From 151475e00b08394be769a704889f8e6a69f7aed2 Mon Sep 17 00:00:00 2001 From: Yang Date: Mon, 12 Jun 2023 17:25:17 +0200 Subject: [PATCH 01/13] compare LSTM and ridge --- workflow/comp_pred_ridge_and_LSTM.ipynb | 1974 +++++++++++++++++++++++ 1 file changed, 1974 insertions(+) create mode 100644 workflow/comp_pred_ridge_and_LSTM.ipynb diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb new file mode 100644 index 0000000..e923b18 --- /dev/null +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -0,0 +1,1974 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Predict 2 meter temperature with sea surface temperature using deep learning and evaluate the predictions with simple regression results\n", + "This notebook shows how to build a workflow of data driven forecasting using machine learning with `s2spy` & `lilio` packages. It highlights how these packages could facilitate (sub)seasonal forecasts with deep learning and creating baseline forecasts for evaluation.
\n", + "\n", + "We will predict temperature in US at seasonal time scales using ERA5 dataset with a LSTM network and evaluate the forecasts against those from linear regression (Ridge).
\n", + "\n", + "This recipe includes the following steps:\n", + "- Define a calendar (`lilio`)\n", + "- Download/load input data (the data has been processed)\n", + "- Map the calendar to the data (`lilio`)\n", + "- Train-test split (70%/30%)\n", + "- Preprocessing based on the training set (`s2spy`)\n", + "- Resample data to the calendar (`lilio`)\n", + "- Dimensionality reduction and model training, with cross-validation (`lilio` & `scikit-learn`)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import lilio\n", + "import numpy as np\n", + "import time as tt\n", + "import wandb\n", + "import xarray as xr\n", + "from pathlib import Path\n", + "from s2spy import preprocess\n", + "import torch\n", + "from torch import nn\n", + "from torch.autograd import Variable" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1. Prepare data for data-driven forecasting\n", + "\n", + "In this section, we build a data pipeline to preprocess and resample data with `s2spy` & `lilio`.
\n", + "We will see how `lilio` can help us manage and aggregate data with a user-defiend `calendar`. Simple data preprocessing will be achieved using `s2spy`.
\n", + "By following these steps, the raw input data will be ready for your data-driven forecasting, including a deep learning recipe and a regression-based workflow." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Define a calendar with `lilio` to specify time range for targets and precursors." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# create custom calendar based on the time of interest\n", + "calendar = lilio.Calendar(anchor=\"08-01\", allow_overlap=True)\n", + "# add target periods\n", + "calendar.add_intervals(\"target\", length=\"20d\")\n", + "# add precursor periods\n", + "periods_of_interest = 8\n", + "calendar.add_intervals(\"precursor\", \"20d\", gap=\"10d\", n=periods_of_interest)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Calendar(\n", + " anchor='08-01',\n", + " allow_overlap=True,\n", + " mapping=None,\n", + " intervals=[\n", + " Interval(role='target', length='20d', gap='0d'),\n", + " Interval(role='precursor', length='20d', gap='10d'),\n", + " Interval(role='precursor', length='20d', gap='10d'),\n", + " Interval(role='precursor', length='20d', gap='10d'),\n", + " Interval(role='precursor', length='20d', gap='10d'),\n", + " Interval(role='precursor', length='20d', gap='10d'),\n", + " Interval(role='precursor', length='20d', gap='10d'),\n", + " Interval(role='precursor', length='20d', gap='10d'),\n", + " Interval(role='precursor', length='20d', gap='10d')\n", + " ]\n", + ")" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# check calendar\n", + "calendar" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# load example data\n", + "data_folder = '~/AI4S2S/data'\n", + "precursor_field = xr.open_dataset(Path(data_folder, 'sst_daily_1979-2018_5deg_Pacific_175_240E_25_50N.nc'))\n", + "target_field = xr.open_dataset(Path(data_folder,'tf5_nc5_dendo_80d77.nc'))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Map the calendar to the data\n", + "After mapping the calendar to the field, we can visualize our calendar by calling the `visualize` method." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjBElEQVR4nO3dd1gUV/828HsbS5EiqGBDsGNDxN5r7Bq7xl8IliQqdn2SaGIsMSH6xEZiNDZIsfeSqLGBBStB7CgqYlTA8tD77nn/4GV1BZSl7SD357q4Lndmzsw9e2TY786cGZkQQoCIiIiIiMjI5MYOQEREREREBLA4ISIiIiIiiWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAlKYwcoKbRaLR4/fgxLS0vIZDJjxyEiIqJ3mBAC8fHxqFSpEuRyfpdMpQeLkzx6/PgxqlatauwYREREVIo8fPgQVapUMXYMomLD4iSPLC0tAWQeJKysrIychoiIiN5lcXFxqFq1qu7zB1FpweIkj7Iu5bKysmJxQkRERMWCl5JTacOLGImIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBd+siIiIqAkIIpKamGtxOrVZDJpMVuH1JzvAu7ENBM6SkpBi8PaJ3AYsTIiKiIpCamoohQ4YY3G779u0wNTUtcPuSnOFd2IeCZkhPTzd4e0TvAhYnREREReifR/F5XrZJ5ewP3At5mvcPqa7lVSU+Q07bL4wMBX0PCiMDHl7Ic3s4uOV9WaJ3CIsTIiKiItZqgjcUSpNc52sy0nD251m5zu/w+S+Qq9S5ztempyJg0aclOsPbtl8YGQr6HhRGhj8+cYNalfuQ39R0Lf5vTfAbMxC9y1icEBERFTGF0gQKk9w/0L6NXKWG0sQ01/kZzJCnDAXdfmFkUKvkMFUpCpSB6F3Gu3UREREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkQWnsAERERO8qjUaDF/eu4a8vBkKpNoXayhbNRs2BpYMjUmKf4+zqL5EQ9RBypRIqc0sAltnWIbQanFjoidh/w6AwMYWZTXm0nrQEVpWrIznmKU4uHo+4x/eQHPMUVRo3LPQMGo0Gz24HY/enbaBUm+W4/fgn9yFXqqCysALK2+cvQ2QEUuKe47mpa47tC5pBaLU47TMD8U/CoTBRF3sGjUaDf+7HoOFXATBXK1DBUo1VHg1R094C0XGp8Fh7GXejE2GilMPaTAmrbAmISgejnjnx9vZGs2bNYGlpiQoVKuD9999HaGio3jIpKSnw8vKCnZ0dypQpg0GDBiEqKkpvmcmTJ8Pd3R1qtRqNGzfOcVuHDx9Gy5YtYWlpifLly2PQoEEIDw8voj0jIiLKZG5XET29d6Kn905Uce+EC+vmAgAub12OcjUboe/SP9F89Fz8L/wmtFptjuuo1eNDDFp/EQNWn4Zjq544vXwyAODS+vko79IUA9YEwrZ6AwQHByM9Pb3QM1hUqIL3V5/OdfuDfYPQespyvAi7kus+vC1Dr0W7YeNYJ9d9KIwMNToMQO8f9hstg6OdGa580x4hCzqgv5s9xvqGAAC+2H4LLWvY4M6izvjFsyGCI+Jy3Qeid51Ri5OAgAB4eXnh3LlzOHLkCNLT0/Hee+8hMTFRt8y0adOwf/9+bN++HQEBAXj8+DEGDhyYbV2jR4/GsGHDctzO/fv30b9/f3Tu3BmXL1/G4cOH8ezZsxzXQ0REVFgUCgVMre0gk8kAAHY1XZH49DEA4OG5w6jZZSgAwLZ6fShUajx//jzbOmRyBao07aJbRwWXZkiIigAA3D+5B3V7jwIAqMtYQ61W49SpU4WaQaFQwMym/Fu3X652YyhMct6HvGYwsbDKdR8KmkEml6Oia1ujZVAoFLC3Uuvat6xRFuHPkgEA2y4+xrhO1QAATZ1soFbK8b///S/bPhCVBka9rOvQoUN6r/38/FChQgUEBQWhffv2iI2Nxfr167Fp0yZ07twZAODr6wsXFxecO3cOLVu2BAD4+PgAAJ4+fYorV65k205QUBA0Gg0WLlwIuTyzHps5cyb69++P9PR0qFSqotxNIiIiAMDtQ3+gsnsnpMbHQKvJgJlNOd08hYkpkpOT37qO63tWw7FVL6TEvYBWkw5zW3tkpKUAAMzNzfHw4cMizZDT9nXt1WZ52oecMmjSUvO8D+9ChhVH7qO/mz2eJ6QhXSPgYG2qm2duosjTPhC9iyQ1ID42NhYAYGtrCyCzqEhPT0fXrl11y9StWxeOjo44e/Zsntfr7u4OuVwOX19faDQaxMbG4vfff0fXrl1zLUxSU1MRFxen90NERJRf1/euRXxUBFyHTcn3OkI2L0Hc4/toOupro2Qo6PaZIdN3B+4gLDoR3oNd8tWe6F0mmeJEq9Vi6tSpaNOmDRo0aAAAiIyMhImJCWxsbPSWtbe3R2RkZJ7X7ezsjL///huzZ8+GWq2GjY0N/v33X2zbti3XNt7e3rC2ttb9VK1aNV/7RUREdOvg7/j34lF0/GwVlGozqC1tIFMokRzzTLeMJi0FZmZmua7j6vYfEX7mAN5buB1KU3OYWtlCLlci6cXLcZhJSUm5/r0qaIbru1a9dfua1OQ37kNeMrxpHwojw80//YyaYdnf97ArKBIHp7eAuVoBuzImUMpliIxNebn9NM0b94HoXSaZ4sTLywvXrl3Dli1bCn3dkZGR+Pjjj/HRRx/h4sWLCAgIgImJCQYPHgwhRI5tZs2ahdjYWN3P207vEhER5SQh+iEenj+MTrPWwMTi5T2YHJt3Q9ixzC/JXty7Dk16Kuzs7HJcx409q3HPfyd6eO+Guoy1brpT+/649acvACA1IRYpKSlo165doWeIfxKO+yd3v3H7z25fhiYt933IS4a0xLhc96EwMoQe/gMPAv8yWoZ7T5Ow/cITHJnZAjbmL6/cGNKsIlafeAAAuBQeg5R0LcqWLZvjPhC96yRxK+GJEyfiwIEDOHnyJKpUqaKb7uDggLS0NMTExOidPYmKioKDg0Oe179y5UpYW1tj8eLFuml//PEHqlativPnz+vGrrxKrVZDrVbnb4eIiIgAJCcnI+7RPViUr4xjC8cAABQqE7y3YBNcR0zDuZ9nY//03pArlChbra5uXOSrMlJTcGn9fFhWdMLBz/oCAOQqNfr5HEWzMfMQsHgcdn/SGskx0Wjq5pbtcuWCZkhOTkZMRCjKOFTLdfs7RrlDplDCtkbDHPchLxn++nwAUuKe57oPBc2gSUtFyJblKFOhilEyJCcn48bjBDiXM0OnRecAAGqVHOfntMWiIS74cG0wan1+HCqFHG7VrHLcB6LSwKjFiRACkyZNwu7du+Hv7w9nZ2e9+e7u7lCpVDh27BgGDRoEAAgNDUVERARatWqV5+0kJSVl+yVXKBQAwFv1ERFRkTEzM0Mltw5oO3kJFCb6X3iZWZdDp1lrAGR+cD7tMyPHdSjVpvDY/wRKE9Ns88zKVkAP713ISEvBiYWeKFcu+zjKgmYwMzND1Rbd0ekrv2wZsrYPQJchv+9D1vbLlcv+rJfCyKAwUWOo76Vs2y+uDGZmZujjWgHbvdxhqlLozbO3VuPvmZlflKakazBkZRCy38iYqHQwanHi5eWFTZs2Ye/evbC0tNSNI7G2toaZmRmsra0xZswYTJ8+Hba2trCyssKkSZPQqlUrvbMdYWFhSEhIQGRkJJKTk3H58mUAQL169WBiYoLevXtj2bJlWLBgAUaMGIH4+HjMnj0b1apVg5ubmzF2nYiIiIiIXmPU4mTVqlUAgI4dO+pN9/X1haenJwBg2bJlkMvlGDRoEFJTU9G9e3f8/PPPesuPHTsWAQEButdZBcf9+/fh5OSEzp07Y9OmTVi8eDEWL14Mc3NztGrVCocOHeKAMyIiIiIiiTD6ZV1vY2pqipUrV2LlypW5LuPv7//W9QwfPhzDhw83JB4RERERERUjjrYiIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkQWnsAERERO86TUZageZr01OR8Zb5JT3D27ZfGBkK+h4URobUdG2B5hO961icEBERFbGzP88qUPuARZ8yQyFkKOj2CyPD/60JLnAGoncZixMiIqIi1KSyZYHau5ZXMUMhZCjo9gsjA6o2z/uy6ekF2xZRCSUTQghjhygJ4uLiYG1tjdjYWFhZWRk7DhERSZwQAqmpb7/U6XVqtRoymazA7UtyhndhHwqaIS4uDvb29vzcQaUOz5wQEREVAZlMBlNTU6O1Z4bCaW+sDGlpbx//QvQu4t26iIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSQYVJxkZGTgt99+Q1RUVFHlISIiIiKiUsqg4kSpVGLcuHFISUkpqjxERERERFRKGXxZV/PmzXH58uUiiEJERERERKWZ0tAGEyZMwPTp0/Hw4UO4u7vDwsJCb36jRo0KLRwRSZ8QAqmpqQa3U6vVkMlkBW6f3wwFbf/qOoy1D4WZQQr7QEREJBNCCEMayOXZT7Zk/WGTyWTQaDSFFk5K4uLiYG1tjdjYWFhZWRk7DpFkpKSkYMiQIQa32759O0xNTQvcPr8ZCtr+1XUYax8KM4MU9oGIXuLnDiqtDD5zcv/+/aLIQUQl3D+P4vO8bJPKltmmhTxNz3N71/KqAmXIafuFkaGg74EUMhRGP+DhhTyvA1Wb531ZIiJ65xlcnFSrVq0ochDRO6DVBG8olCa5ztdkpOHsz7Nynd/h818gV6lzna9NT0XAok/zneFt2y+MDAV9D6SQoTD64Y9P3KBW5T6sMTVdi/9bE/zGdRARUeljcHGS5caNG4iIiEBaWpre9H79+hU4FBGVTAqlCRQmuX+ofRu5Sg2lSe6X92SUgAwF3b4UMhRGP6hVcpiqFPnOQEREpZPBxcm9e/cwYMAAXL16VTfWBIBuMOO7OuaEiIiIiIiKlsG3Ep4yZQqcnZ0RHR0Nc3NzXL9+HSdPnkTTpk3h7+9fBBGJiIiIiKg0MPjMydmzZ3H8+HGUK1cOcrkccrkcbdu2hbe3NyZPnozgYF5DTEREREREhjP4zIlGo4GlZeYdXsqVK4fHjx8DyBwoHxoaWrjpiIiIiIio1DD4zEmDBg0QEhICZ2dntGjRAosXL4aJiQnWrFmD6tWrF0VGIiIiIiIqBQwuTr766iskJiYCABYsWIA+ffqgXbt2sLOzw9atWws9IBERERERlQ4GFyfdu3fX/btmzZq4desWXrx4gbJly+ru2EVERERERGQog8ecZAkLC8Phw4eRnJwMW1vbwsxERERERESlkMHFyfPnz9GlSxfUrl0bvXr1wpMnTwAAY8aMwYwZMwo9IBERERERlQ4GX9Y1bdo0qFQqREREwMXFRTd92LBhmD59OpYsWVKoAYmIiIgoZxqNBunp6caOQZQrlUoFhUKR5+UNLk7+/vtvHD58GFWqVNGbXqtWLTx48MDQ1RERERGRgYQQiIyMRExMjLGjEL2VjY0NHBwc8jQ+3eDiJDExEebm5tmmv3jxAmq12tDVEREREZGBsgqTChUqwNzcnDclIkkSQiApKQnR0dEAgIoVK761jcHFSbt27fDbb7/hm2++AQDIZDJotVosXrwYnTp1MnR1RERERGQAjUajK0zs7OyMHYfojczMzAAA0dHRqFChwlsv8TK4OFm8eDG6dOmCS5cuIS0tDZ999hmuX7+OFy9e4MyZM/lLTURERER5kjXGJKcrWYikKOv/anp6+luLE4Pv1tWgQQPcvn0bbdu2Rf/+/ZGYmIiBAwciODgYNWrUyF9iIiIiIjIIL+WiksKQ/6sGnzkBAGtra3z55Zf5aUpERERERJQjg8+cODk5YcGCBXj48GFR5CEiIiIiolLK4DMnU6dOhZ+fHxYsWIBOnTphzJgxGDBgAO/URURERGRsS4rxUq8Zovi2ZWTh4eFwdnZGcHAwGjdubOw4+ebk5ISpU6di6tSpxo6SK4PPnEydOhWXL1/GhQsX4OLigkmTJqFixYqYOHEi/vnnn6LISEREREQlmEwme+PPvHnzjJptz549b1ymatWqePLkCRo0aJDn9c6bN69EFzLGYnBxkqVJkybw8fHB48ePMXfuXKxbtw7NmjVD48aNsWHDBghReqppIiIiIsrdkydPdD/Lly+HlZWV3rSZM2catL60tLQiSpozhUIBBwcHKJX5Gq5dIMW9r8aW7+IkPT0d27ZtQ79+/TBjxgw0bdoU69atw6BBgzB79myMHDmyMHMSERERUQnl4OCg+7G2toZMJtO9TkxMxMiRI2Fvb48yZcqgWbNmOHr0qF57JycnfPPNN/Dw8ICVlRU++eQTAMDatWtRtWpVmJubY8CAAVi6dClsbGz02u7duxdNmjSBqakpqlevjvnz5yMjI0O3XgAYMGAAZDKZ7vXrwsPDIZPJcPnyZQCAv78/ZDIZjh07hqZNm8Lc3BytW7dGaGgoAMDPzw/z589HSEiI7uyQn58fACAmJgZjx45F+fLlYWVlhc6dOyMkJES3rawzLuvWrYOzszNMTU2xZs0aVKpUCVqtVi9X//79MXr0aADA3bt30b9//ze+jyWBwcXJP//8o3cpV/369XHt2jWcPn0ao0aNwpw5c3D06FHs3r27KPISERER0TskISEBvXr1wrFjxxAcHIwePXqgb9++iIiI0Fvuhx9+gKurK4KDgzFnzhycOXMG48aNw5QpU3D58mV069YN3377rV6bU6dOwcPDA1OmTMGNGzfwyy+/wM/PT7fcxYsXAQC+vr548uSJ7nVeffnll1iyZAkuXboEpVKpKxSGDRuGGTNmoH79+rqzQ8OGDQMADBkyBNHR0Th48CCCgoLQpEkTdOnSBS9evNCtNywsDDt37sSuXbtw+fJlDBkyBM+fP8eJEyd0y7x48QKHDh3SnRDI6/sodQafm2rWrBm6deuGVatW4f3334dKpcq2jLOzM4YPH14oAYmIiIjo3eXq6gpXV1fd62+++Qa7d+/Gvn37MHHiRN30zp07Y8aMGbrXX375JXr27Km7JKx27doIDAzEgQMHdMvMnz8fX3zxBT766CMAQPXq1fHNN9/gs88+w9y5c1G+fHkAgI2NDRwcHAzO/u2336JDhw4AgC+++AK9e/dGSkoKzMzMUKZMGSiVSr31nj59GhcuXEB0dLTuZlI//PAD9uzZgx07dujOCKWlpeG3337T5QOAnj17YtOmTejSpQsAYMeOHShXrhw6depk0PsodQafObl37x4OHTqEIUOG5FiYAICFhQV8fX0LHI6IiIiI3m0JCQmYOXMmXFxcYGNjgzJlyuDmzZvZvvFv2rSp3uvQ0FA0b95cb9rrr0NCQrBgwQKUKVNG9/Pxxx/jyZMnSEpKKnD2Ro0a6f5dsWJFAEB0dHSuy4eEhCAhIQF2dnZ6me7fv4+7d+/qlqtWrZpeYQIAI0eOxM6dO5GamgoA2LhxI4YPHw65PPPjfF7fR6kz+MxJtWrViiIHEREREZVCM2fOxJEjR/DDDz+gZs2aMDMzw+DBg7MNBLewsDB43QkJCZg/fz4GDhyYbZ6pqWm+M2d59Yv6rKegvz4u5PU8FStWhL+/f7Z5r46VyWlf+/btCyEE/vzzTzRr1gynTp3CsmXLdPPz+j5KXfHfcoCIiIiI6P87c+YMPD09MWDAAACZH+DDw8Pf2q5OnTrZxoi8/rpJkyYIDQ1FzZo1c12PSqWCRqMxPPhbmJiYZFtvkyZNEBkZCaVSmevg+9yYmppi4MCB2LhxI8LCwlCnTh00adJENz+/76PUsDghIiIiIqOpVasWdu3ahb59+0Imk2HOnDlvPPuQZdKkSWjfvj2WLl2Kvn374vjx4zh48KDuDAYAfP311+jTpw8cHR0xePBgyOVyhISE4Nq1a1i4cCGAzDt2HTt2DG3atIFarUbZsmULZb+cnJxw//59XL58GVWqVIGlpSW6du2KVq1a4f3338fixYtRu3ZtPH78GH/++ScGDBiQ7dK1140cORJ9+vTB9evX8X//93968/L7PkoNixMiIiKid0UJfGr70qVLMXr0aLRu3RrlypXD559/jri4uLe2a9OmDVavXo358+fjq6++Qvfu3TFt2jT89NNPumW6d++OAwcOYMGCBVi0aBFUKhXq1q2LsWPH6pZZsmQJpk+fjrVr16Jy5cqFdrZh0KBB2LVrFzp16oSYmBj4+vrC09MTf/31F7788kuMGjUKT58+hYODA9q3bw97e/u3rrNz586wtbVFaGgoPvjgA715+X0fpcag4iQ9PR1169bFgQMH4OLiUlSZiIiIiOgd5enpCU9PT91rJycnHD9+XG8ZLy8vvde5FQwff/wxPv74Y73Xr1/C1b17d3Tv3j3XPH379kXfvn3fmNnJyUnvAeMdO3bM9sDxxo0b601Tq9XYsWNHtnVZWlrCx8cHPj4+OW5r3rx5mDdvXo7z5HI5Hj9+nGvG/L6PUmJQcaJSqZCSklJoG/f29sauXbtw69YtmJmZoXXr1li0aBHq1KmjWyYlJQUzZszAli1bkJqaiu7du+Pnn3/Wqy4nT56MM2fO4Nq1a3BxcdE9ICfLvHnzMH/+/GzbNzc3R2JiYqHtD1FppdFo8OLeNfz1xUAo1aZQW9mi2ag5sHRwRErsc5xd/SUSoh5CrlRCZW4JwDJb+2e3g7H70zZQqs1gZlMerSctgVXl6kiOeYqTi8cj/sl9yJUqqCysgPLZv13KU4bICKTEPcdzU9cc2xc0g9BqcdpnBuKfhENhoi72DAXth8x90ODEQk/E/hsGhYlpjhniHt9DcsxTVGncMMd9+Od+DBp+FQBztQIVLNVY5dEQNe0tEB2XCo+1l3E3OhEmSjmszZSwy7YGIqK8++GHH9CtWzdYWFjg4MGD+PXXX/Hzzz8bOxYVgMG3Evby8sKiRYt0T9YsiICAAHh5eeHcuXM4cuQI0tPT8d577+kVDNOmTcP+/fuxfft2BAQE4PHjxznecWH06NG6h9u8bubMmboH4GT91KtXD0OGDCnwPhBRJnO7iujpvRM9vXeiinsnXFg3FwBweetylKvZCH2X/onmo+fif+E3c7wG1qJCFby/+jQGrD4Nx1Y9cXr5ZADApfXzUd6lKQb7BqH1lOV4EXYl12to35ah16LdsHGsg+DgYKSnpxdJhhodBqD3D/uNlqGg/QAAtXp8iEHrL+aaYcCaQNhWb5DrPjjameHKN+0RsqAD+rvZY6xv5pOPv9h+Cy1r2ODOos74xbMhgiPiSuT10EQkHRcuXEC3bt3QsGFDrF69Gj4+PnqXbFHJY3BxcvHiRezatQuOjo7o3r07Bg4cqPdjiEOHDsHT0xP169eHq6sr/Pz8EBERgaCgIABAbGws1q9fj6VLl6Jz585wd3eHr68vAgMDce7cOd16fHx84OXlherVq+e4nTJlysDBwUH3ExUVhRs3bmDMmDGG7j4R5UChUMDU2k43CNGupisSn2aedn547jBqdhkKALCtXh8KlRrPnz/P1t7MpryufQWXZkiIyrwv+/2Te1C39ygAQLnajaEwyd7ekAwmFlZQq9U4depUoWeQyeWo6NrWaBkK2g+Z+6BAlaZd3ppBXcY6132wt1Lr2resURbhz5IBANsuPsa4Tpm3o2/qZAO1Up5jBiKivNq2bRuio6ORnJyM69evY9y4ccaORAVk8IB4GxsbDBo0qCiyIDY2FgBga2sLAAgKCkJ6ejq6du2qW6Zu3bpwdHTE2bNn0bJly3xtZ926dahduzbatWuX6zKpqam6h9wAKJEDioiM5fahP1DZvRNS42Og1WTAzKacbp7CxBTJyclvbH99z2o4tuqFlLgX0GrSYW778vIlhdrsre1zy6BJy/ydNjc3x8OHD9/5DAXth9wyZKSl5HkfVhy5j/5u9niekIZ0jYCD9cvnCpibKPKUgYiISg+Di5OievK7VqvF1KlT0aZNGzRo0AAAEBkZCRMTE72H0gCAvb09IiMj87WdlJQUbNy4EV988cUbl/P29s5xnAoRvdn1vWsRHxWBzmPW6T6IGyJk8xLEPb6Pnt8v030IZgbDMxR0+4WR4bsDdxAWnYhj/2mF5PTCf4YAERG9ewy+rCvL06dPcfr0aZw+fRpPnz4tcBAvLy9cu3YNW7ZsKfC63mT37t2Ij4/HRx999MblZs2ahdjYWN3P274dJCLg1sHf8e/Fo+j42Soo1WZQW9pAplAiOeaZbhlNWgrMzMxybH991yqEnzmA9xZuh9LUHKZWtpDLlUh6EfWyfWpyru3zmiEpKQlVq1Ytsgw3//QzaoaC9gMAXN3+41szvGkflv19D7uCInFweguYqxWwK2MCpVyGyNiXRU5SmuaNGYiIqPQxuDhJTEzE6NGjUbFiRbRv3x7t27dHpUqVMGbMGCQlJeUrxMSJE3HgwAGcOHECVapU0U13cHBAWloaYmJi9JaPioqCg4NDvra1bt069OnT5633klar1bCystL7IaLcJUQ/xMPzh9Fp1hqYWLz8fXFs3g1hx7YBAF7cuw5Neirs7LLfoyn+STjun9yNHt67oS5jrZvu1L4/bv2Zecb22e3L0KTl3D6vGdIS45CSkpLjZZ2FkSH08B94EPiX0TIUtB8A4Mae1bjnv/ONGVITYnPdh3tPk7D9whMcmdkCNuYq3fQhzSpi9YkHAIBL4TFISdfmmoGIiEongy/rmj59OgICArB//360adMGAHD69GlMnjwZM2bMwKpVq/K8LiEEJk2ahN27d8Pf3x/Ozs56893d3aFSqXDs2DHdOJfQ0FBERESgVatWhkbH/fv3ceLECezbt8/gtkSUu+TkZMQ9ugeL8pVxbGHmjSYUKhO8t2ATXEdMw7mfZ2P/9N6QK5QoW60u5HJ5tvYxEaEo41ANBz/LvNe8XKVGP5+jaDZmHgIWj8OOUe6QKZSwrdEwW/u8Zvjr8wFIiXuOpm5uUKlUhZ5Bk5aKkC3LUaZCFaNkKGg/AEBGagourZ8Py4pOuWbY/UlrJMdE57oPNx4nwLmcGTotyrxxiVolx/k5bbFoiAs+XBuMWp8fh0ohh1s1qxwzEBFR6WVwcbJz507s2LEDHTt21E3r1asXzMzMMHToUIOKEy8vL2zatAl79+6FpaWlbhyJtbU1zMzMYG1tjTFjxmD69OmwtbWFlZUVJk2ahFatWukNhg8LC0NCQgIiIyORnJyse85JvXr1YGJioltuw4YNqFixInr27GnobhPRG5iZmaGSWwe0nbwEChO1/jzrcug0aw2AzA/vp31m5Ni+aovu6PSVH5QmpvrzylZAD+9dAICMtBScWOiZ7wxZ2y9XLvvzPQojg8JEjaG+l7Jtv7gyFLQfAECpNoXH/ifZtv9qhqztlyunyr6MmRn6uFbAdi93mKoUevPsrdX4e2bmsTslXYMhK4NyzEBEVJp07NgRjRs3xvLly40dJd/mzZuHPXv2ZHvWYH4YXJwkJSXleElUhQoVDL6sK6uQebXQATIH3Wc9OXTZsmWQy+UYNGiQ3kMYXzV27FgEBAToXru5uQHIPFPi5OQEIHPAvZ+fHzw9PaFQ6P/BJCIiInoXlJt3sti29Wxee4OW9/T0xK+//gog88Hejo6O8PDwwOzZs6FUGvyR9J2xa9eubGeh3yQ8PBzOzs4IDg5G48aNiy6YkRj8P6FVq1aYO3cufvvtN5iaZn6zlpycjPnz5xt8qZUQ4q3LmJqaYuXKlVi5cmWuy/j7+791PXK5nIPaiYiIiIyoR48e8PX1RWpqKv766y94eXlBpVJh1qxZ2ZZNS0vTuwKmuAghoNFoCr1gym1/sh6hYQzp6ekGFUbFweCLfVesWIEzZ86gSpUq6NKlC7p06YKqVasiMDAQK1asKIqMRERERPQOUKvVcHBwQLVq1TB+/Hh07dpVNxbY09MT77//Pr799ltUqlQJderUAQA8fPgQQ4cOhY2NDWxtbdG/f3+Eh4frrXfDhg2oX78+1Go1KlasiIkTJwLIPMsgk8n0LjeKiYmBTCbTfbnt7+8PmUyGgwcPwt3dHWq1GqdPn0ZISAg6deoES0tLWFlZwd3dHZcuXdKtZ+fOnbptOjk5YcmSJXqZnJyc8M0338DDwwNWVlb45JNPcnxPOnbsiKlTp+q1++677zB69GhYWlrC0dERa9as0c3PGqPt5uYGmUymdwXSunXr4OLiAlNTU9StW1fvaqOs92Lr1q3o0KEDTE1NsWrVKpiZmeHgwYN6mXbv3g1LS0vdVVGff/45ateuDXNzc1SvXh1z5sxBenp6jvtTUAaXhA0aNMCdO3ewceNG3Lp1CwAwYsQIjBw5kreEJCIiIqI8MzMzw/Pnz3Wvjx07BisrKxw5cgRA5jf73bt3R6tWrXDq1CkolUosXLgQPXr0wJUrV2BiYoJVq1Zh+vTp+P7779GzZ0/ExsbizJkzBmf54osv8MMPP6B69eooW7Ys2rdvDzc3N6xatQoKhQKXL1/WnWUICgrC0KFDMW/ePAwbNgyBgYGYMGEC7OzsdEMTAOCHH37A119/jblz5xqUZcmSJfjmm28we/Zs7NixA+PHj0eHDh1Qp04dXLhwAc2bN8fRo0dRv3593dmYjRs34uuvv8ZPP/0ENzc3BAcH4+OPP4aFhYXeIzS++OILLFmyBG5ubjA1NcWpU6ewadMmvTHZGzduxPvvvw9zc3MAgKWlJfz8/FCpUiVcvXoVH3/8MSwtLfHZZ58Z/D6/Tb7OV5mbm+Pjjz8u7CxEREREVAoIIXDs2DEcPnwYkyZN0k23sLDAunXrdB+4//jjD2i1Wqxbtw4ymQxA5thkGxsb+Pv747333sPChQsxY8YMTJkyRbeeZs2aGZxpwYIF6Natm+51REQE/vOf/6Bu3boAgFq1aunmLV26FF26dMGcOXMAALVr18aNGzfw3//+V6846dy5M2bMyPkGJG/Sq1cvTJgwAUDmWYtly5bhxIkTqFOnDsqXLw8AsLOz03u0xty5c7FkyRIMHDgQQOYZlhs3buCXX37RK06mTp2qWwYARo4ciQ8//BBJSUkwNzdHXFwc/vzzT+zevVu3zFdffaX7t5OTE2bOnIktW7ZIpzi5c+cOTpw4gejoaGi1Wr15X3/9daEEIyIiIqJ3y4EDB1CmTBmkp6dDq9Xigw8+wLx583TzGzZsqDcuIyQkBGFhYbC01L/DYUpKCu7evYvo6Gg8fvwYXbp0KXC2pk2b6r2ePn06xo4di99//x1du3bFkCFDUKNGDQDAzZs30b9/f73l27Rpg+XLl0Oj0ehuvvT6OvOqUaNGun/LZDI4ODggOjo61+UTExNx9+5djBkzRu8EQkZGBqytrfWWfT1Tr169oFKpsG/fPgwfPhw7d+6ElZUVunbtqltm69at8PHxwd27d5GQkICMjIwiewagwcXJ2rVrMX78eJQrVw4ODg66KhbIfPNYnBARERFRTjp16oRVq1bBxMQElSpVyjbo3MLCQu91QkIC3N3dsXHjxmzrKl++/FuflZQ1/9WbMOU2VuL1bc+bNw8ffPAB/vzzTxw8eBBz587Fli1bMGDAgDdu803rzKvXB6nLZLJsJwRelZCQACDzc3qLFi305r1+l9rXM5mYmGDw4MHYtGkThg8fjk2bNmHYsGG6vjl79ixGjhyJ+fPno3v37rC2tsaWLVuyjbEpLAYXJwsXLsS3336Lzz//vCjyEBEREdE7ysLCAjVr1szz8k2aNMHWrVtRoUKFXL+pd3JywrFjx9CpU6ds87IugXry5InuUROGPIujdu3aqF27NqZNm4YRI0bA19cXAwYMgIuLS7ZxLWfOnEHt2rWL/JEVWWeWNBqNbpq9vT0qVaqEe/fuYeTIkQavc+TIkejWrRuuX7+O48ePY+HChbp5gYGBqFatGr788kvdtAcPHhRgD97M4Lt1/e9//8OQIUOKIgsRERERkc7IkSNRrlw59O/fH6dOncL9+/fh7++PyZMn499//wWQeYZjyZIl8PHxwZ07d/DPP//gxx9/BJA54L5ly5b4/vvvcfPmTQQEBOiNn8hNcnIyJk6cCH9/fzx48ABnzpzBxYsX4eLiAgCYMWMGjh07hm+++Qa3b9/Gr7/+ip9++gkzZ84sujfj/6tQoQLMzMxw6NAhREVFITY2FgAwf/58eHt7w8fHB7dv38bVq1fh6+uLpUuXvnWd7du3h4ODA0aOHAlnZ2e9sy+1atVCREQEtmzZgrt378LHx0dvPEphM7g4GTJkCP7++++iyEJEREREpGNubo6TJ0/C0dERAwcOhIuLC8aMGYOUlBTdmZSPPvoIy5cvx88//4z69eujT58+uHPnjm4dGzZsQEZGBtzd3TF16lS9swK5USgUeP78OTw8PFC7dm0MHToUPXv2xPz58wFkntHZtm0btmzZggYNGuDrr7/GggUL9AbDFxWlUgkfHx/88ssvqFSpkm7sy9ixY7Fu3Tr4+vqiYcOG6NChA/z8/HS3Hn4TmUyGESNGICQkJNuZl379+mHatGmYOHEiGjdujMDAQN2NAIpCni7r8vHx0f27Zs2amDNnDs6dO4eGDRtmuyZu8uTJhZuQiIiIiPLE0Ke2Fyc/P798zXdwcNA9WT43n376KT799NMc57m4uCAwMFBv2qtjUDp27JjtweAmJibYvHnzG7c5aNAgDBo0KNf5rz+LJTevP0w8p3avX4o2duxYjB07NttyH3zwAT744IMct+Pk5PTGB6AvWrQIixYtynHe4sWLsXjxYr1prz6bZd68eXo3NiiIPBUny5Yt03tdpkwZBAQEICAgQG+6TCZjcUJERERERPmSp+Lk/v37RZ2DiIiIiIhKOYPHnBARERERERUFg4uTQYMG5Xg92uLFi3kXLyIiIiIiyjeDi5OTJ0+iV69e2ab37NkTJ0+eLJRQRERERERU+hhcnCQkJOge/vIqlUqFuLi4QglFRERERG/2pjsvEUmJIf9XDS5OGjZsiK1bt2abvmXLFtSrV8/Q1RERERGRAbIe45CUlGTkJER5k/V/9fVHkOQkT3fretWcOXMwcOBA3L17F507dwYAHDt2DJs3b8b27dsNXR0RERERGUChUMDGxgbR0dEAMh9UKJPJjJyKKDshBJKSkhAdHQ0bGxsoFIq3tjG4OOnbty/27NmD7777Djt27ICZmRkaNWqEo0ePokOHDvkKTkRERER55+DgAAC6AoVIymxsbHT/Z9/G4OIEAHr37o3evXvnpykRERERFZBMJkPFihVRoUIFpKenGzsOUa5UKlWezphkyVdxAgBpaWmIjo6GVqvVm+7o6JjfVRIRERGRARQKhUEf/IikzuDi5M6dOxg9ejQCAwP1pgshIJPJoNFoCi0cERERERGVHgYXJ56enlAqlThw4AAqVqzIAVhERERERFQoDC5OLl++jKCgINStW7co8hARERERUSll8HNO6tWrh2fPnhVFFiIiIiIiKsUMLk4WLVqEzz77DP7+/nj+/Dni4uL0foiIiIiIiPLD4Mu6unbtCgDo0qWL3nQOiCciIiIiooIwuDg5ceJEUeQgIiIiIqJSzuDi5E1Pgb927VqBwhARERERUemV74cwZomPj8fmzZuxbt06BAUF8bIuolJMk5FWoPna9FRkvGV+QTK8bfuFkaGg74EUMhRGP6Smaws0n4iISqd8FycnT57E+vXrsXPnTlSqVAkDBw7EypUrCzMbEZUwZ3+eVaD2AYs+LfEZCrp9KWQojH74vzXBBV4HERGVPgYVJ5GRkfDz88P69esRFxeHoUOHIjU1FXv27EG9evWKKiMRlQBNKlsWqL1reVWJz1DQ7UshQ2H0A6o2L/g6iIioVJIJIUReFuzbty9OnjyJ3r17Y+TIkejRowcUCgVUKhVCQkLe+eIkLi4O1tbWiI2NhZWVlbHjEEmGEAKpqW+/zOd1arUaMpmswO3zm6Gg7V9dh7H2oTAzSGEfiOglfu6g0irPZ04OHjyIyZMnY/z48ahVq1ZRZiKiEkQmk8HU1NRo7aWQgftQeOsgIqLSLc8PYTx9+jTi4+Ph7u6OFi1a4KeffuKT4omIiIiIqNDkuThp2bIl1q5diydPnuDTTz/Fli1bUKlSJWi1Whw5cgTx8fFFmZOIiIiIiN5xeR5zkpPQ0FCsX78ev//+O2JiYtCtWzfs27evMPNJBq/9JCIiouLCzx1UWuX5zElO6tSpg8WLF+Pff//F5s2bCysTERERERGVQgU6c1Ka8BsMIiIiKi783EGlVYHOnBARERERERUWFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJgtLYAUqalJQUmJiY5Hl5tVoNmUwGIQRSU1MN3l5htQdg9Azvwj4URgYiIiIiyhmLEwN5eHhApVLlefnt27fD1NQUqampGDJkiMHbK6z2AIye4V3Yh8LIQEREREQ5Y3FioJAnCZAr8va2Nalsmb390/Q8b8u1fPYi6J9H8Xlun9P2pZChoNuXSgY8vJDndaBq87wvS0RERFRKsTjJh1YTvKFQ5n5plyYjDWd/npXr/A6f/wK5Sp3rfG16KgIWfVpk25dChoJuXyoZ/vjEDWpV7kO3UtO1+L81wW9cBxERERFlYnGSDwqlCRQmuX+ofRu5Sg2lSe6X92QU8falkKGg25dKBrVKDlOVIt8ZiIiIiOgl3q2LiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIEpTG3Li3tzd27dqFW7duwczMDK1bt8aiRYtQp04d3TIpKSmYMWMGtmzZgtTUVHTv3h0///wz7O3tdctMnjwZZ86cwbVr1+Di4oLLly9n25YQAkuWLMGaNWvw4MEDlCtXDhMmTMCXX35pUOb/hd/EX18MhFJtCrWVLZqNmgNLB0ekxD7H2dVfIiHqIeRKJVTmlgAs9dpqNBo8ux2M3Z+2gVJtBjOb8mg9aQmsKldHcsxTnFw8HvFP7kOuVEFlYQWUt8+2faHV4rTPDMQ/CYfCRJ1zhsgIpMQ9x3NT12ztC5pBo9Hgxb1r+X4PMvdBgxMLPRH7bxgUJqY5Zoh7fA/JMU9RpXHDHPdBChn+uR+Dhl8FwFytQAVLNVZ5NERNewtEx6XCY+1l3I1OhIlSDmszJeyyrYGIiIiIXmfUMycBAQHw8vLCuXPncOTIEaSnp+O9995DYmKibplp06Zh//792L59OwICAvD48WMMHDgw27pGjx6NYcOG5bqtKVOmYN26dfjhhx9w69Yt7Nu3D82bNzc4s7mtPXp670RP752o4t4JF9bNBQBc3roc5Wo2Qt+lf6L56Ln4X/hNaLXabO0tKlTB+6tPY8Dq03Bs1ROnl08GAFxaPx/lXZpisG8QWk9ZjhdhV3JsDwA1OgxA7x/255qh16LdsHGsg+DgYKSnpxd6BnO7igV6DwCgVo8PMWj9xVwzDFgTCNvqDXLdBylkcLQzw5Vv2iNkQQf0d7PHWN8QAMAX22+hZQ0b3FnUGb94NkRwRFyuGYiIiIjoJaMWJ4cOHYKnpyfq168PV1dX+Pn5ISIiAkFBQQCA2NhYrF+/HkuXLkXnzp3h7u4OX19fBAYG4ty5c7r1+Pj4wMvLC9WrV89xOzdv3sSqVauwd+9e9OvXD87OznB3d0e3bt0Mzqy2soVMJgMA2NV0ReLTxwCAh+cOo2aXoQAA2+r1oVCp8fz5c722CoUCZjblde0ruDRDQlQEAOD+yT2o23sUAKBc7cZQmGRvDwAyuRwVXdu+NYOJhRXUajVOnTpVqBkUCgVMre3y/R5k7oMCVZp2eWsGdRnrXPdBChnsrdS69i1rlEX4s2QAwLaLjzGuUzUAQFMnG6iV8hwzEBEREZE+SY05iY2NBQDY2toCAIKCgpCeno6uXbvqlqlbty4cHR1x9uzZPK93//79qF69Og4cOABnZ2c4OTlh7NixePHiRa5tUlNTERcXp/fzutuH/kBl905IjY+BVpMBM5tyunkKE1MkJye/Mdf1Pavh2KoXUuJeQKtJh7nty0uoFGqzt7Z/WwZzc3M8fPiwSDMU9D14W4a87IMUMqw4ch/93ezxPCEN6RoBB2vTl+1NFHnKQERERFTaSaY40Wq1mDp1Ktq0aYMGDRoAACIjI2FiYgIbGxu9Ze3t7REZGZnndd+7dw8PHjzA9u3b8dtvv8HPzw9BQUEYPHhwrm28vb1hbW2t+6latare/Ot71yI+KgKuw6bkfSdfEbJ5CeIe30fTUV/nq70UMhR0++9Khu8O3EFYdCK8B7vkOwMRERERSag48fLywrVr17Bly5ZCX7dWq0Vqaip+++03tGvXDh07dsT69etx4sQJhIaG5thm1qxZiI2N1f28+s35rYO/49+LR9Hxs1VQqs2gtrSBTKFEcswz3TKatBSYmZnluO7ru1Yh/MwBvLdwO5Sm5jC1soVcrkTSi6iX7VOTc20PADf/9HtrhqSkpGxFVWFlKOh7AABXt//41gxv2gcpZFj29z3sCorEwektYK5WwK6MCZRyGSJjU162T9O8MQMRERERZZJEcTJx4kQcOHAAJ06cQJUqVXTTHRwckJaWhpiYGL3lo6Ki4ODgkOf1V6xYEUqlErVr19ZNc3HJ/JY7IiIixzZqtRpWVlZ6PwCQ+PQRHp4/jE6z1sDEwkq3vGPzbgg7tg0A8OLedWjSU2Fnl/0eTfFPwnH/5G708N4NdRlr3XSn9v1x609fAMCz25ehScu5PQCEHv4DDwL/emOGtMQ4pKSkoF27doWeISH6YYHeAwC4sWc17vnvfGOG1ITYXPdBChnuPU3C9gtPcGRmC9iYq3TThzSriNUnHgAALoXHICVdm2sGIiIiInrJqLcSFkJg0qRJ2L17N/z9/eHs7Kw3393dHSqVCseOHcOgQYMAAKGhoYiIiECrVq3yvJ02bdogIyMDd+/eRY0aNQAAt2/fBgBUq1bNoMzxT8JhUb4yji0cAwBQqEzw3oJNcB0xDed+no3903tDrlCibLW6kMv1a7/k5GTERISijEM1HPysLwBArlKjn89RNBszDwGLx2HHKHfIFErY1miYrT0AaNJSEbJlOcpUqJJrhr8+H4CUuOdo6uYGlUpVqBmSk5MR9+hevt8DAMhITcGl9fNhWdEp1wy7P2mN5JjoXPdBChluPE6AczkzdFqUeXMGtUqO83PaYtEQF3y4Nhi1Pj8OlUIOt2pWOWYgIiIiIn1GLU68vLywadMm7N27F5aWlrpxJNbW1jAzM4O1tTXGjBmD6dOnw9bWFlZWVpg0aRJatWqFli1b6tYTFhaGhIQEREZGIjk5Wfeck3r16sHExARdu3ZFkyZNMHr0aCxfvhxarRZeXl7o1q2b3tmUvHBo1Abtp62AwkStN93Muhw6zVoDILOAOO0zI1tbMzMzVG3RHZ2+8oPSxFR/XtkK6OG9CwCQkZaCEws9c9y+wkSNob6Xsm3/1QxZ2y9XLvvzPQqawczMDJXcOqDt5CX5eg8AQKk2hcf+J9m2/2qGrO2XK6fKvoxEMvRxrYDtXu4wVSn05tlbq/H3zMz/nynpGgxZGZRjBiIiIiLSZ9TiZNWqVQCAjh076k339fWFp6cnAGDZsmWQy+UYNGiQ3kMYXzV27FgEBAToXru5uQEA7t+/DycnJ8jlcuzfvx+TJk1C+/btYWFhgZ49e2LJkiVFt3NERERERGQQo1/W9TampqZYuXIlVq5cmesy/v7+b11PpUqVsHPnTkPiERERERFRMeKF8EREREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSQojR2gJNJkpBVovjY9FRlvmV+U25dChoJuXyoZUtO1BZpPRERERC+xOMmHsz/PKlD7gEWfGnX7UshQ0O1LJcP/rQku8DqIiIiIKBOLEwO5ViwDlUqV//bl898WAJpUtixQeylkKOj2pZIBVZsXfB1EREREpCMTQghjhygJ4uLiYG1tjaioKFhZWeW5nVqthkwmgxACqalvv0yoqNoDMHqGd2EfCiMDERHR22R97oiNjTXocwdRScczJwYyNTWFqampwe1kMlm+2hVWeylkeBf2obDWQURERETZ8W5dREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksC7deVR1h2X4+LijJyEiIiI3nVZnzf4xAcqbVic5FF8fDwAoGrVqkZOQkRERKVFfHw8rK2tjR2DqNjwIYx5pNVq8fjxY1haWhr8IL24uDhUrVoVDx8+5IOUSgj2WcnDPit52GclD/us+AghEB8fj0qVKkEu51X4VHrwzEkeyeVyVKlSpUDrsLKy4sG8hGGflTzss5KHfVbysM+KB8+YUGnEUpyIiIiIiCSBxQkREREREUkCi5NioFarMXfuXKjVamNHoTxin5U87LOSh31W8rDPiKiocUA8ERERERFJAs+cEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgSlsQOUZHFxcUhOToa9vT20Wi3kctZ6UhcZGQkfHx+UK1cOtWrVQt++fSGEgEwmM3Y0ysXTp09x4cIFVKlSBfXr14dSycOW1D179gy3b9+Gg4MDqlevbuw4lEeRkZE4fPgwqlevDldXV1hZWfH4SETFjp+m82nhwoWoWbMmfvrpJwBgYVICeHt7o1atWggJCcHu3bvRv39/HD9+HDKZDHzcjzR98cUXqF27Nr799ls0b94c8+bNw9OnT40di95g1qxZcHFxwdSpU9GgQQMsW7YMz58/N3Yseovvv/8eTk5OWLNmDXr06IEPPvgAISEhPD4SUbHjJ2oDJSQkYMKECdizZw+cnJxw6dIlnDlzBgB4AJewCxcuYNu2bfjjjz/w559/YteuXejduzc2bNgAAPxmUGLu3buHzp074/jx49i7dy8OHjyIhQsXYuvWrYiKijJ2PMrB48ePMWTIEBw9ehQ7duzAjh07MHPmTKxbtw6BgYHGjkdv8ODBA2zcuBHr16/HmTNnsH37dshkMgwdOhSpqak8PhJRsWJxkgevFh1qtRqOjo6YOXMmfvzxRzx79gy7d+9GcnIyv2GSsEOHDiEmJgb9+/cHAJQvXx4qlQoffPCBbhn2nXG9+v7/73//Q48ePbBp0ya0b98e1tbW+L//+z8oFArY2NgYLyTpebXPbt68CZlMBh8fH3To0AGOjo5YsGABEhMTdQUlf8ek6e+//0ZUVBSGDBkCAOjVqxeWL1+OuLg4zJ4928jpiKi0YXHyFsnJyXqXJCgUCkyYMAHDhw9HixYt0LNnT5w5cwaHDh0CwG/gpSDrA5BGo9FNa9SoER48eIBNmzYhNDQUI0aMwF9//YXvvvsOvXr1wt27d9l3RpSWloa0tDTd6/r168PT0xM1a9YEAMTGxmLs2LGwsrLCsmXLcP78eWNFpf8vLS1N73esYcOGmDhxIlq1agUA0Gq1EEKgcuXK0Gq1AHh8lIJXj49Z/65SpQo0Go3ukkmtVosaNWrg22+/xcqVK/HgwQOj5SWi0ofFyRssWLAALVq0QP/+/TFy5EhERERALpejTJkyuoP6xIkToVarsXfvXjx+/BgAvx00piVLlmDs2LEAMgvJrL7o2rUrpk+fjh07dqBZs2aIjIzEkSNHMH36dMTHx+PDDz9EXFycMaOXWvPmzUPbtm3Rv39/rFmzBi9evICpqSkqVKgAALh9+zbKli2LpKQkeHh4ICgoCF5eXlixYoWRk5deCxcuRI8ePdC/f3/8+OOPeP78OSpUqID27dsDgO4GIdHR0bh27RoaNmxo5MQEZD8+ZjE3N0ft2rWxbds2AC/HUA4dOhQ1atTAkiVLAEBXZBIRFSlB2Zw+fVo0btxY1K9fX2zfvl0sWrRItGzZUowYMUJvOY1GI4QQYu3ataJJkyZi1apVunlarbZYM5d2169fF3379hUWFhbC3t5ebN++XQghRHp6ut5yZ86cEW3bthUPHjzQTXvw4IGQyWTiypUrxZq5tEtPTxcffvihqFmzpvj111/FiBEjRP369UXv3r2zLXv+/Hnd71RycrL46KOPxMCBA0VycnJxxy7VgoKCRNOmTUX9+vXF+vXrxbBhw4Sbm5uYNm1ajsvv379f1KpVS6SkpBRzUnpVbsfHtLQ0IUTm7+LgwYNF3759xbVr14QQL/+GzZ49W3Tp0kUkJSUZJzwRlTo8c5KDI0eOoGXLljh37hwGDx6Mzz77DI0aNUKZMmV0y4hXbq84duxYVKtWDYcPH0ZwcDB27tyJr7/+2ljxS6XAwEDIZDJs2LAB3bt3x4oVK5CWlgalUql3JuvWrVtITEyEo6OjbtrVq1dRuXJlvcuKqOg9fPgQFy9exNKlS+Hh4YFNmzZh2bJlOH78OJYtW6a3bPPmzXVjukxNTREREQGNRgMTExMjpS99EhISsHnzZtStWxdnzpzB6NGjsWXLFvTu3RthYWGIiYnJ1uaff/5Bs2bNoFarAQBnzpzBrl27ijk55XZ8VKlUSE9Ph1KphKenJyIjI+Hn5wfg5SV4YWFhMDMzg5mZGa8KIKJiweIkB+PGjcN//vMfXTGSmpqKsLAwVK9eHaGhoQAyD9wymUx3zfWECRNw7do1dOvWDSNGjOCHpmKS9cdy2LBhmDlzJoYOHYoBAwYgPj4eS5cu1Vsm698ajQa//PIL4uPjcffuXfz4449o2bIl6tevb5R9KK3S09MRGhoKV1dX3bRu3bphzpw5WLBgASIiIrK1kclkOHv2LDQaDTw9PXkL72IkhICzszPGjx8Pa2trZGRkAACsra0RGhoKKyurbG0OHz6MLl264NGjR+jVqxc6dOiA+Pj44o5eauXl+Jj1O9S7d2/069cPe/fuxVdffYWIiAjcvHkTDx48QJcuXQBwzBARFROjnbMpITZu3CisrKxEvXr1hLu7u3B2dhYzZ87UWyY8PFx88sknQiaTiVGjRonnz58bKS0JIcSzZ8/E9OnTRYMGDUR4eLgQ4uXlCw8ePBDTpk0TMplMtG3bVtjY2Ijhw4eL2NhYY0YulW7cuCEaN24sFi9erDc9NjZWVK9eXUyfPl0IkXl5ybVr18SFCxfEtGnThI2NjZg4cSIvFTKCjIwM3b+zLmv96quvxNChQ7MtGxoaKsqWLSt69uwpTExMRP/+/cWzZ8+KLSvlLKfjY2pqqhBCiBcvXogNGzYIS0tL0bBhQ1GmTBkxbNgwkZiYaMzIRFTK8FHLbxEXF4cNGzagb9++SExMxMmTJzFgwACMHTsWderUAQD8/vvv2L17N86fP49mzZoZOfG76+HDh6hUqZLeQM7XCSFgZ2eHfv364cKFC/D29sbq1auhUqkAAI6OjvD29kb//v3x6NEjNGjQAI0aNSquXShVxFueLO3o6Ig6derg/PnzCA8Ph5OTE7RaLaysrDB+/Hj8+OOPWLhwIczMzHDhwgX4+flBCIFDhw6hRYsWxbgnBGT256u/e1l9+88//+gGwr/a5/fu3UNMTAzi4uIQEBCAli1bFn9o0pPb8THrTH/ZsmUxatQodOnSBQ8fPoSNjQ3PKBNR8TNmZWQMz58/F1FRUbpvil79JvD1wdNCZB/Yfvv2bWFjYyN+++23og1KOvfu3RN9+vQRbdq0Ec+fP9frk9f7LOt1Wlqa+P7770WdOnXEqVOnhBBCBAYG8kYFxSQmJkbExcXp3u+sb9mF0O+zzZs3i0aNGolFixbptV+zZo1o0KCBuH//vhBCiKSkJHH9+vWiD16KPXr0SBw7dkyEhoZmm/f671lWf8bExAg7OzsREBCgm5f1bXx0dLT4+++/izAxCSFEZGSkuHr1qoiKiso2z5Dj49mzZ3l8JCJJKDUXbAshMGXKFLRu3Rq9evXSfTOkUCh0t0fMGjz96mDc17/5PXnyJOrWrYuePXsWa/7SSAiBcePGoVatWggLC8OlS5cAQG+sz+t9lvVapVKhd+/eqF+/PmbNmoVevXqhTZs2uHXrltH2pzQQQmDq1Kno0KEDevToAQ8PD8THx0MulyM9PR1AZh9pNBps3LgRw4cPR+vWrbF7924cOHBAt55nz57BxsYGVatWBQCYmZmhXr16Rtmn0mDKlCmoV68ePv/8czRq1Ajr169HSkqKbv7rv2dZ4xSOHTsGGxsbtG/fHo8ePcLQoUPRrFkzREVFoXz58ujWrZtR9qc0EEJg8uTJcHNzg4eHBxo0aIATJ07oLWPI8bF169Y8PhKRJJSK4iQoKAgtWrTAhQsXsHLlSowfPx6pqan46KOPALz8Q7tu3TpUrFgR27Zt0z2zBMj8oPT48WPMmzcPX3/9NQYPHgxbW1veuaQI/fe//4WNjQ0uX76MCxcuYOvWrXBycsKZM2cAvLxHf059llVQli9fHlFRUThz5gzMzMwQHh4OFxcX4+xQKXDu3Dm4ubnh/Pnz+O6779C9e3dcunQJH3/8MQDoLq1bu3YtKlWqhN9++w3p6em6D8YDBgzAhAkTMGnSJCxatAjDhg3Te1YNFb6MjAx88sknuHjxIo4cOYKDBw9i1KhRWLJkid4XM7kdG2/dugU3Nzd89913qFWrFmJiYhAUFAR7e3tj7E6pcfbsWbi5ueHSpUvYvn07/Pz80KZNG0yfPl1vOR4fiahEMs4Jm+I1b9480bdvX73BmOfPnxcWFhbi7t27Qggh9u3bJ9zc3MS6dev0LvW6efOmWLBggahZs6Zo0KCBOH78eLHnL4369+8v1q9fr3t99+5dYWlpKfbs2aObtn///hz7TAghQkJCRK1atUTNmjXF6dOniy13aZWRkSE+++wzMWLECBEfH6+bvnXrVuHs7CwiIyOFEEL89ttvomrVqmL9+vXZLjn54YcfxCeffCK6d+8ujh07Vqz5S6uIiAjh6uoq1q5dq5sWGBgo3N3ddYOg9+3bJ1xdXXP8PWvevLmQyWTCxcVFHD58uFizl2a+vr5i7ty5ejdf2bZtm2jTpo3uRhF79+4VjRs35vGRiEocmRDv7teSWU8p/ueff/Ds2TO89957unlHjhzB+PHjERAQgMqVKwMAEhMTYWFhobeO5ORkBAYGIjk5GX369CnW/KVJRkYGlMqX92cQrwys1Wg0UCgUcHd3R7t27bB8+XLdcjn1GZDZb0eOHEG/fv2KPHtplfX7BWT20ZEjR2Bubq4bHA0Av/76KxYvXoxz587B0tISABAfH6/7N/D2gfNUeF7tMwC4c+cOmjRpgmXLlmHs2LGIi4tDz549YWdnh2bNmmH06NGoXLkyUlJSYGpqqreuxMREfPfdd6hXrx5GjhxZ3LtSqrx+fIyJiUFiYqLub9ezZ8/Qt29f1K5dG23btsWoUaOgVCqRnJwMMzOzbOvj8ZGIpOydK042b94MV1fXXK9PzzrIb9y4Ed988w0uX76c7Y8uFa+vv/4a165dQ+XKlTFhwgTUrl0bCoVCV5QAQFJSEj744ANYW1tjzZo1uoe65YQfdoveggULcP/+fVSvXh0TJkyAnZ2d3vysvlu6dCl27dqFU6dOAeBzEozp9T4rW7Ys5HI5xo4di5MnT8LZ2RlHjx5F165d0alTJ2zYsAGVK1fGzJkz0bt3b/5eGcnrx8datWrpFSoHDx5E79690b59e7i4uGDfvn1o0qQJ5syZg+bNm2frN/YjEUndOzPm5OTJk2jYsCFGjhyJjRs3Ijk5Ocflsr41PH78ONq0aQNTU1PdgHgqXk+fPkXbtm2xZ88euLq64u+//8aIESPg4+MD4GVfCSFgbm4Oe3t73L59G2q1+o3jEPiHt+g8fPgQ7u7u2LFjBywsLPDzzz+jR48e2LFjBwDofpey+uDkyZNo27Yt+8SIcuuzbdu2AQB++uknnD59Gubm5pg+fToOHz6ML774Av7+/gAyx+xptVr2YTHL7fj4448/Anj5gEVHR0ecOnUK/v7+WLVqFU6ePIkrV67g+vXrALIfD9mPRCR170Rx8u+//+LXX39F165dMWvWLKxatQohISE5LiuXyyGEwMWLF9G9e3fdtJCQEMTExBRjajp37hxevHiBP//8E3PnzsWVK1fQqVMn/PjjjwgMDNS7KxcAtG/fHuHh4Xj06BH/wBrJ8ePHodVqcerUKfz0008ICwtDpUqVsGLFCoSEhEAul+suHUpOTkZwcLDujk0ymQw3b9408h6UPrn12cqVKxESEgJTU1OkpKQgIiICAwYMAJD5wbdSpUqIjo7GkydP9C4Fo+KRl+OjVqtF/fr10aZNG107Z2dnxMfHIzIy0ojpiYjy7534i2NlZYVevXphzJgx+Pbbb1G+fHmsWLEi12IjODgYMTExaN++PW7evInOnTujVatWPJgXs+joaCQkJOju7KNWqzFu3Dg0aNAAM2fOBAC9h74plUqYm5sjOjraKHkJCA8Ph0ql0o3zsbCwwIwZM6BWq7Fo0SIAL894nTp1CnK5HK1bt8aNGzfQqVMnuLu78/esmL2pz77//nsAgJ2dHW7duoW7d+8CyCwks86m9OrVy2jZS7O8HB9zKhp37NiBunXrYtCgQcWal4iosLwzxcmgQYPQoEEDAMDKlSuxdetWBAQE6F3+k/XvK1euwNzcHN7e3mjYsCEqVqyIqKgo1K1b1yj5S6u0tDTY29vrneWqU6cORo0ahUePHukuO8k6e9K1a1fcv3+fZ7iMKCUlBUqlUq9AbN++PXr27ImbN2/i6NGjuulXr16Fg4MDvv76azRq1AiVKlVCVFQUHBwcjBG91HpTn926dQtHjhzRFSyjR49G//794enpiZ49e6J169Z8ppOR5PX4CGT+Tbt16xYmTpwILy8v9OnTBzVr1jRGbCKiAnsnipNXabVadO3aFT169IC3tzcePXqkm5d1KdDhw4dx+/ZtXLlyBRcuXMDGjRv17h5ERSurSOzduzfu3buHwMBA3QP6AMDd3R2NGzfGsWPHIITQDf5MSEjA5MmTUbNmTT77ophljSX56KOPcO7cOVy4cEFvfteuXaFWqxEUFKSb9tdff+H8+fM4f/48f8+MIK999s8//wDIHDC/ePFiVK9eHUqlEoGBgVixYoXe4GsqeoYeH4HMsyV9+vTB1atXcfToUcyePZuX4hFRyVWc9y3Or6tXr4odO3Zku1e7ECLbsxKyXj948EDI5XLh4+MjNBqNECLznv5CCHHixAmxe/fuog1dyt2+fVv897//Fbdu3co279U+8/LyEtWqVRPBwcF6ywwcOFAMHz5cCCF0/UdF686dO6Jdu3bit99+E0IIodVqdfNe7bMhQ4YINzc38fTpU732LVq0EJMmTRJCZPbZ5s2bxd69e4sheelVGH02ceLE4glLOk+ePBGPHj0SSUlJQgih97fN0OOjEEI8evRInD9/vmhDExEVE0l/tZKWloYxY8agUaNGCA4O1vsmKOtSH6VSiYyMDN1AW6VSCY1GA0dHR0ydOhXLli3D1q1b8d5772H27NlITk5Gx44d8f777xtjl955Go0GXl5eaNiwIW7evImnT5/q5mV9k6tUKpGSkoLg4GCsWLECGo0GP/30Ex48eKC3LhsbGwA5X1dNhSctLQ0eHh6oW7cuTp8+rXeXn1d/z9LS0hAWFoYffvgBt27dwrJlyxAbGwsg8xbdarUaZcuWBZDZZ8OHD+dzFIpIYfaZra2t0fajtElPT8enn36KVq1aoW/fvujZsydSU1OhUCh0Z0cMPT4CQKVKldC8efPi3BUioiIj2U99P/74o26QZnBwMBYuXKh3h6asgdI+Pj6wtrbGX3/9pTu4Z32YnTp1KsLDwzFy5EiYmJhgxYoVOT6QigrP0qVLERISgoCAAKxfvx5t27YFkHmpQla/+Pj4oEKFCti0aRMUCgWWL1+Oq1evok+fPli/fj2mTp2KkydPYvDgwcbclVLh+++/R9myZfHgwQOEhYWhb9++ugHrrz5nxsfHB2XLlsWuXbvg6OiIFStWYNu2bRg2bBj27duHzz77DHfu3OGDSosB+6xkevToEdq3b487d+5g06ZNmDJlCh4+fIj//Oc/AACVSgWAx0ciIkle1hUbGyvKli0rOnfurJt28+ZNERYWJuLi4oQQmZcvfPzxx6JChQri999/17ucQQghNm7cKJRKpWjWrFm2U+JU+LRarUhISBCtWrUSa9euFUIIERgYKH755Rdx6tQpER8fL4QQ4j//+Y8oW7as+OOPP/Qu1woJCREjR44U3bt3F61atRJnz541yn6UJuvWrRONGjUS27Zt002bP3++qFGjhu51SkqKGDdunO737NU+279/v+jVq5do1aqVaNq0qTh37lyx5i+N2Gcl1+bNm4Wrq6t48uSJbpqHh4f46quvdK9nzJghbG1teXwkolJNUk+IF688udbX1xczZ87Eli1bsHbtWvzzzz+QyWSwtbXF+PHj4enpidDQUFSsWBFWVlZ669FqtdizZw+ePXuGTz75xBi7UirduXMH7dq1w6VLl7Bs2TJs3rwZzs7OCAsLQ4MGDbB//34kJSVBrVbrBkaL155WHBcXl60/qXBlPYfkxYsXKFu2rN77v2TJEvj5+WHPnj2oUaMGhBAICwuDvb29rl+y2meJiorS3e6Uigb7rORbvXo1ZsyYgcTERADAkydP0KtXL3h4eKBp06Zo164dnj59ClNTUx4fiahUk0RxcuHCBTRv3lzvD6gQAi1btsTFixcxevRoeHh4ICEhAbt27cJff/2FP/74A507d9a7jIGKT059lpycjGbNmqFp06ZISEjAN998A3t7ezx+/Bjt2rXDmDFj8N///pcPUDSSrD7L6Xcm60PQ6dOn0aFDB0RERKBy5cpGSkpZ2GclU07Hx5CQEPTq1QtVqlRB1apVsXfvXrRt2xYKhQIXLlzAjBkzMHv2bN3lXUREpZZxTthk2r17t6hUqZKwtbUV9+/fF0Lo37Xk0qVL4osvvhDPnj3TTbt//74YMGCA6NWrV3HHJfHmPnvx4oUYO3assLS0FAMHDhQajUZ3acKGDRuEtbW17u40VHxy6rPc7oAWFhYmqlWrJnx9fYsvIGXDPiuZcuq3V+++df/+fXHo0CFRr1493R3WhBBi06ZNwtzcXDx8+LC4IxMRSY7RBsRv3LgR3333Hdq3b4969erpnlT86reDTZo0wZdffgk7OzvdNCcnJ1hYWEAIoTs9TsXjbX1WtmxZdO7cGSYmJtBoNJDL5br78NerVw8mJia6u6pR8citz3K7A5qpqSlMTEyQnJxcnDHpFeyzkim3fnv1OTFOTk548eIFFAoFPvzwQ90dDFu1aoX09HRcuXLFKNmJiKSk2IuTrNtc1qxZE126dMGiRYvQr18/+Pv7w9/fX28ZmUyGMmXK6LVPTk7GkydPUL9+fVhYWBRr9tIqL32WlpYGAOjXrx8+/PBD7Nu3D0ePHtUVLqdPn0bjxo3RuHFjY+xCqWPI71kWIQQqV64Me3t7nDt3DsDL2z9T0WOflUyG9pv4/3cujIqK0hWcf/31F5o0acLbARMRAcV3Wdft27ez3VEr63T3tWvXRL9+/fQu1Xp92ZiYGBERESFGjx4tXFxcRFBQUNGHLuUM7bOsy7vu3bsnPDw8hIWFhRg4cKAYMWKEsLW1Fb/88osQInvfUuEp6O+ZVqsVU6ZMEa1btxYJCQlFH5jYZyWUof2WdVnekSNHRIcOHUSDBg3E6tWrxahRo4Stra1YtmxZsWUnIpKyIj9zsm3bNjg7O6Nv375o2bIlNmzYoJuX9a16/fr18f777yM8PBy+vr5ZRZNuuUOHDmHWrFlwc3PDvXv3sG/fPjRp0qSoo5daBe0zZ2dn/Prrr1iyZAlq1KgBU1NTBAYG6u6cxgHxha8wfs+AzL5JTU2Fq6srB+YWMfZZyZTffss6o9W1a1d89913cHZ2xu7du/HixQsEBgZi6tSpxb4vRESSVJSVz99//y2cnJzEypUrxaFDh8T06dOFSqUSa9as0Q2Mzvqm6d9//xVjxowRzZo10z0TIzU1VQghRHh4uFi5cqU4evRoUcYlUfA+S0tLM1r20qqw+izrzBf7sOixz0qmgvZbSkqKbl0ajUbExMQU/04QEUlckRQnWae658+fL9zd3fX+cE6YMEE0bdpU7Nq1K1u7AwcOiKZNm4q5c+eKkJAQ0bt3bxEREVEUEek1hdVnffr0YZ8VE/ZZycM+K5nYb0RExadILuvKumznxo0bqFGjBlQqFdLT0wEACxcuhKmpKfbu3YvIyEgALwcLdurUCc2bN8eCBQvg7u6OjIwMVKhQoSgi0msKq8/S09PZZ8WEfVbysM9KJvYbEVExKowK5++//xaTJk0Sy5YtE+fPn9dNX7NmjbC0tMx26cGaNWtE7dq1hb+/v27ZhIQEsWzZMqFQKETHjh3FlStXCiMa5YJ9VvKwz0oe9lnJxH4jIjKeAhUnjx8/Fn369BEVKlQQI0eOFA0bNhTW1ta6g3loaKioXLmymDNnjhDi5RgSIYRwcHDQuzvJ9evXRYsWLfQeTEWFj31W8rDPSh72WcnEfiMiMr58FyeJiYnio48+EsOGDRP37t3TTW/evLnw9PQUQggRFxcnFi5cKMzMzHTX2WZdu9uhQwcxduzYgmQnA7HPSh72WcnDPiuZ2G9ERNKQ7zEn5ubmUKvV8PT0hLOzMzIyMgAAvXr1ws2bNyGEgKWlJT744AM0adIEQ4cOxYMHDyCTyRAREYHo6Gi8//77hXV1GuUB+6zkYZ+VPOyzkon9RkQkDTIhXrtpvgHS09N199XXarWQy+UYOXIkLCwssGbNGt1yjx49QseOHZGRkYGmTZsiMDAQdevWxaZNm2Bvb1/wvaA8Y5+VPOyzkod9VjKx34iIjK9AxUlO2rZti48//hgfffSR7qFTcrkcYWFhCAoKwvnz5+Hq6oqPPvqoMDdLBcA+K3nYZyUP+6xkYr8RERWvQi1O7t27h9atW+PPP/+Eu7s7ACAtLQ0mJiaFtQkqZOyzkod9VvKwz0om9hsRUfErlOecZNU3p0+fRpkyZXQH8fnz52PKlCmIjo4ujM1QIWKflTzss5KHfVYysd+IiIxHWRgryXpA1YULFzBo0CAcOXIEn3zyCZKSkvD777/zoVMSxD4redhnJQ/7rGRivxERGU+hXdaVkpKChg0b4u7duzAxMcH8+fPx+eefF8aqqYiwz0oe9lnJwz4rmdhvRETGUahjTrp164ZatWph6dKlMDU1LazVUhFin5U87LOSh31WMrHfiIiKX6EWJxqNBgqForBWR8WAfVbysM9KHvZZycR+IyIqfoV+K2EiIiIiIqL8KJS7dRERERERERUUixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJEdFbeHp6QiaTQSaTQaVSwd7eHt26dcOGDRug1WrzvB4/Pz/Y2NgUXVAiIqISjsUJEVEe9OjRA0+ePEF4eDgOHjyITp06YcqUKejTpw8yMjKMHY+IiOidwOKEiCgP1Go1HBwcULlyZTRp0gSzZ8/G3r17cfDgQfj5+QEAli5dioYNG8LCwgJVq1bFhAkTkJCQAADw9/fHqFGjEBsbqzsLM2/ePABAamoqZs6cicqVK8PCwgItWrSAv7+/cXaUiIjIiFicEBHlU+fOneHq6opdu3YBAORyOXx8fHD9+nX8+uuvOH78OD777DMAQOvWrbF8+XJYWVnhyZMnePLkCWbOnAkAmDhxIs6ePYstW7bgypUrGDJkCHr06IE7d+4Ybd+IiIiMQSaEEMYOQUQkZZ6enoiJicGePXuyzRs+fDiuXLmCGzduZJu3Y8cOjBs3Ds+ePQOQOeZk6tSpiImJ0S0TERGB6tWrIyIiApUqVdJN79q1K5o3b47vvvuu0PeHiIhIqpTGDkBEVJIJISCTyQAAR48ehbe3N27duoW4uDhkZGQgJSUFSUlJMDc3z7H91atXodFoULt2bb3pqampsLOzK/L8REREUsLihIioAG7evAlnZ2eEh4ejT58+GD9+PL799lvY2tri9OnTGDNmDNLS0nItThISEqBQKBAUFASFQqE3r0yZMsWxC0RERJLB4oSIKJ+OHz+Oq1evYtq0aQgKCoJWq8WSJUsgl2cO59u2bZve8iYmJtBoNHrT3NzcoNFoEB0djXbt2hVbdiIiIilicUJElAepqamIjIyERqNBVFQUDh06BG9vb/Tp0wceHh64du0a0tPT8eOPP6Jv3744c+YMVq9erbcOJycnJCQk4NixY3B1dYW5uTlq166NkSNHwsPDA0uWLIGbmxuePn2KY8eOoVGjRujdu7eR9piIiKj48W5dRER5cOjQIVSsWBFOTk7o0aMHTpw4AR8fH+zduxcKhQKurq5YunQpFi1ahAYNGmDjxo3w9vbWW0fr1q0xbtw4DBs2DOXLl8fixYsBAL6+vvDw8MCMGTNQp04dvP/++7h48SIcHR2NsatERERGw7t1ERERERGRJPDMCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJ/w/U8zLdU72hUwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# map calendar to data\n", + "calendar.map_to_data(precursor_field)\n", + "calendar.visualize(show_length=True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Also, we can get a list of all intervals by running the following line. There, you will find the intervals `-1` and `1`, which corresponds to the creation of a precursor interval (negative integer(s)) and a target interval (positive integer(s)), respectively.
\n", + "\n", + "For more information about the definition of intervals, and how `lilio` works, please check the [README](https://github.com/AI4S2S/lilio) of `lilio`." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
i_interval-8-7-6-5-4-3-2-11
anchor_year
2018[2017-12-04, 2017-12-24)[2018-01-03, 2018-01-23)[2018-02-02, 2018-02-22)[2018-03-04, 2018-03-24)[2018-04-03, 2018-04-23)[2018-05-03, 2018-05-23)[2018-06-02, 2018-06-22)[2018-07-02, 2018-07-22)[2018-08-01, 2018-08-21)
2017[2016-12-04, 2016-12-24)[2017-01-03, 2017-01-23)[2017-02-02, 2017-02-22)[2017-03-04, 2017-03-24)[2017-04-03, 2017-04-23)[2017-05-03, 2017-05-23)[2017-06-02, 2017-06-22)[2017-07-02, 2017-07-22)[2017-08-01, 2017-08-21)
2016[2015-12-05, 2015-12-25)[2016-01-04, 2016-01-24)[2016-02-03, 2016-02-23)[2016-03-04, 2016-03-24)[2016-04-03, 2016-04-23)[2016-05-03, 2016-05-23)[2016-06-02, 2016-06-22)[2016-07-02, 2016-07-22)[2016-08-01, 2016-08-21)
\n", + "
" + ], + "text/plain": [ + "i_interval -8 -7 \\\n", + "anchor_year \n", + "2018 [2017-12-04, 2017-12-24) [2018-01-03, 2018-01-23) \n", + "2017 [2016-12-04, 2016-12-24) [2017-01-03, 2017-01-23) \n", + "2016 [2015-12-05, 2015-12-25) [2016-01-04, 2016-01-24) \n", + "\n", + "i_interval -6 -5 \\\n", + "anchor_year \n", + "2018 [2018-02-02, 2018-02-22) [2018-03-04, 2018-03-24) \n", + "2017 [2017-02-02, 2017-02-22) [2017-03-04, 2017-03-24) \n", + "2016 [2016-02-03, 2016-02-23) [2016-03-04, 2016-03-24) \n", + "\n", + "i_interval -4 -3 \\\n", + "anchor_year \n", + "2018 [2018-04-03, 2018-04-23) [2018-05-03, 2018-05-23) \n", + "2017 [2017-04-03, 2017-04-23) [2017-05-03, 2017-05-23) \n", + "2016 [2016-04-03, 2016-04-23) [2016-05-03, 2016-05-23) \n", + "\n", + "i_interval -2 -1 \\\n", + "anchor_year \n", + "2018 [2018-06-02, 2018-06-22) [2018-07-02, 2018-07-22) \n", + "2017 [2017-06-02, 2017-06-22) [2017-07-02, 2017-07-22) \n", + "2016 [2016-06-02, 2016-06-22) [2016-07-02, 2016-07-22) \n", + "\n", + "i_interval 1 \n", + "anchor_year \n", + "2018 [2018-08-01, 2018-08-21) \n", + "2017 [2017-08-01, 2017-08-21) \n", + "2016 [2016-08-01, 2016-08-21) " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "calendar.show()[:3]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Train-validate-test split based on the anchor years (70%/15%/15% split)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# get 70% of instance as training\n", + "years = sorted(calendar.get_intervals().index)\n", + "train_samples = round(len(years) * 0.7)\n", + "test_samples = round(len(years) * 0.15)\n", + "start_year = years[0]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Fit preprocessor with training samples and preprocess data\n", + "In this step, we remove trend and take anomalies for the precursor field. Note that here we use raw daily data for detrending and taking anomalies.
\n", + "\n", + "In general, there are many \"flavors\" of preprocessing, like when to perform this operation, and in which order do we want to preprocess the data. To improve the transparency and reproducibility of our work, we think it is necessary to standardize these steps. To stick to the best practices, we suggest to preprocess your data in the following way." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# create preprocessor\n", + "preprocessor = preprocess.Preprocessor(\n", + " rolling_window_size=25,\n", + " detrend=\"linear\",\n", + " subtract_climatology=True,\n", + ")\n", + "\n", + "# fit preprocessor with training data\n", + "preprocessor.fit(precursor_field.sel(time=slice(str(start_year),\n", + " str(start_year + train_samples - 1))))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# preprocess the whole precursor field\n", + "precursor_field_prep = preprocessor.transform(precursor_field)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Resample data to the calendar" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "precursor_field_resample = lilio.resample(calendar, precursor_field_prep)\n", + "target_field_resample = lilio.resample(calendar, target_field)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# select variables and intervals\n", + "precursor_field_sel = precursor_field_resample['sst']\n", + "target_series_sel = target_field_resample['ts'].sel(cluster=3)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2. Build workflow to train a LSTM network for forecasting\n", + "In this section, we will start building a LSTM network using pytorch and train our neural network to forecast 2 meter temperture with sea surface temperature." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To begin with, We need to convert our data to `torch.Tensor`." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# slice and reshape input desired by transformer\n", + "sequence_precursor = len(precursor_field_sel.i_interval) - 1 # we only take precursor parts of i intervals\n", + "lat_precursor = len(precursor_field_sel.latitude)\n", + "lon_precursor = len(precursor_field_sel.longitude)\n", + "\n", + "X_torch = torch.from_numpy(precursor_field_sel[:,:-1,:,:].data).type(torch.FloatTensor)\n", + "y_torch = torch.from_numpy(target_series_sel[:,-1].data).type(torch.FloatTensor)\n", + "\n", + "X_torch = X_torch.view(-1, sequence_precursor, lat_precursor*lon_precursor)\n", + "\n", + "# turn nan to 0.0\n", + "X_torch = torch.nan_to_num(X_torch, 0.0)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We split our data into train/cross-validate/test sets." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# train/validate/test split and use pytorch dataloader\n", + "train_X_torch = X_torch[:train_samples]\n", + "train_y_torch = y_torch[:train_samples]\n", + "\n", + "valid_X_torch = X_torch[train_samples:train_samples + test_samples]\n", + "valid_y_torch = y_torch[train_samples:train_samples + test_samples]\n", + "\n", + "test_X_torch = X_torch[-test_samples:]\n", + "test_y_torch = y_torch[-test_samples:]\n", + "\n", + "# pytorch train and test sets\n", + "train_set = torch.utils.data.TensorDataset(train_X_torch, train_y_torch)\n", + "valid_set = torch.utils.data.TensorDataset(valid_X_torch, valid_y_torch)\n", + "test_set = torch.utils.data.TensorDataset(test_X_torch, test_y_torch)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Build LSTM model\n", + "Build a LSTM model with `nn.LSTM` module." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "class LSTM(nn.Module):\n", + " def __init__(self, input_dim, hidden_dim, output_dim=1,\n", + " batch_size=1, num_layers=1):\n", + " \"\"\"\n", + " Initialize the LSTM model in Pytorch and specify the basic model structure.\n", + " Expected input timeseries dimension [batch_size, sequence, channels]\n", + " \"\"\"\n", + " super().__init__()\n", + " self.hidden_dim = hidden_dim\n", + " self.batch_size = batch_size\n", + " self.num_layers = num_layers\n", + " # Define the LSTM layer\n", + " self.lstm = nn.LSTM(input_size = input_dim, hidden_size = hidden_dim,\n", + " num_layers = num_layers, batch_first = True)\n", + "\n", + " # Define the output layer\n", + " self.linear = nn.Linear(hidden_dim, output_dim)\n", + " \n", + " def init_hidden(self):\n", + " \"\"\"Initialize hidden state with random values.\"\"\"\n", + " return (torch.randn(self.num_layers, self.batch_size, self.hidden_dim),\n", + " torch.randn(self.num_layers, self.batch_size, self.hidden_dim))\n", + " \n", + " def forward(self, input):\n", + " (h_0, c_0) = self.init_hidden()\n", + " x, _ = self.lstm(input, (h_0, c_0))\n", + " x = self.linear(x)\n", + " \n", + " return x" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Hyper-parameter tuning with W&B\n", + "We use Weight&Biases to monitor the training process. It is very simple to integrate it into your workflow and more information about how to set it up can be found at https://docs.wandb.ai/quickstart.
" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's first take a look at the system information." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pytorch version 2.0.1+cu117\n", + "Is CUDA available? False\n", + "Device to be used for computation: cpu\n" + ] + } + ], + "source": [ + "print (\"Pytorch version {}\".format(torch.__version__))\n", + "use_cuda = torch.cuda.is_available()\n", + "print(\"Is CUDA available? {}\".format(use_cuda))\n", + "# use GPU if possible\n", + "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n", + "print(\"Device to be used for computation: {}\".format(device))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define hyperparameters, initialize config for wandb and syncronize training information with W&B server." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", + "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" + ] + } + ], + "source": [ + "# call weights & biases service\n", + "wandb.login()\n", + "\n", + "# define hyperparameters and the \n", + "hyperparameters = dict(\n", + " epoch = 50,\n", + " input_dim = lat_precursor*lon_precursor,\n", + " hidden_dim = lat_precursor*lon_precursor*2,\n", + " output_dim = 1,\n", + " batch_size = 3, \n", + " num_layers = 2,\n", + " learning_rate = 0.01,\n", + " dataset = 'Weather',\n", + " architecture = 'LSTM'\n", + ")\n", + "\n", + "# initialize weights & biases service\n", + "#mode = 'online'\n", + "mode = 'disabled'\n", + "wandb.init(config=hyperparameters, project='test-LSTM-ridge', entity='ai4s2s', mode=mode)\n", + "config = wandb.config" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create data loaders with chosen batch size. " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# create data loader and use batch \n", + "train_loader = torch.utils.data.DataLoader(train_set, batch_size = config.batch_size, shuffle = False)\n", + "valid_loader = torch.utils.data.DataLoader(valid_set, batch_size = config.batch_size, shuffle = False)\n", + "test_loader = torch.utils.data.DataLoader(test_set, batch_size = config.batch_size, shuffle = False)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Initialize and train model\n", + "Create model using specified hyperparameter. Initialize model and choose loss function and optimizer." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model details:\n", + " LSTM(\n", + " (lstm): LSTM(65, 130, num_layers=2, batch_first=True)\n", + " (linear): Linear(in_features=130, out_features=1, bias=True)\n", + ")\n", + "Optimizer details:\n", + " Adam (\n", + "Parameter Group 0\n", + " amsgrad: False\n", + " betas: (0.9, 0.999)\n", + " capturable: False\n", + " differentiable: False\n", + " eps: 1e-08\n", + " foreach: None\n", + " fused: None\n", + " lr: 0.01\n", + " maximize: False\n", + " weight_decay: 0\n", + ")\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Initialize model\n", + "model = LSTM(input_dim = config[\"input_dim\"],\n", + " hidden_dim = config[\"hidden_dim\"],\n", + " output_dim = config[\"output_dim\"], \n", + " batch_size = config[\"batch_size\"], \n", + " num_layers = config[\"num_layers\"]\n", + ")\n", + "# Specify loss function\n", + "criterion = nn.MSELoss()\n", + "# Choose optimizer\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)\n", + "# Print model and optimizer details\n", + "print('Model details:\\n', model)\n", + "print('Optimizer details:\\n',optimizer)\n", + "wandb.watch(model)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start the training and cross validation loop." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 0 [0/27(0%)]\tLoss: 2.197425\n", + "Epoch : 0 [3/27(11%)]\tLoss: 2.866263\n", + "Epoch : 0 [6/27(22%)]\tLoss: 4.132106\n", + "Epoch : 0 [9/27(33%)]\tLoss: 0.535794\n", + "Epoch : 0 [12/27(44%)]\tLoss: 4.967988\n", + "Epoch : 0 [15/27(56%)]\tLoss: 2.342540\n", + "Epoch : 0 [18/27(67%)]\tLoss: 28.448462\n", + "Epoch : 0 [21/27(78%)]\tLoss: 9.000848\n", + "Epoch : 0 [24/27(89%)]\tLoss: 8.685950\n", + "Epoch : 1 [0/27(0%)]\tLoss: 0.874208\n", + "Epoch : 1 [3/27(11%)]\tLoss: 2.132719\n", + "Epoch : 1 [6/27(22%)]\tLoss: 5.538076\n", + "Epoch : 1 [9/27(33%)]\tLoss: 0.115764\n", + "Epoch : 1 [12/27(44%)]\tLoss: 2.044188\n", + "Epoch : 1 [15/27(56%)]\tLoss: 1.340073\n", + "Epoch : 1 [18/27(67%)]\tLoss: 0.143097\n", + "Epoch : 1 [21/27(78%)]\tLoss: 2.521213\n", + "Epoch : 1 [24/27(89%)]\tLoss: 4.911166\n", + "Epoch : 2 [0/27(0%)]\tLoss: 2.603379\n", + "Epoch : 2 [3/27(11%)]\tLoss: 2.164191\n", + "Epoch : 2 [6/27(22%)]\tLoss: 5.199167\n", + "Epoch : 2 [9/27(33%)]\tLoss: 1.725977\n", + "Epoch : 2 [12/27(44%)]\tLoss: 5.202556\n", + "Epoch : 2 [15/27(56%)]\tLoss: 2.161946\n", + "Epoch : 2 [18/27(67%)]\tLoss: 0.106452\n", + "Epoch : 2 [21/27(78%)]\tLoss: 0.589376\n", + "Epoch : 2 [24/27(89%)]\tLoss: 3.898618\n", + "Epoch : 3 [0/27(0%)]\tLoss: 1.794882\n", + "Epoch : 3 [3/27(11%)]\tLoss: 1.422829\n", + "Epoch : 3 [6/27(22%)]\tLoss: 3.852149\n", + "Epoch : 3 [9/27(33%)]\tLoss: 0.748306\n", + "Epoch : 3 [12/27(44%)]\tLoss: 1.026605\n", + "Epoch : 3 [15/27(56%)]\tLoss: 1.151678\n", + "Epoch : 3 [18/27(67%)]\tLoss: 0.556451\n", + "Epoch : 3 [21/27(78%)]\tLoss: 0.103677\n", + "Epoch : 3 [24/27(89%)]\tLoss: 2.488685\n", + "Epoch : 4 [0/27(0%)]\tLoss: 1.485973\n", + "Epoch : 4 [3/27(11%)]\tLoss: 0.884942\n", + "Epoch : 4 [6/27(22%)]\tLoss: 2.511315\n", + "Epoch : 4 [9/27(33%)]\tLoss: 0.333649\n", + "Epoch : 4 [12/27(44%)]\tLoss: 0.400664\n", + "Epoch : 4 [15/27(56%)]\tLoss: 0.584981\n", + "Epoch : 4 [18/27(67%)]\tLoss: 1.457192\n", + "Epoch : 4 [21/27(78%)]\tLoss: 0.055401\n", + "Epoch : 4 [24/27(89%)]\tLoss: 1.129733\n", + "Epoch : 5 [0/27(0%)]\tLoss: 0.937739\n", + "Epoch : 5 [3/27(11%)]\tLoss: 0.571373\n", + "Epoch : 5 [6/27(22%)]\tLoss: 1.585788\n", + "Epoch : 5 [9/27(33%)]\tLoss: 0.213521\n", + "Epoch : 5 [12/27(44%)]\tLoss: 0.093305\n", + "Epoch : 5 [15/27(56%)]\tLoss: 0.456059\n", + "Epoch : 5 [18/27(67%)]\tLoss: 1.711847\n", + "Epoch : 5 [21/27(78%)]\tLoss: 0.125618\n", + "Epoch : 5 [24/27(89%)]\tLoss: 0.489601\n", + "Epoch : 6 [0/27(0%)]\tLoss: 0.378899\n", + "Epoch : 6 [3/27(11%)]\tLoss: 0.325423\n", + "Epoch : 6 [6/27(22%)]\tLoss: 1.390026\n", + "Epoch : 6 [9/27(33%)]\tLoss: 0.092226\n", + "Epoch : 6 [12/27(44%)]\tLoss: 1.144811\n", + "Epoch : 6 [15/27(56%)]\tLoss: 0.081595\n", + "Epoch : 6 [18/27(67%)]\tLoss: 1.109388\n", + "Epoch : 6 [21/27(78%)]\tLoss: 0.110090\n", + "Epoch : 6 [24/27(89%)]\tLoss: 0.553645\n", + "Epoch : 7 [0/27(0%)]\tLoss: 0.747595\n", + "Epoch : 7 [3/27(11%)]\tLoss: 0.577874\n", + "Epoch : 7 [6/27(22%)]\tLoss: 1.225966\n", + "Epoch : 7 [9/27(33%)]\tLoss: 0.196484\n", + "Epoch : 7 [12/27(44%)]\tLoss: 1.313993\n", + "Epoch : 7 [15/27(56%)]\tLoss: 0.025134\n", + "Epoch : 7 [18/27(67%)]\tLoss: 0.654664\n", + "Epoch : 7 [21/27(78%)]\tLoss: 0.042110\n", + "Epoch : 7 [24/27(89%)]\tLoss: 0.317954\n", + "Epoch : 8 [0/27(0%)]\tLoss: 0.875052\n", + "Epoch : 8 [3/27(11%)]\tLoss: 0.454182\n", + "Epoch : 8 [6/27(22%)]\tLoss: 0.809411\n", + "Epoch : 8 [9/27(33%)]\tLoss: 0.545390\n", + "Epoch : 8 [12/27(44%)]\tLoss: 1.416500\n", + "Epoch : 8 [15/27(56%)]\tLoss: 0.567873\n", + "Epoch : 8 [18/27(67%)]\tLoss: 0.376669\n", + "Epoch : 8 [21/27(78%)]\tLoss: 0.020527\n", + "Epoch : 8 [24/27(89%)]\tLoss: 0.135955\n", + "Epoch : 9 [0/27(0%)]\tLoss: 0.186775\n", + "Epoch : 9 [3/27(11%)]\tLoss: 0.042149\n", + "Epoch : 9 [6/27(22%)]\tLoss: 0.445625\n", + "Epoch : 9 [9/27(33%)]\tLoss: 0.391353\n", + "Epoch : 9 [12/27(44%)]\tLoss: 0.871189\n", + "Epoch : 9 [15/27(56%)]\tLoss: 0.730179\n", + "Epoch : 9 [18/27(67%)]\tLoss: 0.174728\n", + "Epoch : 9 [21/27(78%)]\tLoss: 0.002140\n", + "Epoch : 9 [24/27(89%)]\tLoss: 0.195505\n", + "Epoch : 10 [0/27(0%)]\tLoss: 0.089778\n", + "Epoch : 10 [3/27(11%)]\tLoss: 0.009184\n", + "Epoch : 10 [6/27(22%)]\tLoss: 0.650962\n", + "Epoch : 10 [9/27(33%)]\tLoss: 0.013828\n", + "Epoch : 10 [12/27(44%)]\tLoss: 0.784698\n", + "Epoch : 10 [15/27(56%)]\tLoss: 0.210749\n", + "Epoch : 10 [18/27(67%)]\tLoss: 0.068300\n", + "Epoch : 10 [21/27(78%)]\tLoss: 0.009123\n", + "Epoch : 10 [24/27(89%)]\tLoss: 0.141351\n", + "Epoch : 11 [0/27(0%)]\tLoss: 0.042836\n", + "Epoch : 11 [3/27(11%)]\tLoss: 0.010093\n", + "Epoch : 11 [6/27(22%)]\tLoss: 0.338850\n", + "Epoch : 11 [9/27(33%)]\tLoss: 0.014912\n", + "Epoch : 11 [12/27(44%)]\tLoss: 0.075523\n", + "Epoch : 11 [15/27(56%)]\tLoss: 0.205981\n", + "Epoch : 11 [18/27(67%)]\tLoss: 0.049140\n", + "Epoch : 11 [21/27(78%)]\tLoss: 0.001343\n", + "Epoch : 11 [24/27(89%)]\tLoss: 0.010557\n", + "Epoch : 12 [0/27(0%)]\tLoss: 0.016865\n", + "Epoch : 12 [3/27(11%)]\tLoss: 0.049143\n", + "Epoch : 12 [6/27(22%)]\tLoss: 0.095358\n", + "Epoch : 12 [9/27(33%)]\tLoss: 0.003456\n", + "Epoch : 12 [12/27(44%)]\tLoss: 0.022819\n", + "Epoch : 12 [15/27(56%)]\tLoss: 0.024841\n", + "Epoch : 12 [18/27(67%)]\tLoss: 0.033077\n", + "Epoch : 12 [21/27(78%)]\tLoss: 0.000585\n", + "Epoch : 12 [24/27(89%)]\tLoss: 0.033425\n", + "Epoch : 13 [0/27(0%)]\tLoss: 0.016601\n", + "Epoch : 13 [3/27(11%)]\tLoss: 0.000734\n", + "Epoch : 13 [6/27(22%)]\tLoss: 0.026359\n", + "Epoch : 13 [9/27(33%)]\tLoss: 0.004973\n", + "Epoch : 13 [12/27(44%)]\tLoss: 0.001281\n", + "Epoch : 13 [15/27(56%)]\tLoss: 0.007492\n", + "Epoch : 13 [18/27(67%)]\tLoss: 0.010240\n", + "Epoch : 13 [21/27(78%)]\tLoss: 0.034718\n", + "Epoch : 13 [24/27(89%)]\tLoss: 0.052115\n", + "Epoch : 14 [0/27(0%)]\tLoss: 0.003422\n", + "Epoch : 14 [3/27(11%)]\tLoss: 0.013544\n", + "Epoch : 14 [6/27(22%)]\tLoss: 0.007158\n", + "Epoch : 14 [9/27(33%)]\tLoss: 0.010292\n", + "Epoch : 14 [12/27(44%)]\tLoss: 0.003641\n", + "Epoch : 14 [15/27(56%)]\tLoss: 0.016754\n", + "Epoch : 14 [18/27(67%)]\tLoss: 0.009856\n", + "Epoch : 14 [21/27(78%)]\tLoss: 0.169890\n", + "Epoch : 14 [24/27(89%)]\tLoss: 0.015186\n", + "Epoch : 15 [0/27(0%)]\tLoss: 0.002381\n", + "Epoch : 15 [3/27(11%)]\tLoss: 0.002122\n", + "Epoch : 15 [6/27(22%)]\tLoss: 0.005156\n", + "Epoch : 15 [9/27(33%)]\tLoss: 0.001475\n", + "Epoch : 15 [12/27(44%)]\tLoss: 0.000624\n", + "Epoch : 15 [15/27(56%)]\tLoss: 0.027466\n", + "Epoch : 15 [18/27(67%)]\tLoss: 0.007079\n", + "Epoch : 15 [21/27(78%)]\tLoss: 0.121849\n", + "Epoch : 15 [24/27(89%)]\tLoss: 0.012170\n", + "Epoch : 16 [0/27(0%)]\tLoss: 0.005204\n", + "Epoch : 16 [3/27(11%)]\tLoss: 0.007405\n", + "Epoch : 16 [6/27(22%)]\tLoss: 0.004565\n", + "Epoch : 16 [9/27(33%)]\tLoss: 0.000893\n", + "Epoch : 16 [12/27(44%)]\tLoss: 0.007167\n", + "Epoch : 16 [15/27(56%)]\tLoss: 0.034388\n", + "Epoch : 16 [18/27(67%)]\tLoss: 0.007482\n", + "Epoch : 16 [21/27(78%)]\tLoss: 0.044368\n", + "Epoch : 16 [24/27(89%)]\tLoss: 0.006881\n", + "Epoch : 17 [0/27(0%)]\tLoss: 0.003328\n", + "Epoch : 17 [3/27(11%)]\tLoss: 0.011182\n", + "Epoch : 17 [6/27(22%)]\tLoss: 0.009646\n", + "Epoch : 17 [9/27(33%)]\tLoss: 0.002309\n", + "Epoch : 17 [12/27(44%)]\tLoss: 0.011578\n", + "Epoch : 17 [15/27(56%)]\tLoss: 0.001844\n", + "Epoch : 17 [18/27(67%)]\tLoss: 0.014287\n", + "Epoch : 17 [21/27(78%)]\tLoss: 0.006835\n", + "Epoch : 17 [24/27(89%)]\tLoss: 0.017620\n", + "Epoch : 18 [0/27(0%)]\tLoss: 0.002087\n", + "Epoch : 18 [3/27(11%)]\tLoss: 0.004188\n", + "Epoch : 18 [6/27(22%)]\tLoss: 0.007624\n", + "Epoch : 18 [9/27(33%)]\tLoss: 0.002525\n", + "Epoch : 18 [12/27(44%)]\tLoss: 0.005006\n", + "Epoch : 18 [15/27(56%)]\tLoss: 0.016711\n", + "Epoch : 18 [18/27(67%)]\tLoss: 0.012972\n", + "Epoch : 18 [21/27(78%)]\tLoss: 0.003089\n", + "Epoch : 18 [24/27(89%)]\tLoss: 0.011956\n", + "Epoch : 19 [0/27(0%)]\tLoss: 0.000266\n", + "Epoch : 19 [3/27(11%)]\tLoss: 0.003665\n", + "Epoch : 19 [6/27(22%)]\tLoss: 0.004491\n", + "Epoch : 19 [9/27(33%)]\tLoss: 0.002221\n", + "Epoch : 19 [12/27(44%)]\tLoss: 0.013265\n", + "Epoch : 19 [15/27(56%)]\tLoss: 0.016728\n", + "Epoch : 19 [18/27(67%)]\tLoss: 0.002875\n", + "Epoch : 19 [21/27(78%)]\tLoss: 0.002791\n", + "Epoch : 19 [24/27(89%)]\tLoss: 0.001852\n", + "Epoch : 20 [0/27(0%)]\tLoss: 0.001692\n", + "Epoch : 20 [3/27(11%)]\tLoss: 0.003238\n", + "Epoch : 20 [6/27(22%)]\tLoss: 0.001867\n", + "Epoch : 20 [9/27(33%)]\tLoss: 0.000165\n", + "Epoch : 20 [12/27(44%)]\tLoss: 0.018671\n", + "Epoch : 20 [15/27(56%)]\tLoss: 0.006838\n", + "Epoch : 20 [18/27(67%)]\tLoss: 0.002381\n", + "Epoch : 20 [21/27(78%)]\tLoss: 0.001550\n", + "Epoch : 20 [24/27(89%)]\tLoss: 0.001131\n", + "Epoch : 21 [0/27(0%)]\tLoss: 0.001486\n", + "Epoch : 21 [3/27(11%)]\tLoss: 0.001983\n", + "Epoch : 21 [6/27(22%)]\tLoss: 0.000515\n", + "Epoch : 21 [9/27(33%)]\tLoss: 0.001200\n", + "Epoch : 21 [12/27(44%)]\tLoss: 0.010579\n", + "Epoch : 21 [15/27(56%)]\tLoss: 0.005823\n", + "Epoch : 21 [18/27(67%)]\tLoss: 0.001377\n", + "Epoch : 21 [21/27(78%)]\tLoss: 0.001790\n", + "Epoch : 21 [24/27(89%)]\tLoss: 0.004233\n", + "Epoch : 22 [0/27(0%)]\tLoss: 0.001317\n", + "Epoch : 22 [3/27(11%)]\tLoss: 0.002907\n", + "Epoch : 22 [6/27(22%)]\tLoss: 0.000418\n", + "Epoch : 22 [9/27(33%)]\tLoss: 0.000913\n", + "Epoch : 22 [12/27(44%)]\tLoss: 0.015031\n", + "Epoch : 22 [15/27(56%)]\tLoss: 0.018117\n", + "Epoch : 22 [18/27(67%)]\tLoss: 0.001034\n", + "Epoch : 22 [21/27(78%)]\tLoss: 0.000354\n", + "Epoch : 22 [24/27(89%)]\tLoss: 0.011557\n", + "Epoch : 23 [0/27(0%)]\tLoss: 0.000219\n", + "Epoch : 23 [3/27(11%)]\tLoss: 0.000665\n", + "Epoch : 23 [6/27(22%)]\tLoss: 0.000485\n", + "Epoch : 23 [9/27(33%)]\tLoss: 0.000262\n", + "Epoch : 23 [12/27(44%)]\tLoss: 0.001602\n", + "Epoch : 23 [15/27(56%)]\tLoss: 0.015627\n", + "Epoch : 23 [18/27(67%)]\tLoss: 0.001774\n", + "Epoch : 23 [21/27(78%)]\tLoss: 0.000158\n", + "Epoch : 23 [24/27(89%)]\tLoss: 0.001699\n", + "Epoch : 24 [0/27(0%)]\tLoss: 0.000455\n", + "Epoch : 24 [3/27(11%)]\tLoss: 0.005195\n", + "Epoch : 24 [6/27(22%)]\tLoss: 0.002724\n", + "Epoch : 24 [9/27(33%)]\tLoss: 0.001175\n", + "Epoch : 24 [12/27(44%)]\tLoss: 0.006858\n", + "Epoch : 24 [15/27(56%)]\tLoss: 0.002058\n", + "Epoch : 24 [18/27(67%)]\tLoss: 0.001561\n", + "Epoch : 24 [21/27(78%)]\tLoss: 0.000094\n", + "Epoch : 24 [24/27(89%)]\tLoss: 0.004111\n", + "Epoch : 25 [0/27(0%)]\tLoss: 0.000075\n", + "Epoch : 25 [3/27(11%)]\tLoss: 0.005733\n", + "Epoch : 25 [6/27(22%)]\tLoss: 0.002211\n", + "Epoch : 25 [9/27(33%)]\tLoss: 0.000337\n", + "Epoch : 25 [12/27(44%)]\tLoss: 0.008336\n", + "Epoch : 25 [15/27(56%)]\tLoss: 0.001060\n", + "Epoch : 25 [18/27(67%)]\tLoss: 0.001834\n", + "Epoch : 25 [21/27(78%)]\tLoss: 0.000662\n", + "Epoch : 25 [24/27(89%)]\tLoss: 0.000622\n", + "Epoch : 26 [0/27(0%)]\tLoss: 0.000207\n", + "Epoch : 26 [3/27(11%)]\tLoss: 0.002332\n", + "Epoch : 26 [6/27(22%)]\tLoss: 0.000551\n", + "Epoch : 26 [9/27(33%)]\tLoss: 0.002242\n", + "Epoch : 26 [12/27(44%)]\tLoss: 0.004649\n", + "Epoch : 26 [15/27(56%)]\tLoss: 0.000913\n", + "Epoch : 26 [18/27(67%)]\tLoss: 0.000122\n", + "Epoch : 26 [21/27(78%)]\tLoss: 0.000400\n", + "Epoch : 26 [24/27(89%)]\tLoss: 0.000920\n", + "Epoch : 27 [0/27(0%)]\tLoss: 0.001798\n", + "Epoch : 27 [3/27(11%)]\tLoss: 0.001241\n", + "Epoch : 27 [6/27(22%)]\tLoss: 0.000305\n", + "Epoch : 27 [9/27(33%)]\tLoss: 0.000506\n", + "Epoch : 27 [12/27(44%)]\tLoss: 0.000386\n", + "Epoch : 27 [15/27(56%)]\tLoss: 0.015045\n", + "Epoch : 27 [18/27(67%)]\tLoss: 0.002108\n", + "Epoch : 27 [21/27(78%)]\tLoss: 0.000169\n", + "Epoch : 27 [24/27(89%)]\tLoss: 0.002062\n", + "Epoch : 28 [0/27(0%)]\tLoss: 0.000081\n", + "Epoch : 28 [3/27(11%)]\tLoss: 0.001105\n", + "Epoch : 28 [6/27(22%)]\tLoss: 0.000086\n", + "Epoch : 28 [9/27(33%)]\tLoss: 0.001012\n", + "Epoch : 28 [12/27(44%)]\tLoss: 0.002446\n", + "Epoch : 28 [15/27(56%)]\tLoss: 0.007278\n", + "Epoch : 28 [18/27(67%)]\tLoss: 0.000299\n", + "Epoch : 28 [21/27(78%)]\tLoss: 0.000189\n", + "Epoch : 28 [24/27(89%)]\tLoss: 0.002060\n", + "Epoch : 29 [0/27(0%)]\tLoss: 0.001890\n", + "Epoch : 29 [3/27(11%)]\tLoss: 0.003316\n", + "Epoch : 29 [6/27(22%)]\tLoss: 0.000277\n", + "Epoch : 29 [9/27(33%)]\tLoss: 0.001344\n", + "Epoch : 29 [12/27(44%)]\tLoss: 0.002177\n", + "Epoch : 29 [15/27(56%)]\tLoss: 0.002883\n", + "Epoch : 29 [18/27(67%)]\tLoss: 0.002824\n", + "Epoch : 29 [21/27(78%)]\tLoss: 0.000474\n", + "Epoch : 29 [24/27(89%)]\tLoss: 0.005705\n", + "Epoch : 30 [0/27(0%)]\tLoss: 0.000786\n", + "Epoch : 30 [3/27(11%)]\tLoss: 0.001877\n", + "Epoch : 30 [6/27(22%)]\tLoss: 0.000056\n", + "Epoch : 30 [9/27(33%)]\tLoss: 0.001369\n", + "Epoch : 30 [12/27(44%)]\tLoss: 0.000735\n", + "Epoch : 30 [15/27(56%)]\tLoss: 0.001535\n", + "Epoch : 30 [18/27(67%)]\tLoss: 0.006259\n", + "Epoch : 30 [21/27(78%)]\tLoss: 0.000548\n", + "Epoch : 30 [24/27(89%)]\tLoss: 0.001191\n", + "Epoch : 31 [0/27(0%)]\tLoss: 0.000553\n", + "Epoch : 31 [3/27(11%)]\tLoss: 0.000754\n", + "Epoch : 31 [6/27(22%)]\tLoss: 0.000275\n", + "Epoch : 31 [9/27(33%)]\tLoss: 0.000219\n", + "Epoch : 31 [12/27(44%)]\tLoss: 0.008851\n", + "Epoch : 31 [15/27(56%)]\tLoss: 0.021454\n", + "Epoch : 31 [18/27(67%)]\tLoss: 0.000828\n", + "Epoch : 31 [21/27(78%)]\tLoss: 0.007565\n", + "Epoch : 31 [24/27(89%)]\tLoss: 0.002932\n", + "Epoch : 32 [0/27(0%)]\tLoss: 0.000171\n", + "Epoch : 32 [3/27(11%)]\tLoss: 0.000666\n", + "Epoch : 32 [6/27(22%)]\tLoss: 0.002418\n", + "Epoch : 32 [9/27(33%)]\tLoss: 0.001070\n", + "Epoch : 32 [12/27(44%)]\tLoss: 0.000491\n", + "Epoch : 32 [15/27(56%)]\tLoss: 0.000570\n", + "Epoch : 32 [18/27(67%)]\tLoss: 0.000564\n", + "Epoch : 32 [21/27(78%)]\tLoss: 0.004495\n", + "Epoch : 32 [24/27(89%)]\tLoss: 0.000469\n", + "Epoch : 33 [0/27(0%)]\tLoss: 0.001347\n", + "Epoch : 33 [3/27(11%)]\tLoss: 0.001965\n", + "Epoch : 33 [6/27(22%)]\tLoss: 0.001318\n", + "Epoch : 33 [9/27(33%)]\tLoss: 0.003641\n", + "Epoch : 33 [12/27(44%)]\tLoss: 0.010863\n", + "Epoch : 33 [15/27(56%)]\tLoss: 0.014845\n", + "Epoch : 33 [18/27(67%)]\tLoss: 0.001141\n", + "Epoch : 33 [21/27(78%)]\tLoss: 0.000551\n", + "Epoch : 33 [24/27(89%)]\tLoss: 0.005634\n", + "Epoch : 34 [0/27(0%)]\tLoss: 0.000267\n", + "Epoch : 34 [3/27(11%)]\tLoss: 0.005630\n", + "Epoch : 34 [6/27(22%)]\tLoss: 0.001405\n", + "Epoch : 34 [9/27(33%)]\tLoss: 0.001499\n", + "Epoch : 34 [12/27(44%)]\tLoss: 0.004301\n", + "Epoch : 34 [15/27(56%)]\tLoss: 0.002887\n", + "Epoch : 34 [18/27(67%)]\tLoss: 0.000121\n", + "Epoch : 34 [21/27(78%)]\tLoss: 0.001084\n", + "Epoch : 34 [24/27(89%)]\tLoss: 0.004513\n", + "Epoch : 35 [0/27(0%)]\tLoss: 0.000161\n", + "Epoch : 35 [3/27(11%)]\tLoss: 0.003143\n", + "Epoch : 35 [6/27(22%)]\tLoss: 0.000356\n", + "Epoch : 35 [9/27(33%)]\tLoss: 0.000087\n", + "Epoch : 35 [12/27(44%)]\tLoss: 0.001151\n", + "Epoch : 35 [15/27(56%)]\tLoss: 0.003723\n", + "Epoch : 35 [18/27(67%)]\tLoss: 0.000497\n", + "Epoch : 35 [21/27(78%)]\tLoss: 0.000148\n", + "Epoch : 35 [24/27(89%)]\tLoss: 0.001762\n", + "Epoch : 36 [0/27(0%)]\tLoss: 0.000475\n", + "Epoch : 36 [3/27(11%)]\tLoss: 0.000198\n", + "Epoch : 36 [6/27(22%)]\tLoss: 0.000967\n", + "Epoch : 36 [9/27(33%)]\tLoss: 0.000058\n", + "Epoch : 36 [12/27(44%)]\tLoss: 0.000703\n", + "Epoch : 36 [15/27(56%)]\tLoss: 0.000319\n", + "Epoch : 36 [18/27(67%)]\tLoss: 0.001399\n", + "Epoch : 36 [21/27(78%)]\tLoss: 0.000278\n", + "Epoch : 36 [24/27(89%)]\tLoss: 0.003897\n", + "Epoch : 37 [0/27(0%)]\tLoss: 0.001908\n", + "Epoch : 37 [3/27(11%)]\tLoss: 0.000972\n", + "Epoch : 37 [6/27(22%)]\tLoss: 0.000577\n", + "Epoch : 37 [9/27(33%)]\tLoss: 0.000471\n", + "Epoch : 37 [12/27(44%)]\tLoss: 0.001776\n", + "Epoch : 37 [15/27(56%)]\tLoss: 0.012602\n", + "Epoch : 37 [18/27(67%)]\tLoss: 0.001788\n", + "Epoch : 37 [21/27(78%)]\tLoss: 0.001374\n", + "Epoch : 37 [24/27(89%)]\tLoss: 0.014905\n", + "Epoch : 38 [0/27(0%)]\tLoss: 0.002149\n", + "Epoch : 38 [3/27(11%)]\tLoss: 0.002972\n", + "Epoch : 38 [6/27(22%)]\tLoss: 0.003310\n", + "Epoch : 38 [9/27(33%)]\tLoss: 0.001757\n", + "Epoch : 38 [12/27(44%)]\tLoss: 0.010669\n", + "Epoch : 38 [15/27(56%)]\tLoss: 0.034625\n", + "Epoch : 38 [18/27(67%)]\tLoss: 0.001382\n", + "Epoch : 38 [21/27(78%)]\tLoss: 0.004451\n", + "Epoch : 38 [24/27(89%)]\tLoss: 0.010330\n", + "Epoch : 39 [0/27(0%)]\tLoss: 0.006530\n", + "Epoch : 39 [3/27(11%)]\tLoss: 0.008147\n", + "Epoch : 39 [6/27(22%)]\tLoss: 0.003758\n", + "Epoch : 39 [9/27(33%)]\tLoss: 0.004137\n", + "Epoch : 39 [12/27(44%)]\tLoss: 0.033906\n", + "Epoch : 39 [15/27(56%)]\tLoss: 0.034745\n", + "Epoch : 39 [18/27(67%)]\tLoss: 0.002909\n", + "Epoch : 39 [21/27(78%)]\tLoss: 0.012402\n", + "Epoch : 39 [24/27(89%)]\tLoss: 0.022730\n", + "Epoch : 40 [0/27(0%)]\tLoss: 0.008401\n", + "Epoch : 40 [3/27(11%)]\tLoss: 0.010285\n", + "Epoch : 40 [6/27(22%)]\tLoss: 0.006661\n", + "Epoch : 40 [9/27(33%)]\tLoss: 0.014923\n", + "Epoch : 40 [12/27(44%)]\tLoss: 0.032379\n", + "Epoch : 40 [15/27(56%)]\tLoss: 0.015368\n", + "Epoch : 40 [18/27(67%)]\tLoss: 0.005534\n", + "Epoch : 40 [21/27(78%)]\tLoss: 0.021435\n", + "Epoch : 40 [24/27(89%)]\tLoss: 0.045156\n", + "Epoch : 41 [0/27(0%)]\tLoss: 0.016149\n", + "Epoch : 41 [3/27(11%)]\tLoss: 0.014950\n", + "Epoch : 41 [6/27(22%)]\tLoss: 0.018135\n", + "Epoch : 41 [9/27(33%)]\tLoss: 0.028426\n", + "Epoch : 41 [12/27(44%)]\tLoss: 0.023744\n", + "Epoch : 41 [15/27(56%)]\tLoss: 0.023850\n", + "Epoch : 41 [18/27(67%)]\tLoss: 0.004544\n", + "Epoch : 41 [21/27(78%)]\tLoss: 0.011710\n", + "Epoch : 41 [24/27(89%)]\tLoss: 0.046225\n", + "Epoch : 42 [0/27(0%)]\tLoss: 0.022746\n", + "Epoch : 42 [3/27(11%)]\tLoss: 0.041660\n", + "Epoch : 42 [6/27(22%)]\tLoss: 0.008016\n", + "Epoch : 42 [9/27(33%)]\tLoss: 0.021191\n", + "Epoch : 42 [12/27(44%)]\tLoss: 0.016512\n", + "Epoch : 42 [15/27(56%)]\tLoss: 0.034754\n", + "Epoch : 42 [18/27(67%)]\tLoss: 0.005988\n", + "Epoch : 42 [21/27(78%)]\tLoss: 0.015019\n", + "Epoch : 42 [24/27(89%)]\tLoss: 0.045626\n", + "Epoch : 43 [0/27(0%)]\tLoss: 0.034347\n", + "Epoch : 43 [3/27(11%)]\tLoss: 0.071723\n", + "Epoch : 43 [6/27(22%)]\tLoss: 0.024966\n", + "Epoch : 43 [9/27(33%)]\tLoss: 0.019957\n", + "Epoch : 43 [12/27(44%)]\tLoss: 0.025883\n", + "Epoch : 43 [15/27(56%)]\tLoss: 0.024042\n", + "Epoch : 43 [18/27(67%)]\tLoss: 0.007839\n", + "Epoch : 43 [21/27(78%)]\tLoss: 0.017768\n", + "Epoch : 43 [24/27(89%)]\tLoss: 0.038244\n", + "Epoch : 44 [0/27(0%)]\tLoss: 0.017474\n", + "Epoch : 44 [3/27(11%)]\tLoss: 0.045581\n", + "Epoch : 44 [6/27(22%)]\tLoss: 0.039733\n", + "Epoch : 44 [9/27(33%)]\tLoss: 0.016685\n", + "Epoch : 44 [12/27(44%)]\tLoss: 0.017018\n", + "Epoch : 44 [15/27(56%)]\tLoss: 0.008900\n", + "Epoch : 44 [18/27(67%)]\tLoss: 0.001963\n", + "Epoch : 44 [21/27(78%)]\tLoss: 0.016363\n", + "Epoch : 44 [24/27(89%)]\tLoss: 0.033393\n", + "Epoch : 45 [0/27(0%)]\tLoss: 0.018795\n", + "Epoch : 45 [3/27(11%)]\tLoss: 0.027094\n", + "Epoch : 45 [6/27(22%)]\tLoss: 0.030313\n", + "Epoch : 45 [9/27(33%)]\tLoss: 0.010332\n", + "Epoch : 45 [12/27(44%)]\tLoss: 0.019923\n", + "Epoch : 45 [15/27(56%)]\tLoss: 0.002768\n", + "Epoch : 45 [18/27(67%)]\tLoss: 0.001018\n", + "Epoch : 45 [21/27(78%)]\tLoss: 0.002116\n", + "Epoch : 45 [24/27(89%)]\tLoss: 0.010780\n", + "Epoch : 46 [0/27(0%)]\tLoss: 0.006810\n", + "Epoch : 46 [3/27(11%)]\tLoss: 0.008147\n", + "Epoch : 46 [6/27(22%)]\tLoss: 0.006563\n", + "Epoch : 46 [9/27(33%)]\tLoss: 0.004508\n", + "Epoch : 46 [12/27(44%)]\tLoss: 0.011042\n", + "Epoch : 46 [15/27(56%)]\tLoss: 0.006834\n", + "Epoch : 46 [18/27(67%)]\tLoss: 0.001896\n", + "Epoch : 46 [21/27(78%)]\tLoss: 0.000534\n", + "Epoch : 46 [24/27(89%)]\tLoss: 0.005050\n", + "Epoch : 47 [0/27(0%)]\tLoss: 0.002078\n", + "Epoch : 47 [3/27(11%)]\tLoss: 0.002089\n", + "Epoch : 47 [6/27(22%)]\tLoss: 0.002105\n", + "Epoch : 47 [9/27(33%)]\tLoss: 0.005779\n", + "Epoch : 47 [12/27(44%)]\tLoss: 0.018105\n", + "Epoch : 47 [15/27(56%)]\tLoss: 0.004963\n", + "Epoch : 47 [18/27(67%)]\tLoss: 0.000785\n", + "Epoch : 47 [21/27(78%)]\tLoss: 0.001921\n", + "Epoch : 47 [24/27(89%)]\tLoss: 0.011329\n", + "Epoch : 48 [0/27(0%)]\tLoss: 0.001842\n", + "Epoch : 48 [3/27(11%)]\tLoss: 0.002769\n", + "Epoch : 48 [6/27(22%)]\tLoss: 0.002019\n", + "Epoch : 48 [9/27(33%)]\tLoss: 0.003467\n", + "Epoch : 48 [12/27(44%)]\tLoss: 0.009583\n", + "Epoch : 48 [15/27(56%)]\tLoss: 0.002003\n", + "Epoch : 48 [18/27(67%)]\tLoss: 0.000595\n", + "Epoch : 48 [21/27(78%)]\tLoss: 0.000489\n", + "Epoch : 48 [24/27(89%)]\tLoss: 0.009427\n", + "Epoch : 49 [0/27(0%)]\tLoss: 0.003046\n", + "Epoch : 49 [3/27(11%)]\tLoss: 0.003291\n", + "Epoch : 49 [6/27(22%)]\tLoss: 0.000327\n", + "Epoch : 49 [9/27(33%)]\tLoss: 0.004837\n", + "Epoch : 49 [12/27(44%)]\tLoss: 0.013552\n", + "Epoch : 49 [15/27(56%)]\tLoss: 0.001258\n", + "Epoch : 49 [18/27(67%)]\tLoss: 0.000634\n", + "Epoch : 49 [21/27(78%)]\tLoss: 0.000029\n", + "Epoch : 49 [24/27(89%)]\tLoss: 0.006879\n", + "--- 0.09567344586054484 minutes ---\n" + ] + } + ], + "source": [ + "# calculate the time for the code execution\n", + "start_time = tt.time()\n", + "\n", + "# switch model into training mode\n", + "model.train()\n", + "\n", + "hist_train = []\n", + "hist_valid = []\n", + "for epoch in range(config.epoch):\n", + " # training loop\n", + " # switch model into train mode\n", + " model.train()\n", + " hist_train_step = 0\n", + " for batch_idx, (X_batch, y_batch) in enumerate(train_loader):\n", + " var_X_batch = Variable(X_batch).to(device)\n", + " var_y_batch = Variable(y_batch).to(device)\n", + " optimizer.zero_grad()\n", + " # note: decoder input is the last instance of encoder input\n", + " output = model(var_X_batch)\n", + " loss = criterion(output[:,-1,:].squeeze(), var_y_batch) # we only need the last instance from output sequence\n", + " loss.backward()\n", + " optimizer.step()\n", + " wandb.log({'train_loss': loss.item()})\n", + " print(f'Epoch : {epoch} [{batch_idx*len(X_batch)}/{len(train_loader.dataset)}'\n", + " f'({100.* batch_idx / len(train_loader):.0f}%)]\\tLoss: {loss.item():.6f}')\n", + " hist_train_step += loss.item()\n", + "\n", + " hist_train.append(hist_train_step / len(train_loader.dataset))\n", + "\n", + " # cross-validation loop\n", + " # switch model into evaluation mode\n", + " model.eval()\n", + " hist_valid_step = 0\n", + "\n", + " for batch_idx, (X_batch, y_batch) in enumerate(valid_loader):\n", + " var_X_batch = Variable(X_batch).to(device)\n", + " var_y_batch = Variable(y_batch).to(device)\n", + " optimizer.zero_grad()\n", + " with torch.no_grad():\n", + " output = model(var_X_batch)\n", + " loss = criterion(output[:,-1,:].squeeze(), var_y_batch)\n", + " wandb.log({'validation_loss': loss.item()})\n", + " hist_valid_step += loss.item()\n", + "\n", + " hist_valid.append(hist_valid_step / len(valid_loader.dataset))\n", + "\n", + "print (f\"--- {(tt.time() - start_time)/60} minutes ---\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's check the training loss and validation loss." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTxElEQVR4nO3dd3wT5eMH8E+60pYuVheUAsqWll0LCigoS2SIVH8ooAgq+4sDcQDq129xMEQQRIWKAxAQBJRZGbJklmVBUaAobQGBLjpo8/z+eMxq05K0l1ybfN6v171yudxdnlzT5JNn3GmEEAJERERETsJN7QIQERERKYnhhoiIiJwKww0RERE5FYYbIiIicioMN0RERORUGG6IiIjIqTDcEBERkVPxULsAjqbT6XDp0iX4+/tDo9GoXRwiIiKyghACWVlZCA8Ph5tb2XUzLhduLl26hIiICLWLQUREROVw8eJF1K1bt8x1XC7c+Pv7A5AHJyAgQOXSEBERkTUyMzMRERFh+B4vi8uFG31TVEBAAMMNERFRFWNNlxJ2KCYiIiKnwnBDREREToXhhoiIiJyKy/W5ISIiZRUVFeHWrVtqF4OcgJeX122HeVuD4YaIiMpFCIG0tDTcuHFD7aKQk3Bzc0ODBg3g5eVVof0w3BARUbnog01wcDB8fX15YlSqEP1JdlNTU1GvXr0KvZ8YboiIyGZFRUWGYFOzZk21i0NOonbt2rh06RIKCwvh6elZ7v2wQzEREdlM38fG19dX5ZKQM9E3RxUVFVVoPww3RERUbmyKIiUp9X5iuCEiIiKnwnBDREREToXhhoiIqILq16+POXPmWL3+jh07oNFo7D6MPiEhAUFBQXZ9jsqI4UYhBQXAX38BFy6oXRIiIiqNRqMpc5o+fXq59nvw4EGMGjXK6vU7duyI1NRUBAYGluv5qGwcCq6QX34BOncGGjcGzpxRuzRERGRJamqqYX7FihWYOnUqzph8aPv5+RnmhRAoKiqCh8ftvypr165tUzm8vLwQGhpq0zZkPdbcKEQ/GvLmTXXLQUSkFiGAnBx1JiGsK2NoaKhhCgwMhEajMdw/ffo0/P39sXHjRrRt2xZarRa7d+/GH3/8gX79+iEkJAR+fn5o3749tm3bZrbf4s1SGo0Gn332GQYMGABfX180atQI69atMzxevFlK33y0efNmNGvWDH5+fujZs6dZGCssLMT48eMRFBSEmjVrYvLkyRg2bBj69+9v099pwYIFuOOOO+Dl5YUmTZrgyy+/NPkbCkyfPh316tWDVqtFeHg4xo8fb3j8448/RqNGjeDt7Y2QkBAMGjTIpud2FIYbhVSrJm9zctQtBxGRWm7eBPz81JmU/GH5yiuvYMaMGUhOTkZUVBSys7PRu3dvJCYm4ujRo+jZsyf69u2LlJSUMvfz5ptvYvDgwTh+/Dh69+6NIUOG4Nq1a2Ucv5v44IMP8OWXX2LXrl1ISUnBiy++aHj83Xffxddff40lS5Zgz549yMzMxNq1a216bWvWrMGECRPwwgsv4OTJk3j22Wfx1FNPYfv27QCA1atXY/bs2fjkk0/w+++/Y+3atWjZsiUA4NChQxg/fjzeeustnDlzBps2bULnzp1ten6HES4mIyNDABAZGRmK7vfCBSEAIbRaRXdLRFQp5ebmil9//VXk5uYalmVny89BNabsbNtfw5IlS0RgYKDh/vbt2wUAsXbt2ttu26JFC/HRRx8Z7kdGRorZs2cb7gMQr7/+usmxyRYAxMaNG82e6/r164ayABBnz541bDN//nwREhJiuB8SEiLef/99w/3CwkJRr1490a9fP6tfY8eOHcXIkSPN1nn00UdF7969hRBCzJw5UzRu3FgUFBSU2Nfq1atFQECAyMzMLPX5KsrS+0rPlu9v1twoRN8slZ8PVPDEikREVZKvL5Cdrc6k5ImS27VrZ3Y/OzsbL774Ipo1a4agoCD4+fkhOTn5tjU3UVFRhvlq1aohICAAly9fLnV9X19f3HHHHYb7YWFhhvUzMjKQnp6ODh06GB53d3dH27ZtbXptycnJ6NSpk9myTp06ITk5GQDw6KOPIjc3Fw0bNsTIkSOxZs0aFBYWAgAeeOABREZGomHDhnjyySfx9ddf42Yl7YvBcKMQ03+s3Fz1ykFEpBaNRjbRqzEpeaLkavp+Bv968cUXsWbNGvzvf//Dzz//jKSkJLRs2RIFBQVl7qf4tZE0Gg10Op1N6wtrOxMpJCIiAmfOnMHHH38MHx8fjB49Gp07d8atW7fg7++PI0eOYNmyZQgLC8PUqVMRHR1dKa8Kz3CjEG9v43wlDbJERFQOe/bswfDhwzFgwAC0bNkSoaGhOH/+vEPLEBgYiJCQEBw8eNCwrKioCEeOHLFpP82aNcOePXvMlu3ZswfNmzc33Pfx8UHfvn0xd+5c7NixA/v27cOJEycAAB4eHujevTvee+89HD9+HOfPn8dPP/1UgVdmHxwKrhA3N8DHR9baMNwQETmPRo0a4bvvvkPfvn2h0WjwxhtvlFkDYy/jxo1DfHw87rzzTjRt2hQfffQRrl+/btP1mF566SUMHjwYrVu3Rvfu3bF+/Xp89913htFfCQkJKCoqQkxMDHx9ffHVV1/Bx8cHkZGR2LBhA/7880907twZ1atXx48//gidTocmTZrY6yWXG8ONgqpVk+GGI6aIiJzHrFmz8PTTT6Njx46oVasWJk+ejMzMTIeXY/LkyUhLS8PQoUPh7u6OUaNGoUePHnB3d7d6H/3798eHH36IDz74ABMmTECDBg2wZMkSdO3aFQAQFBSEGTNmYNKkSSgqKkLLli2xfv161KxZE0FBQfjuu+8wffp05OXloVGjRli2bBlatGhhp1dcfhrh6AY9lWVmZiIwMBAZGRkICAhQdN+RkUBKCnDgANC+vaK7JiKqVPLy8nDu3Dk0aNAA3qbt8uQwOp0OzZo1w+DBg/H222+rXRxFlPW+suX7mzU3CuKJ/IiIyF4uXLiALVu2oEuXLsjPz8e8efNw7tw5/N///Z/aRat02KFYQQw3RERkL25ubkhISED79u3RqVMnnDhxAtu2bUOzZs3ULlqlw5obBTHcEBGRvURERJQY6USWseZGQQw3RERE6mO4URCvL0VERKQ+hhsFseaGiIhIfQw3CmK4ISIiUh/DjYIYboiIiNTHcKMghhsiItfQtWtXTJw40XC/fv36mDNnTpnbaDQarF27tsLPrdR+yjJ9+nS0atXKrs9hTww3CmK4ISKq3Pr27YuePXtafOznn3+GRqPB8ePHbd7vwYMHMWrUqIoWz0xpASM1NRW9evVS9LmcDcONgjhaioiochsxYgS2bt2Kv/76q8RjS5YsQbt27RAVFWXzfmvXrg1f/S9cOwsNDYVWq3XIc1VVDDcKYs0NEVHl9tBDD6F27dpISEgwW56dnY2VK1dixIgR+Oeff/D444+jTp068PX1RcuWLbFs2bIy91u8Wer3339H586d4e3tjebNm2Pr1q0ltpk8eTIaN24MX19fNGzYEG+88QZu3boFQF6d+80338SxY8eg0Wig0WgMZS7eLHXixAncf//98PHxQc2aNTFq1ChkZ2cbHh8+fDj69++PDz74AGFhYahZsybGjBljeC5r6HQ6vPXWW6hbty60Wi1atWqFTZs2GR4vKCjA2LFjERYWBm9vb0RGRiI+Ph4AIITA9OnTUa9ePWi1WoSHh2P8+PFWP3d58AzFCmK4ISKXJoR6H4C+voBGc9vVPDw8MHToUCQkJOC1116D5t9tVq5ciaKiIjz++OPIzs5G27ZtMXnyZAQEBOCHH37Ak08+iTvuuAMdOnS47XPodDoMHDgQISEh+OWXX5CRkWHWP0fP398fCQkJCA8Px4kTJzBy5Ej4+/vj5ZdfRlxcHE6ePIlNmzZh27ZtAIDAwMAS+8jJyUGPHj0QGxuLgwcP4vLly3jmmWcwduxYswC3fft2hIWFYfv27Th79izi4uLQqlUrjBw58ravBwA+/PBDzJw5E5988glat26NxYsX4+GHH8apU6fQqFEjzJ07F+vWrcO3336LevXq4eLFi7h48SIAYPXq1Zg9ezaWL1+OFi1aIC0tDceOHbPqectNuJiMjAwBQGRkZCi+71WrhACEuOcexXdNRFSp5Obmil9//VXk5uYaF2Znyw9BNabsbKvLnpycLACI7du3G5bde++94oknnih1mz59+ogXXnjBcL9Lly5iwoQJhvuRkZFi9uzZQgghNm/eLDw8PMTff/9teHzjxo0CgFizZk2pz/H++++Ltm3bGu5PmzZNREdHl1jPdD+LFi0S1atXF9kmr/+HH34Qbm5uIi0tTQghxLBhw0RkZKQoLCw0rPPoo4+KuLi4UstS/LnDw8PFO++8Y7ZO+/btxejRo4UQQowbN07cf//9QqfTldjXzJkzRePGjUVBQUGpz6dn8X31L1u+v9kspSDW3BARVX5NmzZFx44dsXjxYgDA2bNn8fPPP2PEiBEAgKKiIrz99tto2bIlatSoAT8/P2zevBkpKSlW7T85ORkREREIDw83LIuNjS2x3ooVK9CpUyeEhobCz88Pr7/+utXPYfpc0dHRqKbv9AmgU6dO0Ol0OHPmjGFZixYt4O7ubrgfFhaGy5cvW/UcmZmZuHTpEjp16mS2vFOnTkhOTgYgm76SkpLQpEkTjB8/Hlu2bDGs9+ijjyI3NxcNGzbEyJEjsWbNGhQWFtr0Om3FcKMghhsicmm+vkB2tjqTjZ15R4wYgdWrVyMrKwtLlizBHXfcgS5dugAA3n//fXz44YeYPHkytm/fjqSkJPTo0QMFBQWKHap9+/ZhyJAh6N27NzZs2ICjR4/itddeU/Q5THl6eprd12g00Ol0iu2/TZs2OHfuHN5++23k5uZi8ODBGDRoEAB5wc8zZ87g448/ho+PD0aPHo3OnTvb1OfHVuxzoyCOliIil6bRGD8IK7nBgwdjwoQJ+Oabb7B06VI8//zzhv43e/bsQb9+/fDEE08AkH1ofvvtNzRv3tyqfTdr1gwXL15EamoqwsLCAAD79+83W2fv3r2IjIzEa6+9Zlh24cIFs3W8vLxQVFR02+dKSEhATk6OofZmz549cHNzQ5MmTawq7+0EBAQgPDwce/bsMQRA/fOY9kEKCAhAXFwc4uLiMGjQIPTs2RPXrl1DjRo14OPjg759+6Jv374YM2YMmjZtihMnTqBNmzaKlLE4hhsFseaGiKhq8PPzQ1xcHKZMmYLMzEwMHz7c8FijRo2watUq7N27F9WrV8esWbOQnp5udbjp3r07GjdujGHDhuH9999HZmamWYjRP0dKSgqWL1+O9u3b44cffsCaNWvM1qlfvz7OnTuHpKQk1K1bF/7+/iWGgA8ZMgTTpk3DsGHDMH36dFy5cgXjxo3Dk08+iZCQkPIdHAteeuklTJs2DXfccQdatWqFJUuWICkpCV9//TUAYNasWQgLC0Pr1q3h5uaGlStXIjQ0FEFBQUhISEBRURFiYmLg6+uLr776Cj4+PoiMjFSsfMWxWUpBDDdERFXHiBEjcP36dfTo0cOsf8zrr7+ONm3aoEePHujatStCQ0PRv39/q/fr5uaGNWvWIDc3Fx06dMAzzzyDd955x2ydhx9+GP/5z38wduxYtGrVCnv37sUbb7xhts4jjzyCnj174r777kPt2rUtDkf39fXF5s2bce3aNbRv3x6DBg1Ct27dMG/ePNsOxm2MHz8ekyZNwgsvvICWLVti06ZNWLduHRo1agRAjvx677330K5dO7Rv3x7nz5/Hjz/+CDc3NwQFBeHTTz9Fp06dEBUVhW3btmH9+vWoWbOmomU0pRFCCLvtvRLKzMxEYGAgMjIyEBAQoOi+L18G9EG5qAhwY3QkIieVl5eHc+fOoUGDBvD29la7OOQkynpf2fL9za9fBZn2Z8vLU68cRERErozhRkE+PsZ5Nk0RERGpg+FGQe7ugL4WjSOmiIiI1MFwozB2KiYiIlIXw43CGG6IyJW42JgUsjOl3k8MNwpjuCEiV6A/4+1NftiRgvRnaDa9VER58CR+CmO4ISJX4O7ujqCgIMP1iXx9fQ1n+CUqD51OhytXrsDX1xceHhWLJww3CmO4ISJXERoaCgBWX4CR6Hbc3NxQr169CgdlhhuF8fpSROQqNBoNwsLCEBwcbNeLIJLr8PLygpsCZ8BluFEYa26IyNW4u7tXuI8EkZLYoVhhDDdERETqYrhRGMMNERGRuhhuFMZwQ0REpC6GG4Ux3BAREamL4UZhHC1FRESkLoYbhbHmhoiISF2qhpv4+Hi0b98e/v7+CA4ORv/+/XHmzJnbbrdy5Uo0bdoU3t7eaNmyJX788UcHlNY6DDdERETqUjXc7Ny5E2PGjMH+/fuxdetW3Lp1Cw8++CByymjT2bt3Lx5//HGMGDECR48eRf/+/dG/f3+cPHnSgSUvHcMNERGRujSiEl3S9cqVKwgODsbOnTvRuXNni+vExcUhJycHGzZsMCy7++670apVKyxcuPC2z5GZmYnAwEBkZGQgICBAsbLrrVwJDB4MdO4M7Nyp+O6JiIhcki3f35Wqz01GRgYAoEaNGqWus2/fPnTv3t1sWY8ePbBv3z6L6+fn5yMzM9NssifW3BAREamr0oQbnU6HiRMnolOnTrjrrrtKXS8tLQ0hISFmy0JCQpCWlmZx/fj4eAQGBhqmiIgIRctdHEdLERERqavShJsxY8bg5MmTWL58uaL7nTJlCjIyMgzTxYsXFd1/cay5ISIiUleluHDm2LFjsWHDBuzatQt169Ytc93Q0FCkp6ebLUtPT0doaKjF9bVaLbRarWJlvR2GGyIiInWpWnMjhMDYsWOxZs0a/PTTT2jQoMFtt4mNjUViYqLZsq1btyI2NtZexbQJww0REZG6VK25GTNmDL755ht8//338Pf3N/SbCQwMhI+PDwBg6NChqFOnDuLj4wEAEyZMQJcuXTBz5kz06dMHy5cvx6FDh7Bo0SLVXocp03AjBKDRqFseIiIiV6Nqzc2CBQuQkZGBrl27IiwszDCtWLHCsE5KSgpSU1MN9zt27IhvvvkGixYtQnR0NFatWoW1a9eW2QnZkfThRgggP1/dshAREbmiSnWeG0ew93luCgsBT085f/UqULOm4k9BRETkcqrseW6cgYcH4OUl59nvhoiIyPEYbuyAnYqJiIjUw3BjBww3RERE6mG4sQOGGyIiIvUw3NgBww0REZF6GG7sgNeXIiIiUg/DjR2w5oaIiEg9DDd2wHBDRESkHoYbO2C4ISIiUg/DjR0w3BAREamH4cYOGG6IiIjUw3BjBxwtRUREpB6GGztgzQ0REZF6GG7sgOGGiIhIPQw3dsBwQ0REpB6GGztguCEiIlIPw40dMNwQERGph+HGDjhaioiISD0MN3bAmhsiIiL1MNzYAcMNERGRehhu7IDhhoiISD0MN3bAcENERKQehhs7MA03QqhbFiIiIlfDcGMH+tFSRUVAQYG6ZSEiInI1DDd2oK+5Adg0RURE5GgMN3bg6Ql4eMh5hhsiIiLHYrixE3YqJiIiUgfDjZ0w3BAREamD4cZOGG6IiIjUwXBjJ7y+FBERkToYbuyENTdERETqYLixE4YbIiIidTDc2AnDDRERkToYbuyE4YaIiEgdDDd2wnBDRESkDoYbO+FoKSIiInUw3NgJa26IiIjUwXBjJww3RERE6mC4sROGGyIiInUw3NgJww0REZE6GG7shOGGiIhIHQw3dsLRUkREROpguLET1twQERGpg+HGThhuiIiI1MFwYycMN0REROpguLEThhsiIiJ1MNzYCcMNERGROhhu7ISjpYiIiNTBcGMn+pqbwkLg1i11y0JERORKGG7sRB9uADZNERERORLDjZ14eQFu/x5dhhsiIiLHYbixE42GnYqJiIjUwHBjRww3REREjsdwY0f6EVMMN0RERI7DcGNH+pobDgcnIiJyHIYbO2KzFBERkeMx3NgRww0REZHjMdzYEcMNERGR4zHc2BHDDRERkeMx3NgRR0sRERE5HsONHXG0FBERkeOpGm527dqFvn37Ijw8HBqNBmvXri1z/R07dkCj0ZSY0tLSHFNgG7FZioiIyPFUDTc5OTmIjo7G/PnzbdruzJkzSE1NNUzBwcF2KmHFMNwQERE5noeaT96rVy/06tXL5u2Cg4MRFBSkfIEUxnBDRETkeFWyz02rVq0QFhaGBx54AHv27Clz3fz8fGRmZppNjsJwQ0RE5HhVKtyEhYVh4cKFWL16NVavXo2IiAh07doVR44cKXWb+Ph4BAYGGqaIiAiHlZejpYiIiBxP1WYpWzVp0gRNmjQx3O/YsSP++OMPzJ49G19++aXFbaZMmYJJkyYZ7mdmZjos4HC0FBERkeNVqXBjSYcOHbB79+5SH9dqtdBqtQ4skRGbpYiIiByvSjVLWZKUlISwsDC1i2ERww0REZHjqVpzk52djbNnzxrunzt3DklJSahRowbq1auHKVOm4O+//8bSpUsBAHPmzEGDBg3QokUL5OXl4bPPPsNPP/2ELVu2qPUSysRwQ0RE5HiqhptDhw7hvvvuM9zX940ZNmwYEhISkJqaipSUFMPjBQUFeOGFF/D333/D19cXUVFR2LZtm9k+KhOGGyIiIsfTCCGE2oVwpMzMTAQGBiIjIwMBAQF2fa4zZ4CmTYHq1YFr1+z6VERERE7Nlu/vKt/npjLjaCkiIiLHY7ixI324KSgACgvVLQsREZGrYLixI324AYDcXPXKQURE5EoYbuzI29s4z07FREREjsFwY0caDUdMERERORrDjZ3x+lJERESOxXBjZxwxRURE5FgMN3bGZikiIiLHYrixM7NwIwTwyCNAr15AUZGq5SIiInJWVf6q4JWdWbi5fh347ju54NQpICpKtXIRERE5K9bc2JlZuLl0yfjAvn2qlIeIiMjZMdzYmdloqb//Nj6wf78q5SEiInJ2DDd2ZjZaiuGGiIjI7hhu7KzUZqnTp3mpcCIiIjtguLEzs3BjWnMDAAcOOLw8REREzo7hxs4shhtPT3nLTsVERESKY7ixM4vNUt27y1v2uyEiIlIcw42dWRwt9cgj8vaXXwCdTpVyEREROSuGGzvT19zkZd0C0tPlnR495AMZGbJjMRERESmG4cbO9OFGeyNdXn7BwwMIDwfat5cPsGmKiIhIUQw3dqYPN34Z/zZJhYUBbm7A3XfL+ww3REREimK4sTN9uAnI+jfchIfL29hYecsRU0RERIpiuLEzfbgJzPl3pFSdOvI2JkbenjoFZGY6vmBEREROiuHGzvSjpWrk/ltzow83oaFA/fqyHw5P5kdERKQYhhs709fc1Mov1iwFGJum2O+GiIhIMQw3dqYPN7ULizVLAexUTEREZAcMN3amDzdhumLNUoB5uBHCsQUjIiJyUgw3dqYPN3VgoVmqVStAqwX++Qc4e9bhZSMiInJGDDd25uMD+CELAciSC0xrbry8gLZt5TybpoiIiBRRrnBz8eJF/PXXX4b7Bw4cwMSJE7Fo0SLFCuYs3NyAhlrZ30bn5w/4+5uvwPPdEBERKapc4eb//u//sH37dgBAWloaHnjgARw4cACvvfYa3nrrLUUL6Awa/BtubtUOL/kgOxUTEREpqlzh5uTJk+jQoQMA4Ntvv8Vdd92FvXv34uuvv0ZCQoKS5XMKkR6yv01+zTolH9SHm+PHgZwcB5aKiIjIOZUr3Ny6dQtarRYAsG3bNjz88MMAgKZNmyI1NVW50jmJCDcZbnJrWAg3devKqagIOHTIwSUjIiJyPuUKNy1atMDChQvx888/Y+vWrejZsycA4NKlS6hZs6aiBXQG4RrZLJUTaKFZCmDTFBERkYLKFW7effddfPLJJ+jatSsef/xxREdHAwDWrVtnaK4iI/05bjIDLNTcAMZww07FREREFeZRno26du2Kq1evIjMzE9WrVzcsHzVqFHz1J3Yhg5BCGW4yqpUSbkwvwyAEoNE4qGRERETOp1w1N7m5ucjPzzcEmwsXLmDOnDk4c+YMgoODFS2gM6hVIJulrnmX0izVpg3g6QmkpwMXLjiwZERERM6nXOGmX79+WLp0KQDgxo0biImJwcyZM9G/f38sWLBA0QJWeTodauTJcHNVW0rNjbc30Lq1nGfTFBERUYWUK9wcOXIE9957LwBg1apVCAkJwYULF7B06VLMnTtX0QJWeVeuwEMUQgcNrnqElr4eOxUTEREpolzh5ubNm/D/90y7W7ZswcCBA+Hm5oa7774bF9isYu6SrLW5jGBk53uWvh47FRMRESmiXOHmzjvvxNq1a3Hx4kVs3rwZDz74IADg8uXLCAgIULSAVd7fsjPx36iDmzfLWE/fqfjoUSA31/7lIiIiclLlCjdTp07Fiy++iPr166NDhw6I/feLecuWLWit7ztCkrXhJjISCAkBCgtlwCEiIqJyKVe4GTRoEFJSUnDo0CFs3rzZsLxbt26YPXu2YoVzCv82S11CeNlXV9Bo2DRFRESkgHKd5wYAQkNDERoaarg6eN26dXkCP0usrbkBZNPU99+zUzEREVEFlKvmRqfT4a233kJgYCAiIyMRGRmJoKAgvP3229DpdEqXsWqzJdxwxBQREVGFlavm5rXXXsPnn3+OGTNmoFOnTgCA3bt3Y/r06cjLy8M777yjaCGrNJNmqduGm3btAHd34K+/5FS3rv3LR0RE5GTKFW6++OILfPbZZ4argQNAVFQU6tSpg9GjRzPcmDKpudHeLtxUqwZERckOxfv3A4MG2b98RERETqZczVLXrl1D06ZNSyxv2rQprl27VuFCOY28POCffwBY2SwFsGmKiIiogsoVbqKjozFv3rwSy+fNm4eoqKgKF8pppKYCAHReWlxH9bJHS+npz3fDEVNERETlUq5mqffeew99+vTBtm3bDOe42bdvHy5evIgff/xR0QJWaf82SRUG1wH+0thWc3P4MFBQAHh52a98RERETqhcNTddunTBb7/9hgEDBuDGjRu4ceMGBg4ciFOnTuHLL79UuoxV17/hRhcmL5hpVbi5806gZk0gPx84cMCOhSMiInJO5T7PTXh4eImOw8eOHcPnn3+ORYsWVbhgTuHfkVIIDwcgw40Q8nx9pdJogF69gK++AhYtAu65x/7lJCIiciLlqrkhK/1bc+MWUcewKC/Piu0mTJC3y5cb+u0QERGRdRhu7OnfcOMRaQw3VjVNtWsHdOoE3LoFLFhgp8IRERE5J4Ybe/q3Wcqtbji0WrnIqhFTADBxorxdsMDK6h4iIiICbOxzM3DgwDIfv3HjRkXK4nz+rblBnTrw9ZV9hK2quQGA/v2BevWAlBTgm2+Ap5+2VymJiIicik01N4GBgWVOkZGRGDp0qL3KWrUIUSLcADaEGw8PYNw4OT9njtwfERER3ZZGCNf61szMzERgYCAyMjIQEBBgvye6fh2oUUPO37yJxtE++P134OefbRgAdf06EBEh27ISE4H777dbcYmIiCozW76/2efGXvS1NjVqAD4+ttfcAED16sDw4XJ+zhwFC0dEROS8GG7sxaRJCpDXxARsDDcAMH68vN2wAfj9d2XKRkRE5MQYbuyl2An89DU3Vo+W0mvcGOjTR/a5+egj5cpHRETkpFQNN7t27ULfvn0RHh4OjUaDtWvX3nabHTt2oE2bNtBqtbjzzjuRkJBg93KWS7Gam3I1S+nph4UvXgxwRBoREVGZVA03OTk5iI6Oxvz5861a/9y5c+jTpw/uu+8+JCUlYeLEiXjmmWewefNmO5e0HJQMN926AS1ayGqfxYuVKR8REZGTKve1pZTQq1cv9OrVy+r1Fy5ciAYNGmDmzJkAgGbNmmH37t2YPXs2evToYXGb/Px85OfnG+5nZmZWrNDWKqVZqlzhRqORtTcjRwJz58p+OB6q/umIiIgqrSrV52bfvn3o3r272bIePXpg3759pW4THx9vdi6eiIgIexdTUrLmBgCGDJFXC79wAVi3ruLlIyIiclJVKtykpaUhJCTEbFlISAgyMzORm5trcZspU6YgIyPDMF28eNERRTXW3FR0tJSejw/w3HNynsPCiYiISlWlwk15aLVaBAQEmE12V1gIpKfL+YqOljI1erRsjvr5Z+Dw4YqVkYiIyElVqXATGhqKdH1o+Fd6ejoCAgLg4+OjUqksSEsDdDoZRIKDASjQLAXIoBQXJ+c//LBiZSQiInJSVSrcxMbGIjEx0WzZ1q1bERsbq1KJSqFvkgoLA9zkIVYk3ADGYeHLlwOpqRXcGRERkfNRNdxkZ2cjKSkJSUlJAORQ76SkJKSkpACQ/WVML8T53HPP4c8//8TLL7+M06dP4+OPP8a3336L//znP2oUv3T6zsT/NkkBCoabdu2ATp2AW7eABQsquDMiIiLno2q4OXToEFq3bo3WrVsDACZNmoTWrVtj6tSpAIDU1FRD0AGABg0a4IcffsDWrVsRHR2NmTNn4rPPPit1GLhqio2UAhQMN4Cx9mbBAiAvT4EdEhEROQ9VT5bStWtXlHVRcktnH+7atSuOHj1qx1IpoNhIKUCB0VKm+vcH6tUDUlKAb74Bnn5agZ0SERE5hyrV56bKKKNZqkKjpfQ8PIAxY+T8woUK7JCIiMh5MNzYg72bpQBg+HDA0xM4eBCo7DVZREREDsRwYw8WmqUUDzfBwcDAgXL+k08U2ikREVHVx3BjD/YcLWXq2Wfl7ddfA1lZCu6YiIio6mK4UVp2NqC/OGcpNTdl9KG2TdeuQOPG8jmXLVNop0RERFUbw43S9E1S/v5y+pd+tJROBxQUKPRcGg0wapScZ9MUERERAIYb5VlokgLkdS/1FBkxpTdsGODlBRw5Ahw6pOCOiYiIqiaGG6VZGCkFyIFNnp5yXtF+N7VqAYMGyXnW3hARETHcKM7CSCk9u3QqBowdi5ctM/b3ISIiclEMN0orpVkKsD7cfPgh8OCDNgyAuvdeoFkz2d719dfWl5WIiMgJMdworZRmKcC6cHP5MvDyy8DWrcDGjVY+Z/GOxYoNxyIiIqp6GG6UVkazlDXXl1q0yDia6tdfbXjeoUMBrRY4dgw4cMCGDYmIiJwLw43SrGiWKm201K1bwMcfG+/bFG5q1AAGD5bz7FhMREQujOFGSTpdhToUr14NpKYa79sUbgBjx+Lly4EbN2zcmIiIyDkw3Cjp6lWgsFD2gQkNLfHw7cLNRx/J26eflre//SZrc6zWsSPQogWQmwt89ZUNGxIRETkPhhsl6ZukgoONJ7UxUVa4OXQI2LtXbvbf/wJ+fjLYnD1rw/NrNMbaG3YsJiIiF8Vwo6QyRkoBZYcbfa1NXBwQFiZHdgPlaJp68kl5OuSTJ4F9+2zcmIiIqOpjuFFSGf1tgNJHS6Wny24yADBunLxt3lze2hxugoJkQgLYsZiIiFwSw42SyhgpBZQ+Wko//DsmBujQQS5r0ULe2hxuAGPT1LffAtevl2MHREREVRfDjZLK0SxVUAAsWCDnx483Li93zQ0gU1JUFJCXByxdWo4dEBERVV0MN0q6TbOUpXDz3Xdy+HdoqPH6l4Ax3Jw+LQdg2YQdi4mIyIUx3CjJymYp03Azd668ff55wMvLuDwyUvYLLigA/vyzHGUZMkQ+YXIysHt3OXZARERUNTHcKMnGZqmDB+WAJk9PY0WLnptbBUZMAUBgIPD443L+00/LsQMiIqKqieFGKfn5wD//yHkrR0uZDv8OCSm5foX63QDGswGuXStP7EdEROQCGG6Uou9vo9UC1atbXMV0tFRamnH4t2lHYlMVGjEFAHffDdSrB2Rl2XCJcSIioqqN4UYppk1SGo3FVUybpRYtkmcgvvtuoH17y7uscM2Nm5vxnDf6JEVEROTkGG6UEhEBvPtu6dUwMIabGzcsD/8uTh9ukpOBoqJyluuxx+Tthg1AdnY5d0JERFR1aIRwrXHCmZmZCAwMREZGBgICAhz63MeOAa1aGe+HhQHnz5uPkjJVVCT76eTny2tM3XFHOZ5UCKBxY7mDb74xdjImIiKqQmz5/mbNjQPpa270nnuu9GADAO7uQNOmcr7cTVMajbH2hk1TRETkAhhuHEg/WgqwPPzbkgr3uwGM4WbjRl6OgYiInB7DjQOZ1tw89pjl4d/FVXjElH4nd90lezCvXVuBHREREVV+DDcOVK2asRlKf/Xv21Gk5gZg0xQREbkMhhsH8vQEEhLkCYNLG/5dnOmIKZ2uAk+uHxKemAhcuVKBHREREVVuDDcO9vjjwDPPWL/+HXfIUJSTA6SkVOCJ77wTaNtWDsFavboCO6IKyc8HXn0VWLJE7ZIQETkthptKzsMDaNJEzrNpygm8/DIQHy8vjfHWW2qXhoiUJkQFq9lJCQw3VYBi/W4GD5a3u3YZz6hMjvPdd8bLwAPAtGkMOETO5qWXAD8/eWVkUg3DTRWgyIgpQF5nqlMn+cti5UrrtyssBIYNk21q5T5Vsov780/jhUxfflmezRqQAefNN9UrFxEp58QJYNYseaHi6dPVLo1LY7ipAhSruQGMHYtXrLB+mzffBJYulc1ZGzYoUAgXk58vj3tGBtCxI/Df/5oHnOnTGXCI1HbtWsUvUfPKK/LHIwD8+CNw8mTFy0XlwnBTBZiGmwpfLOPRR+UFNffvB86du/36iYnAO+8Y78+fX8ECuKCXXwYOHQJq1JAB0dPTuPy99+S8mgEnJQWYNw/YsUOBNxiRAyUmyhEaR45UbD/ffw+EhwNRUfLif+WxfbsMNB4esoYcAD74oGLlovITLiYjI0MAEBkZGWoXxWr5+UJ4eAgBCHHxogI7vP9+ubMZM8peLy1NiNBQue7DDwuh0cj55GQFCuEiVq+WxwwQYsMGy+u8955xnWnTrN/3jRtC/P67EDpd+cqWnCzE8OHGNxcgRLt2QqxYIcStW+Xb582bQvz1lyxbefdBjnfzphAHDwqxe7cQO3cKsX27EImJQmzZIsSmTUL8+KMQ69cLsW6dXO/GDXXLe+GCEIMGGd+3vr6l/3/dztKlQri7G/c1YoTt+ygqkv87gBBjxwpx4ICc9/BQ6EObhLDt+5vhpopo1kz+r2zapMDOFi2SO2vVqvR1ioqEePBBuV6LFkLk5MiAAwgxbpwChXABf/whRGCgPGYvv1z2utYEHJ1OiF9/FeL994Xo2tUYSho2lPs/cMC6oHPggBADBxrDqj7U+PgY7zdsKMT8+fLvfjtpaUJ89pkQffsK4e1t3AcghFYrRM2aQkRGCtG8uRAdOshwHRcn93/mTPnDmaPk5wtx8qQQK1cK8fnnQvz2W+Uv8+1kZ8vg8tprQtxzjxBeXuZ/N2umWrWEiI0V4sknhXjzTSG++Ua+t65ft1+5c3OF+O9/je9VNzf5vtLPf/KJbfubN8/4eh580Pg/sWWLbftZtkxu5+cnRHq6XNa1q1z2wgu27UsvLU2IAQOE+OKL8m3vhGz5/uZVwauIQYPk6WlmzQL+858K7uyff4DQUNlRODnZeHVOUzNmAFOmAD4+skmleXNg61bgwQcBf3852srfv4IFcWL5+cA998hj17GjbPLRN0eV5oMP5EgLQHY0nj5d7mfnTtnX6YcfZMdkUx4e8u+oFxkp3yyDBgEdOsgmSEB+fP/0kxyGnphoXL9/f9lPICZGntxx/nzZRPXPP/LxWrWAsWOBMWPkvH5fp0/Lqvx162QTp+nHiJubbUNh69YFuncHunWTU1iYddvpdPJaadnZsgNnaVNenjxO/v5yFIulWx8feTKp06fl/0RysmwHTk4G/vijZEf6+vWBHj3kdP/9QGCgdWUuKgIuXJD7LCiQx8rdXd4Wn9f/7XS6sic3N1l+X195W3ze0xPIygL27JHvpZ075fvS9H0DALVry9dRWnnc3eXf+eJFID297Nfp6wtUry6bYi3dVq8OREQAsbHG99XtbNgATJhg/B/o3Bn46COgWTNg1Ch5hlRAnkfqv/+VFw0ujRDyf+G11+T9ceOAOXPk/ufNk/9HJ0/K98ft5OfLMpw7B7z9NvD663L5xo1A795yHxcvAkFB1r1Ovbg44Ntv5XHftUt+jrg4m76/7R61KpmqWnMzdar8EfDMMwrtsFcvucPp00s+tmePsZr2s8+My4uKhGjcWC6fP1+hgjip8ePlcapRQ4iUFOu3e/994y/Jjh2FqFbN/Neyl5cQPXoIMXeurBnKzpY1CnFxJdetW1eICRNkbUP79sblHh5CDB0qxKlTlsuQkyN/0TZoYNzGx0eI0aOFmDRJiDvvLPkrvl07Id56S4ikJFmrkZcnxNWrsvng1CkhfvlFNnN8/738hf/220Lcd5/lGoPmzeXxW7FCiIQEId59V/76feIJIR54QIjoaNlcatqUUNHJza3sx/39Za1T585CeHqaP+buLkSnTvL1798vRGGhEP/8I8TevUIsWSLEK6/ImrIWLWRNllJltnZydzevpdNP9erJWpfPPrO9eTMzU4ijR4X49lsh/vc/IZ56Soh77zU2Y9syNW0qm4KWLLFcK/b770L06WNcPzxcvodM19PpZI2nfp0nnpA1bpbodLKmU7/u1KnGfWVlyVpGQDYvWWPOHLl+WJj8fzR9nrvuko/Fx1u3L70ffjA/RhER8v/JxbHmpgxVteZmxQp5Dr6OHeUPsApbulQO727aVP5C1f/KuXYNaN1adjL9v/8DvvrK/BfQ3Lny102zZsCpU2X/OnJV330HPPKInN+wAejTx7btTWtwANnRsU8fOXXrVvqvydxcYNMmYNUqYP16+WvdlI+P7Hz5wgvyl+ntFBbK1/Lee8Dhw+aPeXnJGot+/YCHHpK1L+Vx8yawe7esTdq2DTh61LwWyBparbGWwtLk7S1fS3a2PCZZWcb5nBzzfQUHy/e2fmreXN6Ghxvf69nZsvZj82Y5/fZbyWNTUFB6eb285KnHq1WTNS9FRSVrY4qK5GRai6OfNBrz+0VF8m9/86axturmzZLP27Ah0KWLcapf37bjbK3sbODyZVmrdu2a+a1+/to1Yy1ZccHBskPuPfcAV68CM2fK4+npKautX3+99FrjxYtlLU5RkfxfWb3avFatqEjWQn7yibw/cyYwaZL5PrZtAx54QM7v2gXce2/przUjQ/4t//kHWLQIGDnS/PEvvwSGDpU15efPy/fq7eTkyPN/XLgAPPecLM/Zs/L/bN06l/7MZc1NGapqzc3x4zLABwUp1Nx/44bxV+SxY3KZTidE//5y2Z13yl9nlrbT1xD89JMCBbGTGzeEmD1biCZN5LR9u2Oe15Z+NmVZvlz+Ij5ypHx/8NxcWUvy5JNCREXJvhX6vgC20unk3/qxx2SNz6pVlt8bSrh6VdZEPfecEDExsh/Ek0/Kmpv33pP9DzZulMflr79K/3VurcJC+Vr+/lvWtpTHuXOyr8fAgca/PSBEnTqyf9Hzz8tf9xs3yvdHYWHFymwNnU6+B65dk8cpLc3+z1keV6/KTsqTJ8var9L6/jz4oBCnT1u3z02bZN8XQIiWLY0degsKhHj8cblcozGvlS7umWeMn4Nl9TubMkWu16yZ5Q70BQWyBrV4LXhZXnrJWLOWnS3f6/rP6g8+sG4fToodistQVcNNXp6x5vzSJYV2OmCA3OGUKfL+3LnGpo/Dh0vf7vnn5XoDBypUEAWdOiW/GIs30QBCjBkjq53LS6eTH3RpaUKcPSur5X/+WX5pffutEIsXC9GmjXyujh3lBxu5llu3ZNNKRd5nriw3V47Yevdd2UG9c2ch1qyxPeAfOSKbifQh85dfjE1bnp6yybMsN27I7QAhXnzR8joXLxo70H//fen7mjlTrtOkiWzaL0tSkrG5df164/KPP5bLPDyE2Lev7H04MYabMlTVcCOEsbvL1q0K7XDFCrnDBg1kmNH/avrww7K3O3nS2E/hwgWFClMBhYXyA1A/xF0/NW8uPxRGjTIuq1/f9hqnffuEePRR60eU2NrPhoiUd/68cZipfvLxkcParbF+vfFz7pdfSj7+1FPy8XvvLTt8ZWYaa/TWri19vcJCWVsJyGHupnQ6IQYPNtbolLeWsYpjuClDVQ43+haj22UPq2Vny/NDAHJYJyBEv37W/UrSD3N89VWFClMOV6/Kc/XUq2f88HJzkzVSiYnmr2PrVvP1nn++7F/XhYWyeSQ21nKA8fOTnScbNRKidWv5Ade7txBDhghx6JD9XzsR3d61a0J06SL/ZwMChNi1y7bthwyR27ZoIavP9Y4fN1al799/+/3om686dix9nfnz5Tr+/rKZtLiMDCHuuEOu8/DDttVmnTsna5c2bpQ/7vbskZ9TJ07IDtspKbLZ2ppTP9xORobc98GDFd9XiV0z3JSqKoebV1+V7+tnn1Vwp489Zt4j39pfBKtWGUNRbq6CBbLSwYPm/Rtq1JDt9ufPl75NZqZssjKtxUlMLLnOnDnmI4W8vOSvtMOHZSC6XdUyEVUeeXlyxKC1fXZMXb0qRHCw/Bx44w3j8t69LdewlCY11Vjzu3t3ycf//luGL0COVCyNaQ377Nm3f96LF4UYOdK2kYW1asnRlYMHy8/UhQuF2LxZNrfq+7jdvCmD0erV8gfm00/LH3ghIcb93H+/dcfGBgw3ZajK4ebrr421oIpZu1bu1N1dpnlr3bpl7Ci3dKmCBbLCb78JUbu28RfV4sXyn81a27YZh3sCMvD8+qtsW9d/wADy5HOvvy4/mIjINa1caezvcvSorPnQ3//tN+v3o++k/PDDJR/Tn205Jub2Hc71Jx709LTcXCaEEJcvy9M2mJ56ICpK1jI3by5rgOrUkUHG39/6JneNRm5j6dQCplNwsPXBzwYcCl6GqjoUHACSkuQo7Ro15AhJRUYE6nTyhFd33QUMHGjbtu+8I4dlxsTIE7k5QlqaHA9/7hzQpo08OV55TiaYlSVPXvfxxyUfa9xYDjkdOlSejIyIXJv+LKqtW8uT6h06JIeUz5tn/T7OnJGnFRDC/OSpGzYAffvK/R4+DERHl70fIYDBg+UpH+rXl9fVql5dPpaZKc/0OnOm8SKgnTsD//uf8XpXpdHp5Ofi+fPyRInnzpWccnON6wcGys/Kxo2BRo2Mt40aWX9SSxtxKHgZqnLNzc2bxsBc3lG9ikpPNyb+Awfs/3wZGfKSEYD85aHE8NaffpLNU4A8qdz69Wx2IiJzqamy6du0z115PoT1HSf116/Kzjb2BXzpJev3c+OGvEQKIPd586YcJl6zprGMrVvLPjZKXSpEp5OfuUePypohFS5BwmapMlTlcCOEsT9ZpTnFzBNPyAING2bd+gUFcrSVrQEiL884Gio4WA7FVkpuruxwR0RUmqVLjcHh7bfLt4+9e439+P7+WzaFA7KZ3PTsxtY4eNB4tuygIGPZmjSRp6Zwwh9ptnx/u9ml7ojspnlzefvrr+qWw2DMGHm7fLm8NlFphJDVry1byiawjh2BX36x7jl0OtlE9NNP8uy8GzfKs4IqxdvbfmdrJSLn8MQT8jprvXuX/wJ/sbHyzMsFBcDzzwOzZ8vlH38sz1hti3btZPMTANy4Ia/V9fnn8ppYjz5qvDaZi3LtV18FVbpwExMDtG0rLx73+eeW1zlxQl5ws29f2e4MyGBz993A8OFAamrp+xcCmDhRXkDO0xNYs0b2tSEiciSNRl6o84cfbA8ipvSXVlm3Tl4O4tFHZWAqj7Fj5cVuFyyQlwF5+ml5kVhiuKlqWrSQt5Um3Gg08h8MkP9gpldPTk8Hnn0WaNVKXh/Fywt4+WXZmW7YMLnOF1/IjmjvvisDUnEzZsgPFEBeD6t7d7u+HCIiu3roIWNn4oAAeTXy8tJogNGj5TWovL0VKZ6zYLipYipdzQ0AxMUBNWvKi21u2ADk5cmw0qiRvJicTidHGyQny+VNmwIJCXKEVYcOslf/K6/I5Pb997K2BpAXwXv1VTk/Z468cigRUVXm5iYvRlujhmyOCg9Xu0ROiUPBq5icHONFoa9cAWrVUrc8Bq+8IoPLXXfJsHL+vFzerp1sV77nHsvb6XTA118Dkycbm6ceeEBebXrCBFkTNHmyrMEhIiKXZcv3N8NNFdSggcwOu3YB996rdmn+df480LChsdalTh0gPh4YMsS6jm1ZWXL9mTNlZzu9YcOAJUsUOqkPERFVVbZ8f7NZqgrSN02dOqVuOczUry/bfqtXB6ZPlx2Hn3zS+h77/v7yRFPJyUD//nJZ377Ap58y2BARkU3YrboKat4c+PHHStbvBpBn67TljJ2WNGwoR0SlpgKhoQw2RERks0pRczN//nzUr18f3t7eiImJwYEDB0pdNyEhARqNxmzydrFe4pVuxJQ9hIUx2BARUbmoHm5WrFiBSZMmYdq0aThy5Aiio6PRo0cPXL58udRtAgICkJqaapguXLjgwBKrr1KOmCIiIqokVA83s2bNwsiRI/HUU0+hefPmWLhwIXx9fbF48eJSt9FoNAgNDTVMISEhpa6bn5+PzMxMs6mqa9ZM3qamAtevq1sWIiKiykbVcFNQUIDDhw+ju8mJ2dzc3NC9e3fs27ev1O2ys7MRGRmJiIgI9OvXD6fK6FkbHx+PwMBAwxQREaHoa1CDv7880zYg+98SERGRkarh5urVqygqKipR8xISEoK0tDSL2zRp0gSLFy/G999/j6+++go6nQ4dO3bEX3/9ZXH9KVOmICMjwzBdvHhR8dehBn3T1IkT6paDiIioslG9WcpWsbGxGDp0KFq1aoUuXbrgu+++Q+3atfHJJ59YXF+r1SIgIMBscgaxsfJ25Up1y0FERFTZqBpuatWqBXd3d6Snp5stT09PR2hoqFX78PT0ROvWrXH27Fl7FLHSGj5cDiZKTARc7KUTERGVSdVw4+XlhbZt2yIxMdGwTKfTITExEbH6qonbKCoqwokTJxAWFmavYlZKkZFAr15yftEidctCRERUmajeLDVp0iR8+umn+OKLL5CcnIznn38eOTk5eOqppwAAQ4cOxZQpUwzrv/XWW9iyZQv+/PNPHDlyBE888QQuXLiAZ555Rq2XoJpnn5W3S5ZYvqA2ERGRK1L9DMVxcXG4cuUKpk6dirS0NLRq1QqbNm0ydDJOSUmBm8kp/K9fv46RI0ciLS0N1atXR9u2bbF371401/ewdSG9e8tLOP39tzypLy+aTURExAtnql2cCps+HXjzTaBrV2D7drVLQ0REZB+8cKYLGTFCXptyxw55rUoiIiJXx3BTxUVEyOYpgB2LiYiIAIYbp6DvWJyQAOTlqVoUIiIi1THcOIFevWQNzrVrwOrVapeGiIhIXQw3TsDdHdCPhC/lRM1EREQug+HGSYwYIUPOzz8Dv/6qdmmIiIjUw3DjJOrUAR56SM6zYzEREbkyhhsnou9Y/MUXQG6uumUhIiJSC8ONE3nwQXnNqRs3eLVwIiJyXQw3TsTdHRg5Us6zYzEREbkqhhsn8/TTgIcHsHcvcPKk2qUhIiJyPIYbJxMWBjz8sJxn7Q0REbkihhsnpO9Y/OWXwM2b6paFiIjI0RhunFD37kDDhkBGBrBihdqlISIiciyGGyfk5saOxURE5LoYbpzU8OGyY/EvvwDHjqldGiIiIsdhuHFSoaFA//5yfvZsVYtCRETkUAw3TmzSJHn7xRfA9u3qloWIiMhRGG6cWGws8Nxzcv6ZZzhyioiIXAPDjZN7912gbl3gzz+BN95QuzRERET2x3Dj5AICjCOm5syRHYyJiIicGcONC+jdG3jiCUCnA0aMAPLz1S4RERGR/TDcuIjZs4HatYFTp4D4eLVLQ0REZD8MNy6iVi1g3jw5/847wIkT6paHiIjIXhhuXMijjwL9+gGFhfLq4YWFapeIiIhIeQw3LkSjAT7+GAgMBA4dkh2MiYiInA3DjYsJDwdmzZLzb7wBnD2rbnmIiIiUxnDjgp56Sl45PC9PntxPp1O7RERERMphuHFBGg2waBHg6wvs3Al8+qnaJSIiIlIOw42LatAA+N//5PxLLwEXL6pbHiIiIqUw3LiwsWPl9aeysoABA4Bjx9QuERERUcUx3Lgwd3fg888Bf3/g8GGgTRt5oc0rV9QuGRERUfkx3Li4Zs3kCf3i4mTH4k8+ARo1kmc0LihQu3RERES2Y7ghREYCy5cDu3YBrVsDGRnApElAy5bAjz+qXToiIiLbMNyQwb33AgcPytFTwcHAb78BffrIC2+ePq126YiIiKyjEUIItQvhSJmZmQgMDERGRgYCAgLULk6llZEB/Pe/wIcfArduAR4e8tINtWoBfn6yn46lW09PuW1mprzVT6b3hQDefRdo3lztV0lERFWFLd/fDDdUpt9+A154AdiwQdn9NmggLwFRo4ay+yUiIudky/e3h4PKRFVU48bA+vXyZH+HD8th49nZpd/eugUEBMjrV+lv9ZP+/owZwLlzwOOPyz497u5qv0oiInImrLkhhzt+XJ5f5+ZN4OWXZRMVERFRWWz5/maHYnK4qChgyRI5/957wIoV6paHiIicC8MNqWLwYFlrAwBPP82zIxMRkXIYbkg1//sf8OCDsnlqwADgn3/ULhERETkDhhtSjbs7sGyZHDml72BcWKh2qYiIqKpjuCFV1agBrF0L+PoCW7cCr76qdomIiKiqY7gh1Zl2MH7/fXkpCCIiovJiuKFKgR2MiYhIKQw3VGnoOxjn5gL9+7ODMRERlQ/DDVUaph2Mz58H2rfnVcmJiMh2DDdUqdSoAaxbB9StK0dQ9ekDPPII8NdfapeMiIiqCoYbqnTuugv49Vdg0iRZm/Pdd0DTpsDMmfLaVURERGVhuKFKyd9fhpkjR+R1qHJygBdfBNq2BfbuVbt0RERUmTHcUKUWFQXs3g18+qlssjpxAujUCXjmGXY4JiIiyxhuqNJzc5Nh5vRp4Kmn5LLPPweaNAG+/BJwrevaExHR7TDcUJVRuzaweDGwaxfQooWsuRk6FHjsMeD6dbVLR0RElQXDDVU5994LHD0KvP227HD87bey+WrHDrVLRkRElQHDDVVJnp7A66/LzsV33CGHit9/P/DKK0BBgdqlIyIiNTHcUJXWoQOQlASMGCH73rz7rhxddeaM2iUjIiK1MNxQlefnB3z2GbBqFVC9uhw+3qYNsGgROxsTEbkihhtyGo88IoeKd+sG3LwJPPssMGAAcPWq2iUjIiJHYrghp1KnDrBlC/DBB7JfzvffA5GR8jIOH34oz3zM2hwiIudWKcLN/PnzUb9+fXh7eyMmJgYHDhwoc/2VK1eiadOm8Pb2RsuWLfEjr65IJtzcgBdeAA4ckEPGb96UF+CcOFHej4iQ58tZtgy4ckXt0hIRkdI0Qqj7O3bFihUYOnQoFi5ciJiYGMyZMwcrV67EmTNnEBwcXGL9vXv3onPnzoiPj8dDDz2Eb775Bu+++y6OHDmCu+6667bPl5mZicDAQGRkZCAgIMAeL4kqEZ1ONlVt2QJs3SrPkZOfb75O69ZyeHlICFCzpjwTcvFbX19Ao5HrFxYCWVlARgaQmWk+ZWUBXl5yfdOpWrWSyzw8HH88iMh6Qsj/d0tTUVHZt3l5pU/5+XJUp1Z7+88J0+Xu7mofEXXZ8v2teriJiYlB+/btMW/ePACATqdDREQExo0bh1deeaXE+nFxccjJycGGDRsMy+6++260atUKCxcuvO3zMdy4ttxceTkHfdg5dsy67bRaeb2rmzflpAQPD8DHR06+vsZ5/X1vbxmUvLxkE5t+3nTy9JQ1VW5uMnzp50ub3N3lZGm++D7088WXmU6WlgHGD3nTD3zTeSHk69dPnp6W54sr69NK/9ym86a3lspb/L5OJychSs4LIafStjed169b2mRazrImnU4es1u3zL9YTe8LIY+Z/rjp502Xububb3frlvm8fl+m74vik+lj1rxPLP1dTO/rg0Px11b8deqngoLS7+flyf/tsm4LCkoeA0u3xQNMZeLtbQw61aqVnEyXF5/Xakv/u5j+n5h+HpR2q1f8/9H0fkAA0K6dsq/flu9vVX87FhQU4PDhw5gyZYphmZubG7p37459+/ZZ3Gbfvn2YNGmS2bIePXpg7dq1FtfPz89HvslP9czMzIoXnKosHx/ggQfkBADp6cC2bXI4+bVr8qzHxW9v3ZK/tIrX+Pj4yH9g08nPT34o5uQYg9DNm+b39R8A+hqgrCyHHgIiqiD9F70+OFq69fGRgcLbu+Sk1cofJ/n55p8TxSf954b+M0Nf81MVrqsXG6vuRY5VDTdXr15FUVERQkJCzJaHhITg9OnTFrdJS0uzuH5aWprF9ePj4/Hmm28qU2ByOiEhwJAhcrJECPkB888/MoRUqwYEBspaHE9P259PCOOvydxc+cGlny9+Py/P+AvVdCq+zFItg+lUVFRyXl+TYjpvWkNhqdZCv45+Mq3NML0PlPywL/7BDxhrcsqqmSj+qx+wvEz/vJZuS5uKl1+I29dK6GtlTLe1NG+pNqv4stvV7ujLU1bNlv49WLxGpnjNTFGRec1O8X15esrnsvQeKT5Z8z653d9Fz7R2qayaPH3NZfFaKf0yb28ZJsq69fIq+ZqLHxNLZSm+XP8ecRT9Z0ZOTumTPgiVNn/zpvmPM9O/g+m8pc8NS7fW/F82bKjscbCV07f6T5kyxaymJzMzExERESqWiKoSjUbWxvj5Kbc/fdMTEdHtmH5m1KqldmmqDlXDTa1ateDu7o709HSz5enp6QgNDbW4TWhoqE3ra7VaaLVaZQpMRERElZ6qQ8G9vLzQtm1bJCYmGpbpdDokJiYiNjbW4jaxsbFm6wPA1q1bS12fiIiIXIvqzVKTJk3CsGHD0K5dO3To0AFz5sxBTk4OnnrqKQDA0KFDUadOHcTHxwMAJkyYgC5dumDmzJno06cPli9fjkOHDmHRokVqvgwiIiKqJFQPN3Fxcbhy5QqmTp2KtLQ0tGrVCps2bTJ0Gk5JSYGbydizjh074ptvvsHrr7+OV199FY0aNcLatWutOscNEREROT/Vz3PjaDzPDRERUdVjy/d3pbj8AhEREZFSGG6IiIjIqTDcEBERkVNhuCEiIiKnwnBDREREToXhhoiIiJwKww0RERE5FYYbIiIicioMN0RERORUVL/8gqPpT8icmZmpckmIiIjIWvrvbWsurOBy4SYrKwsAEBERoXJJiIiIyFZZWVkIDAwscx2Xu7aUTqfDpUuX4O/vD41Go+i+MzMzERERgYsXL/K6VQ7A4+1YPN6OxePtWDzejlWe4y2EQFZWFsLDw80uqG2Jy9XcuLm5oW7dunZ9joCAAP5zOBCPt2PxeDsWj7dj8Xg7lq3H+3Y1NnrsUExEREROheGGiIiInArDjYK0Wi2mTZsGrVardlFcAo+3Y/F4OxaPt2PxeDuWvY+3y3UoJiIiIufGmhsiIiJyKgw3RERE5FQYboiIiMipMNwQERGRU2G4Ucj8+fNRv359eHt7IyYmBgcOHFC7SE5j165d6Nu3L8LDw6HRaLB27Vqzx4UQmDp1KsLCwuDj44Pu3bvj999/V6ewVVx8fDzat28Pf39/BAcHo3///jhz5ozZOnl5eRgzZgxq1qwJPz8/PPLII0hPT1epxFXbggULEBUVZTiRWWxsLDZu3Gh4nMfavmbMmAGNRoOJEycalvGYK2f69OnQaDRmU9OmTQ2P2/NYM9woYMWKFZg0aRKmTZuGI0eOIDo6Gj169MDly5fVLppTyMnJQXR0NObPn2/x8ffeew9z587FwoUL8csvv6BatWro0aMH8vLyHFzSqm/nzp0YM2YM9u/fj61bt+LWrVt48MEHkZOTY1jnP//5D9avX4+VK1di586duHTpEgYOHKhiqauuunXrYsaMGTh8+DAOHTqE+++/H/369cOpU6cA8Fjb08GDB/HJJ58gKirKbDmPubJatGiB1NRUw7R7927DY3Y91oIqrEOHDmLMmDGG+0VFRSI8PFzEx8erWCrnBECsWbPGcF+n04nQ0FDx/vvvG5bduHFDaLVasWzZMhVK6FwuX74sAIidO3cKIeSx9fT0FCtXrjSsk5ycLACIffv2qVVMp1K9enXx2Wef8VjbUVZWlmjUqJHYunWr6NKli5gwYYIQgu9vpU2bNk1ER0dbfMzex5o1NxVUUFCAw4cPo3v37oZlbm5u6N69O/bt26diyVzDuXPnkJaWZnb8AwMDERMTw+OvgIyMDABAjRo1AACHDx/GrVu3zI5306ZNUa9ePR7vCioqKsLy5cuRk5OD2NhYHms7GjNmDPr06WN2bAG+v+3h999/R3h4OBo2bIghQ4YgJSUFgP2PtctdOFNpV69eRVFREUJCQsyWh4SE4PTp0yqVynWkpaUBgMXjr3+Myken02HixIno1KkT7rrrLgDyeHt5eSEoKMhsXR7v8jtx4gRiY2ORl5cHPz8/rFmzBs2bN0dSUhKPtR0sX74cR44cwcGDB0s8xve3smJiYpCQkIAmTZogNTUVb775Ju69916cPHnS7sea4YaILBozZgxOnjxp1kZOymvSpAmSkpKQkZGBVatWYdiwYdi5c6faxXJKFy9exIQJE7B161Z4e3urXRyn16tXL8N8VFQUYmJiEBkZiW+//RY+Pj52fW42S1VQrVq14O7uXqKHd3p6OkJDQ1UqlevQH2Mef2WNHTsWGzZswPbt21G3bl3D8tDQUBQUFODGjRtm6/N4l5+XlxfuvPNOtG3bFvHx8YiOjsaHH37IY20Hhw8fxuXLl9GmTRt4eHjAw8MDO3fuxNy5c+Hh4YGQkBAeczsKCgpC48aNcfbsWbu/vxluKsjLywtt27ZFYmKiYZlOp0NiYiJiY2NVLJlraNCgAUJDQ82Of2ZmJn755Rce/3IQQmDs2LFYs2YNfvrpJzRo0MDs8bZt28LT09PseJ85cwYpKSk83grR6XTIz8/nsbaDbt264cSJE0hKSjJM7dq1w5AhQwzzPOb2k52djT/++ANhYWH2f39XuEsyieXLlwutVisSEhLEr7/+KkaNGiWCgoJEWlqa2kVzCllZWeLo0aPi6NGjAoCYNWuWOHr0qLhw4YIQQogZM2aIoKAg8f3334vjx4+Lfv36iQYNGojc3FyVS171PP/88yIwMFDs2LFDpKamGqabN28a1nnuuedEvXr1xE8//SQOHTokYmNjRWxsrIqlrrpeeeUVsXPnTnHu3Dlx/Phx8corrwiNRiO2bNkihOCxdgTT0VJC8Jgr6YUXXhA7duwQ586dE3v27BHdu3cXtWrVEpcvXxZC2PdYM9wo5KOPPhL16tUTXl5eokOHDmL//v1qF8lpbN++XQAoMQ0bNkwIIYeDv/HGGyIkJERotVrRrVs3cebMGXULXUVZOs4AxJIlSwzr5ObmitGjR4vq1asLX19fMWDAAJGamqpeoauwp59+WkRGRgovLy9Ru3Zt0a1bN0OwEYLH2hGKhxsec+XExcWJsLAw4eXlJerUqSPi4uLE2bNnDY/b81hrhBCi4vU/RERERJUD+9wQERGRU2G4ISIiIqfCcENEREROheGGiIiInArDDRERETkVhhsiIiJyKgw3RERE5FQYboiIiMipMNwQkcvTaDRYu3at2sUgIoUw3BCRqoYPHw6NRlNi6tmzp9pFI6IqykPtAhAR9ezZE0uWLDFbptVqVSoNEVV1rLkhItVptVqEhoaaTdWrVwcgm4wWLFiAXr16wcfHBw0bNsSqVavMtj9x4gTuv/9++Pj4oGbNmhg1ahSys7PN1lm8eDFatGgBrVaLsLAwjB071uzxq1evYsCAAfD19UWjRo2wbt06+75oIrIbhhsiqvTeeOMNPPLIIzh27BiGDBmCxx57DMnJyQCAnJwc9OjRA9WrV8fBgwexcuVKbNu2zSy8LFiwAGPGjMGoUaNw4sQJrFu3DnfeeafZc7z55psYPHgwjh8/jt69e2PIkCG4du2aQ18nESlEkWuLExGV07Bhw4S7u7uoVq2a2fTOO+8IIYQAIJ577jmzbWJiYsTzzz8vhBBi0aJFonr16iI7O9vw+A8//CDc3NxEWlqaEEKI8PBw8dprr5VaBgDi9ddfN9zPzs4WAMTGjRsVe51E5Djsc0NEqrvvvvuwYMECs2U1atQwzMfGxpo9Fhsbi6SkJABAcnIyoqOjUa1aNcPjnTp1gk6nw5kzZ6DRaHDp0iV069atzDJERUUZ5qtVq4aAgABcvny5vC+JiFTEcENEqqtWrVqJZiKl+Pj4WLWep6en2X2NRgOdTmePIhGRnbHPDRFVevv37y9xv1mzZgCAZs2a4dixY8jJyTE8vmfPHri5uaFJkybw9/dH/fr1kZiY6NAyE5F6WHNDRKrLz89HWlqa2TIPDw/UqlULALBy5Uq0a9cO99xzD77++mscOHAAn3/+OQBgyJAhmDZtGoYNG4bp06fjypUrGDduHJ588kmEhIQAAKZPn47nnnsOwcHB6NWrF7KysrBnzx6MGzfOsS+UiByC4YaIVLdp0yaEhYWZLWvSpAlOnz4NQI5kWr58OUaPHo2wsDAsW7YMzZs3BwD4+vpi8+bNmDBhAtq3bw9fX1888sgjmDVrlmFfw4YNQ15eHmbPno0XX3wRtWrVwqBBgxz3AonIoTRCCKF2IYiISqPRaLBmzRr0799f7aIQURXBPjdERETkVBhuiIiIyKmwzw0RVWpsOSciW7HmhoiIiJwKww0RERE5FYYbIiIicioMN0RERORUGG6IiIjIqTDcEBERkVNhuCEiIiKnwnBDRERETuX/Ac/QUbn/da3lAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "plt.plot(np.asarray(hist_train), 'b', label=\"Training loss\")\n", + "plt.plot(np.asarray(hist_valid), 'r', label=\"Validation loss\")\n", + "plt.xlabel('Epoch')\n", + "plt.ylabel('Loss')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Evaluate model\n", + "Now we can evaluate our model with testing set and compare the predictions with the ground truth." