forked from bmaltais/kohya_ss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlora_gui.py
1838 lines (1677 loc) · 63.4 KB
/
lora_gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import gradio as gr
import json
import math
import os
import argparse
from datetime import datetime
from library.common_gui import (
get_file_path,
get_any_file_path,
get_saveasfile_path,
color_aug_changed,
run_cmd_advanced_training,
run_cmd_training,
update_my_data,
check_if_model_exist,
output_message,
verify_image_folder_pattern,
SaveConfigFile,
save_to_file,
check_duplicate_filenames,
)
from library.class_configuration_file import ConfigurationFile
from library.class_source_model import SourceModel
from library.class_basic_training import BasicTraining
from library.class_advanced_training import AdvancedTraining
from library.class_sdxl_parameters import SDXLParameters
from library.class_folders import Folders
from library.class_command_executor import CommandExecutor
from library.tensorboard_gui import (
gradio_tensorboard,
start_tensorboard,
stop_tensorboard,
)
from library.utilities import utilities_tab
from library.class_sample_images import SampleImages, run_cmd_sample
from library.class_lora_tab import LoRATools
from library.dreambooth_folder_creation_gui import (
gradio_dreambooth_folder_creation_tab,
)
from library.dataset_balancing_gui import gradio_dataset_balancing_tab
from library.custom_logging import setup_logging
from library.localization_ext import add_javascript
# Set up logging
log = setup_logging()
# Setup command executor
executor = CommandExecutor()
button_run = gr.Button("Start training", variant="primary")
button_stop_training = gr.Button("Stop training")
document_symbol = "\U0001F4C4" # 📄
def save_configuration(
save_as,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latents,
cache_latents_to_disk,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training,
min_bucket_reso,
max_bucket_reso,
# use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
text_encoder_lr,
unet_lr,
network_dim,
lora_network_weights,
dim_from_weights,
color_aug,
flip_aug,
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list,
max_token_length,
max_train_epochs,
max_train_steps,
max_data_loader_n_workers,
network_alpha,
training_comment,
keep_tokens,
lr_scheduler_num_cycles,
lr_scheduler_power,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
v_pred_like_loss,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
lr_scheduler_args,
noise_offset_type,
noise_offset,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
LoRA_type,
factor,
use_cp,
decompose_both,
train_on_input,
conv_dim,
conv_alpha,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
vae_batch_size,
min_snr_gamma,
down_lr_weight,
mid_lr_weight,
up_lr_weight,
block_lr_zero_threshold,
block_dims,
block_alphas,
conv_block_dims,
conv_block_alphas,
weighted_captions,
unit,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
use_wandb,
wandb_api_key,
scale_v_pred_loss_like_noise_pred,
scale_weight_norms,
network_dropout,
rank_dropout,
module_dropout,
sdxl_cache_text_encoder_outputs,
sdxl_no_half_vae,
full_bf16,
min_timestep,
max_timestep,
vae,
debiased_estimation_loss,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
save_as_bool = True if save_as.get("label") == "True" else False
if save_as_bool:
log.info("Save as...")
file_path = get_saveasfile_path(file_path)
else:
log.info("Save...")
