forked from JKilpatrick1/Ask_AI_Makerspace
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
126 lines (96 loc) · 3.67 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings import CacheBackedEmbeddings
from langchain.storage import LocalFileStore
import chainlit as cl
from chainlit.playground.providers import ChatOpenAI
from dotenv import load_dotenv
load_dotenv()
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings import CacheBackedEmbeddings
from langchain.storage import LocalFileStore
from langchain.vectorstores import Pinecone
from operator import itemgetter
import pinecone
# =============================================================================
# Retrieval Chain
# =============================================================================
def load_llm():
llm = ChatOpenAI(
model='gpt-3.5-turbo',
temperature=0.0,
)
return llm
def load_vectorstore():
pinecone.init(
api_key=os.getenv('PINECONE_API_KEY'),
environment=os.getenv('PINECONE_ENV')
)
index = pinecone.Index("youtube-index")
store = LocalFileStore("./cache/")
core_embeddings_model = OpenAIEmbeddings()
embedder = CacheBackedEmbeddings.from_bytes_store(
core_embeddings_model,
store,
namespace=core_embeddings_model.model
)
text_field = "text"
vectorstore = Pinecone(
index,
embedder,
text_field
)
return vectorstore
def qa_chain():
vectorstore = load_vectorstore()
llm = load_llm()
retriever = vectorstore.as_retriever()
template = """You are a helpful assistant that answers questions on the provided context, if its not answered within the context respond with "This query is not directly mentioned by AI Makerspace" then respond to the best of your ability.
Additionally, the context includes a specific integer formatted as <int>, representing a timestamp.
In your response, include this integer as a citation, formatted as a YouTube video link: "https://www.youtube.com/watch?v=[video_id]&t=<int>s" and have the hyperlink text be the title of video.
### CONTEXT
{context}
### QUESTION
{question}
"""
prompt = ChatPromptTemplate.from_template(template)
retrieval_augmented_qa_chain = (
{"context": itemgetter("question") | retriever,
"question": itemgetter("question")
}
| RunnablePassthrough.assign(
context=itemgetter("context")
)
| {
"response": prompt | llm,
"context": itemgetter("context"),
}
)
return retrieval_augmented_qa_chain
# =============================================================================
# Chainlit
# =============================================================================
@cl.on_chat_start
async def on_chat_start():
chain = qa_chain()
cl.user_session.set("chain", chain)
msg=cl.Message(content="What is your question about AI Makerspace?")
await msg.send()
@cl.on_message
async def on_message(message: cl.Message):
chain=cl.user_session.get("chain")
res = chain.invoke({"question" : message.content})
answer = res['response'].content
await cl.Message(content=answer).send()
#Use to show all source documents used
'''
source_documents = set()
for document in res['context']:
source_url = document.metadata['source_document']
source_documents.add(source_url)
combined_message = answer + "\n\nSource Documents:\n" + "\n".join(source_documents)
await cl.Message(content=combined_message).send()
'''