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# switch model into evaluation mode\n", + "model.eval()\n", + "hist_test = []\n", + "predictions = []\n", + "hist_test_step = 0\n", + "for batch_idx, (X_batch, y_batch) in enumerate(test_loader):\n", + " var_X_batch = Variable(X_batch).to(device)\n", + " var_y_batch = Variable(y_batch).to(device)\n", + " optimizer.zero_grad()\n", + " with torch.no_grad():\n", + " output = model(var_X_batch)\n", + " loss = criterion(output[:,-1,:].squeeze(), var_y_batch)\n", + " wandb.log({'testing_loss': loss.item()})\n", + " predictions.append(output.squeeze().cpu().detach().numpy()[:,-1])\n", + " hist_test_step += loss.item()\n", + "\n", + "hist_test.append(hist_test_step / len(test_loader.dataset))\n", + "# call wandb finish to stop logging\n", + "wandb.finish()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[array([-1.9178902, -2.3779838, -3.2821167], dtype=float32),\n", + " array([-1.9409903 , 0.81883615, -2.4894352 ], dtype=float32)]" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predictions" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the predictions versus ground truth." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwhElEQVR4nO3de3SU1b3G8WcymITcCZAbhhBAkKjcBQJaoXIJKhd7BIsKBFnahWChaLmccxTwUsBqC8cLWj2CrVphHQUD2iCiiCJ3jMq1QLkJgSBoAtgEmHnPH2NGxpCQhEnemZ3vZ61Z9N2z551fpph52Hu/+3VYlmUJAAAgyIXYXQAAAIA/EGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxQz+4CapPb7daRI0cUHR0th8NhdzkAAKASLMvSqVOnlJKSopCQ8sdj6lSoOXLkiFJTU+0uAwAAVMOhQ4d05ZVXlvt8nQo10dHRkjwfSkxMjM3VAACAyigqKlJqaqr3e7w8dSrUlE45xcTEEGoAAAgyl1o6wkJhAABgBEINAAAwAqEGAAAYoU6tqaksl8ulc+fO2V0GAlRoaGiFlxQCAOxBqLmAZVk6evSovv/+e7tLQQALCQlRenq6QkND7S4FAHABQs0FSgNNQkKCIiIi2KAPZZRu4Jifn6+mTZvydwQAAgih5kcul8sbaBo2bGh3OQhgjRs31pEjR3T+/HldccUVdpcDAPhRUC0MWL16tQYMGKCUlBQ5HA4tWbLEb+cuXUMTERHht3PCTKXTTi6Xy+ZKAAAXCqpQc+bMGbVr107PP/98jb0H0wm4FP6OAEBgCqrpp/79+6t///52lwEAl8/tkg58Lp0+JkUlSmndpRCn3VUBQS2oQk1VlZSUqKSkxHtcVFRkYzUA8KPtOVLuZKnoyE9tMSlS1mwpY6B9dQFBLqimn6pq5syZio2N9T64Q/flyc7O1uDBg73HPXv21IQJEy7rnP44BxBUtudIi0b4BhpJKsr3tG/PsacuwABGh5qpU6eqsLDQ+zh06FCNv6fLbWnt3hN6N++w1u49IZfbqvH3zM7OlsPhkMPhUGhoqFq2bKnHHntM58+fr9H3feedd/T4449Xqu+qVavkcDjK7AFUlXMAQc/t8ozQ6GK/F35sy53i6QegyoyefgoLC1NYWFitvV/u1nzNWLpd+YXF3rbk2HBNG5ChrGuTa/S9s7KyNH/+fJWUlOj999/X2LFjdcUVV2jq1Kk+/c6ePeu3TePi4+MD4hxA0DjwedkRGh+WVHTY0y/9xlorCzCF0SM1tSl3a77GvL7FJ9BI0tHCYo15fYtyt+bX6PuHhYUpKSlJaWlpGjNmjHr37q2cnBzvlNGTTz6plJQUtW7dWpJ06NAhDR06VHFxcYqPj9egQYO0f/9+7/lcLpcmTpyouLg4NWzYUJMmTZJl+f7r8udTRyUlJZo8ebJSU1MVFhamli1b6n//93+1f/9+9erVS5LUoEEDORwOZWdnX/Qc3333nUaMGKEGDRooIiJC/fv31+7du73PL1iwQHFxcVq+fLnatGmjqKgoZWVlKT//p8931apV6tKliyIjIxUXF6cePXrowIEDfvqkgctw+ph/+wHwEVSh5vTp08rLy1NeXp4kad++fcrLy9PBgwdtrcvltjRj6faKBpQ1Y+n2WpmKKlW/fn2dPXtWkrRy5Urt2rVLK1as0LJly3Tu3Dn169dP0dHR+vTTT7VmzRpvOCh9zTPPPKMFCxbo1Vdf1WeffaaTJ09q8eLFFb7niBEj9Pe//13/8z//ox07duill15SVFSUUlNT9fbbb0uSdu3apfz8fM2dO/ei58jOztamTZuUk5OjtWvXyrIs3XLLLT734vrhhx/09NNP629/+5tWr16tgwcP6uGHH5YknT9/XoMHD9ZNN92kr776SmvXrtX999/PZdgIDFGJ/u0HwEdQTT9t2rTJ+y9+SZo4caIkaeTIkVqwYIFNVUkb9p0sM0JzIUtSfmGxNuw7qcwWNbtbsWVZWrlypZYvX64HH3xQx48fV2RkpF555RXvtNPrr78ut9utV155xftlP3/+fMXFxWnVqlXq27ev5syZo6lTp+pXv/qVJOnFF1/U8uXLy33ff/7zn1q0aJFWrFih3r17S5KaN2/ufb50mikhIUFxcXEXPcfu3buVk5OjNWvWqHv37pKkN954Q6mpqVqyZImGDBkiybNR4osvvqgWLVpIksaNG6fHHntMkucKt8LCQt12223e59u0aVP1DxKoCWndPVc5FeXr4utqHJ7n07rXdmWAEYIq1PTs2bPMFEggKDhVfqCpTr/qWLZsmaKionTu3Dm53W7dddddmj59usaOHavrrrvOZx3Nl19+qT179ig6OtrnHMXFxdq7d68KCwuVn5+vrl27ep+rV6+eOnfuXO7nn5eXJ6fTqZtuuqnaP8OOHTtUr149n/dt2LChWrdurR07dnjbIiIivIFFkpKTk1VQUCDJE56ys7PVr18/9enTR71799bQoUOVnFyza5qASglxei7bXjRCkkO+webH0cSsWexXA1RTUE0/BaqE6HC/9quOXr16KS8vT7t379a///1vvfbaa4qMjJQk75+lTp8+rU6dOnmn8kof//znP3XXXXdV6/3r169/2T9DZf38fksOh8MnbM2fP19r165V9+7dtXDhQrVq1Urr1q2rtfqACmUMlIb+VYr5WdCOSfG0s08NUG1BNVITqLqkxys5NlxHC4vLG1BWUmy4uqTX3JU+kZGRatmyZaX6duzYUQsXLlRCQoJiYmIu2ic5OVnr16/XL37xC0metSqbN29Wx44dL9r/uuuuk9vt1ieffOKdfrpQZe6X1KZNG50/f17r16/3Tj+dOHFCu3btUkZGRqV+tlIdOnRQhw4dNHXqVGVmZurNN99Ut27dqnQOoMZkDJSuvpUdhQE/Y6TGD5whDk0b4PnS/fly1NLjaQMy5AwJjMWqd999txo1aqRBgwbp008/1b59+7Rq1Sr99re/1TfffCNJGj9+vGbNmqUlS5Zo586deuCBB8rsMXOhZs2aaeTIkbr33nu1ZMkS7zkXLVokSUpLS5PD4dCyZct0/PhxnT59usw5rrrqKg0aNEj33XefPvvsM3355Ze655571KRJEw0aNKhSP9u+ffs0depUrV27VgcOHNAHH3yg3bt3s64GgSfE6bls+7o7PH8SaGqEHXuHwT6EGj/JujZZ8+7pqKRY3ymmpNhwzbunY43vU1MVERERWr16tZo2bapf/epXatOmjUaPHq3i4mLvyM1DDz2k4cOHa+TIkcrMzFR0dLRuv/32Cs87b9483XHHHXrggQd09dVX67777tOZM2ckSU2aNNGMGTM0ZcoUJSYmaty4cRc9x/z589WpUyfddtttyszMlGVZev/998tMOVX0s+3cuVP/8R//oVatWun+++/X2LFj9Zvf/KYKnxAAE+RuzdcNsz/SsJfXafxbeRr28jrdMPujGt9iA/ZxWIG48raGFBUVKTY2VoWFhWWmXYqLi7Vv3z6lp6crPLz6a19cbksb9p1UwaliJUR7ppwCZYQG/uGvvysAak7p3mE//4Ir/W0caP/YRMUq+v6+EGtq/MwZ4qjxy7YBAOW71N5hDnn2DuuTkcQ/Og3D9BMAwChV2TsMZiHUAACMEgh7h8EehBoAgFECYe8w2INQAwAwSuneYeWtlnFISq7hvcNgD0INAMAowbZ3GPyHUAMAME4w7R0G/+GSbgCAkbKuTVafjCT2DqtDGKmBbaZPn6727dvbXYZ69uypCRMm2F0GgBpQunfYoPZNlNmiIYHGcIQaAxw9elTjx49Xy5YtFR4ersTERPXo0UPz5s3TDz/8YHd51bZq1So5HI4K7zll5/kAAIGF6Sd/c7tq9c67//rXv9SjRw/FxcXpD3/4g6677jqFhYXp66+/1l/+8hc1adJEAwcOvOhrz507V+l7KgWys2fPeu8CDgCouxip8aftOdKca6XXbpPeHu35c861nvYa8sADD6hevXratGmThg4dqjZt2qh58+YaNGiQ3nvvPQ0YMMDb1+FwaN68eRo4cKAiIyP15JNPSvLciLJFixYKDQ1V69at9be//c37mv3798vhcCgvL8/b9v3338vhcGjVqlWSfhoBWblypTp37qyIiAh1795du3bt8ql11qxZSkxMVHR0tPcGmuXZv3+/evXqJUlq0KCBHA6HsrOzJXmmi8aNG6cJEyaoUaNG6tev3yXrrOh8kuR2uzVp0iTFx8crKSlJ06dPr+z/BQCAAEGo8ZftOdKiEVLREd/2onxPew0EmxMnTuiDDz7Q2LFjFRkZedE+Dofv/PH06dN1++236+uvv9a9996rxYsXa/z48XrooYe0detW/eY3v9GoUaP08ccfV7me//qv/9IzzzyjTZs2qV69err33nu9zy1atEjTp0/XH/7wB23atEnJycl64YUXyj1Xamqq3n77bUnSrl27lJ+fr7lz53qff+211xQaGqo1a9boxRdfvGRtlTlfZGSk1q9fr6eeekqPPfaYVqxYUeXPAABgH6af/MHtknInSxXdPi13inT1rX6ditqzZ48sy1Lr1q192hs1auQdBRk7dqxmz57tfe6uu+7SqFGjvMfDhg1Tdna2HnjgAUnSxIkTtW7dOj399NPekY3KevLJJ3XTTTdJkqZMmaJbb71VxcXFCg8P15w5czR69GiNHj1akvTEE0/oww8/LHe0xul0Kj7eszFWQkKC4uLifJ6/6qqr9NRTT3mP9+/fX2Ftlzpf27ZtNW3aNO+5n3vuOa1cuVJ9+vSp1M8OALAfIzX+cODzsiM0Piyp6LCnXy3YsGGD8vLydM0116ikpMTnuc6dO/sc79ixQz169PBp69Gjh3bs2FHl923btq33fycne/aAKCgo8L5P165dffpnZmZW+T1KderUqdqvvZgLa5c89ZfWDgAIDozU+MPpY/7tV0ktW7aUw+Eos3alefPmkqT69euXeU1501TlCQnx5F7L+mkU6ty5cxfte+Gi49JpL7fbXaX3q6yf/xxVqfNifr5g2uFw1FjtAICawUiNP0Ql+rdfJTVs2FB9+vTRc889pzNnzlTrHG3atNGaNWt82tasWaOMDM8W440bN5Yk5efne5+/cDFuVd5n/fr1Pm3r1q2r8DWlVzS5XK5Lnr8ydVblfACA4MNIjT+kdZdiUjyLgi+6rsbheT6tu9/f+oUXXlCPHj3UuXNnTZ8+XW3btlVISIg2btyonTt3XnKa5ve//72GDh2qDh06qHfv3lq6dKneeecdffjhh5I8oz3dunXTrFmzlJ6eroKCAv33f/93lescP368srOz1blzZ/Xo0UNvvPGGtm3b5h1Vupi0tDQ5HA4tW7ZMt9xyi+rXr6+oqKiL9q1MnVU5HwAg+DBS4w8hTimrdDFuObdPy5pVI/vVtGjRQl988YV69+6tqVOnql27durcubOeffZZPfzww3r88ccrfP3gwYM1d+5cPf3007rmmmv00ksvaf78+erZs6e3z6uvvqrz58+rU6dOmjBhgp544okq13nnnXfqkUce0aRJk9SpUycdOHBAY8aMqfA1TZo00YwZMzRlyhQlJiZq3LhxFfa/VJ1VPR8AILg4rAsXIRiuqKhIsbGxKiwsVExMjM9zxcXF2rdvn9LT0xUeHl7OGS5he47nKqgLFw3HNPEEmoyLb4CH4OOXvysAgEqr6Pv7Qkw/+VPGQM9l27W4ozAAAPAg1PhbiFNKv9HuKgAAqHNYUwMAAIxAqAEAAEYg1PxMHVo3jWri7wgABCZCzY9Kd5T94YcfbK4Ege7s2bOSPPeTAgAEDhYK/8jpdCouLs57v5+IiIgyd7gG3G63jh8/roiICNWrx38+ABBI+K18gaSkJEniRoaoUEhIiJo2bUroBYAAQ6i5gMPhUHJyshISEqp0M0TULaGhod4baAIAAgeh5iKcTifrJQAACDL8cxMAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEaoZ3cBAAAgyLld0oHPpdPHpKhEKa27FOKs9TIINQAAoPq250i5k6WiIz+1xaRIWbOljIG1WgrTTwAAoHq250iLRvgGGkkqyve0b8+p1XIINQAAoOrcLs8IjayLPPljW+4UT79aQqgBAABVd+DzsiM0Piyp6LCnXy0h1AAAgKo7fcy//fwg6ELN888/r2bNmik8PFxdu3bVhg0b7C4JAIC6JyrRv/38IKhCzcKFCzVx4kRNmzZNW7ZsUbt27dSvXz8VFBTYXRoAAHVLWnfPVU5ylNPBIcU08fSrJUEVav70pz/pvvvu06hRo5SRkaEXX3xRERERevXVV+0uDQCAuiXE6blsW1LZYPPjcdasWt2vJmhCzdmzZ7V582b17t3b2xYSEqLevXtr7dq1F31NSUmJioqKfB4AAMBPMgZKQ/8qxST7tsekeNpreZ+aoNl879tvv5XL5VJiou/cXGJionbu3HnR18ycOVMzZsyojfIAAKibMgZKV98aEDsKB81ITXVMnTpVhYWF3sehQ4fsLgkAAPOEOKX0G6Xr7vD8aUOgkYJopKZRo0ZyOp06dsz30rBjx44pKSnpoq8JCwtTWFhYbZQHAABsFjQjNaGhoerUqZNWrlzpbXO73Vq5cqUyMzNtrAwAAASCoBmpkaSJEydq5MiR6ty5s7p06aI5c+bozJkzGjVqlN2lAQAAmwVVqLnzzjt1/PhxPfroozp69Kjat2+v3NzcMouHAQBA3eOwLOtid6IyUlFRkWJjY1VYWKiYmBi7ywEAAJVQ2e/voFlTAwAAUBFCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEYJq8z0AtcDtCoi77QJAVRFqAPxke46UO1kqOvJTW0yKlDVbyhhoX10AUAlMPwHw2J4jLRrhG2gkqSjf0749x566AKCSCDUAPFNOuZMlXeyuKT+25U7x9AOAAEWoAeBZQ/PzERofllR02NMPAAIUoQaAZ1GwP/sBgA0INQA8Vzn5sx8A2IBQA8Bz2XZMiiRHOR0cUkwTTz8ACFCEGgCefWiyZv948PNg8+Nx1iz2qwEQ0Ag1ADwyBkpD/yrFJPu2x6R42tmnBkCAY/M9AD/JGChdfSs7CgMISoQaAL5CnFL6jXZXAQBVxvQTAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwQtCEmieffFLdu3dXRESE4uLi7C4HAAAEmKAJNWfPntWQIUM0ZswYu0sBAAABqJ7dBVTWjBkzJEkLFiywtxAAABCQgibUVEdJSYlKSkq8x0VFRTZWAwAAalLQTD9Vx8yZMxUbG+t9pKam2l0SAACoIbaGmilTpsjhcFT42LlzZ7XPP3XqVBUWFnofhw4d8mP1AAAgkNg6/fTQQw8pOzu7wj7Nmzev9vnDwsIUFhZW7dcDAIDgYWuoady4sRo3bmxnCQAAwBBBs1D44MGDOnnypA4ePCiXy6W8vDxJUsuWLRUVFWVvcQAAwHZBE2oeffRRvfbaa97jDh06SJI+/vhj9ezZ06aqAABAoHBYlmVV98XFxcVauHChzpw5oz59+uiqq67yZ21+V1RUpNjYWBUWFiomJsbucgAAQCVU9vu70iM1EydO1Llz5/Tss89K8uzwm5mZqW3btikiIkKTJk3SihUrlJmZefnVAwAAVFGlL+n+4IMP1KdPH+/xG2+8oQMHDmj37t367rvvNGTIED3xxBM1UiQAAMClVDrUHDx4UBkZGd7jDz74QHfccYfS0tLkcDg0fvx4ffHFFzVSJAAAwKVUOtSEhITowuU369atU7du3bzHcXFx+u677/xbHQAAQCVVOtS0adNGS5culSRt27ZNBw8eVK9evbzPHzhwQImJif6vEAAAoBIqvVB40qRJ+vWvf6333ntP27Zt0y233KL09HTv8++//766dOlSI0UCAABcSqVHam6//Xa9//77atu2rX73u99p4cKFPs9HRETogQce8HuBAAAAlVHpfWoee+wxPfzww4qIiKjpmmoM+9QAABB8Kvv9XemRmhkzZuj06dN+KQ4AAMDfKh1qLmPjYQAAgBpX6VAjSQ6Ho6bqAAAAuCxVuqFlq1atLhlsTp48eVkFAQAAVEeVQs2MGTMUGxtbU7UAAABUW5VCza9//WslJCTUVC0AAADVVuk1NaynAQAAgYyrnwAAgBEqPf3kdrtrsg4AAIDLUqVLugEAAAIVoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMUM/uAoBKc7ukA59Lp49JUYlSWncpxGl3VQCAAEGoQXDYniPlTpaKjvzUFpMiZc2WMgbaVxcAIGAw/YTAtz1HWjTCN9BIUlG+p317jj11AQACCqEGgc3t8ozQyLrIkz+25U7x9AMA1GmEGgS2A5+XHaHxYUlFhz39AAB1GqEGge30Mf/2AwAYi1CDwBaV6N9+AABjEWoQ2NK6e65ykqOcDg4ppomnHwCgTiPUILCFOD2XbUsqG2x+PM6axX41AABCDYJAxkBp6F+lmGTf9pgUTzv71AAAxOZ7CBYZA6Wrb2VHYQBAuQg1CB4hTin9RrurAAAEKKafAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBu3RfJpfb0oZ9J1VwqlgJ0eHqkh4vZ4jD7rIAAKhzCDWXIXdrvmYs3a78wmJvW3JsuKYNyFDWtck2VgYAQN3D9FM15W7N15jXt/gEGkk6WlisMa9vUe7WfJsqAxAMXG5La/ee0Lt5h7V27wm53JbdJQFBj5GaanC5Lc1Yul0X+xVkSXJImrF0u/pkJDEVBaAMRnmBmsFITTVs2HeyzAjNhSxJ+YXF2rDvZO0VBSAoMMoL1BxCTTUUnCo/0FSnH4C64VKjvJJnlJepKKB6CDXVkBAd7td+AOoGRnmBmkWoqYYu6fFKjg1XeatlHPLMj3dJj6/NsgAEOEZ5gZoVFKFm//79Gj16tNLT01W/fn21aNFC06ZN09mzZ22pxxni0LQBGZJUJtiUHk8bkMEiYQA+GOUFalZQhJqdO3fK7XbrpZde0rZt2/TnP/9ZL774ov7zP//Ttpqyrk3WvHs6KinW95dPUmy45t3TkSsYAJTBKC9QsxyWZQXlirQ//vGPmjdvnv71r3+V26ekpEQlJSXe46KiIqWmpqqwsFAxMTF+qYMdhQFURenVT5J8FgyX/tbgH0VAWUVFRYqNjb3k93dQjNRcTGFhoeLjK/7XzMyZMxUbG+t9pKam+r0OZ4hDmS0aalD7Jsps0ZBAA6BCjPICNScoR2r27NmjTp066emnn9Z9991Xbr/aGKkBgOpglBeovMqO1Ni6o/CUKVM0e/bsCvvs2LFDV199tff48OHDysrK0pAhQyoMNJIUFhamsLAwv9QKAP5UOsqLGuZ2SQc+l04fk6ISpbTuUojT7qpQQ2wdqTl+/LhOnDhRYZ/mzZsrNDRUknTkyBH17NlT3bp104IFCxQSUrXZs8omPQCAAbbnSLmTpaIjP7XFpEhZs6WMgfbVhSqr7Pd30Ew/HT58WL169VKnTp30+uuvy+msetIm1ABAHbE9R1o0Qiqzf/OPU3xD/0qwCSJGLRQ+fPiwevbsqaZNm+rpp5/W8ePHdfToUR09etTu0gAAgcbt8ozQVHRDitwpnn4wSlDcpXvFihXas2eP9uzZoyuvvNLnuSAZaAIA1JYDn/tOOZVhSUWHPf3Sb6y1slDzgmKkJjs7W5ZlXfQBAICP08f82w9BIyhCDQAAlRaV6N9+CBqEGgCAWdK6e65yquiGFDFNPP1gFEINAMAsIU7PZduSyr3tcNYs9qsxEKEGAGCejIGey7ZjfnbbiZgULuc2WFBc/QQAQJVlDJSuvpUdhesQQg0AwFwhTi7brkOYfgIAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEbj3E4KGy21pw76TKjhVrITocHVJj5czxGF3WQCAAEGouVxuF3eArQW5W/M1Y+l25RcWe9uSY8M1bUCGsq5NtrEyAECgINRcju05Uu5kqejIT20xKVLWbM8t7+EXuVvzNeb1LbJ+1n60sFhjXt+iefd0JNgAAFhTU23bc6RFI3wDjSQV5Xvat+fYU5dhXG5LM5ZuLxNoJHnbZizdLpf7Yj0AAHUJoaY63C7PCE1FX7W5Uzz9cFk27DvpM+X0c5ak/MJibdh3svaKAgAEJEJNdRz4vOwIjQ9LKjrs6YfLUnCq/EBTnX4AAHMRaqrj9DH/9kO5EqLD/doPAGAuQk11RCX6tx/K1SU9Xsmx4Srvwm2HPFdBdUmPr82yAAABiFBTHWndPVc5VfRVG9PE0w+XxRni0LQBGZLKftqlx9MGZLBfDQCAUFMtIU7PZduSyv2qzZrFfjV+knVtsubd01FJsb5TTEmx4VzODQABwOW2tHbvCb2bd1hr956w7YpUh2VZdeZa2KKiIsXGxqqwsFAxMTGXf8KL7lPTxBNo2KfG79hRGAACT21sjlrZ729CzeViR2EAQB1V3uaopf/c9NdoemW/v9lR+HKFOKX0G+2uAgCAWnWpzVEd8myO2icjqdZG1VlTAwAAqiwQN0cl1AAAgCoLxM1RCTUAAKDKAnFzVEINAACoskDcHJVQAwAAqiwQN0cl1AAAgGoJtM1RuaQbAABUW9a1yeqTkRQQm6MSagAAwGVxhjiU2aKh3WUw/QQAAMxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYISgCTUDBw5U06ZNFR4eruTkZA0fPlxHjhyxuywAABAggibU9OrVS4sWLdKuXbv09ttva+/evbrjjjvsLgsAAAQIh2VZlt1FVEdOTo4GDx6skpISXXHFFZV6TVFRkWJjY1VYWKiYmJgarhAAAPhDZb+/69ViTX5z8uRJvfHGG+revXuFgaakpEQlJSXe46KiotooDwAA2CBopp8kafLkyYqMjFTDhg118OBBvfvuuxX2nzlzpmJjY72P1NTUWqoUAADUNltDzZQpU+RwOCp87Ny509v/97//vb744gt98MEHcjqdGjFihCqaPZs6daoKCwu9j0OHDtXGjwUAAGxg65qa48eP68SJExX2ad68uUJDQ8u0f/PNN0pNTdXnn3+uzMzMSr0fa2oAAAg+QbGmpnHjxmrcuHG1Xut2uyXJZ80MAACou4JiofD69eu1ceNG3XDDDWrQoIH27t2rRx55RC1atKj0KA0AADBbUCwUjoiI0DvvvKObb75ZrVu31ujRo9W2bVt98sknCgsLs7s8AAAQAIJipOa6667TRx99ZHcZAAAggAXFSA0AAMClEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBGC4jYJAGqPy21pw76TKjhVrITocHVJj5czxGF3WQBwSYQaAF65W/M1Y+l25RcWe9uSY8M1bUCGsq5NtrEyALg0pp8ASPIEmjGvb/EJNJJ0tLBYY17fotyt+TZVBgCVQ6gBIJfb0oyl22Vd5LnSthlLt8vlvlgPAAgMhBoA2rDvZJkRmgtZkvILi7Vh38naKwoAqohQA0AFp8oPNNXpBwB2INQAUEJ0uF/7AYAdCDUA1CU9Xsmx4Srvwm2HPFdBdUmPr82yAKBKCDUA5AxxaNqADEkqE2xKj6cNyGC/GgABjVADQJKUdW2y5t3TUUmxvlNMSbHhmndPR/apARDw2HwPgFfWtcnqk5HEjsIAghKhBoAPZ4hDmS0a2l0GAFQZ008AAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAh1akdhy7IkSUVFRTZXAgAAKqv0e7v0e7w8dSrUnDp1SpKUmppqcyUAAKCqTp06pdjY2HKfd1iXij0GcbvdOnLkiKKjo+Vw+O8GfUVFRUpNTdWhQ4cUExPjt/OiLD7r2sHnXDv4nGsHn3PtqMnP2bIsnTp1SikpKQoJKX/lTJ0aqQkJCdGVV15ZY+ePiYnhP5hawmddO/icawefc+3gc64dNfU5VzRCU4qFwgAAwAiEGgAAYARCjR+EhYVp2rRpCgsLs7sU4/FZ1w4+59rB51w7+JxrRyB8znVqoTAAADAXIzUAAMAIhBoAAGAEQg0AADACoQYAABiBUOMHzz//vJo1a6bw8HB17dpVGzZssLsk46xevVoDBgxQSkqKHA6HlixZYndJxpk5c6auv/56RUdHKyEhQYMHD9auXbvsLstI8+bNU9u2bb2blGVmZuof//iH3WUZbdasWXI4HJowYYLdpRhn+vTpcjgcPo+rr77alloINZdp4cKFmjhxoqZNm6YtW7aoXbt26tevnwoKCuwuzShnzpxRu3bt9Pzzz9tdirE++eQTjR07VuvWrdOKFSt07tw59e3bV2fOnLG7NONceeWVmjVrljZv3qxNmzbpl7/8pQYNGqRt27bZXZqRNm7cqJdeeklt27a1uxRjXXPNNcrPz/c+PvvsM1vq4JLuy9S1a1ddf/31eu655yR57i+VmpqqBx98UFOmTLG5OjM5HA4tXrxYgwcPtrsUox0/flwJCQn65JNP9Itf/MLucowXHx+vP/7xjxo9erTdpRjl9OnT6tixo1544QU98cQTat++vebMmWN3WUaZPn26lixZory8PLtLYaTmcpw9e1abN29W7969vW0hISHq3bu31q5da2NlwOUrLCyU5PmyRc1xuVx66623dObMGWVmZtpdjnHGjh2rW2+91ef3NPxv9+7dSklJUfPmzXX33Xfr4MGDttRRp25o6W/ffvutXC6XEhMTfdoTExO1c+dOm6oCLp/b7daECRPUo0cPXXvttXaXY6Svv/5amZmZKi4uVlRUlBYvXqyMjAy7yzLKW2+9pS1btmjjxo12l2K0rl27asGCBWrdurXy8/M1Y8YM3Xjjjdq6dauio6NrtRZCDYAyxo4dq61bt9o2L14XtG7dWnl5eSosLNT//d//aeTIkfrkk08INn5y6NAhjR8/XitWrFB4eLjd5Ritf//+3v/dtm1bde3aVWlpaVq0aFGtT6cSai5Do0aN5HQ6dezYMZ/2Y8eOKSkpyaaqgMszbtw4LVu2TKtXr9aVV15pdznGCg0NVcuWLSVJnTp10saNGzV37ly99NJLNldmhs2bN6ugoEAdO3b0trlcLq1evVrPPfecSkpK5HQ6bazQXHFxcWrVqpX27NlT6+/NmprLEBoaqk6dOmnlypXeNrfbrZUrVzI3jqBjWZbGjRunxYsX66OPPlJ6errdJdUpbrdbJSUldpdhjJtvvllff/218vLyvI/OnTvr7rvvVl5eHoGmBp0+fVp79+5VcnJyrb83IzWXaeLEiRo5cqQ6d+6sLl26aM6cOTpz5oxGjRpld2lGOX36tE/q37dvn/Ly8hQfH6+mTZvaWJk5xo4dqzfffFPvvvuuoqOjdfToUUlSbGys6tevb3N1Zpk6dar69++vpk2b6tSpU3rzzTe1atUqLV++3O7SjBEdHV1mPVhkZKQaNmzIOjE/e/jhhzVgwAClpaXpyJEjmjZtmpxOp4YNG1brtRBqLtOdd96p48eP69FHH9XRo0fVvn175ebmllk8jMuzadMm9erVy3s8ceJESdLIkSO1YMECm6oyy7x58yRJPXv29GmfP3++srOza78ggxUUFGjEiBHKz89XbGys2rZtq+XLl6tPnz52lwZU2TfffKNhw4bpxIkTaty4sW644QatW7dOjRs3rvVa2KcGAAAYgTU1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAjJGdna3BgwfbXQYAmxBqAFRJdna2HA5HmUdWVpbdpWnu3LkBc9sMh8OhJUuW2F0GUKdw7ycAVZaVlaX58+f7tIWFhdlUjeRyueRwOBQbG2tbDQDsx0gNgCoLCwtTUlKSz6NBgwZatWqVQkND9emnn3r7PvXUU0pISNCxY8ckeW6YOW7cOI0bN06xsbFq1KiRHnnkEV14G7qSkhI9/PDDatKkiSIjI9W1a1etWrXK+/yCBQsUFxennJwcZWRkKCwsTAcPHiwz/dSzZ089+OCDmjBhgho0aKDExES9/PLLOnPmjEaNGqXo6Gi1bNlS//jHP3x+vq1bt6p///6KiopSYmKihg8frm+//dbnvL/97W81adIkxcfHKykpSdOnT/c+36xZM0nS7bffLofD4T0GULMINQD8pmfPnpowYYKGDx+uwsJCffHFF3rkkUf0yiuv+Ny5/rXXXlO9evW0YcMGzZ07V3/605/0yiuveJ8fN26c1q5dq7feektfffWVhgwZoqysLO3evdvb54cfftDs2bP1yiuvaNu2bUpISLhoTa+99poaNWqkDRs26MEHH9SYMWM0ZMgQde/eXVu2bFHfvn01fPhw/fDDD5Kk77//Xr/85S/VoUMHbdq0Sbm5uTp27JiGDh1a5ryRkZFav369nnrqKT322GNasWKFJGnjxo2SPHc4z8/P9x4DqGEWAFTByJEjLafTaUVGRvo8nnzyScuyLKukpMRq3769NXToUCsjI8O67777fF5/0003WW3atLHcbre3bfLkyVabNm0sy7KsAwcOWE6n0zp8+LDP626++WZr6tSplmVZ1vz58y1JVl5eXpnaBg0a5PNeN9xwg/f4/PnzVmRkpDV8+HBvW35+viXJWrt2rWVZlvX4449bffv29TnvoUOHLEnWrl27Lnpey7Ks66+/3po8ebL3WJK1ePHicj5FADWBNTUAqqxXr16aN2+eT1t8fLwkKTQ0VG+88Ybatm2rtLQ0/fnPfy7z+m7dusnhcHiPMzMz9cwzz8jlcunrr7+Wy+VSq1atfF5TUlKihg0beo9DQ0PVtm3bS9Z6YR+n06mGDRvquuuu87aVjiAVFBRIkr788kt9/PHHioqKKnOuvXv3euv6+XsnJyd7zwHAHoQaAFUWGRmpli1blvv8559/Lkk6efKkTp48qcjIyEqf+/Tp03I6ndq8ebOcTqfPcxcGjfr16/sEo/JcccUVPscOh8OnrfQcbrfb+/4DBgzQ7Nmzy5wrOTm5wvOWngOAPQg1APxq7969+t3vfqeXX35ZCxcu1MiRI/Xhhx8qJOSnJXzr16/3ec26det01VVXyel0qkOHDnK5XCooKNCNN95Y2+WrY8eOevvtt9WsWTPVq1f9X5FXXHGFXC6XHysDcCksFAZQZSUlJTp69KjP49tvv5XL5dI999yjfv36adSoUZo/f76++uorPfPMMz6vP3jwoCZOnKhdu3bp73//u5599lmNHz9ektSqVSvdfffdGjFihN555x3t27dPGzZs0MyZM/Xee+/V+M82duxYnTx5UsOGDdPGjRu1d+9eLV++XKNGjapSSGnWrJlWrlypo0eP6rvvvqvBigGUYqQGQJXl5ub6TMVIUuvWrXXXXXfpwIEDWrZsmSTPdM1f/vIXDRs2TH379lW7du0kSSNGjNC///1vdenSRU6nU+PHj9f999/vPdf8+fP1xBNP6KGHHtLhw4fVqFEjdevWTbfddluN/2wpKSlas2aNJk+erL59+6qkpERpaWnKysryGW26lGeeeUYTJ07Uyy+/rCZNmmj//v01VzQASZLDsi7YHAIAaljPnj3Vvn17zZkzx+5SABiG6ScAAGAEQg0AADAC008AAMAIjNQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEb4f4NP4qyL5TnbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure()\n", + "instances = np.arange(len(np.concatenate(predictions)))\n", + "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions\")\n", + "plt.scatter(instances, test_y_torch.squeeze().numpy(), label=\"Ground truth\")\n", + "plt.xlabel(\"Experiment\")\n", + "plt.ylabel(\"TS\")\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 3. Evaluate predictions with baseline model\n", + "To better evaluate the predictions, we perform a linear regression (ridge) with dimensionality reduction as baseline.\n", + "\n", + "Train-test split will be performed based on the previous split, which can be refered to as \"inner cross-validation layer\".
\n", + "For each split, we will perform dimensionality reduction and fit the model. The best model will be selected based on the mean squared error." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's start with importing and initializing the response guided dimensionality reduction (RGDR) operator." + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "from s2spy import RGDR\n", + "from sklearn.linear_model import Ridge\n", + "from sklearn.metrics import mean_squared_error\n", + "from sklearn.model_selection import KFold\n", + "\n", + "# cross-validation with Kfold\n", + "k_fold_splits = 5\n", + "kfold = KFold(n_splits=k_fold_splits)\n", + "cv = lilio.traintest.TrainTestSplit(kfold)\n", + "\n", + "# create lists for saving models and predictions\n", + "models = []\n", + "rmse_train = []\n", + "rmse_test = []\n", + "train_test_splits = []\n", + "\n", + "# prepare operator for dimensionality reduction\n", + "target_intervals = 1\n", + "lag = 2\n", + "rgdr = RGDR(\n", + " target_intervals=target_intervals,\n", + " lag=lag,\n", + " eps_km=600,\n", + " alpha=0.05,\n", + " min_area_km2=0\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can perform dimentionality reduction and train ridge model for each split." + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "# cross validation based dimensionality reduction and model training\n", + "for x_train, x_test, y_train, y_test in cv.split(precursor_field_sel[:-test_samples],\n", + " y=target_series_sel[:-test_samples]):\n", + " # log train/test splits with anchor years\n", + " train_test_splits.append({\n", + " \"train\": x_train.anchor_year.values,\n", + " \"test\": x_test.anchor_year.values,\n", + " })\n", + " # fit dimensionality reduction operator RGDR\n", + " rgdr.fit(x_train, y_train)\n", + " # transform to train and test data\n", + " clusters_train = rgdr.transform(x_train)\n", + " clusters_test = rgdr.transform(x_test)\n", + " # train model\n", + " ridge = Ridge(alpha=1.0)\n", + " model = ridge.fit(clusters_train.isel(i_interval=0), y_train.isel(i_interval=1))\n", + " # save model\n", + " models.append(model)\n", + " # predict and save results\n", + " prediction = model.predict(clusters_test.isel(i_interval=0))\n", + " # calculate and save rmse\n", + " rmse_train.append(mean_squared_error(y_train.isel(i_interval=1),\n", + " model.predict(clusters_train.isel(i_interval=0))))\n", + " rmse_test.append(mean_squared_error(y_test.isel(i_interval=1),\n", + " prediction))" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSVklEQVR4nO3dd1yV5f/H8dcBBRUExY3iHmluLWeOxFWZmmmZmVo2NVeW2jdNyzJtqFlZaWnDyjJX5jZ35sadE0fuCYKKAvfvj+vHcoKM+5zD+/l4nIec+9wcPsj3G2+v8bkclmVZiIiIiLgoD7sLEBEREUkNhRkRERFxaQozIiIi4tIUZkRERMSlKcyIiIiIS1OYEREREZemMCMiIiIuLYvdBaS32NhYjh07Rs6cOXE4HHaXIyIiIslgWRYXL14kMDAQD4/bj724fZg5duwYQUFBdpchIiIid+HIkSMUKVLktve4fZjJmTMnYP4y/Pz8bK5GREREkiM8PJygoKD43+O34/ZhJm5qyc/PT2FGRETExSRniYgWAIuIiIhLU5gRERERl6YwIyIiIi7N7dfMiIiIe4uNjeXq1at2lyEplDVrVjw9PdPkvRRmRETEZV29epXQ0FBiY2PtLkXuQq5cuShYsGCq+8ApzIiIiEuyLIvjx4/j6elJUFDQHRurifOwLItLly5x6tQpAAoVKpSq91OYERERlxQdHc2lS5cIDAwkR44cdpcjKZQ9e3YATp06Rf78+VM15aQYKyIiLikmJgYALy8vmyuRuxUXQq9du5aq91GYERERl6Zz91xXWv3sFGZERETEpSnMiIiIiEtTmBEREXFhxYsXZ8yYMba/h520m+luRUZCSAjUrQuarxURkWRq1KgRVatWTbPwsH79enx8fNLkvVyVRmbu1tSpUL8+VKwIo0fD2bN2VyQiIm7Csiyio6OTdW++fPky/dZ0hZm7dfo05MgBO3dCv34QGAgdO8Jff4E6UYqI2CYy8taPK1eSf+/ly8m7NyW6du3K8uXLGTt2LA6HA4fDwcGDB1m2bBkOh4N58+ZRo0YNvL29WbVqFfv376d169YUKFAAX19f7rvvPhYvXpzkPa+fInI4HEycOJG2bduSI0cOypQpw+zZs1NU5+HDh2ndujW+vr74+fnRoUMHTp48Gf/6li1baNy4MTlz5sTPz48aNWqwYcMGAA4dOkSrVq3InTs3Pj4+3HvvvcydOzdlf1EppDBztwYMgGPHYPx4qF4drl6FX36BJk2gbFkYORIS/eBFRCRj+Pre+tGuXdJ78+e/9b0tWya9t3jxm9+XEmPHjqVOnTo8//zzHD9+nOPHjxMUFBT/+sCBA/nggw/YtWsXlStXJiIigoceeoglS5awefNmWrRoQatWrTh8+PBtv86wYcPo0KEDW7du5aGHHqJTp06cO3cuWTXGxsbSunVrzp07x/Lly1m0aBEHDhzgiSeeiL+nU6dOFClShPXr17Nx40YGDhxI1qxZAejRowdRUVGsWLGCbdu2MXLkSHxT+heVUpabCwsLswArLCwsfb/Qhg2W9eKLlpUzp2WBeWTJYlmPPWZZ8+ZZVnR0+n59EZFM5vLly9bOnTuty5cvJ7ke95/gmz0eeijpe+TIcet7GzZMem/evDe/L6UaNmxo9e7dO8m1pUuXWoA1c+bMO37+vffea40bNy7+ebFixazRo0fHPwest956K/55RESEBVjz5s275Xsmfo+FCxdanp6e1uHDh+Nf37FjhwVY69atsyzLsnLmzGlNnjz5pu9VqVIla+jQoXf8Pizr1j9Dy0rZ72+NzKSVGjXgyy/NaM0330Dt2hAdDdOnm3hfsiS88w7895/dlYqIuLWIiFs/fv896b2nTt363nnzkt578ODN70tLNWvWvO57iaB///6UL1+eXLly4evry65du+44MlO5cuX4j318fPDz84s/B+lOdu3aRVBQUJIRowoVKpArVy527doFQL9+/ejevTvBwcF88MEH7N+/P/7eXr16MXz4cOrVq8fbb7/N1q1bk/V1U0NhJq35+sKzz8KaNbBtG/TqBblzw+HD8PbbUKwYPPIIzJplwo6IiKQpH59bP7JlS/69/3900B3vTdvak75h//79mTFjBu+//z4rV64kJCSESpUqcfXq1du+T9yUTxyHw5GmJ4sPHTqUHTt28PDDD/PXX39RoUIFZsyYAUD37t05cOAAnTt3Ztu2bdSsWZNx48al2de+GYWZ9FSxIowdC0ePwo8/QsOGZnHwn39CmzZQtCj8738QGmp3pSIikkG8vLziz5W6k9WrV9O1a1fatm1LpUqVKFiwIAcPHkzX+sqXL8+RI0c4cuRI/LWdO3dy4cIFKlSoEH+tbNmy9O3bl4ULF/LYY48xadKk+NeCgoJ46aWXmD59Oq+99hoTJkxI15oVZjJC9uzQqRMsWwa7d8Prr0O+fHD8OLz/vpmCatoUfvvNLCQWERG3Vbx4cdauXcvBgwc5c+bMbUdMypQpw/Tp0wkJCWHLli089dRTaTrCcjPBwcFUqlSJTp06sWnTJtatW8czzzxDw4YNqVmzJpcvX6Znz54sW7aMQ4cOsXr1atavX0/58uUB6NOnDwsWLCA0NJRNmzaxdOnS+NfSi8JMRitbFkaNMmtnfvvNhBiAxYuhQwcoUsSEnd277a1TRETSRf/+/fH09KRChQrky5fvtutfPvnkE3Lnzk3dunVp1aoVzZs3p3r16ulan8PhYNasWeTOnZsGDRoQHBxMyZIlmTp1KgCenp6cPXuWZ555hrJly9KhQwdatmzJsGHDAHOaeY8ePShfvjwtWrSgbNmyfPHFF+lbs2VZVrp+BZuFh4fj7+9PWFgYfn5+dpdzc6GhZtHwt9+a0Zo4DRrA88+bvYTXT96KiGRyV65cITQ0lBIlSpDt+sUw4hJu9zNMye9vjcw4gxIlYPhws0h41iyzQNjDA1asgM6dTUO+Xr3MgmIRERFJQmHGmWTJAo8+Cn/8AYcOma3cxYrBhQswbhxUrmy2fH/zTdrvBxQREXFRCjPOqkgRGDwY9u+H+fPhscdM2Fm7Frp3N6M1L74IGzfaXamIiIitFGacnacnNG9uOj399x988AGULg0XL8LXX0PNmuY4hfHjISzM7mpFREQynMKMKylQwJwJtWePOdCyY0fw8oLNm+GVV8xoTbdu8Pffpsu2iIhIJqAw44ocDmjcGH76yRyfMHo0VKgAly7B5MlQr55p2DdmDJw9a3e1IiIi6UphxtXlyQN9+sD27bB6NXTtarZx79wJfftC4cLw1FOwdKlGa0RExC0pzLgLhwPq1oVJk0yvmi++gKpVISoKfv4ZHnzQNOwbORJOnrS7WhERkTRja5hZsWIFrVq1IjAwEIfDwcyZM5O8PnToUO655x58fHzInTs3wcHBrF271p5iXYm/P7z8MmzaBOvXwwsvmAMw9+2DgQPNTqnHH4cFC8xZUSIikik0atSIPn362F1GmrM1zERGRlKlShU+//zzm75etmxZPvvsM7Zt28aqVasoXrw4zZo14/Tp0xlcqYtyOMxup6++MqM1EydCrVrmtO7ff4cWLcy5UO++a3ZKiYhIukuPQNG1a1fatGmTpu/pSmwNMy1btmT48OG0bdv2pq8/9dRT8WdC3HvvvXzyySeEh4ezdevWDK7UDfj6wnPPwT//wNat8OqrkCuXac43ZIhpzteqFcyebcKOiIiIi3CZNTNXr17l66+/xt/fnypVqtzyvqioKMLDw5M85DqVKsGnn5qdUD/8YM6Aio2FOXOgdWsTbN56y5wZJSIiaaZr164sX76csWPH4nA4cDgcHDx4EIDt27fTsmVLfH19KVCgAJ07d+bMmTPxnztt2jQqVapE9uzZyZMnD8HBwURGRjJ06FC+++47Zs2aFf+ey5YtS1Y958+f55lnniF37tzkyJGDli1bsnfv3vjXDx06RKtWrcidOzc+Pj7ce++9zJ07N/5zO3XqRL58+ciePTtlypRh0qRJafZ3lRJZbPmqKTBnzhyefPJJLl26RKFChVi0aBF58+a95f0jRoyIP7lT7iB7dnj6afPYvdtMQ02ebELOe+/B++9DcLA57LJ1a9PTRkTEWVmWaVFhhxw5zNT+HYwdO5Y9e/ZQsWJF3nnnHQDy5cvHhQsXePDBB+nevTujR4/m8uXLDBgwgA4dOvDXX39x/PhxOnbsyKhRo2jbti0XL15k5cqVWJZF//792bVrF+Hh4fFhIiAgIFlld+3alb179zJ79mz8/PwYMGAADz30EDt37iRr1qz06NGDq1evsmLFCnx8fNi5cye+vr4ADB48mJ07dzJv3jzy5s3Lvn37uHz58l3+BaaO04eZxo0bExISwpkzZ5gwYQIdOnRg7dq15M+f/6b3Dxo0iH79+sU/Dw8PJygoKKPKdV3lysGHH5oDL2fNggkTYPFiWLTIPPLlM9u+u3c3u6JERJzNpUtmSt0OERHg43PH2/z9/fHy8iJHjhwULFgw/vpnn31GtWrVeP/99+OvffvttwQFBbFnzx4iIiKIjo7mscceo1ixYgBUqlQp/t7s2bMTFRWV5D3vJC7ErF69mrp16wIwZcoUgoKCmDlzJu3bt+fw4cO0a9cu/muVLFky/vMPHz5MtWrVqFmzJgDFixdP9tdOa04/zeTj40Pp0qWpXbs233zzDVmyZOGbb7655f3e3t74+fkleUgKeHtDhw4mwOzfD2++CYUKwenTJuyUKweNGsGUKXDlit3Vioi4hS1btrB06VJ8fX3jH/fccw8A+/fvp0qVKjRp0oRKlSrRvn17JkyYwPnz51P1NXft2kWWLFmoVatW/LU8efJQrlw5du3aBUCvXr0YPnw49erV4+23306yZvXll1/ml19+oWrVqrzxxhv8/fffqaonNZw+zFwvNjaWqKgou8vIHEqWNNNNhw/DzJnw8MPg4QHLl5upqcBA6N3bNOwTEbFbjhxmhMSOR44cqSo9IiKCVq1aERISkuSxd+9eGjRogKenJ4sWLWLevHlUqFCBcePGUa5cOULTeW1j9+7dOXDgAJ07d2bbtm3UrFmTcePGAWYTz6FDh+jbty/Hjh2jSZMm9O/fP13ruRVbw0xERET8DwwgNDSUkJAQDh8+TGRkJG+++Sb//PMPhw4dYuPGjTz77LMcPXqU9u3b21l25pMli1kzM2cOHDwIw4ZB0aJw/rxZSFypEtSpA99+C5GRdlcrIpmVw2Gmeux4JGO9TBwvLy9iYmKSXKtevTo7duygePHilC5dOsnD5/+nrxwOB/Xq1WPYsGFs3rwZLy8vZsyYccv3vJPy5csTHR2dpH/b2bNn2b17NxUqVIi/FhQUxEsvvcT06dN57bXXmDBhQvxr+fLlo0uXLvz444+MGTOGr7/+OkU1pBVbw8yGDRuoVq0a1apVA6Bfv35Uq1aNIUOG4Onpyb///ku7du0oW7YsrVq14uzZs6xcuZJ7773XzrIzt6Ags5X7wAGYOxfatjVh559/zNbvQoXgpZdg40a7KxURcUrFixdn7dq1HDx4kDNnzhAbG0uPHj04d+4cHTt2ZP369ezfv58FCxbQrVs3YmJiWLt2Le+//z4bNmzg8OHDTJ8+ndOnT1O+fPn499y6dSu7d+/mzJkzXLt27Y51lClThtatW/P888+zatUqtmzZwtNPP03hwoVp3bo1AH369GHBggWEhoayadMmli5dGv81hwwZwqxZs9i3bx87duxgzpw58a9lOMvNhYWFWYAVFhZmdynu6/hxyxoxwrJKlbIss5/APKpVs6zx4y1Lf/cikg4uX75s7dy507p8+bLdpaTI7t27rdq1a1vZs2e3ACs0NNSyLMvas2eP1bZtWytXrlxW9uzZrXvuucfq06ePFRsba+3cudNq3ry5lS9fPsvb29sqW7asNW7cuPj3PHXqlNW0aVPL19fXAqylS5fe9Gs3bNjQ6t27d/zzc+fOWZ07d7b8/f2t7NmzW82bN7f27NkT/3rPnj2tUqVKWd7e3la+fPmszp07W2fOnLEsy7Leffddq3z58lb27NmtgIAAq3Xr1taBAwdS9Hdxu59hSn5/OyzLvU8fDA8Px9/fn7CwMC0GTm+xsbBsmdkJNX06XL1qrufIAU88YbZ4166douFYEZFbuXLlCqGhoZQoUYJs2bLZXY7chdv9DFPy+9vlFgCLE/PwMAda/vwzHD0Kn3wC5cub7ZKTJpmDMCtVgrFj4dw5u6sVERE3oTAj6SNvXujbF3bsgFWroEsX06Rvxw7o08fshOrUyYzkuPfgoIiIpDOFGUlfDgfUq5fQWfizz6BKFYiKgp9+gsaNTe+aUaPg1Cm7qxURERekMCMZJ1cu6NEDNm+GdevMGhpfX9i7FwYMgMKF4fHHYeFCs/5GREQkGRRmJOM5HHDfffD113D8uFkwfP/95rTu33+H5s2hVClztMLRo3ZXKyJOzs33sbi1tPrZKcyIvXx9zXlPa9fCli3Qsyf4+5vmfIMHm+Z8jz4Kf/xhwo6IyP/z9PQE4GrczklxOZf+/2DQrFmzpup9tDVbnM/lyzBtmhmxWbky4XpgIDz7rGnOZ+OBZiLiHCzL4vDhw1y7do3AwEA8PPTvc1dhWRaXLl3i1KlT5MqVi0KFCt1wT0p+fyvMiHPbtQsmToTvvoOzZ801hwOaNoUXXoBWrcDLy94aRcQ2V69eJTQ0lFits3NJuXLlomDBgjhu0n9MYSYRhRk3ERVlDrucMAGWLEm4nj8/dO1qpqrKlLGrOhGxUWxsrKaaXFDWrFnjpwpvRmEmEYUZN7R/P3zzjWnEd+JEwvVGjcwOqcceA3UDFRFxaeoALO6tVCl4/304fBhmzICHHjJTT8uWmUZ8hQubxnw7dthdqYiIZACNzIh7OHIEvv3WjNgcOZJwvU4dM1rToQP4+NhXn4iIpIhGZiTzCQqCt9+G0FCYOxfatAFPT1izxuyACgyEl1+GTZvsrlRERNKYwoy4F09PaNnSTD8dOWKmo0qWhPBw+PJLqFHDPL780lwTERGXpzAj7qtQIRg0yByXsHgxPPGE2ca9aZMZpSlUyGzvDguzu1IREUkFhRlxfx4e0KQJ/PKLOR7h44/hnnvg0iWz1fvRR02jPhERcUkKM5K55M0L/frBzp3mQEs/P1ixwozaXLtmd3UiInIXFGYkc4rrIjx7tulJ88cf5pgEdREVEXE5CjOSuTVsCL/+ahYO//CDGbVx724FIiJuR2FGpFUr000YYOxYGD7c3npERCRFFGZEADp3hjFjzMdDhsAXX9hajoiIJJ/CjEic3r1h8GDzcc+e8PPP9tYjIiLJojAjktiwYdCjh1k388wzMG+e3RWJiMgdKMyIJOZwwKefQseOEB0N7drB6tV2VyUiIrehMCNyPQ8PmDwZWrQwzfQeeQS2brW7KhERuQWFGZGb8fKC33+HunXhwgVo1gz277e7KhERuQmFGZFbyZED5syBSpXg5EnTZO/YMburEhGR6yjMiNxO7tywYIE5eTs0FJo3h/Pn7a5KREQSUZgRuZNChWDRIvPn9u3w8MMQGWl3VSIi8v8UZkSSo2RJM0KTKxesWWN2OV29andVIiKCwoxI8lWqBHPnmrU0CxaYPjQxMXZXJSKS6SnMiKREnTowfTpkzQpTp5pOwTqYUkTEVgozIinVvLk5YdvhgC+/TDgCQUREbKEwI3I3nngi4TDK996D0aPtrUdEJBNTmBG5Wy+9BMOHm4/79YPvvrO3HhGRTEphRiQ13nwT+vY1Hz/3HMyebW89IiKZkMKMSGo4HPDRR9Cli9nZ1KEDLFtmd1UiIpmKwoxIanl4wMSJ0Lo1REXBo4/Cxo12VyUikmkozIikhSxZ4JdfoGFDuHjRnLi9e7fdVYmIZAoKMyJpJVs2s2amenU4c8YcTHnkiN1ViYi4PYUZkbTk5wfz5kHZsibINGtmgo2IiKQbhRmRtJY/vzmYskgR+PdfaNnSTD2JiEi6UJgRSQ9Fi8LChZAnD2zYAG3awJUrdlclIuKWFGZE0kv58jB/Pvj6wl9/wVNPQXS03VWJiLgdhRmR9FSzJsyaBV5eMGMGvPiiDqYUEUljCjMi6e3BB80J2x4e8O238MYbCjQiImlIYUYkI7RpYxrrgekYPHKkreWIiLgThRmRjNKtG3z4ofl40CD4+mt76xERcRMKMyIZqX9/GDjQfPzSS/Dbb/bWIyLiBhRmRDLa++/DCy+YdTOdOpmeNCIictcUZkQymsMBX3wB7dvDtWvQti2sXWt3VSIiLkthRsQOnp7www/m/KbISNMleMcOu6sSEXFJCjMidvH2hunToXZtOH/enON08KDdVYmIuByFGRE7+frCn3/CvffCsWNmpObkSburEhFxKQozInYLCIAFC6B4cdi3D5o3hwsX7K5KRMRlKMyIOIPChc3BlPnzw5Yt0KoVXLpkd1UiIi5BYUbEWZQpY0Zo/Pxg1Sro0MHsdhIRkdtSmBFxJlWrwpw5kC2bWUvTrRvExtpdlYiIU1OYEXE2DzwA06ZBliwwZQr06aODKUVEbkNhRsQZPfwwTJ5sPh43Dt55x9ZyREScmcKMiLPq1MkEGYChQxM+FhGRJBRmRJxZz54myAD06mWmnUREJAmFGRFnN2SICTUAXbqYhcEiIhJPYUbE2TkcMHasmXaKiYHHH4eVK+2uSkTEaSjMiLgCDw+YNMksDL5yBR55BEJC7K5KRMQpKMyIuIqsWeHXX6F+fQgPhxYtzPEHIiKZnK1hZsWKFbRq1YrAwEAcDgczZ86Mf+3atWsMGDCASpUq4ePjQ2BgIM888wzHjh2zr2ARu+XIAX/8AVWqmAMpmzaFo0ftrkpExFa2hpnIyEiqVKnC559/fsNrly5dYtOmTQwePJhNmzYxffp0du/ezaOPPmpDpSJOJFcuc+xB6dJw8KA5mPLcOburEhGxjcOynKO1qMPhYMaMGbRp0+aW96xfv57777+fQ4cOUbRo0WS9b3h4OP7+/oSFheHn55dG1Yo4gYMHoV49OHYMatWCxYvB19fuqkRE0kRKfn+71JqZsLAwHA4HuXLluuU9UVFRhIeHJ3mIuKXixc1J27lzw9q18NhjEBVld1UiIhnOZcLMlStXGDBgAB07drxtQhsxYgT+/v7xj6CgoAysUiSD3XsvzJ0LPj6waBF07my2b4uIZCIuEWauXbtGhw4dsCyL8ePH3/beQYMGERYWFv84cuRIBlUpYpPatWHGDLPb6bff4JVXdDCliGQqTh9m4oLMoUOHWLRo0R3nzby9vfHz80vyEHF7TZuaow4cDvj6a/jf/+yuSEQkwzh1mIkLMnv37mXx4sXkyZPH7pJEnFf79vDVV+bjESPg44/trUdEJINksfOLR0REsC9R06/Q0FBCQkIICAigUKFCPP7442zatIk5c+YQExPDiRMnAAgICMDLy8uuskWc1/PPw9mzMGgQ9O8PAQHQrZvdVYmIpCtbt2YvW7aMxo0b33C9S5cuDB06lBIlStz085YuXUqjRo2S9TW0NVsyHcuCN96Ajz4yxyBMmwZt29pdlYhIiqTk97fT9JlJLwozkilZFnTvDt9+C15eMG8ePPig3VWJiCSb2/aZEZFkcjjM+pk2beDqVWjdGtavt7sqEZF0oTAj4q6yZIGffzYjMhER0LIl/Puv3VWJiKQ5hRkRd5YtG8ycCTVrmoXBTZvC4cN2VyUikqYUZkTcXc6cZs3MPffAf/9Bs2Zw+rTdVYmIpBmFGZHMIG9ec45TUBDs3g0tWoDOLRMRN6EwI5JZBAWZ85vy5YNNm8yi4CtX7K5KRCTVFGZEMpNy5WD+fDP1tGwZPPEEREfbXZWISKoozIhkNtWrw+zZ4O1t/uzeHWJj7a5KROSuKcyIZEaNGsHUqeDpCd99Z44+cO/+mSLixhRmRDKr1q3hm2/Mx6NHm8MpRURckMKMSGbWpQt88on5+H//gy+/tLceEZG7oDAjktn17WuCDMArr5jpJxERF6IwIyLw7rvw0ktm3UznzrBggd0ViYgkm8KMiJiDKT/7zGzVvnYNHnsM/v7b7qpERJJFYUZEDE9P+P570x340iV4+GHYts3uqkRE7khhRkQSeHnBtGlQpw5cuGDOcTpwwO6qRERuS2FGRJLy8YE5c6BiRThxwpy0feKE3VWJiNySwoyI3CggwBxMWaKEGZlp3tyM1IiIOCGFGRG5uUKFzMGUBQvC1q3wyCNmLY2IiJNRmBGRWytVymzTzpULVq+Gxx+Hq1ftrkpEJAmFGRG5vcqVzRqa7Nlh3jzo2lUHU4qIU1GYEZE7q1cPpk+HLFng55/h1Vd1MKWIOA2FGRFJnhYtTB8ahwO++ALeftvuikREAIUZEUmJjh1Np2AwRyCMHWtvPSIiKMyISEq98gq88475uE8f+OEHW8sREVGYEZGUe+st6N3bfNytG/zxh731iEimpjAjIinncMAnn5gTtmNioEMHWLHC7qpEJJNSmBGRu+PhAd98A61awZUr5s/Nm+2uSkQyIYUZEbl7WbPC1KnQoAGEh5tjD/bssbsqEclkFGZEJHWyZ4fZs6FaNTh92hxM+d9/dlclIpmIwoyIpJ6/P8yfD2XKwOHD0KwZnD1rd1UikkkozIhI2sif3xxMWbgw7NoFDz0EFy/aXZWIZAIKMyKSdooVg4ULISAA1q2Dtm0hKsruqkTEzSnMiEjaqlDBHEjp4wNLlkCnTmb7tohIOlGYEZG0d//9MGsWeHnB77/Diy/qYEoRSTcKMyKSPpo0MSdsx/WjGTjQ7opExE0pzIhI+nnsMfj6a/PxqFHmISKSxhRmRCR9PfdcQogZMAAmTrS3HhFxOwozIpL+Xn/dBBkw62d+/93eekTErSjMiEjGGDECuneH2Fh46ilYvNjuikTETSjMiEjGcDjgyy+hXTu4ehXatDG9aEREUklhRkQyjqcnTJkCwcEQGQktW8LOnXZXJSIuTmFGRDKWtzfMmGF60Zw7Z85xOnTI7qpExIUpzIhIxvP1hblzTbfgo0fNSdsnT9pdlYi4KIUZEbFHnjzmHKdixWDvXmjRAsLC7K5KRFyQwoyI2KdwYXPSdr58EBICjz4Kly/bXZWIuJgUhZlTp07d9vXo6GjWaXeCiKREmTKwYAH4+cGKFfDEE3Dtmt1ViYgLSVGYKVSoUJJAU6lSJY4cORL//OzZs9SpUyftqhORzKFaNfjjD8iWzfz53HOmH42ISDKkKMxY1516e/DgQa5d9y+o6+8REUmWBg3g11/N9u0ffoB+/XTStogkS5qvmXE4HGn9liKSWbRqBZMnm4/HjoXhw20tR0RcgxYAi4hzefppE2QAhgyBL76wtx4RcXpZUnKzw+Hg4sWLZMuWDcuycDgcREREEB4eDhD/p4hIqvTqBWfPwjvvQM+ekDs3dOxod1Ui4qQcVgoWuXh4eCSZRooLNNc/j4mJSdsqUyE8PBx/f3/CwsLw8/OzuxwRSS7LMqHms88gSxaYPdscfyAimUJKfn+naGRm6dKlqSpMRCTZHA4z3XT2LPz8szmgctEiqFfP7spExMmkaGTGFWlkRsTFXbsGrVvDvHmQKxcsXw6VK9tdlYiks5T8/k7RAuDo6GiioqKSXDt58iTDhg3jjTfeYNWqVSmvVkTkdrJmhWnTzIjMhQvmYMr9++2uSkScSIrCzPPPP0+vXr3in1+8eJH77ruPzz//nAULFtC4cWPmzp2b5kWKSCaXIwfMmWNGZE6eNAdTHjtmd1Ui4iRSFGZWr15Nu3bt4p9///33xMTEsHfvXrZs2UK/fv348MMP07xIERFy5TLHHpQqBaGh0Lw5nDtnd1Ui4gRSFGaOHj1KmTJl4p8vWbKEdu3a4e/vD0CXLl3YsWNH2lYoIhKnYEGzCLhQIdi+HR55BCIj7a5KRGyWojCTLVs2Lic60faff/6hVq1aSV6PiIhIu+pERK5XogQsXGh6z6xZA489ppO2RTK5FIWZqlWr8sMPPwCwcuVKTp48yYMPPhj/+v79+wkMDEzbCkVErlexIvz5p1lLs3Ch6T+jpp0imVaKwsyQIUMYO3YspUqVonnz5nTt2pVChQrFvz5jxgzqqQeEiGSEOnVg/nzImdNs1w4ONj1pRCTTSVHTvIYNG7Jx40YWLlxIwYIFad++fZLXq1atyv3335+mBYqI3NIDD8Bff0GLFrB+PTRqZEZqEv0jS0Tcn5rmiYjr27nTjMwcP252Oy1eDMWL212ViKRCuh1nsGLFimTd16BBg5S8rYhI6lSoAKtWmUCzfz/Ur28CzT332F2ZiGSAuz5o8lafpoMmRcQ2R4+ahnq7dkG+fKYvTbVqdlclInch3Y4zyJ07N0FBQQwePJi9e/dy/vz5Gx7n1MRKROxSuDCsWAE1asDp09C4MaxebXdVIpLOUhRmjh8/zsiRI1mzZg2VKlXiueee4++//8bPzw9/f//4R3KtWLGCVq1aERgYiMPhYObMmUlenz59Os2aNSNPnjw4HA5CQkJSUq6IZEZ588KSJWaqKSzMnOW0aJHdVYlIOkpRmPHy8uKJJ55gwYIF/Pvvv1SuXJmePXsSFBTE//73P6Kjo1P0xSMjI6lSpQqff/75LV+vX78+I0eOTNH7ikgm5+9vpphatIBLl0yn4Bkz7K5KRNJJqnczhYaG8txzz7F8+XJOnz5NQEDA3RXicDBjxgzatGlzw2sHDx6kRIkSbN68mapVq6bofbVmRiQTu3oVOnUyp257esK338Izz9hdlYgkQ7qtmYkTFRXFTz/9RHBwMBUrViRv3rz8+eefdx1k0lJUVBTh4eFJHiKSSXl5wc8/Q9euEBMDXbrALUaCRcR1pWhr9rp165g0aRK//PILxYsXp1u3bvz6669OEWLijBgxgmHDhtldhog4iyxZ4JtvwM8PPv0UevY0Rx8MGmR3ZSKSRlIUZmrXrk3RokXp1asXNWrUAGDVqlU33Pfoo4+mTXV3YdCgQfTr1y/+eXh4OEFBQbbVIyJOwMMDxowxa2nefRfefNMsDh4xAv6/3YSIuK4UhRmAw4cP8+67797ydbv7zHh7e+Pt7W3b1xcRJ+VwwDvvmBGa11+HkSNNoPn8cxN2RMRlpej/wbGxsXd8XLx4Mb1qFRFJvf794auvTLj58kuzIPjaNburEpFUSLN/jkRFRfHJJ59QsmTJZH9OREQEISEh8f1jQkNDCQkJ4fDhwwCcO3eOkJAQdu7cCcDu3bsJCQnhxIkTaVW2iGRGL7wAU6aY9TRTpkD79nDlit1VichdSlGYiYqKYtCgQdSsWZO6devGN7n79ttvKVGiBKNHj6Zv377Jfr8NGzZQrVo1qv1/u/F+/fpRrVo1hgwZAsDs2bOpVq0aDz/8MABPPvkk1apV48svv0xJ2SIiN+rY0fSe8faGWbNML5qICLurEpG7kKI+MwMGDOCrr74iODiYv//+m9OnT9OtWzf++ecf3nzzTdq3b4+np2d61pti6jMjIre1dCk8+qgJMnXqwJ9/Qu7cdlclkumlW5+Z3377je+//55p06axcOFCYmJiiI6OZsuWLTz55JNOF2RERO6ocWNzwnbu3LBmjXl+8qTdVYlICqQozPz333/xW7IrVqyIt7c3ffv2jT9JW0TEJdWqBcuXQ4ECsGULNGgA/792T0ScX4rCTExMDF5eXvHPs2TJgq+vb5oXJSKS4SpVgpUroWhR2LPHHFS5d6/dVYlIMqSoz4xlWXTt2jW+j8uVK1d46aWX8PHxSXLf9OnT065CEZGMUqYMrFoFwcEm0DzwACxcCJUr212ZiNxGisJMly5dkjx/+umn07QYERHbBQWZEZpmzcyUU8OGMG8e1K5td2UicgupPjXb2Wk3k4jclfPn4eGHzaJgHx+YPRsefNDuqkQyjXQ/NVtExO3lzm2mmIKDITISHnoI/vjD7qpE5CYUZkREbsXX1wSYNm0gKgratoWffrK7KhG5jsKMiMjtZMsGv/0GTz8NMTHmz6+/trsqEUlEYUZE5E6yZIHvvoOXXwbLghdfhA8/tLsqEfl/CjMiIsnh4QGffw4DB5rnb7wBb71lwo2I2EphRkQkuRwOGDHCPADeew9694bYWHvrEsnkFGZERFJq4EAzSgMwbhw89xxER9tbk0gmpjAjInI3XnkFfvgBPD1h8mR48kmz40lEMpzCjIjI3Xr6aZg2Dby84PffoXVruHTJ7qpEMh2FGRGR1GjTBubMgRw5YMECaN4cwsLsrkokU1GYERFJraZNYdEi8Pc3B1U++CCcPm13VSKZhsKMiEhaqFsXli2DfPlg0yZo0ACOHrW7KpFMQWFGRCStVK0KK1ZAkSLw77/wwANw4IDdVYm4PYUZEZG0dM89ZqqpdGkIDYX69WHHDrurEnFrCjMiImmtWDFYuRIqVoTjx82U04YNdlcl4rYUZkRE0kPBgrB8Odx/P5w7ZxYFr1hhd1UibklhRkQkvQQEwOLF0KgRXLxotm3PnWt3VSJuR2FGRCQ95cxpAszDD8OVK6ax3q+/2l2ViFtRmBERSW/Zs8OMGebIg+ho6NgRvv3W7qpE3IbCjIhIRsiaFX78EZ5/3pyy/dxzMGaM3VWJuAWFGRGRjOLpCV99Ba+9Zp737QvDhoFl2VuXiItTmBERyUgOB3z4Ibzzjnk+dCj0769AI5IKCjMiIhnN4YDBgxOmmT75BF54AWJibC1LxFUpzIiI2KV3b7MQ2MMDJk6ETp3g6lW7qxJxOQozIiJ26tYNpk41C4SnToW2beHyZburEnEpCjMiInZ7/HGYPdts4Z47F1q2hPBwu6sScRkKMyIizqBFC1iwwDTZW74cgoPh7Fm7qxJxCQozIiLO4oEHYOlSyJMH1q+Hhg3NQZUiclsKMyIizqRGDXMgZaFCsGOHCTgHD9pdlYhTU5gREXE2FSrAqlVQogTs3w/168O//9pdlYjTUpgREXFGJUvCypVQvjwcPWpGaDZvtrsqEaekMCMi4qwKFzZTTjVqwJkz0LgxrF5td1UiTkdhRkTEmeXNC0uWmJGZsDBo1gwWLrS7KhGnojAjIuLs/P1h/nyzffvSJWjVCmbMsLsqEaehMCMi4gpy5IBZs0yDvatXoX17+P57u6sScQoKMyIirsLLC37+2RyBEBMDXbrA55/bXZWI7RRmRERcSZYs5lDKXr3M8549YcQIe2sSsZnCjIiIq/HwgDFjYPBg8/zNN2HgQLAsW8sSsYvCjIiIK3I44J134KOPzPORI+GVVyA21t66RGygMCMi4speew2++sqEmy+/hM6d4do1u6sSyVAKMyIiru6FF2DKFLOe5qefzI6nK1fsrkokwyjMiIi4g44dTe8Zb2+YPRseeQQiIuyuSiRDKMyIiLiLRx6BefPA19d0DW7aFM6ft7sqkXSnMCMi4k4aN4bFiyF3bvjnH2jUCE6etLsqkXSlMCMi4m5q1YLly6FAAdi6FRo0gMOH7a5KJN0ozIiIuKNKlWDlSihaFPbsgfr1zZ8ibkhhRkTEXZUpA6tWQdmycOSIOXl761a7qxJJcwozIiLuLCjIjNBUrQqnTkHDhmYtjYgbUZgREXF3+fPD0qVQty5cuADBwfDXX3ZXJZJmFGZERDKDXLlg4UITZCIj4aGH4I8/7K5KJE0ozIiIZBY+PibAtGkDUVHQtq3pGCzi4hRmREQyk2zZ4LffzBlOMTHw9NPmbCcRF6YwIyKS2WTJApMnm1O2LQteegk+/NDuqkTumsKMiEhm5OEBn30GAwea52+8AW+9ZcKNiItRmBERyawcDhgxwjwA3nsPeveG2Fh76xJJIYUZEZHMbuBA+Pxz8/G4cfDssxAdbW9N4hIsC65ds7sKyGJ3ASIi4gReeQX8/KBrV/juO4iIgClTwNvb7srEZrGxsHs3HDgA+/ebPxM/PvwQevSwt0aFGRERMZ5+Gnx94Ykn4Pff4eJFmD7dbOkWt2VZ5mD1xAGlQAF48UXzemwsVK5868G6/fszrtZbcViWe6/2Cg8Px9/fn7CwMPz8/OwuR0TE+S1eDK1bw6VLUK8e/Pkn+PvbXZWkwpUrcP48FCpknlsWPP64OXv0wAHzo06sdm1YsybheY0a5nNKlrzxUbQoeHmlfc0p+f2tkRkREUkqOBgWLTJdglevhgcfhPnzIV8+uyuTO1i7Fvbtu3E66OhRqFMH/v7b3OdwwObNEBpqnnt4mGO84gJK1apJ33fjxgz9NlJMYUZERG5Uty4sWwbNmsGmTdCggRmxKVzY7soyrStX4ODBpCHFyws++CDhniefNPfczOnTSZ+PHm16KJYsCcWKpc/oSkaxdZppxYoVfPjhh2zcuJHjx48zY8YM2rRpE/+6ZVm8/fbbTJgwgQsXLlCvXj3Gjx9PmTJlkv01NM0kIpIKu3ebkZr//oPixU2gKVXK7qrckmWZwHH6NNx7b8L1J580A2RHj97YBqhgQTh+POF5p05w7JgJKKVKJZ0OypPHjMi4CpeZZoqMjKRKlSo8++yzPPbYYze8PmrUKD799FO+++47SpQoweDBg2nevDk7d+4kW7ZsNlQsIpLJlCsHq1aZQLNvHzzwgJmCSvzbVlJs2TLYvv3GnUGRkRAYaIJLnFOnTJYEsz77+qBiWQkhZcqUDP9WnILTLAB2OBxJRmYsyyIwMJDXXnuN/v37AxAWFkaBAgWYPHkyTz75ZLLeVyMzIiJp4MQJaNrU/AYOCDBraO67z+6qnI5lwZkzN65ZCQ+HadMS7mvUCJYvv/HzHQ6zdmXfPsia1Vxbu9b8WbIk5M3rWqMrqeEyIzO3ExoayokTJwgODo6/5u/vT61atVizZs0tw0xUVBRRUVHxz8PDw9O9VhERt1ewoPnt27IlrFsHTZqYE7gbNrS7sgx39apZl/Lff2ZtdJxu3UxgiYi48XMcDrPmJW5SoVEjyJ07YXQlbqSlWLEbW/vUqpVe34n7cNowc+LECQAKFCiQ5HqBAgXiX7uZESNGMGzYsHStTUQkUwoIMGtmHn3UzJO0aGH60Tz0kN2VpZslS+Cff5KOshw5kjC1c/lyQviwLBNkHA4oUuTGLcyJDR2a4d+KW3PaMHO3Bg0aRL9+/eKfh4eHExQUZGNFIiJuJGdOmDsXOnSAOXNMP5opU8xzF3L1Khw6lBBQ4qaFQkPNtE7czp7vvzeP6/n4mIBy9qxZ4wIweDAMGmRGV7SsM2M5bZgpWLAgACdPnqRQXJef/39e9foN8Il4e3vjrfbbIiLpJ3t20xn4mWfgl1+gY0fTLfi55+yuLJ5lmaARF1batUtYg9K7tzkw/FbnaR4+DKVLm48bNzYjLYkX3JYqZVruXL92RZu87OO0YaZEiRIULFiQJUuWxIeX8PBw1q5dy8svv2xvcSIimV3WrPDjj2akZsIE6N7dBJo+fWwpZ8kSsyb5+kW3cfbtSwgbuXKZIJMjx41rVkqWNMuD4nTtah7i3GwNMxEREezbty/+eWhoKCEhIQQEBFC0aFH69OnD8OHDKVOmTPzW7MDAwCS9aERExCaenvDVV+aog48+gr59ISwMhgxJky03lgXnzt36gMOlS6FECXPv8uWmhOsFBpqAcvlywrWePeHll835Q5llZ5C7szXMbNiwgcaNG8c/j1vr0qVLFyZPnswbb7xBZGQkL7zwAhcuXKB+/frMnz9fPWZERJyFwwGjRplAM3iwWdkaFgYff5yspHDtWtK1K48/brYfA7zzzu0Xyh44kBBmGjY0IzGJR1iKFzczYtfTqQzux2n6zKQX9ZkREckgn35qFqSAmXb68kszepNIbKw5E2jxYvNYuRISddNgyZKE7c7ffmuW4cSNrlz/qFzZzHKJe3KLPjMiIuJievUy6aJ7d5g40ayh+f57YrN44eFhbhk/3kzzJBZ3PlDJkklHUjp2NI+bja6IJKYwIyIiaadbNy46cuLT/Sk8pk5l6R8XOfTRNLq+bBJJ48Ym7zRqZBoKN2kC5cvffEZKIUaSS9NMIiKSKteumemiRYvM1NHGjdDMms90HiMHl9mZryEV9s0GPz8sC6KjE7ZJi9xKSn5/e2RQTSIi4iZiY83JznEuXjTnUH7wAWzYYHYh/XdvCyY+voBr2XNS4fRyc8PZszgcCjKS9jTNJCIid3TwYMKi3SVLzNTQihXmtYAAeOQR078lburIdMV9ADYuhebNYf16s+Vo0SJI1AhVJC1omklERG5q7lxzluTixabpXGIBAXDs2I2HIt7Uzp0m5Rw7ZvZOL15s9k2L3IammUREJEWiomDVqqTXvv7a7K7et8/ssK5XD95+29x34kQygwxAhQpmUU2JEqb7Xf368O+/af49SOalaSYRkUwoNha2bjWDJIsWmaxx+bLJGnEnPHfsaA5NDA42M0SpGtwuWdJ8kWbNzEjNAw/AggVQvXqafD+SuWmaSUQkE/n7bxg3zqx7SbyIF0x7/ylTzJqXdHPmDLRoYbY8+fnBn3+akRqR62iaSUREuHABZs6EPXsSrp06ZQ66Pn0afHzgoYfgk09g2zY4fjydgwyYswqWLDEjM+HhZqRm+nSzBUrkLinMiIi4iagoc+Di4MFQuzbkyQNt25rRljiNGpnXly83hzj++ac5H7JixQw8dNHf3xxx3aKFmdtq186Emq1bM6gAcTcKMyIiLu70aTPCEhBgwsrw4bB2rVkXU64c5M6dcG+uXOYAxwYNwMvLroqBHDlg1iwYMMAUsngxVK0Kzz9vVheLpIDWzIiIuJAjR8zv/ZgYcwQSmI/z5jXTSvnzmwW7cf1egoJsLTd5QkNh0CCYOtU89/Exz/v105kGmVhKfn8rzIiIOLGwMFi2LOGogN27zfWiRU0ju7ipodmzzc7nDJ0uSmt//23mvNatM8+DgmDECLOtykMTCZmNwkwiCjMi4qo6d4affjLTRXE8POD++83oy+DBNk8VpYfYWDNCM3AgHD5srt1/v1mlXK+evbVJhtJuJhERF2FZZifR6NHQpo1ZxBsnIMD8bi9bFnr0gBkz4OxZWLMG3n3XDYMMmLTWsaNpqvf+++Dra0Zq6teHDh3gwAG7KxQnpJEZEZEM9t9/CeccLV4MJ08mvLZ0qVnECwkDE0WLZniJzuPkSRgyBCZONMnOywt694Y33zSrmcVtaZopEYUZEXEmX30FL72U9Fr27GZ3UXAwPPkkFCliT21Obds2eO01s3gIzIrnYcPghRcgi5rZuyNNM4mI2OjaNXN+0dChZnbkl18SXrvvvoR1L2++CX/9BefPm7Yr/fsryNxSpUrm+IO5c82R3WfOmLm3ypXNNff+d7ncgUZmRERSybLMcUNx00bLlkFERMLrXbvCpEnm49hYs0Mpce8XSaHoaJgwwUw/nTljrjVtCh9/bEKPuAVNMyWiMCMi6SEqKuHU6BMnoFChpK/nzWv6vDRtah6Zet1LegkLM4uEx4yBq1fNkNdzz5mugAUL2l2dpJLCTCIKMyKSFi5eNEcAxPV7KVwYFi5MeL1WLbMeNTjYPKpUUWuUDBMaarZy//qree7ra5ru9e2rpnsuTGEmEYUZEblba9eatSyLFpmPo6MTXvPxMWcbxW2PtiwXblbnLlavNl2DEzfd++ADs6paydLlaAGwiEgKWRbs3Zv02ttvm0W8q1ebIFOqlNmJNG2a2TaduM+LgowTqFfPNOGZMsUEmSNHoFMnqFPH/BDFbWlkRkQyrePHYcmShKmjY8dMD5jChc3rEyaY63FTRyVK2FuvpMDly6YT4YgRCaux27eHkSP1g3QRmmZKRGFGRBLbsgUmTzYhZfv2pK95e5uDnJs3t6U0SQ8nTphdT998k9B0r08fsy/e39/u6uQ2NM0kIoKZGlqzxsw2xNm502x+2b7dTA3VqAEDBpjRmfPnFWTcTsGC8PXXsHmzGV67ehVGjYLSpWH8+KQLocRlKcyIiNuwLHOkz2efmXOO8uSBunXhxx8T7mnSBJ5/3mx8OXUKNmwwa0SDg7Xxxa1Vrmy2n/35J9xzj+lP88or5vq8eWq65+LUA1pEXN6ZM/D662bq6L//kr6WO3fSf3znz2/+oS6ZkMMBDz1kGv/ENd3btctca9YMPvpITfdclNbMiIhLuXQJVq40f7Zta65dvWpOmI6MNOte6tc3Iy1Nm0LVquDpaWvJ4qwuXDBN98aOTWi61727abpXoIDd1WV6WgCciMKMiGuLjYWQELOmZeFCc+bR1atQrpyZUorz7bdmN279+poukhTav9803Zs2zTz39TULhPv00f+YbKQwk4jCjIjreu01+P77hON34gQFmVGX8eOT9noRSZVVq0zTvfXrzfOiRROa7qmRUIbTbiYRcSkXL8Iff5jwknh9y8WLJsj4+kKrVvDpp2Y05tAhs9NWQUbSVP368M8/ZsV4kSKmM+JTT5mme3//bXd1chsamRGRDBcdbXYRLVpkHmvWJISYNWugdm3z8fbtZrt07dqQNat99UomdOlSQtO9yEhzrUMHM1KjpnsZQtNMiSjMiDiXqVPhxRfNgceJlSplNpS8+iqUL29PbSI3OH48oemeZanpXgbSNJOI2O78efj9d3OW0aJFCdeLFDFBJlcuaNcOvvoKDhyAffvgiy8UZMTJFCpktnFv3myaFKnpnlPSyIyIpImrV81yg7ipo/XrzU4kMIFm/HjzcXQ0bNwINWtqy7S4GMuCuXPN4q7du821ChXg44+hRQt7a3NDmmZKRGFGJP2dPg0lSyac5xenfHmz66htW2jUyJbSRNLetWtmSHHoUDh71lxr3tw03atY0dbS3InCTCIKMyJp5/Rp02V34UKzIDdxJ90yZcz0UXCwWfsSHGymlETc1vnz8N57ZpvdtWum6d7zz8OwYWq6lwYUZhJRmBG5e1eumNYbcQ3rQkISXsuZ0/yjNG6X0bFj5kw/D63Ek8xm/35zWunvv5vnOXMmNN3Lls3W0lyZwkwiCjMiyWdZSXuDNW1qRmISq1LFXG/WDBo3hiw64U3EWLnSNN3bsME8L1bMbOV+4gk13bsL2s0kIsl27Bh89x08/TQULpywBACgYUMIDIQuXUwfsRMnzOjMhx+aQKMgI5LIAw/A2rXwww9mjvXQIejY0RzdvmaN3dW5NY3MiGQykZGwfHnC1NHOnUlfnzrV9AYDiIoybTX0j0qRFLp0CT75xIzMxDXde+IJ87x4cVtLcxWaZkpEYUYyu5gYszYxbup+0iR49tmE1x0Os026aVPzqFPHnDwtImng+HEYPNichGpZ5v9ccU339DvptjTNJJLJHTxo+nx16AD58yf0eAETWIoXN5sufv3V7FBat85symjUSEFGJE0VKgQTJ8KmTfDgg2a4c+RI03Tvq6/UdC+NaGRGxA1ERcH8+WbaaNEi2Ls36ett28L06fbUJiL/z7Jgzhzo3x/27DHX7r3XNN1r3tze2pyQppkSUZgRdxQdbUavg4LM80uXIHdu04UXTGfd2rUTdh3dd58W64o4jWvX4MsvTdO9c+fMtRYtTNO9e++1tTRnojCTiMKMuAPLMqMtcUcFLF1qDu5N3Pele3ezLqZZMzNdpP+5izi58+dh+HAYNy6h6d4LL5ime/nz212d7RRmElGYEVc2dy7MmGECzKFDSV/LmxdCQ8HX157aRCSN7Ntnmu7FzQXnzAn/+x/07p2pm+5pAbCIC4qKMlum4w5nBPj5Z7N28NAhs0W6cWN4/33Tk+vkSQUZEbdQurTpHrx8OdSoARcvwsCBcM89pleCe485pAmNzIjYxLJgx46EqaPly83al5AQ02UX4M8/YckSs/alQQPw8bG1ZBFJb7GxMGUKDBoER4+aa3XqmJ41tWvbW1sG0zRTIgoz4mw2b4YxY0yAOX486WsFCpiRmEcesaU0EXEWkZFml9PIkeZfOWC6CY8YYY5JyAQ0zSTiJC5dggULknbZPXcOvv/eBJns2c2OzI8+gi1bzDUFGRHBxweGDDEr/7t1M90tf/4ZypUzDffCw+2u0KloZEYkDcXGmmmiuKmjVavMWpg+fWD0aHPPlStms0JwMNSrl6nX94lIcm3eDK+9ZrYygtnt9O67pp23m/Zd0DRTIgozkhEiIkxH3cWL4cyZpK8FBcFzz8Hbb9tTm4i4CcuCP/4wTffiOmNWrGimo5o1s7e2dKBpJpF0dPGi+e/JpEkJ13x8YOVKE2R8faFVK/j0U9i1y+xEUpARkVRzOODRR2H7dhg71nTK3L7dzFU/9NCNp8ZmIhqZEbmD6GizFTpu6mjNGnMtIABOnTLddsH0g8mb12w4yJrV3ppFJBM4d8403fvsM9N0z9PTNN0bOtQtmu5pmikRhRlJjf/9D774Ai5cSHq9ZEmzXXrUKHXaFRGb7d1rmu7NmGGe+/mZ/3j16uXSi/I0zSSSQufPm55VL72UdJOAw2GCTK5c8Nhj5jiV/fvN48svFWRExAmUKWO6By9bBtWrm/+IDRgA5cvDr79miqZ7GpmRTMGyTDABMzW0bp0JMHv2mKmj9esTOu/OmmWmpcEcF3DqFNSsmTCdJCLitGJj4ccfTdO9Y8fMtTp1zHbKWrXsrS2FNM2UiMKM+7As00fq/HkzVVykCOTJY17bsQN++MFcP3cu4Z64x/jx8PTT5t4//kgIK4ndc4/ZENC9O1SqlHHfl4hImouMNA2sRo1KaLr31FOm6V7RovbWlkwp+f3tnpvTxanFxEBYWNKwERdAmjaFsmXNfX/9ZXpGJb7n2rWE9/n+e+jc2XwcGmoaZd7KuXMJHwcGmpGWgAAoWNCcMB0cbLZQi4i4BR8fs42ye3d46y347jv46SczHdWvnzn7KWdOu6tMMwozkmpnzpgtyDcbETl3Dvr2TRjd/Pln6NTp1lO433+fEGYuXYLVq2+8J2tWE0QSv0fZsqYxXUBAwiN37oSPCxVKuLdGDTOtJCLi9goXNn0kXn3VNN1btsycVjtxotkJ9eyzbjGHrjCTyVmW6Zty7pzZVhx3CvO2bTBnzq2nbSZOhBYtzL1z50KXLrf+Gg8/nBBmcuZMCCG+vknDR0CAGTWJU7MmTJt24z05ciSsf4lTtmxCh10REblO9epmuHv2bHj9dbMD6oUXYNw403SvaVO7K0wVhRk3ER1981GRJk0SAsLChabP0vVTOzEx5vU//kg4F2jLFnP8x62cPp3wcaFCZjH9zUZEAgJMKInTpAmcPGl2B3l53f57KlgQ2rVL8V+FiIjcjMMBrVtDy5ZmIeGwYeZfrs2amaZ7H34IFSrYXeVdUZhxQhcuwOHDt5+2uecec++kSdC7txlduZk//kgIM6dOmVGUm8mWDS5fTnh+zz3mbLPrR0XigkqpUgn3Nm1qdgUlR/bs5iEiIjbx8jK/ODp3Nuc7ffaZ+eWwYAG8+KJpupcvn91Vpoh2M6WD2FizwNXHJ2H0Yft2WLHixlGRuI8nT4b77jP3fvqp+d/Zrcyebdrlg9mBF7cIFsDfP2n4eOstaNDAvHbgACxffuPISe7cChgiIpnWnj2mL83Mmea5n5/55dGrF3h721aWW+1munjxIoMHD2bGjBmcOnWKatWqMXbsWO6L+81vo7lzTZi4fuTkwgWzLmTlSqhf39z711+3DygnTiR8nC+f6UR9q8WspUsn3PvII+Z/hwEBJsjc7vDUkiXNQ0REJF7ZsqZ78LJlZqfT5s3wxhtmKmrkSHj88RsXKjoZpw8z3bt3Z/v27fzwww8EBgby448/EhwczM6dOylcuLCtte3fb3bn3EriFvgVKpgOsreatqlSJeHejh3NIzly5TIPERGRVGnUyBxE98MPZtFkaCh06AB165odFvffb3eFt+TU00yXL18mZ86czJo1i4cffjj+eo0aNWjZsiXDhw+/43uk5zTTli2wdOmN0zZxIeVOC1xFREScUmSkWRA8alTCgsoMbrrnNtNM0dHRxMTEkO26g7KyZ8/OqlWrbvo5UVFRREVFxT8PT3zQThqrUiXpiIqIiIhb8PExC4Gff94cWunkTfec+qDJnDlzUqdOHd59912OHTtGTEwMP/74I2vWrOH48eM3/ZwRI0bg7+8f/whSW1cREZG7U7iw2aGyYQM0bAhXrpime2XKmIZjcb09bObU00wA+/fv59lnn2XFihV4enpSvXp1ypYty8aNG9m1a9cN999sZCYoKEhnM4mIiKSGZZmTeF9/HfbtM9cqVYJPPjFnwqSxlEwzOfXIDECpUqVYvnw5ERERHDlyhHXr1nHt2jVK3mJbjre3N35+fkkeIiIikkoOB7RpY072HT3a7D7Zts00G3vxRVtLc/owE8fHx4dChQpx/vx5FixYQOvWre0uSUREJPPx8jKH4e3bZ3qOZMlipqBs5PTTTAsWLMCyLMqVK8e+fft4/fXXyZYtGytXriRr1qx3/Hw7muaJiIhkGgcOQPHi4JG24yNus5sJICwsjEGDBvHff/8REBBAu3bteO+995IVZERERCSdOUE3VqcfmUktjcyIiIi4HrdaACwiIiJyOwozIiIi4tIUZkRERMSlKcyIiIiIS1OYEREREZemMCMiIiIuTWFGREREXJrCjIiIiLg0hRkRERFxaQozIiIi4tIUZkRERMSlKcyIiIiIS3P6U7NTK+4czfDwcJsrERERkeSK+72dnPOw3T7MXLx4EYCgoCCbKxEREZGUunjxIv7+/re9x2ElJ/K4sNjYWI4dO0bOnDlxOBxp+t7h4eEEBQVx5MiROx5PLs5HPz/Xp5+h69PP0LWl58/PsiwuXrxIYGAgHh63XxXj9iMzHh4eFClSJF2/hp+fn/5P6ML083N9+hm6Pv0MXVt6/fzuNCITRwuARURExKUpzIiIiIhLU5hJBW9vb95++228vb3tLkXugn5+rk8/Q9enn6Frc5afn9svABYRERH3ppEZERERcWkKMyIiIuLSFGZERETEpSnMiIiIiEtTmLlLn3/+OcWLFydbtmzUqlWLdevW2V2SJNOKFSto1aoVgYGBOBwOZs6caXdJkkIjRozgvvvuI2fOnOTPn582bdqwe/duu8uSZBo/fjyVK1eOb7RWp04d5s2bZ3dZkgoffPABDoeDPn362PL1FWbuwtSpU+nXrx9vv/02mzZtokqVKjRv3pxTp07ZXZokQ2RkJFWqVOHzzz+3uxS5S8uXL6dHjx78888/LFq0iGvXrtGsWTMiIyPtLk2SoUiRInzwwQds3LiRDRs28OCDD9K6dWt27Nhhd2lyF9avX89XX31F5cqVbatBW7PvQq1atbjvvvv47LPPAHP+U1BQEK+++ioDBw60uTpJCYfDwYwZM2jTpo3dpUgqnD59mvz587N8+XIaNGhgdzlyFwICAvjwww957rnn7C5FUiAiIoLq1avzxRdfMHz4cKpWrcqYMWMyvA6NzKTQ1atX2bhxI8HBwfHXPDw8CA4OZs2aNTZWJpJ5hYWFAeYXoriWmJgYfvnlFyIjI6lTp47d5UgK9ejRg4cffjjJ70Q7uP1Bk2ntzJkzxMTEUKBAgSTXCxQowL///mtTVSKZV2xsLH369KFevXpUrFjR7nIkmbZt20adOnW4cuUKvr6+zJgxgwoVKthdlqTAL7/8wqZNm1i/fr3dpSjMiIhr69GjB9u3b2fVqlV2lyIpUK5cOUJCQggLC2PatGl06dKF5cuXK9C4iCNHjtC7d28WLVpEtmzZ7C5HYSal8ubNi6enJydPnkxy/eTJkxQsWNCmqkQyp549ezJnzhxWrFhBkSJF7C5HUsDLy4vSpUsDUKNGDdavX8/YsWP56quvbK5MkmPjxo2cOnWK6tWrx1+LiYlhxYoVfPbZZ0RFReHp6Zlh9WjNTAp5eXlRo0YNlixZEn8tNjaWJUuWaL5XJINYlkXPnj2ZMWMGf/31FyVKlLC7JEml2NhYoqKi7C5DkqlJkyZs27aNkJCQ+EfNmjXp1KkTISEhGRpkQCMzd6Vfv3506dKFmjVrcv/99zNmzBgiIyPp1q2b3aVJMkRERLBv377456GhoYSEhBAQEEDRokVtrEySq0ePHvz000/MmjWLnDlzcuLECQD8/f3Jnj27zdXJnQwaNIiWLVtStGhRLl68yE8//cSyZctYsGCB3aVJMuXMmfOGNWo+Pj7kyZPHlrVrCjN34YknnuD06dMMGTKEEydOULVqVebPn3/DomBxThs2bKBx48bxz/v16wdAly5dmDx5sk1VSUqMHz8egEaNGiW5PmnSJLp27ZrxBUmKnDp1imeeeYbjx4/j7+9P5cqVWbBgAU2bNrW7NHFR6jMjIiIiLk1rZkRERMSlKcyIiIiIS1OYEREREZemMCMiIiIuTWFGREREXJrCjIiIiLg0hRkRERFxaQozIiIi4tIUZkTEpXXt2pU2bdrYXYaI2EhhRkTuqGvXrjgcjhseLVq0sLs0xo4d6zTHUDgcDmbOnGl3GSKZjs5mEpFkadGiBZMmTUpyzdvb26ZqICYmBofDgb+/v201iIhz0MiMiCSLt7c3BQsWTPLInTs3y5Ytw8vLi5UrV8bfO2rUKPLnz8/JkycBcyBkz5496dmzJ/7+/uTNm5fBgweT+Gi4qKgo+vfvT+HChfHx8aFWrVosW7Ys/vXJkyeTK1cuZs+eTYUKFfD29ubw4cM3TDM1atSIV199lT59+pA7d24KFCjAhAkT4k+2z5kzJ6VLl2bevHlJvr/t27fTsmVLfH19KVCgAJ07d+bMmTNJ3rdXr1688cYbBAQEULBgQYYOHRr/evHixQFo27YtDocj/rmIpD+FGRFJlUaNGtGnTx86d+5MWFgYmzdvZvDgwUycODHJSfLfffcdWbJkYd26dYwdO5ZPPvmEiRMnxr/es2dP1qxZwy+//MLWrVtp3749LVq0YO/evfH3XLp0iZEjRzJx4kR27NhB/vz5b1rTd999R968eVm3bh2vvvoqL7/8Mu3bt6du3bps2rSJZs2a0blzZy5dugTAhQsXePDBB6lWrRobNmxg/vz5nDx5kg4dOtzwvj4+Pqxdu5ZRo0bxzjvvsGjRIgDWr18PmJO7jx8/Hv9cRDKAJSJyB126dLE8PT0tHx+fJI/33nvPsizLioqKsqpWrWp16NDBqlChgvX8888n+fyGDRta5cuXt2JjY+OvDRgwwCpfvrxlWZZ16NAhy9PT0zp69GiSz2vSpIk1aNAgy7Isa9KkSRZghYSE3FBb69atk3yt+vXrxz+Pjo62fHx8rM6dO8dfO378uAVYa9assSzLst59912rWbNmSd73yJEjFmDt3r37pu9rWZZ13333WQMGDIh/DlgzZsy4xd+iiKQXrZkRkWRp3Lgx48ePT3ItICAAAC8vL6ZMmULlypUpVqwYo0ePvuHza9eujcPhiH9ep04dPv74Y2JiYti2bRsxMTGULVs2yedERUWRJ0+e+OdeXl5Urlz5jrUmvsfT05M8efJQqVKl+GtxI0anTp0CYMuWLSxduhRfX98b3mv//v3xdV3/tQsVKhT/HiJiH4UZEUkWHx8fSpcufcvX//77bwDOnTvHuXPn8PHxSfZ7R0RE4OnpycaNG/H09EzyWuKAkT179iSB6FayZs2a5LnD4UhyLe49YmNj479+q1atGDly5A3vVahQodu+b9x7iIh9FGZEJNX2799P3759mTBhAlOnTqVLly4sXrwYD4+EZXlr165N8jn//PMPZcqUwdPTk2rVqhETE8OpU6d44IEHMrp8qlevzu+//07x4sXJkuXu/7OYNWtWYmJi0rAyEUkOLQAWkWSJiorixIkTSR5nzpwhJiaGp59+mubNm9OtWzcmTZrE1q1b+fjjj5N8/uHDh+nXrx+7d+/m559/Zty4cfTu3RuAsmXL0qlTJ5555hmmT59OaGgo69atY8SIEfz555/p/r316NGDc+fO0bFjR9avX8/+/ftZsGAB3bp1S1E4KV68OEuWLOHEiROcP38+HSsWkcQ0MiMiyTJ//vwkUy4A5cqV46mnnuLQoUPMmTMHMNMyX3/9NR07dqRZs2ZUqVIFgGeeeYbLly9z//334+npSe/evXnhhRfi32vSpEkMHz6c1157jaNHj5I3b15q167NI488ku7fW2BgIKtXr2bAgAE0a9aMqKgoihUrRosWLZKMLt3Jxx9/TL9+/ZgwYQKFCxfm4MGD6Ve0iMRzWFaiRg8iIumgUaNGVK1alTFjxthdioi4IU0ziYiIiEtTmBERERGXpmkmERERcWkamRERERGXpjAjIiIiLk1hRkRERFyawoyIiIi4NIUZERERcWkKMyIiIuLSFGZERETEpSnMiIiIiEv7P4LfEgBsaWaXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "plt.plot(range(k_fold_splits), rmse_train, \"b--\", label = \"train loss\")\n", + "plt.plot(range(k_fold_splits), rmse_test, \"r\", label = \"test loss\")\n", + "ax = fig.gca()\n", + "ax.set_xticks(range(k_fold_splits))\n", + "plt.xlabel(\"Experiment\")\n", + "plt.ylabel(\"RMSE\")\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'train': array([1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990,\n", + " 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,\n", + " 2002, 2003, 2004, 2005, 2006]),\n", + " 'test': array([2007, 2008, 2009, 2010, 2011, 2012])}" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_test_splits[-1]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the plot, it seems the best model is model number 4. We will use that one as baseline and compare it with predictions from LSTM." + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 'sst' (anchor_year: 6, cluster_labels: 4)>\n",
+       "array([[ 0.24415116,  0.57190904, -0.56741771,  0.03133404],\n",
+       "       [ 0.63067417,  1.27054457, -0.38009251, -1.43804407],\n",
+       "       [ 1.39065636,  0.45336726, -1.34176023, -0.4421672 ],\n",
+       "       [ 0.82115084, -0.07404171, -1.25501827,  0.63119298],\n",
+       "       [-0.0032479 , -0.15801926, -0.21243818,  0.18921249],\n",
+       "       [-0.06503205, -0.18135761, -1.11951148, -0.46128058]])\n",
+       "Coordinates:\n",
+       "  * anchor_year     (anchor_year) int64 2013 2014 2015 2016 2017 2018\n",
+       "    i_interval      int64 -2\n",
+       "    left_bound      (anchor_year) datetime64[ns] 2013-06-02 ... 2018-06-02\n",
+       "    right_bound     (anchor_year) datetime64[ns] 2013-06-22 ... 2018-06-22\n",
+       "    is_target       bool False\n",
+       "  * cluster_labels  (cluster_labels) int16 -2 -1 1 2\n",
+       "    latitude        (cluster_labels) float64 35.0 45.98 32.5 27.5\n",
+       "    longitude       (cluster_labels) float64 226.4 203.3 192.5 180.0\n",
+       "Attributes:\n",
+       "    data:         Clustered data with Response Guided Dimensionality Reduction.\n",
+       "    coordinates:  Latitudes and longitudes are geographical centers associate...
