e, seq_t], dim=2) # [B, 1, D + De + Dt] -> [B, 1, D]
mask = torch.unsqueeze(mask, dim=2) # mask [B, N, 1]
mask = mask.permute([0, 2, 1]) #mask [B, 1, N]
output = self.multi_head_target(q=q, k=k, v=k, mask=mask) # output: [B, 1, D + Dt], attn: [B, 1, N]
output = output.squeeze()
if len(output.shape) == 1:
output = output.view(1, -1)
output = self.merger(output, src)
return output
class TGAN(torch.nn.Module):
def __init__(self, ngh_finder, n_feat, e_feat,
num_layers=2, num_heads=2, null_idx=0, drop_out=0.1):
super().__init__()
self.num_layers = num_layers
self.ngh_finder = ngh_finder
self.null_idx = null_idx
self.n_feat_th = torch.nn.Parameter(torch.from_numpy(n_feat.astype(np.float32)))
self.e_feat_th = torch.nn.Parameter(torch.from_numpy(e_feat.astype(np.float32)))
self.edge_raw_embed = torch.nn.Embedding.from_pretrained(self.e_feat_th, padding_idx=0, freeze=True)
self.node_raw_embed = torch.nn.Embedding.from_pretrained(self.n_feat_th, padding_idx=0, freeze=True)
self.feat_dim = self.n_feat_th.shape[1]
self.n_feat_dim = self.feat_dim
self.e_feat_dim = self.feat_dim
self.model_dim = self.feat_dim
self.merge_layer = MergeLayer(self.feat_dim, self.feat_dim, self.feat_dim, self.feat_dim)
self.attn_model_list = torch.nn.ModuleList([AttnModel(self.feat_dim,
self.feat_dim,
self.feat_dim,
n_head=num_heads,
drop_out=drop_out) for _ in range(num_layers)])
self.time_encoder = TimeEncode(time_dim=self.n_feat_th.shape[1])
self.affinity_score = MergeLayer(self.feat_dim, self.feat_dim, self.feat_dim, 1)
# Note: for now this will be configured outside of class.
self._opt = TGOpt(False)
def forward(self, src_idx_l, target_idx_l, cut_time_l, n_ngh=20):
src_embed = self.tem_conv(src_idx_l, cut_time_l, self.num_layers, n_ngh)
target_embed = self.tem_conv(target_idx_l, cut_time_l, self.num_layers, n_ngh)
score = self.affinity_score(src_embed, target_embed).squeeze(dim=-1)
return score
def contrast(self, src_idx_l, target_idx_l, background_idx_l, cut_time_l, n_ngh=20):
src_embed = self.tem_conv(src_idx_l, cut_time_l, self.num_layers, n_ngh)
target_embed = self.tem_conv(target_idx_l, cut_time_l, self.num_layers, n_ngh)
background_embed = self.tem_conv(background_idx_l, cut_time_l, self.num_layers, n_ngh)
pos_score = self.affinity_score(src_embed, target_embed).squeeze(dim=-1)
neg_score = self.affinity_score(src_embed, background_embed).squeeze(dim=-1)
return pos_score.sigmoid(), neg_score.sigmoid()
def tem_conv(self, src_idx_l, cut_time_l, curr_layers, n_ngh=20):
assert(curr_layers >= 0)
self.device = self.n_feat_th.device
if not self.training and self._opt.enabled:
return self._opt_tem_conv(src_idx_l, cut_time_l, curr_layers, n_ngh)
else:
return self._base_tem_conv(src_idx_l, cut_time_l, curr_layers, n_ngh)
def _base_tem_conv(self, src_idx_l, cut_time_l, curr_layers, n_ngh=20):
if curr_layers == 0:
src_node_batch_th = torch.from_numpy(src_idx_l).long().to(self.device)
src_node_feat = self.node_raw_embed(src_node_batch_th)
return src_node_feat
else:
batch_size = len(src_idx_l)
src_node_conv_feat = self._base_tem_conv(src_idx_l,
cut_time_l,
curr_layers=curr_layers - 1,
n_ngh=n_ngh)
src_ngh_node_batch, src_ngh_eidx_batch, src_ngh_t_batch = self.ngh_finder.ngh_lookup(
src_idx_l,
cut_time_l,
n_ngh=n_ngh)
src_ngh_node_batch_th = torch.from_numpy(src_ngh_node_batch).long().to(self.device)
src_ngh_eidx_batch = torch.from_numpy(src_ngh_eidx_batch).long().to(self.device)
#torch.cuda.synchronize()
t_start = time.perf_counter()
src_ngh_t_batch_delta = cut_time_l[:, np.newaxis] - src_ngh_t_batch
src_ngh_t_batch_th = torch.from_numpy(src_ngh_t_batch_delta).float().to(self.device)
#torch.cuda.synchronize()
self._opt._t_time_encode_nghs += (time.perf_counter() - t_start)
# get previous layer's node features
src_ngh_node_batch_flat = src_ngh_node_batch.flatten() #reshape(batch_size, -1)
src_ngh_t_batch_flat = src_ngh_t_batch.flatten() #reshape(batch_size, -1)
src_ngh_node_conv_feat = self._base_tem_conv(src_ngh_node_batch_flat,
src_ngh_t_batch_flat,
curr_layers=curr_layers - 1,
n_ngh=n_ngh)
src_ngh_feat = src_ngh_node_conv_feat.view(batch_size, n_ngh, -1)
# get edge time features and node features
#torch.cuda.synchronize()
t_start = time.perf_counter()
cut_time_l_th = torch.from_numpy(cut_time_l).float().to(self.device)
