-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
147 lines (121 loc) · 5.24 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
from typing import List
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_qdrant import QdrantVectorStore
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_openai import ChatOpenAI
from langchain.storage import LocalFileStore
from chainlit.types import AskFileResponse
from langchain.embeddings import CacheBackedEmbeddings
from qdrant_client.http.models import Distance, VectorParams
from qdrant_client import QdrantClient
import chainlit as cl
from operator import itemgetter
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables.passthrough import RunnablePassthrough
from langchain_core.runnables.config import RunnableConfig
from dotenv import load_dotenv
import uuid
load_dotenv()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
rag_system_prompt_template = """\
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context.
"""
rag_message_list = [
{"role" : "system", "content" : rag_system_prompt_template},
]
rag_user_prompt_template = """\
Question:
{question}
Context:
{context}
"""
chat_prompt = ChatPromptTemplate.from_messages([
("system", rag_system_prompt_template),
("human", rag_user_prompt_template)
])
chat_model = ChatOpenAI(model="gpt-4o-mini")
def process_file(file: AskFileResponse):
import tempfile
with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile:
with open(tempfile.name, "wb") as f:
f.write(file.content)
Loader = PyMuPDFLoader
loader = Loader(tempfile.name)
documents = loader.load()
docs = text_splitter.split_documents(documents)
for i, doc in enumerate(docs):
doc.metadata["source"] = f"source_{i}"
return docs
# Decorator: This is a Chainlit decorator that marks a function to be executed when a chat session starts
@cl.on_chat_start
async def on_chat_start():
files = None
# Wait for the user to upload a file
while files == None:
# Async method: This allows the function to pause execution while waiting for the user to upload a file,
# without blocking the entire application. It improves responsiveness and scalability.
files = await cl.AskFileMessage(
content="Please upload a PDF file to begin!",
accept=["application/pdf"],
max_size_mb=20,
timeout=180,
).send()
file = files[0]
msg = cl.Message(
content=f"Processing `{file.name}`...",
)
await msg.send()
# load the file
docs = process_file(file)
# Create a Qdrant vector store with cache backed embeddings
collection_name = f"pdf_to_parse_{uuid.uuid4()}"
client = QdrantClient(":memory:")
client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
store = LocalFileStore("./cache/")
# Caching: Using CacheBackedEmbeddings improves performance by storing and reusing
# previously computed embeddings, reducing API calls and processing time.
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
core_embeddings, store, namespace=core_embeddings.model
)
vectorstore = QdrantVectorStore(
client=client,
collection_name=collection_name,
embedding=cached_embedder)
vectorstore.add_documents(docs)
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})
# Create a chain that uses the QDrant vector store
# Parallelization: LCEL runnables are parallelized by default, allowing for efficient
# execution of multiple steps in the chain simultaneously, improving overall performance.
retrieval_augmented_qa_chain = (
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
| RunnablePassthrough.assign(context=itemgetter("context"))
| chat_prompt | chat_model
)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", retrieval_augmented_qa_chain)
# Decorator: This Chainlit decorator is used to rename the authors of messages in the chat interface
@cl.author_rename
def rename(orig_author: str):
rename_dict = {"ChatOpenAI": "the Generator...", "VectorStoreRetriever": "the Retriever..."}
return rename_dict.get(orig_author, orig_author)
# Decorator: This Chainlit decorator marks a function to be executed when a new message is received in the chat
@cl.on_message
async def main(message: cl.Message):
runnable = cl.user_session.get("chain")
msg = cl.Message(content="")
# Async method: Using astream allows for asynchronous streaming of the response,
# improving responsiveness and user experience by showing partial results as they become available.
async for chunk in runnable.astream(
{"question": message.content},
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
):
await msg.stream_token(chunk.content)
await msg.send()