" + ], + "text/plain": [ + "\n", + "array([[ 0.24415116, 0.57190904, -0.56741771, 0.03133404],\n", + " [ 0.63067417, 1.27054457, -0.38009251, -1.43804407],\n", + " [ 1.39065636, 0.45336726, -1.34176023, -0.4421672 ],\n", + " [ 0.82115084, -0.07404171, -1.25501827, 0.63119298],\n", + " [-0.0032479 , -0.15801926, -0.21243818, 0.18921249],\n", + " [-0.06503205, -0.18135761, -1.11951148, -0.46128058]])\n", + "Coordinates:\n", + " * anchor_year (anchor_year) int64 2013 2014 2015 2016 2017 2018\n", + " i_interval int64 -2\n", + " left_bound (anchor_year) datetime64[ns] 2013-06-02 ... 2018-06-02\n", + " right_bound (anchor_year) datetime64[ns] 2013-06-22 ... 2018-06-22\n", + " is_target bool False\n", + " * cluster_labels (cluster_labels) int16 -2 -1 1 2\n", + " latitude (cluster_labels) float64 35.0 45.98 32.5 27.5\n", + " longitude (cluster_labels) float64 226.4 203.3 192.5 180.0\n", + "Attributes:\n", + " data: Clustered data with Response Guided Dimensionality Reduction.\n", + " coordinates: Latitudes and longitudes are geographical centers associate..." + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clusters_test.isel(i_interval=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "X has 2 features, but Ridge is expecting 3 features as input.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[69], line 8\u001b[0m\n\u001b[1;32m 6\u001b[0m clusters_test \u001b[39m=\u001b[39m rgdr\u001b[39m.\u001b[39mtransform(x_test)\n\u001b[1;32m 7\u001b[0m \u001b[39m# predict and save results\u001b[39;00m\n\u001b[0;32m----> 8\u001b[0m predictions_baseline \u001b[39m=\u001b[39m models[np\u001b[39m.\u001b[39;49margmax(rmse_test)]\u001b[39m.\u001b[39;49mpredict(clusters_test\u001b[39m.\u001b[39;49misel(i_interval\u001b[39m=\u001b[39;49m\u001b[39m0\u001b[39;49m))\n", + "File \u001b[0;32m~/venv/ai4s2s/lib/python3.10/site-packages/sklearn/linear_model/_base.py:354\u001b[0m, in \u001b[0;36mLinearModel.predict\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 340\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mpredict\u001b[39m(\u001b[39mself\u001b[39m, X):\n\u001b[1;32m 341\u001b[0m \u001b[39m \u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 342\u001b[0m \u001b[39m Predict using the linear model.\u001b[39;00m\n\u001b[1;32m 343\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 352\u001b[0m \u001b[39m Returns predicted values.\u001b[39;00m\n\u001b[1;32m 353\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 354\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_decision_function(X)\n", + "File \u001b[0;32m~/venv/ai4s2s/lib/python3.10/site-packages/sklearn/linear_model/_base.py:337\u001b[0m, in \u001b[0;36mLinearModel._decision_function\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_decision_function\u001b[39m(\u001b[39mself\u001b[39m, X):\n\u001b[1;32m 335\u001b[0m check_is_fitted(\u001b[39mself\u001b[39m)\n\u001b[0;32m--> 337\u001b[0m X \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_validate_data(X, accept_sparse\u001b[39m=\u001b[39;49m[\u001b[39m\"\u001b[39;49m\u001b[39mcsr\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39m\"\u001b[39;49m\u001b[39mcsc\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39m\"\u001b[39;49m\u001b[39mcoo\u001b[39;49m\u001b[39m\"\u001b[39;49m], reset\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m)\n\u001b[1;32m 338\u001b[0m \u001b[39mreturn\u001b[39;00m safe_sparse_dot(X, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcoef_\u001b[39m.\u001b[39mT, dense_output\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m) \u001b[39m+\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mintercept_\n", + "File \u001b[0;32m~/venv/ai4s2s/lib/python3.10/site-packages/sklearn/base.py:588\u001b[0m, in \u001b[0;36mBaseEstimator._validate_data\u001b[0;34m(self, X, y, reset, validate_separately, **check_params)\u001b[0m\n\u001b[1;32m 585\u001b[0m out \u001b[39m=\u001b[39m X, y\n\u001b[1;32m 587\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m no_val_X \u001b[39mand\u001b[39;00m check_params\u001b[39m.\u001b[39mget(\u001b[39m\"\u001b[39m\u001b[39mensure_2d\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39mTrue\u001b[39;00m):\n\u001b[0;32m--> 588\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_check_n_features(X, reset\u001b[39m=\u001b[39;49mreset)\n\u001b[1;32m 590\u001b[0m \u001b[39mreturn\u001b[39;00m out\n", + "File \u001b[0;32m~/venv/ai4s2s/lib/python3.10/site-packages/sklearn/base.py:389\u001b[0m, in \u001b[0;36mBaseEstimator._check_n_features\u001b[0;34m(self, X, reset)\u001b[0m\n\u001b[1;32m 386\u001b[0m \u001b[39mreturn\u001b[39;00m\n\u001b[1;32m 388\u001b[0m \u001b[39mif\u001b[39;00m n_features \u001b[39m!=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mn_features_in_:\n\u001b[0;32m--> 389\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 390\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mX has \u001b[39m\u001b[39m{\u001b[39;00mn_features\u001b[39m}\u001b[39;00m\u001b[39m features, but \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m\u001b[39m__class__\u001b[39m\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 391\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mis expecting \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mn_features_in_\u001b[39m}\u001b[39;00m\u001b[39m features as input.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 392\u001b[0m )\n", + "\u001b[0;31mValueError\u001b[0m: X has 2 features, but Ridge is expecting 3 features as input." + ] + } + ], + "source": [ + "x_test = precursor_field_sel[-test_samples:]\n", + "y_test = target_series_sel[:-test_samples]\n", + "# fit dimensionality reduction operator RGDR\n", + "rgdr.fit(precursor_field_sel[:-test_samples],\n", + " target_series_sel[:-test_samples])\n", + "clusters_test = rgdr.transform(x_test)\n", + "# predict and save results\n", + "predictions_baseline = models[np.argmax(rmse_test)].predict(clusters_test.isel(i_interval=0))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "ai4s2s", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 79bbec2a7e1651f80d6ca8943c0baeb15ab2a344 Mon Sep 17 00:00:00 2001 From: Yang Date: Tue, 13 Jun 2023 11:50:15 +0200 Subject: [PATCH 02/13] add comparison of results --- workflow/comp_pred_ridge_and_LSTM.ipynb | 1488 ++++++++--------------- 1 file changed, 520 insertions(+), 968 deletions(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index e923b18..a4ee668 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -592,7 +592,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -613,7 +613,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -647,7 +647,7 @@ "[]" ] }, - "execution_count": 17, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -680,464 +680,464 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/27(0%)]\tLoss: 2.197425\n", - "Epoch : 0 [3/27(11%)]\tLoss: 2.866263\n", - "Epoch : 0 [6/27(22%)]\tLoss: 4.132106\n", - "Epoch : 0 [9/27(33%)]\tLoss: 0.535794\n", - "Epoch : 0 [12/27(44%)]\tLoss: 4.967988\n", - "Epoch : 0 [15/27(56%)]\tLoss: 2.342540\n", - "Epoch : 0 [18/27(67%)]\tLoss: 28.448462\n", - "Epoch : 0 [21/27(78%)]\tLoss: 9.000848\n", - "Epoch : 0 [24/27(89%)]\tLoss: 8.685950\n", - "Epoch : 1 [0/27(0%)]\tLoss: 0.874208\n", - "Epoch : 1 [3/27(11%)]\tLoss: 2.132719\n", - "Epoch : 1 [6/27(22%)]\tLoss: 5.538076\n", - "Epoch : 1 [9/27(33%)]\tLoss: 0.115764\n", - "Epoch : 1 [12/27(44%)]\tLoss: 2.044188\n", - "Epoch : 1 [15/27(56%)]\tLoss: 1.340073\n", - "Epoch : 1 [18/27(67%)]\tLoss: 0.143097\n", - "Epoch : 1 [21/27(78%)]\tLoss: 2.521213\n", - "Epoch : 1 [24/27(89%)]\tLoss: 4.911166\n", - "Epoch : 2 [0/27(0%)]\tLoss: 2.603379\n", - "Epoch : 2 [3/27(11%)]\tLoss: 2.164191\n", - "Epoch : 2 [6/27(22%)]\tLoss: 5.199167\n", - "Epoch : 2 [9/27(33%)]\tLoss: 1.725977\n", - "Epoch : 2 [12/27(44%)]\tLoss: 5.202556\n", - "Epoch : 2 [15/27(56%)]\tLoss: 2.161946\n", - "Epoch : 2 [18/27(67%)]\tLoss: 0.106452\n", - "Epoch : 2 [21/27(78%)]\tLoss: 0.589376\n", - "Epoch : 2 [24/27(89%)]\tLoss: 3.898618\n", - "Epoch : 3 [0/27(0%)]\tLoss: 1.794882\n", - "Epoch : 3 [3/27(11%)]\tLoss: 1.422829\n", - "Epoch : 3 [6/27(22%)]\tLoss: 3.852149\n", - "Epoch : 3 [9/27(33%)]\tLoss: 0.748306\n", - "Epoch : 3 [12/27(44%)]\tLoss: 1.026605\n", - "Epoch : 3 [15/27(56%)]\tLoss: 1.151678\n", - "Epoch : 3 [18/27(67%)]\tLoss: 0.556451\n", - "Epoch : 3 [21/27(78%)]\tLoss: 0.103677\n", - "Epoch : 3 [24/27(89%)]\tLoss: 2.488685\n", - "Epoch : 4 [0/27(0%)]\tLoss: 1.485973\n", - "Epoch : 4 [3/27(11%)]\tLoss: 0.884942\n", - "Epoch : 4 [6/27(22%)]\tLoss: 2.511315\n", - "Epoch : 4 [9/27(33%)]\tLoss: 0.333649\n", - "Epoch : 4 [12/27(44%)]\tLoss: 0.400664\n", - "Epoch : 4 [15/27(56%)]\tLoss: 0.584981\n", - "Epoch : 4 [18/27(67%)]\tLoss: 1.457192\n", - "Epoch : 4 [21/27(78%)]\tLoss: 0.055401\n", - "Epoch : 4 [24/27(89%)]\tLoss: 1.129733\n", - "Epoch : 5 [0/27(0%)]\tLoss: 0.937739\n", - "Epoch : 5 [3/27(11%)]\tLoss: 0.571373\n", - "Epoch : 5 [6/27(22%)]\tLoss: 1.585788\n", - "Epoch : 5 [9/27(33%)]\tLoss: 0.213521\n", - "Epoch : 5 [12/27(44%)]\tLoss: 0.093305\n", - "Epoch : 5 [15/27(56%)]\tLoss: 0.456059\n", - "Epoch : 5 [18/27(67%)]\tLoss: 1.711847\n", - "Epoch : 5 [21/27(78%)]\tLoss: 0.125618\n", - "Epoch : 5 [24/27(89%)]\tLoss: 0.489601\n", - "Epoch : 6 [0/27(0%)]\tLoss: 0.378899\n", - "Epoch : 6 [3/27(11%)]\tLoss: 0.325423\n", - "Epoch : 6 [6/27(22%)]\tLoss: 1.390026\n", - "Epoch : 6 [9/27(33%)]\tLoss: 0.092226\n", - "Epoch : 6 [12/27(44%)]\tLoss: 1.144811\n", - "Epoch : 6 [15/27(56%)]\tLoss: 0.081595\n", - "Epoch : 6 [18/27(67%)]\tLoss: 1.109388\n", - "Epoch : 6 [21/27(78%)]\tLoss: 0.110090\n", - "Epoch : 6 [24/27(89%)]\tLoss: 0.553645\n", - "Epoch : 7 [0/27(0%)]\tLoss: 0.747595\n", - "Epoch : 7 [3/27(11%)]\tLoss: 0.577874\n", - "Epoch : 7 [6/27(22%)]\tLoss: 1.225966\n", - "Epoch : 7 [9/27(33%)]\tLoss: 0.196484\n", - "Epoch : 7 [12/27(44%)]\tLoss: 1.313993\n", - "Epoch : 7 [15/27(56%)]\tLoss: 0.025134\n", - "Epoch : 7 [18/27(67%)]\tLoss: 0.654664\n", - "Epoch : 7 [21/27(78%)]\tLoss: 0.042110\n", - "Epoch : 7 [24/27(89%)]\tLoss: 0.317954\n", - "Epoch : 8 [0/27(0%)]\tLoss: 0.875052\n", - "Epoch : 8 [3/27(11%)]\tLoss: 0.454182\n", - "Epoch : 8 [6/27(22%)]\tLoss: 0.809411\n", - "Epoch : 8 [9/27(33%)]\tLoss: 0.545390\n", - "Epoch : 8 [12/27(44%)]\tLoss: 1.416500\n", - "Epoch : 8 [15/27(56%)]\tLoss: 0.567873\n", - "Epoch : 8 [18/27(67%)]\tLoss: 0.376669\n", - "Epoch : 8 [21/27(78%)]\tLoss: 0.020527\n", - "Epoch : 8 [24/27(89%)]\tLoss: 0.135955\n", - "Epoch : 9 [0/27(0%)]\tLoss: 0.186775\n", - "Epoch : 9 [3/27(11%)]\tLoss: 0.042149\n", - "Epoch : 9 [6/27(22%)]\tLoss: 0.445625\n", - "Epoch : 9 [9/27(33%)]\tLoss: 0.391353\n", - "Epoch : 9 [12/27(44%)]\tLoss: 0.871189\n", - "Epoch : 9 [15/27(56%)]\tLoss: 0.730179\n", - "Epoch : 9 [18/27(67%)]\tLoss: 0.174728\n", - "Epoch : 9 [21/27(78%)]\tLoss: 0.002140\n", - "Epoch : 9 [24/27(89%)]\tLoss: 0.195505\n", - "Epoch : 10 [0/27(0%)]\tLoss: 0.089778\n", - "Epoch : 10 [3/27(11%)]\tLoss: 0.009184\n", - "Epoch : 10 [6/27(22%)]\tLoss: 0.650962\n", - "Epoch : 10 [9/27(33%)]\tLoss: 0.013828\n", - "Epoch : 10 [12/27(44%)]\tLoss: 0.784698\n", - "Epoch : 10 [15/27(56%)]\tLoss: 0.210749\n", - "Epoch : 10 [18/27(67%)]\tLoss: 0.068300\n", - "Epoch : 10 [21/27(78%)]\tLoss: 0.009123\n", - "Epoch : 10 [24/27(89%)]\tLoss: 0.141351\n", - "Epoch : 11 [0/27(0%)]\tLoss: 0.042836\n", - "Epoch : 11 [3/27(11%)]\tLoss: 0.010093\n", - "Epoch : 11 [6/27(22%)]\tLoss: 0.338850\n", - "Epoch : 11 [9/27(33%)]\tLoss: 0.014912\n", - "Epoch : 11 [12/27(44%)]\tLoss: 0.075523\n", - "Epoch : 11 [15/27(56%)]\tLoss: 0.205981\n", - "Epoch : 11 [18/27(67%)]\tLoss: 0.049140\n", - "Epoch : 11 [21/27(78%)]\tLoss: 0.001343\n", - "Epoch : 11 [24/27(89%)]\tLoss: 0.010557\n", - "Epoch : 12 [0/27(0%)]\tLoss: 0.016865\n", - "Epoch : 12 [3/27(11%)]\tLoss: 0.049143\n", - "Epoch : 12 [6/27(22%)]\tLoss: 0.095358\n", - "Epoch : 12 [9/27(33%)]\tLoss: 0.003456\n", - "Epoch : 12 [12/27(44%)]\tLoss: 0.022819\n", - "Epoch : 12 [15/27(56%)]\tLoss: 0.024841\n", - "Epoch : 12 [18/27(67%)]\tLoss: 0.033077\n", - "Epoch : 12 [21/27(78%)]\tLoss: 0.000585\n", - "Epoch : 12 [24/27(89%)]\tLoss: 0.033425\n", - "Epoch : 13 [0/27(0%)]\tLoss: 0.016601\n", - "Epoch : 13 [3/27(11%)]\tLoss: 0.000734\n", - "Epoch : 13 [6/27(22%)]\tLoss: 0.026359\n", - "Epoch : 13 [9/27(33%)]\tLoss: 0.004973\n", - "Epoch : 13 [12/27(44%)]\tLoss: 0.001281\n", - "Epoch : 13 [15/27(56%)]\tLoss: 0.007492\n", - "Epoch : 13 [18/27(67%)]\tLoss: 0.010240\n", - "Epoch : 13 [21/27(78%)]\tLoss: 0.034718\n", - "Epoch : 13 [24/27(89%)]\tLoss: 0.052115\n", - "Epoch : 14 [0/27(0%)]\tLoss: 0.003422\n", - "Epoch : 14 [3/27(11%)]\tLoss: 0.013544\n", - "Epoch : 14 [6/27(22%)]\tLoss: 0.007158\n", - "Epoch : 14 [9/27(33%)]\tLoss: 0.010292\n", - "Epoch : 14 [12/27(44%)]\tLoss: 0.003641\n", - "Epoch : 14 [15/27(56%)]\tLoss: 0.016754\n", - "Epoch : 14 [18/27(67%)]\tLoss: 0.009856\n", - "Epoch : 14 [21/27(78%)]\tLoss: 0.169890\n", - "Epoch : 14 [24/27(89%)]\tLoss: 0.015186\n", - "Epoch : 15 [0/27(0%)]\tLoss: 0.002381\n", - "Epoch : 15 [3/27(11%)]\tLoss: 0.002122\n", - "Epoch : 15 [6/27(22%)]\tLoss: 0.005156\n", - "Epoch : 15 [9/27(33%)]\tLoss: 0.001475\n", - "Epoch : 15 [12/27(44%)]\tLoss: 0.000624\n", - "Epoch : 15 [15/27(56%)]\tLoss: 0.027466\n", - "Epoch : 15 [18/27(67%)]\tLoss: 0.007079\n", - "Epoch : 15 [21/27(78%)]\tLoss: 0.121849\n", - "Epoch : 15 [24/27(89%)]\tLoss: 0.012170\n", - "Epoch : 16 [0/27(0%)]\tLoss: 0.005204\n", - "Epoch : 16 [3/27(11%)]\tLoss: 0.007405\n", - "Epoch : 16 [6/27(22%)]\tLoss: 0.004565\n", - "Epoch : 16 [9/27(33%)]\tLoss: 0.000893\n", - "Epoch : 16 [12/27(44%)]\tLoss: 0.007167\n", - "Epoch : 16 [15/27(56%)]\tLoss: 0.034388\n", - "Epoch : 16 [18/27(67%)]\tLoss: 0.007482\n", - "Epoch : 16 [21/27(78%)]\tLoss: 0.044368\n", - "Epoch : 16 [24/27(89%)]\tLoss: 0.006881\n", - "Epoch : 17 [0/27(0%)]\tLoss: 0.003328\n", - "Epoch : 17 [3/27(11%)]\tLoss: 0.011182\n", - "Epoch : 17 [6/27(22%)]\tLoss: 0.009646\n", - "Epoch : 17 [9/27(33%)]\tLoss: 0.002309\n", - "Epoch : 17 [12/27(44%)]\tLoss: 0.011578\n", - "Epoch : 17 [15/27(56%)]\tLoss: 0.001844\n", - "Epoch : 17 [18/27(67%)]\tLoss: 0.014287\n", - "Epoch : 17 [21/27(78%)]\tLoss: 0.006835\n", - "Epoch : 17 [24/27(89%)]\tLoss: 0.017620\n", - "Epoch : 18 [0/27(0%)]\tLoss: 0.002087\n", - "Epoch : 18 [3/27(11%)]\tLoss: 0.004188\n", - "Epoch : 18 [6/27(22%)]\tLoss: 0.007624\n", - "Epoch : 18 [9/27(33%)]\tLoss: 0.002525\n", - "Epoch : 18 [12/27(44%)]\tLoss: 0.005006\n", - "Epoch : 18 [15/27(56%)]\tLoss: 0.016711\n", - "Epoch : 18 [18/27(67%)]\tLoss: 0.012972\n", - "Epoch : 18 [21/27(78%)]\tLoss: 0.003089\n", - "Epoch : 18 [24/27(89%)]\tLoss: 0.011956\n", - "Epoch : 19 [0/27(0%)]\tLoss: 0.000266\n", - "Epoch : 19 [3/27(11%)]\tLoss: 0.003665\n", - "Epoch : 19 [6/27(22%)]\tLoss: 0.004491\n", - "Epoch : 19 [9/27(33%)]\tLoss: 0.002221\n", - "Epoch : 19 [12/27(44%)]\tLoss: 0.013265\n", - "Epoch : 19 [15/27(56%)]\tLoss: 0.016728\n", - "Epoch : 19 [18/27(67%)]\tLoss: 0.002875\n", - "Epoch : 19 [21/27(78%)]\tLoss: 0.002791\n", - "Epoch : 19 [24/27(89%)]\tLoss: 0.001852\n", - "Epoch : 20 [0/27(0%)]\tLoss: 0.001692\n", - "Epoch : 20 [3/27(11%)]\tLoss: 0.003238\n", - "Epoch : 20 [6/27(22%)]\tLoss: 0.001867\n", - "Epoch : 20 [9/27(33%)]\tLoss: 0.000165\n", - "Epoch : 20 [12/27(44%)]\tLoss: 0.018671\n", - "Epoch : 20 [15/27(56%)]\tLoss: 0.006838\n", - "Epoch : 20 [18/27(67%)]\tLoss: 0.002381\n", - "Epoch : 20 [21/27(78%)]\tLoss: 0.001550\n", - "Epoch : 20 [24/27(89%)]\tLoss: 0.001131\n", - "Epoch : 21 [0/27(0%)]\tLoss: 0.001486\n", - "Epoch : 21 [3/27(11%)]\tLoss: 0.001983\n", - "Epoch : 21 [6/27(22%)]\tLoss: 0.000515\n", - "Epoch : 21 [9/27(33%)]\tLoss: 0.001200\n", - "Epoch : 21 [12/27(44%)]\tLoss: 0.010579\n", - "Epoch : 21 [15/27(56%)]\tLoss: 0.005823\n", - "Epoch : 21 [18/27(67%)]\tLoss: 0.001377\n", - "Epoch : 21 [21/27(78%)]\tLoss: 0.001790\n", - "Epoch : 21 [24/27(89%)]\tLoss: 0.004233\n", - "Epoch : 22 [0/27(0%)]\tLoss: 0.001317\n", - "Epoch : 22 [3/27(11%)]\tLoss: 0.002907\n", - "Epoch : 22 [6/27(22%)]\tLoss: 0.000418\n", - "Epoch : 22 [9/27(33%)]\tLoss: 0.000913\n", - "Epoch : 22 [12/27(44%)]\tLoss: 0.015031\n", - "Epoch : 22 [15/27(56%)]\tLoss: 0.018117\n", - "Epoch : 22 [18/27(67%)]\tLoss: 0.001034\n", - "Epoch : 22 [21/27(78%)]\tLoss: 0.000354\n", - "Epoch : 22 [24/27(89%)]\tLoss: 0.011557\n", - "Epoch : 23 [0/27(0%)]\tLoss: 0.000219\n", - "Epoch : 23 [3/27(11%)]\tLoss: 0.000665\n", - "Epoch : 23 [6/27(22%)]\tLoss: 0.000485\n", - "Epoch : 23 [9/27(33%)]\tLoss: 0.000262\n", - "Epoch : 23 [12/27(44%)]\tLoss: 0.001602\n", - "Epoch : 23 [15/27(56%)]\tLoss: 0.015627\n", - "Epoch : 23 [18/27(67%)]\tLoss: 0.001774\n", - "Epoch : 23 [21/27(78%)]\tLoss: 0.000158\n", - "Epoch : 23 [24/27(89%)]\tLoss: 0.001699\n", - "Epoch : 24 [0/27(0%)]\tLoss: 0.000455\n", - "Epoch : 24 [3/27(11%)]\tLoss: 0.005195\n", - "Epoch : 24 [6/27(22%)]\tLoss: 0.002724\n", - "Epoch : 24 [9/27(33%)]\tLoss: 0.001175\n", - "Epoch : 24 [12/27(44%)]\tLoss: 0.006858\n", - "Epoch : 24 [15/27(56%)]\tLoss: 0.002058\n", - "Epoch : 24 [18/27(67%)]\tLoss: 0.001561\n", - "Epoch : 24 [21/27(78%)]\tLoss: 0.000094\n", - "Epoch : 24 [24/27(89%)]\tLoss: 0.004111\n", - "Epoch : 25 [0/27(0%)]\tLoss: 0.000075\n", - "Epoch : 25 [3/27(11%)]\tLoss: 0.005733\n", - "Epoch : 25 [6/27(22%)]\tLoss: 0.002211\n", - "Epoch : 25 [9/27(33%)]\tLoss: 0.000337\n", - "Epoch : 25 [12/27(44%)]\tLoss: 0.008336\n", - "Epoch : 25 [15/27(56%)]\tLoss: 0.001060\n", - "Epoch : 25 [18/27(67%)]\tLoss: 0.001834\n", - "Epoch : 25 [21/27(78%)]\tLoss: 0.000662\n", - "Epoch : 25 [24/27(89%)]\tLoss: 0.000622\n", - "Epoch : 26 [0/27(0%)]\tLoss: 0.000207\n", - "Epoch : 26 [3/27(11%)]\tLoss: 0.002332\n", - "Epoch : 26 [6/27(22%)]\tLoss: 0.000551\n", - "Epoch : 26 [9/27(33%)]\tLoss: 0.002242\n", - "Epoch : 26 [12/27(44%)]\tLoss: 0.004649\n", - "Epoch : 26 [15/27(56%)]\tLoss: 0.000913\n", - "Epoch : 26 [18/27(67%)]\tLoss: 0.000122\n", - "Epoch : 26 [21/27(78%)]\tLoss: 0.000400\n", - "Epoch : 26 [24/27(89%)]\tLoss: 0.000920\n", - "Epoch : 27 [0/27(0%)]\tLoss: 0.001798\n", - "Epoch : 27 [3/27(11%)]\tLoss: 0.001241\n", - "Epoch : 27 [6/27(22%)]\tLoss: 0.000305\n", - "Epoch : 27 [9/27(33%)]\tLoss: 0.000506\n", - "Epoch : 27 [12/27(44%)]\tLoss: 0.000386\n", - "Epoch : 27 [15/27(56%)]\tLoss: 0.015045\n", - "Epoch : 27 [18/27(67%)]\tLoss: 0.002108\n", - "Epoch : 27 [21/27(78%)]\tLoss: 0.000169\n", - "Epoch : 27 [24/27(89%)]\tLoss: 0.002062\n", - "Epoch : 28 [0/27(0%)]\tLoss: 0.000081\n", - "Epoch : 28 [3/27(11%)]\tLoss: 0.001105\n", - "Epoch : 28 [6/27(22%)]\tLoss: 0.000086\n", - "Epoch : 28 [9/27(33%)]\tLoss: 0.001012\n", - "Epoch : 28 [12/27(44%)]\tLoss: 0.002446\n", - "Epoch : 28 [15/27(56%)]\tLoss: 0.007278\n", - "Epoch : 28 [18/27(67%)]\tLoss: 0.000299\n", - "Epoch : 28 [21/27(78%)]\tLoss: 0.000189\n", - "Epoch : 28 [24/27(89%)]\tLoss: 0.002060\n", - "Epoch : 29 [0/27(0%)]\tLoss: 0.001890\n", - "Epoch : 29 [3/27(11%)]\tLoss: 0.003316\n", - "Epoch : 29 [6/27(22%)]\tLoss: 0.000277\n", - "Epoch : 29 [9/27(33%)]\tLoss: 0.001344\n", - "Epoch : 29 [12/27(44%)]\tLoss: 0.002177\n", - "Epoch : 29 [15/27(56%)]\tLoss: 0.002883\n", - "Epoch : 29 [18/27(67%)]\tLoss: 0.002824\n", - "Epoch : 29 [21/27(78%)]\tLoss: 0.000474\n", - "Epoch : 29 [24/27(89%)]\tLoss: 0.005705\n", - "Epoch : 30 [0/27(0%)]\tLoss: 0.000786\n", - "Epoch : 30 [3/27(11%)]\tLoss: 0.001877\n", - "Epoch : 30 [6/27(22%)]\tLoss: 0.000056\n", - "Epoch : 30 [9/27(33%)]\tLoss: 0.001369\n", - "Epoch : 30 [12/27(44%)]\tLoss: 0.000735\n", - "Epoch : 30 [15/27(56%)]\tLoss: 0.001535\n", - "Epoch : 30 [18/27(67%)]\tLoss: 0.006259\n", - "Epoch : 30 [21/27(78%)]\tLoss: 0.000548\n", - "Epoch : 30 [24/27(89%)]\tLoss: 0.001191\n", - "Epoch : 31 [0/27(0%)]\tLoss: 0.000553\n", - "Epoch : 31 [3/27(11%)]\tLoss: 0.000754\n", - "Epoch : 31 [6/27(22%)]\tLoss: 0.000275\n", - "Epoch : 31 [9/27(33%)]\tLoss: 0.000219\n", - "Epoch : 31 [12/27(44%)]\tLoss: 0.008851\n", - "Epoch : 31 [15/27(56%)]\tLoss: 0.021454\n", - "Epoch : 31 [18/27(67%)]\tLoss: 0.000828\n", - "Epoch : 31 [21/27(78%)]\tLoss: 0.007565\n", - "Epoch : 31 [24/27(89%)]\tLoss: 0.002932\n", - "Epoch : 32 [0/27(0%)]\tLoss: 0.000171\n", - "Epoch : 32 [3/27(11%)]\tLoss: 0.000666\n", - "Epoch : 32 [6/27(22%)]\tLoss: 0.002418\n", - "Epoch : 32 [9/27(33%)]\tLoss: 0.001070\n", - "Epoch : 32 [12/27(44%)]\tLoss: 0.000491\n", - "Epoch : 32 [15/27(56%)]\tLoss: 0.000570\n", - "Epoch : 32 [18/27(67%)]\tLoss: 0.000564\n", - "Epoch : 32 [21/27(78%)]\tLoss: 0.004495\n", - "Epoch : 32 [24/27(89%)]\tLoss: 0.000469\n", - "Epoch : 33 [0/27(0%)]\tLoss: 0.001347\n", - "Epoch : 33 [3/27(11%)]\tLoss: 0.001965\n", - "Epoch : 33 [6/27(22%)]\tLoss: 0.001318\n", - "Epoch : 33 [9/27(33%)]\tLoss: 0.003641\n", - "Epoch : 33 [12/27(44%)]\tLoss: 0.010863\n", - "Epoch : 33 [15/27(56%)]\tLoss: 0.014845\n", - "Epoch : 33 [18/27(67%)]\tLoss: 0.001141\n", - "Epoch : 33 [21/27(78%)]\tLoss: 0.000551\n", - "Epoch : 33 [24/27(89%)]\tLoss: 0.005634\n", - "Epoch : 34 [0/27(0%)]\tLoss: 0.000267\n", - "Epoch : 34 [3/27(11%)]\tLoss: 0.005630\n", - "Epoch : 34 [6/27(22%)]\tLoss: 0.001405\n", - "Epoch : 34 [9/27(33%)]\tLoss: 0.001499\n", - "Epoch : 34 [12/27(44%)]\tLoss: 0.004301\n", - "Epoch : 34 [15/27(56%)]\tLoss: 0.002887\n", - "Epoch : 34 [18/27(67%)]\tLoss: 0.000121\n", - "Epoch : 34 [21/27(78%)]\tLoss: 0.001084\n", - "Epoch : 34 [24/27(89%)]\tLoss: 0.004513\n", - "Epoch : 35 [0/27(0%)]\tLoss: 0.000161\n", - "Epoch : 35 [3/27(11%)]\tLoss: 0.003143\n", - "Epoch : 35 [6/27(22%)]\tLoss: 0.000356\n", - "Epoch : 35 [9/27(33%)]\tLoss: 0.000087\n", - "Epoch : 35 [12/27(44%)]\tLoss: 0.001151\n", - "Epoch : 35 [15/27(56%)]\tLoss: 0.003723\n", - "Epoch : 35 [18/27(67%)]\tLoss: 0.000497\n", - "Epoch : 35 [21/27(78%)]\tLoss: 0.000148\n", - "Epoch : 35 [24/27(89%)]\tLoss: 0.001762\n", - "Epoch : 36 [0/27(0%)]\tLoss: 0.000475\n", - "Epoch : 36 [3/27(11%)]\tLoss: 0.000198\n", - "Epoch : 36 [6/27(22%)]\tLoss: 0.000967\n", - "Epoch : 36 [9/27(33%)]\tLoss: 0.000058\n", - "Epoch : 36 [12/27(44%)]\tLoss: 0.000703\n", - "Epoch : 36 [15/27(56%)]\tLoss: 0.000319\n", - "Epoch : 36 [18/27(67%)]\tLoss: 0.001399\n", - "Epoch : 36 [21/27(78%)]\tLoss: 0.000278\n", - "Epoch : 36 [24/27(89%)]\tLoss: 0.003897\n", - "Epoch : 37 [0/27(0%)]\tLoss: 0.001908\n", - "Epoch : 37 [3/27(11%)]\tLoss: 0.000972\n", - "Epoch : 37 [6/27(22%)]\tLoss: 0.000577\n", - "Epoch : 37 [9/27(33%)]\tLoss: 0.000471\n", - "Epoch : 37 [12/27(44%)]\tLoss: 0.001776\n", - "Epoch : 37 [15/27(56%)]\tLoss: 0.012602\n", - "Epoch : 37 [18/27(67%)]\tLoss: 0.001788\n", - "Epoch : 37 [21/27(78%)]\tLoss: 0.001374\n", - "Epoch : 37 [24/27(89%)]\tLoss: 0.014905\n", - "Epoch : 38 [0/27(0%)]\tLoss: 0.002149\n", - "Epoch : 38 [3/27(11%)]\tLoss: 0.002972\n", - "Epoch : 38 [6/27(22%)]\tLoss: 0.003310\n", - "Epoch : 38 [9/27(33%)]\tLoss: 0.001757\n", - "Epoch : 38 [12/27(44%)]\tLoss: 0.010669\n", - "Epoch : 38 [15/27(56%)]\tLoss: 0.034625\n", - "Epoch : 38 [18/27(67%)]\tLoss: 0.001382\n", - "Epoch : 38 [21/27(78%)]\tLoss: 0.004451\n", - "Epoch : 38 [24/27(89%)]\tLoss: 0.010330\n", - "Epoch : 39 [0/27(0%)]\tLoss: 0.006530\n", - "Epoch : 39 [3/27(11%)]\tLoss: 0.008147\n", - "Epoch : 39 [6/27(22%)]\tLoss: 0.003758\n", - "Epoch : 39 [9/27(33%)]\tLoss: 0.004137\n", - "Epoch : 39 [12/27(44%)]\tLoss: 0.033906\n", - "Epoch : 39 [15/27(56%)]\tLoss: 0.034745\n", - "Epoch : 39 [18/27(67%)]\tLoss: 0.002909\n", - "Epoch : 39 [21/27(78%)]\tLoss: 0.012402\n", - "Epoch : 39 [24/27(89%)]\tLoss: 0.022730\n", - "Epoch : 40 [0/27(0%)]\tLoss: 0.008401\n", - "Epoch : 40 [3/27(11%)]\tLoss: 0.010285\n", - "Epoch : 40 [6/27(22%)]\tLoss: 0.006661\n", - "Epoch : 40 [9/27(33%)]\tLoss: 0.014923\n", - "Epoch : 40 [12/27(44%)]\tLoss: 0.032379\n", - "Epoch : 40 [15/27(56%)]\tLoss: 0.015368\n", - "Epoch : 40 [18/27(67%)]\tLoss: 0.005534\n", - "Epoch : 40 [21/27(78%)]\tLoss: 0.021435\n", - "Epoch : 40 [24/27(89%)]\tLoss: 0.045156\n", - "Epoch : 41 [0/27(0%)]\tLoss: 0.016149\n", - "Epoch : 41 [3/27(11%)]\tLoss: 0.014950\n", - "Epoch : 41 [6/27(22%)]\tLoss: 0.018135\n", - "Epoch : 41 [9/27(33%)]\tLoss: 0.028426\n", - "Epoch : 41 [12/27(44%)]\tLoss: 0.023744\n", - "Epoch : 41 [15/27(56%)]\tLoss: 0.023850\n", - "Epoch : 41 [18/27(67%)]\tLoss: 0.004544\n", - "Epoch : 41 [21/27(78%)]\tLoss: 0.011710\n", - "Epoch : 41 [24/27(89%)]\tLoss: 0.046225\n", - "Epoch : 42 [0/27(0%)]\tLoss: 0.022746\n", - "Epoch : 42 [3/27(11%)]\tLoss: 0.041660\n", - "Epoch : 42 [6/27(22%)]\tLoss: 0.008016\n", - "Epoch : 42 [9/27(33%)]\tLoss: 0.021191\n", - "Epoch : 42 [12/27(44%)]\tLoss: 0.016512\n", - "Epoch : 42 [15/27(56%)]\tLoss: 0.034754\n", - "Epoch : 42 [18/27(67%)]\tLoss: 0.005988\n", - "Epoch : 42 [21/27(78%)]\tLoss: 0.015019\n", - "Epoch : 42 [24/27(89%)]\tLoss: 0.045626\n", - "Epoch : 43 [0/27(0%)]\tLoss: 0.034347\n", - "Epoch : 43 [3/27(11%)]\tLoss: 0.071723\n", - "Epoch : 43 [6/27(22%)]\tLoss: 0.024966\n", - "Epoch : 43 [9/27(33%)]\tLoss: 0.019957\n", - "Epoch : 43 [12/27(44%)]\tLoss: 0.025883\n", - "Epoch : 43 [15/27(56%)]\tLoss: 0.024042\n", - "Epoch : 43 [18/27(67%)]\tLoss: 0.007839\n", - "Epoch : 43 [21/27(78%)]\tLoss: 0.017768\n", - "Epoch : 43 [24/27(89%)]\tLoss: 0.038244\n", - "Epoch : 44 [0/27(0%)]\tLoss: 0.017474\n", - "Epoch : 44 [3/27(11%)]\tLoss: 0.045581\n", - "Epoch : 44 [6/27(22%)]\tLoss: 0.039733\n", - "Epoch : 44 [9/27(33%)]\tLoss: 0.016685\n", - "Epoch : 44 [12/27(44%)]\tLoss: 0.017018\n", - "Epoch : 44 [15/27(56%)]\tLoss: 0.008900\n", - "Epoch : 44 [18/27(67%)]\tLoss: 0.001963\n", - "Epoch : 44 [21/27(78%)]\tLoss: 0.016363\n", - "Epoch : 44 [24/27(89%)]\tLoss: 0.033393\n", - "Epoch : 45 [0/27(0%)]\tLoss: 0.018795\n", - "Epoch : 45 [3/27(11%)]\tLoss: 0.027094\n", - "Epoch : 45 [6/27(22%)]\tLoss: 0.030313\n", - "Epoch : 45 [9/27(33%)]\tLoss: 0.010332\n", - "Epoch : 45 [12/27(44%)]\tLoss: 0.019923\n", - "Epoch : 45 [15/27(56%)]\tLoss: 0.002768\n", - "Epoch : 45 [18/27(67%)]\tLoss: 0.001018\n", - "Epoch : 45 [21/27(78%)]\tLoss: 0.002116\n", - "Epoch : 45 [24/27(89%)]\tLoss: 0.010780\n", - "Epoch : 46 [0/27(0%)]\tLoss: 0.006810\n", - "Epoch : 46 [3/27(11%)]\tLoss: 0.008147\n", - "Epoch : 46 [6/27(22%)]\tLoss: 0.006563\n", - "Epoch : 46 [9/27(33%)]\tLoss: 0.004508\n", - "Epoch : 46 [12/27(44%)]\tLoss: 0.011042\n", - "Epoch : 46 [15/27(56%)]\tLoss: 0.006834\n", - "Epoch : 46 [18/27(67%)]\tLoss: 0.001896\n", - "Epoch : 46 [21/27(78%)]\tLoss: 0.000534\n", - "Epoch : 46 [24/27(89%)]\tLoss: 0.005050\n", - "Epoch : 47 [0/27(0%)]\tLoss: 0.002078\n", - "Epoch : 47 [3/27(11%)]\tLoss: 0.002089\n", - "Epoch : 47 [6/27(22%)]\tLoss: 0.002105\n", - "Epoch : 47 [9/27(33%)]\tLoss: 0.005779\n", - "Epoch : 47 [12/27(44%)]\tLoss: 0.018105\n", - "Epoch : 47 [15/27(56%)]\tLoss: 0.004963\n", - "Epoch : 47 [18/27(67%)]\tLoss: 0.000785\n", - "Epoch : 47 [21/27(78%)]\tLoss: 0.001921\n", - "Epoch : 47 [24/27(89%)]\tLoss: 0.011329\n", - "Epoch : 48 [0/27(0%)]\tLoss: 0.001842\n", - "Epoch : 48 [3/27(11%)]\tLoss: 0.002769\n", - "Epoch : 48 [6/27(22%)]\tLoss: 0.002019\n", - "Epoch : 48 [9/27(33%)]\tLoss: 0.003467\n", - "Epoch : 48 [12/27(44%)]\tLoss: 0.009583\n", - "Epoch : 48 [15/27(56%)]\tLoss: 0.002003\n", - "Epoch : 48 [18/27(67%)]\tLoss: 0.000595\n", - "Epoch : 48 [21/27(78%)]\tLoss: 0.000489\n", - "Epoch : 48 [24/27(89%)]\tLoss: 0.009427\n", - "Epoch : 49 [0/27(0%)]\tLoss: 0.003046\n", - "Epoch : 49 [3/27(11%)]\tLoss: 0.003291\n", - "Epoch : 49 [6/27(22%)]\tLoss: 0.000327\n", - "Epoch : 49 [9/27(33%)]\tLoss: 0.004837\n", - "Epoch : 49 [12/27(44%)]\tLoss: 0.013552\n", - "Epoch : 49 [15/27(56%)]\tLoss: 0.001258\n", - "Epoch : 49 [18/27(67%)]\tLoss: 0.000634\n", - "Epoch : 49 [21/27(78%)]\tLoss: 0.000029\n", - "Epoch : 49 [24/27(89%)]\tLoss: 0.006879\n", - "--- 0.09567344586054484 minutes ---\n" + "Epoch : 0 [0/27(0%)]\tLoss: 2.175716\n", + "Epoch : 0 [3/27(11%)]\tLoss: 2.743063\n", + "Epoch : 0 [6/27(22%)]\tLoss: 2.713048\n", + "Epoch : 0 [9/27(33%)]\tLoss: 0.606138\n", + "Epoch : 0 [12/27(44%)]\tLoss: 12.198117\n", + "Epoch : 0 [15/27(56%)]\tLoss: 1.088581\n", + "Epoch : 0 [18/27(67%)]\tLoss: 12.599643\n", + "Epoch : 0 [21/27(78%)]\tLoss: 0.912780\n", + "Epoch : 0 [24/27(89%)]\tLoss: 5.355000\n", + "Epoch : 1 [0/27(0%)]\tLoss: 1.788077\n", + "Epoch : 1 [3/27(11%)]\tLoss: 1.780171\n", + "Epoch : 1 [6/27(22%)]\tLoss: 4.761717\n", + "Epoch : 1 [9/27(33%)]\tLoss: 0.192258\n", + "Epoch : 1 [12/27(44%)]\tLoss: 2.819624\n", + "Epoch : 1 [15/27(56%)]\tLoss: 2.338455\n", + "Epoch : 1 [18/27(67%)]\tLoss: 0.035893\n", + "Epoch : 1 [21/27(78%)]\tLoss: 1.732249\n", + "Epoch : 1 [24/27(89%)]\tLoss: 4.576953\n", + "Epoch : 2 [0/27(0%)]\tLoss: 1.748015\n", + "Epoch : 2 [3/27(11%)]\tLoss: 1.679002\n", + "Epoch : 2 [6/27(22%)]\tLoss: 4.525184\n", + "Epoch : 2 [9/27(33%)]\tLoss: 0.062779\n", + "Epoch : 2 [12/27(44%)]\tLoss: 2.512015\n", + "Epoch : 2 [15/27(56%)]\tLoss: 0.840971\n", + "Epoch : 2 [18/27(67%)]\tLoss: 0.210549\n", + "Epoch : 2 [21/27(78%)]\tLoss: 0.436546\n", + "Epoch : 2 [24/27(89%)]\tLoss: 2.078295\n", + "Epoch : 3 [0/27(0%)]\tLoss: 0.927467\n", + "Epoch : 3 [3/27(11%)]\tLoss: 0.775206\n", + "Epoch : 3 [6/27(22%)]\tLoss: 2.238743\n", + "Epoch : 3 [9/27(33%)]\tLoss: 0.901806\n", + "Epoch : 3 [12/27(44%)]\tLoss: 0.365897\n", + "Epoch : 3 [15/27(56%)]\tLoss: 0.107469\n", + "Epoch : 3 [18/27(67%)]\tLoss: 1.618516\n", + "Epoch : 3 [21/27(78%)]\tLoss: 0.193488\n", + "Epoch : 3 [24/27(89%)]\tLoss: 1.480976\n", + "Epoch : 4 [0/27(0%)]\tLoss: 0.820357\n", + "Epoch : 4 [3/27(11%)]\tLoss: 0.684289\n", + "Epoch : 4 [6/27(22%)]\tLoss: 2.010722\n", + "Epoch : 4 [9/27(33%)]\tLoss: 1.814667\n", + "Epoch : 4 [12/27(44%)]\tLoss: 2.787289\n", + "Epoch : 4 [15/27(56%)]\tLoss: 1.129950\n", + "Epoch : 4 [18/27(67%)]\tLoss: 1.232284\n", + "Epoch : 4 [21/27(78%)]\tLoss: 0.166187\n", + "Epoch : 4 [24/27(89%)]\tLoss: 0.997932\n", + "Epoch : 5 [0/27(0%)]\tLoss: 0.502629\n", + "Epoch : 5 [3/27(11%)]\tLoss: 0.170442\n", + "Epoch : 5 [6/27(22%)]\tLoss: 1.526416\n", + "Epoch : 5 [9/27(33%)]\tLoss: 0.302934\n", + "Epoch : 5 [12/27(44%)]\tLoss: 0.264000\n", + "Epoch : 5 [15/27(56%)]\tLoss: 1.178755\n", + "Epoch : 5 [18/27(67%)]\tLoss: 0.521102\n", + "Epoch : 5 [21/27(78%)]\tLoss: 0.292636\n", + "Epoch : 5 [24/27(89%)]\tLoss: 2.251093\n", + "Epoch : 6 [0/27(0%)]\tLoss: 0.362981\n", + "Epoch : 6 [3/27(11%)]\tLoss: 0.028891\n", + "Epoch : 6 [6/27(22%)]\tLoss: 0.694824\n", + "Epoch : 6 [9/27(33%)]\tLoss: 0.240936\n", + "Epoch : 6 [12/27(44%)]\tLoss: 2.191940\n", + "Epoch : 6 [15/27(56%)]\tLoss: 0.558244\n", + "Epoch : 6 [18/27(67%)]\tLoss: 0.213810\n", + "Epoch : 6 [21/27(78%)]\tLoss: 0.958144\n", + "Epoch : 6 [24/27(89%)]\tLoss: 0.942689\n", + "Epoch : 7 [0/27(0%)]\tLoss: 0.206360\n", + "Epoch : 7 [3/27(11%)]\tLoss: 0.079650\n", + "Epoch : 7 [6/27(22%)]\tLoss: 0.494124\n", + "Epoch : 7 [9/27(33%)]\tLoss: 0.006412\n", + "Epoch : 7 [12/27(44%)]\tLoss: 0.105762\n", + "Epoch : 7 [15/27(56%)]\tLoss: 0.980747\n", + "Epoch : 7 [18/27(67%)]\tLoss: 0.363138\n", + "Epoch : 7 [21/27(78%)]\tLoss: 0.009495\n", + "Epoch : 7 [24/27(89%)]\tLoss: 0.718109\n", + "Epoch : 8 [0/27(0%)]\tLoss: 0.583439\n", + "Epoch : 8 [3/27(11%)]\tLoss: 0.812256\n", + "Epoch : 8 [6/27(22%)]\tLoss: 0.982518\n", + "Epoch : 8 [9/27(33%)]\tLoss: 0.028823\n", + "Epoch : 8 [12/27(44%)]\tLoss: 0.612046\n", + "Epoch : 8 [15/27(56%)]\tLoss: 0.141186\n", + "Epoch : 8 [18/27(67%)]\tLoss: 0.094395\n", + "Epoch : 8 [21/27(78%)]\tLoss: 0.042632\n", + "Epoch : 8 [24/27(89%)]\tLoss: 0.423282\n", + "Epoch : 9 [0/27(0%)]\tLoss: 1.354184\n", + "Epoch : 9 [3/27(11%)]\tLoss: 0.072040\n", + "Epoch : 9 [6/27(22%)]\tLoss: 0.641140\n", + "Epoch : 9 [9/27(33%)]\tLoss: 0.146647\n", + "Epoch : 9 [12/27(44%)]\tLoss: 0.189362\n", + "Epoch : 9 [15/27(56%)]\tLoss: 0.076105\n", + "Epoch : 9 [18/27(67%)]\tLoss: 0.116884\n", + "Epoch : 9 [21/27(78%)]\tLoss: 0.029834\n", + "Epoch : 9 [24/27(89%)]\tLoss: 0.013572\n", + "Epoch : 10 [0/27(0%)]\tLoss: 0.347252\n", + "Epoch : 10 [3/27(11%)]\tLoss: 0.028759\n", + "Epoch : 10 [6/27(22%)]\tLoss: 0.847865\n", + "Epoch : 10 [9/27(33%)]\tLoss: 0.106064\n", + "Epoch : 10 [12/27(44%)]\tLoss: 0.180962\n", + "Epoch : 10 [15/27(56%)]\tLoss: 0.134852\n", + "Epoch : 10 [18/27(67%)]\tLoss: 0.062152\n", + "Epoch : 10 [21/27(78%)]\tLoss: 0.010283\n", + "Epoch : 10 [24/27(89%)]\tLoss: 0.004671\n", + "Epoch : 11 [0/27(0%)]\tLoss: 0.190889\n", + "Epoch : 11 [3/27(11%)]\tLoss: 0.113868\n", + "Epoch : 11 [6/27(22%)]\tLoss: 0.211571\n", + "Epoch : 11 [9/27(33%)]\tLoss: 0.025773\n", + "Epoch : 11 [12/27(44%)]\tLoss: 0.137781\n", + "Epoch : 11 [15/27(56%)]\tLoss: 0.020586\n", + "Epoch : 11 [18/27(67%)]\tLoss: 0.019829\n", + "Epoch : 11 [21/27(78%)]\tLoss: 0.022291\n", + "Epoch : 11 [24/27(89%)]\tLoss: 0.009828\n", + "Epoch : 12 [0/27(0%)]\tLoss: 0.003744\n", + "Epoch : 12 [3/27(11%)]\tLoss: 0.032412\n", + "Epoch : 12 [6/27(22%)]\tLoss: 0.045732\n", + "Epoch : 12 [9/27(33%)]\tLoss: 0.042286\n", + "Epoch : 12 [12/27(44%)]\tLoss: 0.120009\n", + "Epoch : 12 [15/27(56%)]\tLoss: 0.011253\n", + "Epoch : 12 [18/27(67%)]\tLoss: 0.008890\n", + "Epoch : 12 [21/27(78%)]\tLoss: 0.008301\n", + "Epoch : 12 [24/27(89%)]\tLoss: 0.010573\n", + "Epoch : 13 [0/27(0%)]\tLoss: 0.019932\n", + "Epoch : 13 [3/27(11%)]\tLoss: 0.009967\n", + "Epoch : 13 [6/27(22%)]\tLoss: 0.022187\n", + "Epoch : 13 [9/27(33%)]\tLoss: 0.004305\n", + "Epoch : 13 [12/27(44%)]\tLoss: 0.029092\n", + "Epoch : 13 [15/27(56%)]\tLoss: 0.002971\n", + "Epoch : 13 [18/27(67%)]\tLoss: 0.004143\n", + "Epoch : 13 [21/27(78%)]\tLoss: 0.000228\n", + "Epoch : 13 [24/27(89%)]\tLoss: 0.001583\n", + "Epoch : 14 [0/27(0%)]\tLoss: 0.013423\n", + "Epoch : 14 [3/27(11%)]\tLoss: 0.007937\n", + "Epoch : 14 [6/27(22%)]\tLoss: 0.004921\n", + "Epoch : 14 [9/27(33%)]\tLoss: 0.000819\n", + "Epoch : 14 [12/27(44%)]\tLoss: 0.002714\n", + "Epoch : 14 [15/27(56%)]\tLoss: 0.010423\n", + "Epoch : 14 [18/27(67%)]\tLoss: 0.002273\n", + "Epoch : 14 [21/27(78%)]\tLoss: 0.000969\n", + "Epoch : 14 [24/27(89%)]\tLoss: 0.002655\n", + "Epoch : 15 [0/27(0%)]\tLoss: 0.003493\n", + "Epoch : 15 [3/27(11%)]\tLoss: 0.006684\n", + "Epoch : 15 [6/27(22%)]\tLoss: 0.000400\n", + "Epoch : 15 [9/27(33%)]\tLoss: 0.002242\n", + "Epoch : 15 [12/27(44%)]\tLoss: 0.009312\n", + "Epoch : 15 [15/27(56%)]\tLoss: 0.011994\n", + "Epoch : 15 [18/27(67%)]\tLoss: 0.000382\n", + "Epoch : 15 [21/27(78%)]\tLoss: 0.000937\n", + "Epoch : 15 [24/27(89%)]\tLoss: 0.012359\n", + "Epoch : 16 [0/27(0%)]\tLoss: 0.029045\n", + "Epoch : 16 [3/27(11%)]\tLoss: 0.000221\n", + "Epoch : 16 [6/27(22%)]\tLoss: 0.000486\n", + "Epoch : 16 [9/27(33%)]\tLoss: 0.000058\n", + "Epoch : 16 [12/27(44%)]\tLoss: 0.008490\n", + "Epoch : 16 [15/27(56%)]\tLoss: 0.007433\n", + "Epoch : 16 [18/27(67%)]\tLoss: 0.001802\n", + "Epoch : 16 [21/27(78%)]\tLoss: 0.003756\n", + "Epoch : 16 [24/27(89%)]\tLoss: 0.024534\n", + "Epoch : 17 [0/27(0%)]\tLoss: 0.007142\n", + "Epoch : 17 [3/27(11%)]\tLoss: 0.007371\n", + "Epoch : 17 [6/27(22%)]\tLoss: 0.000442\n", + "Epoch : 17 [9/27(33%)]\tLoss: 0.001625\n", + "Epoch : 17 [12/27(44%)]\tLoss: 0.004949\n", + "Epoch : 17 [15/27(56%)]\tLoss: 0.020284\n", + "Epoch : 17 [18/27(67%)]\tLoss: 0.018469\n", + "Epoch : 17 [21/27(78%)]\tLoss: 0.028195\n", + "Epoch : 17 [24/27(89%)]\tLoss: 0.030937\n", + "Epoch : 18 [0/27(0%)]\tLoss: 0.004328\n", + "Epoch : 18 [3/27(11%)]\tLoss: 0.002857\n", + "Epoch : 18 [6/27(22%)]\tLoss: 0.000872\n", + "Epoch : 18 [9/27(33%)]\tLoss: 0.001753\n", + "Epoch : 18 [12/27(44%)]\tLoss: 0.002325\n", + "Epoch : 18 [15/27(56%)]\tLoss: 0.012321\n", + "Epoch : 18 [18/27(67%)]\tLoss: 0.008577\n", + "Epoch : 18 [21/27(78%)]\tLoss: 0.048079\n", + "Epoch : 18 [24/27(89%)]\tLoss: 0.009804\n", + "Epoch : 19 [0/27(0%)]\tLoss: 0.019558\n", + "Epoch : 19 [3/27(11%)]\tLoss: 0.000376\n", + "Epoch : 19 [6/27(22%)]\tLoss: 0.001113\n", + "Epoch : 19 [9/27(33%)]\tLoss: 0.000310\n", + "Epoch : 19 [12/27(44%)]\tLoss: 0.011354\n", + "Epoch : 19 [15/27(56%)]\tLoss: 0.005805\n", + "Epoch : 19 [18/27(67%)]\tLoss: 0.002298\n", + "Epoch : 19 [21/27(78%)]\tLoss: 0.002168\n", + "Epoch : 19 [24/27(89%)]\tLoss: 0.051029\n", + "Epoch : 20 [0/27(0%)]\tLoss: 0.040163\n", + "Epoch : 20 [3/27(11%)]\tLoss: 0.002202\n", + "Epoch : 20 [6/27(22%)]\tLoss: 0.000463\n", + "Epoch : 20 [9/27(33%)]\tLoss: 0.002925\n", + "Epoch : 20 [12/27(44%)]\tLoss: 0.000550\n", + "Epoch : 20 [15/27(56%)]\tLoss: 0.012554\n", + "Epoch : 20 [18/27(67%)]\tLoss: 0.003530\n", + "Epoch : 20 [21/27(78%)]\tLoss: 0.001141\n", + "Epoch : 20 [24/27(89%)]\tLoss: 0.057233\n", + "Epoch : 21 [0/27(0%)]\tLoss: 0.006945\n", + "Epoch : 21 [3/27(11%)]\tLoss: 0.004644\n", + "Epoch : 21 [6/27(22%)]\tLoss: 0.002954\n", + "Epoch : 21 [9/27(33%)]\tLoss: 0.000336\n", + "Epoch : 21 [12/27(44%)]\tLoss: 0.002125\n", + "Epoch : 21 [15/27(56%)]\tLoss: 0.012052\n", + "Epoch : 21 [18/27(67%)]\tLoss: 0.001692\n", + "Epoch : 21 [21/27(78%)]\tLoss: 0.010361\n", + "Epoch : 21 [24/27(89%)]\tLoss: 0.005916\n", + "Epoch : 22 [0/27(0%)]\tLoss: 0.003305\n", + "Epoch : 22 [3/27(11%)]\tLoss: 0.010280\n", + "Epoch : 22 [6/27(22%)]\tLoss: 0.002054\n", + "Epoch : 22 [9/27(33%)]\tLoss: 0.000184\n", + "Epoch : 22 [12/27(44%)]\tLoss: 0.002065\n", + "Epoch : 22 [15/27(56%)]\tLoss: 0.010174\n", + "Epoch : 22 [18/27(67%)]\tLoss: 0.000386\n", + "Epoch : 22 [21/27(78%)]\tLoss: 0.005304\n", + "Epoch : 22 [24/27(89%)]\tLoss: 0.006141\n", + "Epoch : 23 [0/27(0%)]\tLoss: 0.003674\n", + "Epoch : 23 [3/27(11%)]\tLoss: 0.005280\n", + "Epoch : 23 [6/27(22%)]\tLoss: 0.006693\n", + "Epoch : 23 [9/27(33%)]\tLoss: 0.000589\n", + "Epoch : 23 [12/27(44%)]\tLoss: 0.000571\n", + "Epoch : 23 [15/27(56%)]\tLoss: 0.012547\n", + "Epoch : 23 [18/27(67%)]\tLoss: 0.000506\n", + "Epoch : 23 [21/27(78%)]\tLoss: 0.000333\n", + "Epoch : 23 [24/27(89%)]\tLoss: 0.012187\n", + "Epoch : 24 [0/27(0%)]\tLoss: 0.010045\n", + "Epoch : 24 [3/27(11%)]\tLoss: 0.002020\n", + "Epoch : 24 [6/27(22%)]\tLoss: 0.001664\n", + "Epoch : 24 [9/27(33%)]\tLoss: 0.000420\n", + "Epoch : 24 [12/27(44%)]\tLoss: 0.003192\n", + "Epoch : 24 [15/27(56%)]\tLoss: 0.014474\n", + "Epoch : 24 [18/27(67%)]\tLoss: 0.000209\n", + "Epoch : 24 [21/27(78%)]\tLoss: 0.000377\n", + "Epoch : 24 [24/27(89%)]\tLoss: 0.002314\n", + "Epoch : 25 [0/27(0%)]\tLoss: 0.002550\n", + "Epoch : 25 [3/27(11%)]\tLoss: 0.001220\n", + "Epoch : 25 [6/27(22%)]\tLoss: 0.002258\n", + "Epoch : 25 [9/27(33%)]\tLoss: 0.000382\n", + "Epoch : 25 [12/27(44%)]\tLoss: 0.014382\n", + "Epoch : 25 [15/27(56%)]\tLoss: 0.017803\n", + "Epoch : 25 [18/27(67%)]\tLoss: 0.000126\n", + "Epoch : 25 [21/27(78%)]\tLoss: 0.000041\n", + "Epoch : 25 [24/27(89%)]\tLoss: 0.000262\n", + "Epoch : 26 [0/27(0%)]\tLoss: 0.007624\n", + "Epoch : 26 [3/27(11%)]\tLoss: 0.004248\n", + "Epoch : 26 [6/27(22%)]\tLoss: 0.003236\n", + "Epoch : 26 [9/27(33%)]\tLoss: 0.001192\n", + "Epoch : 26 [12/27(44%)]\tLoss: 0.018933\n", + "Epoch : 26 [15/27(56%)]\tLoss: 0.020340\n", + "Epoch : 26 [18/27(67%)]\tLoss: 0.000574\n", + "Epoch : 26 [21/27(78%)]\tLoss: 0.000289\n", + "Epoch : 26 [24/27(89%)]\tLoss: 0.006616\n", + "Epoch : 27 [0/27(0%)]\tLoss: 0.002832\n", + "Epoch : 27 [3/27(11%)]\tLoss: 0.005819\n", + "Epoch : 27 [6/27(22%)]\tLoss: 0.001736\n", + "Epoch : 27 [9/27(33%)]\tLoss: 0.001227\n", + "Epoch : 27 [12/27(44%)]\tLoss: 0.004012\n", + "Epoch : 27 [15/27(56%)]\tLoss: 0.018472\n", + "Epoch : 27 [18/27(67%)]\tLoss: 0.000334\n", + "Epoch : 27 [21/27(78%)]\tLoss: 0.000337\n", + "Epoch : 27 [24/27(89%)]\tLoss: 0.004451\n", + "Epoch : 28 [0/27(0%)]\tLoss: 0.002701\n", + "Epoch : 28 [3/27(11%)]\tLoss: 0.003961\n", + "Epoch : 28 [6/27(22%)]\tLoss: 0.000802\n", + "Epoch : 28 [9/27(33%)]\tLoss: 0.005464\n", + "Epoch : 28 [12/27(44%)]\tLoss: 0.005112\n", + "Epoch : 28 [15/27(56%)]\tLoss: 0.000692\n", + "Epoch : 28 [18/27(67%)]\tLoss: 0.000138\n", + "Epoch : 28 [21/27(78%)]\tLoss: 0.000163\n", + "Epoch : 28 [24/27(89%)]\tLoss: 0.001890\n", + "Epoch : 29 [0/27(0%)]\tLoss: 0.001632\n", + "Epoch : 29 [3/27(11%)]\tLoss: 0.004426\n", + "Epoch : 29 [6/27(22%)]\tLoss: 0.000535\n", + "Epoch : 29 [9/27(33%)]\tLoss: 0.009629\n", + "Epoch : 29 [12/27(44%)]\tLoss: 0.006849\n", + "Epoch : 29 [15/27(56%)]\tLoss: 0.000671\n", + "Epoch : 29 [18/27(67%)]\tLoss: 0.000004\n", + "Epoch : 29 [21/27(78%)]\tLoss: 0.001328\n", + "Epoch : 29 [24/27(89%)]\tLoss: 0.002453\n", + "Epoch : 30 [0/27(0%)]\tLoss: 0.001343\n", + "Epoch : 30 [3/27(11%)]\tLoss: 0.002147\n", + "Epoch : 30 [6/27(22%)]\tLoss: 0.002141\n", + "Epoch : 30 [9/27(33%)]\tLoss: 0.002365\n", + "Epoch : 30 [12/27(44%)]\tLoss: 0.000165\n", + "Epoch : 30 [15/27(56%)]\tLoss: 0.003556\n", + "Epoch : 30 [18/27(67%)]\tLoss: 0.000107\n", + "Epoch : 30 [21/27(78%)]\tLoss: 0.000783\n", + "Epoch : 30 [24/27(89%)]\tLoss: 0.001974\n", + "Epoch : 31 [0/27(0%)]\tLoss: 0.000305\n", + "Epoch : 31 [3/27(11%)]\tLoss: 0.001176\n", + "Epoch : 31 [6/27(22%)]\tLoss: 0.000109\n", + "Epoch : 31 [9/27(33%)]\tLoss: 0.000559\n", + "Epoch : 31 [12/27(44%)]\tLoss: 0.000879\n", + "Epoch : 31 [15/27(56%)]\tLoss: 0.005782\n", + "Epoch : 31 [18/27(67%)]\tLoss: 0.000297\n", + "Epoch : 31 [21/27(78%)]\tLoss: 0.000509\n", + "Epoch : 31 [24/27(89%)]\tLoss: 0.000896\n", + "Epoch : 32 [0/27(0%)]\tLoss: 0.000292\n", + "Epoch : 32 [3/27(11%)]\tLoss: 0.000797\n", + "Epoch : 32 [6/27(22%)]\tLoss: 0.000774\n", + "Epoch : 32 [9/27(33%)]\tLoss: 0.000566\n", + "Epoch : 32 [12/27(44%)]\tLoss: 0.003159\n", + "Epoch : 32 [15/27(56%)]\tLoss: 0.002643\n", + "Epoch : 32 [18/27(67%)]\tLoss: 0.000038\n", + "Epoch : 32 [21/27(78%)]\tLoss: 0.000195\n", + "Epoch : 32 [24/27(89%)]\tLoss: 0.001648\n", + "Epoch : 33 [0/27(0%)]\tLoss: 0.001003\n", + "Epoch : 33 [3/27(11%)]\tLoss: 0.000649\n", + "Epoch : 33 [6/27(22%)]\tLoss: 0.000405\n", + "Epoch : 33 [9/27(33%)]\tLoss: 0.000491\n", + "Epoch : 33 [12/27(44%)]\tLoss: 0.000081\n", + "Epoch : 33 [15/27(56%)]\tLoss: 0.003899\n", + "Epoch : 33 [18/27(67%)]\tLoss: 0.000082\n", + "Epoch : 33 [21/27(78%)]\tLoss: 0.000058\n", + "Epoch : 33 [24/27(89%)]\tLoss: 0.007398\n", + "Epoch : 34 [0/27(0%)]\tLoss: 0.024475\n", + "Epoch : 34 [3/27(11%)]\tLoss: 0.000540\n", + "Epoch : 34 [6/27(22%)]\tLoss: 0.000091\n", + "Epoch : 34 [9/27(33%)]\tLoss: 0.000542\n", + "Epoch : 34 [12/27(44%)]\tLoss: 0.015232\n", + "Epoch : 34 [15/27(56%)]\tLoss: 0.011836\n", + "Epoch : 34 [18/27(67%)]\tLoss: 0.001878\n", + "Epoch : 34 [21/27(78%)]\tLoss: 0.002843\n", + "Epoch : 34 [24/27(89%)]\tLoss: 0.011221\n", + "Epoch : 35 [0/27(0%)]\tLoss: 0.029818\n", + "Epoch : 35 [3/27(11%)]\tLoss: 0.000209\n", + "Epoch : 35 [6/27(22%)]\tLoss: 0.001764\n", + "Epoch : 35 [9/27(33%)]\tLoss: 0.002198\n", + "Epoch : 35 [12/27(44%)]\tLoss: 0.022831\n", + "Epoch : 35 [15/27(56%)]\tLoss: 0.020147\n", + "Epoch : 35 [18/27(67%)]\tLoss: 0.001243\n", + "Epoch : 35 [21/27(78%)]\tLoss: 0.005730\n", + "Epoch : 35 [24/27(89%)]\tLoss: 0.021848\n", + "Epoch : 36 [0/27(0%)]\tLoss: 0.001855\n", + "Epoch : 36 [3/27(11%)]\tLoss: 0.002956\n", + "Epoch : 36 [6/27(22%)]\tLoss: 0.003690\n", + "Epoch : 36 [9/27(33%)]\tLoss: 0.005114\n", + "Epoch : 36 [12/27(44%)]\tLoss: 0.003506\n", + "Epoch : 36 [15/27(56%)]\tLoss: 0.009889\n", + "Epoch : 36 [18/27(67%)]\tLoss: 0.000262\n", + "Epoch : 36 [21/27(78%)]\tLoss: 0.003831\n", + "Epoch : 36 [24/27(89%)]\tLoss: 0.008460\n", + "Epoch : 37 [0/27(0%)]\tLoss: 0.002022\n", + "Epoch : 37 [3/27(11%)]\tLoss: 0.006961\n", + "Epoch : 37 [6/27(22%)]\tLoss: 0.002692\n", + "Epoch : 37 [9/27(33%)]\tLoss: 0.010054\n", + "Epoch : 37 [12/27(44%)]\tLoss: 0.004813\n", + "Epoch : 37 [15/27(56%)]\tLoss: 0.010171\n", + "Epoch : 37 [18/27(67%)]\tLoss: 0.000244\n", + "Epoch : 37 [21/27(78%)]\tLoss: 0.003157\n", + "Epoch : 37 [24/27(89%)]\tLoss: 0.013036\n", + "Epoch : 38 [0/27(0%)]\tLoss: 0.005680\n", + "Epoch : 38 [3/27(11%)]\tLoss: 0.006375\n", + "Epoch : 38 [6/27(22%)]\tLoss: 0.003317\n", + "Epoch : 38 [9/27(33%)]\tLoss: 0.008909\n", + "Epoch : 38 [12/27(44%)]\tLoss: 0.008679\n", + "Epoch : 38 [15/27(56%)]\tLoss: 0.012563\n", + "Epoch : 38 [18/27(67%)]\tLoss: 0.000474\n", + "Epoch : 38 [21/27(78%)]\tLoss: 0.002113\n", + "Epoch : 38 [24/27(89%)]\tLoss: 0.018527\n", + "Epoch : 39 [0/27(0%)]\tLoss: 0.005801\n", + "Epoch : 39 [3/27(11%)]\tLoss: 0.005444\n", + "Epoch : 39 [6/27(22%)]\tLoss: 0.002419\n", + "Epoch : 39 [9/27(33%)]\tLoss: 0.011007\n", + "Epoch : 39 [12/27(44%)]\tLoss: 0.009214\n", + "Epoch : 39 [15/27(56%)]\tLoss: 0.017984\n", + "Epoch : 39 [18/27(67%)]\tLoss: 0.001100\n", + "Epoch : 39 [21/27(78%)]\tLoss: 0.001688\n", + "Epoch : 39 [24/27(89%)]\tLoss: 0.008889\n", + "Epoch : 40 [0/27(0%)]\tLoss: 0.003547\n", + "Epoch : 40 [3/27(11%)]\tLoss: 0.008212\n", + "Epoch : 40 [6/27(22%)]\tLoss: 0.000446\n", + "Epoch : 40 [9/27(33%)]\tLoss: 0.008342\n", + "Epoch : 40 [12/27(44%)]\tLoss: 0.024016\n", + "Epoch : 40 [15/27(56%)]\tLoss: 0.021508\n", + "Epoch : 40 [18/27(67%)]\tLoss: 0.000374\n", + "Epoch : 40 [21/27(78%)]\tLoss: 0.001290\n", + "Epoch : 40 [24/27(89%)]\tLoss: 0.007630\n", + "Epoch : 41 [0/27(0%)]\tLoss: 0.001600\n", + "Epoch : 41 [3/27(11%)]\tLoss: 0.007628\n", + "Epoch : 41 [6/27(22%)]\tLoss: 0.002100\n", + "Epoch : 41 [9/27(33%)]\tLoss: 0.010086\n", + "Epoch : 41 [12/27(44%)]\tLoss: 0.032792\n", + "Epoch : 41 [15/27(56%)]\tLoss: 0.033121\n", + "Epoch : 41 [18/27(67%)]\tLoss: 0.000650\n", + "Epoch : 41 [21/27(78%)]\tLoss: 0.000840\n", + "Epoch : 41 [24/27(89%)]\tLoss: 0.006072\n", + "Epoch : 42 [0/27(0%)]\tLoss: 0.002263\n", + "Epoch : 42 [3/27(11%)]\tLoss: 0.005945\n", + "Epoch : 42 [6/27(22%)]\tLoss: 0.005704\n", + "Epoch : 42 [9/27(33%)]\tLoss: 0.010016\n", + "Epoch : 42 [12/27(44%)]\tLoss: 0.013327\n", + "Epoch : 42 [15/27(56%)]\tLoss: 0.030966\n", + "Epoch : 42 [18/27(67%)]\tLoss: 0.000309\n", + "Epoch : 42 [21/27(78%)]\tLoss: 0.000251\n", + "Epoch : 42 [24/27(89%)]\tLoss: 0.003098\n", + "Epoch : 43 [0/27(0%)]\tLoss: 0.007127\n", + "Epoch : 43 [3/27(11%)]\tLoss: 0.007958\n", + "Epoch : 43 [6/27(22%)]\tLoss: 0.004119\n", + "Epoch : 43 [9/27(33%)]\tLoss: 0.016107\n", + "Epoch : 43 [12/27(44%)]\tLoss: 0.021339\n", + "Epoch : 43 [15/27(56%)]\tLoss: 0.023068\n", + "Epoch : 43 [18/27(67%)]\tLoss: 0.000228\n", + "Epoch : 43 [21/27(78%)]\tLoss: 0.000379\n", + "Epoch : 43 [24/27(89%)]\tLoss: 0.006116\n", + "Epoch : 44 [0/27(0%)]\tLoss: 0.003702\n", + "Epoch : 44 [3/27(11%)]\tLoss: 0.006873\n", + "Epoch : 44 [6/27(22%)]\tLoss: 0.003019\n", + "Epoch : 44 [9/27(33%)]\tLoss: 0.016952\n", + "Epoch : 44 [12/27(44%)]\tLoss: 0.025547\n", + "Epoch : 44 [15/27(56%)]\tLoss: 0.006989\n", + "Epoch : 44 [18/27(67%)]\tLoss: 0.000054\n", + "Epoch : 44 [21/27(78%)]\tLoss: 0.000502\n", + "Epoch : 44 [24/27(89%)]\tLoss: 0.008582\n", + "Epoch : 45 [0/27(0%)]\tLoss: 0.002726\n", + "Epoch : 45 [3/27(11%)]\tLoss: 0.008770\n", + "Epoch : 45 [6/27(22%)]\tLoss: 0.003964\n", + "Epoch : 45 [9/27(33%)]\tLoss: 0.016648\n", + "Epoch : 45 [12/27(44%)]\tLoss: 0.023502\n", + "Epoch : 45 [15/27(56%)]\tLoss: 0.003051\n", + "Epoch : 45 [18/27(67%)]\tLoss: 0.000008\n", + "Epoch : 45 [21/27(78%)]\tLoss: 0.001180\n", + "Epoch : 45 [24/27(89%)]\tLoss: 0.003352\n", + "Epoch : 46 [0/27(0%)]\tLoss: 0.004498\n", + "Epoch : 46 [3/27(11%)]\tLoss: 0.003469\n", + "Epoch : 46 [6/27(22%)]\tLoss: 0.003081\n", + "Epoch : 46 [9/27(33%)]\tLoss: 0.004347\n", + "Epoch : 46 [12/27(44%)]\tLoss: 0.007713\n", + "Epoch : 46 [15/27(56%)]\tLoss: 0.006764\n", + "Epoch : 46 [18/27(67%)]\tLoss: 0.000182\n", + "Epoch : 46 [21/27(78%)]\tLoss: 0.000033\n", + "Epoch : 46 [24/27(89%)]\tLoss: 0.001305\n", + "Epoch : 47 [0/27(0%)]\tLoss: 0.002174\n", + "Epoch : 47 [3/27(11%)]\tLoss: 0.003463\n", + "Epoch : 47 [6/27(22%)]\tLoss: 0.001929\n", + "Epoch : 47 [9/27(33%)]\tLoss: 0.002711\n", + "Epoch : 47 [12/27(44%)]\tLoss: 0.007497\n", + "Epoch : 47 [15/27(56%)]\tLoss: 0.013153\n", + "Epoch : 47 [18/27(67%)]\tLoss: 0.000341\n", + "Epoch : 47 [21/27(78%)]\tLoss: 0.002458\n", + "Epoch : 47 [24/27(89%)]\tLoss: 0.001629\n", + "Epoch : 48 [0/27(0%)]\tLoss: 0.000265\n", + "Epoch : 48 [3/27(11%)]\tLoss: 0.001064\n", + "Epoch : 48 [6/27(22%)]\tLoss: 0.000846\n", + "Epoch : 48 [9/27(33%)]\tLoss: 0.002247\n", + "Epoch : 48 [12/27(44%)]\tLoss: 0.011487\n", + "Epoch : 48 [15/27(56%)]\tLoss: 0.007936\n", + "Epoch : 48 [18/27(67%)]\tLoss: 0.000343\n", + "Epoch : 48 [21/27(78%)]\tLoss: 0.002951\n", + "Epoch : 48 [24/27(89%)]\tLoss: 0.001779\n", + "Epoch : 49 [0/27(0%)]\tLoss: 0.000899\n", + "Epoch : 49 [3/27(11%)]\tLoss: 0.001999\n", + "Epoch : 49 [6/27(22%)]\tLoss: 0.001134\n", + "Epoch : 49 [9/27(33%)]\tLoss: 0.002023\n", + "Epoch : 49 [12/27(44%)]\tLoss: 0.007056\n", + "Epoch : 49 [15/27(56%)]\tLoss: 0.008980\n", + "Epoch : 49 [18/27(67%)]\tLoss: 0.000177\n", + "Epoch : 49 [21/27(78%)]\tLoss: 0.001689\n", + "Epoch : 49 [24/27(89%)]\tLoss: 0.004744\n", + "--- 0.042376514275868735 minutes ---\n" ] } ], @@ -1201,12 +1201,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 20, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTxElEQVR4nO3dd3wT5eMH8E+60pYuVheUAsqWll0LCigoS2SIVH8ooAgq+4sDcQDq129xMEQQRIWKAxAQBJRZGbJklmVBUaAobQGBLjpo8/z+eMxq05K0l1ybfN6v171yudxdnlzT5JNn3GmEEAJERERETsJN7QIQERERKYnhhoiIiJwKww0RERE5FYYbIiIicioMN0RERORUGG6IiIjIqTDcEBERkVPxULsAjqbT6XDp0iX4+/tDo9GoXRwiIiKyghACWVlZCA8Ph5tb2XUzLhduLl26hIiICLWLQUREROVw8eJF1K1bt8x1XC7c+Pv7A5AHJyAgQOXSEBERkTUyMzMRERFh+B4vi8uFG31TVEBAAMMNERFRFWNNlxJ2KCYiIiKnwnBDREREToXhhoiIiJyKy/W5ISIiZRUVFeHWrVtqF4OcgJeX122HeVuD4YaIiMpFCIG0tDTcuHFD7aKQk3Bzc0ODBg3g5eVVof0w3BARUbnog01wcDB8fX15YlSqEP1JdlNTU1GvXr0KvZ8YboiIyGZFRUWGYFOzZk21i0NOonbt2rh06RIKCwvh6elZ7v2wQzEREdlM38fG19dX5ZKQM9E3RxUVFVVoPww3RERUbmyKIiUp9X5iuCEiIiKnwnBDREREToXhhoiIqILq16+POXPmWL3+jh07oNFo7D6MPiEhAUFBQXZ9jsqI4UYhBQXAX38BFy6oXRIiIiqNRqMpc5o+fXq59nvw4EGMGjXK6vU7duyI1NRUBAYGluv5qGwcCq6QX34BOncGGjcGzpxRuzRERGRJamqqYX7FihWYOnUqzph8aPv5+RnmhRAoKiqCh8ftvypr165tUzm8vLwQGhpq0zZkPdbcKEQ/GvLmTXXLQUSkFiGAnBx1JiGsK2NoaKhhCgwMhEajMdw/ffo0/P39sXHjRrRt2xZarRa7d+/GH3/8gX79+iEkJAR+fn5o3749tm3bZrbf4s1SGo0Gn332GQYMGABfX180atQI69atMzxevFlK33y0efNmNGvWDH5+fujZs6dZGCssLMT48eMRFBSEmjVrYvLkyRg2bBj69+9v099pwYIFuOOOO+Dl5YUmTZrgyy+/NPkbCkyfPh316tWDVqtFeHg4xo8fb3j8448/RqNGjeDt7Y2QkBAMGjTIpud2FIYbhVSrJm9zctQtBxGRWm7eBPz81JmU/GH5yiuvYMaMGUhOTkZUVBSys7PRu3dvJCYm4ujRo+jZsyf69u2LlJSUMvfz5ptvYvDgwTh+/Dh69+6NIUOG4Nq1a2Ucv5v44IMP8OWXX2LXrl1ISUnBiy++aHj83Xffxddff40lS5Zgz549yMzMxNq1a216bWvWrMGECRPwwgsv4OTJk3j22Wfx1FNPYfv27QCA1atXY/bs2fjkk0/w+++/Y+3atWjZsiUA4NChQxg/fjzeeustnDlzBps2bULnzp1ten6HES4mIyNDABAZGRmK7vfCBSEAIbRaRXdLRFQp5ebmil9//VXk5uYalmVny89BNabsbNtfw5IlS0RgYKDh/vbt2wUAsXbt2ttu26JFC/HRRx8Z7kdGRorZs2cb7gMQr7/+usmxyRYAxMaNG82e6/r164ayABBnz541bDN//nwREhJiuB8SEiLef/99w/3CwkJRr1490a9fP6tfY8eOHcXIkSPN1nn00UdF7969hRBCzJw5UzRu3FgUFBSU2Nfq1atFQECAyMzMLPX5KsrS+0rPlu9v1twoRN8slZ8PVPDEikREVZKvL5Cdrc6k5ImS27VrZ3Y/OzsbL774Ipo1a4agoCD4+fkhOTn5tjU3UVFRhvlq1aohICAAly9fLnV9X19f3HHHHYb7YWFhhvUzMjKQnp6ODh06GB53d3dH27ZtbXptycnJ6NSpk9myTp06ITk5GQDw6KOPIjc3Fw0bNsTIkSOxZs0aFBYWAgAeeOABREZGomHDhnjyySfx9ddf42Yl7YvBcKMQ03+s3Fz1ykFEpBaNRjbRqzEpeaLkavp+Bv968cUXsWbNGvzvf//Dzz//jKSkJLRs2RIFBQVl7qf4tZE0Gg10Op1N6wtrOxMpJCIiAmfOnMHHH38MHx8fjB49Gp07d8atW7fg7++PI0eOYNmyZQgLC8PUqVMRHR1dKa8Kz3CjEG9v43wlDbJERFQOe/bswfDhwzFgwAC0bNkSoaGhOH/+vEPLEBgYiJCQEBw8eNCwrKioCEeOHLFpP82aNcOePXvMlu3ZswfNmzc33Pfx8UHfvn0xd+5c7NixA/v27cOJEycAAB4eHujevTvee+89HD9+HOfPn8dPP/1UgVdmHxwKrhA3N8DHR9baMNwQETmPRo0a4bvvvkPfvn2h0WjwxhtvlFkDYy/jxo1DfHw87rzzTjRt2hQfffQRrl+/btP1mF566SUMHjwYrVu3Rvfu3bF+/Xp89913htFfCQkJKCoqQkxMDHx9ffHVV1/Bx8cHkZGR2LBhA/7880907twZ1atXx48//gidTocmTZrY6yWXG8ONgqpVk+GGI6aIiJzHrFmz8PTTT6Njx46oVasWJk+ejMzMTIeXY/LkyUhLS8PQoUPh7u6OUaNGoUePHnB3d7d6H/3798eHH36IDz74ABMmTECDBg2wZMkSdO3aFQAQFBSEGTNmYNKkSSgqKkLLli2xfv161KxZE0FBQfjuu+8wffp05OXloVGjRli2bBlatGhhp1dcfhrh6AY9lWVmZiIwMBAZGRkICAhQdN+RkUBKCnDgANC+vaK7JiKqVPLy8nDu3Dk0aNAA3qbt8uQwOp0OzZo1w+DBg/H222+rXRxFlPW+suX7mzU3CuKJ/IiIyF4uXLiALVu2oEuXLsjPz8e8efNw7tw5/N///Z/aRat02KFYQQw3RERkL25ubkhISED79u3RqVMnnDhxAtu2bUOzZs3ULlqlw5obBTHcEBGRvURERJQY6USWseZGQQw3RERE6mO4URCvL0VERKQ+hhsFseaGiIhIfQw3CmK4ISIiUh/DjYIYboiIiNTHcKMghhsiItfQtWtXTJw40XC/fv36mDNnTpnbaDQarF27tsLPrdR+yjJ9+nS0atXKrs9hTww3CmK4ISKq3Pr27YuePXtafOznn3+GRqPB8ePHbd7vwYMHMWrUqIoWz0xpASM1NRW9evVS9LmcDcONgjhaioiochsxYgS2bt2Kv/76q8RjS5YsQbt27RAVFWXzfmvXrg1f/S9cOwsNDYVWq3XIc1VVDDcKYs0NEVHl9tBDD6F27dpISEgwW56dnY2VK1dixIgR+Oeff/D444+jTp068PX1RcuWLbFs2bIy91u8Wer3339H586d4e3tjebNm2Pr1q0ltpk8eTIaN24MX19fNGzYEG+88QZu3boFQF6d+80338SxY8eg0Wig0WgMZS7eLHXixAncf//98PHxQc2aNTFq1ChkZ2cbHh8+fDj69++PDz74AGFhYahZsybGjBljeC5r6HQ6vPXWW6hbty60Wi1atWqFTZs2GR4vKCjA2LFjERYWBm9vb0RGRiI+Ph4AIITA9OnTUa9ePWi1WoSHh2P8+PFWP3d58AzFCmK4ISKXJoR6H4C+voBGc9vVPDw8MHToUCQkJOC1116D5t9tVq5ciaKiIjz++OPIzs5G27ZtMXnyZAQEBOCHH37Ak08+iTvuuAMdOnS47XPodDoMHDgQISEh+OWXX5CRkWHWP0fP398fCQkJCA8Px4kTJzBy5Ej4+/vj5ZdfRlxcHE6ePIlNmzZh27ZtAIDAwMAS+8jJyUGPHj0QGxuLgwcP4vLly3jmmWcwduxYswC3fft2hIWFYfv27Th79izi4uLQqlUrjBw58ravBwA+/PBDzJw5E5988glat26NxYsX4+GHH8apU6fQqFEjzJ07F+vWrcO3336LevXq4eLFi7h48SIAYPXq1Zg9ezaWL1+OFi1aIC0tDceOHbPqectNuJiMjAwBQGRkZCi+71WrhACEuOcexXdNRFSp5Obmil9//VXk5uYaF2Znyw9BNabsbKvLnpycLACI7du3G5bde++94oknnih1mz59+ogXXnjBcL9Lly5iwoQJhvuRkZFi9uzZQgghNm/eLDw8PMTff/9teHzjxo0CgFizZk2pz/H++++Ltm3bGu5PmzZNREdHl1jPdD+LFi0S1atXF9kmr/+HH34Qbm5uIi0tTQghxLBhw0RkZKQoLCw0rPPoo4+KuLi4UstS/LnDw8PFO++8Y7ZO+/btxejRo4UQQowbN07cf//9QqfTldjXzJkzRePGjUVBQUGpz6dn8X31L1u+v9kspSDW3BARVX5NmzZFx44dsXjxYgDA2bNn8fPPP2PEiBEAgKKiIrz99tto2bIlatSoAT8/P2zevBkpKSlW7T85ORkREREIDw83LIuNjS2x3ooVK9CpUyeEhobCz88Pr7/+utXPYfpc0dHRqKbv9AmgU6dO0Ol0OHPmjGFZixYt4O7ubrgfFhaGy5cvW/UcmZmZuHTpEjp16mS2vFOnTkhOTgYgm76SkpLQpEkTjB8/Hlu2bDGs9+ijjyI3NxcNGzbEyJEjsWbNGhQWFtr0Om3FcKMghhsicmm+vkB2tjqTjZ15R4wYgdWrVyMrKwtLlizBHXfcgS5dugAA3n//fXz44YeYPHkytm/fjqSkJPTo0QMFBQWKHap9+/ZhyJAh6N27NzZs2ICjR4/itddeU/Q5THl6eprd12g00Ol0iu2/TZs2OHfuHN5++23k5uZi8ODBGDRoEAB5wc8zZ87g448/ho+PD0aPHo3OnTvb1OfHVuxzoyCOliIil6bRGD8IK7nBgwdjwoQJ+Oabb7B06VI8//zzhv43e/bsQb9+/fDEE08AkH1ofvvtNzRv3tyqfTdr1gwXL15EamoqwsLCAAD79+83W2fv3r2IjIzEa6+9Zlh24cIFs3W8vLxQVFR02+dKSEhATk6OofZmz549cHNzQ5MmTawq7+0EBAQgPDwce/bsMQRA/fOY9kEKCAhAXFwc4uLiMGjQIPTs2RPXrl1DjRo14OPjg759+6Jv374YM2YMmjZtihMnTqBNmzaKlLE4hhsFseaGiKhq8PPzQ1xcHKZMmYLMzEwMHz7c8FijRo2watUq7N27F9WrV8esWbOQnp5udbjp3r07GjdujGHDhuH9999HZmamWYjRP0dKSgqWL1+O9u3b44cffsCaNWvM1qlfvz7OnTuHpKQk1K1bF/7+/iWGgA8ZMgTTpk3DsGHDMH36dFy5cgXjxo3Dk08+iZCQkPIdHAteeuklTJs2DXfccQdatWqFJUuWICkpCV9//TUAYNasWQgLC0Pr1q3h5uaGlStXIjQ0FEFBQUhISEBRURFiYmLg6+uLr776Cj4+PoiMjFSsfMWxWUpBDDdERFXHiBEjcP36dfTo0cOsf8zrr7+ONm3aoEePHujatStCQ0PRv39/q/fr5uaGNWvWIDc3Fx06dMAzzzyDd955x2ydhx9+GP/5z38wduxYtGrVCnv37sUbb7xhts4jjzyCnj174r777kPt2rUtDkf39fXF5s2bce3aNbRv3x6DBg1Ct27dMG/ePNsOxm2MHz8ekyZNwgsvvICWLVti06ZNWLduHRo1agRAjvx677330K5dO7Rv3x7nz5/Hjz/+CDc3NwQFBeHTTz9Fp06dEBUVhW3btmH9+vWoWbOmomU0pRFCCLvtvRLKzMxEYGAgMjIyEBAQoOi+L18G9EG5qAhwY3QkIieVl5eHc+fOoUGDBvD29la7OOQkynpf2fL9za9fBZn2Z8vLU68cRERErozhRkE+PsZ5Nk0RERGpg+FGQe7ugL4WjSOmiIiI1MFwozB2KiYiIlIXw43CGG6IyJW42JgUsjOl3k8MNwpjuCEiV6A/4+1NftiRgvRnaDa9VER58CR+CmO4ISJX4O7ujqCgIMP1iXx9fQ1n+CUqD51OhytXrsDX1xceHhWLJww3CmO4ISJXERoaCgBWX4CR6Hbc3NxQr169CgdlhhuF8fpSROQqNBoNwsLCEBwcbNeLIJLr8PLygpsCZ8BluFEYa26IyNW4u7tXuI8EkZLYoVhhDDdERETqYrhRGMMNERGRuhhuFMZwQ0REpC6GG4Ux3BAREamL4UZhHC1FRESkLoYbhbHmhoiISF2qhpv4+Hi0b98e/v7+CA4ORv/+/XHmzJnbbrdy5Uo0bdoU3t7eaNmyJX788UcHlNY6DDdERETqUjXc7Ny5E2PGjMH+/fuxdetW3Lp1Cw8++CByymjT2bt3Lx5//HGMGDECR48eRf/+/dG/f3+cPHnSgSUvHcMNERGRujSiEl3S9cqVKwgODsbOnTvRuXNni+vExcUhJycHGzZsMCy7++670apVKyxcuPC2z5GZmYnAwEBkZGQgICBAsbLrrVwJDB4MdO4M7Nyp+O6JiIhcki3f35Wqz01GRgYAoEaNGqWus2/fPnTv3t1sWY8ePbBv3z6L6+fn5yMzM9NssifW3BAREamr0oQbnU6HiRMnolOnTrjrrrtKXS8tLQ0hISFmy0JCQpCWlmZx/fj4eAQGBhqmiIgIRctdHEdLERERqavShJsxY8bg5MmTWL58uaL7nTJlCjIyMgzTxYsXFd1/cay5ISIiUleluHDm2LFjsWHDBuzatQt169Ytc93Q0FCkp6ebLUtPT0doaKjF9bVaLbRarWJlvR2GGyIiInWpWnMjhMDYsWOxZs0a/PTTT2jQoMFtt4mNjUViYqLZsq1btyI2NtZexbQJww0REZG6VK25GTNmDL755ht8//338Pf3N/SbCQwMhI+PDwBg6NChqFOnDuLj4wEAEyZMQJcuXTBz5kz06dMHy5cvx6FDh7Bo0SLVXocp03AjBKDRqFseIiIiV6Nqzc2CBQuQkZGBrl27IiwszDCtWLHCsE5KSgpSU1MN9zt27IhvvvkGixYtQnR0NFatWoW1a9eW2QnZkfThRgggP1/dshAREbmiSnWeG0ew93luCgsBT085f/UqULOm4k9BRETkcqrseW6cgYcH4OUl59nvhoiIyPEYbuyAnYqJiIjUw3BjBww3RERE6mG4sQOGGyIiIvUw3NgBww0REZF6GG7sgNeXIiIiUg/DjR2w5oaIiEg9DDd2wHBDRESkHoYbO2C4ISIiUg/DjR0w3BAREamH4cYOGG6IiIjUw3BjBxwtRUREpB6GGztgzQ0REZF6GG7sgOGGiIhIPQw3dsBwQ0REpB6GGztguCEiIlIPw40dMNwQERGph+HGDjhaioiISD0MN3bAmhsiIiL1MNzYAcMNERGRehhu7IDhhoiISD0MN3bAcENERKQehhs7MA03QqhbFiIiIlfDcGMH+tFSRUVAQYG6ZSEiInI1DDd2oK+5Adg0RURE5GgMN3bg6Ql4eMh5hhsiIiLHYrixE3YqJiIiUgfDjZ0w3BAREamD4cZOGG6IiIjUwXBjJ7y+FBERkToYbuyENTdERETqYLixE4YbIiIidTDc2AnDDRERkToYbuyE4YaIiEgdDDd2wnBDRESkDoYbO+FoKSIiInUw3NgJa26IiIjUwXBjJww3RERE6mC4sROGGyIiInUw3NgJww0REZE6GG7shOGGiIhIHQw3dsLRUkREROpguLET1twQERGpg+HGThhuiIiI1MFwYycMN0REROpguLEThhsiIiJ1MNzYCcMNERGROhhu7ISjpYiIiNTBcGMn+pqbwkLg1i11y0JERORKGG7sRB9uADZNERERORLDjZ14eQFu/x5dhhsiIiLHYbixE42GnYqJiIjUwHBjRww3REREjsdwY0f6EVMMN0RERI7DcGNH+pobDgcnIiJyHIYbO2KzFBERkeMx3NgRww0REZHjMdzYEcMNERGR4zHc2BHDDRERkeMx3NgRR0sRERE5HsONHXG0FBERkeOpGm527dqFvn37Ijw8HBqNBmvXri1z/R07dkCj0ZSY0tLSHFNgG7FZioiIyPFUDTc5OTmIjo7G/PnzbdruzJkzSE1NNUzBwcF2KmHFMNwQERE5noeaT96rVy/06tXL5u2Cg4MRFBSkfIEUxnBDRETkeFWyz02rVq0QFhaGBx54AHv27Clz3fz8fGRmZppNjsJwQ0RE5HhVKtyEhYVh4cKFWL16NVavXo2IiAh07doVR44cKXWb+Ph4BAYGGqaIiAiHlZejpYiIiBxP1WYpWzVp0gRNmjQx3O/YsSP++OMPzJ49G19++aXFbaZMmYJJkyYZ7mdmZjos4HC0FBERkeNVqXBjSYcOHbB79+5SH9dqtdBqtQ4skRGbpYiIiByvSjVLWZKUlISwsDC1i2ERww0REZHjqVpzk52djbNnzxrunzt3DklJSahRowbq1auHKVOm4O+//8bSpUsBAHPmzEGDBg3QokUL5OXl4bPPPsNPP/2ELVu2qPUSysRwQ0RE5HiqhptDhw7hvvvuM9zX940ZNmwYEhISkJqaipSUFMPjBQUFeOGFF/D333/D19cXUVFR2LZtm9k+KhOGGyIiIsfTCCGE2oVwpMzMTAQGBiIjIwMBAQF2fa4zZ4CmTYHq1YFr1+z6VERERE7Nlu/vKt/npjLjaCkiIiLHY7ixI324KSgACgvVLQsREZGrYLixI324AYDcXPXKQURE5EoYbuzI29s4z07FREREjsFwY0caDUdMERERORrDjZ3x+lJERESOxXBjZxwxRURE5FgMN3bGZikiIiLHYrixM7NwIwTwyCNAr15AUZGq5SIiInJWVf6q4JWdWbi5fh347ju54NQpICpKtXIRERE5K9bc2JlZuLl0yfjAvn2qlIeIiMjZMdzYmdloqb//Nj6wf78q5SEiInJ2DDd2ZjZaiuGGiIjI7hhu7KzUZqnTp3mpcCIiIjtguLEzs3BjWnMDAAcOOLw8REREzo7hxs4shhtPT3nLTsVERESKY7ixM4vNUt27y1v2uyEiIlIcw42dWRwt9cgj8vaXXwCdTpVyEREROSuGGzvT19zkZd0C0tPlnR495AMZGbJjMRERESmG4cbO9OFGeyNdXn7BwwMIDwfat5cPsGmKiIhIUQw3dqYPN34Z/zZJhYUBbm7A3XfL+ww3REREimK4sTN9uAnI+jfchIfL29hYecsRU0RERIpiuLEzfbgJzPl3pFSdOvI2JkbenjoFZGY6vmBEREROiuHGzvSjpWrk/ltzow83oaFA/fqyHw5P5kdERKQYhhs709fc1Mov1iwFGJum2O+GiIhIMQw3dqYPN7ULizVLAexUTEREZAcMN3amDzdhumLNUoB5uBHCsQUjIiJyUgw3dqYPN3VgoVmqVStAqwX++Qc4e9bhZSMiInJGDDd25uMD+CELAciSC0xrbry8gLZt5TybpoiIiBRRrnBz8eJF/PXXX4b7Bw4cwMSJE7Fo0SLFCuYs3NyAhlrZ30bn5w/4+5uvwPPdEBERKapc4eb//u//sH37dgBAWloaHnjgARw4cACvvfYa3nrrLUUL6Awa/BtubtUOL/kgOxUTEREpqlzh5uTJk+jQoQMA4Ntvv8Vdd92FvXv34uuvv0ZCQoKS5XMKkR6yv01+zTolH9SHm+PHgZwcB5aKiIjIOZUr3Ny6dQtarRYAsG3bNjz88MMAgKZNmyI1NVW50jmJCDcZbnJrWAg3devKqagIOHTIwSUjIiJyPuUKNy1atMDChQvx888/Y+vWrejZsycA4NKlS6hZs6aiBXQG4RrZLJUTaKFZCmDTFBERkYLKFW7effddfPLJJ+jatSsef/xxREdHAwDWrVtnaK4iI/05bjIDLNTcAMZww07FREREFeZRno26du2Kq1evIjMzE9WrVzcsHzVqFHz1J3Yhg5BCGW4yqpUSbkwvwyAEoNE4qGRERETOp1w1N7m5ucjPzzcEmwsXLmDOnDk4c+YMgoODFS2gM6hVIJulrnmX0izVpg3g6QmkpwMXLjiwZERERM6nXOGmX79+WLp0KQDgxo0biImJwcyZM9G/f38sWLBA0QJWeTodauTJcHNVW0rNjbc30Lq1nGfTFBERUYWUK9wcOXIE9957LwBg1apVCAkJwYULF7B06VLMnTtX0QJWeVeuwEMUQgcNrnqElr4eOxUTEREpolzh5ubNm/D/90y7W7ZswcCBA+Hm5oa7774bF9isYu6SrLW5jGBk53uWvh47FRMRESmiXOHmzjvvxNq1a3Hx4kVs3rwZDz74IADg8uXLCAgIULSAVd7fsjPx36iDmzfLWE/fqfjoUSA31/7lIiIiclLlCjdTp07Fiy++iPr166NDhw6I/feLecuWLWit7ztCkrXhJjISCAkBCgtlwCEiIqJyKVe4GTRoEFJSUnDo0CFs3rzZsLxbt26YPXu2YoVzCv82S11CeNlXV9Bo2DRFRESkgHKd5wYAQkNDERoaarg6eN26dXkCP0usrbkBZNPU99+zUzEREVEFlKvmRqfT4a233kJgYCAiIyMRGRmJoKAgvP3229DpdEqXsWqzJdxwxBQREVGFlavm5rXXXsPnn3+OGTNmoFOnTgCA3bt3Y/r06cjLy8M777yjaCGrNJNmqduGm3btAHd34K+/5FS3rv3LR0RE5GTKFW6++OILfPbZZ4argQNAVFQU6tSpg9GjRzPcmDKpudHeLtxUqwZERckOxfv3A4MG2b98RERETqZczVLXrl1D06ZNSyxv2rQprl27VuFCOY28POCffwBY2SwFsGmKiIiogsoVbqKjozFv3rwSy+fNm4eoqKgKF8pppKYCAHReWlxH9bJHS+npz3fDEVNERETlUq5mqffeew99+vTBtm3bDOe42bdvHy5evIgff/xR0QJWaf82SRUG1wH+0thWc3P4MFBQAHh52a98RERETqhcNTddunTBb7/9hgEDBuDGjRu4ceMGBg4ciFOnTuHLL79UuoxV17/hRhcmL5hpVbi5806gZk0gPx84cMCOhSMiInJO5T7PTXh4eImOw8eOHcPnn3+ORYsWVbhgTuHfkVIIDwcgw40Q8nx9pdJogF69gK++AhYtAu65x/7lJCIiciLlqrkhK/1bc+MWUcewKC/Piu0mTJC3y5cb+u0QERGRdRhu7OnfcOMRaQw3VjVNtWsHdOoE3LoFLFhgp8IRERE5J4Ybe/q3Wcqtbji0WrnIqhFTADBxorxdsMDK6h4iIiICbOxzM3DgwDIfv3HjRkXK4nz+rblBnTrw9ZV9hK2quQGA/v2BevWAlBTgm2+Ap5+2VymJiIicik01N4GBgWVOkZGRGDp0qL3KWrUIUSLcADaEGw8PYNw4OT9njtwfERER3ZZGCNf61szMzERgYCAyMjIQEBBgvye6fh2oUUPO37yJxtE++P134OefbRgAdf06EBEh27ISE4H777dbcYmIiCozW76/2efGXvS1NjVqAD4+ttfcAED16sDw4XJ+zhwFC0dEROS8GG7sxaRJCpDXxARsDDcAMH68vN2wAfj9d2XKRkRE5MQYbuyl2An89DU3Vo+W0mvcGOjTR/a5+egj5cpHRETkpFQNN7t27ULfvn0RHh4OjUaDtWvX3nabHTt2oE2bNtBqtbjzzjuRkJBg93KWS7Gam3I1S+nph4UvXgxwRBoREVGZVA03OTk5iI6Oxvz5861a/9y5c+jTpw/uu+8+JCUlYeLEiXjmmWewefNmO5e0HJQMN926AS1ayGqfxYuVKR8REZGTKve1pZTQq1cv9OrVy+r1Fy5ciAYNGmDmzJkAgGbNmmH37t2YPXs2evToYXGb/Px85OfnG+5nZmZWrNDWKqVZqlzhRqORtTcjRwJz58p+OB6q/umIiIgqrSrV52bfvn3o3r272bIePXpg3759pW4THx9vdi6eiIgIexdTUrLmBgCGDJFXC79wAVi3ruLlIyIiclJVKtykpaUhJCTEbFlISAgyMzORm5trcZspU6YgIyPDMF28eNERRTXW3FR0tJSejw/w3HNynsPCiYiISlWlwk15aLVaBAQEmE12V1gIpKfL+YqOljI1erRsjvr5Z+Dw4YqVkYiIyElVqXATGhqKdH1o+Fd6ejoCAgLg4+OjUqksSEsDdDoZRIKDASjQLAXIoBQXJ+c//LBiZSQiInJSVSrcxMbGIjEx0WzZ1q1bERsbq1KJSqFvkgoLA9zkIVYk3ADGYeHLlwOpqRXcGRERkfNRNdxkZ2cjKSkJSUlJAORQ76SkJKSkpACQ/WVML8T53HPP4c8//8TLL7+M06dP4+OPP8a3336L//znP2oUv3T6zsT/NkkBCoabdu2ATp2AW7eABQsquDMiIiLno2q4OXToEFq3bo3WrVsDACZNmoTWrVtj6tSpAIDU1FRD0AGABg0a4IcffsDWrVsRHR2NmTNn4rPPPit1GLhqio2UAhQMN4Cx9mbBAiAvT4EdEhEROQ9VT5bStWtXlHVRcktnH+7atSuOHj1qx1IpoNhIKUCB0VKm+vcH6tUDUlKAb74Bnn5agZ0SERE5hyrV56bKKKNZqkKjpfQ8PIAxY+T8woUK7JCIiMh5MNzYg72bpQBg+HDA0xM4eBCo7DVZREREDsRwYw8WmqUUDzfBwcDAgXL+k08U2ikREVHVx3BjD/YcLWXq2Wfl7ddfA1lZCu6YiIio6mK4UVp2NqC/OGcpNTdl9KG2TdeuQOPG8jmXLVNop0RERFUbw43S9E1S/v5y+pd+tJROBxQUKPRcGg0wapScZ9MUERERAIYb5VlokgLkdS/1FBkxpTdsGODlBRw5Ahw6pOCOiYiIqiaGG6VZGCkFyIFNnp5yXtF+N7VqAYMGyXnW3hARETHcKM7CSCk9u3QqBowdi5ctM/b3ISIiclEMN0orpVkKsD7cfPgh8OCDNgyAuvdeoFkz2d719dfWl5WIiMgJMdworZRmKcC6cHP5MvDyy8DWrcDGjVY+Z/GOxYoNxyIiIqp6GG6UVkazlDXXl1q0yDia6tdfbXjeoUMBrRY4dgw4cMCGDYmIiJwLw43SrGiWKm201K1bwMcfG+/bFG5q1AAGD5bz7FhMREQujOFGSTpdhToUr14NpKYa79sUbgBjx+Lly4EbN2zcmIiIyDkw3Cjp6lWgsFD2gQkNLfHw7cLNRx/J26eflre//SZrc6zWsSPQogWQmwt89ZUNGxIRETkPhhsl6ZukgoONJ7UxUVa4OXQI2LtXbvbf/wJ+fjLYnD1rw/NrNMbaG3YsJiIiF8Vwo6QyRkoBZYcbfa1NXBwQFiZHdgPlaJp68kl5OuSTJ4F9+2zcmIiIqOpjuFFSGf1tgNJHS6Wny24yADBunLxt3lze2hxugoJkQgLYsZiIiFwSw42SyhgpBZQ+Wko//DsmBujQQS5r0ULe2hxuAGPT1LffAtevl2MHREREVRfDjZLK0SxVUAAsWCDnx483Li93zQ0gU1JUFJCXByxdWo4dEBERVV0MN0q6TbOUpXDz3Xdy+HdoqPH6l4Ax3Jw+LQdg2YQdi4mIyIUx3CjJymYp03Azd668ff55wMvLuDwyUvYLLigA/vyzHGUZMkQ+YXIysHt3OXZARERUNTHcKMnGZqmDB+WAJk9PY0WLnptbBUZMAUBgIPD443L+00/LsQMiIqKqieFGKfn5wD//yHkrR0uZDv8OCSm5foX63QDGswGuXStP7EdEROQCGG6Uou9vo9UC1atbXMV0tFRamnH4t2lHYlMVGjEFAHffDdSrB2Rl2XCJcSIioqqN4UYppk1SGo3FVUybpRYtkmcgvvtuoH17y7uscM2Nm5vxnDf6JEVEROTkGG6UEhEBvPtu6dUwMIabGzcsD/8uTh9ukpOBoqJyluuxx+Tthg1AdnY5d0JERFR1aIRwrXHCmZmZCAwMREZGBgICAhz63MeOAa1aGe+HhQHnz5uPkjJVVCT76eTny2tM3XFHOZ5UCKBxY7mDb74xdjImIiKqQmz5/mbNjQPpa270nnuu9GADAO7uQNOmcr7cTVMajbH2hk1TRETkAhhuHEg/WgqwPPzbkgr3uwGM4WbjRl6OgYiInB7DjQOZ1tw89pjl4d/FVXjElH4nd90lezCvXVuBHREREVV+DDcOVK2asRlKf/Xv21Gk5gZg0xQREbkMhhsH8vQEEhLkCYNLG/5dnOmIKZ2uAk+uHxKemAhcuVKBHREREVVuDDcO9vjjwDPPWL/+HXfIUJSTA6SkVOCJ77wTaNtWDsFavboCO6IKyc8HXn0VWLJE7ZIQETkthptKzsMDaNJEzrNpygm8/DIQHy8vjfHWW2qXhoiUJkQFq9lJCQw3VYBi/W4GD5a3u3YZz6hMjvPdd8bLwAPAtGkMOETO5qWXAD8/eWVkUg3DTRWgyIgpQF5nqlMn+cti5UrrtyssBIYNk21q5T5Vsov780/jhUxfflmezRqQAefNN9UrFxEp58QJYNYseaHi6dPVLo1LY7ipAhSruQGMHYtXrLB+mzffBJYulc1ZGzYoUAgXk58vj3tGBtCxI/Df/5oHnOnTGXCI1HbtWsUvUfPKK/LHIwD8+CNw8mTFy0XlwnBTBZiGmwpfLOPRR+UFNffvB86du/36iYnAO+8Y78+fX8ECuKCXXwYOHQJq1JAB0dPTuPy99+S8mgEnJQWYNw/YsUOBNxiRAyUmyhEaR45UbD/ffw+EhwNRUfLif+WxfbsMNB4esoYcAD74oGLlovITLiYjI0MAEBkZGWoXxWr5+UJ4eAgBCHHxogI7vP9+ubMZM8peLy1NiNBQue7DDwuh0cj55GQFCuEiVq+WxwwQYsMGy+u8955xnWnTrN/3jRtC/P67EDpd+cqWnCzE8OHGNxcgRLt2QqxYIcStW+Xb582bQvz1lyxbefdBjnfzphAHDwqxe7cQO3cKsX27EImJQmzZIsSmTUL8+KMQ69cLsW6dXO/GDXXLe+GCEIMGGd+3vr6l/3/dztKlQri7G/c1YoTt+ygqkv87gBBjxwpx4ICc9/BQ6EObhLDt+5vhpopo1kz+r2zapMDOFi2SO2vVqvR1ioqEePBBuV6LFkLk5MiAAwgxbpwChXABf/whRGCgPGYvv1z2utYEHJ1OiF9/FeL994Xo2tUYSho2lPs/cMC6oHPggBADBxrDqj7U+PgY7zdsKMT8+fLvfjtpaUJ89pkQffsK4e1t3AcghFYrRM2aQkRGCtG8uRAdOshwHRcn93/mTPnDmaPk5wtx8qQQK1cK8fnnQvz2W+Uv8+1kZ8vg8tprQtxzjxBeXuZ/N2umWrWEiI0V4sknhXjzTSG++Ua+t65ft1+5c3OF+O9/je9VNzf5vtLPf/KJbfubN8/4eh580Pg/sWWLbftZtkxu5+cnRHq6XNa1q1z2wgu27UsvLU2IAQOE+OKL8m3vhGz5/uZVwauIQYPk6WlmzQL+858K7uyff4DQUNlRODnZeHVOUzNmAFOmAD4+skmleXNg61bgwQcBf3852srfv4IFcWL5+cA998hj17GjbPLRN0eV5oMP5EgLQHY0nj5d7mfnTtnX6YcfZMdkUx4e8u+oFxkp3yyDBgEdOsgmSEB+fP/0kxyGnphoXL9/f9lPICZGntxx/nzZRPXPP/LxWrWAsWOBMWPkvH5fp0/Lqvx162QTp+nHiJubbUNh69YFuncHunWTU1iYddvpdPJaadnZsgNnaVNenjxO/v5yFIulWx8feTKp06fl/0RysmwHTk4G/vijZEf6+vWBHj3kdP/9QGCgdWUuKgIuXJD7LCiQx8rdXd4Wn9f/7XS6sic3N1l+X195W3ze0xPIygL27JHvpZ075fvS9H0DALVry9dRWnnc3eXf+eJFID297Nfp6wtUry6bYi3dVq8OREQAsbHG99XtbNgATJhg/B/o3Bn46COgWTNg1Ch5hlRAnkfqv/+VFw0ujRDyf+G11+T9ceOAOXPk/ufNk/9HJ0/K98ft5OfLMpw7B7z9NvD663L5xo1A795yHxcvAkFB1r1Ovbg44Ntv5XHftUt+jrg4m76/7R61KpmqWnMzdar8EfDMMwrtsFcvucPp00s+tmePsZr2s8+My4uKhGjcWC6fP1+hgjip8ePlcapRQ4iUFOu3e/994y/Jjh2FqFbN/Neyl5cQPXoIMXeurBnKzpY1CnFxJdetW1eICRNkbUP79sblHh5CDB0qxKlTlsuQkyN/0TZoYNzGx0eI0aOFmDRJiDvvLPkrvl07Id56S4ikJFmrkZcnxNWrsvng1CkhfvlFNnN8/738hf/220Lcd5/lGoPmzeXxW7FCiIQEId59V/76feIJIR54QIjoaNlcatqUUNHJza3sx/39Za1T585CeHqaP+buLkSnTvL1798vRGGhEP/8I8TevUIsWSLEK6/ImrIWLWRNllJltnZydzevpdNP9erJWpfPPrO9eTMzU4ijR4X49lsh/vc/IZ56Soh77zU2Y9syNW0qm4KWLLFcK/b770L06WNcPzxcvodM19PpZI2nfp0nnpA1bpbodLKmU7/u1KnGfWVlyVpGQDYvWWPOHLl+WJj8fzR9nrvuko/Fx1u3L70ffjA/RhER8v/JxbHmpgxVteZmxQp5Dr6OHeUPsApbulQO727aVP5C1f/KuXYNaN1adjL9v/8DvvrK/BfQ3Lny102zZsCpU2X/OnJV330HPPKInN+wAejTx7btTWtwANnRsU8fOXXrVvqvydxcYNMmYNUqYP16+WvdlI+P7Hz5wgvyl+ntFBbK1/Lee8Dhw+aPeXnJGot+/YCHHpK1L+Vx8yawe7esTdq2DTh61LwWyBparbGWwtLk7S1fS3a2PCZZWcb5nBzzfQUHy/e2fmreXN6Ghxvf69nZsvZj82Y5/fZbyWNTUFB6eb285KnHq1WTNS9FRSVrY4qK5GRai6OfNBrz+0VF8m9/86axturmzZLP27Ah0KWLcapf37bjbK3sbODyZVmrdu2a+a1+/to1Yy1ZccHBskPuPfcAV68CM2fK4+npKautX3+99FrjxYtlLU5RkfxfWb3avFatqEjWQn7yibw/cyYwaZL5PrZtAx54QM7v2gXce2/przUjQ/4t//kHWLQIGDnS/PEvvwSGDpU15efPy/fq7eTkyPN/XLgAPPecLM/Zs/L/bN06l/7MZc1NGapqzc3x4zLABwUp1Nx/44bxV+SxY3KZTidE//5y2Z13yl9nlrbT1xD89JMCBbGTGzeEmD1biCZN5LR9u2Oe15Z+NmVZvlz+Ij5ypHx/8NxcWUvy5JNCREXJvhX6vgC20unk3/qxx2SNz6pVlt8bSrh6VdZEPfecEDExsh/Ek0/Kmpv33pP9DzZulMflr79K/3VurcJC+Vr+/lvWtpTHuXOyr8fAgca/PSBEnTqyf9Hzz8tf9xs3yvdHYWHFymwNnU6+B65dk8cpLc3+z1keV6/KTsqTJ8var9L6/jz4oBCnT1u3z02bZN8XQIiWLY0degsKhHj8cblcozGvlS7umWeMn4Nl9TubMkWu16yZ5Q70BQWyBrV4LXhZXnrJWLOWnS3f6/rP6g8+sG4fToodistQVcNNXp6x5vzSJYV2OmCA3OGUKfL+3LnGpo/Dh0vf7vnn5XoDBypUEAWdOiW/GIs30QBCjBkjq53LS6eTH3RpaUKcPSur5X/+WX5pffutEIsXC9GmjXyujh3lBxu5llu3ZNNKRd5nriw3V47Yevdd2UG9c2ch1qyxPeAfOSKbifQh85dfjE1bnp6yybMsN27I7QAhXnzR8joXLxo70H//fen7mjlTrtOkiWzaL0tSkrG5df164/KPP5bLPDyE2Lev7H04MYabMlTVcCOEsbvL1q0K7XDFCrnDBg1kmNH/avrww7K3O3nS2E/hwgWFClMBhYXyA1A/xF0/NW8uPxRGjTIuq1/f9hqnffuEePRR60eU2NrPhoiUd/68cZipfvLxkcParbF+vfFz7pdfSj7+1FPy8XvvLTt8ZWYaa/TWri19vcJCWVsJyGHupnQ6IQYPNtbolLeWsYpjuClDVQ43+haj22UPq2Vny/NDAHJYJyBEv37W/UrSD3N89VWFClMOV6/Kc/XUq2f88HJzkzVSiYnmr2PrVvP1nn++7F/XhYWyeSQ21nKA8fOTnScbNRKidWv5Ade7txBDhghx6JD9XzsR3d61a0J06SL/ZwMChNi1y7bthwyR27ZoIavP9Y4fN1al799/+/3om686dix9nfnz5Tr+/rKZtLiMDCHuuEOu8/DDttVmnTsna5c2bpQ/7vbskZ9TJ07IDtspKbLZ2ppTP9xORobc98GDFd9XiV0z3JSqKoebV1+V7+tnn1Vwp489Zt4j39pfBKtWGUNRbq6CBbLSwYPm/Rtq1JDt9ufPl75NZqZssjKtxUlMLLnOnDnmI4W8vOSvtMOHZSC6XdUyEVUeeXlyxKC1fXZMXb0qRHCw/Bx44w3j8t69LdewlCY11Vjzu3t3ycf//luGL0COVCyNaQ377Nm3f96LF4UYOdK2kYW1asnRlYMHy8/UhQuF2LxZNrfq+7jdvCmD0erV8gfm00/LH3ghIcb93H+/dcfGBgw3ZajK4ebrr421oIpZu1bu1N1dpnlr3bpl7Ci3dKmCBbLCb78JUbu28RfV4sXyn81a27YZh3sCMvD8+qtsW9d/wADy5HOvvy4/mIjINa1caezvcvSorPnQ3//tN+v3o++k/PDDJR/Tn205Jub2Hc71Jx709LTcXCaEEJcvy9M2mJ56ICpK1jI3by5rgOrUkUHG39/6JneNRm5j6dQCplNwsPXBzwYcCl6GqjoUHACSkuQo7Ro15AhJRUYE6nTyhFd33QUMHGjbtu+8I4dlxsTIE7k5QlqaHA9/7hzQpo08OV55TiaYlSVPXvfxxyUfa9xYDjkdOlSejIyIXJv+LKqtW8uT6h06JIeUz5tn/T7OnJGnFRDC/OSpGzYAffvK/R4+DERHl70fIYDBg+UpH+rXl9fVql5dPpaZKc/0OnOm8SKgnTsD//uf8XpXpdHp5Ofi+fPyRInnzpWccnON6wcGys/Kxo2BRo2Mt40aWX9SSxtxKHgZqnLNzc2bxsBc3lG9ikpPNyb+Awfs/3wZGfKSEYD85aHE8NaffpLNU4A8qdz69Wx2IiJzqamy6du0z115PoT1HSf116/Kzjb2BXzpJev3c+OGvEQKIPd586YcJl6zprGMrVvLPjZKXSpEp5OfuUePypohFS5BwmapMlTlcCOEsT9ZpTnFzBNPyAING2bd+gUFcrSVrQEiL884Gio4WA7FVkpuruxwR0RUmqVLjcHh7bfLt4+9e439+P7+WzaFA7KZ3PTsxtY4eNB4tuygIGPZmjSRp6Zwwh9ptnx/u9ml7ojspnlzefvrr+qWw2DMGHm7fLm8NlFphJDVry1byiawjh2BX36x7jl0OtlE9NNP8uy8GzfKs4IqxdvbfmdrJSLn8MQT8jprvXuX/wJ/sbHyzMsFBcDzzwOzZ8vlH38sz1hti3btZPMTANy4Ia/V9fnn8ppYjz5qvDaZi3LtV18FVbpwExMDtG0rLx73+eeW1zlxQl5ws29f2e4MyGBz993A8OFAamrp+xcCmDhRXkDO0xNYs0b2tSEiciSNRl6o84cfbA8ipvSXVlm3Tl4O4tFHZWAqj7Fj5cVuFyyQlwF5+ml5kVhiuKlqWrSQt5Um3Gg08h8MkP9gpldPTk8Hnn0WaNVKXh/Fywt4+WXZmW7YMLnOF1/IjmjvvisDUnEzZsgPFEBeD6t7d7u+HCIiu3roIWNn4oAAeTXy8tJogNGj5TWovL0VKZ6zYLipYipdzQ0AxMUBNWvKi21u2ADk5cmw0qiRvJicTidHGyQny+VNmwIJCXKEVYcOslf/K6/I5Pb997K2BpAXwXv1VTk/Z468cigRUVXm5iYvRlujhmyOCg9Xu0ROiUPBq5icHONFoa9cAWrVUrc8Bq+8IoPLXXfJsHL+vFzerp1sV77nHsvb6XTA118Dkycbm6ceeEBebXrCBFkTNHmyrMEhIiKXZcv3N8NNFdSggcwOu3YB996rdmn+df480LChsdalTh0gPh4YMsS6jm1ZWXL9mTNlZzu9YcOAJUsUOqkPERFVVbZ8f7NZqgrSN02dOqVuOczUry/bfqtXB6ZPlx2Hn3zS+h77/v7yRFPJyUD//nJZ377Ap58y2BARkU3YrboKat4c+PHHStbvBpBn67TljJ2WNGwoR0SlpgKhoQw2RERks0pRczN//nzUr18f3t7eiImJwYEDB0pdNyEhARqNxmzydrFe4pVuxJQ9hIUx2BARUbmoHm5WrFiBSZMmYdq0aThy5Aiio6PRo0cPXL58udRtAgICkJqaapguXLjgwBKrr1KOmCIiIqokVA83s2bNwsiRI/HUU0+hefPmWLhwIXx9fbF48eJSt9FoNAgNDTVMISEhpa6bn5+PzMxMs6mqa9ZM3qamAtevq1sWIiKiykbVcFNQUIDDhw+ju8mJ2dzc3NC9e3fs27ev1O2ys7MRGRmJiIgI9OvXD6fK6FkbHx+PwMBAwxQREaHoa1CDv7880zYg+98SERGRkarh5urVqygqKipR8xISEoK0tDSL2zRp0gSLFy/G999/j6+++go6nQ4dO3bEX3/9ZXH9KVOmICMjwzBdvHhR8dehBn3T1IkT6paDiIioslG9WcpWsbGxGDp0KFq1aoUuXbrgu+++Q+3atfHJJ59YXF+r1SIgIMBscgaxsfJ25Up1y0FERFTZqBpuatWqBXd3d6Snp5stT09PR2hoqFX78PT0ROvWrXH27Fl7FLHSGj5cDiZKTARc7KUTERGVSdVw4+XlhbZt2yIxMdGwTKfTITExEbH6qonbKCoqwokTJxAWFmavYlZKkZFAr15yftEidctCRERUmajeLDVp0iR8+umn+OKLL5CcnIznn38eOTk5eOqppwAAQ4cOxZQpUwzrv/XWW9iyZQv+/PNPHDlyBE888QQuXLiAZ555Rq2XoJpnn5W3S5ZYvqA2ERGRK1L9DMVxcXG4cuUKpk6dirS0NLRq1QqbNm0ydDJOSUmBm8kp/K9fv46RI0ciLS0N1atXR9u2bbF371401/ewdSG9e8tLOP39tzypLy+aTURExAtnql2cCps+HXjzTaBrV2D7drVLQ0REZB+8cKYLGTFCXptyxw55rUoiIiJXx3BTxUVEyOYpgB2LiYiIAIYbp6DvWJyQAOTlqVoUIiIi1THcOIFevWQNzrVrwOrVapeGiIhIXQw3TsDdHdCPhC/lRM1EREQug+HGSYwYIUPOzz8Dv/6qdmmIiIjUw3DjJOrUAR56SM6zYzEREbkyhhsnou9Y/MUXQG6uumUhIiJSC8ONE3nwQXnNqRs3eLVwIiJyXQw3TsTdHRg5Us6zYzEREbkqhhsn8/TTgIcHsHcvcPKk2qUhIiJyPIYbJxMWBjz8sJxn7Q0REbkihhsnpO9Y/OWXwM2b6paFiIjI0RhunFD37kDDhkBGBrBihdqlISIiciyGGyfk5saOxURE5LoYbpzU8OGyY/EvvwDHjqldGiIiIsdhuHFSoaFA//5yfvZsVYtCRETkUAw3TmzSJHn7xRfA9u3qloWIiMhRGG6cWGws8Nxzcv6ZZzhyioiIXAPDjZN7912gbl3gzz+BN95QuzRERET2x3Dj5AICjCOm5syRHYyJiIicGcONC+jdG3jiCUCnA0aMAPLz1S4RERGR/TDcuIjZs4HatYFTp4D4eLVLQ0REZD8MNy6iVi1g3jw5/847wIkT6paHiIjIXhhuXMijjwL9+gGFhfLq4YWFapeIiIhIeQw3LkSjAT7+GAgMBA4dkh2MiYiInA3DjYsJDwdmzZLzb7wBnD2rbnmIiIiUxnDjgp56Sl45PC9PntxPp1O7RERERMphuHFBGg2waBHg6wvs3Al8+qnaJSIiIlIOw42LatAA+N//5PxLLwEXL6pbHiIiIqUw3LiwsWPl9aeysoABA4Bjx9QuERERUcUx3Lgwd3fg888Bf3/g8GGgTRt5oc0rV9QuGRERUfkx3Li4Zs3kCf3i4mTH4k8+ARo1kmc0LihQu3RERES2Y7ghREYCy5cDu3YBrVsDGRnApElAy5bAjz+qXToiIiLbMNyQwb33AgcPytFTwcHAb78BffrIC2+ePq126YiIiKyjEUIItQvhSJmZmQgMDERGRgYCAgLULk6llZEB/Pe/wIcfArduAR4e8tINtWoBfn6yn46lW09PuW1mprzVT6b3hQDefRdo3lztV0lERFWFLd/fDDdUpt9+A154AdiwQdn9NmggLwFRo4ay+yUiIudky/e3h4PKRFVU48bA+vXyZH+HD8th49nZpd/eugUEBMjrV+lv9ZP+/owZwLlzwOOPyz497u5qv0oiInImrLkhhzt+XJ5f5+ZN4OWXZRMVERFRWWz5/maHYnK4qChgyRI5/957wIoV6paHiIicC8MNqWLwYFlrAwBPP82zIxMRkXIYbkg1//sf8OCDsnlqwADgn3/ULhERETkDhhtSjbs7sGyZHDml72BcWKh2qYiIqKpjuCFV1agBrF0L+PoCW7cCr76qdomIiKiqY7gh1Zl2MH7/fXkpCCIiovJiuKFKgR2MiYhIKQw3VGnoOxjn5gL9+7ODMRERlQ/DDVUaph2Mz58H2rfnVcmJiMh2DDdUqdSoAaxbB9StK0dQ9ekDPPII8NdfapeMiIiqCoYbqnTuugv49Vdg0iRZm/Pdd0DTpsDMmfLaVURERGVhuKFKyd9fhpkjR+R1qHJygBdfBNq2BfbuVbt0RERUmTHcUKUWFQXs3g18+qlssjpxAujUCXjmGXY4JiIiyxhuqNJzc5Nh5vRp4Kmn5LLPPweaNAG+/BJwrevaExHR7TDcUJVRuzaweDGwaxfQooWsuRk6FHjsMeD6dbVLR0RElQXDDVU5994LHD0KvP227HD87bey+WrHDrVLRkRElQHDDVVJnp7A66/LzsV33CGHit9/P/DKK0BBgdqlIyIiNTHcUJXWoQOQlASMGCH73rz7rhxddeaM2iUjIiK1MNxQlefnB3z2GbBqFVC9uhw+3qYNsGgROxsTEbkihhtyGo88IoeKd+sG3LwJPPssMGAAcPWq2iUjIiJHYrghp1KnDrBlC/DBB7JfzvffA5GR8jIOH34oz3zM2hwiIudWKcLN/PnzUb9+fXh7eyMmJgYHDhwoc/2VK1eiadOm8Pb2RsuWLfEjr65IJtzcgBdeAA4ckEPGb96UF+CcOFHej4iQ58tZtgy4ckXt0hIRkdI0Qqj7O3bFihUYOnQoFi5ciJiYGMyZMwcrV67EmTNnEBwcXGL9vXv3onPnzoiPj8dDDz2Eb775Bu+++y6OHDmCu+6667bPl5mZicDAQGRkZCAgIMAeL4kqEZ1ONlVt2QJs3SrPkZOfb75O69ZyeHlICFCzpjwTcvFbX19Ao5HrFxYCWVlARgaQmWk+ZWUBXl5yfdOpWrWSyzw8HH88iMh6Qsj/d0tTUVHZt3l5pU/5+XJUp1Z7+88J0+Xu7mofEXXZ8v2teriJiYlB+/btMW/ePACATqdDREQExo0bh1deeaXE+nFxccjJycGGDRsMy+6++260atUKCxcuvO3zMdy4ttxceTkHfdg5dsy67bRaeb2rmzflpAQPD8DHR06+vsZ5/X1vbxmUvLxkE5t+3nTy9JQ1VW5uMnzp50ub3N3lZGm++D7088WXmU6WlgHGD3nTD3zTeSHk69dPnp6W54sr69NK/9ym86a3lspb/L5OJychSs4LIafStjed169b2mRazrImnU4es1u3zL9YTe8LIY+Z/rjp502Xububb3frlvm8fl+m74vik+lj1rxPLP1dTO/rg0Px11b8deqngoLS7+flyf/tsm4LCkoeA0u3xQNMZeLtbQw61aqVnEyXF5/Xakv/u5j+n5h+HpR2q1f8/9H0fkAA0K6dsq/flu9vVX87FhQU4PDhw5gyZYphmZubG7p37459+/ZZ3Gbfvn2YNGmS2bIePXpg7dq1FtfPz89HvslP9czMzIoXnKosHx/ggQfkBADp6cC2bXI4+bVr8qzHxW9v3ZK/tIrX+Pj4yH9g08nPT34o5uQYg9DNm+b39R8A+hqgrCyHHgIiqiD9F70+OFq69fGRgcLbu+Sk1cofJ/n55p8TxSf954b+M0Nf81MVrqsXG6vuRY5VDTdXr15FUVERQkJCzJaHhITg9OnTFrdJS0uzuH5aWprF9ePj4/Hmm28qU2ByOiEhwJAhcrJECPkB888/MoRUqwYEBspaHE9P259PCOOvydxc+cGlny9+Py/P+AvVdCq+zFItg+lUVFRyXl+TYjpvWkNhqdZCv45+Mq3NML0PlPywL/7BDxhrcsqqmSj+qx+wvEz/vJZuS5uKl1+I29dK6GtlTLe1NG+pNqv4stvV7ujLU1bNlv49WLxGpnjNTFGRec1O8X15esrnsvQeKT5Z8z653d9Fz7R2qayaPH3NZfFaKf0yb28ZJsq69fIq+ZqLHxNLZSm+XP8ecRT9Z0ZOTumTPgiVNn/zpvmPM9O/g+m8pc8NS7fW/F82bKjscbCV07f6T5kyxaymJzMzExERESqWiKoSjUbWxvj5Kbc/fdMTEdHtmH5m1KqldmmqDlXDTa1ateDu7o709HSz5enp6QgNDbW4TWhoqE3ra7VaaLVaZQpMRERElZ6qQ8G9vLzQtm1bJCYmGpbpdDokJiYiNjbW4jaxsbFm6wPA1q1bS12fiIiIXIvqzVKTJk3CsGHD0K5dO3To0AFz5sxBTk4OnnrqKQDA0KFDUadOHcTHxwMAJkyYgC5dumDmzJno06cPli9fjkOHDmHRokVqvgwiIiKqJFQPN3Fxcbhy5QqmTp2KtLQ0tGrVCps2bTJ0Gk5JSYGbydizjh074ptvvsHrr7+OV199FY0aNcLatWutOscNEREROT/Vz3PjaDzPDRERUdVjy/d3pbj8AhEREZFSGG6IiIjIqTDcEBERkVNhuCEiIiKnwnBDREREToXhhoiIiJwKww0RERE5FYYbIiIicioMN0RERORUVL/8gqPpT8icmZmpckmIiIjIWvrvbWsurOBy4SYrKwsAEBERoXJJiIiIyFZZWVkIDAwscx2Xu7aUTqfDpUuX4O/vD41Go+i+MzMzERERgYsXL/K6VQ7A4+1YPN6OxePtWDzejlWe4y2EQFZWFsLDw80uqG2Jy9XcuLm5oW7dunZ9joCAAP5zOBCPt2PxeDsWj7dj8Xg7lq3H+3Y1NnrsUExEREROheGGiIiInArDjYK0Wi2mTZsGrVardlFcAo+3Y/F4OxaPt2PxeDuWvY+3y3UoJiIiIufGmhsiIiJyKgw3RERE5FQYboiIiMipMNwQERGRU2G4Ucj8+fNRv359eHt7IyYmBgcOHFC7SE5j165d6Nu3L8LDw6HRaLB27Vqzx4UQmDp1KsLCwuDj44Pu3bvj999/V6ewVVx8fDzat28Pf39/BAcHo3///jhz5ozZOnl5eRgzZgxq1qwJPz8/PPLII0hPT1epxFXbggULEBUVZTiRWWxsLDZu3Gh4nMfavmbMmAGNRoOJEycalvGYK2f69OnQaDRmU9OmTQ2P2/NYM9woYMWKFZg0aRKmTZuGI0eOIDo6Gj169MDly5fVLppTyMnJQXR0NObPn2/x8ffeew9z587FwoUL8csvv6BatWro0aMH8vLyHFzSqm/nzp0YM2YM9u/fj61bt+LWrVt48MEHkZOTY1jnP//5D9avX4+VK1di586duHTpEgYOHKhiqauuunXrYsaMGTh8+DAOHTqE+++/H/369cOpU6cA8Fjb08GDB/HJJ58gKirKbDmPubJatGiB1NRUw7R7927DY3Y91oIqrEOHDmLMmDGG+0VFRSI8PFzEx8erWCrnBECsWbPGcF+n04nQ0FDx/vvvG5bduHFDaLVasWzZMhVK6FwuX74sAIidO3cKIeSx9fT0FCtXrjSsk5ycLACIffv2qVVMp1K9enXx2Wef8VjbUVZWlmjUqJHYunWr6NKli5gwYYIQgu9vpU2bNk1ER0dbfMzex5o1NxVUUFCAw4cPo3v37oZlbm5u6N69O/bt26diyVzDuXPnkJaWZnb8AwMDERMTw+OvgIyMDABAjRo1AACHDx/GrVu3zI5306ZNUa9ePR7vCioqKsLy5cuRk5OD2NhYHms7GjNmDPr06WN2bAG+v+3h999/R3h4OBo2bIghQ4YgJSUFgP2PtctdOFNpV69eRVFREUJCQsyWh4SE4PTp0yqVynWkpaUBgMXjr3+Myken02HixIno1KkT7rrrLgDyeHt5eSEoKMhsXR7v8jtx4gRiY2ORl5cHPz8/rFmzBs2bN0dSUhKPtR0sX74cR44cwcGDB0s8xve3smJiYpCQkIAmTZogNTUVb775Ju69916cPHnS7sea4YaILBozZgxOnjxp1kZOymvSpAmSkpKQkZGBVatWYdiwYdi5c6faxXJKFy9exIQJE7B161Z4e3urXRyn16tXL8N8VFQUYmJiEBkZiW+//RY+Pj52fW42S1VQrVq14O7uXqKHd3p6OkJDQ1UqlevQH2Mef2WNHTsWGzZswPbt21G3bl3D8tDQUBQUFODGjRtm6/N4l5+XlxfuvPNOtG3bFvHx8YiOjsaHH37IY20Hhw8fxuXLl9GmTRt4eHjAw8MDO3fuxNy5c+Hh4YGQkBAeczsKCgpC48aNcfbsWbu/vxluKsjLywtt27ZFYmKiYZlOp0NiYiJiY2NVLJlraNCgAUJDQ82Of2ZmJn755Rce/3IQQmDs2LFYs2YNfvrpJzRo0MDs8bZt28LT09PseJ85cwYpKSk83grR6XTIz8/nsbaDbt264cSJE0hKSjJM7dq1w5AhQwzzPOb2k52djT/++ANhYWH2f39XuEsyieXLlwutVisSEhLEr7/+KkaNGiWCgoJEWlqa2kVzCllZWeLo0aPi6NGjAoCYNWuWOHr0qLhw4YIQQogZM2aIoKAg8f3334vjx4+Lfv36iQYNGojc3FyVS171PP/88yIwMFDs2LFDpKamGqabN28a1nnuuedEvXr1xE8//SQOHTokYmNjRWxsrIqlrrpeeeUVsXPnTnHu3Dlx/Phx8corrwiNRiO2bNkihOCxdgTT0VJC8Jgr6YUXXhA7duwQ586dE3v27BHdu3cXtWrVEpcvXxZC2PdYM9wo5KOPPhL16tUTXl5eokOHDmL//v1qF8lpbN++XQAoMQ0bNkwIIYeDv/HGGyIkJERotVrRrVs3cebMGXULXUVZOs4AxJIlSwzr5ObmitGjR4vq1asLX19fMWDAAJGamqpeoauwp59+WkRGRgovLy9Ru3Zt0a1bN0OwEYLH2hGKhxsec+XExcWJsLAw4eXlJerUqSPi4uLE2bNnDY/b81hrhBCi4vU/RERERJUD+9wQERGRU2G4ISIiIqfCcENEREROheGGiIiInArDDRERETkVhhsiIiJyKgw3RERE5FQYboiIiMipMNwQkcvTaDRYu3at2sUgIoUw3BCRqoYPHw6NRlNi6tmzp9pFI6IqykPtAhAR9ezZE0uWLDFbptVqVSoNEVV1rLkhItVptVqEhoaaTdWrVwcgm4wWLFiAXr16wcfHBw0bNsSqVavMtj9x4gTuv/9++Pj4oGbNmhg1ahSys7PN1lm8eDFatGgBrVaLsLAwjB071uzxq1evYsCAAfD19UWjRo2wbt06+75oIrIbhhsiqvTeeOMNPPLIIzh27BiGDBmCxx57DMnJyQCAnJwc9OjRA9WrV8fBgwexcuVKbNu2zSy8LFiwAGPGjMGoUaNw4sQJrFu3DnfeeafZc7z55psYPHgwjh8/jt69e2PIkCG4du2aQ18nESlEkWuLExGV07Bhw4S7u7uoVq2a2fTOO+8IIYQAIJ577jmzbWJiYsTzzz8vhBBi0aJFonr16iI7O9vw+A8//CDc3NxEWlqaEEKI8PBw8dprr5VaBgDi9ddfN9zPzs4WAMTGjRsVe51E5Djsc0NEqrvvvvuwYMECs2U1atQwzMfGxpo9Fhsbi6SkJABAcnIyoqOjUa1aNcPjnTp1gk6nw5kzZ6DRaHDp0iV069atzDJERUUZ5qtVq4aAgABcvny5vC+JiFTEcENEqqtWrVqJZiKl+Pj4WLWep6en2X2NRgOdTmePIhGRnbHPDRFVevv37y9xv1mzZgCAZs2a4dixY8jJyTE8vmfPHri5uaFJkybw9/dH/fr1kZiY6NAyE5F6WHNDRKrLz89HWlqa2TIPDw/UqlULALBy5Uq0a9cO99xzD77++mscOHAAn3/+OQBgyJAhmDZtGoYNG4bp06fjypUrGDduHJ588kmEhIQAAKZPn47nnnsOwcHB6NWrF7KysrBnzx6MGzfOsS+UiByC4YaIVLdp0yaEhYWZLWvSpAlOnz4NQI5kWr58OUaPHo2wsDAsW7YMzZs3BwD4+vpi8+bNmDBhAtq3bw9fX1888sgjmDVrlmFfw4YNQ15eHmbPno0XX3wRtWrVwqBBgxz3AonIoTRCCKF2IYiISqPRaLBmzRr0799f7aIQURXBPjdERETkVBhuiIiIyKmwzw0RVWpsOSciW7HmhoiIiJwKww0RERE5FYYbIiIicioMN0RERORUGG6IiIjIqTDcEBERkVNhuCEiIiKnwnBDRERETuX/Ac/QUbn/da3lAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABesElEQVR4nO3deXgT1cIG8DdpadoCXdi6QNl3hFJZaulVEctlURQU4QpXEBU+ERStXgFldQEUcWVRRMAVEAREQRAQRFlkh7IKWmyFLiDStKVrcr4/jpM0pUmTNMm06ft7nnkySWYmJ9M08+acM2c0QggBIiIiIi+hVbsARERERK7EcENEREReheGGiIiIvArDDREREXkVhhsiIiLyKgw3RERE5FUYboiIiMir+KpdAE8zGo24dOkSateuDY1Go3ZxiIiIyA5CCGRnZyMyMhJare26mWoXbi5duoSoqCi1i0FEREROSE1NRaNGjWwuU+3CTe3atQHInRMUFKRyaYiIiMgeer0eUVFRpuO4LdUu3ChNUUFBQQw3REREVYw9XUrYoZiIiIi8CsMNEREReRWGGyIiIvIq1a7PDRERuZbBYEBRUZHaxSAv4OfnV+5p3vZguCEiIqcIIZCeno5r166pXRTyElqtFs2aNYOfn1+FtsNwQ0RETlGCTYMGDRAYGMiBUalClEF209LS0Lhx4wp9nhhuiIjIYQaDwRRs6tatq3ZxyEvUr18fly5dQnFxMWrUqOH0dtihmIiIHKb0sQkMDFS5JORNlOYog8FQoe0w3BARkdPYFEWu5KrPE8MNEREReRWGGyIiIvIqDDdEREQV1LRpU7z99tt2L79z505oNBq3n0a/fPlyhISEuPU1KiOGGxcpKgIuXgSSk9UuCRERWaPRaGxOM2bMcGq7Bw4cwJgxY+xevkePHkhLS0NwcLBTr0e28VRwF9mzB+jZE2jTBjhzRu3SEBFRWdLS0kzzq1atwrRp03D27FnTY7Vq1TLNCyFgMBjg61v+obJ+/foOlcPPzw/h4eEOrUP2Y82NiwQFyVu9Xt1yEBGpRQggN1edSQj7yhgeHm6agoODodFoTPfPnDmD2rVr47vvvkOXLl2g0+nw888/47fffsO9996LsLAw1KpVC926dcO2bdsstlu6WUqj0WDJkiUYNGgQAgMD0apVK2zYsMH0fOlmKaX5aMuWLWjXrh1q1aqFvn37WoSx4uJiPPXUUwgJCUHdunUxceJEjBw5EgMHDnTo77Ro0SK0aNECfn5+aNOmDT799NMSf0OBGTNmoHHjxtDpdIiMjMRTTz1len7hwoVo1aoV/P39ERYWhsGDBzv02p7CcOMiDDdEVN1dvw7UqqXOdP26697HpEmTMGfOHJw+fRqdOnVCTk4O+vfvj+3bt+PIkSPo27cvBgwYgJSUFJvbmTlzJoYMGYLjx4+jf//+GD58OK5evWpj/13HG2+8gU8//RS7du1CSkoKnnvuOdPzr732Gj7//HMsW7YMu3fvhl6vx/r16x16b+vWrcOECRPw7LPP4sSJE/i///s/jBo1Cjt27AAAfPXVV3jrrbfwwQcf4Ny5c1i/fj06duwIADh48CCeeuopvPTSSzh79iw2b96M2267zaHX9xhRzWRlZQkAIisry6XbzcwUQv52EKK42KWbJiKqdPLy8sSpU6dEXl6e6bGcHPP3oKennBzH38OyZctEcHCw6f6OHTsEALF+/fpy1+3QoYN47733TPebNGki3nrrLdN9AGLKlCkl9k2OACC+++47i9f6+++/TWUBIM6fP29aZ8GCBSIsLMx0PywsTMydO9d0v7i4WDRu3Fjce++9dr/HHj16iNGjR1ss88ADD4j+/fsLIYSYN2+eaN26tSgsLLxhW1999ZUICgoSer3e6utVVFmfK4Ujx2/W3LiIUnMDANnZ6pWDiEgtgYFATo46kysHSu7atavF/ZycHDz33HNo164dQkJCUKtWLZw+fbrcmptOnTqZ5mvWrImgoCBkZmZaXT4wMBAtWrQw3Y+IiDAtn5WVhYyMDHTv3t30vI+PD7p06eLQezt9+jTi4+MtHouPj8fp06cBAA888ADy8vLQvHlzjB49GuvWrUNxcTEAoHfv3mjSpAmaN2+Ohx56CJ9//jmuu7LKzIUYblxEpwOUi5gy3BBRdaTRADVrqjO5cqDkmjVrWtx/7rnnsG7dOsyaNQs//fQTjh49io4dO6KwsNDmdkpfG0mj0cBoNDq0vLC3M5GLREVF4ezZs1i4cCECAgLwxBNP4LbbbkNRURFq166Nw4cPY8WKFYiIiMC0adMQHR1dKa8Kz3DjQux3Q0TkfXbv3o2HH34YgwYNQseOHREeHo4LFy54tAzBwcEICwvDgQMHTI8ZDAYcPnzYoe20a9cOu3fvtnhs9+7daN++vel+QEAABgwYgHfffRc7d+7E3r17kZSUBADw9fVFQkICXn/9dRw/fhwXLlzADz/8UIF35h48FdyFgoKAK1cYboiIvEmrVq2wdu1aDBgwABqNBlOnTrVZA+MuTz75JGbPno2WLVuibdu2eO+99/D33387dD2m//3vfxgyZAhiYmKQkJCAb775BmvXrjWd/bV8+XIYDAbExsYiMDAQn332GQICAtCkSRN8++23+P3333HbbbchNDQUmzZtgtFoRJs2bdz1lp3GcONCtWvLW4YbIiLv8eabb+KRRx5Bjx49UK9ePUycOBF6Fb7oJ06ciPT0dIwYMQI+Pj4YM2YM+vTpAx8fH7u3MXDgQLzzzjt44403MGHCBDRr1gzLli1Dz549AQAhISGYM2cOEhMTYTAY0LFjR3zzzTeoW7cuQkJCsHbtWsyYMQP5+flo1aoVVqxYgQ4dOrjpHTtPIzzdoKcyvV6P4OBgZGVlIahkL2AXuO024KefgC+/BB54wKWbJiKqVPLz85GcnIxmzZrB399f7eJUS0ajEe3atcOQIUPw8ssvq10cl7D1uXLk+M2aGxdinxsiInKXP/74A99//z1uv/12FBQUYP78+UhOTsawYcPULlqlww7FLsRwQ0RE7qLVarF8+XJ069YN8fHxSEpKwrZt29CuXTu1i1bpsObGhRhuiIjIXaKiom4404nKxpobF2K4ISIiUh/DjQsx3BAREamP4caFlHDDEYqJiIjUw3DjQqy5ISIiUh/DjQsx3BAREamP4caFOEIxEVH10LNnTzz99NOm+02bNsXbb79tcx2NRoP169dX+LVdtR1bZsyYgc6dO7v1NdxJ1XCza9cuDBgwAJGRkQ7/sXbv3g1fX99KtfNZc0NEVLkNGDAAffv2LfO5n376CRqNBsePH3d4uwcOHMCYMWMqWjwL1gJGWloa+vXr59LX8jaqhpvc3FxER0djwYIFDq137do1jBgxAnfeeaebSuYchhsiosrt0UcfxdatW/Hnn3/e8NyyZcvQtWtXdOrUyeHt1q9fH4GBga4oYrnCw8Oh0+k88lpVlarhpl+/fnjllVcwaNAgh9Z7/PHHMWzYMMTFxZW7bEFBAfR6vcXkLiXDTfW6YhcRUdVw9913o379+li+fLnF4zk5OVi9ejUeffRR/PXXX3jwwQfRsGFDBAYGomPHjlixYoXN7ZZuljp37hxuu+02+Pv7o3379ti6desN60ycOBGtW7dGYGAgmjdvjqlTp6KoqAiAvDr3zJkzcezYMWg0Gmg0GlOZS7d0JCUloVevXggICEDdunUxZswY5OTkmJ5/+OGHMXDgQLzxxhuIiIhA3bp1MW7cONNr2cNoNOKll15Co0aNoNPp0LlzZ2zevNn0fGFhIcaPH4+IiAj4+/ujSZMmmD17NgBACIEZM2agcePG0Ol0iIyMxFNPPWX3azujyo1QvGzZMvz+++/47LPP8Morr5S7/OzZszFz5kwPlMwcbgwGIC8P8FCIJyKqHIQArl9X57UDAwGNptzFfH19MWLECCxfvhwvvvgiNP+ss3r1ahgMBjz44IPIyclBly5dMHHiRAQFBWHjxo146KGH0KJFC3Tv3r3c1zAajbjvvvsQFhaGX375BVlZWRb9cxS1a9fG8uXLERkZiaSkJIwePRq1a9fG888/j6FDh+LEiRPYvHkztm3bBgAIDg6+YRu5ubno06cP4uLicODAAWRmZuKxxx7D+PHjLQLcjh07EBERgR07duD8+fMYOnQoOnfujNGjR5f7fgDgnXfewbx58/DBBx8gJiYGS5cuxT333IOTJ0+iVatWePfdd7FhwwZ8+eWXaNy4MVJTU5GamgoA+Oqrr/DWW29h5cqV6NChA9LT03Hs2DG7XtdpopIAINatW2dzmV9//VU0aNBAnD17VgghxPTp00V0dLTNdfLz80VWVpZpSk1NFQBEVlaWi0puZjAIodEIAQiRlubyzRMRVRp5eXni1KlTIi8vz/xgTo78AlRjysmxu+ynT58WAMSOHTtMj916663iv//9r9V17rrrLvHss8+a7t9+++1iwoQJpvtNmjQRb731lhBCiC1btghfX19x8eJF0/Pfffdduce5uXPnii5dupjuWzvGldzO4sWLRWhoqMgp8f43btwotFqtSE9PF0IIMXLkSNGkSRNRXFxsWuaBBx4QQ4cOtVqW0q8dGRkpXn31VYtlunXrJp544gkhhBBPPvmk6NWrlzAajTdsa968eaJ169aisLDQ6uspyvxc/SMrK8vu43eVOVvKYDBg2LBhmDlzJlq3bm33ejqdDkFBQRaTu2i1PGOKiKiya9u2LXr06IGlS5cCAM6fP4+ffvoJjz76KAB5vHn55ZfRsWNH1KlTB7Vq1cKWLVuQkpJi1/ZPnz6NqKgoREZGmh4rqxvFqlWrEB8fj/DwcNSqVQtTpkyx+zVKvlZ0dDRq1qxpeiw+Ph5GoxFnz541PdahQwf4+PiY7kdERCAzM9Ou19Dr9bh06RLi4+MtHo+Pj8fp06cByKavo0ePok2bNnjqqafw/fffm5Z74IEHkJeXh+bNm2P06NFYt24diouLHXqfjqoy4SY7OxsHDx7E+PHj4evrC19fX7z00ks4duwYfH198cMPP6hdRAAcpZiIqrHAQCAnR53JwX4Ajz76KL766itkZ2dj2bJlaNGiBW6//XYAwNy5c/HOO+9g4sSJ2LFjB44ePYo+ffqgsLDQZbtq7969GD58OPr3749vv/0WR44cwYsvvujS1yipRo0aFvc1Gg2MRqPLtn/zzTcjOTkZL7/8MvLy8jBkyBAMHjwYgLzg59mzZ7Fw4UIEBATgiSeewG233eZQnx9HVZk+N0FBQUhKSrJ4bOHChfjhhx+wZs0aNGvWTKWSWeIZU0RUbWk0QIkahMpsyJAhmDBhAr744gt88sknGDt2rKn/ze7du3Hvvffiv//9LwDZh+bXX39F+/bt7dp2u3btkJqairS0NERERAAA9u3bZ7HMnj170KRJE7z44oumx/744w+LZfz8/GAwGMp9reXLlyM3N9dUe7N7925otVq0adPGrvKWJygoCJGRkdi9e7cpACqvU7IPUlBQEIYOHYqhQ4di8ODB6Nu3L65evYo6deogICAAAwYMwIABAzBu3Di0bdsWSUlJuPnmm11SxtJUDTc5OTk4f/686X5ycjKOHj2KOnXqoHHjxpg8eTIuXryITz75BFqtFjfddJPF+g0aNIC/v/8Nj6uJ4YaIqPKrVasWhg4dismTJ0Ov1+Phhx82PdeqVSusWbMGe/bsQWhoKN58801kZGTYHW4SEhLQunVrjBw5EnPnzoVer7cIMcprpKSkYOXKlejWrRs2btyIdevWWSzTtGlT03GxUaNGqF279g2ngA8fPhzTp0/HyJEjMWPGDFy+fBlPPvkkHnroIYSFhTm3c8rwv//9D9OnT0eLFi3QuXNnLFu2DEePHsXnn38OAHjzzTcRERGBmJgYaLVarF69GuHh4QgJCcHy5cthMBgQGxuLwMBAfPbZZwgICECTJk1cVr7SVG2WOnjwIGJiYhATEwMASExMRExMDKZNmwZADlTkaPuj2tjnhoioanj00Ufx999/o0+fPhb9Y6ZMmYKbb74Zffr0Qc+ePREeHo6BAwfavV2tVot169YhLy8P3bt3x2OPPYZXX33VYpl77rkHzzzzDMaPH4/OnTtjz549mDp1qsUy999/P/r27Ys77rgD9evXL/N09MDAQGzZsgVXr15Ft27dMHjwYNx5552YP3++YzujHE899RQSExPx7LPPomPHjti8eTM2bNiAVq1aAZBnfr3++uvo2rUrunXrhgsXLmDTpk3QarUICQnBhx9+iPj4eHTq1Anbtm3DN998g7p167q0jCVphKheI7Lo9XoEBwcjKyvLLZ2LBw8GvvoKmD8fGDfO5ZsnIqoU8vPzkZycjGbNmsHf31/t4pCXsPW5cuT4XWU6FFcVbJYiIiJSF8ONizHcEBERqYvhxsUYboiIiNTFcONiDDdERETqYrhxMYYbIqpOqtk5KeRmrvo8Mdy4GEcoJqLqQBnx9rpaF8okr6SM0FzyUhHOqDIjFFcVrLkhourAx8cHISEhpusTBQYGmkb4JXKG0WjE5cuXERgYCF/fisUThhsXY7ghouoiPDwcAOy+ACNRebRaLRo3blzhoMxw42IcoZiIqguNRoOIiAg0aNDArRdBpOrDz88PWm3Fe8ww3LgYa26IqLrx8fGpcB8JIldih2IXU8JNXh7AHzJERESex3DjYkqzFMAzpoiIiNTAcONifn6Acq0vNk0RERF5HsONG7DfDRERkXoYbtyA4YaIiEg9DDduwFGKiYiI1MNw4wasuSEiIlIPw40bMNwQERGph+HGDThKMRERkXoYbtyANTdERETqYbhxA4YbIiIi9TDcuAHDDRERkXoYbtyA4YaIiEg9DDduwHBDRESkHoYbN2C4ISIiUg/DjRtwhGIiIiL1MNy4AWtuiIiI1MNw4wYMN0REROphuHGDkiMUC6FuWYiIiKobhhs3UGpuhAByc9UtCxERUXXDcOMGgYGA9p89y6YpIiIiz2K4cQONhv1uiIiI1MJw4yYMN0REROpguHEThhsiIiJ1qBpudu3ahQEDBiAyMhIajQbr16+3ufzatWvRu3dv1K9fH0FBQYiLi8OWLVs8U1gHMdwQERGpQ9Vwk5ubi+joaCxYsMCu5Xft2oXevXtj06ZNOHToEO644w4MGDAAR44ccXNJHcdRiomIiNThq+aL9+vXD/369bN7+bffftvi/qxZs/D111/jm2++QUxMTJnrFBQUoKCgwHRf76GqFNbcEBERqaNK97kxGo3Izs5GnTp1rC4ze/ZsBAcHm6aoqCiPlI3hhoiISB1VOty88cYbyMnJwZAhQ6wuM3nyZGRlZZmm1NRUj5St5CjFRERE5DmqNktVxBdffIGZM2fi66+/RoMGDawup9PpoNPpPFgyiTU3RERE6qiS4WblypV47LHHsHr1aiQkJKhdnDIx3BAREamjyjVLrVixAqNGjcKKFStw1113qV0cqxhuiIiI1KFqzU1OTg7Onz9vup+cnIyjR4+iTp06aNy4MSZPnoyLFy/ik08+ASCbokaOHIl33nkHsbGxSE9PBwAEBAQgODhYlfdgDcMNERGROlStuTl48CBiYmJMp3EnJiYiJiYG06ZNAwCkpaUhJSXFtPzixYtRXFyMcePGISIiwjRNmDBBlfLbwnBDRESkDo0QQqhdCE/S6/UIDg5GVlYWgpQE4gZ79gDx8UDz5sBvv7ntZYiIiKoFR47fVa7PTVXBEYqJiIjUwXDjJmyWIiIiUgfDjZso4aagQE5ERETkGQw3blKrlnmeTVNERESew3DjJr6+QGCgnGfTFBERkecw3LgR+90QERF5HsONGzHcEBEReR7DjRsx3BAREXkew40bMdwQERF5HsONGzHcEBEReR7DjRtxlGIiIiLPY7hxI9bcEBEReR7DjRsx3BAREXkew40b1a4tbxluiIiIPIfhxo1Yc0NEROR5DDduxHBDRETkeQw3blRmuLl+HcjNVaU8RERE1QHDjRvdEG4MBqBbN6BjRyA/X7VyEREReTOGGze6IdwkJwOnTplviYiIyOUYbtzohkH8Tp40P3n8uMfLQ0REVB0w3LhRyXBjNMIy3CQlqVImIiIib8dw40ZKuAGAnByw5oaIiMgDGG7cSKcDatSQ83o9WHNDRETkAQw3bqTRlBil+GoxcOaM+cmMDCAzU52CEREReTGGGzdTmqYKT/8GFBQAgYFA8+byQdbeEBERuRzDjZuZ+t0oTVLt2wPR0XKe4YaIiMjlGG7cTAk3NX79J9x06CAH8QMYboiIiNzAV+0CeDsl3AT8XiLcNGsm53nGFBERkcsx3LiZEm6C/iwRblq2lPMnT8pLMvj4qFM4IiIiL8RmKTcLCgJ8UYTQzLPygQ4dgBYtgIAAIC8P+O03dQtIRETkZRhu3CwoCGiJ8/AxFAG1agGNG8uamg4d5ALsd0NERORSDDduFhQEdECJM6U0GjnPTsVERERuwXDjZhbhRqmtAczhhp2KiYiIXIodit2sdm0goqxw06mTvGXNDRERkUupWnOza9cuDBgwAJGRkdBoNFi/fn256+zcuRM333wzdDodWrZsieXLl7u9nBVRbs3Nb78BubmeLxgREZGXUjXc5ObmIjo6GgsWLLBr+eTkZNx111244447cPToUTz99NN47LHHsGXLFjeX1HnBAYVojV/lnZLhpkEDOQlheUFNIiIiqhBVm6X69euHfv362b38+++/j2bNmmHevHkAgHbt2uHnn3/GW2+9hT59+pS5TkFBAQoKCkz39Xp9xQrtoAZZ51ADxdBrghDUqJHlk506Adu2yaap7t09Wi4iIiJvVaU6FO/duxcJCQkWj/Xp0wd79+61us7s2bMRHBxsmqKiotxdTAt102WtzBmfDuYzpRTsVExERORyVSrcpKenIywszOKxsLAw6PV65OXllbnO5MmTkZWVZZpSU1M9UVSToFQZbpIMHSBEqSfZqZiIiMjlvP5sKZ1OB51Op9rrK9eUShIdUFAA+PuXeLJkzY0QN9bsEBERkcOqVM1NeHg4MjIyLB7LyMhAUFAQAgICVCqVbb5nTwAATqIDbuju0749oNUCf/0FpKd7vnBEREReqEqFm7i4OGzfvt3isa1btyIuLk6lEpWjoACa8+cBWAk3AQFAq1Zynk1TRERELqFquMnJycHRo0dx9OhRAPJU76NHjyIlJQWA7C8zYsQI0/KPP/44fv/9dzz//PM4c+YMFi5ciC+//BLPPPOMGsUv39mzgMGAa5oQpCHixnADsFMxERGRi6kabg4ePIiYmBjExMQAABITExETE4Np06YBANLS0kxBBwCaNWuGjRs3YuvWrYiOjsa8efOwZMkSq6eBq+6f8Wt+8+8AQFN2uGGnYiIiIpdStUNxz549IW44hcisrNGHe/bsiSNHjrixVC70T7hJqdUByIPtmhuGGyIiIpeoUn1uqpx/ws2lUDkysc1wc+oUUFzsoYIRERF5L4Ybd/on3FxuYCPcNGsG1KwJFBQA5855sHBERETeieHGXfLz5UUxAfwdaSPcaLXATTfJeXYqJiIiqjCGG3c5cwYwGoE6dYB/RlW2elkrdiomIiJyGYYbd1Gu9N2hA4KC5cjD2dlWlmWnYiIiIpdhuHGXkuEmSM5arbnhWDdEREQuw3DjLs6EmwsXbFTvEBERkT0YbtxFCTc33VR+uKlbF4iMlPMnTri9aERERN6M4cYdrl8Hfv9dznfogNq15azVcAOYOxWzaYqIiKhCGG7c4cwZQAigfn2gfv3ya24AdiomIiJyEYYbd1CaljrI8W0cCjesuSEiIqoQhht3KNGZGLAz3JQc68bG9baIiIjINoYbd7ASbq5ft3H5qLZtAR8f4No14OJFtxeRiIjIWzHcuEOpcKN0KAZsnOmt08mAA7BpioiIqAIYblwtJ0eOVwOYwo1OJyegnGFs2KmYiIiowhhuXO30aXkbFibHr/kHOxUTERF5BsONq5VqklI43KmYiIiInMJw42oVCTdKzc2ZM0BhoevLRkREVA0w3LialXBj1yjFjRvLFFRUBJw9657yEREReTmGG1erSM2NRsNOxURERBXEcONK2dlASoqcdybcAAw3REREFcRw40qnTsnbiAggNNTiKbvDDS+gSUREVCEMN66kNEnddNMNT7HmhoiIyDMYblzJSn8bwIlwk5oK/P2368pGRERUTTDcuJId4cbmCMUAEBwsz5oquT0iIiKyG8ONK7mi5gYAWrSQt3/84ZpyERERVSMMN65y7Rrw559yvn37G552KNxERclbZXtERERkN4YbV1HOlGrUSDYtleJQuGnUSN4y3BARETnMV+0CeI06dYAJE4DAwDKftmuEYoUSblJTXVM2IiKiaoThxlXatgXeftvq06y5ISIi8gw2S3lIyXAjRDkLM9wQERE5jeHGQ5RwYzQC16+Xs7DSoTgjg1cHJyIichDDjYfUrCmviwnY0TRVty6g08n5ixfdWi4iIiJvw3DjIRqNA/1uNBo2TRERETlJ9XCzYMECNG3aFP7+/oiNjcX+/fttLv/222+jTZs2CAgIQFRUFJ555hnk5+d7qLQVY/coxQDDDRERkZNUDTerVq1CYmIipk+fjsOHDyM6Ohp9+vRBZmZmmct/8cUXmDRpEqZPn47Tp0/jo48+wqpVq/DCCy94uOTO4UB+RERE7qdquHnzzTcxevRojBo1Cu3bt8f777+PwMBALF26tMzl9+zZg/j4eAwbNgxNmzbFv//9bzz44IM2a3sKCgqg1+stJrU4dTo4x7ohIiJyiGrhprCwEIcOHUJCQoK5MFotEhISsHfv3jLX6dGjBw4dOmQKM7///js2bdqE/v37W32d2bNnIzg42DRFKTUiKuBYN0RERO7nVLhJTU3FnyUOuvv378fTTz+NxYsX272NK1euwGAwICwszOLxsLAwpKenl7nOsGHD8NJLL+Ff//oXatSogRYtWqBnz542m6UmT56MrKws05SqYk2IU6MUM9wQERE5xKlwM2zYMOzYsQMAkJ6ejt69e2P//v148cUX8dJLL7m0gCXt3LkTs2bNwsKFC3H48GGsXbsWGzduxMsvv2x1HZ1Oh6CgIItJLexzQ0RE5H5OhZsTJ06ge/fuAIAvv/wSN910E/bs2YPPP/8cy5cvt2sb9erVg4+PDzIyMiwez8jIQHh4eJnrTJ06FQ899BAee+wxdOzYEYMGDcKsWbMwe/ZsGI1GZ96KRznVLJWezoH8iIiIHOBUuCkqKoLun0Hmtm3bhnvuuQcA0LZtW6Slpdm1DT8/P3Tp0gXbt283PWY0GrF9+3bExcWVuc7169eh1VoW2cfHBwAgyr2mgfocCjf16gF+fvJaDXbuUyIiInIy3HTo0AHvv/8+fvrpJ2zduhV9+/YFAFy6dAl169a1ezuJiYn48MMP8fHHH+P06dMYO3YscnNzMWrUKADAiBEjMHnyZNPyAwYMwKJFi7By5UokJydj69atmDp1KgYMGGAKOZWZQ+FGqwUaNpTzbJoiIiKym1NXBX/ttdcwaNAgzJ07FyNHjkR0dDQAYMOGDabmKnsMHToUly9fxrRp05Ceno7OnTtj8+bNpk7GKSkpFjU1U6ZMgUajwZQpU3Dx4kXUr18fAwYMwKuvvurM2/A4h8INIPvdJCcz3BARETlAI5xszzEYDNDr9QgNDTU9duHCBQQGBqJBgwYuK6Cr6fV6BAcHIysry+Odi1etAv7zH6BnT+Cf/ti2DR8OfPEFMHcu8Nxz7i4eERFRpeXI8dupZqm8vDwUFBSYgs0ff/yBt99+G2fPnq3UwUZtDtfc8HRwIiIihzkVbu6991588sknAIBr164hNjYW8+bNw8CBA7Fo0SKXFtCbMNwQERG5n1Ph5vDhw7j11lsBAGvWrEFYWBj++OMPfPLJJ3j33XddWkBv4lSfG4DhhoiIyAFOhZvr16+j9j/D7X7//fe47777oNVqccstt+CPP/5waQG9iUMjFAO8vhQREZETnAo3LVu2xPr165GamootW7bg3//+NwAgMzNT1RGAKztl1+Tn2zkunxJu0tKAoiK3lYuIiMibOBVupk2bhueeew5NmzZF9+7dTYPuff/994iJiXFpAb1JUBCgDMdTamDmsjVoANSoIQfys3K9LSIiIrLkVLgZPHgwUlJScPDgQWzZssX0+J133om33nrLZYXzNr6+QNu2cv74cTtW4EB+REREDnMq3ABAeHg4YmJicOnSJdMVwrt37462ytGbyvTPeIc4dszOFdjvhoiIyCFOhRuj0YiXXnoJwcHBaNKkCZo0aYKQkBC8/PLLVeIClmrq3FneHj1q5wo8HZyIiMghTl1+4cUXX8RHH32EOXPmID4+HgDw888/Y8aMGcjPz68yl0NQA8MNERGRezkVbj7++GMsWbLEdDVwAOjUqRMaNmyIJ554guHGBqVZ6vx5ICcHqFWrnBU41g0REZFDnGqWunr1apl9a9q2bYurV69WuFDerEEDICJCngCVlGTHCuxzQ0RE5BCnwk10dDTmz59/w+Pz589Hp06dKlwob+dQ0xSbpYiIiBziVLPU66+/jrvuugvbtm0zjXGzd+9epKamYtOmTS4toDfq3Bn47jsHw01aGlBcLM8nJyIiIqucqrm5/fbb8euvv2LQoEG4du0arl27hvvuuw8nT57Ep59+6uoyeh2l341d4SYsTAYag8HOkf+IiIiqN40QQrhqY8eOHcPNN98Mg8Hgqk26nF6vR3BwMLKyslS7VMTZs3Iwv4AAIDvbPGqxVU2aACkpwN69wC23eKSMRERElYkjx2+nB/Ej57VsCQQGAnl5wLlzdqzAfjdERER2Y7hRgY8PoPS7ZqdiIiIi12K4UYlDl2HgWDdERER2c+jUm/vuu8/m89euXatIWaoVp04H51g3RERE5XIo3AQHB5f7/IgRIypUoOqCY90QERG5h0PhZtmyZe4qR7XTsSOg0QDp6fIM77AwGwsz3BAREdmNfW5UUrMm0KqVnC+3340Sbi5dkuPdEBERkVUMNyqyu2kqIkKeYlVczIH8iIiIysFwoyK7w42Pjww4AJumiIiIysFwoyKHLsPAfjdERER2YbhRkVJzc/asHK3YJoYbIiIiuzDcqCgiAqhfHzAagRMnyllYGciPY90QERHZxHCjIo3GgaYp1twQERHZheFGZUrTlN2ngzPcEBER2cRwozK7z5hiuCEiIrILw43KStbcGI02FlT63Fy8WM6CRERE1RvDjcratAF0OiAnB/j9dxsLhocDWi1QVARkZnqsfERERFUNw43KfH2Bm26S8zb73dSoIQMOwKYpIiIiG1QPNwsWLEDTpk3h7++P2NhY7N+/3+by165dw7hx4xAREQGdTofWrVtj06ZNHiqte7DfDRERkeuoGm5WrVqFxMRETJ8+HYcPH0Z0dDT69OmDTCvNLoWFhejduzcuXLiANWvW4OzZs/jwww/RsGFDD5fctewONxzrhoiIqFy+ar74m2++idGjR2PUqFEAgPfffx8bN27E0qVLMWnSpBuWX7p0Ka5evYo9e/agRo0aAICmTZvafI2CggIUFBSY7uv1ete9ARfhWDdERESuo1rNTWFhIQ4dOoSEhARzYbRaJCQkYO/evWWus2HDBsTFxWHcuHEICwvDTTfdhFmzZsFgMFh9ndmzZyM4ONg0RSm1H5VIp07y9s8/gb/+srEgww0REVG5VAs3V65cgcFgQFhYmMXjYWFhSE9PL3Od33//HWvWrIHBYMCmTZswdepUzJs3D6+88orV15k8eTKysrJMU2olbNIJDgaaN5fzNjsVM9wQERGVS9VmKUcZjUY0aNAAixcvho+PD7p06YKLFy9i7ty5mD59epnr6HQ66HQ6D5fUcdHR8lTwo0eBXr2sLMQ+N0REROVSreamXr168PHxQUZGhsXjGRkZCFdOeS4lIiICrVu3ho+Pj+mxdu3aIT09HYWFhW4tr7vZdRkGpeaGA/kRERFZpVq48fPzQ5cuXbB9+3bTY0ajEdu3b0dcXFyZ68THx+P8+fMwljiw//rrr4iIiICfn5/by+xOdp0xFREhr7ZZWAhcueKBUhEREVU9qp4KnpiYiA8//BAff/wxTp8+jbFjxyI3N9d09tSIESMwefJk0/Jjx47F1atXMWHCBPz666/YuHEjZs2ahXHjxqn1FlxGCTenTgElTu6y5OcHKH2U2O+GiIioTKr2uRk6dCguX76MadOmIT09HZ07d8bmzZtNnYxTUlKg1ZrzV1RUFLZs2YJnnnkGnTp1QsOGDTFhwgRMnDhRrbfgMlFRQEgIcO2aDDgxMTYWTE+X/W5uvtmDJSQiIqoaNEIIoXYhPEmv1yM4OBhZWVkICgpSuzgW7rgD2LkTWLYMePhhKwvddx+wbh0wfz7gBTVWRERE9nDk+K365RfIzK5+NzwdnIiIyCaGm0qE4YaIiKjiGG4qkZKXYbDaWMixboiIiGxiuKlE2rcHatQAsrKAlBQrC7HmhoiIyCaGm0rEz08GHMBG01TJcFO9+oITERHZheGmkin3CuGRkfK2oKCcq2wSERFVTww3lUy5l2HQ6cwD+bHfDRER0Q0YbioZnjFFRERUMQw3lYzSLJWcLEcrLhPDDRERkVUMN5VMnTrms72tNk0x3BAREVnFcFMJKZeMOnzYygIc64aIiMgqhptKqGtXeXvwoJUFWHNDRERkFcNNJdSli7w9dMjKAgw3REREVjHcVEJKuDl7FtDry1iAA/kRERFZxXBTCTVoADRuLOfL7HfTsKG8zcsDrl71WLmIiIiqAoabSspm05S/P1C/vpxn0xQREZEFhptKyms7FV+9CixfLi8fQURE5AYMN5WUEm7K7VT86qvA7NnA1q1Vo4lqyhRg1Chg1iy1S0JERF6K4aaSUpqlzp2zMlJx9+7ydu9e4IUXgH//G6hbF2jZEvjPf4A33gB27rTSI1lFP/4ob7/4gp2hiYjILTRCVK8jjF6vR3BwMLKyshAUFKR2cWxq1gy4cAHYvh3o1avUk0IAP/8M7N8PHDgg269+++3GjWi1wNy5QGKiJ4psW1YWEBpqDjWHDplHLCQiIrLBkeO3r4fKRE7o2lWGm0OHygg3Gg1w661yUly9Kk+vUsLOwYNASgrwv/8B8fFAbKwni3+jAwcsa2tWrWK4ISIil2OzVCWmNE1Z7VRcWp06QEICMHky8NVXwB9/AMOGAUYjMHKkPHVcTb/8Im/r1ZO3X37JpikiInI5hptKrNwzpuzx3ntARIQcEfDFF11SLqft2ydvExOBmjVltdT+/aoWiYiIvA/DTSWm1Nz8/jvw999ObqROHWDJEjn/9tvmDr2eJoS55qZnT+Cee+T8qlXqlIeIiLwWw00lFhoKNG8u562eEm6P/v2B0aNlwBg1CsjOdkn5HHLhAnD5MlCjBhATAwwdKh9fvVo2m1HldvUq0KEDMHy42iWhysxgAJ5+Gnj9dbVLQtUcw00l55KmKQCYNw9o2hRITpYdjD1NaZLq3FmOsNy3LxAUJAch3LvX8+UhxyxbBpw6JU/hP3VK7dJQZbVuHfDOO8DEicAHH6hdGqrGGG4quXIH87NX7dryAAXIL50tWyq4QQcpTVK33CJvdTpg4EA5z6apyk0IYPFi8/2PP1avLFS5vfOOef7JJ4Hdu9UrC1VrDDeVnMNnTNnSsycwYYKcf/TRCnTkcYJSc1PydPSSTVMGg2tfr7hYDmL4zDNyNGSeleW8XbuAX3813//0U7l/iUo6fFiOveXrK2tmi4qA++8HLl5Uu2RUDTHcVHLKMDAXLgB//eWCDc6aBbRuLb9wlKDjbgUFwJEjcr5kuElIkB2L0tOBn35yzets3CiDW0QEcMcdshP1iy8C33xT8e1XV0qtzcMPy1Gw09Lk5T68yZUrsnYxN1ftklRdSq3NAw8Aa9YAHTsCGRnAffcB+fnqlo2qHYabSi4kBGjVSs472jR19qys+bFo9QkMlM0KWq38Bb5unauKat2xY0BhoTwwtmhhftzPDxg0SM5/+aVz287Oluv+5z/ySul33w0sXSoPVnXqmKu+XnjB9bVD1cGVK/JABQDjx8txkwB58VNv8fXXsj/aLbfIfmAdOwKPPAIsXCgHnuRFXsuXkQGsXCnnJ0yQQz2sXy9/vOzfD4wbx9pT8ixRzWRlZQkAIisrS+2i2O0//xECEOLVVx1bb9QouV7XrmU8OXmyfLJ+fSEyM11STqveeUe+Vv/+Nz63ZYu5HEVF9m/z+nUh/vtfIXQ6ub4yNWwoxPjxQmzfLrd39aoQISHyuY8/dt17ciejUYiRI+X+ysur2LaOHBHiwQeF+PVX59afN0/uu5tvlvcPHZL3/fzkvnVGdrbcjtHo3PquYjQKMWuWEBqNfE+1all+lpSpRg0hunQR4v/+T4hly4T46y91y10ZzZgh91VsrOXj338vhFYrn5s/X52ykddw5PjNcFMFvPGG/G647z7718nNFaJ2bbmej488nljIzxeiY0fzht15oBk2TL7OSy/d+FxRkRD16snnt261f5sTJpgPPi1bCjFxohD79glhMNy47Jw5crmmTeX7ruw2bTK/N0cTbUmFhUK0aye3c/vtjv+NjUYh2rSR67//vvkx5XOzcKHjZTIahejRQ64/erRjgdaV8vJkOFb28xNPyP118aIQX38txJQpQvTtK0TdumWHnbvvFuLzz8v4x6qG8vOFCAuT++aLL258fu5c+ZyvrxA//uj58pHXYLixoSqGm5075XdD48b2r/PFF5bfx99/X8ZCR47ILxxAiM8+c1Vxb9S8uXyNLVvKfv7//k8+/9hj9m1v+3bzG1u7tvyDdm6uEBERcvl333Ws7J5mNMpfv8r7q1lTHnCd8dZblh+CDRscW//HH81l0OvNjyu1Od27O16m9esty9Svn+cDQlqaeR/7+AixYIH1ZY1GIZKThfjySyGef16I6GjL8gcGyqrVr78WoqDAU+/APZwt/yefyH0RGSkDYmlGo6w9BIRo0ECIlJSKlZOqLYYbG6piuMnKMn+X2tuC1K+f+ccSIMTUqVYWfPllc7NQTo7LymySmWku/N9/l72MElbq1Cn7y7Gka9eEiIqSyz/+uP3leP998/sseaCubL7/XpbT31+Izp3l/IgRjm8nI0OIoCC5fqdO8rZtW8dqSpQat9Gjb9y28sE6edL+7RkM5lqfvn2FCAgwN3ldumT/diri8GEhGjWSrxsaKsS2bY5v4+RJWbPTooVl0AkJkQFdaRL1hF9+kYGxuNj5bZw7J8TAgbL5yNHwbzTKJjtAiFdesb5cbq7589y1q2xWJnJQlQs38+fPF02aNBE6nU50795d/PLLL3att2LFCgFA3HvvvXa/VlUMN0KYWwe++678ZdPS5A9SQIjnnpO3PXtaWbiw0Fyz8sYbLi2zEEKIb781H1itKS42V2tv2mR7ew8/LJdr3tyxX/yFhbL5ylrzWGVgNAoRHy/L+PTTQuzfbz5w7tvn2LYee8wcHP76y9y88sEH9q1/5YrsVwMIceDAjc/fc4987vnn7S/TihVyneBg2V9n3z4ZNgEhmjRxLCg5Y80aWdMCyH8oZ/shKYxG+Td6+mlzzaAy1asnxCOPyM9/RftNlaW4WIjp0839hdq0kbWvjoScv/8W4tlnZTObUm5fX8c+az//LNfT6cr/5ZWcbP4cjhypfp8rdzlyRH6Xrl0rg2NZTeXerrjYLX3TqlS4WblypfDz8xNLly4VJ0+eFKNHjxYhISEiIyPD5nrJycmiYcOG4tZbb60W4Ub5Ef3yy+Uv++ab5r59p06ZKwKs1jp/9JG5yjg316XlFlOmmL/MbBk3Ti738MPWl1m3Ti6j0cgvVUcpB9fatYW4fNmxddPShPjwQ/fW+vzwg/lAoTRFKWEuNtb+L8mDB80HPWU/vf22vB8WZl8oVD5EMTFlH4TWrpXPR0TYV0tRVCRE69Y3fojPnxeiVStzzcfOnfa9R0cYjTLQKgfwPn2s1yI6q7hY/v1Gj5Y1kCWDTq1aQgwZIj9/rvjeSU8X4s47LZsulfnWrYX49FPbf5OiIiEWLTL3dVNq0u6+W843ayZrSO3xwANynUcesW/5bdvMv7zmzfNcwDl9WtY4ulN2thDPPGPuQF2y6bJ7dyEefVT+H/7wg+PfP5XdtWuy28H06UL07i2/Y++/3+UvU6XCTffu3cW4ceNM9w0Gg4iMjBSzZ8+2uk5xcbHo0aOHWLJkiRg5cqTNcJOfny+ysrJMU2pqapUMN8qxZuDA8peNiZHLLlggvzuU77A9e6ysUFgoO9sCsp+GK/XuLbe7aJHt5XbtMv+qL6vTb0aG+Vf+xInOlcVgMFeNP/us/etduGDeP337uu+XWM+e8jXGjzc/dumS+SyeTz8tfxtGoxBxcXL54cPNjxcUmJtRpk8vfxtt29r+uxUUmH+Fl1fbJoQ8ywiQ65QOiJcvmzsZ+/nJjrrOyM2VYemnn2QfmXfekZ+VhATzgWbCBPc3GRUVyaapcePk2XslD3R+fvIsuA8/dO5ss507hQgPNx80P/1U7s9ZsyxDVatWsi9M6fe6dasQN91kXq5tW/Pf79o18+d86NDyg0dKijmoHDtm/3tQvswAWZs6bZoQZ886th8cMWuW5fsdM0bWcrmy78/GjbJTpPI6vXrJWlN/f8u/f8mpYUMZ8CrSpKgGo1HWei5fLvdlx47mH1Mlp9atXf7SVSbcFBQUCB8fH7Fu3TqLx0eMGCHuueceq+tNmzZNDPznKF9euJk+fboAcMNU1cKNcuxv1Mj2cklJcrkaNWTLghAyEAFCvPaajRUXL5YLhYe7rj3cYDD3+zh8uPxlIyPlsqU7vhqN5jfRsWPFznj67jtz7Yg9X27JyeYvfGWyEbydpnTe9fMTIjXV8rnZs+VzkZHl17p8+qn51/yff1o+9+WX5uds9XFRPmw1a9quaXjqKbnckCG2y1RQYN6Hc+eWvcz16/KXXsl9XPrgajTKcm/fLk8rHjdOBpe2bWUotnYQUZpbFi+2XU53MBhkv5hJk8w1V8oUECDHayir2a+s7bz6qrlWoH37G5vx9Hq530qe4aWEnFOnhBgwwPx4nTpCvPfejX3c9u0z96dassR2mSZOlMtZbfO2wmiUQ1EoTYTK1KWLDD7OdqAvS8kau7Kmpk1ln7YlS+QB29GapLQ0GQRLbq9k34HiYiHOnJH/e1Onyu+x0n21YmPd3yTrKitWmMN16alFCyEeekieRXn0qFtCW5UJNxcvXhQAxJ5SVQr/+9//RHcrZ2L89NNPomHDhuLyP9V61aXmJjvbHI7T060v9/zzcpmSu0Q5ueXuu228QEGB+ZeHq84oUtrEAgLs+7WsnN5dssZBCDk+jZLYjhypWJmMRnlaNCCriW1JTpZ9QZSDxKuvynkfH1k74EpK7cL//d+Nz+XlmftFvfii9W3o9ea+H7Nm3fh8yTOxxoyxvp3hw+Uy5Z29dviwOZDZqoVYtMgcnG01exoMQiQmmr8sH3lEhqFHHpG1Ucp4RbamgAC5r+LjZZPJU0/JA/7Ro7bfiycYjfIg9sorlrUngOxku3Rp2fvn8mVZY6gsO2KE7c7/ZYWckiFvwgTb/SGUoRMCAuT/cFlyc2WHbEA2FzsjO1vWoPTvb64BAuQX3Z13yuZye5vHyqKMvaP8P1y5IjtfJybK/V26+QiQ/z/DhskgfO6c9bBjMMjaN+UzqdXKDo72npSRnS1fQ/nx5+cnPxflnVBRERVpAlTGhFL2k04n/8f+9z/597d1UHIhrw03er1eNG3aVGwqUQ1eXrgprar2uRHCPGTJxo1lP19cbK4F/+or8+NKv9SQkHJaVJSDUGSkazpBKk0Rt95q3/J79sjla9Uy1x798Yf5C6CsA7YzlNfRamVbfFl+/90y2Pz5p/wHVw78jRq5rt18927zgSc5uexllP5GOp31ZSZNMv+Csvb3++kn83sv68B15Yp5YMT9+22X22g0n4llbcyb69fNNXLvvWd7e4p33im7mlspd8uWshbi+eflZ2z7dvl3vHat6nRSNRrl3334cHPHbUAGhmeeMTfT/Pyz+ewuf395wLf3Per1MqgoIeeuu6x/3ksyGMzNyR07ll2T+8EH8vlmzVzzCz0zU7ajK82TJcPqnDmOHfSNRllLomzDWpW1Xi/E5s1CvPCCEP/6l+XfQZkaNZLjIX30kRC//Sa3ffq0ELfdZl7m5pvloJTOSE0193UCZLN5ebXcjjAaZf+4zp3le1m/3vFtFBXJvmRKGRMTVRsvrMqEG0ebpY4cOSIACB8fH9Ok0WiERqMRPj4+4vz58+W+ZlUONw89JD9bM2eW/fy2bebvx5KfvaIic59Dm03j+fnmL1JbY3/YSxm/5rnn7FveaDTXHq1dK79ke/WS9+PiXNtXQjnbp6xOb7/9Zi5H69aW1eTZ2eZT1/r3d03/G+VXua2aJKPRvC8GD77x+XPnzF/OX39t+/WUJr4BA258Thkbp3Nn+w6iSv8Ja2PeKNuLinLsC3HDBlmbNWSI7CO0cqX88LrjzCO1ZWbKA3jp5s8ePcw1Gq1bO9avpaScHOs1MNakpckTDAA5wGFJRqMQHTrI5+bNc65Mtvz+u6wlbd/e8qB/8GD56xqNMqwo6zlyBuj167Kz79Sp8gdZybPIlKlxY/P/WWCg/PxX9HvJaJQ1WEoI9fGRNbQVCRBGoxDffGPugFlyGj7c/jOZ9HrzuCIajerjhFWZcCOE7FA8vkQHSoPBIBo2bFhmh+K8vDyRlJRkMd17772iV69eIikpSRTYMQhVVQ43ygkvZR2ThJAnJAFlt2worR7ljoA+f775F0tF07nSeXfNGvvXUc5dHzpU/iMpXyIVPW23tKQkc+1AyRqK334zj6NTOtgojh0zdxR8/fWKleOXX8xfaOWF8+PHzVXppc8qUvpT9OlTfig5c8Z80Cy5HaPRXD1o7+jDtsa8yc42HyA//NC+7VVnxcWyWvbuuy1rrh58UJ2xmZRLoyg/NhRbt8rHatZ0/VlnJRmNstOq0lFaq5W1BtaafoxGc7s8UPGTI3Jz5Xt94QUZNJXPOSAP+NZqUJ2VkSHDvPIa7doJsXevY9swGmVtVPfu5u3UqiXD0vPPm78/wsPL/xF08aI5HAUEOFfr42JVKtysXLlS6HQ6sXz5cnHq1CkxZswYERISItL/acN76KGHxKRJk6yuX52apZQhJSIjb3wuJ8dcO1PWWdIzZ5ozg015eeZmhPLOcLIlJ8f8j1S6g6wtShtaQIA5QLiiFqksI0bI7SckyPvnz5uDTZs2tjvdKh2wfXxk84KzlCrp8k6VVzzxhFw+OtrcHKB0kvb1ta/ZQQghxo6V63Ttaq59UpqsAgMdO2XZ2pg3Sht9ixbu7UvgjZKT5T/tp5+q29SmhIWQENlELIT5M1viLFe3ysgwj3AMyBqu0qOdG43yDEhlGXfUMGRny9fdtcu9f5O1a83jfmk0so/guHHye3DnTuvN4du3m8fJUv6Pn3/ecvl9+8xnQgKyya2sWpykJPN3YYMG8kdYJVClwo0QQrz33nuicePGws/PT3Tv3l3sKzGI1O233y5G2vjir07hpmReKH3c/ewz+Xjz5mX/3+3YYQ5G5f5fKjUmjRs7PyS7cvZPw4aOrWc0mjvPArLt311fJMnJ5qrnDz4wN8m1bVv+iLklh5SPijKfmuYI5SKUWq39p8JeuWLuyPnBB/LvozSTJSba/9rp6eZTzFeskI8p11oqr6N1aWWNefP33+bOlvacwk6VU2GhuRYgPl6GZ6VW6cwZz5Zl40bzAReQ7fSXL8v/xaefNj/urh9DnvTXX+aq+LKmBg2EuOMOGXreecc8jAQgfxQ+84z1Tr55ebIjsHIwiYiwPEN1+3ZzP8c2bWRtdiVR5cKNJ1XlcCOEuan7m28sH+/TRz5ubQiT69fNx/FyP6vXr5tP93P29NnXX5frO3K1T4XSMTY42LFaH2c8+aTll0a7drK/gT30evMAdHff7XgIU/q+lD47rDzKVdbr1TN3nGzQwPEzS5RLbzRtKsOc0pHY0V9pBQXmwZSUzv7Tppn3Z1Ubx4Ms/fab+WCnnLHQr586ZdHr5RlwSsCqV0+IQYPM/7/2jsBdVZw8Kc8Wff552SG8dL+skpOfnxwjy95T6ffuNf8wAmRN9qJF5gPFv/7lllGGK4LhxoaqHm6UMF8yxFy6ZA7h585ZX1cZ2235cjteSOkI2rSpc00K990n17c5uI4VmZnydExnrvvjqPR0c3teu3aOn9J45Ig5FDjSefHoUXO1s6OdPUte7VuZPvrIsW0IIasClVPHlQtCRkc7V1OmnMY/ZIj8Na1ckn71ase3RZXPypWWn7fNm9Utz759lqfTazTVp19XdrYcG2n5clkDc/fd8kea0mzoiOvXLWtxlGno0ErZeZ/hxoaqHm7ee09+9u66y/zYG2/Ix3r0sL2u0nxuV6tDbq653deZA6fyC+/HHx1f19O++Ub2wnZ2rAblFHpfX/s7AA4ebGcnKCs2bzZ/EZXsN+OoJUssv9ScrdI/csT861G5rlXnztXzujre6tFHzc22leGU+4ICOTZMmzZyoEJy3p495kEmn3++0v7fMtzYUNXDjTJES3i4+ftF+dFdXv/fb76Ry9k9KraSmpo3d+x0x9RUuZ6Pj3uuNF7ZGI3mUUobN5Ydk23tL2UYaUDOO+vBB2WnwYp09isuNrd1BgZWbNA05YOoTKXbTqlqu35dnvp9/LjaJSF3KCiQl5qpxBw5fmuEEALViF6vR3BwMLKyshAUFKR2cRx2/ToQFAQYDMCffwJ//QVERwN+fkBaGlCnjvV1//4bqFtXHnnS04GwsHJeLDcXaNYMuHwZWL4cGDnSvkJ+9RUweDDQuTNw5Iid76yK0+uBLl2A8+flfa1W7uCGDeXUqJF5ftUqYNMm4P77gTVrnH9NoxEoKAACAipW9h9+APr1A55+GnjtNee38/bbwDPPyPnYWGDvXkCjqVjZiIj+4cjx29dDZSIXCQwEOnQAjh8HDh4Efv5ZPn7XXbaDDQCEhgI33QQkJQE//STzh001awLPPQdMnAi8+iowfDjga8dH5pdf5G1sbPnLeougIBnqHnoIOHUKKC6WaTMtTf6hyjJlSsVeU6uteLABgF69ZDjz86vYdoYNA55/HigqAl55hcGGiFTDcFMFdekiw83+/cDnn8vHRoywb91bb3Ug3ADAE08Ar78OnDsHrFwJ/Pe/5a+zb5+8rU7hBgA6dQKOHZM1KpmZwMWLcvrzT/P8xYsy8Nxzj6zZqix0uopvo0EDYO1a4MoV4M47K749IiInsVmqClq4EBg3TjYx/fWXrLFJS7Pvh/fKlcCDDwIxMcDhw3a+4OzZwAsvAC1byuBSt671ZYuLZS1GXp6swWjXzs4XISIiss6R47fWQ2UiF+raVd7+9Ze8HTrU/haFW2+Vt8eOyZYIu4wbJ3+Vnz8PxMXJWhxrkpJksAkOBtq0sfMFiIiIXIfhpgrq1Mmy68tDD9m/bsOGQPPmsuVkzx47VwoKkp1OmzSRweaWW2S7VlmU/jbdu8s+IURERB7Go08V5O8vOwYDsqXollscW1+pvbGWT8rUoYMMLt27A1evAgkJwGef3bhcdexMTERElQrDTRV1++3y9tFHHT8pxalwA8hTm3fskKcwFxbKKqOZM+W55Yrq2pmYiIgqDXYorqL0emDnTnkKuI+PY+v++qvsDqPTAVlZTpwoYzQCkyfLs6gAeQbVkiWyr01oqHwsMxOoX9/BDRMREZWNHYqrgaAgeTaxo8EGAFq1kv2DCwqAAweceHGtVg72tnixLMBnnwG9ewObN8vnmzdnsCEiItUw3FRDGk0FmqZKGj1aBpqgILkhZQwcRzsBERERuRDDTTWlhJtduyq4oYQEedpVkybymhAA+9sQEZGqGG6qKSXc7NljziROU86kiouTp3L171/h8hERETmL4aaaio4GateWHZOPH3fBBsPCgN275ciCLVu6YINERETOYbippnx8gPh4OV+hfjclaTTyyp5EREQqYripxlzSqZiIiKiSYbipxkqGm+o12hEREXkzhptqrFs3ecHNjAx5TUwiIiJvwHBTjfn7y0tFAWyaIiIi78FwU82x3w0REXkbhptq7rbb5O3KlcBHH7HvDRERVX0MN9VcQoK8+GZ+PvDYY8Dw4XLsGyIioqqK4aaa8/UFNmwA5syRY9+sWAF06QIcPqx2yYiIiJzDcEPQaoGJE+V1pho3lmdOxcUB777LZioiIqp6GG7IpEcP4MgRYOBAoLAQmDABGDQIuHpV7ZIRERHZj+GGLNSpA6xdC7z3nhwD5+uvgc6d5QU2iYiIqgKGG7qBRgOMHw/s2yevgZmaKs+qeusttUtGRERUPoYbsiomRnYsHj4cMBiAxETg11/VLhUREZFtDDdkU+3awKefAr17y/urVqlbHiIiovIw3FC5NBpg2DA5z3BDRESVXaUINwsWLEDTpk3h7++P2NhY7N+/3+qyH374IW699VaEhoYiNDQUCQkJNpcn1xg4UHYwPnkSOHFC7dIQERFZp3q4WbVqFRITEzF9+nQcPnwY0dHR6NOnDzIzM8tcfufOnXjwwQexY8cO7N27F1FRUfj3v/+Nixcverjk1UtICNC3r5xfuVLVohAREdmkEULdYdpiY2PRrVs3zJ8/HwBgNBoRFRWFJ598EpMmTSp3fYPBgNDQUMyfPx8jRowod3m9Xo/g4GBkZWUhKCiowuWvTlaskM1TLVvKjsUajdolIiKi6sKR47eqNTeFhYU4dOgQEhISTI9ptVokJCRg7969dm3j+vXrKCoqQp06dcp8vqCgAHq93mIi5wwYAAQEyBGMeXkGIiKqrFQNN1euXIHBYEBYWJjF42FhYUhPT7drGxMnTkRkZKRFQCpp9uzZCA4ONk1RUVEVLnd1VasWcPfdcp5NU0REVFmp3uemIubMmYOVK1di3bp18Pf3L3OZyZMnIysryzSlpqZ6uJTe5T//kbdffgkYjeqWhYiIqCy+ar54vXr14OPjg4yMDIvHMzIyEB4ebnPdN954A3PmzMG2bdvQqVMnq8vpdDrodDqXlJeAfv3k2DcpKXIE4x491C4RERGRJVVrbvz8/NClSxds377d9JjRaMT27dsRFxdndb3XX38dL7/8MjZv3oyuXbt6oqj0j4AA4N575TybpoiIqDJSvVkqMTERH374IT7++GOcPn0aY8eORW5uLkaNGgUAGDFiBCZPnmxa/rXXXsPUqVOxdOlSNG3aFOnp6UhPT0dOTo5ab6HaUZqmVq+Wl2UgIiKqTFRtlgKAoUOH4vLly5g2bRrS09PRuXNnbN682dTJOCUlBVqtOYMtWrQIhYWFGDx4sMV2pk+fjhkzZniy6NVW795AaCiQng7s2gXccYfaJSIiIjJTfZwbT+M4N64xejSwZAkwZgzwwQdql4aIiLxdlRnnhqquoUPl7VdfAUVF6paFiIioJIYbckrPnkCDBsBffwEl+oMTERGpjuGGnOLrCzzwgJznWVNERFSZMNyQ05SmqXXrgIICdctCRESkYLghp8XHAw0bAno9sHmz2qUhIiKSGG7IaVqtufaGTVNERFRZMNxQhSjhZsMGIDfX9rLXrwMTJgAREcDHH7u/bEREVD0x3FCFdOsGNGsmg8vGjdaX27cPiIkB3n1XDv738MPA4sUeKyYREVUjDDdUIRqN+XIMZTVNFRYCL74o++f8+qvso6Ms/3//B8yf77myEhFR9cBwQxWmNE1t2iQ7FyuOHwe6dwdmzQKMRuC//wWSkoAvvgCee04u8+STwFtveb7MRETkvRhuqMI6dQLatpWng3/9tbyY5muvAV27AseOAXXrAmvWAJ9+Kq9JpdEAr78OvPCCXD8xUS5PRETkCgw3VGElm6YWLQJuuw2YNEleluGee4CTJ4H7779xnVdeAZRrnU6aBLz8skeLTUREXorhhlxCaZrauxfYsweoXRtYtgxYvx745wLvN9BogOnTgVdflfenTQOmTgWq16VciYjI1RhuyCXatgVuuUXO33GH7Fvz8MMywJTnhReAuXPl/CuvAJMnM+AQEZHzfNUuAHmP9euBM2eAW2+VA/w54rnnAD8/OQ7Oa6/Js6zmzbMvHBEREZXEcEMuExZmvQnKHk89BdSoATzxhDyDSq8HFi6UoYeIiMhebJaiSmXsWODDD2WNzUcfAb17A1euqF0qIiKqShhuqNJ57DHg229lp+Rdu+RYOSdOqF0qIiKqKhhuqFLq319esqF5cyA5GYiLk4GHiIioPAw3VGm1bw/s3w/07Ank5Mgxc+bO5ZlURERkG8MNVWp16wJbtgBjxshQ8/zzwKhRcjRkIiKisjDcUKXn5we8/z7w3nuAjw/w8cdyLJ2MDLVLRkRElRHDDVUJGg0wfjzw3XdAcLAcCblbN+DoUbVLRkRElQ3DDVUpvXsDv/wCtG4NpKYC//qXDDxEREQKhhuqctq0kWdS9eoF5OYCAwYAS5aoXSoiIqosGG6oSgoNlTU2I0YABgMwerS88CbPpCIiIoYbqrL8/IDly4EpU+T9l18GRo6U16UiIqLqi+GGqjSNRoaaxYvlmVSffioHAMzKUrtkRESkFoYb8gqjRwPffAPUrAls3y6vTP7nn2qXioiI1MBwQ16jXz95LarwcCApCbjlFuD4cbVLRUREnsZwQ17l5pvlmVTt2gEXL8pTxTdvVrtURETkSQw35HWaNAF27wZuvx3IzpY1Oj16ACtWsLMxEVF1wHBDXik0VF6TauxYoEYNOaLxsGEy+MyYAaSlqV1CIiJyF4Yb8lo6HbBwIZCSAsycCUREAOnpcr5xYxl29uzh2DhERN6mUoSbBQsWoGnTpvD390dsbCz2799vc/nVq1ejbdu28Pf3R8eOHbFp0yYPlZSqovBwOcDfhQvAypVAfDxQXCybqeLjga5d5YU5Dx8G8vLULi0REVWU6uFm1apVSExMxPTp03H48GFER0ejT58+yMzMLHP5PXv24MEHH8Sjjz6KI0eOYODAgRg4cCBOnDjh4ZJTVePnBwwdCvz8swwyjzwC+PvL+bFjgS5d5KnkrVoBgwYBU6cCq1YBJ05Uzr46RiNQUOCZmiejEcjPl6NBExFVdhoh1K2Uj42NRbdu3TB//nwAgNFoRFRUFJ588klMmjTphuWHDh2K3NxcfPvtt6bHbrnlFnTu3Bnvv/9+ua+n1+sRHByMrKwsBAUFue6NUJX011/yulTffSdDzF9/lb2cry/QooXsy1OzpuVUq5blfa3WMnAo8yVvi4tlYCoosLwtOZ+fL6+ddf265aQ8lp9vfo0aNWQznJ+fvC05X6OGHOxQCMsylJ4vKjKXoXSZSoaa4GC5H0pPdeqY949WK19Tq7WcL3lbVjlK3gJlb6P0fWUbtiaDQb4P5T2Wvi0slMv5+cn9Vfq25Lyvr/lWmUrfF0IGQlu3Go1c1sfH+qS8z5KTsl/KetyasvZJ6ceNRiAnR07Z2XIqPZ+TIz97eXny82ft1tcXCAmRnxXltuR8SIj8YWEwyKm42DxfcrL2eMnnjEbzPim9b0reNxot1y99X5mKiuS2rd2W/JyU/mwo8z4+Zb+H0u9Hq73xM1DWZ6Lk5770pKzj7y//35Xb0vM1apT/OSi5v0r/v5aeL09ICBAbW/5yjnDk+O3r2pd2TGFhIQ4dOoTJkyebHtNqtUhISMDevXvLXGfv3r1ITEy0eKxPnz5Yv359mcsXFBSgoKDAdF+v11e84OQ16tYFJk6UkxBAZiZw8qQMOidOmOf1euDsWbVLa11RkZw8IStLThcueOb1qGriIJrVW1yc7NOoFlXDzZUrV2AwGBAWFmbxeFhYGM6cOVPmOunp6WUun56eXubys2fPxsyZM11TYPJqGg0QFianXr3Mjwshv6jPnZO/YHNz5ZSTY54vOZX8BVRy2yVvfX0ta1f8/CznlV9bNWsCgYFlTzVryl9jpWuAyqoNKl2Gsn7Zlqz9KV0e5Zdpfj7w99/m6epVy/t//y1/2ZeuqSir9qL065e1n0quX3p7ylRWLUbpSaldsVYz4+cnX08JibZqeYqLzZPya770Y9Zqq0r+8lVqlGxNynu2VeNiT927UlNka9Jq5Weqdm051apleavMBwbKGoGAADmVnvf3l/vg2jVzEC5rXqnhsVZrZe9zWq3l+7S2n5RaDmWd0jUjynaVz0rpWjrlVqOx/EyUNW8w3FjO0vNarbn2qHSNTsn7yue85HzJx5TlCwrkPlW+A0rOFxTIsln725f+nyuv5tEerVrZt5y7qBpuPGHy5MkWNT16vR5RUVEqloiqGo0GiIqSU3UXFAQ0aKB2KYiIbFM13NSrVw8+Pj7IyMiweDwjIwPh4eFlrhMeHu7Q8jqdDjqdzjUFJiIiokpP1bOl/Pz80KVLF2zfvt30mNFoxPbt2xEXF1fmOnFxcRbLA8DWrVutLk9ERETVi+rNUomJiRg5ciS6du2K7t274+2330Zubi5GjRoFABgxYgQaNmyI2bNnAwAmTJiA22+/HfPmzcNdd92FlStX4uDBg1i8eLGab4OIiIgqCdXDzdChQ3H58mVMmzYN6enp6Ny5MzZv3mzqNJySkgJtiR5jPXr0wBdffIEpU6bghRdeQKtWrbB+/XrcdNNNar0FIiIiqkRUH+fG0zjODRERUdXjyPFb9RGKiYiIiFyJ4YaIiIi8CsMNEREReRWGGyIiIvIqDDdERETkVRhuiIiIyKsw3BAREZFXYbghIiIir8JwQ0RERF5F9csveJoyILNer1e5JERERGQv5bhtz4UVql24yc7OBgBERUWpXBIiIiJyVHZ2NoKDg20uU+2uLWU0GnHp0iXUrl0bGo3GpdvW6/WIiopCamoqr1vlAdzfnsX97Vnc357F/e1ZzuxvIQSys7MRGRlpcUHtslS7mhutVotGjRq59TWCgoL4z+FB3N+exf3tWdzfnsX97VmO7u/yamwU7FBMREREXoXhhoiIiLwKw40L6XQ6TJ8+HTqdTu2iVAvc357F/e1Z3N+exf3tWe7e39WuQzERERF5N9bcEBERkVdhuCEiIiKvwnBDREREXoXhhoiIiLwKw42LLFiwAE2bNoW/vz9iY2Oxf/9+tYvkNXbt2oUBAwYgMjISGo0G69evt3heCIFp06YhIiICAQEBSEhIwLlz59QpbBU3e/ZsdOvWDbVr10aDBg0wcOBAnD171mKZ/Px8jBs3DnXr1kWtWrVw//33IyMjQ6USV22LFi1Cp06dTAOZxcXF4bvvvjM9z33tXnPmzIFGo8HTTz9teoz73HVmzJgBjUZjMbVt29b0vDv3NcONC6xatQqJiYmYPn06Dh8+jOjoaPTp0weZmZlqF80r5ObmIjo6GgsWLCjz+ddffx3vvvsu3n//ffzyyy+oWbMm+vTpg/z8fA+XtOr78ccfMW7cOOzbtw9bt25FUVER/v3vfyM3N9e0zDPPPINvvvkGq1evxo8//ohLly7hvvvuU7HUVVejRo0wZ84cHDp0CAcPHkSvXr1w77334uTJkwC4r93pwIED+OCDD9CpUyeLx7nPXatDhw5IS0szTT///LPpObfua0EV1r17dzFu3DjTfYPBICIjI8Xs2bNVLJV3AiDWrVtnum80GkV4eLiYO3eu6bFr164JnU4nVqxYoUIJvUtmZqYAIH788UchhNy3NWrUEKtXrzYtc/r0aQFA7N27V61iepXQ0FCxZMkS7ms3ys7OFq1atRJbt24Vt99+u5gwYYIQgp9vV5s+fbqIjo4u8zl372vW3FRQYWEhDh06hISEBNNjWq0WCQkJ2Lt3r4olqx6Sk5ORnp5usf+Dg4MRGxvL/e8CWVlZAIA6deoAAA4dOoSioiKL/d22bVs0btyY+7uCDAYDVq5cidzcXMTFxXFfu9G4ceNw1113WexbgJ9vdzh37hwiIyPRvHlzDB8+HCkpKQDcv6+r3YUzXe3KlSswGAwICwuzeDwsLAxnzpxRqVTVR3p6OgCUuf+V58g5RqMRTz/9NOLj43HTTTcBkPvbz88PISEhFstyfzsvKSkJcXFxyM/PR61atbBu3Tq0b98eR48e5b52g5UrV+Lw4cM4cODADc/x8+1asbGxWL58Odq0aYO0tDTMnDkTt956K06cOOH2fc1wQ0RlGjduHE6cOGHRRk6u16ZNGxw9ehRZWVlYs2YNRo4ciR9//FHtYnml1NRUTJgwAVu3boW/v7/axfF6/fr1M8136tQJsbGxaNKkCb788ksEBAS49bXZLFVB9erVg4+Pzw09vDMyMhAeHq5SqaoPZR9z/7vW+PHj8e2332LHjh1o1KiR6fHw8HAUFhbi2rVrFstzfzvPz88PLVu2RJcuXTB79mxER0fjnXfe4b52g0OHDiEzMxM333wzfH194evrix9//BHvvvsufH19ERYWxn3uRiEhIWjdujXOnz/v9s83w00F+fn5oUuXLti+fbvpMaPRiO3btyMuLk7FklUPzZo1Q3h4uMX+1+v1+OWXX7j/nSCEwPjx47Fu3Tr88MMPaNasmcXzXbp0QY0aNSz299mzZ5GSksL97SJGoxEFBQXc125w5513IikpCUePHjVNXbt2xfDhw03z3Ofuk5OTg99++w0RERHu/3xXuEsyiZUrVwqdTieWL18uTp06JcaMGSNCQkJEenq62kXzCtnZ2eLIkSPiyJEjAoB48803xZEjR8Qff/whhBBizpw5IiQkRHz99dfi+PHj4t577xXNmjUTeXl5Kpe86hk7dqwIDg4WO3fuFGlpaabp+vXrpmUef/xx0bhxY/HDDz+IgwcPiri4OBEXF6diqauuSZMmiR9//FEkJyeL48ePi0mTJgmNRiO+//57IQT3tSeUPFtKCO5zV3r22WfFzp07RXJysti9e7dISEgQ9erVE5mZmUII9+5rhhsXee+990Tjxo2Fn5+f6N69u9i3b5/aRfIaO3bsEABumEaOHCmEkKeDT506VYSFhQmdTifuvPNOcfbsWXULXUWVtZ8BiGXLlpmWycvLE0888YQIDQ0VgYGBYtCgQSItLU29QldhjzzyiGjSpInw8/MT9evXF3feeacp2AjBfe0JpcMN97nrDB06VERERAg/Pz/RsGFDMXToUHH+/HnT8+7c1xohhKh4/Q8RERFR5cA+N0RERORVGG6IiIjIqzDcEBERkVdhuCEiIiKvwnBDREREXoXhhoiIiLwKww0RERF5FYYbIiIi8ioMN0RU7Wk0Gqxfv17tYhCRizDcEJGqHn74YWg0mhumvn37ql00IqqifNUuABFR3759sWzZMovHdDqdSqUhoqqONTdEpDqdTofw8HCLKTQ0FIBsMlq0aBH69euHgIAANG/eHGvWrLFYPykpCb169UJAQADq1q2LMWPGICcnx2KZpUuXokOHDtDpdIiIiMD48eMtnr9y5QoGDRqEwMBAtGrVChs2bHDvmyYit2G4IaJKb+rUqbj//vtx7NgxDB8+HP/5z39w+vRpAEBubi769OmD0NBQHDhwAKtXr8a2bdsswsuiRYswbtw4jBkzBklJSdiwYQNatmxp8RozZ87EkCFDcPz4cfTv3x/Dhw/H1atXPfo+ichFXHJtcSIiJ40cOVL4+PiImjVrWkyvvvqqEEIIAOLxxx+3WCc2NlaMHTtWCCHE4sWLRWhoqMjJyTE9v3HjRqHVakV6eroQQojIyEjx4osvWi0DADFlyhTT/ZycHAFAfPfddy57n0TkOexzQ0Squ+OOO7Bo0SKLx+rUqWOaj4uLs3guLi4OR48eBQCcPn0a0dHRqFmzpun5+Ph4GI1GnD17FhqNBpcuXcKdd95pswydOnUyzdesWRNBQUHIzMx09i0RkYoYbohIdTVr1ryhmchVAgIC7FquRo0aFvc1Gg2MRqM7ikREbsY+N0RU6e3bt++G++3atQMAtGvXDseOHUNubq7p+d27d0Or1aJNmzaoXbs2mjZtiu3bt3u0zESkHtbcEJHqCgoKkJ6ebvGYr68v6tWrBwBYvXo1unbtin/961/4/PPPsX//fnz00UcAgOHDh2P69OkYOXIkZsyYgcuXL+PJJ5/EQw89hLCwMADAjBkz8Pjjj6NBgwbo168fsrOzsXv3bjz55JOefaNE5BEMN0Skus2bNyMiIsLisTZt2uDMmTMA5JlMK1euxBNPPIGIiAisWLEC7du3BwAEBgZiy5YtmDBhArp164bAwEDcf//9ePPNN03bGjlyJPLz8/HWW2/hueeeQ7169TB48GDPvUEi8iiNEEKoXQgiIms0Gg3WrVuHgQMHql0UIqoi2OeGiIiIvArDDREREXkV9rkhokqNLedE5CjW3BAREZFXYbghIiIir8JwQ0RERF6F4YaIiIi8CsMNEREReRWGGyIiIvIqDDdERETkVRhuiIiIyKv8P4CoTgT2madTAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1237,7 +1237,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -1262,27 +1262,6 @@ "wandb.finish()" ] }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[array([-1.9178902, -2.3779838, -3.2821167], dtype=float32),\n", - " array([-1.9409903 , 0.81883615, -2.4894352 ], dtype=float32)]" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "predictions" - ] - }, { "attachments": {}, "cell_type": "markdown", @@ -1293,12 +1272,12 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 23, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwhElEQVR4nO3de3SU1b3G8WcymITcCZAbhhBAkKjcBQJaoXIJKhd7BIsKBFnahWChaLmccxTwUsBqC8cLWj2CrVphHQUD2iCiiCJ3jMq1QLkJgSBoAtgEmHnPH2NGxpCQhEnemZ3vZ61Z9N2z551fpph52Hu/+3VYlmUJAAAgyIXYXQAAAIA/EGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxQz+4CapPb7daRI0cUHR0th8NhdzkAAKASLMvSqVOnlJKSopCQ8sdj6lSoOXLkiFJTU+0uAwAAVMOhQ4d05ZVXlvt8nQo10dHRkjwfSkxMjM3VAACAyigqKlJqaqr3e7w8dSrUlE45xcTEEGoAAAgyl1o6wkJhAABgBEINAAAwAqEGAAAYoU6tqaksl8ulc+fO2V0GAlRoaGiFlxQCAOxBqLmAZVk6evSovv/+e7tLQQALCQlRenq6QkND7S4FAHABQs0FSgNNQkKCIiIi2KAPZZRu4Jifn6+mTZvydwQAAgih5kcul8sbaBo2bGh3OQhgjRs31pEjR3T+/HldccUVdpcDAPhRUC0MWL16tQYMGKCUlBQ5HA4tWbLEb+cuXUMTERHht3PCTKXTTi6Xy+ZKAAAXCqpQc+bMGbVr107PP/98jb0H0wm4FP6OAEBgCqrpp/79+6t///52lwEAl8/tkg58Lp0+JkUlSmndpRCn3VUBQS2oQk1VlZSUqKSkxHtcVFRkYzUA8KPtOVLuZKnoyE9tMSlS1mwpY6B9dQFBLqimn6pq5syZio2N9T64Q/flyc7O1uDBg73HPXv21IQJEy7rnP44BxBUtudIi0b4BhpJKsr3tG/PsacuwABGh5qpU6eqsLDQ+zh06FCNv6fLbWnt3hN6N++w1u49IZfbqvH3zM7OlsPhkMPhUGhoqFq2bKnHHntM58+fr9H3feedd/T4449Xqu+qVavkcDjK7AFUlXMAQc/t8ozQ6GK/F35sy53i6QegyoyefgoLC1NYWFitvV/u1nzNWLpd+YXF3rbk2HBNG5ChrGuTa/S9s7KyNH/+fJWUlOj999/X2LFjdcUVV2jq1Kk+/c6ePeu3TePi4+MD4hxA0DjwedkRGh+WVHTY0y/9xlorCzCF0SM1tSl3a77GvL7FJ9BI0tHCYo15fYtyt+bX6PuHhYUpKSlJaWlpGjNmjHr37q2cnBzvlNGTTz6plJQUtW7dWpJ06NAhDR06VHFxcYqPj9egQYO0f/9+7/lcLpcmTpyouLg4NWzYUJMmTZJl+f7r8udTRyUlJZo8ebJSU1MVFhamli1b6n//93+1f/9+9erVS5LUoEEDORwOZWdnX/Qc3333nUaMGKEGDRooIiJC/fv31+7du73PL1iwQHFxcVq+fLnatGmjqKgoZWVlKT//p8931apV6tKliyIjIxUXF6cePXrowIEDfvqkgctw+ph/+wHwEVSh5vTp08rLy1NeXp4kad++fcrLy9PBgwdtrcvltjRj6faKBpQ1Y+n2WpmKKlW/fn2dPXtWkrRy5Urt2rVLK1as0LJly3Tu3Dn169dP0dHR+vTTT7VmzRpvOCh9zTPPPKMFCxbo1Vdf1WeffaaTJ09q8eLFFb7niBEj9Pe//13/8z//ox07duill15SVFSUUlNT9fbbb0uSdu3apfz8fM2dO/ei58jOztamTZuUk5OjtWvXyrIs3XLLLT734vrhhx/09NNP629/+5tWr16tgwcP6uGHH5YknT9/XoMHD9ZNN92kr776SmvXrtX999/PZdgIDFGJ/u0HwEdQTT9t2rTJ+y9+SZo4caIkaeTIkVqwYIFNVUkb9p0sM0JzIUtSfmGxNuw7qcwWNbtbsWVZWrlypZYvX64HH3xQx48fV2RkpF555RXvtNPrr78ut9utV155xftlP3/+fMXFxWnVqlXq27ev5syZo6lTp+pXv/qVJOnFF1/U8uXLy33ff/7zn1q0aJFWrFih3r17S5KaN2/ufb50mikhIUFxcXEXPcfu3buVk5OjNWvWqHv37pKkN954Q6mpqVqyZImGDBkiybNR4osvvqgWLVpIksaNG6fHHntMkucKt8LCQt12223e59u0aVP1DxKoCWndPVc5FeXr4utqHJ7n07rXdmWAEYIq1PTs2bPMFEggKDhVfqCpTr/qWLZsmaKionTu3Dm53W7dddddmj59usaOHavrrrvOZx3Nl19+qT179ig6OtrnHMXFxdq7d68KCwuVn5+vrl27ep+rV6+eOnfuXO7nn5eXJ6fTqZtuuqnaP8OOHTtUr149n/dt2LChWrdurR07dnjbIiIivIFFkpKTk1VQUCDJE56ys7PVr18/9enTR71799bQoUOVnFyza5qASglxei7bXjRCkkO+webH0cSsWexXA1RTUE0/BaqE6HC/9quOXr16KS8vT7t379a///1vvfbaa4qMjJQk75+lTp8+rU6dOnmn8kof//znP3XXXXdV6/3r169/2T9DZf38fksOh8MnbM2fP19r165V9+7dtXDhQrVq1Urr1q2rtfqACmUMlIb+VYr5WdCOSfG0s08NUG1BNVITqLqkxys5NlxHC4vLG1BWUmy4uqTX3JU+kZGRatmyZaX6duzYUQsXLlRCQoJiYmIu2ic5OVnr16/XL37xC0metSqbN29Wx44dL9r/uuuuk9vt1ieffOKdfrpQZe6X1KZNG50/f17r16/3Tj+dOHFCu3btUkZGRqV+tlIdOnRQhw4dNHXqVGVmZurNN99Ut27dqnQOoMZkDJSuvpUdhQE/Y6TGD5whDk0b4PnS/fly1NLjaQMy5AwJjMWqd999txo1aqRBgwbp008/1b59+7Rq1Sr99re/1TfffCNJGj9+vGbNmqUlS5Zo586deuCBB8rsMXOhZs2aaeTIkbr33nu1ZMkS7zkXLVokSUpLS5PD4dCyZct0/PhxnT59usw5rrrqKg0aNEj33XefPvvsM3355Ze655571KRJEw0aNKhSP9u+ffs0depUrV27VgcOHNAHH3yg3bt3s64GgSfE6bls+7o7PH8SaGqEHXuHwT6EGj/JujZZ8+7pqKRY3ymmpNhwzbunY43vU1MVERERWr16tZo2bapf/epXatOmjUaPHq3i4mLvyM1DDz2k4cOHa+TIkcrMzFR0dLRuv/32Cs87b9483XHHHXrggQd09dVX67777tOZM2ckSU2aNNGMGTM0ZcoUJSYmaty4cRc9x/z589WpUyfddtttyszMlGVZev/998tMOVX0s+3cuVP/8R//oVatWun+++/X2LFj9Zvf/KYKnxAAE+RuzdcNsz/SsJfXafxbeRr28jrdMPujGt9iA/ZxWIG48raGFBUVKTY2VoWFhWWmXYqLi7Vv3z6lp6crPLz6a19cbksb9p1UwaliJUR7ppwCZYQG/uGvvysAak7p3mE//4Ir/W0caP/YRMUq+v6+EGtq/MwZ4qjxy7YBAOW71N5hDnn2DuuTkcQ/Og3D9BMAwChV2TsMZiHUAACMEgh7h8EehBoAgFECYe8w2INQAwAwSuneYeWtlnFISq7hvcNgD0INAMAowbZ3GPyHUAMAME4w7R0G/+GSbgCAkbKuTVafjCT2DqtDGKmBbaZPn6727dvbXYZ69uypCRMm2F0GgBpQunfYoPZNlNmiIYHGcIQaAxw9elTjx49Xy5YtFR4ersTERPXo0UPz5s3TDz/8YHd51bZq1So5HI4K7zll5/kAAIGF6Sd/c7tq9c67//rXv9SjRw/FxcXpD3/4g6677jqFhYXp66+/1l/+8hc1adJEAwcOvOhrz507V+l7KgWys2fPeu8CDgCouxip8aftOdKca6XXbpPeHu35c861nvYa8sADD6hevXratGmThg4dqjZt2qh58+YaNGiQ3nvvPQ0YMMDb1+FwaN68eRo4cKAiIyP15JNPSvLciLJFixYKDQ1V69at9be//c37mv3798vhcCgvL8/b9v3338vhcGjVqlWSfhoBWblypTp37qyIiAh1795du3bt8ql11qxZSkxMVHR0tPcGmuXZv3+/evXqJUlq0KCBHA6HsrOzJXmmi8aNG6cJEyaoUaNG6tev3yXrrOh8kuR2uzVp0iTFx8crKSlJ06dPr+z/BQCAAEGo8ZftOdKiEVLREd/2onxPew0EmxMnTuiDDz7Q2LFjFRkZedE+Dofv/PH06dN1++236+uvv9a9996rxYsXa/z48XrooYe0detW/eY3v9GoUaP08ccfV7me//qv/9IzzzyjTZs2qV69err33nu9zy1atEjTp0/XH/7wB23atEnJycl64YUXyj1Xamqq3n77bUnSrl27lJ+fr7lz53qff+211xQaGqo1a9boxRdfvGRtlTlfZGSk1q9fr6eeekqPPfaYVqxYUeXPAABgH6af/MHtknInSxXdPi13inT1rX6ditqzZ48sy1Lr1q192hs1auQdBRk7dqxmz57tfe6uu+7SqFGjvMfDhg1Tdna2HnjgAUnSxIkTtW7dOj399NPekY3KevLJJ3XTTTdJkqZMmaJbb71VxcXFCg8P15w5czR69GiNHj1akvTEE0/oww8/LHe0xul0Kj7eszFWQkKC4uLifJ6/6qqr9NRTT3mP9+/fX2Ftlzpf27ZtNW3aNO+5n3vuOa1cuVJ9+vSp1M8OALAfIzX+cODzsiM0Piyp6LCnXy3YsGGD8vLydM0116ikpMTnuc6dO/sc79ixQz169PBp69Gjh3bs2FHl923btq33fycne/aAKCgo8L5P165dffpnZmZW+T1KderUqdqvvZgLa5c89ZfWDgAIDozU+MPpY/7tV0ktW7aUw+Eos3alefPmkqT69euXeU1501TlCQnx5F7L+mkU6ty5cxfte+Gi49JpL7fbXaX3q6yf/xxVqfNifr5g2uFw1FjtAICawUiNP0Ql+rdfJTVs2FB9+vTRc889pzNnzlTrHG3atNGaNWt82tasWaOMDM8W440bN5Yk5efne5+/cDFuVd5n/fr1Pm3r1q2r8DWlVzS5XK5Lnr8ydVblfACA4MNIjT+kdZdiUjyLgi+6rsbheT6tu9/f+oUXXlCPHj3UuXNnTZ8+XW3btlVISIg2btyonTt3XnKa5ve//72GDh2qDh06qHfv3lq6dKneeecdffjhh5I8oz3dunXTrFmzlJ6eroKCAv33f/93lescP368srOz1blzZ/Xo0UNvvPGGtm3b5h1Vupi0tDQ5HA4tW7ZMt9xyi+rXr6+oqKiL9q1MnVU5HwAg+DBS4w8hTimrdDFuObdPy5pVI/vVtGjRQl988YV69+6tqVOnql27durcubOeffZZPfzww3r88ccrfP3gwYM1d+5cPf3007rmmmv00ksvaf78+erZs6e3z6uvvqrz58+rU6dOmjBhgp544okq13nnnXfqkUce0aRJk9SpUycdOHBAY8aMqfA1TZo00YwZMzRlyhQlJiZq3LhxFfa/VJ1VPR8AILg4rAsXIRiuqKhIsbGxKiwsVExMjM9zxcXF2rdvn9LT0xUeHl7OGS5he47nKqgLFw3HNPEEmoyLb4CH4OOXvysAgEqr6Pv7Qkw/+VPGQM9l27W4ozAAAPAg1PhbiFNKv9HuKgAAqHNYUwMAAIxAqAEAAEYg1PxMHVo3jWri7wgABCZCzY9Kd5T94YcfbK4Ege7s2bOSPPeTAgAEDhYK/8jpdCouLs57v5+IiIgyd7gG3G63jh8/roiICNWrx38+ABBI+K18gaSkJEniRoaoUEhIiJo2bUroBYAAQ6i5gMPhUHJyshISEqp0M0TULaGhod4baAIAAgeh5iKcTifrJQAACDL8cxMAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEaoZ3cBAAAgyLld0oHPpdPHpKhEKa27FOKs9TIINQAAoPq250i5k6WiIz+1xaRIWbOljIG1WgrTTwAAoHq250iLRvgGGkkqyve0b8+p1XIINQAAoOrcLs8IjayLPPljW+4UT79aQqgBAABVd+DzsiM0Piyp6LCnXy0h1AAAgKo7fcy//fwg6ELN888/r2bNmik8PFxdu3bVhg0b7C4JAIC6JyrRv/38IKhCzcKFCzVx4kRNmzZNW7ZsUbt27dSvXz8VFBTYXRoAAHVLWnfPVU5ylNPBIcU08fSrJUEVav70pz/pvvvu06hRo5SRkaEXX3xRERERevXVV+0uDQCAuiXE6blsW1LZYPPjcdasWt2vJmhCzdmzZ7V582b17t3b2xYSEqLevXtr7dq1F31NSUmJioqKfB4AAMBPMgZKQ/8qxST7tsekeNpreZ+aoNl879tvv5XL5VJiou/cXGJionbu3HnR18ycOVMzZsyojfIAAKibMgZKV98aEDsKB81ITXVMnTpVhYWF3sehQ4fsLgkAAPOEOKX0G6Xr7vD8aUOgkYJopKZRo0ZyOp06dsz30rBjx44pKSnpoq8JCwtTWFhYbZQHAABsFjQjNaGhoerUqZNWrlzpbXO73Vq5cqUyMzNtrAwAAASCoBmpkaSJEydq5MiR6ty5s7p06aI5c+bozJkzGjVqlN2lAQAAmwVVqLnzzjt1/PhxPfroozp69Kjat2+v3NzcMouHAQBA3eOwLOtid6IyUlFRkWJjY1VYWKiYmBi7ywEAAJVQ2e/voFlTAwAAUBFCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEYJq8z0AtcDtCoi77QJAVRFqAPxke46UO1kqOvJTW0yKlDVbyhhoX10AUAlMPwHw2J4jLRrhG2gkqSjf0749x566AKCSCDUAPFNOuZMlXeyuKT+25U7x9AOAAEWoAeBZQ/PzERofllR02NMPAAIUoQaAZ1GwP/sBgA0INQA8Vzn5sx8A2IBQA8Bz2XZMiiRHOR0cUkwTTz8ACFCEGgCefWiyZv948PNg8+Nx1iz2qwEQ0Ag1ADwyBkpD/yrFJPu2x6R42tmnBkCAY/M9AD/JGChdfSs7CgMISoQaAL5CnFL6jXZXAQBVxvQTAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwQtCEmieffFLdu3dXRESE4uLi7C4HAAAEmKAJNWfPntWQIUM0ZswYu0sBAAABqJ7dBVTWjBkzJEkLFiywtxAAABCQgibUVEdJSYlKSkq8x0VFRTZWAwAAalLQTD9Vx8yZMxUbG+t9pKam2l0SAACoIbaGmilTpsjhcFT42LlzZ7XPP3XqVBUWFnofhw4d8mP1AAAgkNg6/fTQQw8pOzu7wj7Nmzev9vnDwsIUFhZW7dcDAIDgYWuoady4sRo3bmxnCQAAwBBBs1D44MGDOnnypA4ePCiXy6W8vDxJUsuWLRUVFWVvcQAAwHZBE2oeffRRvfbaa97jDh06SJI+/vhj9ezZ06aqAABAoHBYlmVV98XFxcVauHChzpw5oz59+uiqq67yZ21+V1RUpNjYWBUWFiomJsbucgAAQCVU9vu70iM1EydO1Llz5/Tss89K8uzwm5mZqW3btikiIkKTJk3SihUrlJmZefnVAwAAVFGlL+n+4IMP1KdPH+/xG2+8oQMHDmj37t367rvvNGTIED3xxBM1UiQAAMClVDrUHDx4UBkZGd7jDz74QHfccYfS0tLkcDg0fvx4ffHFFzVSJAAAwKVUOtSEhITowuU369atU7du3bzHcXFx+u677/xbHQAAQCVVOtS0adNGS5culSRt27ZNBw8eVK9evbzPHzhwQImJif6vEAAAoBIqvVB40qRJ+vWvf6333ntP27Zt0y233KL09HTv8++//766dOlSI0UCAABcSqVHam6//Xa9//77atu2rX73u99p4cKFPs9HRETogQce8HuBAAAAlVHpfWoee+wxPfzww4qIiKjpmmoM+9QAABB8Kvv9XemRmhkzZuj06dN+KQ4AAMDfKh1qLmPjYQAAgBpX6VAjSQ6Ho6bqAAAAuCxVuqFlq1atLhlsTp48eVkFAQAAVEeVQs2MGTMUGxtbU7UAAABUW5VCza9//WslJCTUVC0AAADVVuk1NaynAQAAgYyrnwAAgBEqPf3kdrtrsg4AAIDLUqVLugEAAAIVoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMUM/uAoBKc7ukA59Lp49JUYlSWncpxGl3VQCAAEGoQXDYniPlTpaKjvzUFpMiZc2WMgbaVxcAIGAw/YTAtz1HWjTCN9BIUlG+p317jj11AQACCqEGgc3t8ozQyLrIkz+25U7x9AMA1GmEGgS2A5+XHaHxYUlFhz39AAB1GqEGge30Mf/2AwAYi1CDwBaV6N9+AABjEWoQ2NK6e65ykqOcDg4ppomnHwCgTiPUILCFOD2XbUsqG2x+PM6axX41AABCDYJAxkBp6F+lmGTf9pgUTzv71AAAxOZ7CBYZA6Wrb2VHYQBAuQg1CB4hTin9RrurAAAEKKafAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBu3RfJpfb0oZ9J1VwqlgJ0eHqkh4vZ4jD7rIAAKhzCDWXIXdrvmYs3a78wmJvW3JsuKYNyFDWtck2VgYAQN3D9FM15W7N15jXt/gEGkk6WlisMa9vUe7WfJsqAxAMXG5La/ee0Lt5h7V27wm53JbdJQFBj5GaanC5Lc1Yul0X+xVkSXJImrF0u/pkJDEVBaAMRnmBmsFITTVs2HeyzAjNhSxJ+YXF2rDvZO0VBSAoMMoL1BxCTTUUnCo/0FSnH4C64VKjvJJnlJepKKB6CDXVkBAd7td+AOoGRnmBmkWoqYYu6fFKjg1XeatlHPLMj3dJj6/NsgAEOEZ5gZoVFKFm//79Gj16tNLT01W/fn21aNFC06ZN09mzZ22pxxni0LQBGZJUJtiUHk8bkMEiYQA+GOUFalZQhJqdO3fK7XbrpZde0rZt2/TnP/9ZL774ov7zP//Ttpqyrk3WvHs6KinW95dPUmy45t3TkSsYAJTBKC9QsxyWZQXlirQ//vGPmjdvnv71r3+V26ekpEQlJSXe46KiIqWmpqqwsFAxMTF+qYMdhQFURenVT5J8FgyX/tbgH0VAWUVFRYqNjb3k93dQjNRcTGFhoeLjK/7XzMyZMxUbG+t9pKam+r0OZ4hDmS0aalD7Jsps0ZBAA6BCjPICNScoR2r27NmjTp066emnn9Z9991Xbr/aGKkBgOpglBeovMqO1Ni6o/CUKVM0e/bsCvvs2LFDV199tff48OHDysrK0pAhQyoMNJIUFhamsLAwv9QKAP5UOsqLGuZ2SQc+l04fk6ISpbTuUojT7qpQQ2wdqTl+/LhOnDhRYZ/mzZsrNDRUknTkyBH17NlT3bp104IFCxQSUrXZs8omPQCAAbbnSLmTpaIjP7XFpEhZs6WMgfbVhSqr7Pd30Ew/HT58WL169VKnTp30+uuvy+msetIm1ABAHbE9R1o0Qiqzf/OPU3xD/0qwCSJGLRQ+fPiwevbsqaZNm+rpp5/W8ePHdfToUR09etTu0gAAgcbt8ozQVHRDitwpnn4wSlDcpXvFihXas2eP9uzZoyuvvNLnuSAZaAIA1JYDn/tOOZVhSUWHPf3Sb6y1slDzgmKkJjs7W5ZlXfQBAICP08f82w9BIyhCDQAAlRaV6N9+CBqEGgCAWdK6e65yquiGFDFNPP1gFEINAMAsIU7PZduSyr3tcNYs9qsxEKEGAGCejIGey7ZjfnbbiZgULuc2WFBc/QQAQJVlDJSuvpUdhesQQg0AwFwhTi7brkOYfgIAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEbj3E4KGy21pw76TKjhVrITocHVJj5czxGF3WQCAAEGouVxuF3eArQW5W/M1Y+l25RcWe9uSY8M1bUCGsq5NtrEyAECgINRcju05Uu5kqejIT20xKVLWbM8t7+EXuVvzNeb1LbJ+1n60sFhjXt+iefd0JNgAAFhTU23bc6RFI3wDjSQV5Xvat+fYU5dhXG5LM5ZuLxNoJHnbZizdLpf7Yj0AAHUJoaY63C7PCE1FX7W5Uzz9cFk27DvpM+X0c5ak/MJibdh3svaKAgAEJEJNdRz4vOwIjQ9LKjrs6YfLUnCq/EBTnX4AAHMRaqrj9DH/9kO5EqLD/doPAGAuQk11RCX6tx/K1SU9Xsmx4Srvwm2HPFdBdUmPr82yAAABiFBTHWndPVc5VfRVG9PE0w+XxRni0LQBGZLKftqlx9MGZLBfDQCAUFMtIU7PZduSyv2qzZrFfjV+knVtsubd01FJsb5TTEmx4VzODQABwOW2tHbvCb2bd1hr956w7YpUh2VZdeZa2KKiIsXGxqqwsFAxMTGXf8KL7lPTxBNo2KfG79hRGAACT21sjlrZ729CzeViR2EAQB1V3uaopf/c9NdoemW/v9lR+HKFOKX0G+2uAgCAWnWpzVEd8myO2icjqdZG1VlTAwAAqiwQN0cl1AAAgCoLxM1RCTUAAKDKAnFzVEINAACoskDcHJVQAwAAqiwQN0cl1AAAgGoJtM1RuaQbAABUW9a1yeqTkRQQm6MSagAAwGVxhjiU2aKh3WUw/QQAAMxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYARCDQAAMAKhBgAAGIFQAwAAjECoAQAARiDUAAAAIxBqAACAEQg1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAiEGgAAYISgCTUDBw5U06ZNFR4eruTkZA0fPlxHjhyxuywAABAggibU9OrVS4sWLdKuXbv09ttva+/evbrjjjvsLgsAAAQIh2VZlt1FVEdOTo4GDx6skpISXXHFFZV6TVFRkWJjY1VYWKiYmJgarhAAAPhDZb+/69ViTX5z8uRJvfHGG+revXuFgaakpEQlJSXe46KiotooDwAA2CBopp8kafLkyYqMjFTDhg118OBBvfvuuxX2nzlzpmJjY72P1NTUWqoUAADUNltDzZQpU+RwOCp87Ny509v/97//vb744gt98MEHcjqdGjFihCqaPZs6daoKCwu9j0OHDtXGjwUAAGxg65qa48eP68SJExX2ad68uUJDQ8u0f/PNN0pNTdXnn3+uzMzMSr0fa2oAAAg+QbGmpnHjxmrcuHG1Xut2uyXJZ80MAACou4JiofD69eu1ceNG3XDDDWrQoIH27t2rRx55RC1atKj0KA0AADBbUCwUjoiI0DvvvKObb75ZrVu31ujRo9W2bVt98sknCgsLs7s8AAAQAIJipOa6667TRx99ZHcZAAAggAXFSA0AAMClEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBGC4jYJAGqPy21pw76TKjhVrITocHVJj5czxGF3WQBwSYQaAF65W/M1Y+l25RcWe9uSY8M1bUCGsq5NtrEyALg0pp8ASPIEmjGvb/EJNJJ0tLBYY17fotyt+TZVBgCVQ6gBIJfb0oyl22Vd5LnSthlLt8vlvlgPAAgMhBoA2rDvZJkRmgtZkvILi7Vh38naKwoAqohQA0AFp8oPNNXpBwB2INQAUEJ0uF/7AYAdCDUA1CU9Xsmx4Srvwm2HPFdBdUmPr82yAKBKCDUA5AxxaNqADEkqE2xKj6cNyGC/GgABjVADQJKUdW2y5t3TUUmxvlNMSbHhmndPR/apARDw2HwPgFfWtcnqk5HEjsIAghKhBoAPZ4hDmS0a2l0GAFQZ008AAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEYg1AAAACMQagAAgBEINQAAwAh1akdhy7IkSUVFRTZXAgAAKqv0e7v0e7w8dSrUnDp1SpKUmppqcyUAAKCqTp06pdjY2HKfd1iXij0GcbvdOnLkiKKjo+Vw+O8GfUVFRUpNTdWhQ4cUExPjt/OiLD7r2sHnXDv4nGsHn3PtqMnP2bIsnTp1SikpKQoJKX/lTJ0aqQkJCdGVV15ZY+ePiYnhP5hawmddO/icawefc+3gc64dNfU5VzRCU4qFwgAAwAiEGgAAYARCjR+EhYVp2rRpCgsLs7sU4/FZ1w4+59rB51w7+JxrRyB8znVqoTAAADAXIzUAAMAIhBoAAGAEQg0AADACoQYAABiBUOMHzz//vJo1a6bw8HB17dpVGzZssLsk46xevVoDBgxQSkqKHA6HlixZYndJxpk5c6auv/56RUdHKyEhQYMHD9auXbvsLstI8+bNU9u2bb2blGVmZuof//iH3WUZbdasWXI4HJowYYLdpRhn+vTpcjgcPo+rr77alloINZdp4cKFmjhxoqZNm6YtW7aoXbt26tevnwoKCuwuzShnzpxRu3bt9Pzzz9tdirE++eQTjR07VuvWrdOKFSt07tw59e3bV2fOnLG7NONceeWVmjVrljZv3qxNmzbpl7/8pQYNGqRt27bZXZqRNm7cqJdeeklt27a1uxRjXXPNNcrPz/c+PvvsM1vq4JLuy9S1a1ddf/31eu655yR57i+VmpqqBx98UFOmTLG5OjM5HA4tXrxYgwcPtrsUox0/flwJCQn65JNP9Itf/MLucowXHx+vP/7xjxo9erTdpRjl9OnT6tixo1544QU98cQTat++vebMmWN3WUaZPn26lixZory8PLtLYaTmcpw9e1abN29W7969vW0hISHq3bu31q5da2NlwOUrLCyU5PmyRc1xuVx66623dObMGWVmZtpdjnHGjh2rW2+91ef3NPxv9+7dSklJUfPmzXX33Xfr4MGDttRRp25o6W/ffvutXC6XEhMTfdoTExO1c+dOm6oCLp/b7daECRPUo0cPXXvttXaXY6Svv/5amZmZKi4uVlRUlBYvXqyMjAy7yzLKW2+9pS1btmjjxo12l2K0rl27asGCBWrdurXy8/M1Y8YM3Xjjjdq6dauio6NrtRZCDYAyxo4dq61bt9o2L14XtG7dWnl5eSosLNT//d//aeTIkfrkk08INn5y6NAhjR8/XitWrFB4eLjd5Ritf//+3v/dtm1bde3aVWlpaVq0aFGtT6cSai5Do0aN5HQ6dezYMZ/2Y8eOKSkpyaaqgMszbtw4LVu2TKtXr9aVV15pdznGCg0NVcuWLSVJnTp10saNGzV37ly99NJLNldmhs2bN6ugoEAdO3b0trlcLq1evVrPPfecSkpK5HQ6bazQXHFxcWrVqpX27NlT6+/NmprLEBoaqk6dOmnlypXeNrfbrZUrVzI3jqBjWZbGjRunxYsX66OPPlJ6errdJdUpbrdbJSUldpdhjJtvvllff/218vLyvI/OnTvr7rvvVl5eHoGmBp0+fVp79+5VcnJyrb83IzWXaeLEiRo5cqQ6d+6sLl26aM6cOTpz5oxGjRpld2lGOX36tE/q37dvn/Ly8hQfH6+mTZvaWJk5xo4dqzfffFPvvvuuoqOjdfToUUlSbGys6tevb3N1Zpk6dar69++vpk2b6tSpU3rzzTe1atUqLV++3O7SjBEdHV1mPVhkZKQaNmzIOjE/e/jhhzVgwAClpaXpyJEjmjZtmpxOp4YNG1brtRBqLtOdd96p48eP69FHH9XRo0fVvn175ebmllk8jMuzadMm9erVy3s8ceJESdLIkSO1YMECm6oyy7x58yRJPXv29GmfP3++srOza78ggxUUFGjEiBHKz89XbGys2rZtq+XLl6tPnz52lwZU2TfffKNhw4bpxIkTaty4sW644QatW7dOjRs3rvVa2KcGAAAYgTU1AADACIQaAABgBEINAAAwAqEGAAAYgVADAACMQKgBAABGINQAAAAjEGoAAIARCDUAjJGdna3BgwfbXQYAmxBqAFRJdna2HA5HmUdWVpbdpWnu3LkBc9sMh8OhJUuW2F0GUKdw7ycAVZaVlaX58+f7tIWFhdlUjeRyueRwOBQbG2tbDQDsx0gNgCoLCwtTUlKSz6NBgwZatWqVQkND9emnn3r7PvXUU0pISNCxY8ckeW6YOW7cOI0bN06xsbFq1KiRHnnkEV14G7qSkhI9/PDDatKkiSIjI9W1a1etWrXK+/yCBQsUFxennJwcZWRkKCwsTAcPHiwz/dSzZ089+OCDmjBhgho0aKDExES9/PLLOnPmjEaNGqXo6Gi1bNlS//jHP3x+vq1bt6p///6KiopSYmKihg8frm+//dbnvL/97W81adIkxcfHKykpSdOnT/c+36xZM0nS7bffLofD4T0GULMINQD8pmfPnpowYYKGDx+uwsJCffHFF3rkkUf0yiuv+Ny5/rXXXlO9evW0YcMGzZ07V3/605/0yiuveJ8fN26c1q5dq7feektfffWVhgwZoqysLO3evdvb54cfftDs2bP1yiuvaNu2bUpISLhoTa+99poaNWqkDRs26MEHH9SYMWM0ZMgQde/eXVu2bFHfvn01fPhw/fDDD5Kk77//Xr/85S/VoUMHbdq0Sbm5uTp27JiGDh1a5ryRkZFav369nnrqKT322GNasWKFJGnjxo2SPHc4z8/P9x4DqGEWAFTByJEjLafTaUVGRvo8nnzyScuyLKukpMRq3769NXToUCsjI8O67777fF5/0003WW3atLHcbre3bfLkyVabNm0sy7KsAwcOWE6n0zp8+LDP626++WZr6tSplmVZ1vz58y1JVl5eXpnaBg0a5PNeN9xwg/f4/PnzVmRkpDV8+HBvW35+viXJWrt2rWVZlvX4449bffv29TnvoUOHLEnWrl27Lnpey7Ks66+/3po8ebL3WJK1ePHicj5FADWBNTUAqqxXr16aN2+eT1t8fLwkKTQ0VG+88Ybatm2rtLQ0/fnPfy7z+m7dusnhcHiPMzMz9cwzz8jlcunrr7+Wy+VSq1atfF5TUlKihg0beo9DQ0PVtm3bS9Z6YR+n06mGDRvquuuu87aVjiAVFBRIkr788kt9/PHHioqKKnOuvXv3euv6+XsnJyd7zwHAHoQaAFUWGRmpli1blvv8559/Lkk6efKkTp48qcjIyEqf+/Tp03I6ndq8ebOcTqfPcxcGjfr16/sEo/JcccUVPscOh8OnrfQcbrfb+/4DBgzQ7Nmzy5wrOTm5wvOWngOAPQg1APxq7969+t3vfqeXX35ZCxcu1MiRI/Xhhx8qJOSnJXzr16/3ec26det01VVXyel0qkOHDnK5XCooKNCNN95Y2+WrY8eOevvtt9WsWTPVq1f9X5FXXHGFXC6XHysDcCksFAZQZSUlJTp69KjP49tvv5XL5dI999yjfv36adSoUZo/f76++uorPfPMMz6vP3jwoCZOnKhdu3bp73//u5599lmNHz9ektSqVSvdfffdGjFihN555x3t27dPGzZs0MyZM/Xee+/V+M82duxYnTx5UsOGDdPGjRu1d+9eLV++XKNGjapSSGnWrJlWrlypo0eP6rvvvqvBigGUYqQGQJXl5ub6TMVIUuvWrXXXXXfpwIEDWrZsmSTPdM1f/vIXDRs2TH379lW7du0kSSNGjNC///1vdenSRU6nU+PHj9f999/vPdf8+fP1xBNP6KGHHtLhw4fVqFEjdevWTbfddluN/2wpKSlas2aNJk+erL59+6qkpERpaWnKysryGW26lGeeeUYTJ07Uyy+/rCZNmmj//v01VzQASZLDsi7YHAIAaljPnj3Vvn17zZkzx+5SABiG6ScAAGAEQg0AADAC008AAMAIjNQAAAAjEGoAAIARCDUAAMAIhBoAAGAEQg0AADACoQYAABiBUAMAAIxAqAEAAEb4f4NP4qyL5TnbAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9pUlEQVR4nO3deXxU1f3/8fckkIRAMjGQFWMMoISIbEEg4BJqgKBlsVbcQ5CiRbBgsED6s0JQi1ioWBfAUsFWrdBvhYLaKEZxwUgETGXNV2hYhCwoMmPCNwFn5vfHNCNjFhJIZjK5r+fjcR9y7z333s9MU/LmnHPvNTkcDocAAAAMyM/bBQAAAHgLQQgAABgWQQgAABgWQQgAABgWQQgAABgWQQgAABgWQQgAABhWO28X0NrZ7XYdO3ZMISEhMplM3i4HAAA0gsPh0HfffafY2Fj5+dXf70MQOodjx44pLi7O22UAAIDzcOTIEV188cX17icInUNISIgk5xcZGhrq5WoAAEBjWK1WxcXFuX6P14cgdA41w2GhoaEEIQAAfMy5prUwWRoAABgWQQgAABgWQQgAABgWc4Saic1m05kzZ7xdBlqp9u3by9/f39tlAAB+hCB0gRwOh0pLS3Xy5Elvl4JWLiwsTNHR0TyPCgBaEYLQBaoJQZGRkQoODuaXHGpxOBw6deqUysvLJUkxMTFerggAUIMgdAFsNpsrBHXu3Nnb5aAV69ChgySpvLxckZGRDJMBQCvBZOkLUDMnKDg42MuVwBfU/JwwlwwAWg+CUDNgOAyNwc8JALQ+PhWEPvzwQ40ZM0axsbEymUxav359g+03b94sk8lUayktLfVMwQAAn2OzO5R/4Bv9s/Co8g98I5vd4e2S0IJ8ao5QZWWl+vbtq3vuuUc/+9nPGn1cUVGR2+sxIiMjW6I8AICPy91VopyNe1RiqXJtizEHad6YJKX35kaHtsingtDo0aM1evToJh8XGRmpsLCw5i8I55SZmamTJ0+6eu9SU1PVr18/LV269LzP2RznAIAfy91Voqkv79CP+39KLVWa+vIOLbtrAGGoDfKpobHz1a9fP8XExGjEiBHasmVLg22rq6tltVrdlpbmjW7YzMxM11BhQECAevTooQULFuj7779v0eu+/vrrevTRRxvVtmZo88fPaGrKOQCgMWx2h3I27qkVgiS5tuVs3MMwWRvkUz1CTRUTE6Ply5dr4MCBqq6u1sqVK5WamqqtW7dqwIABdR6zcOFC5eTkeKxGb3bDpqena9WqVaqurtZbb72ladOmqX379srOznZrd/r0aQUEBDTLNcPDw1vFOQDgbAXFJ9z+Hv4xh6QSS5UKik8opTuPS2lL2nSPUM+ePXXfffcpOTlZQ4cO1YsvvqihQ4fqqaeeqveY7OxsWSwW13LkyJEWq6+mG/bH/+er6YbN3VXSYteWpMDAQEVHRys+Pl5Tp05VWlqaNmzYoMzMTI0fP16PP/64YmNj1bNnT0nSkSNHNGHCBIWFhSk8PFzjxo3TwYMHXeez2WzKyspSWFiYOnfurNmzZ8vhcP/XU2pqqmbOnOlar66u1pw5cxQXF6fAwED16NFDf/7zn3Xw4EENHz5cknTRRRfJZDIpMzOzznN8++23ysjI0EUXXaTg4GCNHj1aX375pWv/6tWrFRYWprffflu9evVSp06dlJ6erpKSH77fzZs3a9CgQerYsaPCwsI0bNgwHTp0qJm+aQCtXfl39Yeg82kH39Gmg1BdBg0apP3799e7PzAwUKGhoW5LS2iN3bAdOnTQ6dOnJUl5eXkqKirSpk2b9MYbb+jMmTMaNWqUQkJC9NFHH2nLli2uQFFzzJIlS7R69Wq9+OKL+vjjj3XixAmtW7euwWtmZGTob3/7m/74xz9q7969WrFihTp16qS4uDj94x//kOSc7F5SUqKnn366znNkZmZq27Zt2rBhg/Lz8+VwOHTDDTe4Pa/n1KlTWrx4sf7617/qww8/1OHDh/XQQw9Jkr7//nuNHz9e1113nb744gvl5+fr3nvv5XZ3wEAiQ4KatR18R5seGqtLYWFhq3jFQWvqhnU4HMrLy9Pbb7+tBx54QMePH1fHjh21cuVK15DYyy+/LLvdrpUrV7oCwqpVqxQWFqbNmzdr5MiRWrp0qbKzs1139C1fvlxvv/12vdf93//9X61du1abNm1SWlqaJKlbt26u/TVDYA1Ndv/yyy+1YcMGbdmyRUOHDpUkvfLKK4qLi9P69et1yy23SHI+xHD58uXq3r27JGn69OlasGCBJMlqtcpiseinP/2pa3+vXr2a/kUC8FmDEsIVYw5SqaWqzn+gmiRFm4M0KIGh+bbGp4JQRUWFW29OcXGxCgsLFR4erksuuUTZ2dk6evSo/vKXv0iSli5dqoSEBF1xxRWqqqrSypUr9d577+mdd97x1kdwaQ3dsG+88YY6deqkM2fOyG6364477tD8+fM1bdo0XXnllW7zgv79739r//79CgkJcTtHVVWVDhw4IIvFopKSEg0ePNi1r127dho4cGCt4bEahYWF8vf313XXXXfen2Hv3r1q166d23U7d+6snj17au/eva5twcHBrpAjOeeP1bz7Kzw8XJmZmRo1apRGjBihtLQ0TZgwoVUEZgCe4e9n0rwxSZr68g6ZJLcwVNM3PG9Mkvz96Clua3wqCG3bts01b0SSsrKyJEkTJ07U6tWrVVJSosOHD7v2nz59WrNmzdLRo0cVHBysPn366N1333U7h7e0hm7Y4cOHa9myZQoICFBsbKzatfvhx6Fjx45ubSsqKpScnKxXXnml1nkiIiLO6/o179/yhPbt27utm0wmt4C2atUq/epXv1Jubq7WrFmjhx9+WJs2bdKQIUM8ViMA70rvHaNldw2odQNLNM8RatN8KgilpqbW27sgOSfFnm327NmaPXt2C1d1flpDN2zHjh3Vo0ePRrUdMGCA1qxZo8jIyHrnTcXExGjr1q269tprJTnn3mzfvr3eO/SuvPJK2e12ffDBB66hsbPV9EjZbLZ66+rVq5e+//57bd261TU09s0336ioqEhJSUmN+mw1+vfvr/79+ys7O1spKSl69dVXCUKAwaT3jtGIpGgVFJ9Q+XdVigxx/j1MT1DbZbjJ0q1FTTes9EO3a43W2A175513qkuXLho3bpw++ugjFRcXa/PmzfrVr36lr776SpI0Y8YMPfHEE1q/fr327dun+++/v9YzgM526aWXauLEibrnnnu0fv161znXrl0rSYqPj5fJZNIbb7yh48ePq6KiotY5LrvsMo0bN05TpkzRxx9/rH//+9+666671LVrV40bN65Rn624uFjZ2dnKz8/XoUOH9M477+jLL79knhBgUP5+JqV076xx/boqpXvnVvP3MFoGQciLarpho83uw1/R5qBW9wTT4OBgffjhh7rkkkv0s5/9TL169dLkyZNVVVXl6iGaNWuW7r77bk2cOFEpKSkKCQnRTTfd1OB5ly1bpp///Oe6//77lZiYqClTpqiyslKS1LVrV+Xk5Gju3LmKiorS9OnT6zzHqlWrlJycrJ/+9KdKSUmRw+HQW2+9VWs4rKHPtm/fPt188826/PLLde+992ratGm67777mvANAQB8kcnR0FgTZLVaZTabZbFYag0JVVVVqbi4WAkJCQoKOv+5PDa7g25YA2iunxcAwLk19Pv7bD41R6itqumGBQAAnsXQGAAAMCyCEAAAMCyCEAAAMCyCEAAAMCyCEAAAMCyCEAAAMCyCEAAAMCyCEHzK/Pnz1a9fP2+XodTUVM2cOdPbZQAALhBByKBKS0s1Y8YM9ejRQ0FBQYqKitKwYcO0bNkynTp1ytvlnbfNmzfLZDI1+I4zb54PANC68GTp1sBukw59IlWUSZ2ipPihkp9/i13uP//5j4YNG6awsDD97ne/05VXXqnAwEDt3LlTL7zwgrp27aqxY8fWeeyZM2ca/Q6v1uz06dOut9sDAIyLHiFv27NBWtpbeumn0j8mO/+7tLdzewu5//771a5dO23btk0TJkxQr1691K1bN40bN05vvvmmxowZ42prMpm0bNkyjR07Vh07dtTjjz8uyfmy1O7duysgIEA9e/bUX//6V9cxBw8elMlkUmFhoWvbyZMnZTKZtHnzZkk/9LTk5eVp4MCBCg4O1tChQ1VUVORW6xNPPKGoqCiFhIS4XvJan4MHD2r48OGSpIsuukgmk0mZmZmSnENZ06dP18yZM9WlSxeNGjXqnHU2dD5Jstvtmj17tsLDwxUdHa358+c39n8CAEArQRDypj0bpLUZkvWY+3ZriXN7C4Shb775Ru+8846mTZumjh071tnGZHJ/4ev8+fN10003aefOnbrnnnu0bt06zZgxQ7NmzdKuXbt03333adKkSXr//febXM//+3//T0uWLNG2bdvUrl073XPPPa59a9eu1fz58/W73/1O27ZtU0xMjJ5//vl6zxUXF6d//OMfkqSioiKVlJTo6aefdu1/6aWXFBAQoC1btmj58uXnrK0x5+vYsaO2bt2qJ598UgsWLNCmTZua/B0AALyHoTFvsduk3DmSHHXsdEgySblzpcQbm3WYbP/+/XI4HOrZs6fb9i5durh6W6ZNm6ZFixa59t1xxx2aNGmSa/32229XZmam7r//fklSVlaWPv30Uy1evNjVg9JYjz/+uK677jpJ0ty5c3XjjTeqqqpKQUFBWrp0qSZPnqzJkydLkh577DG9++679fYK+fv7Kzw8XJIUGRmpsLAwt/2XXXaZnnzySdf6wYMHG6ztXOfr06eP5s2b5zr3s88+q7y8PI0YMaJRnx0A4H30CHnLoU9q9wS5cUjWo852HlBQUKDCwkJdccUVqq6udts3cOBAt/W9e/dq2LBhbtuGDRumvXv3Nvm6ffr0cf05JiZGklReXu66zuDBg93ap6SkNPkaNZKTk8/72LqcXbvkrL+mdgCAb6BHyFsqypq3XSP16NFDJpOp1lycbt26SZI6dOhQ65j6htDq4+fnzNcOxw+9XWfOnKmz7dkTr2uG5Ox2e5Ou11g//hxNqbMuP540bjKZWqx2AEDLoEfIWzpFNW+7RurcubNGjBihZ599VpWVled1jl69emnLli1u27Zs2aKkpCRJUkREhCSppKTEtf/sCclNuc7WrVvdtn366acNHlNzJ5jNZjvn+RtTZ1POBwDwPfQIeUv8UCk01jkxus55Qibn/vihzX7p559/XsOGDdPAgQM1f/589enTR35+fvrss8+0b9++cw4h/frXv9aECRPUv39/paWlaePGjXr99df17rvvSnL2Kg0ZMkRPPPGEEhISVF5erocffrjJdc6YMUOZmZkaOHCghg0bpldeeUW7d+929V7VJT4+XiaTSW+88YZuuOEGdejQQZ06daqzbWPqbMr5AAC+hx4hb/Hzl9JrJiSbfrTzv+vpT7TI84S6d++uzz//XGlpacrOzlbfvn01cOBAPfPMM3rooYf06KOPNnj8+PHj9fTTT2vx4sW64oortGLFCq1atUqpqamuNi+++KK+//57JScna+bMmXrssceaXOett96q3/72t5o9e7aSk5N16NAhTZ06tcFjunbtqpycHM2dO1dRUVGaPn16g+3PVWdTzwcA8C0mx9kTJFCL1WqV2WyWxWJRaGio276qqioVFxcrISFBQUFB53eBPRucd4+dPXE6tKszBCXV/VBD+KZm+XkBADRKQ7+/z8bQmLcljXXeIu/BJ0sDAAAnglBr4OcvJVzj7SoAADAc5ggBAADDIggBAADDIgg1A+abozH4OQGA1ocgdAFqnix86tQpL1cCX1Dzc/LjJ1IDALyHydIXwN/fX2FhYa73SwUHB9d6czvgcDh06tQplZeXKywsTP7+3BEIAK0FQegCRUdHSxIv28Q5hYWFuX5eAACtA0HoAplMJsXExCgyMrJJL+yEsbRv356eIABohQhCzcTf359fdAAA+Bifmiz94YcfasyYMYqNjZXJZNL69evPeczmzZs1YMAABQYGqkePHlq9enWL1wkAAHyDTwWhyspK9e3bV88991yj2hcXF+vGG2/U8OHDVVhYqJkzZ+oXv/iF3n777RauFAAA+AKfGhobPXq0Ro8e3ej2y5cvV0JCgpYsWSJJ6tWrlz7++GM99dRTGjVqVJ3HVFdXq7q62rVutVovrGgAaC52G+8lBJqZTwWhpsrPz1daWprbtlGjRmnmzJn1HrNw4ULl5OS0cGUA0ER7Nki5cyTrsR+2hcZK6YucL28GcF58amisqUpLSxUVFeW2LSoqSlarVf/3f/9X5zHZ2dmyWCyu5ciRI54oFQDqt2eDtDbDPQRJkrXEuX3PBu/UBbQBbbpH6HwEBgYqMDDQ22UAgJPd5uwJUl2vaHFIMkm5c6XEGxkmA85Dm+4Rio6OVllZmdu2srIyhYaGqkOHDl6qCgCa4NAntXuC3Dgk61FnOwBN1qaDUEpKivLy8ty2bdq0SSkpKV6qCACaqKLs3G2a0g6AG58KQhUVFSosLFRhYaEk5+3xhYWFOnz4sCTn/J6MjAxX+1/+8pf6z3/+o9mzZ2vfvn16/vnntXbtWj344IPeKB8Amq5T1LnbNKUdADc+FYS2bdum/v37q3///pKkrKws9e/fX4888ogkqaSkxBWKJCkhIUFvvvmmNm3apL59+2rJkiVauXJlvbfOA0CrEz/UeXeY6nuhs0kK7epsB6DJTA6Ho64ZePgvq9Uqs9ksi8Wi0NBQb5cDwIhq7hqT5D5p+r/haMJfuIUe+JHG/v72qR4hADCkpLHOsBMa4749NJYQBFwgbp8HAF+QNNZ5izxPlgaaFUEIAHyFn7+UcI23qwDaFIbGAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYflcEHruued06aWXKigoSIMHD1ZBQUG9bVevXi2TyeS2BAUFebBaAADQmvlUEFqzZo2ysrI0b9487dixQ3379tWoUaNUXl5e7zGhoaEqKSlxLYcOHfJgxQAAoDXzqSD0hz/8QVOmTNGkSZOUlJSk5cuXKzg4WC+++GK9x5hMJkVHR7uWqKgoD1YMAABaM58JQqdPn9b27duVlpbm2ubn56e0tDTl5+fXe1xFRYXi4+MVFxencePGaffu3Q1ep7q6Wlar1W0BAABtk88Eoa+//lo2m61Wj05UVJRKS0vrPKZnz5568cUX9c9//lMvv/yy7Ha7hg4dqq+++qre6yxcuFBms9m1xMXFNevnAAAArYfPBKHzkZKSooyMDPXr10/XXXedXn/9dUVERGjFihX1HpOdnS2LxeJajhw54sGKAQCAJ7XzdgGN1aVLF/n7+6usrMxte1lZmaKjoxt1jvbt26t///7av39/vW0CAwMVGBh4QbUCAADf4DM9QgEBAUpOTlZeXp5rm91uV15enlJSUhp1DpvNpp07dyomJqalygQAAD7EZ3qEJCkrK0sTJ07UwIEDNWjQIC1dulSVlZWaNGmSJCkjI0Ndu3bVwoULJUkLFizQkCFD1KNHD508eVK///3vdejQIf3iF7/w5scAAACthE8FoVtvvVXHjx/XI488otLSUvXr10+5ubmuCdSHDx+Wn98PnVzffvutpkyZotLSUl100UVKTk7WJ598oqSkJG99BAAA0IqYHA6Hw9tFtGZWq1Vms1kWi0WhoaHeLgcAADRCY39/+8wcIQAAgOZGEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIbVztsFAAAA47HZHSooPqHy76oUGRKkQQnh8vczebwOghAAAPCo3F0lytm4RyWWKte2GHOQ5o1JUnrvGI/WwtAYAADwmNxdJZr68g63ECRJpZYqTX15h3J3lXi0HoIQAADwCJvdoZyNe+SoY1/NtpyNe2Sz19WiZRCEAACARxQUn6jVE3Q2h6QSS5UKik94rCaCEAAA8Ijy7+oPQefTrjkQhAAAgEdEhgQ1a7vmQBACAAAeMSghXDHmINV3k7xJzrvHBiWEe6wmghAAAPAIfz+T5o1JkqRaYahmfd6YJI8+T4ggBAAAPCa9d4yW3TVAsaHtNcRvj8b6faIhfnsUG9pey+4a4PHnCPFARQAA4FHpfp9pVNAcmU4fc21zBMXK5LdI0liP1kKPEAAA8Jw9G6S1GTJZj7ltNllLpLUZzv0eRBACAACeYbdJuXOkhh6pmDvX2c5DCEIAAMAzDn0i/agnyJ1Dsh51tvMQghAAAPCMirLmbdcMCEIAAMAzOkU1b7tm4HNB6LnnntOll16qoKAgDR48WAUFBQ22//vf/67ExEQFBQXpyiuv1FtvveWhSgEAgJv4oVJorGo/RaiGSQrt6mznIT4VhNasWaOsrCzNmzdPO3bsUN++fTVq1CiVl5fX2f6TTz7R7bffrsmTJ+vzzz/X+PHjNX78eO3atcvDlQMAAPn5S+mL/rtSzyMV059wtvMQk8Ph8Ny77i/Q4MGDddVVV+nZZ5+VJNntdsXFxemBBx7Q3Llza7W/9dZbVVlZqTfeeMO1bciQIerXr5+WL19e5zWqq6tVXV3tWrdarYqLi5PFYlFoaGgzfyIAAAxozwbn3WNnT5wO7eoMQUnN8xwhq9Uqs9l8zt/fPvNAxdOnT2v79u3Kzs52bfPz81NaWpry8/PrPCY/P19ZWVlu20aNGqX169fXe52FCxcqJyenWWoGAAB1SBorJd7ovDusosw5Jyh+qEd7gmr4zNDY119/LZvNpqgo9wlUUVFRKi0trfOY0tLSJrWXpOzsbFksFtdy5MiRCy8eAAC48/OXEq6Rrvy5879eCEGSD/UIeUpgYKACAwO9XQYAAPAAn+kR6tKli/z9/VVW5v5sgbKyMkVHR9d5THR0dJPaAwAAY/GZIBQQEKDk5GTl5eW5ttntduXl5SklJaXOY1JSUtzaS9KmTZvqbQ8AAIzFp4bGsrKyNHHiRA0cOFCDBg3S0qVLVVlZqUmTJkmSMjIy1LVrVy1cuFCSNGPGDF133XVasmSJbrzxRr322mvatm2bXnjhBW9+DAAA0Er4VBC69dZbdfz4cT3yyCMqLS1Vv379lJub65oQffjwYfn5/dDJNXToUL366qt6+OGH9Zvf/EaXXXaZ1q9fr969e3vrIwAAgFbEp54j5A2NfQ4BAABoPRr7+9tn5ggBAAA0N4IQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLJ96sjSAVspukw59IlWUSZ2ipPihkp+/t6sCgHMiCAG4MHs2SLlzJOuxH7aFxkrpi6Sksd6rCwAagaExAOdvzwZpbYZ7CJIka4lz+54N3qkLABqJIATg/Nhtzp4g1fW6wv9uy53rbAcArRRBCMD5OfRJ7Z4gNw7JetTZDgBaKYIQgPNTUda87QDACwhCAM5Pp6jmbQcAXkAQAnB+4oc67w6TqZ4GJim0q7MdALRSBCEA58fP33mLvKTaYei/6+lP8DwhAK0aQQjA+UsaK034ixQa4749NNa5necIAWjleKAigAuTNFZKvJEnSwPwSQQhABfOz19KuMbbVQBAkzE0BgAADIsgBAAADIsgBAAADIsgBAAADOuCJktXVVVpzZo1qqys1IgRI3TZZZc1V10AAAAtrtFBKCsrS2fOnNEzzzwjSTp9+rRSUlK0e/duBQcHa/bs2dq0aZNSUlJarFgAAIDm1OihsXfeeUcjRoxwrb/yyis6dOiQvvzyS3377be65ZZb9Nhjj7VIkQAAAC2h0UHo8OHDSkpKcq2/8847+vnPf674+HiZTCbNmDFDn3/+eYsUCQAA0BIaHYT8/PzkcDhc659++qmGDBniWg8LC9O3337bvNUBAAC0oEYHoV69emnjxo2SpN27d+vw4cMaPny4a/+hQ4cUFRXV/BUCAAC0kEZPlp49e7Zuu+02vfnmm9q9e7duuOEGJSQkuPa/9dZbGjRoUIsUCQAA0BIa3SN000036a233lKfPn304IMPas2aNW77g4ODdf/99zd7gQAAAC2l0UFowYIFSklJ0VNPPaU5c+YoODjYbf+8efOUmpra3PW5nDhxQnfeeadCQ0MVFhamyZMnq6KiosFjUlNTZTKZ3JZf/vKXLVYjALQkm92h/APf6J+FR5V/4BvZ7I5zHwSgQSbH2TOgG+Dv76+SkhJFRka2dE11Gj16tEpKSrRixQqdOXNGkyZN0lVXXaVXX3213mNSU1N1+eWXa8GCBa5twcHBCg0NbfR1rVarzGazLBZLk44DgOaUu6tEORv3qMRS5doWYw7SvDFJSu8d48XKgNapsb+/Gz1HqJF5qUXs3btXubm5+uyzzzRw4EBJ0jPPPKMbbrhBixcvVmxsbL3HBgcHKzo62lOlAkCzy91Voqkv79CP/xYutVRp6ss7tOyuAYQh4Dw16V1jJpOppepoUH5+vsLCwlwhSJLS0tLk5+enrVu3NnjsK6+8oi5duqh3797Kzs7WqVOnGmxfXV0tq9XqtgCAt9jsDuVs3FMrBElybcvZuIdhMuA8NeldY5dffvk5w9CJEycuqKC6lJaW1hqSa9euncLDw1VaWlrvcXfccYfi4+MVGxurL774QnPmzFFRUZFef/31eo9ZuHChcnJymq12ALgQBcUn3IbDfswhqcRSpYLiE0rp3tlzhQFtRJOCUE5Ojsxmc7NdfO7cuVq0aFGDbfbu3Xve57/33ntdf77yyisVExOj66+/XgcOHFD37t3rPCY7O1tZWVmudavVqri4uPOuAQAuRPl39Yeg82kHwF2TgtBtt93WrJOlZ82apczMzAbbdOvWTdHR0SovL3fb/v333+vEiRNNmv8zePBgSdL+/fvrDUKBgYEKDAxs9DkBoCVFhgQ1azsA7hodhFpiflBERIQiIiLO2S4lJUUnT57U9u3blZycLEl67733ZLfbXeGmMQoLCyVJMTFMKgTgGwYlhCvGHKRSS1Wd84RMkqLNQRqUEO7p0oA2odGTpb1511ivXr2Unp6uKVOmqKCgQFu2bNH06dN12223ue4YO3r0qBITE1VQUCBJOnDggB599FFt375dBw8e1IYNG5SRkaFrr71Wffr08dpnAYCm8Pczad4Y5wuvf/zP0Zr1eWOS5O/nnZtZAF/X6CBkt9u99gwhyXn3V2Jioq6//nrdcMMNuvrqq/XCCy+49p85c0ZFRUWuu8ICAgL07rvvauTIkUpMTNSsWbN08803u96XBgC+Ir13jJbdNUDRZvfhr2hzELfOAxeo0Q9UNCoeqAigtbDZHSooPqHy76oUGeIcDqMnCKhbsz9QEQDgXf5+Jm6RB5pZkx6oCAAA0JYQhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGH5TBB6/PHHNXToUAUHByssLKxRxzgcDj3yyCOKiYlRhw4dlJaWpi+//LJlCwUAAD7DZ4LQ6dOndcstt2jq1KmNPubJJ5/UH//4Ry1fvlxbt25Vx44dNWrUKFVVVbVgpQAAwFeYHA6Hw9tFNMXq1as1c+ZMnTx5ssF2DodDsbGxmjVrlh566CFJksViUVRUlFavXq3bbrutUdezWq0ym82yWCwKDQ290PIlSTa7QwXFJ1T+XZUiQ4I0KCFc/n6mZjk3AABo/O/vdh6syaOKi4tVWlqqtLQ01zaz2azBgwcrPz+/3iBUXV2t6upq17rVam3WunJ3lShn4x6VWH7olYoxB2nemCSl945p1msBAICG+czQWFOVlpZKkqKioty2R0VFufbVZeHChTKbza4lLi6u2WrK3VWiqS/vcAtBklRqqdLUl3cod1dJs10LAACcm1eD0Ny5c2UymRpc9u3b59GasrOzZbFYXMuRI0ea5bw2u0M5G/eornHImm05G/fIZvepkUoAAHyaV4fGZs2apczMzAbbdOvW7bzOHR0dLUkqKytTTMwPQ05lZWXq169fvccFBgYqMDDwvK7ZkILiE7V6gs7mkFRiqVJB8QmldO/c7NcHAAC1eTUIRUREKCIiokXOnZCQoOjoaOXl5bmCj9Vq1datW5t051lzKf+ucXeqNbYdAAC4cD4zR+jw4cMqLCzU4cOHZbPZVFhYqMLCQlVUVLjaJCYmat26dZIkk8mkmTNn6rHHHtOGDRu0c+dOZWRkKDY2VuPHj/d4/ZEhQc3aDgAAXDifuWvskUce0UsvveRa79+/vyTp/fffV2pqqiSpqKhIFovF1Wb27NmqrKzUvffeq5MnT+rqq69Wbm6ugoI8HzYGJYQrxhykUktVnfOETJKizc5b6QEAgGf43HOEPK05nyNUc9eYJLcwVPMEoWV3DeAWegAAmkFjf3/7zNBYW5DeO0bL7hqgaLN7j1S0OYgQBACAF/jM0Fhbkd47RiOSonmyNAAArQBByAv8/UzcIg8AQCvA0BgAADAsghAAADAsghAAADAsghAAADAsghAAADAsghAAADAsghAAADAsniOENs1md/DwSgBAvQhCaLNyd5UoZ+MelViqXNtizEGaNyaJ15kAACQxNIY2quYFt2eHIEkqtVRp6ss7lLurxEuVAQBaE4IQ2hyb3aGcjXvkqGNfzbacjXtks9fVAgBgJAQhtDkFxSdq9QSdzSGpxFKlguITnisKANAqEYTQ5pR/V38IOp92AIC2iyCENicyJKhZ2wEA2i6CENqcQQnhijEHqb6b5E1y3j02KCHck2UBAFohghDaHH8/k+aNSZKkWmGoZn3emCSeJwQAIAihbUrvHaNldw1QtNl9+CvaHKRldw3gOUIAAEk8UBFtWHrvGI1IiubJ0gCAehGE0Kb5+5mU0r2zt8sAALRSDI0BAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADD8pkg9Pjjj2vo0KEKDg5WWFhYo47JzMyUyWRyW9LT01u2UAAA4DN85qWrp0+f1i233KKUlBT9+c9/bvRx6enpWrVqlWs9MDCwJcoDAAA+yGeCUE5OjiRp9erVTTouMDBQ0dHRjW5fXV2t6upq17rVam3S9QAAgO/wmaGx87V582ZFRkaqZ8+emjp1qr755psG2y9cuFBms9m1xMXFeahSAADgaW06CKWnp+svf/mL8vLytGjRIn3wwQcaPXq0bDZbvcdkZ2fLYrG4liNHjniwYgAA4EleHRqbO3euFi1a1GCbvXv3KjEx8bzOf9ttt7n+fOWVV6pPnz7q3r27Nm/erOuvv77OYwIDA5lHBACAQXg1CM2aNUuZmZkNtunWrVuzXa9bt27q0qWL9u/fX28QAgAAxuHVIBQREaGIiAiPXe+rr77SN998o5iYGI9dEwAAtF4+M0fo8OHDKiws1OHDh2Wz2VRYWKjCwkJVVFS42iQmJmrdunWSpIqKCv3617/Wp59+qoMHDyovL0/jxo1Tjx49NGrUKG99DHia3SYVfyTt/B/nf+31zw8DABiPz9w+/8gjj+ill15yrffv31+S9P777ys1NVWSVFRUJIvFIkny9/fXF198oZdeekknT55UbGysRo4cqUcffZQ5QEaxZ4OUO0eyHvthW2islL5IShrrvboAAK2GyeFwOLxdRGtmtVplNptlsVgUGhrq7XLQWHs2SGszJP34x9vk/M+EvxCGAKANa+zvb58ZGgMazW5z9gTVCkH6YVvuXIbJAAAEIbRBhz5xHw6rxSFZjzrbAQAMjSCEtqeirHnbAQDaLIIQ2p5OUc3bDgDQZhGE0PbED3XeHVYzMboWkxTa1dkOAGBoBCG0PX7+zlvkJdUOQ/9dT3/C2Q4AYGgEIbRNSWOdt8iH/ugp4qGx3DoPAHDxmQcqAk2WNFZKvNF5d1hFmXNOUPxQeoIAAC4EIbRtfv5SwjXergIA0EoxNAYAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAzLJ4LQwYMHNXnyZCUkJKhDhw7q3r275s2bp9OnTzd4XFVVlaZNm6bOnTurU6dOuvnmm1VWVuahqgEAQGvnE0Fo3759stvtWrFihXbv3q2nnnpKy5cv129+85sGj3vwwQe1ceNG/f3vf9cHH3ygY8eO6Wc/+5mHqgYAAK2dyeFwOLxdxPn4/e9/r2XLluk///lPnfstFosiIiL06quv6uc//7kkZ6Dq1auX8vPzNWTIkEZdx2q1ymw2y2KxKDQ0tNnqBwAALaexv799okeoLhaLReHh4fXu3759u86cOaO0tDTXtsTERF1yySXKz8+v97jq6mpZrVa3BQAAtE0+GYT279+vZ555Rvfdd1+9bUpLSxUQEKCwsDC37VFRUSotLa33uIULF8psNruWuLi45iobAAC0Ml4NQnPnzpXJZGpw2bdvn9sxR48eVXp6um655RZNmTKl2WvKzs6WxWJxLUeOHGn2awAAgNahnTcvPmvWLGVmZjbYplu3bq4/Hzt2TMOHD9fQoUP1wgsvNHhcdHS0Tp8+rZMnT7r1CpWVlSk6Orre4wIDAxUYGNio+gEAbZDdJh36RKookzpFSfFDJT9/b1eFFuLVIBQREaGIiIhGtT169KiGDx+u5ORkrVq1Sn5+DXdmJScnq3379srLy9PNN98sSSoqKtLhw4eVkpJywbUDANqgPRuk3DmS9dgP20JjpfRFUtJY79WFFuMTc4SOHj2q1NRUXXLJJVq8eLGOHz+u0tJSt7k+R48eVWJiogoKCiRJZrNZkydPVlZWlt5//31t375dkyZNUkpKSqPvGAMAGMieDdLaDPcQJEnWEuf2PRu8UxdalFd7hBpr06ZN2r9/v/bv36+LL77YbV/N3f9nzpxRUVGRTp065dr31FNPyc/PTzfffLOqq6s1atQoPf/88x6tHQDgA+w2Z0+Q6nqijEOSScqdKyXeyDBZG+OzzxHyFJ4jBAAGUPyR9NJPz91u4htSwjUtXw8uWJt/jhAAAM2mopGvX2psO/gMghAAAJ2imrcdfAZBCACA+KHOu8NkqqeBSQrt6myHNoUgBACAn7/zFnlJtcPQf9fTn2CidBtEEAIAQHI+J2jCX6TQGPftobHO7TxHqE3yidvnAQDwiKSxzlvkebK0YRCEAAA4m58/t8gbCENjAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsHjpKoALZrM7VFB8QuXfVSkyJEiDEsLl72fydlkAcE4EIQAXJHdXiXI27lGJpcq1LcYcpHljkpTeO8aLlQHAuTE05g12m1T8kbTzf5z/tdu8XRFwXnJ3lWjqyzvcQpAklVqqNPXlHcrdVeKlygCgcegR8rQ9G6TcOZL12A/bQmOl9EVS0ljv1QU0kc3uUM7GPXLUsc8hySQpZ+MejUiKZpgMQKtFj5An7dkgrc1wD0GSZC1xbt+zwTt1AeehoPhErZ6gszkklViqVFB8wnNFAUATEYQ8xW5z9gTV++9nSblzGSaDzyj/rv4QdD7tAMAbCEKecuiT2j1BbhyS9aizHeADIkOCmrUdAHgDQchTKsqatx3gZYMSwhVjDlJ9s39Mct49Nigh3JNlAUCTEIQ8pVNU87YDvMzfz6R5Y5IkqVYYqlmfNyaJidIAWjWCkKfED3XeHdbQv59DuzrbAT4ivXeMlt01QNFm9+GvaHOQlt01gOcIAWj1uH3eU/z8nbfIr82QMwydPWn6v+Eo/QlnO8CHpPeO0YikaJ4sDcAnEYQ8KWmsNOEv9TxH6AmeIwSf5e9nUkr3zt4uAwCajCDkaUljpcQbnXeHVZQ55wTFD6UnCAAALyAIeYOfv5RwjberAADA8HxisvTBgwc1efJkJSQkqEOHDurevbvmzZun06dPN3hcamqqTCaT2/LLX/7SQ1UDAIDWzid6hPbt2ye73a4VK1aoR48e2rVrl6ZMmaLKykotXry4wWOnTJmiBQsWuNaDg4NbulwAAOAjfCIIpaenKz093bXerVs3FRUVadmyZecMQsHBwYqOjm70taqrq1VdXe1at1qtTS8YAAD4BJ8YGquLxWJRePi5n1j7yiuvqEuXLurdu7eys7N16tSpBtsvXLhQZrPZtcTFxTVXyQAAoJUxORyOut4C2qrt379fycnJWrx4saZMmVJvuxdeeEHx8fGKjY3VF198oTlz5mjQoEF6/fXX6z2mrh6huLg4WSwWhYaGNuvnAAAALcNqtcpsNp/z97dXg9DcuXO1aNGiBtvs3btXiYmJrvWjR4/quuuuU2pqqlauXNmk67333nu6/vrrtX//fnXv3r1RxzT2iwQAAK2HTwSh48eP65tvvmmwTbdu3RQQECBJOnbsmFJTUzVkyBCtXr1afn5NG9mrrKxUp06dlJubq1GjRjXqGIIQAAC+p7G/v706WToiIkIRERGNanv06FENHz5cycnJWrVqVZNDkCQVFhZKkmJieP8RAADwkcnSR48eVWpqqi655BItXrxYx48fV2lpqUpLS93aJCYmqqCgQJJ04MABPfroo9q+fbsOHjyoDRs2KCMjQ9dee6369OnjrY8CAABaEZ+4fX7Tpk3av3+/9u/fr4svvthtX83I3pkzZ1RUVOS6KywgIEDvvvuuli5dqsrKSsXFxenmm2/Www8/3KRr15yf2+gBAPAdNb+3zzUDyCfvGvOkr776ilvoAQDwUUeOHKnViXI2gtA52O12HTt2TCEhITKZTM123prb8o8cOcIk7BbGd+0ZfM+ewffsGXzPntGS37PD4dB3332n2NjYBucV+8TQmDf5+fk1mCQvVGhoKP8n8xC+a8/ge/YMvmfP4Hv2jJb6ns1m8znb+MRkaQAAgJZAEAIAAIZFEPKSwMBAzZs3T4GBgd4upc3ju/YMvmfP4Hv2DL5nz2gN3zOTpQEAgGHRIwQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIOQlzz33nC699FIFBQVp8ODBrpfFovl8+OGHGjNmjGJjY2UymbR+/Xpvl9TmLFy4UFdddZVCQkIUGRmp8ePHq6ioyNtltUnLli1Tnz59XA+eS0lJ0b/+9S9vl9WmPfHEEzKZTJo5c6a3S2lz5s+fL5PJ5LYkJiZ6pRaCkBesWbNGWVlZmjdvnnbs2KG+fftq1KhRKi8v93ZpbUplZaX69u2r5557ztultFkffPCBpk2bpk8//VSbNm3SmTNnNHLkSFVWVnq7tDbn4osv1hNPPKHt27dr27Zt+slPfqJx48Zp9+7d3i6tTfrss8+0YsUK9enTx9ultFlXXHGFSkpKXMvHH3/slTq4fd4LBg8erKuuukrPPvusJOf7zOLi4vTAAw9o7ty5Xq6ubTKZTFq3bp3Gjx/v7VLatOPHjysyMlIffPCBrr32Wm+X0+aFh4fr97//vSZPnuztUtqUiooKDRgwQM8//7wee+wx9evXT0uXLvV2WW3K/PnztX79ehUWFnq7FHqEPO306dPavn270tLSXNv8/PyUlpam/Px8L1YGXDiLxSLJ+QsaLcdms+m1115TZWWlUlJSvF1OmzNt2jTdeOONbn9Po/l9+eWXio2NVbdu3XTnnXfq8OHDXqmDl6562Ndffy2bzaaoqCi37VFRUdq3b5+XqgIunN1u18yZMzVs2DD17t3b2+W0STt37lRKSoqqqqrUqVMnrVu3TklJSd4uq0157bXXtGPHDn322WfeLqVNGzx4sFavXq2ePXuqpKREOTk5uuaaa7Rr1y6FhIR4tBaCEIBmMW3aNO3atctr4/xG0LNnTxUWFspiseh//ud/NHHiRH3wwQeEoWZy5MgRzZgxQ5s2bVJQUJC3y2nTRo8e7fpznz59NHjwYMXHx2vt2rUeH+olCHlYly5d5O/vr7KyMrftZWVlio6O9lJVwIWZPn263njjDX344Ye6+OKLvV1OmxUQEKAePXpIkpKTk/XZZ5/p6aef1ooVK7xcWduwfft2lZeXa8CAAa5tNptNH374oZ599llVV1fL39/fixW2XWFhYbr88su1f/9+j1+bOUIeFhAQoOTkZOXl5bm22e125eXlMdYPn+NwODR9+nStW7dO7733nhISErxdkqHY7XZVV1d7u4w24/rrr9fOnTtVWFjoWgYOHKg777xThYWFhKAWVFFRoQMHDigmJsbj16ZHyAuysrI0ceJEDRw4UIMGDdLSpUtVWVmpSZMmebu0NqWiosLtXxfFxcUqLCxUeHi4LrnkEi9W1nZMmzZNr776qv75z38qJCREpaWlkiSz2awOHTp4ubq2JTs7W6NHj9Yll1yi7777Tq+++qo2b96st99+29ultRkhISG15rd17NhRnTt3Zt5bM3vooYc0ZswYxcfH69ixY5o3b578/f11++23e7wWgpAX3HrrrTp+/LgeeeQRlZaWql+/fsrNza01gRoXZtu2bRo+fLhrPSsrS5I0ceJErV692ktVtS3Lli2TJKWmprptX7VqlTIzMz1fUBtWXl6ujIwMlZSUyGw2q0+fPnr77bc1YsQIb5cGNNlXX32l22+/Xd98840iIiJ09dVX69NPP1VERITHa+E5QgAAwLCYIwQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIATA0DIzMzV+/HhvlwHASwhCAFpcZmamTCZTrSU9Pd3bpenpp59uNa9cMZlMWr9+vbfLAAyFd40B8Ij09HStWrXKbVtgYKCXqpFsNptMJpPMZrPXagDgffQIAfCIwMBARUdHuy0XXXSRNm/erICAAH300Ueutk8++aQiIyNVVlYmyflS1+nTp2v69Okym83q0qWLfvvb3+rsVyVWV1froYceUteuXdWxY0cNHjxYmzdvdu1fvXq1wsLCtGHDBiUlJSkwMFCHDx+uNTSWmpqqBx54QDNnztRFF12kqKgo/elPf1JlZaUmTZqkkJAQ9ejRQ//617/cPt+uXbs0evRoderUSVFRUbr77rv19ddfu533V7/6lWbPnq3w8HBFR0dr/vz5rv2XXnqpJOmmm26SyWRyrQNoWQQhAF6VmpqqmTNn6u6775bFYtHnn3+u3/72t1q5cqWioqJc7V566SW1a9dOBQUFevrpp/WHP/xBK1eudO2fPn268vPz9dprr+mLL77QLbfcovT0dH355ZeuNqdOndKiRYu0cuVK7d69W5GRkXXW9NJLL6lLly4qKCjQAw88oKlTp+qWW27R0KFDtWPHDo0cOVJ33323Tp06JUk6efKkfvKTn6h///7atm2bcnNzVVZWpgkTJtQ6b8eOHbV161Y9+eSTWrBggTZt2iRJ+uyzzyRJq1atUklJiWsdQAtzAEALmzhxosPf39/RsWNHt+Xxxx93OBwOR3V1taNfv36OCRMmOJKSkhxTpkxxO/66665z9OrVy2G3213b5syZ4+jVq5fD4XA4Dh065PD393ccPXrU7bjrr7/ekZ2d7XA4HI5Vq1Y5JDkKCwtr1TZu3Di3a1199dWu9e+//97RsWNHx9133+3aVlJS4pDkyM/PdzgcDsejjz7qGDlypNt5jxw54pDkKCoqqvO8DofDcdVVVznmzJnjWpfkWLduXT3fIoCWwBwhAB4xfPhwLVu2zG1beHi4JCkgIECvvPKK+vTpo/j4eD311FO1jh8yZIhMJpNrPSUlRUuWLJHNZtPOnTtls9l0+eWXux1TXV2tzp07u9YDAgLUp0+fc9Z6dht/f3917txZV155pWtbTU9VeXm5JOnf//633n//fXXq1KnWuQ4cOOCq68fXjomJcZ0DgHcQhAB4RMeOHdWjR49693/yySeSpBMnTujEiRPq2LFjo89dUVEhf39/bd++Xf7+/m77zg4nHTp0cAtT9Wnfvr3buslkcttWcw673e66/pgxY7Ro0aJa54qJiWnwvDXnAOAdBCEAXnfgwAE9+OCD+tOf/qQ1a9Zo4sSJevfdd+Xn98M0xq1bt7od8+mnn+qyyy6Tv7+/+vfvL5vNpvLycl1zzTWeLl8DBgzQP/7xD1166aVq1+78/1pt3769bDZbM1YG4FyYLA3AI6qrq1VaWuq2fP3117LZbLrrrrs0atQoTZo0SatWrdIXX3yhJUuWuB1/+PBhZWVlqaioSH/729/0zDPPaMaMGZKkyy+/XHfeeacyMjL0+uuvq7i4WAUFBVq4cKHefPPNFv9s06ZN04kTJ3T77bfrs88+04EDB/T2229r0qRJTQo2l156qfLy8lRaWqpvv/22BSsGUIMeIQAekZub6zZMJEk9e/bUHXfcoUOHDumNN96Q5BxKeuGFF3T77bdr5MiR6tu3ryQpIyND//d//6dBgwbJ399fM2bM0L333us616pVq/TYY49p1qxZOnr0qLp06aIhQ4bopz/9aYt/ttjYWG3ZskVz5szRyJEjVV1drfj4eKWnp7v1ap3LkiVLlJWVpT/96U/q2rWrDh482HJFA5AkmRyOsx7EAQCtUGpqqvr166elS5d6uxQAbQxDYwAAwLAIQgAAwLAYGgMAAIZFjxAAADAsghAAADAsghAAADAsghAAADAsghAAADAsghAAADAsghAAADAsghAAADCs/w+wqHWiGhij+QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1308,10 +1287,12 @@ } ], "source": [ + "ground_truth = test_y_torch.squeeze().numpy()\n", + "\n", "fig = plt.figure()\n", "instances = np.arange(len(np.concatenate(predictions)))\n", "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions\")\n", - "plt.scatter(instances, test_y_torch.squeeze().numpy(), label=\"Ground truth\")\n", + "plt.scatter(instances, ground_truth, label=\"Ground truth\")\n", "plt.xlabel(\"Experiment\")\n", "plt.ylabel(\"TS\")\n", "plt.legend()\n", @@ -1340,7 +1321,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -1356,20 +1337,14 @@ "\n", "# create lists for saving models and predictions\n", "models = []\n", + "RGDRs = []\n", "rmse_train = []\n", "rmse_test = []\n", "train_test_splits = []\n", "\n", "# prepare operator for dimensionality reduction\n", "target_intervals = 1\n", - "lag = 2\n", - "rgdr = RGDR(\n", - " target_intervals=target_intervals,\n", - " lag=lag,\n", - " eps_km=600,\n", - " alpha=0.05,\n", - " min_area_km2=0\n", - ")" + "lag = 2" ] }, { @@ -1382,7 +1357,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -1398,7 +1373,16 @@ " \"test\": x_test.anchor_year.values,\n", " })\n", " # fit dimensionality reduction operator RGDR\n", + " rgdr = RGDR(\n", + " target_intervals=target_intervals,\n", + " lag=lag,\n", + " eps_km=600,\n", + " alpha=0.05,\n", + " min_area_km2=0\n", + " )\n", " rgdr.fit(x_train, y_train)\n", + " # save dimensionality reduction operator\n", + " RGDRs.append(rgdr)\n", " # transform to train and test data\n", " clusters_train = rgdr.transform(x_train)\n", " clusters_test = rgdr.transform(x_test)\n", @@ -1418,7 +1402,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -1445,27 +1429,25 @@ "plt.show()" ] }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the plot, we can pick up the model with the smallest error. We will use that one as baseline and compare it with predictions from LSTM." + ] + }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 29, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'train': array([1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990,\n", - " 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,\n", - " 2002, 2003, 2004, 2005, 2006]),\n", - " 'test': array([2007, 2008, 2009, 2010, 2011, 2012])}" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "train_test_splits[-1]" + "#y_test = \n", + "# dimensionality reduction with the RGDR operator used by the best model\n", + "clusters_test = RGDRs[np.argmax(rmse_test)].transform(precursor_field_sel[-test_samples:])\n", + "# predict with the best model\n", + "predictions_baseline = models[np.argmax(rmse_test)].predict(clusters_test.isel(i_interval=0))" ] }, { @@ -1473,480 +1455,50 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "From the plot, it seems the best model is model number 4. We will use that one as baseline and compare it with predictions from LSTM." + "Let's plot all predictions and the ground truth and check the errors." ] }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 39, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MSE of LSTM forecasts is 3.56\n", + "The MSE of baseline ridge forecasts is 3.04\n" + ] + }, { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.DataArray 'sst' (anchor_year: 6, cluster_labels: 4)>\n",