if file_path == None or file_path == "":
file_path = get_saveasfile_path(file_path)
# log.info(file_path)
if file_path == None or file_path == "":
return original_file_path # In case a file_path was provided and the user decide to cancel the open action
# Extract the destination directory from the file path
destination_directory = os.path.dirname(file_path)
# Create the destination directory if it doesn't exist
if not os.path.exists(destination_directory):
os.makedirs(destination_directory)
SaveConfigFile(
parameters=parameters,
file_path=file_path,
exclusion=["file_path", "save_as"],
)
return file_path
def open_configuration(
ask_for_file,
apply_preset,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latents,
cache_latents_to_disk,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training,
min_bucket_reso,
max_bucket_reso,
# use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
text_encoder_lr,
unet_lr,
network_dim,
lora_network_weights,
dim_from_weights,
color_aug,
flip_aug,
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list,
max_token_length,
max_train_epochs,
max_train_steps,
max_data_loader_n_workers,
network_alpha,
training_comment,
keep_tokens,
lr_scheduler_num_cycles,
lr_scheduler_power,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
v_pred_like_loss,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
lr_scheduler_args,
noise_offset_type,
noise_offset,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
LoRA_type,
factor,
use_cp,
decompose_both,
train_on_input,
conv_dim,
conv_alpha,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
vae_batch_size,
min_snr_gamma,
down_lr_weight,
mid_lr_weight,
up_lr_weight,
block_lr_zero_threshold,
block_dims,
block_alphas,
conv_block_dims,
conv_block_alphas,
weighted_captions,
unit,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
use_wandb,
wandb_api_key,
scale_v_pred_loss_like_noise_pred,
scale_weight_norms,
network_dropout,
rank_dropout,
module_dropout,
sdxl_cache_text_encoder_outputs,
sdxl_no_half_vae,
full_bf16,
min_timestep,
max_timestep,
vae,
debiased_estimation_loss,
training_preset,
):
# Get list of function parameters and values
parameters = list(locals().items())
ask_for_file = True if ask_for_file.get("label") == "True" else False
apply_preset = True if apply_preset.get("label") == "True" else False
# Check if we are "applying" a preset or a config
if apply_preset:
log.info(f"Applying preset {training_preset}...")
file_path = f"./presets/lora/{training_preset}.json"
else:
# If not applying a preset, set the `training_preset` field to an empty string
# Find the index of the `training_preset` parameter using the `index()` method
training_preset_index = parameters.index(("training_preset", training_preset))
# Update the value of `training_preset` by directly assigning an empty string value
parameters[training_preset_index] = ("training_preset", "")
original_file_path = file_path
if ask_for_file:
file_path = get_file_path(file_path)
if not file_path == "" and not file_path == None:
# Load variables from JSON file
with open(file_path, "r") as f:
my_data = json.load(f)
log.info("Loading config...")
# Update values to fix deprecated options, set appropriate optimizer if it is set to True, etc.
my_data = update_my_data(my_data)
else:
file_path = original_file_path # In case a file_path was provided and the user decides to cancel the open action
my_data = {}
values = [file_path]
for key, value in parameters:
# Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found
if not key in ["ask_for_file", "apply_preset", "file_path"]:
json_value = my_data.get(key)
# if isinstance(json_value, str) and json_value == '':
# # If the JSON value is an empty string, use the default value
# values.append(value)
# else:
# Otherwise, use the JSON value if not None, otherwise use the default value
values.append(json_value if json_value is not None else value)
# This next section is about making the LoCon parameters visible if LoRA_type = 'Standard'
if my_data.get("LoRA_type", "Standard") == "LoCon":
values.append(gr.Row.update(visible=True))
else:
values.append(gr.Row.update(visible=False))
return tuple(values)
def train_model(
headless,
print_only,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latents,
cache_latents_to_disk,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training_pct,
min_bucket_reso,
max_bucket_reso,
# use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
text_encoder_lr,
unet_lr,
network_dim,
lora_network_weights,
dim_from_weights,
color_aug,
flip_aug,
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list, # Keep this. Yes, it is unused here but required given the common list used
max_token_length,
max_train_epochs,
max_train_steps,
max_data_loader_n_workers,
network_alpha,
training_comment,
keep_tokens,
lr_scheduler_num_cycles,
lr_scheduler_power,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
v_pred_like_loss,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
lr_scheduler_args,
noise_offset_type,
noise_offset,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
LoRA_type,
factor,
use_cp,
decompose_both,
train_on_input,
conv_dim,
conv_alpha,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
vae_batch_size,
min_snr_gamma,
down_lr_weight,
mid_lr_weight,
up_lr_weight,
block_lr_zero_threshold,
block_dims,
block_alphas,
conv_block_dims,
conv_block_alphas,
weighted_captions,
unit,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
use_wandb,
wandb_api_key,
scale_v_pred_loss_like_noise_pred,
scale_weight_norms,
network_dropout,
rank_dropout,
module_dropout,
sdxl_cache_text_encoder_outputs,
sdxl_no_half_vae,
full_bf16,
min_timestep,
max_timestep,
vae,
debiased_estimation_loss,
):
# Get list of function parameters and values
parameters = list(locals().items())
global command_running
print_only_bool = True if print_only.get("label") == "True" else False
log.info(f"Start training LoRA {LoRA_type} ...")
headless_bool = True if headless.get("label") == "True" else False
if pretrained_model_name_or_path == "":
output_message(
msg="Source model information is missing", headless=headless_bool
)
return
if train_data_dir == "":
output_message(msg="Image folder path is missing", headless=headless_bool)
return
# Check if there are files with the same filename but different image extension... warn the user if it is the case.
check_duplicate_filenames(train_data_dir)
if not os.path.exists(train_data_dir):
output_message(msg="Image folder does not exist", headless=headless_bool)
return
if not verify_image_folder_pattern(train_data_dir):
return
if reg_data_dir != "":
if not os.path.exists(reg_data_dir):
output_message(
msg="Regularisation folder does not exist",
headless=headless_bool,
)
return
if not verify_image_folder_pattern(reg_data_dir):
return
if output_dir == "":
output_message(msg="Output folder path is missing", headless=headless_bool)
return
if int(bucket_reso_steps) < 1:
output_message(
msg="Bucket resolution steps need to be greater than 0",
headless=headless_bool,
)
return
if noise_offset == "":
noise_offset = 0
if float(noise_offset) > 1 or float(noise_offset) < 0:
output_message(
msg="Noise offset need to be a value between 0 and 1",
headless=headless_bool,
)
return
# if float(noise_offset) > 0 and (
# multires_noise_iterations > 0 or multires_noise_discount > 0
# ):
# output_message(
# msg="noise offset and multires_noise can't be set at the same time. Only use one or the other.",
# title='Error',
# headless=headless_bool,
# )
# return
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if stop_text_encoder_training_pct > 0:
output_message(
msg='Output "stop text encoder training" is not yet supported. Ignoring',
headless=headless_bool,
)
stop_text_encoder_training_pct = 0
if check_if_model_exist(
output_name, output_dir, save_model_as, headless=headless_bool
):
return
# if optimizer == 'Adafactor' and lr_warmup != '0':
# output_message(
# msg="Warning: lr_scheduler is set to 'Adafactor', so 'LR warmup (% of steps)' will be considered 0.",
# title='Warning',
# headless=headless_bool,
# )
# lr_warmup = '0'
# If string is empty set string to 0.
if text_encoder_lr == "":
text_encoder_lr = 0
if unet_lr == "":
unet_lr = 0
# Get a list of all subfolders in train_data_dir
subfolders = [
f
for f in os.listdir(train_data_dir)
if os.path.isdir(os.path.join(train_data_dir, f))
]
total_steps = 0
# Loop through each subfolder and extract the number of repeats
for folder in subfolders:
try:
# Extract the number of repeats from the folder name
repeats = int(folder.split("_")[0])
# Count the number of images in the folder
num_images = len(
[
f
for f, lower_f in (
(file, file.lower())
for file in os.listdir(os.path.join(train_data_dir, folder))
)
if lower_f.endswith((".jpg", ".jpeg", ".png", ".webp"))
]
)
log.info(f"Folder {folder}: {num_images} images found")
# Calculate the total number of steps for this folder
steps = repeats * num_images
# log.info the result
log.info(f"Folder {folder}: {steps} steps")
total_steps += steps
except ValueError:
# Handle the case where the folder name does not contain an underscore
log.info(f"Error: '{folder}' does not contain an underscore, skipping...")
if reg_data_dir == "":
reg_factor = 1
else:
log.warning(
"Regularisation images are used... Will double the number of steps required..."