cut_time_l_th = torch.unsqueeze(cut_time_l_th, dim=1)
src_node_t_embed = self.time_encoder(torch.zeros_like(cut_time_l_th))
#torch.cuda.synchronize()
self._opt._t_time_encode_zero += (time.perf_counter() - t_start)
t_start = time.perf_counter()
src_ngh_t_embed = self.time_encoder(src_ngh_t_batch_th)
#torch.cuda.synchronize()
self._opt._t_time_encode_nghs += (time.perf_counter() - t_start)
src_ngh_edge_feat = self.edge_raw_embed(src_ngh_eidx_batch)
# attention aggregation
mask = src_ngh_node_batch_th == 0
attn_m = self.attn_model_list[curr_layers - 1]
#torch.cuda.synchronize()
t_start = time.perf_counter()
local = attn_m(src_node_conv_feat,
src_node_t_embed,
src_ngh_feat,
src_ngh_t_embed,
src_ngh_edge_feat,
mask)
#torch.cuda.synchronize()
self._opt._t_attn += (time.perf_counter() - t_start)
return local
### Optimized implementation
def _opt_tem_conv(self, src_l: np.ndarray, ts_l: np.ndarray, layer: int, n_ngh=20):
if self._opt.enabled_dedup and layer > 0:
src_l, ts_l, inv_idx = self._opt.dedup_filter(src_l, ts_l)
embed = self._compute_embed(src_l, ts_l, layer, n_ngh)
return self._opt.dedup_invert(embed, inv_idx)
else:
return self._compute_embed(src_l, ts_l, layer, n_ngh)
def _compute_embed(self, src_l: np.ndarray, ts_l: np.ndarray, layer: int, n_ngh: int):
if layer == 0:
src_l = torch.from_numpy(src_l).long().to(self.device)
src_node_feat = self.node_raw_embed(src_l)
return src_node_feat
else:
batch_size = len(src_l)
if self._opt.cache_enabled_at(layer):
keys = self._opt.compute_keys(src_l, ts_l)
hit_idx, embeds = self._opt.cache_lookup(layer, keys)
hit_count = torch.sum(hit_idx).item()
if self._opt.collect_hits:
self._opt.record_batch_hits(hit_count, batch_size)
if hit_count == batch_size:
# All hits, return the cached embeds
return embeds
miss_idx = (~ hit_idx)
miss_idx_np = miss_idx.cpu().numpy()
del hit_idx
if hit_count != 0:
# If not all misses (aka some hits), then filter down the lists
src_l = src_l[miss_idx_np]
ts_l = ts_l[miss_idx_np]
keys = keys[miss_idx_np]
batch_size = len(keys)
### If not using cache or has misses, then do computations
# Directly call embed fn since we don't need to dedup src_l again
src_embed = self._compute_embed(src_l, ts_l, layer=layer - 1, n_ngh=n_ngh)
ngh_batch, ngh_eidx_batch, ngh_ts_batch = self.ngh_finder.ngh_lookup(
src_l, ts_l, n_ngh=n_ngh)
# Call higher-level embed fn to dedup neighbors
ngh_embed = self._opt_tem_conv(ngh_batch.flatten(), ngh_ts_batch.flatten(),
layer=layer - 1, n_ngh=n_ngh)
ngh_embed = ngh_embed.view(batch_size, n_ngh, -1)
### Compute attention aggregation for filtered inputs
#torch.cuda.synchronize()
t_start = time.perf_counter()
ts_l = ts_l.reshape(-1, 1)
ngh_ts_delta = ts_l - ngh_ts_batch
ngh_ts_delta = torch.from_numpy(ngh_ts_delta).float().to(self.device)
#torch.cuda.synchronize()
self._opt._t_time_encode_nghs += (time.perf_counter() - t_start)
if self._opt.enabled_time:
src_t_embed = self._opt.get_time_zero_embed(batch_size)
ngh_t_embed = self._opt.compute_time_embed(ngh_ts_delta, self.time_encoder)
else:
### Otherwise, do the original code path
t_start = time.perf_counter()
ts_l = torch.from_numpy(ts_l).float().to(self.device)
src_t_embed = self.time_encoder(torch.zeros_like(ts_l))
#torch.cuda.synchronize()
self._opt._t_time_encode_zero += (time.perf_counter() - t_start)
t_start = time.perf_counter()
ngh_t_embed = self.time_encoder(ngh_ts_delta)
#torch.cuda.synchronize()
self._opt._t_time_encode_nghs += (time.perf_counter() - t_start)
ngh_eidx_batch = torch.from_numpy(ngh_eidx_batch).long().to(self.device)
ngh_edge_feat = self.edge_raw_embed(ngh_eidx_batch)
ngh_batch = torch.from_numpy(ngh_batch).long().to(self.device)
mask = ngh_batch == 0
attn_m = self.attn_model_list[layer - 1]
del ts_l
del src_l
del ngh_batch
del ngh_eidx_batch
del ngh_ts_batch
del ngh_ts_delta
#torch.cuda.synchronize()
t_start = time.perf_counter()
local_embed = attn_m(src_embed, src_t_embed,
ngh_embed, ngh_t_embed,
ngh_edge_feat, mask)
#torch.cuda.synchronize()
self._opt._t_attn += (time.perf_counter() - t_start)
if self._opt.cache_enabled_at(layer):
self._opt.cache_store(layer, keys, local_embed)
embeds[miss_idx] = local_embed
return embeds
else:
### If not using cache, then nothing else to do
return local_embed