-       "array([[ 0.24415116,  0.57190904, -0.56741771,  0.03133404],\n",
-       "       [ 0.63067417,  1.27054457, -0.38009251, -1.43804407],\n",
-       "       [ 1.39065636,  0.45336726, -1.34176023, -0.4421672 ],\n",
-       "       [ 0.82115084, -0.07404171, -1.25501827,  0.63119298],\n",
-       "       [-0.0032479 , -0.15801926, -0.21243818,  0.18921249],\n",
-       "       [-0.06503205, -0.18135761, -1.11951148, -0.46128058]])\n",
-       "Coordinates:\n",
-       "  * anchor_year     (anchor_year) int64 2013 2014 2015 2016 2017 2018\n",
-       "    i_interval      int64 -2\n",
-       "    left_bound      (anchor_year) datetime64[ns] 2013-06-02 ... 2018-06-02\n",
-       "    right_bound     (anchor_year) datetime64[ns] 2013-06-22 ... 2018-06-22\n",
-       "    is_target       bool False\n",
-       "  * cluster_labels  (cluster_labels) int16 -2 -1 1 2\n",
-       "    latitude        (cluster_labels) float64 35.0 45.98 32.5 27.5\n",
-       "    longitude       (cluster_labels) float64 226.4 203.3 192.5 180.0\n",
-       "Attributes:\n",
-       "    data:         Clustered data with Response Guided Dimensionality Reduction.\n",
-       "    coordinates:  Latitudes and longitudes are geographical centers associate...
" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMCElEQVR4nO3de1wU9f4/8NewCrhcFlHYBUW8oFxSVFAUuwgnFKw8WGZWmqIeNdPSsCPwrRNillpq2g0tE/yVnbRSj5oHAwstJVGJzBuJIZhyS3MJCNTd+f3BYXPlIuBe2J3X8/HYR87MZ2beu4fDvpjPZz4jiKIogoiIiEiCbMxdABEREZG5MAgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkdTB3Ae2dVqvFpUuX4OTkBEEQzF0OERERtYAoivjjjz/g6ekJG5umr/swCN3GpUuX4OXlZe4yiIiIqA0uXLiA7t27N7mdQeg2nJycANR9kM7OzmauhoiIiFqioqICXl5euu/xpjAI3UZ9d5izszODEBERkYW53bAWDpYmIiIiyWIQIiIiIsliECIiIiLJ4hghA9FoNLh+/bq5yyBqoGPHjpDJZOYug4ioXWIQukOiKKKkpARXr141dylETXJxcYFKpeJcWEREt2AQukP1Icjd3R1yuZxfNNSuiKKI6upqlJWVAQA8PDzMXBERUfvCIHQHNBqNLgR16dLF3OUQNapTp04AgLKyMri7u7ObjIjoJhwsfQfqxwTJ5XIzV0LUvPqfUY5jIyLSxyBkAOwOo/aOP6NERI2zqCB04MABjB07Fp6enhAEATt27Gi2fWZmJgRBaPAqKSkxTcFERGRxNFoRWecu4z+5F5F17jI0WtHcJZERWdQYoaqqKgwcOBDTp0/HI4880uL98vLy9B6P4e7ubozyiIjIwqWdKEbSrlMoVtfo1nko7JE4NgBR/XmzgTWyqCA0ZswYjBkzptX7ubu7w8XFxfAF0W3FxMTg6tWruqt3YWFhGDRoENasWdPmYxriGEREt0o7UYw5H+fg1us/JeoazPk4B8mTgxiGrJBFdY211aBBg+Dh4YFRo0bh4MGDzbatra1FRUWF3svYzHEZNiYmRtdVaGtrCx8fHyxZsgQ3btww6nm3bduGV155pUVt67s2b52jqTXHMJbFixdj0KBBTW4vKCjAk08+CU9PT9jb26N79+6Ijo7GmTNnkJqa2miX7c2v8+fPY/HixRAEAVFRUQ2O/8Ybb0AQBISFhRnvTRJJiEYrImnXqQYhCIBuXdKuU+wms0IWdUWotTw8PLBu3ToMGTIEtbW12LBhA8LCwnD48GEEBQU1us+yZcuQlJRkshrNeRk2KioKKSkpqK2txZ49ezB37lx07NgRCQkJeu2uXbsGW1tbg5zT1dW1XRzDmK5fv45Ro0bB19cX27Ztg4eHB3799Vf897//xdWrVzFx4kS9cPPII4+gf//+WLJkiW6dm5sbgLqf4W+++Qa//vorunfvrtu+ceNG9OjRw3RvisjKZRdc0fs9fCsRQLG6BtkFVxDah9OlWBOrviLk6+uL2bNnIzg4GCNGjMDGjRsxYsQIvPnmm03uk5CQALVarXtduHDBaPXVX4a99f989Zdh004UG+3cAGBnZweVSgVvb2/MmTMHERER2LlzJ2JiYjBu3Di8+uqr8PT0hK+vLwDgwoULeOyxx+Di4gJXV1dER0fj/PnzuuNpNBrExsbCxcUFXbp0waJFiyCK+n89hYWFYcGCBbrl2tpaxMXFwcvLC3Z2dvDx8cGHH36I8+fPIzw8HADQuXNnCIKAmJiYRo/x+++/Y8qUKejcuTPkcjnGjBmDs2fP6ranpqbCxcUFe/fuhb+/PxwdHREVFYXi4r8+38zMTISEhMDBwQEuLi64++67UVhY2KbP9eTJkzh37hzee+89DB8+HN7e3rj77ruxdOlSDB8+HJ06dYJKpdK9bG1tIZfL9dbVz/Xj7u6O0aNHY9OmTbrjHzp0CL/99hsefPDBNtVHRA2V/dF0CGpLO7IcVh2EGhMSEoL8/Pwmt9vZ2cHZ2VnvZQzt8TJsp06dcO3aNQDAvn37kJeXh/T0dOzevRvXr19HZGQknJyc8O233+LgwYO6QFG/z6pVq5CamoqNGzfiu+++w5UrV7B9+/ZmzzllyhT8+9//xltvvYXTp09j/fr1cHR0hJeXF7744gsAdYPdi4uLsXbt2kaPERMTg6NHj2Lnzp3IysqCKIp44IEH9ObMqa6uxsqVK/HRRx/hwIEDKCoqwgsvvAAAuHHjBsaNG4eRI0fi+PHjyMrKwqxZs9p8y7mbmxtsbGzw+eefQ6PRtOkYN5s+fTpSU1N1yxs3bsSkSZMMdpWOiAB3J3uDtiPLYdVdY43Jzc1tF48ZaE+XYUVRxL59+7B37148++yzKC8vh4ODAzZs2KD7sv3444+h1WqxYcMGXUBISUmBi4sLMjMzMXr0aKxZswYJCQm6O/rWrVuHvXv3Nnnen3/+GVu3bkV6ejoiIiIAAL1799Ztr+8Ca26w+9mzZ7Fz504cPHgQI0aMAABs3rwZXl5e2LFjByZMmACgrrtq3bp16NOnDwBg3rx5uq6oiooKqNVqPPTQQ7rt/v7+rf8g/6dbt2546623sGjRIiQlJWHIkCEIDw/HpEmT9N5fSz300EN4+umnceDAAQQHB2Pr1q347rvvsHHjxjbXSET6Qnq5wkNhjxJ1TaN/oAoAVAp7hPRq313z1HoWdUWosrISubm5yM3NBVA3IDU3NxdFRUUA6rq1pkyZomu/Zs0a/Oc//0F+fj5OnDiBBQsW4Ouvv8bcuXPNUb6e9nAZdvfu3XB0dIS9vT3GjBmDiRMnYvHixQCAAQMG6F1x+PHHH5Gfnw8nJyc4OjrC0dERrq6uqKmpwblz56BWq1FcXIxhw4bp9unQoQOGDBnS5Plzc3Mhk8kwcuTINr+H06dPo0OHDnrn7dKlC3x9fXH69GndOrlcrgs5QN3Ym/rnb7m6uiImJgaRkZEYO3Ys1q5dq+s2Kyoq0r1fR0dHvPbaay2qa+7cuSgpKcHmzZsRGhqKzz77DHfddRfS09Nb/R47duyIyZMnIyUlBZ999hn69euHwMDAVh+HiJomsxGQODYAQF3ouVn9cuLYAMhsODmptbGoK0JHjx7VjRsBgNjYWADA1KlTkZqaiuLiYl0oAuoG+S5cuBAXL16EXC5HYGAgMjIy9I5hLu3hMmx4eDiSk5Nha2sLT09PdOjw14+Dg4ODXtvKykoEBwdj8+bNDY5TP7C3teqfgWUKHTt21FsWBEFv/FJKSgqee+45pKWlYcuWLXjppZeQnp6OIUOG6II30LqB2k5OThg7dizGjh2LpUuXIjIyEkuXLsWoUaNaXf/06dMxbNgwnDhxAtOnT2/1/kR0e1H9PZA8OajBDSwqziNk1SwqCIWFhTUYfHuzm8dRAMCiRYuwaNEiI1fVNu3hMqyDgwN8fHxa1DYoKAhbtmyBu7t7k+OmPDw8cPjwYdx3330A6sbeHDt2rMk79AYMGACtVov9+/frusZuVn9FqrlxNv7+/rhx4wYOHz6s6xq7fPky8vLyEBAQ0KL3Vm/w4MEYPHgwEhISEBoaik8++QTDhw9v8WfUHEEQ4Ofnh0OHDrVp/7vuugt33XUXjh8/jieffPKO6yGixkX198CoABWyC66g7I8auDvV/R7mlSDrZVFdY9bE0i7DTpo0CV27dkV0dDS+/fZbFBQUIDMzE8899xx+/fVXAMD8+fOxfPly7NixA2fOnMEzzzzTYA6gm/Xs2RNTp07F9OnTsWPHDt0xt27dCgDw9vaGIAjYvXs3ysvLUVlZ2eAYffv2RXR0NGbOnInvvvsOP/74IyZPnoxu3bohOjq6Re+toKAACQkJyMrKQmFhIb766iucPXv2tuOE/vzzT11Xbf3r3LlzyM3NRXR0ND7//HOcOnUK+fn5+PDDD7Fx48YW19SYr7/+GsXFxZwclMjIZDYCQvt0QfSgbgjt06Xd/B4m42AQMqP6y7AqhX73l0ph3+5mMJXL5Thw4AB69OiBRx55BP7+/pgxYwZqamp0V4gWLlyIp556ClOnTkVoaCicnJzw8MMPN3vc5ORkPProo3jmmWfg5+eHmTNnoqqqCkDdoOOkpCTEx8dDqVRi3rx5jR4jJSUFwcHBeOihhxAaGgpRFLFnz54G3WHNvbczZ85g/Pjx6NevH2bNmoW5c+di9uzZze73888/664i1b9mz56N7t27o2fPnkhKSsKwYcMQFBSEtWvXIikpCS+++GKLampM/a39RERkOILYXF8ToaKiAgqFAmq1ukGXUE1NDQoKCtCrVy/Y27d9LI9GK/IyLBmVoX5WiYgsRXPf3zezqDFC1qr+MiwRERGZFrvGiIiISLIYhIiIiEiyGISIiIhIshiEiIiISLIYhIiIiEiyGISIiIhIshiEiIiISLIYhMioYmJiMG7cON1yWFgYFixYcEfHNMQxTEUQBOzYsaPJ7efPn4cgCHoPdiUiItNhEJKomJgYCIIAQRBga2sLHx8fLFmyBDdu3DDqebdt24ZXXnmlRW0zMzMhCEKD55W15hjGsnjxYt3nJ5PJ4OXlhVmzZuHKlSt67YqLizFmzBgzVUlERLfDmaXbA60GKDwEVJYCjkrAewRgIzP6aaOiopCSkoLa2lrs2bMHc+fORceOHZGQkKDX7tq1a7onwd8pV1fXdnEMQ7jrrruQkZEBjUaD06dPY/r06VCr1diyZYuujUqlMmOFRER0O7wiZG6ndgJr+gObHgK+mFH33zX969YbmZ2dHVQqFby9vTFnzhxERERg586duu6sV199FZ6envD19QUAXLhwAY899hhcXFzg6uqK6OhonD9/Xnc8jUaD2NhYuLi4oEuXLli0aBFufZTdrd1atbW1iIuLg5eXF+zs7ODj44MPP/wQ58+fR3h4OACgc+fOEAQBMTExjR7j999/x5QpU9C5c2fI5XKMGTMGZ8+e1W1PTU2Fi4sL9u7dC39/fzg6OiIqKgrFxcW6NpmZmQgJCdE92PTuu+9GYWFhs59fhw4doFKp0K1bN0RERGDChAlIT0/Xa3Nr11h2djYGDx4Me3t7DBkyBD/88EOD4+7cuRN9+/aFvb09wsPDsWnTpgZXxr777jvce++96NSpE7y8vPDcc8/pHlZLREQtxyBkTqd2AlunABWX9NdXFNetN0EYulmnTp1w7do1AMC+ffuQl5eH9PR07N69G9evX0dkZCScnJzw7bff4uDBg7pAUb/PqlWrkJqaio0bN+K7777DlStXsH379mbPOWXKFPz73//GW2+9hdOnT2P9+vVwdHSEl5cXvvjiCwBAXl4eiouLsXbt2kaPERMTg6NHj2Lnzp3IysqCKIp44IEHcP36dV2b6upqrFy5Eh999BEOHDiAoqIivPDCCwCAGzduYNy4cRg5ciSOHz+OrKwszJo1C4LQ8gffnj9/Hnv37m32ylllZSUeeughBAQE4NixY1i8eLGuhnoFBQV49NFHMW7cOPz444+YPXt2gyfWnzt3DlFRURg/fjyOHz+OLVu24LvvvsO8efNaXC8REf2PSM1Sq9UiAFGtVjfY9ueff4qnTp0S//zzz9YfWHNDFFf5iWKicxMvhSiu8q9rZwRTp04Vo6OjRVEURa1WK6anp4t2dnbiCy+8IE6dOlVUKpVibW2trv1HH30k+vr6ilqtVreutrZW7NSpk7h3715RFEXRw8NDfP3113Xbr1+/Lnbv3l13HlEUxZEjR4rz588XRVEU8/LyRABienp6ozV+8803IgDx999/11t/8zF+/vlnEYB48OBB3fbffvtN7NSpk7h161ZRFEUxJSVFBCDm5+fr2rz77ruiUqkURVEUL1++LAIQMzMzW/DJ1UlMTBRtbGxEBwcH0d7eXgQgAhBXr16t1w6AuH37dlEURXH9+vVily5d9H5ekpOTRQDiDz/8IIqiKMbFxYn9+/fXO8aLL76o9znMmDFDnDVrll6bb7/9VrSxsWnyZ/GOflaJiCxQc9/fN+MVIXMpPNTwSpAeEai4WNfOSHbv3g1HR0fY29tjzJgxmDhxIhYvXgwAGDBggN7VjR9//BH5+flwcnKCo6MjHB0d4erqipqaGpw7dw5qtRrFxcUYNmyYbp8OHTpgyJAhTZ4/NzcXMpkMI0eObPN7OH36NDp06KB33i5dusDX1xenT5/WrZPL5ejTp49u2cPDA2VlZQDqxhzFxMQgMjISY8eOxdq1a3XdZkVFRbr36+joiNdee013DF9fX+Tm5uLIkSOIi4tDZGQknn322WZrDQwMhL29vW5daGioXpu8vDwMHTpUb11ISIje8o8//ojU1FS9uiIjI6HValFQUHDbz4yIiP7CwdLmUllq2HZtEB4ejuTkZNja2sLT0xMdOvz14+Dg4KBfRmUlgoODsXnz5gbHcXNza9P5O3Xq1Kb92qJjx456y4Ig6I1fSklJwXPPPYe0tDRs2bIFL730EtLT0zFkyBC9W9tvHqhdf7cdACxfvhwPPvggkpKSjH5HW2VlJWbPno3nnnuuwbYePXoY9dxERNaGV4TMxVFp2HZt4ODgAB8fH/To0UMvBDUmKCgIZ8+ehbu7O3x8fPReCoUCCoUCHh4eOHz4sG6fGzdu4NixY00ec8CAAdBqtdi/f3+j2+uvSGk0miaP4e/vjxs3buid9/Lly8jLy0NAQECz7+lWgwcPRkJCAg4dOoT+/fvjk08+QYcOHfTea3N3rL300ktYuXIlLl1q/Eqfv78/jh8/jpqaGt2677//Xq+Nr68vjh49qrfuyJEjestBQUE4depUg/8dfHx8DHZ3HxGRVDAImYv3CMDZE0BTA3IFwLlbXbt2YNKkSejatSuio6Px7bffoqCgAJmZmXjuuefw66+/AgDmz5+P5cuXY8eOHThz5gyeeeaZBnMA3axnz56YOnUqpk+fjh07duiOuXXrVgCAt7c3BEHA7t27UV5ejsrKygbH6Nu3L6KjozFz5kx89913+PHHHzF58mR069YN0dHRLXpvBQUFSEhIQFZWFgoLC/HVV1/h7Nmz8Pf3b9VnFBoaisDAQL3us5s9+eSTEAQBM2fOxKlTp7Bnzx6sXLlSr83s2bNx5swZxMXF4eeff8bWrVuRmpoKALrB23FxcTh06BDmzZuH3NxcnD17Fv/5z384WJqIqA0YhMzFRgZErfjfwq1h6H/LUctNMp9QS8jlchw4cAA9evTAI488An9/f8yYMQM1NTVwdnYGACxcuBBPPfUUpk6ditDQUDg5OeHhhx9u9rjJycl49NFH8cwzz8DPzw8zZ87U3QberVs3JCUlIT4+Hkqlsskv+pSUFAQHB+Ohhx5CaGgoRFHEnj17GnSHNffezpw5g/Hjx6Nfv36YNWsW5s6di9mzZ7fiE6rz/PPPY8OGDbhw4UKDbY6Ojti1axd++uknDB48GC+++CJWrFih16ZXr174/PPPsW3bNgQGBiI5OVl315idnR0AIDAwEPv378fPP/+Me++9F4MHD8bLL78MT0/PVtdLRCR1gijeMtEL6amoqIBCoYBardZ94derqalBQUEBevXqpTcAtlVO7QTS4vQHTjt3qwtBAX+/g8rJWrz66qtYt25do+GqpQzys0pEZEGa+/6+GQdLm1vA3wG/B80yszS1T++99x6GDh2KLl264ODBg3jjjTfY7UVEZCQMQu2BjQzoda+5q6B24uzZs1i6dCmuXLmCHj16YOHChQ0ee0JERIbBIETUzrz55pt48803zV0GEZEkcLA0ERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQWZTFixdj0KBB5i4DYWFhWLBggbnLICKiO2RRQejAgQMYO3YsPD09IQgCduzYcdt9MjMzERQUBDs7O/j4+OgeYCl1JSUlmD9/Pnx8fGBvbw+lUom7774bycnJqK6uNnd5bZaZmQlBEJp92Ks5j0dERO2LRQWhqqoqDBw4EO+++26L2hcUFODBBx9EeHg4cnNzsWDBAvzjH//A3r17jVxp62i0GhwpOYI9v+zBkZIj0Gg1Rj3fL7/8gsGDB+Orr77Ca6+9hh9++AFZWVlYtGgRdu/ejYyMjCb3vX79ulFrM5Vr166ZuwQiImoHLCoIjRkzBkuXLr3tE83rrVu3Dr169cKqVavg7++PefPm4dFHH2121t7a2lpUVFTovYwpozADkV9EYvre6Yj7Ng7T905H5BeRyChsOozcqWeeeQYdOnTA0aNH8dhjj8Hf3x+9e/dGdHQ0vvzyS4wdO1bXVhAEJCcn4+9//zscHBzw6quvAqh7anyfPn1ga2sLX19ffPTRR7p9zp8/D0EQkJubq1t39epVCIKAzMxMAH9dadm3bx+GDBkCuVyOESNGIC8vT6/W5cuXQ6lUwsnJSfe0+6acP38e4eHhAIDOnTtDEATExMQAqOvKmjdvHhYsWICuXbsiMjLytnU2dzwA0Gq1WLRoEVxdXaFSqbB48eKW/k9A1Cam/qOJSAosKgi1VlZWFiIiIvTWRUZGIisrq8l9li1bBoVCoXt5eXkZrb6MwgzEZsaitLpUb31ZdRliM2ONEoYuX76Mr776CnPnzoWDg0OjbQRB0FtevHgxHn74Yfz000+YPn06tm/fjvnz52PhwoU4ceIEZs+ejWnTpuGbb75pdT0vvvgiVq1ahaNHj6JDhw6YPn26btvWrVuxePFivPbaazh69Cg8PDzw3nvvNXksLy8vfPHFFwCAvLw8FBcXY+3atbrtmzZtgq2tLQ4ePIh169bdtraWHM/BwQGHDx/G66+/jiVLliA9Pb3VnwFRS5jjjyYiKbDqIFRSUgKlUqm3TqlUoqKiAn/++Wej+yQkJECtVuteFy5cMEptGq0Gy7OXQ4TYYFv9uhXZKwz+F19+fj5EUYSvr6/e+q5du8LR0RGOjo6Ii4vT2/bkk09i2rRp6N27N3r06IGVK1ciJiYGzzzzDPr164fY2Fg88sgjWLlyZavrefXVVzFy5EgEBAQgPj4ehw4d0l31WbNmDWbMmIEZM2bA19cXS5cuRUBAQJPHkslkcHV1BQC4u7tDpVJBoVDotvft2xevv/46fH19G7z/thwvMDAQiYmJ6Nu3L6ZMmYIhQ4Zg3759rf4MiG7HHH80EUmFVQehtrCzs4Ozs7PeyxhyynIa/FK7mQgRJdUlyCnLMcr5b5WdnY3c3FzcddddqK2t1ds2ZMgQveXTp0/j7rvv1lt399134/Tp060+b2BgoO7fHh4eAICysjLdeYYNG6bXPjQ0tNXnqBccHNzmfRtzc+1AXf31tRMZirn+aCKSCqsOQiqVCqWl+mGjtLQUzs7O6NSpk5mqqlNeXW7Qdi3l4+MDQRAajMXp3bs3fHx8Gv1cmupCa4qNTd2PlSj+9Yu7qUHWHTt21P27vktOq9W26nwtdev7aE2djbm5dqCufmPVTtLV3v5oIrI2Vh2EQkNDG3RVpKen39FVBUNxk7sZtF1LdenSBaNGjcI777yDqqqqNh3D398fBw8e1Ft38OBBXbeVm1tdzcXFxbrtNw9Ibs15Dh8+rLfu+++/b3YfW1tbAIBGc/u/jltSZ2uOR2QM5vqjiUgqLCoIVVZWIjc3V/dlVVBQgNzcXBQVFQGoG98zZcoUXfunn34av/zyCxYtWoQzZ87gvffew9atW/H888+bo3w9Qe5BUMqVECA0ul2AAJVchSD3IIOf+7333sONGzcwZMgQbNmyBadPn0ZeXh4+/vhjnDlzBjKZrNn9//nPfyI1NRXJyck4e/YsVq9ejW3btuGFF14AAHTq1AnDhw/H8uXLcfr0aezfvx8vvfRSq+ucP38+Nm7ciJSUFPz8889ITEzEyZMnm93H29sbgiBg9+7dKC8vR2VlZZNtW1Jna45HZAzm+qOJSCosKggdPXoUgwcPxuDBgwEAsbGxGDx4MF5++WUAdX/Z14ciAOjVqxe+/PJLpKenY+DAgVi1ahU2bNiAyMhIs9R/M5mNDPEh8QDQIAzVL8eFxEFm03woaYs+ffrghx9+QEREBBISEjBw4EAMGTIEb7/9Nl544QW88sorze4/btw4rF27FitXrsRdd92F9evXIyUlBWFhYbo2GzduxI0bNxAcHIwFCxZg6dKlra5z4sSJ+Ne//oVFixYhODgYhYWFmDNnTrP7dOvWDUlJSYiPj4dSqcS8efOabX+7Olt7PCJDM+cfTURSIIg3D5CgBioqKqBQKKBWqxsMnK6pqUFBQQF69eoFe3v7Nh0/ozADy7OX640BUMlViAuJQ4R3RDN7ErWcIX5WyXzq7xoDoDdouj4crQ5bzd8XRLdo7vv7Zh1MWBM1IsI7AuFe4cgpy0F5dTnc5G4Icg8yypUgIrJMEd4RWB22usEfTUq5kn80Ed0hBqF2QGYjw1DVUHOXQUTtGP9oIjIOBiEiIgvBP5qIDM+iBksTERERGRKDkAFwvDm1d/wZJSJqHIPQHaifWbi6utrMlRA1r/5n9NbZsImIpI5jhO6ATCaDi4uL7vlScrm8wZPbicxJFEVUV1ejrKwMLi4ut50sk4hIahiE7pBKpQIAPmyT2jUXFxfdzyoREf2FQegOCYIADw8PuLu7t+qBnUSm0rFjR14JIiJqAoOQgchkMn7ZEBERWRgOliYiIiLJYhAiIiIiyWIQIiIiIsniGCEiIiIyPa0GKDwEVJYCjkrAewRghmfnMQgRERGRaZ3aCaTFARWX/lrn7AlErQAC/m7SUtg1RkRERKZzaiewdYp+CAKAiuK69ad2mrQcBiEiIiIyDa2m7koQGnv+4f/WpcXXtTMRBiEiIiIyjcJDDa8E6RGBiot17UyEQYiIiIhMo7LUsO0MgEGIiIiITMNRadh2BsAgRERERKbhPaLu7jAITTQQAOdude1MhEGIiIiITMNGVneLPICGYeh/y1HLTTqfEIMQERERmU7A34HH/h/g7KG/3tmzbr2J5xHihIpERERkWgF/B/we5MzSREREJFE2MqDXveaugl1jREREJF28IkTWrZ081I+IiNonBiGyXu3ooX5ERNQ+sWuMrFM7e6gfERG1TwxCZH3a4UP9iIiofWIQIuvTDh/qR0RE7RODEFmfdvhQPyIiap8sLgi9++676NmzJ+zt7TFs2DBkZ2c32TY1NRWCIOi97O3tTVgtmUU7fKgfERG1TxYVhLZs2YLY2FgkJiYiJycHAwcORGRkJMrKyprcx9nZGcXFxbpXYWGhCSsms2iHD/UjIqL2yaKC0OrVqzFz5kxMmzYNAQEBWLduHeRyOTZu3NjkPoIgQKVS6V5KJa8CWL12+FA/IiJqnywmCF27dg3Hjh1DRESEbp2NjQ0iIiKQlZXV5H6VlZXw9vaGl5cXoqOjcfLkyWbPU1tbi4qKCr0XWaB29lA/IiJqnyxmQsXffvsNGo2mwRUdpVKJM2fONLqPr68vNm7ciMDAQKjVaqxcuRIjRozAyZMn0b1790b3WbZsGZKSkgxeP5lBO3qoHxFZEM5ILykWE4TaIjQ0FKGhobrlESNGwN/fH+vXr8crr7zS6D4JCQmIjY3VLVdUVMDLy8votZKRtJOH+hGRheCM9JJjMUGoa9eukMlkKC3Vv+W5tLQUKpWqRcfo2LEjBg8ejPz8/Cbb2NnZwc7O7o5qJSIiC1Q/I/2tk7HWz0jPbnWrZDFjhGxtbREcHIx9+/bp1mm1Wuzbt0/vqk9zNBoNfvrpJ3h4eNy+MRERSQdnpJcsiwlCABAbG4sPPvgAmzZtwunTpzFnzhxUVVVh2rRpAIApU6YgISFB137JkiX46quv8MsvvyAnJweTJ09GYWEh/vGPf5jrLRARUXvEGekly2K6xgBg4sSJKC8vx8svv4ySkhIMGjQIaWlpugHURUVFsLH5K9v9/vvvmDlzJkpKStC5c2cEBwfj0KFDCAgIMNdbICKi9ogz0kuWIIpiY9cB6X8qKiqgUCigVqvh7Oxs7nKIiMgYCr4FNj10+3ZTd/MGDAvR0u9vi+oaIyIiMgrOSC9ZDEJERESckV6yGISIiIgAzkgvURY1WJqIiMioOCO95DAIERER3Ywz0ksKu8aIiIhIshiEiIiISLLYNUZEZCn4VHQig2MQIiKyBHwqOpFRsGuMiKi9q38q+q3Pwqp/Kvqpneapi8gKMAgR0Z3TauoeUfDT53X/5RO6DYdPRScyKnaNEdGdYZeNcbXmqei85Zuo1XhFiIjajl02xsenohMZFYMQEbUNu2xMw1Fp2HZEpIdBiIjapjVdNtR2fCo6kVExCBFR27DLxjT4VHQio2IQIqK2YZeN6fCp6ERGw7vGiKht6rtsKorR+DghoW47u2wMg09FJyuj0YrILriCsj9q4O5kj5BerpDZNNUFbDwMQkTUNvVdNlunoK6L5uYwxC4bo+BT0clKpJ0oRtKuUyhW1+jWeSjskTg2AFH9PZrZ0/DYNUZEbccuGyJqpbQTxZjzcY5eCAKAEnUN5nycg7QTxSath1eEiOjOsMuGiFpIoxWRtOtUk5NuCACSdp3CqACVybrJGISI6M6xy4aIWiC74EqDK0E3EwEUq2uQXXAFoX26mKQmdo0RERGRSZT90XQIaks7Q2AQIiIiIpNwd7I3aDtDYNeYOWg1HE9BRESSE9LLFR4Ke5Soa5qadAMqRd2t9KbCIGRqfFI3ERFJlMxGQOLYAMz5OKepSTeQODbApPMJsWvMlPikbiIikrio/h5InhwEpcIWMvk5dHDOhUx+DkqFLZInB5l8HiFeETKV2z6pW6h7Urffg+wmIyIiq9bB6SQcfVagqvqvZxE6ypXo4BQPgBMqWic+qZuIiAgZhRmIzYxFabX+A5nLqssQmxmLjMIMk9bDIGQqfFI3ERFJnEarwfLs5RAb6R2pX7ciewU0Wo3JamIQMhU+qZuIiCQupyynwZWgm4kQUVJdgpyyHJPVxCBkKvVP6kZTI+EFwLkbn9RNRERWq7y63KDtDIFByFTqn9QNoGEY4pO6iYjI+rnJ3QzazhAsLgi9++676NmzJ+zt7TFs2DBkZ2c32/6zzz6Dn58f7O3tMWDAAOzZs8dElTaCT+omIiIJC3IPglKuhNBE74gAASq5CkHuQSaryaKC0JYtWxAbG4vExETk5ORg4MCBiIyMRFlZWaPtDx06hCeeeAIzZszADz/8gHHjxmHcuHE4ceKEiSu/ScDfgQUngKm7gfEf1v13wU8MQUREZPVkNjLEh8QDQIMwVL8cFxIHmQl7RwRRFBub2KZdGjZsGIYOHYp33nkHAKDVauHl5YVnn30W8fHxDdpPnDgRVVVV2L17t27d8OHDMWjQIKxbt67Rc9TW1qK2tla3XFFRAS8vL6jVajg7Oxv4HREREUlPRmEGlmcv1xs4rZKrEBcShwjvCIOco6KiAgqF4rbf3xYzoeK1a9dw7NgxJCQk6NbZ2NggIiICWVlZje6TlZWF2NhYvXWRkZHYsWNHk+dZtmwZkpKSDFIzERERNRThHYFwr3DklOWgvLocbnI3BLkHmfRKUD2LCUK//fYbNBoNlEr928uVSiXOnDnT6D4lJSWNti8pKWnyPAkJCXrhqf6KEBERERmOzEaGoaqh5i7DcoKQqdjZ2cHOzs7cZRAREZEJWMxg6a5du0Imk6G0VH8iptLSUqhUqkb3UalUrWpPRERE0mIxQcjW1hbBwcHYt2+fbp1Wq8W+ffsQGhra6D6hoaF67QEgPT29yfZEREQkLRbVNRYbG4upU6diyJAhCAkJwZo1a1BVVYVp06YBAKZMmYJu3bph2bJlAID58+dj5MiRWLVqFR588EF8+umnOHr0KN5//31zvg0iIiJqJywqCE2cOBHl5eV4+eWXUVJSgkGDBiEtLU03ILqoqAg2Nn9d5BoxYgQ++eQTvPTSS/i///s/9O3bFzt27ED//v3N9RaIiIioHbGoeYTMoaXzEBAREVH70dLvb4sZI0RERERkaAxCREREJFkMQkRERCRZDEJEREQkWQxCREREJFkMQkRERCRZDEJEREQkWQxCREREJFkWNbM0EbVPGq0GOWU5KK8uh5vcDUHuQZDZyMxdFhHRbTEIEdEdySjMwPLs5SitLtWtU8qViA+JR4R3hBkrIyK6PXaNEVGbZRRmIDYzVi8EAUBZdRliM2ORUZhhpsqIiFqGQYiI2kSj1WB59nKIaPi4wvp1K7JXQKPVmLo0IqIWYxAiojbJKctpcCXoZiJElFSXIKcsx4RVERG1DoMQEbVJeXW5QdsREZkDgxARtYmb3M2g7YiIzIFBiIjaJMg9CEq5EgKERrcLEKCSqxDkHmTiyoiIWo5BiIjaRGYjQ3xIPAA0CEP1y3EhcZxPiIjaNQYhImqzCO8IrA5bDXe5u956pVyJ1WGrOY8QEbV7nFCRiO5IhHcEwr3CObM0EVkkBiEiumMyGxmGqoaauwwiolZj1xgRERFJFoMQERERSRaDEBEREUkWgxARERFJ1h0Nlq6pqcGWLVtQVVWFUaNGoW/fvoaqi4iIiMjoWhyEYmNjcf36dbz99tsAgGvXriE0NBQnT56EXC7HokWLkJ6ejtDQUKMVS0RERGRILe4a++qrrzBq1Cjd8ubNm1FYWIizZ8/i999/x4QJE7B06VKjFElERERkDC0OQkVFRQgICNAtf/XVV3j00Ufh7e0NQRAwf/58/PDDD0YpkoiIiMgYWhyEbGxsIIqibvn777/H8OHDdcsuLi74/fffDVsdERERkRG1OAj5+/tj165dAICTJ0+iqKgI4eHhuu2FhYVQKpWGr5CIiIjISFo8WHrRokV4/PHH8eWXX+LkyZN44IEH0KtXL932PXv2ICQkxChFEhERERlDi68IPfzww9izZw8CAwPx/PPPY8uWLXrb5XI5nnnmGYMXSERERGQsLQ5CS5YsQWhoKN58803ExcVBLpfrbU9MTERYWJih69O5cuUKJk2aBGdnZ7i4uGDGjBmorKxsdp+wsDAIgqD3evrpp41WIxGRMWm0IrLOXcZ/ci8i69xlaLTi7XciomYJ4s0joJshk8lQXFwMd3d3Y9fUqDFjxqC4uBjr16/H9evXMW3aNAwdOhSffPJJk/uEhYWhX79+WLJkiW6dXC6Hs7Nzi89bUVEBhUIBtVrdqv2IiAwp7UQxknadQrG6RrfOQ2GPxLEBiOrvYcbKiNqnln5/t3iMUAvzklGcPn0aaWlpOHLkCIYMGQIAePvtt/HAAw9g5cqV8PT0bHJfuVwOlUplqlKJiAwu7UQx5nycg1t/C5eoazDn4xwkTw5iGCJqo1Y9a0wQBGPV0aysrCy4uLjoQhAAREREwMbGBocPH252382bN6Nr167o378/EhISUF1d3Wz72tpaVFRU6L2IiMxFoxWRtOtUgxAEQLcuadcpdpMRtVGrnjXWr1+/24ahK1eu3FFBjSkpKWnQJdehQwe4urqipKSkyf2efPJJeHt7w9PTE8ePH0dcXBzy8vKwbdu2JvdZtmwZkpKSDFY7EdGdyC64otcddisRQLG6BtkFVxDap4vpCiOyEq0KQklJSVAoFAY7eXx8PFasWNFsm9OnT7f5+LNmzdL9e8CAAfDw8MD999+Pc+fOoU+fPo3uk5CQgNjYWN1yRUUFvLy82lwDEdGdKPuj6RDUlnZEpK9VQejxxx836GDphQsXIiYmptk2vXv3hkqlQllZmd76Gzdu4MqVK60a/zNs2DAAQH5+fpNByM7ODnZ2di0+JhGRMbk72Ru0HRHpa3EQMsb4IDc3N7i5ud22XWhoKK5evYpjx44hODgYAPD1119Dq9Xqwk1L5ObmAgA8PDiokIgsQ0gvV3go7FGirml0nJAAQKWwR0gvV1OXRmQVWjxY2px3jfn7+yMqKgozZ85EdnY2Dh48iHnz5uHxxx/X3TF28eJF+Pn5ITs7GwBw7tw5vPLKKzh27BjOnz+PnTt3YsqUKbjvvvsQGBhotvdCRNQaMhsBiWPrHnh965+j9cuJYwMgszHPzSxElq7FQUir1ZptDiGg7u4vPz8/3H///XjggQdwzz334P3339dtv379OvLy8nR3hdna2iIjIwOjR4+Gn58fFi5ciPHjx+uel0ZEZCmi+nsgeXIQVAr97i+Vwp63zhPdoRZPqChVnFCRiNoLjVZEdsEVlP1RA3enuu4wXgkiapzBJ1QkIiLzktkIvEWeyMBaNaEiERERkTVhECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsmymCD06quvYsSIEZDL5XBxcWnRPqIo4uWXX4aHhwc6deqEiIgInD171riFEhERkcWwmCB07do1TJgwAXPmzGnxPq+//jreeustrFu3DocPH4aDgwMiIyNRU1NjxEqJiIjIUgiiKIrmLqI1UlNTsWDBAly9erXZdqIowtPTEwsXLsQLL7wAAFCr1VAqlUhNTcXjjz/eovNVVFRAoVBArVbD2dn5TssHAGi0IrILrqDsjxq4O9kjpJcrZDaCQY5NRERELf/+7mDCmkyqoKAAJSUliIiI0K1TKBQYNmwYsrKymgxCtbW1qK2t1S1XVFQYtK60E8VI2nUKxeq/rkp5KOyRODYAUf09DHouIiIiap7FdI21VklJCQBAqVTqrVcqlbptjVm2bBkUCoXu5eXlZbCa0k4UY87HOXohCABK1DWY83EO0k4UG+xcREREdHtmDULx8fEQBKHZ15kzZ0xaU0JCAtRqte514cIFgxxXoxWRtOsUGuuHrF+XtOsUNFqL6qkkIiKyaGbtGlu4cCFiYmKabdO7d+82HVulUgEASktL4eHxV5dTaWkpBg0a1OR+dnZ2sLOza9M5m5NdcKXBlaCbiQCK1TXILriC0D5dDH5+IiIiasisQcjNzQ1ubm5GOXavXr2gUqmwb98+XfCpqKjA4cOHW3XnmaGU/dGyO9Va2o6IiIjunMWMESoqKkJubi6Kioqg0WiQm5uL3NxcVFZW6tr4+flh+/btAABBELBgwQIsXboUO3fuxE8//YQpU6bA09MT48aNM3n97k72Bm1HREREd85i7hp7+eWXsWnTJt3y4MGDAQDffPMNwsLCAAB5eXlQq9W6NosWLUJVVRVmzZqFq1ev4p577kFaWhrs7U0fNkJ6ucJDYY8SdU2j44QEACpF3a30REREZBoWN4+QqRlyHqH6u8YA6IWh+hmEkicH8RZ6IiIiA2jp97fFdI1Zg6j+HkieHASVQv+KlEphzxBERERkBhbTNWYtovp7YFSAijNLExERtQMMQmYgsxF4izwREVE7wK4xIiIikiwGISIiIpIsBiEiIiKSLAYhIiIikiwGISIiIpIsBiEiIiKSLAYhIiIikizOI0RWTaMVOXklERE1iUGIrFbaiWIk7TqFYnWNbp2Hwh6JYwP4OBMiIgLArjGyUvUPuL05BAFAiboGcz7OQdqJYjNVRkRE7QmDEFkdjVZE0q5TEBvZVr8uadcpaLSNtSAiIilhECKrk11wpcGVoJuJAIrVNcguuGK6ooiIqF1iECKrU/ZH0yGoLe2IiMh6MQiR1XF3sjdoOyIisl4MQmR1Qnq5wkNhj6ZukhdQd/dYSC9XU5ZFRETtEIMQWR2ZjYDEsQEA0CAM1S8njg3gfEJERMQgRNYpqr8HkicHQaXQ7/5SKeyRPDmI8wgREREATqhIViyqvwdGBag4szQRETWJQYismsxGQGifLuYug4iI2il2jREREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZFlMEHr11VcxYsQIyOVyuLi4tGifmJgYCIKg94qKijJuoURERGQxLOahq9euXcOECRMQGhqKDz/8sMX7RUVFISUlRbdsZ2dnjPKIiIjIAllMEEpKSgIApKamtmo/Ozs7qFSqFrevra1FbW2tbrmioqJV5yMiIiLLYTFdY22VmZkJd3d3+Pr6Ys6cObh8+XKz7ZctWwaFQqF7eXl5mahSIiIiMjWrDkJRUVH4f//v/2Hfvn1YsWIF9u/fjzFjxkCj0TS5T0JCAtRqte514cIFE1ZMREREpmTWrrH4+HisWLGi2TanT5+Gn59fm47/+OOP6/49YMAABAYGok+fPsjMzMT999/f6D52dnYcR0RERCQRZg1CCxcuRExMTLNtevfubbDz9e7dG127dkV+fn6TQYiIiIikw6xByM3NDW5ubiY736+//orLly/Dw8PDZOckIiKi9stixggVFRUhNzcXRUVF0Gg0yM3NRW5uLiorK3Vt/Pz8sH37dgBAZWUl/vnPf+L777/H+fPnsW/fPkRHR8PHxweRkZHmehtkYhqtBkdKjmDPL3twpOQINNqmx4cREZH0WMzt8y+//DI2bdqkWx48eDAA4JtvvkFYWBgAIC8vD2q1GgAgk8lw/PhxbNq0CVevXoWnpydGjx6NV155hWOAJCKjMAPLs5ejtLpUt04pVyI+JB4R3hFmrIyIiNoLQRRF0dxFtGcVFRVQKBRQq9VwdnY2dznUQhmFGYjNjIUI/R9vAQIAYHXYaoYhIiIr1tLvb4vpGiNqKY1Wg+XZyxuEIAC6dSuyV7CbjIiIGITI+uSU5eh1h91KhIiS6hLklOWYsCoiImqPGITI6pRXlxu0HRERWS8GIbI6bvKWTcnQ0nZERGS9GITI6gS5B0EpV+oGRt9KgACVXIUg9yATV0ZERO0NgxBZHZmNDPEh8QDQIAzVL8eFxEFmIzN5bURE1L4wCJFVivCOwOqw1XCXu+utV8qVvHWeiIh0LGZCRaLWivCOQLhXOHLKclBeXQ43uRuC3IN4JYiIiHQYhMiqyWxkGKoaau4yiIionWLXGBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJlkUEofPnz2PGjBno1asXOnXqhD59+iAxMRHXrl1rdr+amhrMnTsXXbp0gaOjI8aPH4/S0lITVU1ERETtnUUEoTNnzkCr1WL9+vU4efIk3nzzTaxbtw7/93//1+x+zz//PHbt2oXPPvsM+/fvx6VLl/DII4+YqGoiIiJq7wRRFEVzF9EWb7zxBpKTk/HLL780ul2tVsPNzQ2ffPIJHn30UQB1gcrf3x9ZWVkYPnx4i85TUVEBhUIBtVoNZ2dng9VPRERExtPS72+LuCLUGLVaDVdX1ya3Hzt2DNevX0dERIRunZ+fH3r06IGsrKwm96utrUVFRYXei4iIiKyTRQah/Px8vP3225g9e3aTbUpKSmBrawsXFxe99UqlEiUlJU3ut2zZMigUCt3Ly8vLUGUTERFRO2PWIBQfHw9BEJp9nTlzRm+fixcvIioqChMmTMDMmTMNXlNCQgLUarXudeHCBYOfg4iIiNqHDuY8+cKFCxETE9Nsm969e+v+fenSJYSHh2PEiBF4//33m91PpVLh2rVruHr1qt5VodLSUqhUqib3s7Ozg52dXYvqJyIi66PRapBTloPy6nK4yd0Q5B4EmY3M3GWRkZg1CLm5ucHNza1FbS9evIjw8HAEBwcjJSUFNjbNX8wKDg5Gx44dsW/fPowfPx4AkJeXh6KiIoSGht5x7UREZH0yCjOwPHs5Sqv/mmpFKVciPiQeEd4RzexJlsoixghdvHgRYWFh6NGjB1auXIny8nKUlJTojfW5ePEi/Pz8kJ2dDQBQKBSYMWMGYmNj8c033+DYsWOYNm0aQkNDW3zHGBERSUdGYQZiM2P1QhAAlFWXITYzFhmFGWaqjIzJrFeEWio9PR35+fnIz89H9+7d9bbV3/1//fp15OXlobq6WrftzTffhI2NDcaPH4/a2lpERkbivffeM2ntRETU/mm0GizPXg4RDWeUESFCgIAV2SsQ7hXObjIrY7HzCJkK5xEiIrJ+R0qOYPre6bdttzFyI4aqhpqgIrpTVj+PEBERkaGUV5cbtB1ZDgYhIiKSPDd5y27caWk7shwMQkREJHlB7kFQypUQIDS6XYAAlVyFIPcgE1dGxsYgREREkiezkSE+JB4AGoSh+uW4kDgOlLZCDEJEREQAIrwjsDpsNdzl7nrrlXIlVoet5jxCVsoibp8nIiIyhQjvCIR7hXNmaQlhECIiIrqJzEbGW+QlhF1jREREJFkMQkRERCRZDEJEREQkWQxCREREJFkMQkRERCRZDEJEREQkWQxCREREJFkMQkRERCRZDEJEREQkWQxCREREJFkMQkRERCRZDEJEREQkWXzoKhHdMY1WRHbBFZT9UQN3J3uE9HKFzEYwd1lERLfFIEREdyTtRDGSdp1CsbpGt85DYY/EsQGI6u9hxsqIiG6PXWNmoNFqcKTkCPb8sgdHSo5Ao9WYuySiNkk7UYw5H+fohSAAKFHXYM7HOUg7UWymyoiIWoZXhEwsozADy7OXo7S6VLdOKVciPiQeEd4RZqyMqHU0WhFJu05BbGSbCEAAkLTrFEYFqNhNRkTtFq8ImVBGYQZiM2P1QhAAlFWXITYzFhmFGWaqjKj1sguuNLgSdDMRQLG6BtkFV0xXFBFRKzEImYhGq8Hy7OUQG/n7uX7diuwV7CYji1H2R9MhqC3tiIjMgUHIRHLKchpcCbqZCBEl1SXIKcsxYVVEbefuZG/QdkRE5sAgZCLl1eUGbUdkbiG9XOGhsEdTo38E1N09FtLL1ZRlERG1CoOQibjJ3QzajsjcZDYCEscGAECDMFS/nDg2gAOliahdYxAykSD3ICjlSghN/P0sQIBKrkKQe5CJKyNqu6j+HkieHASVQr/7S6WwR/LkIM4jRETtHm+fNxGZjQzxIfGIzYyFAEFv0HR9OIoLiYPMRmauEonaJKq/B0YFqDizNBFZJEEUxcamAaH/qaiogEKhgFqthrOz8x0fr7F5hFRyFeJC4jiPEBERkYG09PubV4RMLMI7AuFe4cgpy0F5dTnc5G4Icg/ilSAiIiIzYBAyA5mNDENVQ81dBhERkeRZxGDp8+fPY8aMGejVqxc6deqEPn36IDExEdeuXWt2v7CwMAiCoPd6+umnTVQ1ERERtXcWcUXozJkz0Gq1WL9+PXx8fHDixAnMnDkTVVVVWLlyZbP7zpw5E0uWLNEty+VyY5dLREREFsIiglBUVBSioqJ0y71790ZeXh6Sk5NvG4TkcjlUKlWLz1VbW4va2lrdckVFResLJiIiIotgEV1jjVGr1XB1vf2MtZs3b0bXrl3Rv39/JCQkoLq6utn2y5Ytg0Kh0L28vLwMVTIRERG1MxZ5+3x+fj6Cg4OxcuVKzJw5s8l277//Pry9veHp6Ynjx48jLi4OISEh2LZtW5P7NHZFyMvLy2C3zxMREZHxtfT2ebMGofj4eKxYsaLZNqdPn4afn59u+eLFixg5ciTCwsKwYcOGVp3v66+/xv3334/8/Hz06dOnRfsYeh4hIiIiMj6LCELl5eW4fPlys2169+4NW1tbAMClS5cQFhaG4cOHIzU1FTY2revZq6qqgqOjI9LS0hAZGdmifRiEiIiILI9FTKjo5uYGN7eWPWT04sWLCA8PR3BwMFJSUlodggAgNzcXAODhwecfERERkYUMlr548SLCwsLQo0cPrFy5EuXl5SgpKUFJSYleGz8/P2RnZwMAzp07h1deeQXHjh3D+fPnsXPnTkyZMgX33XcfAgMDzfVWiIiIqB2xiNvn09PTkZ+fj/z8fHTv3l1vW33P3vXr15GXl6e7K8zW1hYZGRlYs2YNqqqq4OXlhfHjx+Oll15q1bnrj8/b6ImIiCxH/ff27UYAWeRdY6b066+/8hZ6IiIiC3XhwoUGF1FuxiB0G1qtFpcuXYKTkxMEQTDYcetvy79w4QIHYRsZP2vT4OdsGvycTYOfs2kY83MWRRF//PEHPD09mx1XbBFdY+ZkY2PTbJK8U87Ozvw/mYnwszYNfs6mwc/ZNPg5m4axPmeFQnHbNhYxWJqIiIjIGBiEiIiISLIYhMzEzs4OiYmJsLOzM3cpVo+ftWnwczYNfs6mwc/ZNNrD58zB0kRERCRZvCJEREREksUgRERERJLFIERERESSxSBEREREksUgZCbvvvsuevbsCXt7ewwbNkz3sFgynAMHDmDs2LHw9PSEIAjYsWOHuUuyOsuWLcPQoUPh5OQEd3d3jBs3Dnl5eeYuyyolJycjMDBQN/FcaGgo/vvf/5q7LKu2fPlyCIKABQsWmLsUq7N48WIIgqD38vPzM0stDEJmsGXLFsTGxiIxMRE5OTkYOHAgIiMjUVZWZu7SrEpVVRUGDhyId99919ylWK39+/dj7ty5+P7775Geno7r169j9OjRqKqqMndpVqd79+5Yvnw5jh07hqNHj+Jvf/sboqOjcfLkSXOXZpWOHDmC9evXIzAw0NylWK277roLxcXFutd3331nljp4+7wZDBs2DEOHDsU777wDoO55Zl5eXnj22WcRHx9v5uqskyAI2L59O8aNG2fuUqxaeXk53N3dsX//ftx3333mLsfqubq64o033sCMGTPMXYpVqaysRFBQEN577z0sXboUgwYNwpo1a8xdllVZvHgxduzYgdzcXHOXwitCpnbt2jUcO3YMERERunU2NjaIiIhAVlaWGSsjunNqtRpA3Rc0GY9Go8Gnn36KqqoqhIaGmrscqzN37lw8+OCDer+nyfDOnj0LT09P9O7dG5MmTUJRUZFZ6uBDV03st99+g0ajgVKp1FuvVCpx5swZM1VFdOe0Wi0WLFiAu+++G/379zd3OVbpp59+QmhoKGpqauDo6Ijt27cjICDA3GVZlU8//RQ5OTk4cuSIuUuxasOGDUNqaip8fX1RXFyMpKQk3HvvvThx4gScnJxMWguDEBEZxNy5c3HixAmz9fNLga+vL3Jzc6FWq/H5559j6tSp2L9/P8OQgVy4cAHz589Heno67O3tzV2OVRszZozu34GBgRg2bBi8vb2xdetWk3f1MgiZWNeuXSGTyVBaWqq3vrS0FCqVykxVEd2ZefPmYffu3Thw4AC6d+9u7nKslq2tLXx8fAAAwcHBOHLkCNauXYv169ebuTLrcOzYMZSVlSEoKEi3TqPR4MCBA3jnnXdQW1sLmUxmxgqtl4uLC/r164f8/HyTn5tjhEzM1tYWwcHB2Ldvn26dVqvFvn372NdPFkcURcybNw/bt2/H119/jV69epm7JEnRarWora01dxlW4/7778dPP/2E3Nxc3WvIkCGYNGkScnNzGYKMqLKyEufOnYOHh4fJz80rQmYQGxuLqVOnYsiQIQgJCcGaNWtQVVWFadOmmbs0q1JZWan310VBQQFyc3Ph6uqKHj16mLEy6zF37lx88skn+M9//gMnJyeUlJQAABQKBTp16mTm6qxLQkICxowZgx49euCPP/7AJ598gszMTOzdu9fcpVkNJyenBuPbHBwc0KVLF457M7AXXngBY8eOhbe3Ny5duoTExETIZDI88cQTJq+FQcgMJk6ciPLycrz88ssoKSnBoEGDkJaW1mAANd2Zo0ePIjw8XLccGxsLAJg6dSpSU1PNVJV1SU5OBgCEhYXprU9JSUFMTIzpC7JiZWVlmDJlCoqLi6FQKBAYGIi9e/di1KhR5i6NqNV+/fVXPPHEE7h8+TLc3Nxwzz334Pvvv4ebm5vJa+E8QkRERCRZHCNEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIEREkhYTE4Nx48aZuwwiMhMGISIyupiYGAiC0OAVFRVl7tKwdu3advPIFUEQsGPHDnOXQSQpfNYYEZlEVFQUUlJS9NbZ2dmZqRpAo9FAEAQoFAqz1UBE5scrQkRkEnZ2dlCpVHqvzp07IzMzE7a2tvj22291bV9//XW4u7ujtLQUQN1DXefNm4d58+ZBoVCga9eu+Ne//oWbH5VYW1uLF154Ad26dYODgwOGDRuGzMxM3fbU1FS4uLhg586dCAgIgJ2dHYqKihp0jYWFheHZZ5/FggUL0LlzZyiVSnzwwQeoqqrCtGnT4OTkBB8fH/z3v//Ve38nTpzAmDFj4OjoCKVSiaeeegq//fab3nGfe+45LFq0CK6urlCpVFi8eLFue8+ePQEADz/8MARB0C0TkXExCBGRWYWFhWHBggV46qmnoFar8cMPP+Bf//oXNmzYAKVSqWu3adMmdOjQAdnZ2Vi7di1Wr16NDRs26LbPmzcPWVlZ+PTTT3H8+HFMmDABUVFROHv2rK5NdXU1VqxYgQ0bNuDkyZNwd3dvtKZNmzaha9euyM7OxrPPPos5c+ZgwoQJGDFiBHJycjB69Gg89dRTqK6uBgBcvXoVf/vb3zB48GAcPXoUaWlpKC0txWOPPdbguA4ODjh8+DBef/11LFmyBOnp6QCAI0eOAABSUlJQXFysWyYiIxOJiIxs6tSpokwmEx0cHPRer776qiiKolhbWysOGjRIfOyxx8SAgABx5syZevuPHDlS9Pf3F7VarW5dXFyc6O/vL4qiKBYWFooymUy8ePGi3n7333+/mJCQIIqiKKakpIgAxNzc3Aa1RUdH653rnnvu0S3fuHFDdHBwEJ966induuLiYhGAmJWVJYqiKL7yyivi6NGj9Y574cIFEYCYl5fX6HFFURSHDh0qxsXF6ZYBiNu3b2/iUyQiY+AYISIyifDwcCQnJ+utc3V1BQDY2tpi8+bNCAwMhLe3N958880G+w8fPhyCIOiWQ0NDsWrVKmg0Gvz000/QaDTo16+f3j61tbXo0qWLbtnW1haBgYG3rfXmNjKZDF26dMGAAQN06+qvVJWVlQEAfvzxR3zzzTdwdHRscKxz587p6rr13B4eHrpjEJF5MAgRkUk4ODjAx8enye2HDh0CAFy5cgVXrlyBg4NDi49dWVkJmUyGY8eOQSaT6W27OZx06tRJL0w1pWPHjnrLgiDoras/hlar1Z1/7NixWLFiRYNjeXh4NHvc+mMQkXkwCBGR2Z07dw7PP/88PvjgA2zZsgVTp05FRkYGbGz+GsZ4+PBhvX2+//579O3bFzKZDIMHD4ZGo0FZWRnuvfdeU5ePoKAgfPHFF+jZsyc6dGj7r9WOHTtCo9EYsDIiuh0OliYik6itrUVJSYne67fffoNGo8HkyZMRGRmJadOmISUlBcePH8eqVav09i8qKkJsbCzy8vLw73//G2+//Tbmz58PAOjXrx8mTZqEKVOmYNu2bSgoKEB2djaWLVuGL7/80ujvbe7cubhy5QqeeOIJHDlyBOfOncPevXsxbdq0VgWbnj17Yt++fSgpKcHvv/9uxIqJqB6vCBGRSaSlpel1EwGAr68vnnzySRQWFmL37t0A6rqS3n//fTzxxBMYPXo0Bg4cCACYMmUK/vzzT4SEhEAmk2H+/PmYNWuW7lgpKSlYunQpFi5ciIsXL6Jr164YPnw4HnroIaO/N09PTxw8eBBxcXEYPXo0amtr4e3tjaioKL2rWrezatUqxMbG4oMPPkC3bt1w/vx54xVNRAAAQRRvmoiDiKgdCgsLw6BBg7BmzRpzl0JEVoZdY0RERCRZDEJEREQkWewaIyIiIsniFSEiIiKSLAYhIiIikiwGISIiIpIsBiEiIiKSLAYhIiIikiwGISIiIpIsBiEiIiKSLAYhIiIikqz/DzKgy2cN5040AAAAAElFTkSuQmCC", "text/plain": [ - "\n", - "array([[ 0.24415116, 0.57190904, -0.56741771, 0.03133404],\n", - " [ 0.63067417, 1.27054457, -0.38009251, -1.43804407],\n", - " [ 1.39065636, 0.45336726, -1.34176023, -0.4421672 ],\n", - " [ 0.82115084, -0.07404171, -1.25501827, 0.63119298],\n", - " [-0.0032479 , -0.15801926, -0.21243818, 0.18921249],\n", - " [-0.06503205, -0.18135761, -1.11951148, -0.46128058]])\n", - "Coordinates:\n", - " * anchor_year (anchor_year) int64 2013 2014 2015 2016 2017 2018\n", - " i_interval int64 -2\n", - " left_bound (anchor_year) datetime64[ns] 2013-06-02 ... 2018-06-02\n", - " right_bound (anchor_year) datetime64[ns] 2013-06-22 ... 2018-06-22\n", - " is_target bool False\n", - " * cluster_labels (cluster_labels) int16 -2 -1 1 2\n", - " latitude (cluster_labels) float64 35.0 45.98 32.5 27.5\n", - " longitude (cluster_labels) float64 226.4 203.3 192.5 180.0\n", - "Attributes:\n", - " data: Clustered data with Response Guided Dimensionality Reduction.\n", - " coordinates: Latitudes and longitudes are geographical centers associate..." + "
" ] }, - "execution_count": 68, "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "clusters_test.isel(i_interval=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "X has 2 features, but Ridge is expecting 3 features as input.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[69], line 8\u001b[0m\n\u001b[1;32m 6\u001b[0m clusters_test \u001b[39m=\u001b[39m rgdr\u001b[39m.\u001b[39mtransform(x_test)\n\u001b[1;32m 7\u001b[0m \u001b[39m# predict and save results\u001b[39;00m\n\u001b[0;32m----> 8\u001b[0m predictions_baseline \u001b[39m=\u001b[39m models[np\u001b[39m.\u001b[39;49margmax(rmse_test)]\u001b[39m.\u001b[39;49mpredict(clusters_test\u001b[39m.\u001b[39;49misel(i_interval\u001b[39m=\u001b[39;49m\u001b[39m0\u001b[39;49m))\n", - "File \u001b[0;32m~/venv/ai4s2s/lib/python3.10/site-packages/sklearn/linear_model/_base.py:354\u001b[0m, in \u001b[0;36mLinearModel.predict\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 340\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mpredict\u001b[39m(\u001b[39mself\u001b[39m, X):\n\u001b[1;32m 341\u001b[0m \u001b[39m \u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 342\u001b[0m \u001b[39m Predict using the linear model.\u001b[39;00m\n\u001b[1;32m 343\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 352\u001b[0m \u001b[39m Returns predicted values.\u001b[39;00m\n\u001b[1;32m 353\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 354\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_decision_function(X)\n", - "File \u001b[0;32m~/venv/ai4s2s/lib/python3.10/site-packages/sklearn/linear_model/_base.py:337\u001b[0m, in \u001b[0;36mLinearModel._decision_function\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_decision_function\u001b[39m(\u001b[39mself\u001b[39m, X):\n\u001b[1;32m 335\u001b[0m check_is_fitted(\u001b[39mself\u001b[39m)\n\u001b[0;32m--> 337\u001b[0m X \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_validate_data(X, accept_sparse\u001b[39m=\u001b[39;49m[\u001b[39m\"\u001b[39;49m\u001b[39mcsr\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39m\"\u001b[39;49m\u001b[39mcsc\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39m\"\u001b[39;49m\u001b[39mcoo\u001b[39;49m\u001b[39m\"\u001b[39;49m], reset\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m)\n\u001b[1;32m 338\u001b[0m \u001b[39mreturn\u001b[39;00m safe_sparse_dot(X, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcoef_\u001b[39m.\u001b[39mT, dense_output\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m) \u001b[39m+\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mintercept_\n", - "File \u001b[0;32m~/venv/ai4s2s/lib/python3.10/site-packages/sklearn/base.py:588\u001b[0m, in \u001b[0;36mBaseEstimator._validate_data\u001b[0;34m(self, X, y, reset, validate_separately, **check_params)\u001b[0m\n\u001b[1;32m 585\u001b[0m out \u001b[39m=\u001b[39m X, y\n\u001b[1;32m 587\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m no_val_X \u001b[39mand\u001b[39;00m check_params\u001b[39m.\u001b[39mget(\u001b[39m\"\u001b[39m\u001b[39mensure_2d\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39mTrue\u001b[39;00m):\n\u001b[0;32m--> 588\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_check_n_features(X, reset\u001b[39m=\u001b[39;49mreset)\n\u001b[1;32m 590\u001b[0m \u001b[39mreturn\u001b[39;00m out\n", - "File \u001b[0;32m~/venv/ai4s2s/lib/python3.10/site-packages/sklearn/base.py:389\u001b[0m, in \u001b[0;36mBaseEstimator._check_n_features\u001b[0;34m(self, X, reset)\u001b[0m\n\u001b[1;32m 386\u001b[0m \u001b[39mreturn\u001b[39;00m\n\u001b[1;32m 388\u001b[0m \u001b[39mif\u001b[39;00m n_features \u001b[39m!=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mn_features_in_:\n\u001b[0;32m--> 389\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 390\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mX has \u001b[39m\u001b[39m{\u001b[39;00mn_features\u001b[39m}\u001b[39;00m\u001b[39m features, but \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m\u001b[39m__class__\u001b[39m\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 391\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mis expecting \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mn_features_in_\u001b[39m}\u001b[39;00m\u001b[39m features as input.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 392\u001b[0m )\n", - "\u001b[0;31mValueError\u001b[0m: X has 2 features, but Ridge is expecting 3 features as input." - ] + "output_type": "display_data" } ], "source": [ - "x_test = precursor_field_sel[-test_samples:]\n", - "y_test = target_series_sel[:-test_samples]\n", - "# fit dimensionality reduction operator RGDR\n", - "rgdr.fit(precursor_field_sel[:-test_samples],\n", - " target_series_sel[:-test_samples])\n", - "clusters_test = rgdr.transform(x_test)\n", - "# predict and save results\n", - "predictions_baseline = models[np.argmax(rmse_test)].predict(clusters_test.isel(i_interval=0))" + "print(\n", + " f\"The MSE of LSTM forecasts is {mean_squared_error(ground_truth, np.concatenate(predictions)):.3f}\"\n", + ")\n", + "print(\n", + " f\"The MSE of baseline ridge forecasts is {mean_squared_error(ground_truth, predictions_baseline):.3f}\"\n", + ")\n", + "\n", + "fig = plt.figure()\n", + "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", + "plt.scatter(instances, predictions_baseline, label=\"Predictions-Ridge\")\n", + "plt.scatter(instances, ground_truth, label=\"Ground truth\")\n", + "plt.xlabel(\"Experiment\")\n", + "plt.ylabel(\"TS\")\n", + "plt.legend()\n", + "plt.show()\n" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { From 1cdf388d85f23c6ae491ccac3cbda8a5f688f889 Mon Sep 17 00:00:00 2001 From: Yang Date: Tue, 13 Jun 2023 12:55:18 +0200 Subject: [PATCH 03/13] fine-tune LSTM to outperform ridge --- workflow/comp_pred_ridge_and_LSTM.ipynb | 1502 ++++++++++++++++------- 1 file changed, 1033 insertions(+), 469 deletions(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index a4ee668..e011421 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -556,6 +556,66 @@ "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" ] + }, + { + "data": { + "text/html": [ + "Tracking run with wandb version 0.15.4" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Run data is saved locally in /home/yangliu/AI4S2S/cookbook/workflow/wandb/run-20230613_125153-2tknu0at" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Syncing run flowing-lion-6 to Weights & Biases (docs)