)
reg_factor = 2
log.info(f"Total steps: {total_steps}")
log.info(f"Train batch size: {train_batch_size}")
log.info(f"Gradient accumulation steps: {gradient_accumulation_steps}")
log.info(f"Epoch: {epoch}")
log.info(f"Regulatization factor: {reg_factor}")
if max_train_steps == "" or max_train_steps == "0":
# calculate max_train_steps
max_train_steps = int(
math.ceil(
float(total_steps)
/ int(train_batch_size)
/ int(gradient_accumulation_steps)
* int(epoch)
* int(reg_factor)
)
)
log.info(
f"max_train_steps ({total_steps} / {train_batch_size} / {gradient_accumulation_steps} * {epoch} * {reg_factor}) = {max_train_steps}"
)
# calculate stop encoder training
if stop_text_encoder_training_pct == None:
stop_text_encoder_training = 0
else:
stop_text_encoder_training = math.ceil(
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
)
log.info(f"stop_text_encoder_training = {stop_text_encoder_training}")
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
log.info(f"lr_warmup_steps = {lr_warmup_steps}")
run_cmd = (
f"accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process}"
)
if sdxl:
run_cmd += f' "./sdxl_train_network.py"'
else:
run_cmd += f' "./train_network.py"'
if v2:
run_cmd += " --v2"
if v_parameterization:
run_cmd += " --v_parameterization"
if enable_bucket:
run_cmd += f" --enable_bucket --min_bucket_reso={min_bucket_reso} --max_bucket_reso={max_bucket_reso}"
if no_token_padding:
run_cmd += " --no_token_padding"
if weighted_captions:
run_cmd += " --weighted_captions"
run_cmd += f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
run_cmd += f' --train_data_dir="{train_data_dir}"'
if len(reg_data_dir):
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
run_cmd += f' --resolution="{max_resolution}"'
run_cmd += f' --output_dir="{output_dir}"'
if not logging_dir == "":
run_cmd += f' --logging_dir="{logging_dir}"'
run_cmd += f' --network_alpha="{network_alpha}"'
if not training_comment == "":
run_cmd += f' --training_comment="{training_comment}"'
if not stop_text_encoder_training == 0:
run_cmd += f" --stop_text_encoder_training={stop_text_encoder_training}"
if not save_model_as == "same as source model":
run_cmd += f" --save_model_as={save_model_as}"
if not float(prior_loss_weight) == 1.0:
run_cmd += f" --prior_loss_weight={prior_loss_weight}"
if LoRA_type == "LoCon" or LoRA_type == "LyCORIS/LoCon":
try:
import lycoris
except ModuleNotFoundError:
log.info(
"\033[1;31mError:\033[0m The required module 'lycoris_lora' is not installed. Please install by running \033[33mupgrade.ps1\033[0m before running this program."
)
return
run_cmd += f" --network_module=lycoris.kohya"
run_cmd += f' --network_args "conv_dim={conv_dim}" "conv_alpha={conv_alpha}" "algo=locon"'
if LoRA_type == "LyCORIS/LoHa":
try:
import lycoris
except ModuleNotFoundError:
log.info(
"\033[1;31mError:\033[0m The required module 'lycoris_lora' is not installed. Please install by running \033[33mupgrade.ps1\033[0m before running this program."
)
return
run_cmd += f" --network_module=lycoris.kohya"
run_cmd += f' --network_args "conv_dim={conv_dim}" "conv_alpha={conv_alpha}" "use_cp={use_cp}" "algo=loha"'
# This is a hack to fix a train_network LoHA logic issue
if not network_dropout > 0.0:
run_cmd += f' --network_dropout="{network_dropout}"'
if LoRA_type == "LyCORIS/iA3":
try:
import lycoris
except ModuleNotFoundError:
log.info(
"\033[1;31mError:\033[0m The required module 'lycoris_lora' is not installed. Please install by running \033[33mupgrade.ps1\033[0m before running this program."
)
return
run_cmd += f" --network_module=lycoris.kohya"
run_cmd += f' --network_args "conv_dim={conv_dim}" "conv_alpha={conv_alpha}" "train_on_input={train_on_input}" "algo=ia3"'
# This is a hack to fix a train_network LoHA logic issue
if not network_dropout > 0.0:
run_cmd += f' --network_dropout="{network_dropout}"'
if LoRA_type == "LyCORIS/DyLoRA":
try:
import lycoris
except ModuleNotFoundError:
log.info(
"\033[1;31mError:\033[0m The required module 'lycoris_lora' is not installed. Please install by running \033[33mupgrade.ps1\033[0m before running this program."
)
return
run_cmd += f" --network_module=lycoris.kohya"
run_cmd += f' --network_args "conv_dim={conv_dim}" "conv_alpha={conv_alpha}" "use_cp={use_cp}" "block_size={unit}" "algo=dylora"'
# This is a hack to fix a train_network LoHA logic issue
if not network_dropout > 0.0:
run_cmd += f' --network_dropout="{network_dropout}"'
if LoRA_type == "LyCORIS/LoKr":
try:
import lycoris
except ModuleNotFoundError:
log.info(
"\033[1;31mError:\033[0m The required module 'lycoris_lora' is not installed. Please install by running \033[33mupgrade.ps1\033[0m before running this program."
)
return
run_cmd += f" --network_module=lycoris.kohya"
run_cmd += f' --network_args "conv_dim={conv_dim}" "conv_alpha={conv_alpha}" "factor={factor}" "use_cp={use_cp}" "algo=lokr"'
# This is a hack to fix a train_network LoHA logic issue
if not network_dropout > 0.0:
run_cmd += f' --network_dropout="{network_dropout}"'
if LoRA_type in ["Kohya LoCon", "Standard"]:
kohya_lora_var_list = [
"down_lr_weight",
"mid_lr_weight",
"up_lr_weight",
"block_lr_zero_threshold",
"block_dims",
"block_alphas",
"conv_block_dims",
"conv_block_alphas",
"rank_dropout",
"module_dropout",
]
run_cmd += f" --network_module=networks.lora"
kohya_lora_vars = {
key: value
for key, value in vars().items()
if key in kohya_lora_var_list and value
}
network_args = ""
if LoRA_type == "Kohya LoCon":
network_args += f' conv_dim="{conv_dim}" conv_alpha="{conv_alpha}"'
for key, value in kohya_lora_vars.items():
if value:
network_args += f' {key}="{value}"'
if network_args:
run_cmd += f" --network_args{network_args}"
if LoRA_type in [
"LoRA-FA",
]:
kohya_lora_var_list = [
"down_lr_weight",
"mid_lr_weight",
"up_lr_weight",
"block_lr_zero_threshold",
"block_dims",
"block_alphas",
"conv_block_dims",
"conv_block_alphas",
"rank_dropout",
"module_dropout",
]
run_cmd += f" --network_module=networks.lora_fa"
kohya_lora_vars = {
key: value
for key, value in vars().items()
if key in kohya_lora_var_list and value
}
network_args = ""
if LoRA_type == "Kohya LoCon":
network_args += f' conv_dim="{conv_dim}" conv_alpha="{conv_alpha}"'
for key, value in kohya_lora_vars.items():
if value:
network_args += f' {key}="{value}"'
if network_args:
run_cmd += f" --network_args{network_args}"
if LoRA_type in ["Kohya DyLoRA"]:
kohya_lora_var_list = [
"conv_dim",
"conv_alpha",
"down_lr_weight",
"mid_lr_weight",
"up_lr_weight",
"block_lr_zero_threshold",
"block_dims",
"block_alphas",
"conv_block_dims",
"conv_block_alphas",
"rank_dropout",
"module_dropout",
"unit",
]
run_cmd += f" --network_module=networks.dylora"
kohya_lora_vars = {
key: value
for key, value in vars().items()
if key in kohya_lora_var_list and value
}
network_args = ""
for key, value in kohya_lora_vars.items():
if value:
network_args += f' {key}="{value}"'
if network_args:
run_cmd += f" --network_args{network_args}"
if not (float(text_encoder_lr) == 0) or not (float(unet_lr) == 0):
if not (float(text_encoder_lr) == 0) and not (float(unet_lr) == 0):
run_cmd += f" --text_encoder_lr={text_encoder_lr}"
run_cmd += f" --unet_lr={unet_lr}"
elif not (float(text_encoder_lr) == 0):
run_cmd += f" --text_encoder_lr={text_encoder_lr}"
run_cmd += f" --network_train_text_encoder_only"
else:
run_cmd += f" --unet_lr={unet_lr}"
run_cmd += f" --network_train_unet_only"
else:
if float(learning_rate) == 0:
output_message(
msg="Please input learning rate values.",
headless=headless_bool,
)
return
run_cmd += f" --network_dim={network_dim}"
# if LoRA_type not in ['LyCORIS/LoCon']:
if not lora_network_weights == "":
run_cmd += f' --network_weights="{lora_network_weights}"'
if dim_from_weights:
run_cmd += f" --dim_from_weights"
if int(gradient_accumulation_steps) > 1:
run_cmd += f" --gradient_accumulation_steps={int(gradient_accumulation_steps)}"
if not output_name == "":
run_cmd += f' --output_name="{output_name}"'
if not lr_scheduler_num_cycles == "":
run_cmd += f' --lr_scheduler_num_cycles="{lr_scheduler_num_cycles}"'
else:
run_cmd += f' --lr_scheduler_num_cycles="{epoch}"'
if not lr_scheduler_power == "":
run_cmd += f' --lr_scheduler_power="{lr_scheduler_power}"'
if scale_weight_norms > 0.0:
run_cmd += f' --scale_weight_norms="{scale_weight_norms}"'
if network_dropout > 0.0:
run_cmd += f' --network_dropout="{network_dropout}"'
if sdxl_cache_text_encoder_outputs:
run_cmd += f" --cache_text_encoder_outputs"
if sdxl_no_half_vae:
run_cmd += f" --no_half_vae"
if full_bf16:
run_cmd += f" --full_bf16"
if debiased_estimation_loss:
run_cmd += " --debiased_estimation_loss"
run_cmd += run_cmd_training(
learning_rate=learning_rate,
lr_scheduler=lr_scheduler,
lr_warmup_steps=lr_warmup_steps,
train_batch_size=train_batch_size,
max_train_steps=max_train_steps,
save_every_n_epochs=save_every_n_epochs,
mixed_precision=mixed_precision,
save_precision=save_precision,
seed=seed,
caption_extension=caption_extension,
cache_latents=cache_latents,
cache_latents_to_disk=cache_latents_to_disk,
optimizer=optimizer,
optimizer_args=optimizer_args,
lr_scheduler_args=lr_scheduler_args,
)
run_cmd += run_cmd_advanced_training(
max_train_epochs=max_train_epochs,
max_data_loader_n_workers=max_data_loader_n_workers,
max_token_length=max_token_length,
resume=resume,
save_state=save_state,
mem_eff_attn=mem_eff_attn,
clip_skip=clip_skip,
flip_aug=flip_aug,
color_aug=color_aug,
shuffle_caption=shuffle_caption,
gradient_checkpointing=gradient_checkpointing,
full_fp16=full_fp16,
xformers=xformers,
# use_8bit_adam=use_8bit_adam,
keep_tokens=keep_tokens,
persistent_data_loader_workers=persistent_data_loader_workers,
bucket_no_upscale=bucket_no_upscale,
random_crop=random_crop,
bucket_reso_steps=bucket_reso_steps,
v_pred_like_loss=v_pred_like_loss,
caption_dropout_every_n_epochs=caption_dropout_every_n_epochs,
caption_dropout_rate=caption_dropout_rate,
noise_offset_type=noise_offset_type,
noise_offset=noise_offset,
adaptive_noise_scale=adaptive_noise_scale,
multires_noise_iterations=multires_noise_iterations,
multires_noise_discount=multires_noise_discount,
additional_parameters=additional_parameters,
vae_batch_size=vae_batch_size,
min_snr_gamma=min_snr_gamma,
save_every_n_steps=save_every_n_steps,
save_last_n_steps=save_last_n_steps,
save_last_n_steps_state=save_last_n_steps_state,
use_wandb=use_wandb,
wandb_api_key=wandb_api_key,
scale_v_pred_loss_like_noise_pred=scale_v_pred_loss_like_noise_pred,
min_timestep=min_timestep,
max_timestep=max_timestep,
vae=vae,
)