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View project at https://wandb.ai/ai4s2s/test-LSTM-ridge" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run at https://wandb.ai/ai4s2s/test-LSTM-ridge/runs/2tknu0at" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -564,20 +624,20 @@ "\n", "# define hyperparameters and the \n", "hyperparameters = dict(\n", - " epoch = 50,\n", + " epoch = 100,\n", " input_dim = lat_precursor*lon_precursor,\n", " hidden_dim = lat_precursor*lon_precursor*2,\n", " output_dim = 1,\n", " batch_size = 3, \n", - " num_layers = 2,\n", + " num_layers = 4,\n", " learning_rate = 0.01,\n", " dataset = 'Weather',\n", " architecture = 'LSTM'\n", ")\n", "\n", "# initialize weights & biases service\n", - "#mode = 'online'\n", - "mode = 'disabled'\n", + "mode = 'online'\n", + "#mode = 'disabled'\n", "wandb.init(config=hyperparameters, project='test-LSTM-ridge', entity='ai4s2s', mode=mode)\n", "config = wandb.config" ] @@ -622,7 +682,7 @@ "text": [ "Model details:\n", " LSTM(\n", - " (lstm): LSTM(65, 130, num_layers=2, batch_first=True)\n", + " (lstm): LSTM(65, 130, num_layers=4, batch_first=True)\n", " (linear): Linear(in_features=130, out_features=1, bias=True)\n", ")\n", "Optimizer details:\n", @@ -687,457 +747,907 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/27(0%)]\tLoss: 2.175716\n", - "Epoch : 0 [3/27(11%)]\tLoss: 2.743063\n", - "Epoch : 0 [6/27(22%)]\tLoss: 2.713048\n", - "Epoch : 0 [9/27(33%)]\tLoss: 0.606138\n", - "Epoch : 0 [12/27(44%)]\tLoss: 12.198117\n", - "Epoch : 0 [15/27(56%)]\tLoss: 1.088581\n", - "Epoch : 0 [18/27(67%)]\tLoss: 12.599643\n", - "Epoch : 0 [21/27(78%)]\tLoss: 0.912780\n", - "Epoch : 0 [24/27(89%)]\tLoss: 5.355000\n", - "Epoch : 1 [0/27(0%)]\tLoss: 1.788077\n", - "Epoch : 1 [3/27(11%)]\tLoss: 1.780171\n", - "Epoch : 1 [6/27(22%)]\tLoss: 4.761717\n", - "Epoch : 1 [9/27(33%)]\tLoss: 0.192258\n", - "Epoch : 1 [12/27(44%)]\tLoss: 2.819624\n", - "Epoch : 1 [15/27(56%)]\tLoss: 2.338455\n", - "Epoch : 1 [18/27(67%)]\tLoss: 0.035893\n", - "Epoch : 1 [21/27(78%)]\tLoss: 1.732249\n", - "Epoch : 1 [24/27(89%)]\tLoss: 4.576953\n", - "Epoch : 2 [0/27(0%)]\tLoss: 1.748015\n", - "Epoch : 2 [3/27(11%)]\tLoss: 1.679002\n", - "Epoch : 2 [6/27(22%)]\tLoss: 4.525184\n", - "Epoch : 2 [9/27(33%)]\tLoss: 0.062779\n", - "Epoch : 2 [12/27(44%)]\tLoss: 2.512015\n", - "Epoch : 2 [15/27(56%)]\tLoss: 0.840971\n", - "Epoch : 2 [18/27(67%)]\tLoss: 0.210549\n", - "Epoch : 2 [21/27(78%)]\tLoss: 0.436546\n", - "Epoch : 2 [24/27(89%)]\tLoss: 2.078295\n", - "Epoch : 3 [0/27(0%)]\tLoss: 0.927467\n", - "Epoch : 3 [3/27(11%)]\tLoss: 0.775206\n", - "Epoch : 3 [6/27(22%)]\tLoss: 2.238743\n", - "Epoch : 3 [9/27(33%)]\tLoss: 0.901806\n", - "Epoch : 3 [12/27(44%)]\tLoss: 0.365897\n", - "Epoch : 3 [15/27(56%)]\tLoss: 0.107469\n", - "Epoch : 3 [18/27(67%)]\tLoss: 1.618516\n", - "Epoch : 3 [21/27(78%)]\tLoss: 0.193488\n", - "Epoch : 3 [24/27(89%)]\tLoss: 1.480976\n", - "Epoch : 4 [0/27(0%)]\tLoss: 0.820357\n", - "Epoch : 4 [3/27(11%)]\tLoss: 0.684289\n", - "Epoch : 4 [6/27(22%)]\tLoss: 2.010722\n", - "Epoch : 4 [9/27(33%)]\tLoss: 1.814667\n", - "Epoch : 4 [12/27(44%)]\tLoss: 2.787289\n", - "Epoch : 4 [15/27(56%)]\tLoss: 1.129950\n", - "Epoch : 4 [18/27(67%)]\tLoss: 1.232284\n", - "Epoch : 4 [21/27(78%)]\tLoss: 0.166187\n", - "Epoch : 4 [24/27(89%)]\tLoss: 0.997932\n", - "Epoch : 5 [0/27(0%)]\tLoss: 0.502629\n", - "Epoch : 5 [3/27(11%)]\tLoss: 0.170442\n", - "Epoch : 5 [6/27(22%)]\tLoss: 1.526416\n", - "Epoch : 5 [9/27(33%)]\tLoss: 0.302934\n", - "Epoch : 5 [12/27(44%)]\tLoss: 0.264000\n", - "Epoch : 5 [15/27(56%)]\tLoss: 1.178755\n", - "Epoch : 5 [18/27(67%)]\tLoss: 0.521102\n", - "Epoch : 5 [21/27(78%)]\tLoss: 0.292636\n", - "Epoch : 5 [24/27(89%)]\tLoss: 2.251093\n", - "Epoch : 6 [0/27(0%)]\tLoss: 0.362981\n", - "Epoch : 6 [3/27(11%)]\tLoss: 0.028891\n", - "Epoch : 6 [6/27(22%)]\tLoss: 0.694824\n", - "Epoch : 6 [9/27(33%)]\tLoss: 0.240936\n", - "Epoch : 6 [12/27(44%)]\tLoss: 2.191940\n", - "Epoch : 6 [15/27(56%)]\tLoss: 0.558244\n", - "Epoch : 6 [18/27(67%)]\tLoss: 0.213810\n", - "Epoch : 6 [21/27(78%)]\tLoss: 0.958144\n", - "Epoch : 6 [24/27(89%)]\tLoss: 0.942689\n", - "Epoch : 7 [0/27(0%)]\tLoss: 0.206360\n", - "Epoch : 7 [3/27(11%)]\tLoss: 0.079650\n", - "Epoch : 7 [6/27(22%)]\tLoss: 0.494124\n", - "Epoch : 7 [9/27(33%)]\tLoss: 0.006412\n", - "Epoch : 7 [12/27(44%)]\tLoss: 0.105762\n", - "Epoch : 7 [15/27(56%)]\tLoss: 0.980747\n", - "Epoch : 7 [18/27(67%)]\tLoss: 0.363138\n", - "Epoch : 7 [21/27(78%)]\tLoss: 0.009495\n", - "Epoch : 7 [24/27(89%)]\tLoss: 0.718109\n", - "Epoch : 8 [0/27(0%)]\tLoss: 0.583439\n", - "Epoch : 8 [3/27(11%)]\tLoss: 0.812256\n", - "Epoch : 8 [6/27(22%)]\tLoss: 0.982518\n", - "Epoch : 8 [9/27(33%)]\tLoss: 0.028823\n", - "Epoch : 8 [12/27(44%)]\tLoss: 0.612046\n", - "Epoch : 8 [15/27(56%)]\tLoss: 0.141186\n", - "Epoch : 8 [18/27(67%)]\tLoss: 0.094395\n", - "Epoch : 8 [21/27(78%)]\tLoss: 0.042632\n", - "Epoch : 8 [24/27(89%)]\tLoss: 0.423282\n", - "Epoch : 9 [0/27(0%)]\tLoss: 1.354184\n", - "Epoch : 9 [3/27(11%)]\tLoss: 0.072040\n", - "Epoch : 9 [6/27(22%)]\tLoss: 0.641140\n", - "Epoch : 9 [9/27(33%)]\tLoss: 0.146647\n", - "Epoch : 9 [12/27(44%)]\tLoss: 0.189362\n", - "Epoch : 9 [15/27(56%)]\tLoss: 0.076105\n", - "Epoch : 9 [18/27(67%)]\tLoss: 0.116884\n", - "Epoch : 9 [21/27(78%)]\tLoss: 0.029834\n", - "Epoch : 9 [24/27(89%)]\tLoss: 0.013572\n", - "Epoch : 10 [0/27(0%)]\tLoss: 0.347252\n", - "Epoch : 10 [3/27(11%)]\tLoss: 0.028759\n", - "Epoch : 10 [6/27(22%)]\tLoss: 0.847865\n", - "Epoch : 10 [9/27(33%)]\tLoss: 0.106064\n", - "Epoch : 10 [12/27(44%)]\tLoss: 0.180962\n", - "Epoch : 10 [15/27(56%)]\tLoss: 0.134852\n", - "Epoch : 10 [18/27(67%)]\tLoss: 0.062152\n", - "Epoch : 10 [21/27(78%)]\tLoss: 0.010283\n", - "Epoch : 10 [24/27(89%)]\tLoss: 0.004671\n", - "Epoch : 11 [0/27(0%)]\tLoss: 0.190889\n", - "Epoch : 11 [3/27(11%)]\tLoss: 0.113868\n", - "Epoch : 11 [6/27(22%)]\tLoss: 0.211571\n", - "Epoch : 11 [9/27(33%)]\tLoss: 0.025773\n", - "Epoch : 11 [12/27(44%)]\tLoss: 0.137781\n", - "Epoch : 11 [15/27(56%)]\tLoss: 0.020586\n", - "Epoch : 11 [18/27(67%)]\tLoss: 0.019829\n", - "Epoch : 11 [21/27(78%)]\tLoss: 0.022291\n", - "Epoch : 11 [24/27(89%)]\tLoss: 0.009828\n", - "Epoch : 12 [0/27(0%)]\tLoss: 0.003744\n", - "Epoch : 12 [3/27(11%)]\tLoss: 0.032412\n", - "Epoch : 12 [6/27(22%)]\tLoss: 0.045732\n", - "Epoch : 12 [9/27(33%)]\tLoss: 0.042286\n", - "Epoch : 12 [12/27(44%)]\tLoss: 0.120009\n", - "Epoch : 12 [15/27(56%)]\tLoss: 0.011253\n", - "Epoch : 12 [18/27(67%)]\tLoss: 0.008890\n", - "Epoch : 12 [21/27(78%)]\tLoss: 0.008301\n", - "Epoch : 12 [24/27(89%)]\tLoss: 0.010573\n", - "Epoch : 13 [0/27(0%)]\tLoss: 0.019932\n", - "Epoch : 13 [3/27(11%)]\tLoss: 0.009967\n", - "Epoch : 13 [6/27(22%)]\tLoss: 0.022187\n", - "Epoch : 13 [9/27(33%)]\tLoss: 0.004305\n", - "Epoch : 13 [12/27(44%)]\tLoss: 0.029092\n", - "Epoch : 13 [15/27(56%)]\tLoss: 0.002971\n", - "Epoch : 13 [18/27(67%)]\tLoss: 0.004143\n", - "Epoch : 13 [21/27(78%)]\tLoss: 0.000228\n", - "Epoch : 13 [24/27(89%)]\tLoss: 0.001583\n", - "Epoch : 14 [0/27(0%)]\tLoss: 0.013423\n", - "Epoch : 14 [3/27(11%)]\tLoss: 0.007937\n", - "Epoch : 14 [6/27(22%)]\tLoss: 0.004921\n", - "Epoch : 14 [9/27(33%)]\tLoss: 0.000819\n", - "Epoch : 14 [12/27(44%)]\tLoss: 0.002714\n", - "Epoch : 14 [15/27(56%)]\tLoss: 0.010423\n", - "Epoch : 14 [18/27(67%)]\tLoss: 0.002273\n", - "Epoch : 14 [21/27(78%)]\tLoss: 0.000969\n", - "Epoch : 14 [24/27(89%)]\tLoss: 0.002655\n", - "Epoch : 15 [0/27(0%)]\tLoss: 0.003493\n", - "Epoch : 15 [3/27(11%)]\tLoss: 0.006684\n", - "Epoch : 15 [6/27(22%)]\tLoss: 0.000400\n", - "Epoch : 15 [9/27(33%)]\tLoss: 0.002242\n", - "Epoch : 15 [12/27(44%)]\tLoss: 0.009312\n", - "Epoch : 15 [15/27(56%)]\tLoss: 0.011994\n", - "Epoch : 15 [18/27(67%)]\tLoss: 0.000382\n", - "Epoch : 15 [21/27(78%)]\tLoss: 0.000937\n", - "Epoch : 15 [24/27(89%)]\tLoss: 0.012359\n", - "Epoch : 16 [0/27(0%)]\tLoss: 0.029045\n", - "Epoch : 16 [3/27(11%)]\tLoss: 0.000221\n", - "Epoch : 16 [6/27(22%)]\tLoss: 0.000486\n", - "Epoch : 16 [9/27(33%)]\tLoss: 0.000058\n", - "Epoch : 16 [12/27(44%)]\tLoss: 0.008490\n", - "Epoch : 16 [15/27(56%)]\tLoss: 0.007433\n", - "Epoch : 16 [18/27(67%)]\tLoss: 0.001802\n", - "Epoch : 16 [21/27(78%)]\tLoss: 0.003756\n", - "Epoch : 16 [24/27(89%)]\tLoss: 0.024534\n", - "Epoch : 17 [0/27(0%)]\tLoss: 0.007142\n", - "Epoch : 17 [3/27(11%)]\tLoss: 0.007371\n", - "Epoch : 17 [6/27(22%)]\tLoss: 0.000442\n", - "Epoch : 17 [9/27(33%)]\tLoss: 0.001625\n", - "Epoch : 17 [12/27(44%)]\tLoss: 0.004949\n", - "Epoch : 17 [15/27(56%)]\tLoss: 0.020284\n", - "Epoch : 17 [18/27(67%)]\tLoss: 0.018469\n", - "Epoch : 17 [21/27(78%)]\tLoss: 0.028195\n", - "Epoch : 17 [24/27(89%)]\tLoss: 0.030937\n", - "Epoch : 18 [0/27(0%)]\tLoss: 0.004328\n", - "Epoch : 18 [3/27(11%)]\tLoss: 0.002857\n", - "Epoch : 18 [6/27(22%)]\tLoss: 0.000872\n", - "Epoch : 18 [9/27(33%)]\tLoss: 0.001753\n", - "Epoch : 18 [12/27(44%)]\tLoss: 0.002325\n", - "Epoch : 18 [15/27(56%)]\tLoss: 0.012321\n", - "Epoch : 18 [18/27(67%)]\tLoss: 0.008577\n", - "Epoch : 18 [21/27(78%)]\tLoss: 0.048079\n", - "Epoch : 18 [24/27(89%)]\tLoss: 0.009804\n", - "Epoch : 19 [0/27(0%)]\tLoss: 0.019558\n", - "Epoch : 19 [3/27(11%)]\tLoss: 0.000376\n", - "Epoch : 19 [6/27(22%)]\tLoss: 0.001113\n", - "Epoch : 19 [9/27(33%)]\tLoss: 0.000310\n", - "Epoch : 19 [12/27(44%)]\tLoss: 0.011354\n", - "Epoch : 19 [15/27(56%)]\tLoss: 0.005805\n", - "Epoch : 19 [18/27(67%)]\tLoss: 0.002298\n", - "Epoch : 19 [21/27(78%)]\tLoss: 0.002168\n", - "Epoch : 19 [24/27(89%)]\tLoss: 0.051029\n", - "Epoch : 20 [0/27(0%)]\tLoss: 0.040163\n", - "Epoch : 20 [3/27(11%)]\tLoss: 0.002202\n", - "Epoch : 20 [6/27(22%)]\tLoss: 0.000463\n", - "Epoch : 20 [9/27(33%)]\tLoss: 0.002925\n", - "Epoch : 20 [12/27(44%)]\tLoss: 0.000550\n", - "Epoch : 20 [15/27(56%)]\tLoss: 0.012554\n", - "Epoch : 20 [18/27(67%)]\tLoss: 0.003530\n", - "Epoch : 20 [21/27(78%)]\tLoss: 0.001141\n", - "Epoch : 20 [24/27(89%)]\tLoss: 0.057233\n", - "Epoch : 21 [0/27(0%)]\tLoss: 0.006945\n", - "Epoch : 21 [3/27(11%)]\tLoss: 0.004644\n", - "Epoch : 21 [6/27(22%)]\tLoss: 0.002954\n", - "Epoch : 21 [9/27(33%)]\tLoss: 0.000336\n", - "Epoch : 21 [12/27(44%)]\tLoss: 0.002125\n", - "Epoch : 21 [15/27(56%)]\tLoss: 0.012052\n", - "Epoch : 21 [18/27(67%)]\tLoss: 0.001692\n", - "Epoch : 21 [21/27(78%)]\tLoss: 0.010361\n", - "Epoch : 21 [24/27(89%)]\tLoss: 0.005916\n", - "Epoch : 22 [0/27(0%)]\tLoss: 0.003305\n", - "Epoch : 22 [3/27(11%)]\tLoss: 0.010280\n", - "Epoch : 22 [6/27(22%)]\tLoss: 0.002054\n", - "Epoch : 22 [9/27(33%)]\tLoss: 0.000184\n", - "Epoch : 22 [12/27(44%)]\tLoss: 0.002065\n", - "Epoch : 22 [15/27(56%)]\tLoss: 0.010174\n", - "Epoch : 22 [18/27(67%)]\tLoss: 0.000386\n", - "Epoch : 22 [21/27(78%)]\tLoss: 0.005304\n", - "Epoch : 22 [24/27(89%)]\tLoss: 0.006141\n", - "Epoch : 23 [0/27(0%)]\tLoss: 0.003674\n", - "Epoch : 23 [3/27(11%)]\tLoss: 0.005280\n", - "Epoch : 23 [6/27(22%)]\tLoss: 0.006693\n", - "Epoch : 23 [9/27(33%)]\tLoss: 0.000589\n", - "Epoch : 23 [12/27(44%)]\tLoss: 0.000571\n", - "Epoch : 23 [15/27(56%)]\tLoss: 0.012547\n", - "Epoch : 23 [18/27(67%)]\tLoss: 0.000506\n", - "Epoch : 23 [21/27(78%)]\tLoss: 0.000333\n", - "Epoch : 23 [24/27(89%)]\tLoss: 0.012187\n", - "Epoch : 24 [0/27(0%)]\tLoss: 0.010045\n", - "Epoch : 24 [3/27(11%)]\tLoss: 0.002020\n", - "Epoch : 24 [6/27(22%)]\tLoss: 0.001664\n", - "Epoch : 24 [9/27(33%)]\tLoss: 0.000420\n", - "Epoch : 24 [12/27(44%)]\tLoss: 0.003192\n", - "Epoch : 24 [15/27(56%)]\tLoss: 0.014474\n", - "Epoch : 24 [18/27(67%)]\tLoss: 0.000209\n", - "Epoch : 24 [21/27(78%)]\tLoss: 0.000377\n", - "Epoch : 24 [24/27(89%)]\tLoss: 0.002314\n", - "Epoch : 25 [0/27(0%)]\tLoss: 0.002550\n", - "Epoch : 25 [3/27(11%)]\tLoss: 0.001220\n", - "Epoch : 25 [6/27(22%)]\tLoss: 0.002258\n", - "Epoch : 25 [9/27(33%)]\tLoss: 0.000382\n", - "Epoch : 25 [12/27(44%)]\tLoss: 0.014382\n", - "Epoch : 25 [15/27(56%)]\tLoss: 0.017803\n", - "Epoch : 25 [18/27(67%)]\tLoss: 0.000126\n", - "Epoch : 25 [21/27(78%)]\tLoss: 0.000041\n", - "Epoch : 25 [24/27(89%)]\tLoss: 0.000262\n", - "Epoch : 26 [0/27(0%)]\tLoss: 0.007624\n", - "Epoch : 26 [3/27(11%)]\tLoss: 0.004248\n", - "Epoch : 26 [6/27(22%)]\tLoss: 0.003236\n", - "Epoch : 26 [9/27(33%)]\tLoss: 0.001192\n", - "Epoch : 26 [12/27(44%)]\tLoss: 0.018933\n", - "Epoch : 26 [15/27(56%)]\tLoss: 0.020340\n", - "Epoch : 26 [18/27(67%)]\tLoss: 0.000574\n", - "Epoch : 26 [21/27(78%)]\tLoss: 0.000289\n", - "Epoch : 26 [24/27(89%)]\tLoss: 0.006616\n", - "Epoch : 27 [0/27(0%)]\tLoss: 0.002832\n", - "Epoch : 27 [3/27(11%)]\tLoss: 0.005819\n", - "Epoch : 27 [6/27(22%)]\tLoss: 0.001736\n", - "Epoch : 27 [9/27(33%)]\tLoss: 0.001227\n", - "Epoch : 27 [12/27(44%)]\tLoss: 0.004012\n", - "Epoch : 27 [15/27(56%)]\tLoss: 0.018472\n", - "Epoch : 27 [18/27(67%)]\tLoss: 0.000334\n", - "Epoch : 27 [21/27(78%)]\tLoss: 0.000337\n", - "Epoch : 27 [24/27(89%)]\tLoss: 0.004451\n", - "Epoch : 28 [0/27(0%)]\tLoss: 0.002701\n", - "Epoch : 28 [3/27(11%)]\tLoss: 0.003961\n", - "Epoch : 28 [6/27(22%)]\tLoss: 0.000802\n", - "Epoch : 28 [9/27(33%)]\tLoss: 0.005464\n", - "Epoch : 28 [12/27(44%)]\tLoss: 0.005112\n", - "Epoch : 28 [15/27(56%)]\tLoss: 0.000692\n", - "Epoch : 28 [18/27(67%)]\tLoss: 0.000138\n", - "Epoch : 28 [21/27(78%)]\tLoss: 0.000163\n", - "Epoch : 28 [24/27(89%)]\tLoss: 0.001890\n", - "Epoch : 29 [0/27(0%)]\tLoss: 0.001632\n", - "Epoch : 29 [3/27(11%)]\tLoss: 0.004426\n", - "Epoch : 29 [6/27(22%)]\tLoss: 0.000535\n", - "Epoch : 29 [9/27(33%)]\tLoss: 0.009629\n", - "Epoch : 29 [12/27(44%)]\tLoss: 0.006849\n", - "Epoch : 29 [15/27(56%)]\tLoss: 0.000671\n", - "Epoch : 29 [18/27(67%)]\tLoss: 0.000004\n", - "Epoch : 29 [21/27(78%)]\tLoss: 0.001328\n", - "Epoch : 29 [24/27(89%)]\tLoss: 0.002453\n", - "Epoch : 30 [0/27(0%)]\tLoss: 0.001343\n", - "Epoch : 30 [3/27(11%)]\tLoss: 0.002147\n", - "Epoch : 30 [6/27(22%)]\tLoss: 0.002141\n", - "Epoch : 30 [9/27(33%)]\tLoss: 0.002365\n", - "Epoch : 30 [12/27(44%)]\tLoss: 0.000165\n", - "Epoch : 30 [15/27(56%)]\tLoss: 0.003556\n", - "Epoch : 30 [18/27(67%)]\tLoss: 0.000107\n", - "Epoch : 30 [21/27(78%)]\tLoss: 0.000783\n", - "Epoch : 30 [24/27(89%)]\tLoss: 0.001974\n", - "Epoch : 31 [0/27(0%)]\tLoss: 0.000305\n", - "Epoch : 31 [3/27(11%)]\tLoss: 0.001176\n", - "Epoch : 31 [6/27(22%)]\tLoss: 0.000109\n", - "Epoch : 31 [9/27(33%)]\tLoss: 0.000559\n", - "Epoch : 31 [12/27(44%)]\tLoss: 0.000879\n", - "Epoch : 31 [15/27(56%)]\tLoss: 0.005782\n", - "Epoch : 31 [18/27(67%)]\tLoss: 0.000297\n", - "Epoch : 31 [21/27(78%)]\tLoss: 0.000509\n", - "Epoch : 31 [24/27(89%)]\tLoss: 0.000896\n", - "Epoch : 32 [0/27(0%)]\tLoss: 0.000292\n", - "Epoch : 32 [3/27(11%)]\tLoss: 0.000797\n", - "Epoch : 32 [6/27(22%)]\tLoss: 0.000774\n", - "Epoch : 32 [9/27(33%)]\tLoss: 0.000566\n", - "Epoch : 32 [12/27(44%)]\tLoss: 0.003159\n", - "Epoch : 32 [15/27(56%)]\tLoss: 0.002643\n", - "Epoch : 32 [18/27(67%)]\tLoss: 0.000038\n", - "Epoch : 32 [21/27(78%)]\tLoss: 0.000195\n", - "Epoch : 32 [24/27(89%)]\tLoss: 0.001648\n", - "Epoch : 33 [0/27(0%)]\tLoss: 0.001003\n", - "Epoch : 33 [3/27(11%)]\tLoss: 0.000649\n", - "Epoch : 33 [6/27(22%)]\tLoss: 0.000405\n", - "Epoch : 33 [9/27(33%)]\tLoss: 0.000491\n", - "Epoch : 33 [12/27(44%)]\tLoss: 0.000081\n", - "Epoch : 33 [15/27(56%)]\tLoss: 0.003899\n", - "Epoch : 33 [18/27(67%)]\tLoss: 0.000082\n", - "Epoch : 33 [21/27(78%)]\tLoss: 0.000058\n", - "Epoch : 33 [24/27(89%)]\tLoss: 0.007398\n", - "Epoch : 34 [0/27(0%)]\tLoss: 0.024475\n", - "Epoch : 34 [3/27(11%)]\tLoss: 0.000540\n", - "Epoch : 34 [6/27(22%)]\tLoss: 0.000091\n", - "Epoch : 34 [9/27(33%)]\tLoss: 0.000542\n", - "Epoch : 34 [12/27(44%)]\tLoss: 0.015232\n", - "Epoch : 34 [15/27(56%)]\tLoss: 0.011836\n", - "Epoch : 34 [18/27(67%)]\tLoss: 0.001878\n", - "Epoch : 34 [21/27(78%)]\tLoss: 0.002843\n", - "Epoch : 34 [24/27(89%)]\tLoss: 0.011221\n", - "Epoch : 35 [0/27(0%)]\tLoss: 0.029818\n", - "Epoch : 35 [3/27(11%)]\tLoss: 0.000209\n", - "Epoch : 35 [6/27(22%)]\tLoss: 0.001764\n", - "Epoch : 35 [9/27(33%)]\tLoss: 0.002198\n", - "Epoch : 35 [12/27(44%)]\tLoss: 0.022831\n", - "Epoch : 35 [15/27(56%)]\tLoss: 0.020147\n", - "Epoch : 35 [18/27(67%)]\tLoss: 0.001243\n", - "Epoch : 35 [21/27(78%)]\tLoss: 0.005730\n", - "Epoch : 35 [24/27(89%)]\tLoss: 0.021848\n", - "Epoch : 36 [0/27(0%)]\tLoss: 0.001855\n", - "Epoch : 36 [3/27(11%)]\tLoss: 0.002956\n", - "Epoch : 36 [6/27(22%)]\tLoss: 0.003690\n", - "Epoch : 36 [9/27(33%)]\tLoss: 0.005114\n", - "Epoch : 36 [12/27(44%)]\tLoss: 0.003506\n", - "Epoch : 36 [15/27(56%)]\tLoss: 0.009889\n", - "Epoch : 36 [18/27(67%)]\tLoss: 0.000262\n", - "Epoch : 36 [21/27(78%)]\tLoss: 0.003831\n", - "Epoch : 36 [24/27(89%)]\tLoss: 0.008460\n", - "Epoch : 37 [0/27(0%)]\tLoss: 0.002022\n", - "Epoch : 37 [3/27(11%)]\tLoss: 0.006961\n", - "Epoch : 37 [6/27(22%)]\tLoss: 0.002692\n", - "Epoch : 37 [9/27(33%)]\tLoss: 0.010054\n", - "Epoch : 37 [12/27(44%)]\tLoss: 0.004813\n", - "Epoch : 37 [15/27(56%)]\tLoss: 0.010171\n", - "Epoch : 37 [18/27(67%)]\tLoss: 0.000244\n", - "Epoch : 37 [21/27(78%)]\tLoss: 0.003157\n", - "Epoch : 37 [24/27(89%)]\tLoss: 0.013036\n", - "Epoch : 38 [0/27(0%)]\tLoss: 0.005680\n", - "Epoch : 38 [3/27(11%)]\tLoss: 0.006375\n", - "Epoch : 38 [6/27(22%)]\tLoss: 0.003317\n", - "Epoch : 38 [9/27(33%)]\tLoss: 0.008909\n", - "Epoch : 38 [12/27(44%)]\tLoss: 0.008679\n", - "Epoch : 38 [15/27(56%)]\tLoss: 0.012563\n", - "Epoch : 38 [18/27(67%)]\tLoss: 0.000474\n", - "Epoch : 38 [21/27(78%)]\tLoss: 0.002113\n", - "Epoch : 38 [24/27(89%)]\tLoss: 0.018527\n", - "Epoch : 39 [0/27(0%)]\tLoss: 0.005801\n", - "Epoch : 39 [3/27(11%)]\tLoss: 0.005444\n", - "Epoch : 39 [6/27(22%)]\tLoss: 0.002419\n", - "Epoch : 39 [9/27(33%)]\tLoss: 0.011007\n", - "Epoch : 39 [12/27(44%)]\tLoss: 0.009214\n", - "Epoch : 39 [15/27(56%)]\tLoss: 0.017984\n", - "Epoch : 39 [18/27(67%)]\tLoss: 0.001100\n", - "Epoch : 39 [21/27(78%)]\tLoss: 0.001688\n", - "Epoch : 39 [24/27(89%)]\tLoss: 0.008889\n", - "Epoch : 40 [0/27(0%)]\tLoss: 0.003547\n", - "Epoch : 40 [3/27(11%)]\tLoss: 0.008212\n", - "Epoch : 40 [6/27(22%)]\tLoss: 0.000446\n", - "Epoch : 40 [9/27(33%)]\tLoss: 0.008342\n", - "Epoch : 40 [12/27(44%)]\tLoss: 0.024016\n", - "Epoch : 40 [15/27(56%)]\tLoss: 0.021508\n", - "Epoch : 40 [18/27(67%)]\tLoss: 0.000374\n", - "Epoch : 40 [21/27(78%)]\tLoss: 0.001290\n", - "Epoch : 40 [24/27(89%)]\tLoss: 0.007630\n", - "Epoch : 41 [0/27(0%)]\tLoss: 0.001600\n", - "Epoch : 41 [3/27(11%)]\tLoss: 0.007628\n", - "Epoch : 41 [6/27(22%)]\tLoss: 0.002100\n", - "Epoch : 41 [9/27(33%)]\tLoss: 0.010086\n", - "Epoch : 41 [12/27(44%)]\tLoss: 0.032792\n", - "Epoch : 41 [15/27(56%)]\tLoss: 0.033121\n", - "Epoch : 41 [18/27(67%)]\tLoss: 0.000650\n", - "Epoch : 41 [21/27(78%)]\tLoss: 0.000840\n", - "Epoch : 41 [24/27(89%)]\tLoss: 0.006072\n", - "Epoch : 42 [0/27(0%)]\tLoss: 0.002263\n", - "Epoch : 42 [3/27(11%)]\tLoss: 0.005945\n", - "Epoch : 42 [6/27(22%)]\tLoss: 0.005704\n", - "Epoch : 42 [9/27(33%)]\tLoss: 0.010016\n", - "Epoch : 42 [12/27(44%)]\tLoss: 0.013327\n", - "Epoch : 42 [15/27(56%)]\tLoss: 0.030966\n", - "Epoch : 42 [18/27(67%)]\tLoss: 0.000309\n", - "Epoch : 42 [21/27(78%)]\tLoss: 0.000251\n", - "Epoch : 42 [24/27(89%)]\tLoss: 0.003098\n", - "Epoch : 43 [0/27(0%)]\tLoss: 0.007127\n", - "Epoch : 43 [3/27(11%)]\tLoss: 0.007958\n", - "Epoch : 43 [6/27(22%)]\tLoss: 0.004119\n", - "Epoch : 43 [9/27(33%)]\tLoss: 0.016107\n", - "Epoch : 43 [12/27(44%)]\tLoss: 0.021339\n", - "Epoch : 43 [15/27(56%)]\tLoss: 0.023068\n", - "Epoch : 43 [18/27(67%)]\tLoss: 0.000228\n", - "Epoch : 43 [21/27(78%)]\tLoss: 0.000379\n", - "Epoch : 43 [24/27(89%)]\tLoss: 0.006116\n", - "Epoch : 44 [0/27(0%)]\tLoss: 0.003702\n", - "Epoch : 44 [3/27(11%)]\tLoss: 0.006873\n", - "Epoch : 44 [6/27(22%)]\tLoss: 0.003019\n", - "Epoch : 44 [9/27(33%)]\tLoss: 0.016952\n", - "Epoch : 44 [12/27(44%)]\tLoss: 0.025547\n", - "Epoch : 44 [15/27(56%)]\tLoss: 0.006989\n", - "Epoch : 44 [18/27(67%)]\tLoss: 0.000054\n", - "Epoch : 44 [21/27(78%)]\tLoss: 0.000502\n", - "Epoch : 44 [24/27(89%)]\tLoss: 0.008582\n", - "Epoch : 45 [0/27(0%)]\tLoss: 0.002726\n", - "Epoch : 45 [3/27(11%)]\tLoss: 0.008770\n", - "Epoch : 45 [6/27(22%)]\tLoss: 0.003964\n", - "Epoch : 45 [9/27(33%)]\tLoss: 0.016648\n", - "Epoch : 45 [12/27(44%)]\tLoss: 0.023502\n", - "Epoch : 45 [15/27(56%)]\tLoss: 0.003051\n", - "Epoch : 45 [18/27(67%)]\tLoss: 0.000008\n", - "Epoch : 45 [21/27(78%)]\tLoss: 0.001180\n", - "Epoch : 45 [24/27(89%)]\tLoss: 0.003352\n", - "Epoch : 46 [0/27(0%)]\tLoss: 0.004498\n", - "Epoch : 46 [3/27(11%)]\tLoss: 0.003469\n", - "Epoch : 46 [6/27(22%)]\tLoss: 0.003081\n", - "Epoch : 46 [9/27(33%)]\tLoss: 0.004347\n", - "Epoch : 46 [12/27(44%)]\tLoss: 0.007713\n", - "Epoch : 46 [15/27(56%)]\tLoss: 0.006764\n", - "Epoch : 46 [18/27(67%)]\tLoss: 0.000182\n", - "Epoch : 46 [21/27(78%)]\tLoss: 0.000033\n", - "Epoch : 46 [24/27(89%)]\tLoss: 0.001305\n", - "Epoch : 47 [0/27(0%)]\tLoss: 0.002174\n", - "Epoch : 47 [3/27(11%)]\tLoss: 0.003463\n", - "Epoch : 47 [6/27(22%)]\tLoss: 0.001929\n", - "Epoch : 47 [9/27(33%)]\tLoss: 0.002711\n", - "Epoch : 47 [12/27(44%)]\tLoss: 0.007497\n", - "Epoch : 47 [15/27(56%)]\tLoss: 0.013153\n", - "Epoch : 47 [18/27(67%)]\tLoss: 0.000341\n", - "Epoch : 47 [21/27(78%)]\tLoss: 0.002458\n", - "Epoch : 47 [24/27(89%)]\tLoss: 0.001629\n", - "Epoch : 48 [0/27(0%)]\tLoss: 0.000265\n", - "Epoch : 48 [3/27(11%)]\tLoss: 0.001064\n", - "Epoch : 48 [6/27(22%)]\tLoss: 0.000846\n", - "Epoch : 48 [9/27(33%)]\tLoss: 0.002247\n", - "Epoch : 48 [12/27(44%)]\tLoss: 0.011487\n", - "Epoch : 48 [15/27(56%)]\tLoss: 0.007936\n", - "Epoch : 48 [18/27(67%)]\tLoss: 0.000343\n", - "Epoch : 48 [21/27(78%)]\tLoss: 0.002951\n", - "Epoch : 48 [24/27(89%)]\tLoss: 0.001779\n", - "Epoch : 49 [0/27(0%)]\tLoss: 0.000899\n", - "Epoch : 49 [3/27(11%)]\tLoss: 0.001999\n", - "Epoch : 49 [6/27(22%)]\tLoss: 0.001134\n", - "Epoch : 49 [9/27(33%)]\tLoss: 0.002023\n", - "Epoch : 49 [12/27(44%)]\tLoss: 0.007056\n", - "Epoch : 49 [15/27(56%)]\tLoss: 0.008980\n", - "Epoch : 49 [18/27(67%)]\tLoss: 0.000177\n", - "Epoch : 49 [21/27(78%)]\tLoss: 0.001689\n", - "Epoch : 49 [24/27(89%)]\tLoss: 0.004744\n", - "--- 0.042376514275868735 minutes ---\n" + "Epoch : 0 [0/27(0%)]\tLoss: 2.165582\n", + "Epoch : 0 [3/27(11%)]\tLoss: 2.707063\n", + "Epoch : 0 [6/27(22%)]\tLoss: 3.939999\n", + "Epoch : 0 [9/27(33%)]\tLoss: 3.234633\n", + "Epoch : 0 [12/27(44%)]\tLoss: 8.445068\n", + "Epoch : 0 [15/27(56%)]\tLoss: 2.638636\n", + "Epoch : 0 [18/27(67%)]\tLoss: 0.399618\n", + "Epoch : 0 [21/27(78%)]\tLoss: 1.214677\n", + "Epoch : 0 [24/27(89%)]\tLoss: 6.242445\n", + "Epoch : 1 [0/27(0%)]\tLoss: 2.000005\n", + "Epoch : 1 [3/27(11%)]\tLoss: 2.992116\n", + "Epoch : 1 [6/27(22%)]\tLoss: 4.789081\n", + "Epoch : 1 [9/27(33%)]\tLoss: 0.480854\n", + "Epoch : 1 [12/27(44%)]\tLoss: 3.631541\n", + "Epoch : 1 [15/27(56%)]\tLoss: 3.119281\n", + "Epoch : 1 [18/27(67%)]\tLoss: 3.124379\n", + "Epoch : 1 [21/27(78%)]\tLoss: 0.219105\n", + "Epoch : 1 [24/27(89%)]\tLoss: 5.125325\n", + "Epoch : 2 [0/27(0%)]\tLoss: 4.415288\n", + "Epoch : 2 [3/27(11%)]\tLoss: 5.862941\n", + "Epoch : 2 [6/27(22%)]\tLoss: 9.001224\n", + "Epoch : 2 [9/27(33%)]\tLoss: 0.388244\n", + "Epoch : 2 [12/27(44%)]\tLoss: 4.476913\n", + "Epoch : 2 [15/27(56%)]\tLoss: 2.381039\n", + "Epoch : 2 [18/27(67%)]\tLoss: 0.078652\n", + "Epoch : 2 [21/27(78%)]\tLoss: 0.732189\n", + "Epoch : 2 [24/27(89%)]\tLoss: 4.983542\n", + "Epoch : 3 [0/27(0%)]\tLoss: 1.406693\n", + "Epoch : 3 [3/27(11%)]\tLoss: 2.987978\n", + "Epoch : 3 [6/27(22%)]\tLoss: 4.348095\n", + "Epoch : 3 [9/27(33%)]\tLoss: 0.515473\n", + "Epoch : 3 [12/27(44%)]\tLoss: 4.230004\n", + "Epoch : 3 [15/27(56%)]\tLoss: 1.525575\n", + "Epoch : 3 [18/27(67%)]\tLoss: 1.084604\n", + "Epoch : 3 [21/27(78%)]\tLoss: 0.497783\n", + "Epoch : 3 [24/27(89%)]\tLoss: 4.580351\n", + "Epoch : 4 [0/27(0%)]\tLoss: 2.131794\n", + "Epoch : 4 [3/27(11%)]\tLoss: 1.115512\n", + "Epoch : 4 [6/27(22%)]\tLoss: 3.768852\n", + "Epoch : 4 [9/27(33%)]\tLoss: 0.158061\n", + "Epoch : 4 [12/27(44%)]\tLoss: 3.041686\n", + "Epoch : 4 [15/27(56%)]\tLoss: 0.964813\n", + "Epoch : 4 [18/27(67%)]\tLoss: 1.942379\n", + "Epoch : 4 [21/27(78%)]\tLoss: 0.241821\n", + "Epoch : 4 [24/27(89%)]\tLoss: 4.358902\n", + "Epoch : 5 [0/27(0%)]\tLoss: 0.168820\n", + "Epoch : 5 [3/27(11%)]\tLoss: 0.369634\n", + "Epoch : 5 [6/27(22%)]\tLoss: 6.775401\n", + "Epoch : 5 [9/27(33%)]\tLoss: 0.324252\n", + "Epoch : 5 [12/27(44%)]\tLoss: 1.939004\n", + "Epoch : 5 [15/27(56%)]\tLoss: 0.168663\n", + "Epoch : 5 [18/27(67%)]\tLoss: 1.815015\n", + "Epoch : 5 [21/27(78%)]\tLoss: 0.369833\n", + "Epoch : 5 [24/27(89%)]\tLoss: 4.611064\n", + "Epoch : 6 [0/27(0%)]\tLoss: 0.142775\n", + "Epoch : 6 [3/27(11%)]\tLoss: 0.464409\n", + "Epoch : 6 [6/27(22%)]\tLoss: 4.722649\n", + "Epoch : 6 [9/27(33%)]\tLoss: 0.143948\n", + "Epoch : 6 [12/27(44%)]\tLoss: 2.268274\n", + "Epoch : 6 [15/27(56%)]\tLoss: 0.595253\n", + "Epoch : 6 [18/27(67%)]\tLoss: 2.737630\n", + "Epoch : 6 [21/27(78%)]\tLoss: 0.904762\n", + "Epoch : 6 [24/27(89%)]\tLoss: 6.825067\n", + "Epoch : 7 [0/27(0%)]\tLoss: 0.174022\n", + "Epoch : 7 [3/27(11%)]\tLoss: 0.590742\n", + "Epoch : 7 [6/27(22%)]\tLoss: 2.841745\n", + "Epoch : 7 [9/27(33%)]\tLoss: 0.306665\n", + "Epoch : 7 [12/27(44%)]\tLoss: 1.591414\n", + "Epoch : 7 [15/27(56%)]\tLoss: 0.195446\n", + "Epoch : 7 [18/27(67%)]\tLoss: 0.946510\n", + "Epoch : 7 [21/27(78%)]\tLoss: 2.026141\n", + "Epoch : 7 [24/27(89%)]\tLoss: 3.504912\n", + "Epoch : 8 [0/27(0%)]\tLoss: 0.544945\n", + "Epoch : 8 [3/27(11%)]\tLoss: 0.847015\n", + "Epoch : 8 [6/27(22%)]\tLoss: 2.664871\n", + "Epoch : 8 [9/27(33%)]\tLoss: 0.145366\n", + "Epoch : 8 [12/27(44%)]\tLoss: 2.158564\n", + "Epoch : 8 [15/27(56%)]\tLoss: 0.584567\n", + "Epoch : 8 [18/27(67%)]\tLoss: 0.647607\n", + "Epoch : 8 [21/27(78%)]\tLoss: 1.387323\n", + "Epoch : 8 [24/27(89%)]\tLoss: 2.996511\n", + "Epoch : 9 [0/27(0%)]\tLoss: 0.360243\n", + "Epoch : 9 [3/27(11%)]\tLoss: 0.755343\n", + "Epoch : 9 [6/27(22%)]\tLoss: 2.554468\n", + "Epoch : 9 [9/27(33%)]\tLoss: 0.091759\n", + "Epoch : 9 [12/27(44%)]\tLoss: 1.624673\n", + "Epoch : 9 [15/27(56%)]\tLoss: 0.252278\n", + "Epoch : 9 [18/27(67%)]\tLoss: 2.158764\n", + "Epoch : 9 [21/27(78%)]\tLoss: 0.938115\n", + "Epoch : 9 [24/27(89%)]\tLoss: 8.669566\n", + "Epoch : 10 [0/27(0%)]\tLoss: 0.330278\n", + "Epoch : 10 [3/27(11%)]\tLoss: 1.053571\n", + "Epoch : 10 [6/27(22%)]\tLoss: 2.672359\n", + "Epoch : 10 [9/27(33%)]\tLoss: 0.270874\n", + "Epoch : 10 [12/27(44%)]\tLoss: 1.256855\n", + "Epoch : 10 [15/27(56%)]\tLoss: 1.558229\n", + "Epoch : 10 [18/27(67%)]\tLoss: 1.460921\n", + "Epoch : 10 [21/27(78%)]\tLoss: 2.205369\n", + "Epoch : 10 [24/27(89%)]\tLoss: 3.979985\n", + "Epoch : 11 [0/27(0%)]\tLoss: 1.607574\n", + "Epoch : 11 [3/27(11%)]\tLoss: 0.971925\n", + "Epoch : 11 [6/27(22%)]\tLoss: 2.552127\n", + "Epoch : 11 [9/27(33%)]\tLoss: 0.288146\n", + "Epoch : 11 [12/27(44%)]\tLoss: 1.726070\n", + "Epoch : 11 [15/27(56%)]\tLoss: 0.407576\n", + "Epoch : 11 [18/27(67%)]\tLoss: 0.999833\n", + "Epoch : 11 [21/27(78%)]\tLoss: 0.155258\n", + "Epoch : 11 [24/27(89%)]\tLoss: 4.892887\n", + "Epoch : 12 [0/27(0%)]\tLoss: 3.298238\n", + "Epoch : 12 [3/27(11%)]\tLoss: 0.379981\n", + "Epoch : 12 [6/27(22%)]\tLoss: 4.465544\n", + "Epoch : 12 [9/27(33%)]\tLoss: 2.631683\n", + "Epoch : 12 [12/27(44%)]\tLoss: 1.620102\n", + "Epoch : 12 [15/27(56%)]\tLoss: 1.366819\n", + "Epoch : 12 [18/27(67%)]\tLoss: 0.163617\n", + "Epoch : 12 [21/27(78%)]\tLoss: 1.300070\n", + "Epoch : 12 [24/27(89%)]\tLoss: 1.490708\n", + "Epoch : 13 [0/27(0%)]\tLoss: 1.798358\n", + "Epoch : 13 [3/27(11%)]\tLoss: 5.229220\n", + "Epoch : 13 [6/27(22%)]\tLoss: 5.356652\n", + "Epoch : 13 [9/27(33%)]\tLoss: 0.558033\n", + "Epoch : 13 [12/27(44%)]\tLoss: 0.554176\n", + "Epoch : 13 [15/27(56%)]\tLoss: 0.562831\n", + "Epoch : 13 [18/27(67%)]\tLoss: 3.078015\n", + "Epoch : 13 [21/27(78%)]\tLoss: 0.097591\n", + "Epoch : 13 [24/27(89%)]\tLoss: 1.286733\n", + "Epoch : 14 [0/27(0%)]\tLoss: 2.589076\n", + "Epoch : 14 [3/27(11%)]\tLoss: 1.397058\n", + "Epoch : 14 [6/27(22%)]\tLoss: 2.377434\n", + "Epoch : 14 [9/27(33%)]\tLoss: 0.343470\n", + "Epoch : 14 [12/27(44%)]\tLoss: 1.442883\n", + "Epoch : 14 [15/27(56%)]\tLoss: 0.206578\n", + "Epoch : 14 [18/27(67%)]\tLoss: 0.736069\n", + "Epoch : 14 [21/27(78%)]\tLoss: 0.561026\n", + "Epoch : 14 [24/27(89%)]\tLoss: 0.698505\n", + "Epoch : 15 [0/27(0%)]\tLoss: 2.071312\n", + "Epoch : 15 [3/27(11%)]\tLoss: 1.224311\n", + "Epoch : 15 [6/27(22%)]\tLoss: 1.821460\n", + "Epoch : 15 [9/27(33%)]\tLoss: 0.609283\n", + "Epoch : 15 [12/27(44%)]\tLoss: 0.999557\n", + "Epoch : 15 [15/27(56%)]\tLoss: 0.632253\n", + "Epoch : 15 [18/27(67%)]\tLoss: 1.757801\n", + "Epoch : 15 [21/27(78%)]\tLoss: 0.339127\n", + "Epoch : 15 [24/27(89%)]\tLoss: 0.556197\n", + "Epoch : 16 [0/27(0%)]\tLoss: 0.543385\n", + "Epoch : 16 [3/27(11%)]\tLoss: 0.952744\n", + "Epoch : 16 [6/27(22%)]\tLoss: 1.134769\n", + "Epoch : 16 [9/27(33%)]\tLoss: 0.126529\n", + "Epoch : 16 [12/27(44%)]\tLoss: 0.567179\n", + "Epoch : 16 [15/27(56%)]\tLoss: 0.604810\n", + "Epoch : 16 [18/27(67%)]\tLoss: 0.927818\n", + "Epoch : 16 [21/27(78%)]\tLoss: 0.477070\n", + "Epoch : 16 [24/27(89%)]\tLoss: 0.339777\n", + "Epoch : 17 [0/27(0%)]\tLoss: 2.173811\n", + "Epoch : 17 [3/27(11%)]\tLoss: 0.839119\n", + "Epoch : 17 [6/27(22%)]\tLoss: 0.231632\n", + "Epoch : 17 [9/27(33%)]\tLoss: 0.089765\n", + "Epoch : 17 [12/27(44%)]\tLoss: 0.302901\n", + "Epoch : 17 [15/27(56%)]\tLoss: 0.486890\n", + "Epoch : 17 [18/27(67%)]\tLoss: 0.981440\n", + "Epoch : 17 [21/27(78%)]\tLoss: 0.269975\n", + "Epoch : 17 [24/27(89%)]\tLoss: 0.196218\n", + "Epoch : 18 [0/27(0%)]\tLoss: 0.492132\n", + "Epoch : 18 [3/27(11%)]\tLoss: 0.852551\n", + "Epoch : 18 [6/27(22%)]\tLoss: 2.896696\n", + "Epoch : 18 [9/27(33%)]\tLoss: 0.021014\n", + "Epoch : 18 [12/27(44%)]\tLoss: 0.167133\n", + "Epoch : 18 [15/27(56%)]\tLoss: 0.730786\n", + "Epoch : 18 [18/27(67%)]\tLoss: 1.153913\n", + "Epoch : 18 [21/27(78%)]\tLoss: 0.380019\n", + "Epoch : 18 [24/27(89%)]\tLoss: 0.182739\n", + "Epoch : 19 [0/27(0%)]\tLoss: 0.542237\n", + "Epoch : 19 [3/27(11%)]\tLoss: 0.781398\n", + "Epoch : 19 [6/27(22%)]\tLoss: 0.687168\n", + "Epoch : 19 [9/27(33%)]\tLoss: 0.082213\n", + "Epoch : 19 [12/27(44%)]\tLoss: 0.275319\n", + "Epoch : 19 [15/27(56%)]\tLoss: 0.137905\n", + "Epoch : 19 [18/27(67%)]\tLoss: 1.099945\n", + "Epoch : 19 [21/27(78%)]\tLoss: 0.363372\n", + "Epoch : 19 [24/27(89%)]\tLoss: 1.022495\n", + "Epoch : 20 [0/27(0%)]\tLoss: 0.320546\n", + "Epoch : 20 [3/27(11%)]\tLoss: 2.144863\n", + "Epoch : 20 [6/27(22%)]\tLoss: 0.219787\n", + "Epoch : 20 [9/27(33%)]\tLoss: 0.350720\n", + "Epoch : 20 [12/27(44%)]\tLoss: 0.965799\n", + "Epoch : 20 [15/27(56%)]\tLoss: 1.005978\n", + "Epoch : 20 [18/27(67%)]\tLoss: 1.142012\n", + "Epoch : 20 [21/27(78%)]\tLoss: 0.293700\n", + "Epoch : 20 [24/27(89%)]\tLoss: 0.099300\n", + "Epoch : 21 [0/27(0%)]\tLoss: 0.123133\n", + "Epoch : 21 [3/27(11%)]\tLoss: 0.648110\n", + "Epoch : 21 [6/27(22%)]\tLoss: 0.075299\n", + "Epoch : 21 [9/27(33%)]\tLoss: 0.034576\n", + "Epoch : 21 [12/27(44%)]\tLoss: 0.948630\n", + "Epoch : 21 [15/27(56%)]\tLoss: 0.657102\n", + "Epoch : 21 [18/27(67%)]\tLoss: 1.187829\n", + "Epoch : 21 [21/27(78%)]\tLoss: 0.250696\n", + "Epoch : 21 [24/27(89%)]\tLoss: 0.363517\n", + "Epoch : 22 [0/27(0%)]\tLoss: 0.049788\n", + "Epoch : 22 [3/27(11%)]\tLoss: 0.397964\n", + "Epoch : 22 [6/27(22%)]\tLoss: 0.194088\n", + "Epoch : 22 [9/27(33%)]\tLoss: 0.115681\n", + "Epoch : 22 [12/27(44%)]\tLoss: 0.478896\n", + "Epoch : 22 [15/27(56%)]\tLoss: 0.094406\n", + "Epoch : 22 [18/27(67%)]\tLoss: 1.638833\n", + "Epoch : 22 [21/27(78%)]\tLoss: 2.182560\n", + "Epoch : 22 [24/27(89%)]\tLoss: 0.277138\n", + "Epoch : 23 [0/27(0%)]\tLoss: 0.068115\n", + "Epoch : 23 [3/27(11%)]\tLoss: 0.558467\n", + "Epoch : 23 [6/27(22%)]\tLoss: 0.014625\n", + "Epoch : 23 [9/27(33%)]\tLoss: 0.008719\n", + "Epoch : 23 [12/27(44%)]\tLoss: 0.228991\n", + "Epoch : 23 [15/27(56%)]\tLoss: 0.065078\n", + "Epoch : 23 [18/27(67%)]\tLoss: 1.047851\n", + "Epoch : 23 [21/27(78%)]\tLoss: 0.283403\n", + "Epoch : 23 [24/27(89%)]\tLoss: 0.190449\n", + "Epoch : 24 [0/27(0%)]\tLoss: 0.144198\n", + "Epoch : 24 [3/27(11%)]\tLoss: 0.531428\n", + "Epoch : 24 [6/27(22%)]\tLoss: 0.015961\n", + "Epoch : 24 [9/27(33%)]\tLoss: 0.025087\n", + "Epoch : 24 [12/27(44%)]\tLoss: 0.078965\n", + "Epoch : 24 [15/27(56%)]\tLoss: 0.143226\n", + "Epoch : 24 [18/27(67%)]\tLoss: 0.382125\n", + "Epoch : 24 [21/27(78%)]\tLoss: 0.388937\n", + "Epoch : 24 [24/27(89%)]\tLoss: 0.042536\n", + "Epoch : 25 [0/27(0%)]\tLoss: 0.013288\n", + "Epoch : 25 [3/27(11%)]\tLoss: 0.241563\n", + "Epoch : 25 [6/27(22%)]\tLoss: 0.053403\n", + "Epoch : 25 [9/27(33%)]\tLoss: 0.026124\n", + "Epoch : 25 [12/27(44%)]\tLoss: 0.030751\n", + "Epoch : 25 [15/27(56%)]\tLoss: 0.104127\n", + "Epoch : 25 [18/27(67%)]\tLoss: 0.059731\n", + "Epoch : 25 [21/27(78%)]\tLoss: 0.119981\n", + "Epoch : 25 [24/27(89%)]\tLoss: 0.220442\n", + "Epoch : 26 [0/27(0%)]\tLoss: 0.041044\n", + "Epoch : 26 [3/27(11%)]\tLoss: 0.088752\n", + "Epoch : 26 [6/27(22%)]\tLoss: 0.184612\n", + "Epoch : 26 [9/27(33%)]\tLoss: 0.020591\n", + "Epoch : 26 [12/27(44%)]\tLoss: 0.016959\n", + "Epoch : 26 [15/27(56%)]\tLoss: 0.035054\n", + "Epoch : 26 [18/27(67%)]\tLoss: 0.114078\n", + "Epoch : 26 [21/27(78%)]\tLoss: 0.241334\n", + "Epoch : 26 [24/27(89%)]\tLoss: 0.017600\n", + "Epoch : 27 [0/27(0%)]\tLoss: 0.076440\n", + "Epoch : 27 [3/27(11%)]\tLoss: 0.027202\n", + "Epoch : 27 [6/27(22%)]\tLoss: 0.000888\n", + "Epoch : 27 [9/27(33%)]\tLoss: 0.149428\n", + "Epoch : 27 [12/27(44%)]\tLoss: 0.016366\n", + "Epoch : 27 [15/27(56%)]\tLoss: 0.016546\n", + "Epoch : 27 [18/27(67%)]\tLoss: 0.020087\n", + "Epoch : 27 [21/27(78%)]\tLoss: 0.226587\n", + "Epoch : 27 [24/27(89%)]\tLoss: 0.075453\n", + "Epoch : 28 [0/27(0%)]\tLoss: 0.053734\n", + "Epoch : 28 [3/27(11%)]\tLoss: 0.097537\n", + "Epoch : 28 [6/27(22%)]\tLoss: 0.027725\n", + "Epoch : 28 [9/27(33%)]\tLoss: 0.045538\n", + "Epoch : 28 [12/27(44%)]\tLoss: 0.001511\n", + "Epoch : 28 [15/27(56%)]\tLoss: 0.001316\n", + "Epoch : 28 [18/27(67%)]\tLoss: 0.149150\n", + "Epoch : 28 [21/27(78%)]\tLoss: 0.109228\n", + "Epoch : 28 [24/27(89%)]\tLoss: 0.006560\n", + "Epoch : 29 [0/27(0%)]\tLoss: 0.097825\n", + "Epoch : 29 [3/27(11%)]\tLoss: 0.084024\n", + "Epoch : 29 [6/27(22%)]\tLoss: 0.037685\n", + "Epoch : 29 [9/27(33%)]\tLoss: 0.028807\n", + "Epoch : 29 [12/27(44%)]\tLoss: 0.009060\n", + "Epoch : 29 [15/27(56%)]\tLoss: 0.028304\n", + "Epoch : 29 [18/27(67%)]\tLoss: 0.184303\n", + "Epoch : 29 [21/27(78%)]\tLoss: 0.146030\n", + "Epoch : 29 [24/27(89%)]\tLoss: 0.017388\n", + "Epoch : 30 [0/27(0%)]\tLoss: 0.016573\n", + "Epoch : 30 [3/27(11%)]\tLoss: 0.050876\n", + "Epoch : 30 [6/27(22%)]\tLoss: 0.094633\n", + "Epoch : 30 [9/27(33%)]\tLoss: 0.039363\n", + "Epoch : 30 [12/27(44%)]\tLoss: 0.003056\n", + "Epoch : 30 [15/27(56%)]\tLoss: 0.026231\n", + "Epoch : 30 [18/27(67%)]\tLoss: 0.002918\n", + "Epoch : 30 [21/27(78%)]\tLoss: 0.015903\n", + "Epoch : 30 [24/27(89%)]\tLoss: 0.004225\n", + "Epoch : 31 [0/27(0%)]\tLoss: 0.021567\n", + "Epoch : 31 [3/27(11%)]\tLoss: 0.009078\n", + "Epoch : 31 [6/27(22%)]\tLoss: 0.002445\n", + "Epoch : 31 [9/27(33%)]\tLoss: 0.005757\n", + "Epoch : 31 [12/27(44%)]\tLoss: 0.003607\n", + "Epoch : 31 [15/27(56%)]\tLoss: 0.007257\n", + "Epoch : 31 [18/27(67%)]\tLoss: 0.004647\n", + "Epoch : 31 [21/27(78%)]\tLoss: 0.002931\n", + "Epoch : 31 [24/27(89%)]\tLoss: 0.001393\n", + "Epoch : 32 [0/27(0%)]\tLoss: 0.006320\n", + "Epoch : 32 [3/27(11%)]\tLoss: 0.006671\n", + "Epoch : 32 [6/27(22%)]\tLoss: 0.013190\n", + "Epoch : 32 [9/27(33%)]\tLoss: 0.001489\n", + "Epoch : 32 [12/27(44%)]\tLoss: 0.002135\n", + "Epoch : 32 [15/27(56%)]\tLoss: 0.008317\n", + "Epoch : 32 [18/27(67%)]\tLoss: 0.002061\n", + "Epoch : 32 [21/27(78%)]\tLoss: 0.057687\n", + "Epoch : 32 [24/27(89%)]\tLoss: 0.005457\n", + "Epoch : 33 [0/27(0%)]\tLoss: 0.005294\n", + "Epoch : 33 [3/27(11%)]\tLoss: 0.009268\n", + "Epoch : 33 [6/27(22%)]\tLoss: 0.014863\n", + "Epoch : 33 [9/27(33%)]\tLoss: 0.006466\n", + "Epoch : 33 [12/27(44%)]\tLoss: 0.001140\n", + "Epoch : 33 [15/27(56%)]\tLoss: 0.004929\n", + "Epoch : 33 [18/27(67%)]\tLoss: 0.002275\n", + "Epoch : 33 [21/27(78%)]\tLoss: 0.022681\n", + "Epoch : 33 [24/27(89%)]\tLoss: 0.046061\n", + "Epoch : 34 [0/27(0%)]\tLoss: 0.004679\n", + "Epoch : 34 [3/27(11%)]\tLoss: 0.002847\n", + "Epoch : 34 [6/27(22%)]\tLoss: 0.014616\n", + "Epoch : 34 [9/27(33%)]\tLoss: 0.009736\n", + "Epoch : 34 [12/27(44%)]\tLoss: 0.006233\n", + "Epoch : 34 [15/27(56%)]\tLoss: 0.000076\n", + "Epoch : 34 [18/27(67%)]\tLoss: 0.013585\n", + "Epoch : 34 [21/27(78%)]\tLoss: 0.014144\n", + "Epoch : 34 [24/27(89%)]\tLoss: 0.020752\n", + "Epoch : 35 [0/27(0%)]\tLoss: 0.004063\n", + "Epoch : 35 [3/27(11%)]\tLoss: 0.008594\n", + "Epoch : 35 [6/27(22%)]\tLoss: 0.016024\n", + "Epoch : 35 [9/27(33%)]\tLoss: 0.008412\n", + "Epoch : 35 [12/27(44%)]\tLoss: 0.001858\n", + "Epoch : 35 [15/27(56%)]\tLoss: 0.001279\n", + "Epoch : 35 [18/27(67%)]\tLoss: 0.007570\n", + "Epoch : 35 [21/27(78%)]\tLoss: 0.111190\n", + "Epoch : 35 [24/27(89%)]\tLoss: 0.000041\n", + "Epoch : 36 [0/27(0%)]\tLoss: 0.016177\n", + "Epoch : 36 [3/27(11%)]\tLoss: 0.003477\n", + "Epoch : 36 [6/27(22%)]\tLoss: 0.008380\n", + "Epoch : 36 [9/27(33%)]\tLoss: 0.001977\n", + "Epoch : 36 [12/27(44%)]\tLoss: 0.002040\n", + "Epoch : 36 [15/27(56%)]\tLoss: 0.001428\n", + "Epoch : 36 [18/27(67%)]\tLoss: 0.002310\n", + "Epoch : 36 [21/27(78%)]\tLoss: 0.002781\n", + "Epoch : 36 [24/27(89%)]\tLoss: 0.007472\n", + "Epoch : 37 [0/27(0%)]\tLoss: 0.018091\n", + "Epoch : 37 [3/27(11%)]\tLoss: 0.005040\n", + "Epoch : 37 [6/27(22%)]\tLoss: 0.002468\n", + "Epoch : 37 [9/27(33%)]\tLoss: 0.011147\n", + "Epoch : 37 [12/27(44%)]\tLoss: 0.000222\n", + "Epoch : 37 [15/27(56%)]\tLoss: 0.006889\n", + "Epoch : 37 [18/27(67%)]\tLoss: 0.016902\n", + "Epoch : 37 [21/27(78%)]\tLoss: 0.050832\n", + "Epoch : 37 [24/27(89%)]\tLoss: 0.004451\n", + "Epoch : 38 [0/27(0%)]\tLoss: 0.000540\n", + "Epoch : 38 [3/27(11%)]\tLoss: 0.013577\n", + "Epoch : 38 [6/27(22%)]\tLoss: 0.004578\n", + "Epoch : 38 [9/27(33%)]\tLoss: 0.012195\n", + "Epoch : 38 [12/27(44%)]\tLoss: 0.011953\n", + "Epoch : 38 [15/27(56%)]\tLoss: 0.005956\n", + "Epoch : 38 [18/27(67%)]\tLoss: 0.010243\n", + "Epoch : 38 [21/27(78%)]\tLoss: 0.009388\n", + "Epoch : 38 [24/27(89%)]\tLoss: 0.023255\n", + "Epoch : 39 [0/27(0%)]\tLoss: 0.005384\n", + "Epoch : 39 [3/27(11%)]\tLoss: 0.006630\n", + "Epoch : 39 [6/27(22%)]\tLoss: 0.004046\n", + "Epoch : 39 [9/27(33%)]\tLoss: 0.020013\n", + "Epoch : 39 [12/27(44%)]\tLoss: 0.006084\n", + "Epoch : 39 [15/27(56%)]\tLoss: 0.000914\n", + "Epoch : 39 [18/27(67%)]\tLoss: 0.004860\n", + "Epoch : 39 [21/27(78%)]\tLoss: 0.013558\n", + "Epoch : 39 [24/27(89%)]\tLoss: 0.004742\n", + "Epoch : 40 [0/27(0%)]\tLoss: 0.007065\n", + "Epoch : 40 [3/27(11%)]\tLoss: 0.000703\n", + "Epoch : 40 [6/27(22%)]\tLoss: 0.005277\n", + "Epoch : 40 [9/27(33%)]\tLoss: 0.015385\n", + "Epoch : 40 [12/27(44%)]\tLoss: 0.002268\n", + "Epoch : 40 [15/27(56%)]\tLoss: 0.020380\n", + "Epoch : 40 [18/27(67%)]\tLoss: 0.020612\n", + "Epoch : 40 [21/27(78%)]\tLoss: 0.009756\n", + "Epoch : 40 [24/27(89%)]\tLoss: 0.006306\n", + "Epoch : 41 [0/27(0%)]\tLoss: 0.000797\n", + "Epoch : 41 [3/27(11%)]\tLoss: 0.002614\n", + "Epoch : 41 [6/27(22%)]\tLoss: 0.012496\n", + "Epoch : 41 [9/27(33%)]\tLoss: 0.000782\n", + "Epoch : 41 [12/27(44%)]\tLoss: 0.013241\n", + "Epoch : 41 [15/27(56%)]\tLoss: 0.017738\n", + "Epoch : 41 [18/27(67%)]\tLoss: 0.001024\n", + "Epoch : 41 [21/27(78%)]\tLoss: 0.000291\n", + "Epoch : 41 [24/27(89%)]\tLoss: 0.012213\n", + "Epoch : 42 [0/27(0%)]\tLoss: 0.058207\n", + "Epoch : 42 [3/27(11%)]\tLoss: 0.003017\n", + "Epoch : 42 [6/27(22%)]\tLoss: 0.004682\n", + "Epoch : 42 [9/27(33%)]\tLoss: 0.001278\n", + "Epoch : 42 [12/27(44%)]\tLoss: 0.000598\n", + "Epoch : 42 [15/27(56%)]\tLoss: 0.003465\n", + "Epoch : 42 [18/27(67%)]\tLoss: 0.002337\n", + "Epoch : 42 [21/27(78%)]\tLoss: 0.001915\n", + "Epoch : 42 [24/27(89%)]\tLoss: 0.000727\n", + "Epoch : 43 [0/27(0%)]\tLoss: 0.049471\n", + "Epoch : 43 [3/27(11%)]\tLoss: 0.002677\n", + "Epoch : 43 [6/27(22%)]\tLoss: 0.000484\n", + "Epoch : 43 [9/27(33%)]\tLoss: 0.002717\n", + "Epoch : 43 [12/27(44%)]\tLoss: 0.019955\n", + "Epoch : 43 [15/27(56%)]\tLoss: 0.007386\n", + "Epoch : 43 [18/27(67%)]\tLoss: 0.000740\n", + "Epoch : 43 [21/27(78%)]\tLoss: 0.006719\n", + "Epoch : 43 [24/27(89%)]\tLoss: 0.007326\n", + "Epoch : 44 [0/27(0%)]\tLoss: 0.001286\n", + "Epoch : 44 [3/27(11%)]\tLoss: 0.003251\n", + "Epoch : 44 [6/27(22%)]\tLoss: 0.002411\n", + "Epoch : 44 [9/27(33%)]\tLoss: 0.001286\n", + "Epoch : 44 [12/27(44%)]\tLoss: 0.002326\n", + "Epoch : 44 [15/27(56%)]\tLoss: 0.006027\n", + "Epoch : 44 [18/27(67%)]\tLoss: 0.006092\n", + "Epoch : 44 [21/27(78%)]\tLoss: 0.009012\n", + "Epoch : 44 [24/27(89%)]\tLoss: 0.005644\n", + "Epoch : 45 [0/27(0%)]\tLoss: 0.000465\n", + "Epoch : 45 [3/27(11%)]\tLoss: 0.002603\n", + "Epoch : 45 [6/27(22%)]\tLoss: 0.003632\n", + "Epoch : 45 [9/27(33%)]\tLoss: 0.002700\n", + "Epoch : 45 [12/27(44%)]\tLoss: 0.001863\n", + "Epoch : 45 [15/27(56%)]\tLoss: 0.004521\n", + "Epoch : 45 [18/27(67%)]\tLoss: 0.003515\n", + "Epoch : 45 [21/27(78%)]\tLoss: 0.000967\n", + "Epoch : 45 [24/27(89%)]\tLoss: 0.005907\n", + "Epoch : 46 [0/27(0%)]\tLoss: 0.003442\n", + "Epoch : 46 [3/27(11%)]\tLoss: 0.006687\n", + "Epoch : 46 [6/27(22%)]\tLoss: 0.002997\n", + "Epoch : 46 [9/27(33%)]\tLoss: 0.000674\n", + "Epoch : 46 [12/27(44%)]\tLoss: 0.001867\n", + "Epoch : 46 [15/27(56%)]\tLoss: 0.003120\n", + "Epoch : 46 [18/27(67%)]\tLoss: 0.006717\n", + "Epoch : 46 [21/27(78%)]\tLoss: 0.030350\n", + "Epoch : 46 [24/27(89%)]\tLoss: 0.004500\n", + "Epoch : 47 [0/27(0%)]\tLoss: 0.000072\n", + "Epoch : 47 [3/27(11%)]\tLoss: 0.004060\n", + "Epoch : 47 [6/27(22%)]\tLoss: 0.002339\n", + "Epoch : 47 [9/27(33%)]\tLoss: 0.000138\n", + "Epoch : 47 [12/27(44%)]\tLoss: 0.000878\n", + "Epoch : 47 [15/27(56%)]\tLoss: 0.002705\n", + "Epoch : 47 [18/27(67%)]\tLoss: 0.001039\n", + "Epoch : 47 [21/27(78%)]\tLoss: 0.002347\n", + "Epoch : 47 [24/27(89%)]\tLoss: 0.025937\n", + "Epoch : 48 [0/27(0%)]\tLoss: 0.004123\n", + "Epoch : 48 [3/27(11%)]\tLoss: 0.002874\n", + "Epoch : 48 [6/27(22%)]\tLoss: 0.002901\n", + "Epoch : 48 [9/27(33%)]\tLoss: 0.003811\n", + "Epoch : 48 [12/27(44%)]\tLoss: 0.004812\n", + "Epoch : 48 [15/27(56%)]\tLoss: 0.002271\n", + "Epoch : 48 [18/27(67%)]\tLoss: 0.005182\n", + "Epoch : 48 [21/27(78%)]\tLoss: 0.002203\n", + "Epoch : 48 [24/27(89%)]\tLoss: 0.004684\n", + "Epoch : 49 [0/27(0%)]\tLoss: 0.001364\n", + "Epoch : 49 [3/27(11%)]\tLoss: 0.000798\n", + "Epoch : 49 [6/27(22%)]\tLoss: 0.002933\n", + "Epoch : 49 [9/27(33%)]\tLoss: 0.000107\n", + "Epoch : 49 [12/27(44%)]\tLoss: 0.002307\n", + "Epoch : 49 [15/27(56%)]\tLoss: 0.001784\n", + "Epoch : 49 [18/27(67%)]\tLoss: 0.000430\n", + "Epoch : 49 [21/27(78%)]\tLoss: 0.004199\n", + "Epoch : 49 [24/27(89%)]\tLoss: 0.012413\n", + "Epoch : 50 [0/27(0%)]\tLoss: 0.002844\n", + "Epoch : 50 [3/27(11%)]\tLoss: 0.000329\n", + "Epoch : 50 [6/27(22%)]\tLoss: 0.002911\n", + "Epoch : 50 [9/27(33%)]\tLoss: 0.000274\n", + "Epoch : 50 [12/27(44%)]\tLoss: 0.010750\n", + "Epoch : 50 [15/27(56%)]\tLoss: 0.001465\n", + "Epoch : 50 [18/27(67%)]\tLoss: 0.000258\n", + "Epoch : 50 [21/27(78%)]\tLoss: 0.008810\n", + "Epoch : 50 [24/27(89%)]\tLoss: 0.009023\n", + "Epoch : 51 [0/27(0%)]\tLoss: 0.000229\n", + "Epoch : 51 [3/27(11%)]\tLoss: 0.001903\n", + "Epoch : 51 [6/27(22%)]\tLoss: 0.003380\n", + "Epoch : 51 [9/27(33%)]\tLoss: 0.000516\n", + "Epoch : 51 [12/27(44%)]\tLoss: 0.001882\n", + "Epoch : 51 [15/27(56%)]\tLoss: 0.002592\n", + "Epoch : 51 [18/27(67%)]\tLoss: 0.004617\n", + "Epoch : 51 [21/27(78%)]\tLoss: 0.003285\n", + "Epoch : 51 [24/27(89%)]\tLoss: 0.002782\n", + "Epoch : 52 [0/27(0%)]\tLoss: 0.000958\n", + "Epoch : 52 [3/27(11%)]\tLoss: 0.002233\n", + "Epoch : 52 [6/27(22%)]\tLoss: 0.000381\n", + "Epoch : 52 [9/27(33%)]\tLoss: 0.001019\n", + "Epoch : 52 [12/27(44%)]\tLoss: 0.010180\n", + "Epoch : 52 [15/27(56%)]\tLoss: 0.002051\n", + "Epoch : 52 [18/27(67%)]\tLoss: 0.001435\n", + "Epoch : 52 [21/27(78%)]\tLoss: 0.008015\n", + "Epoch : 52 [24/27(89%)]\tLoss: 0.003072\n", + "Epoch : 53 [0/27(0%)]\tLoss: 0.006546\n", + "Epoch : 53 [3/27(11%)]\tLoss: 0.002769\n", + "Epoch : 53 [6/27(22%)]\tLoss: 0.000396\n", + "Epoch : 53 [9/27(33%)]\tLoss: 0.000688\n", + "Epoch : 53 [12/27(44%)]\tLoss: 0.006115\n", + "Epoch : 53 [15/27(56%)]\tLoss: 0.001142\n", + "Epoch : 53 [18/27(67%)]\tLoss: 0.000385\n", + "Epoch : 53 [21/27(78%)]\tLoss: 0.005339\n", + "Epoch : 53 [24/27(89%)]\tLoss: 0.004006\n", + "Epoch : 54 [0/27(0%)]\tLoss: 0.013569\n", + "Epoch : 54 [3/27(11%)]\tLoss: 0.002459\n", + "Epoch : 54 [6/27(22%)]\tLoss: 0.000955\n", + "Epoch : 54 [9/27(33%)]\tLoss: 0.003040\n", + "Epoch : 54 [12/27(44%)]\tLoss: 0.000949\n", + "Epoch : 54 [15/27(56%)]\tLoss: 0.000474\n", + "Epoch : 54 [18/27(67%)]\tLoss: 0.001806\n", + "Epoch : 54 [21/27(78%)]\tLoss: 0.006910\n", + "Epoch : 54 [24/27(89%)]\tLoss: 0.001890\n", + "Epoch : 55 [0/27(0%)]\tLoss: 0.002992\n", + "Epoch : 55 [3/27(11%)]\tLoss: 0.000975\n", + "Epoch : 55 [6/27(22%)]\tLoss: 0.001484\n", + "Epoch : 55 [9/27(33%)]\tLoss: 0.002307\n", + "Epoch : 55 [12/27(44%)]\tLoss: 0.002465\n", + "Epoch : 55 [15/27(56%)]\tLoss: 0.005831\n", + "Epoch : 55 [18/27(67%)]\tLoss: 0.000953\n", + "Epoch : 55 [21/27(78%)]\tLoss: 0.003342\n", + "Epoch : 55 [24/27(89%)]\tLoss: 0.003402\n", + "Epoch : 56 [0/27(0%)]\tLoss: 0.000558\n", + "Epoch : 56 [3/27(11%)]\tLoss: 0.000035\n", + "Epoch : 56 [6/27(22%)]\tLoss: 0.000993\n", + "Epoch : 56 [9/27(33%)]\tLoss: 0.000060\n", + "Epoch : 56 [12/27(44%)]\tLoss: 0.004163\n", + "Epoch : 56 [15/27(56%)]\tLoss: 0.000947\n", + "Epoch : 56 [18/27(67%)]\tLoss: 0.000640\n", + "Epoch : 56 [21/27(78%)]\tLoss: 0.002635\n", + "Epoch : 56 [24/27(89%)]\tLoss: 0.000441\n", + "Epoch : 57 [0/27(0%)]\tLoss: 0.002567\n", + "Epoch : 57 [3/27(11%)]\tLoss: 0.001318\n", + "Epoch : 57 [6/27(22%)]\tLoss: 0.001618\n", + "Epoch : 57 [9/27(33%)]\tLoss: 0.002171\n", + "Epoch : 57 [12/27(44%)]\tLoss: 0.001350\n", + "Epoch : 57 [15/27(56%)]\tLoss: 0.000914\n", + "Epoch : 57 [18/27(67%)]\tLoss: 0.004738\n", + "Epoch : 57 [21/27(78%)]\tLoss: 0.003063\n", + "Epoch : 57 [24/27(89%)]\tLoss: 0.001859\n", + "Epoch : 58 [0/27(0%)]\tLoss: 0.001437\n", + "Epoch : 58 [3/27(11%)]\tLoss: 0.015777\n", + "Epoch : 58 [6/27(22%)]\tLoss: 0.002156\n", + "Epoch : 58 [9/27(33%)]\tLoss: 0.000765\n", + "Epoch : 58 [12/27(44%)]\tLoss: 0.001760\n", + "Epoch : 58 [15/27(56%)]\tLoss: 0.000151\n", + "Epoch : 58 [18/27(67%)]\tLoss: 0.005978\n", + "Epoch : 58 [21/27(78%)]\tLoss: 0.002859\n", + "Epoch : 58 [24/27(89%)]\tLoss: 0.002177\n", + "Epoch : 59 [0/27(0%)]\tLoss: 0.023313\n", + "Epoch : 59 [3/27(11%)]\tLoss: 0.012350\n", + "Epoch : 59 [6/27(22%)]\tLoss: 0.000831\n", + "Epoch : 59 [9/27(33%)]\tLoss: 0.004895\n", + "Epoch : 59 [12/27(44%)]\tLoss: 0.001073\n", + "Epoch : 59 [15/27(56%)]\tLoss: 0.003966\n", + "Epoch : 59 [18/27(67%)]\tLoss: 0.001225\n", + "Epoch : 59 [21/27(78%)]\tLoss: 0.001054\n", + "Epoch : 59 [24/27(89%)]\tLoss: 0.002225\n", + "Epoch : 60 [0/27(0%)]\tLoss: 0.006518\n", + "Epoch : 60 [3/27(11%)]\tLoss: 0.000358\n", + "Epoch : 60 [6/27(22%)]\tLoss: 0.006067\n", + "Epoch : 60 [9/27(33%)]\tLoss: 0.000791\n", + "Epoch : 60 [12/27(44%)]\tLoss: 0.003521\n", + "Epoch : 60 [15/27(56%)]\tLoss: 0.001167\n", + "Epoch : 60 [18/27(67%)]\tLoss: 0.001594\n", + "Epoch : 60 [21/27(78%)]\tLoss: 0.000941\n", + "Epoch : 60 [24/27(89%)]\tLoss: 0.000711\n", + "Epoch : 61 [0/27(0%)]\tLoss: 0.000285\n", + "Epoch : 61 [3/27(11%)]\tLoss: 0.002134\n", + "Epoch : 61 [6/27(22%)]\tLoss: 0.006245\n", + "Epoch : 61 [9/27(33%)]\tLoss: 0.007066\n", + "Epoch : 61 [12/27(44%)]\tLoss: 0.000710\n", + "Epoch : 61 [15/27(56%)]\tLoss: 0.003380\n", + "Epoch : 61 [18/27(67%)]\tLoss: 0.003647\n", + "Epoch : 61 [21/27(78%)]\tLoss: 0.000117\n", + "Epoch : 61 [24/27(89%)]\tLoss: 0.002038\n", + "Epoch : 62 [0/27(0%)]\tLoss: 0.006347\n", + "Epoch : 62 [3/27(11%)]\tLoss: 0.000199\n", + "Epoch : 62 [6/27(22%)]\tLoss: 0.009960\n", + "Epoch : 62 [9/27(33%)]\tLoss: 0.007803\n", + "Epoch : 62 [12/27(44%)]\tLoss: 0.001826\n", + "Epoch : 62 [15/27(56%)]\tLoss: 0.004682\n", + "Epoch : 62 [18/27(67%)]\tLoss: 0.000577\n", + "Epoch : 62 [21/27(78%)]\tLoss: 0.001755\n", + "Epoch : 62 [24/27(89%)]\tLoss: 0.005519\n", + "Epoch : 63 [0/27(0%)]\tLoss: 0.008374\n", + "Epoch : 63 [3/27(11%)]\tLoss: 0.009556\n", + "Epoch : 63 [6/27(22%)]\tLoss: 0.029916\n", + "Epoch : 63 [9/27(33%)]\tLoss: 0.020160\n", + "Epoch : 63 [12/27(44%)]\tLoss: 0.006415\n", + "Epoch : 63 [15/27(56%)]\tLoss: 0.002987\n", + "Epoch : 63 [18/27(67%)]\tLoss: 0.002143\n", + "Epoch : 63 [21/27(78%)]\tLoss: 0.002115\n", + "Epoch : 63 [24/27(89%)]\tLoss: 0.014553\n", + "Epoch : 64 [0/27(0%)]\tLoss: 0.012283\n", + "Epoch : 64 [3/27(11%)]\tLoss: 0.016525\n", + "Epoch : 64 [6/27(22%)]\tLoss: 0.014457\n", + "Epoch : 64 [9/27(33%)]\tLoss: 0.015272\n", + "Epoch : 64 [12/27(44%)]\tLoss: 0.004393\n", + "Epoch : 64 [15/27(56%)]\tLoss: 0.003420\n", + "Epoch : 64 [18/27(67%)]\tLoss: 0.008526\n", + "Epoch : 64 [21/27(78%)]\tLoss: 0.001536\n", + "Epoch : 64 [24/27(89%)]\tLoss: 0.010710\n", + "Epoch : 65 [0/27(0%)]\tLoss: 0.010371\n", + "Epoch : 65 [3/27(11%)]\tLoss: 0.009163\n", + "Epoch : 65 [6/27(22%)]\tLoss: 0.003097\n", + "Epoch : 65 [9/27(33%)]\tLoss: 0.013085\n", + "Epoch : 65 [12/27(44%)]\tLoss: 0.009666\n", + "Epoch : 65 [15/27(56%)]\tLoss: 0.001656\n", + "Epoch : 65 [18/27(67%)]\tLoss: 0.003273\n", + "Epoch : 65 [21/27(78%)]\tLoss: 0.001753\n", + "Epoch : 65 [24/27(89%)]\tLoss: 0.002492\n", + "Epoch : 66 [0/27(0%)]\tLoss: 0.013604\n", + "Epoch : 66 [3/27(11%)]\tLoss: 0.002817\n", + "Epoch : 66 [6/27(22%)]\tLoss: 0.005497\n", + "Epoch : 66 [9/27(33%)]\tLoss: 0.007583\n", + "Epoch : 66 [12/27(44%)]\tLoss: 0.004148\n", + "Epoch : 66 [15/27(56%)]\tLoss: 0.002476\n", + "Epoch : 66 [18/27(67%)]\tLoss: 0.000908\n", + "Epoch : 66 [21/27(78%)]\tLoss: 0.000975\n", + "Epoch : 66 [24/27(89%)]\tLoss: 0.003194\n", + "Epoch : 67 [0/27(0%)]\tLoss: 0.005222\n", + "Epoch : 67 [3/27(11%)]\tLoss: 0.002511\n", + "Epoch : 67 [6/27(22%)]\tLoss: 0.006225\n", + "Epoch : 67 [9/27(33%)]\tLoss: 0.013064\n", + "Epoch : 67 [12/27(44%)]\tLoss: 0.006748\n", + "Epoch : 67 [15/27(56%)]\tLoss: 0.007703\n", + "Epoch : 67 [18/27(67%)]\tLoss: 0.000690\n", + "Epoch : 67 [21/27(78%)]\tLoss: 0.001104\n", + "Epoch : 67 [24/27(89%)]\tLoss: 0.002537\n", + "Epoch : 68 [0/27(0%)]\tLoss: 0.008376\n", + "Epoch : 68 [3/27(11%)]\tLoss: 0.007181\n", + "Epoch : 68 [6/27(22%)]\tLoss: 0.006500\n", + "Epoch : 68 [9/27(33%)]\tLoss: 0.010536\n", + "Epoch : 68 [12/27(44%)]\tLoss: 0.005779\n", + "Epoch : 68 [15/27(56%)]\tLoss: 0.006140\n", + "Epoch : 68 [18/27(67%)]\tLoss: 0.006007\n", + "Epoch : 68 [21/27(78%)]\tLoss: 0.000937\n", + "Epoch : 68 [24/27(89%)]\tLoss: 0.000401\n", + "Epoch : 69 [0/27(0%)]\tLoss: 0.012246\n", + "Epoch : 69 [3/27(11%)]\tLoss: 0.009671\n", + "Epoch : 69 [6/27(22%)]\tLoss: 0.005848\n", + "Epoch : 69 [9/27(33%)]\tLoss: 0.005858\n", + "Epoch : 69 [12/27(44%)]\tLoss: 0.007618\n", + "Epoch : 69 [15/27(56%)]\tLoss: 0.002949\n", + "Epoch : 69 [18/27(67%)]\tLoss: 0.003690\n", + "Epoch : 69 [21/27(78%)]\tLoss: 0.002018\n", + "Epoch : 69 [24/27(89%)]\tLoss: 0.000361\n", + "Epoch : 70 [0/27(0%)]\tLoss: 0.002632\n", + "Epoch : 70 [3/27(11%)]\tLoss: 0.002760\n", + "Epoch : 70 [6/27(22%)]\tLoss: 0.003471\n", + "Epoch : 70 [9/27(33%)]\tLoss: 0.003390\n", + "Epoch : 70 [12/27(44%)]\tLoss: 0.007057\n", + "Epoch : 70 [15/27(56%)]\tLoss: 0.003654\n", + "Epoch : 70 [18/27(67%)]\tLoss: 0.001132\n", + "Epoch : 70 [21/27(78%)]\tLoss: 0.001917\n", + "Epoch : 70 [24/27(89%)]\tLoss: 0.000800\n", + "Epoch : 71 [0/27(0%)]\tLoss: 0.001944\n", + "Epoch : 71 [3/27(11%)]\tLoss: 0.002012\n", + "Epoch : 71 [6/27(22%)]\tLoss: 0.003315\n", + "Epoch : 71 [9/27(33%)]\tLoss: 0.001387\n", + "Epoch : 71 [12/27(44%)]\tLoss: 0.012276\n", + "Epoch : 71 [15/27(56%)]\tLoss: 0.005031\n", + "Epoch : 71 [18/27(67%)]\tLoss: 0.000263\n", + "Epoch : 71 [21/27(78%)]\tLoss: 0.000923\n", + "Epoch : 71 [24/27(89%)]\tLoss: 0.003455\n", + "Epoch : 72 [0/27(0%)]\tLoss: 0.007063\n", + "Epoch : 72 [3/27(11%)]\tLoss: 0.002166\n", + "Epoch : 72 [6/27(22%)]\tLoss: 0.005293\n", + "Epoch : 72 [9/27(33%)]\tLoss: 0.006091\n", + "Epoch : 72 [12/27(44%)]\tLoss: 0.004507\n", + "Epoch : 72 [15/27(56%)]\tLoss: 0.000793\n", + "Epoch : 72 [18/27(67%)]\tLoss: 0.002462\n", + "Epoch : 72 [21/27(78%)]\tLoss: 0.001144\n", + "Epoch : 72 [24/27(89%)]\tLoss: 0.001592\n", + "Epoch : 73 [0/27(0%)]\tLoss: 0.009085\n", + "Epoch : 73 [3/27(11%)]\tLoss: 0.001079\n", + "Epoch : 73 [6/27(22%)]\tLoss: 0.002494\n", + "Epoch : 73 [9/27(33%)]\tLoss: 0.010433\n", + "Epoch : 73 [12/27(44%)]\tLoss: 0.003412\n", + "Epoch : 73 [15/27(56%)]\tLoss: 0.001183\n", + "Epoch : 73 [18/27(67%)]\tLoss: 0.000636\n", + "Epoch : 73 [21/27(78%)]\tLoss: 0.000267\n", + "Epoch : 73 [24/27(89%)]\tLoss: 0.001644\n", + "Epoch : 74 [0/27(0%)]\tLoss: 0.001289\n", + "Epoch : 74 [3/27(11%)]\tLoss: 0.004364\n", + "Epoch : 74 [6/27(22%)]\tLoss: 0.003250\n", + "Epoch : 74 [9/27(33%)]\tLoss: 0.005289\n", + "Epoch : 74 [12/27(44%)]\tLoss: 0.003343\n", + "Epoch : 74 [15/27(56%)]\tLoss: 0.000704\n", + "Epoch : 74 [18/27(67%)]\tLoss: 0.001660\n", + "Epoch : 74 [21/27(78%)]\tLoss: 0.000674\n", + "Epoch : 74 [24/27(89%)]\tLoss: 0.000767\n", + "Epoch : 75 [0/27(0%)]\tLoss: 0.000569\n", + "Epoch : 75 [3/27(11%)]\tLoss: 0.001588\n", + "Epoch : 75 [6/27(22%)]\tLoss: 0.011132\n", + "Epoch : 75 [9/27(33%)]\tLoss: 0.008010\n", + "Epoch : 75 [12/27(44%)]\tLoss: 0.007420\n", + "Epoch : 75 [15/27(56%)]\tLoss: 0.002779\n", + "Epoch : 75 [18/27(67%)]\tLoss: 0.001659\n", + "Epoch : 75 [21/27(78%)]\tLoss: 0.004181\n", + "Epoch : 75 [24/27(89%)]\tLoss: 0.006561\n", + "Epoch : 76 [0/27(0%)]\tLoss: 0.007190\n", + "Epoch : 76 [3/27(11%)]\tLoss: 0.001753\n", + "Epoch : 76 [6/27(22%)]\tLoss: 0.008862\n", + "Epoch : 76 [9/27(33%)]\tLoss: 0.005736\n", + "Epoch : 76 [12/27(44%)]\tLoss: 0.003190\n", + "Epoch : 76 [15/27(56%)]\tLoss: 0.002686\n", + "Epoch : 76 [18/27(67%)]\tLoss: 0.001043\n", + "Epoch : 76 [21/27(78%)]\tLoss: 0.005806\n", + "Epoch : 76 [24/27(89%)]\tLoss: 0.004925\n", + "Epoch : 77 [0/27(0%)]\tLoss: 0.003276\n", + "Epoch : 77 [3/27(11%)]\tLoss: 0.005156\n", + "Epoch : 77 [6/27(22%)]\tLoss: 0.005343\n", + "Epoch : 77 [9/27(33%)]\tLoss: 0.011902\n", + "Epoch : 77 [12/27(44%)]\tLoss: 0.008803\n", + "Epoch : 77 [15/27(56%)]\tLoss: 0.003181\n", + "Epoch : 77 [18/27(67%)]\tLoss: 0.000799\n", + "Epoch : 77 [21/27(78%)]\tLoss: 0.004063\n", + "Epoch : 77 [24/27(89%)]\tLoss: 0.003239\n", + "Epoch : 78 [0/27(0%)]\tLoss: 0.003676\n", + "Epoch : 78 [3/27(11%)]\tLoss: 0.008454\n", + "Epoch : 78 [6/27(22%)]\tLoss: 0.003726\n", + "Epoch : 78 [9/27(33%)]\tLoss: 0.018076\n", + "Epoch : 78 [12/27(44%)]\tLoss: 0.004571\n", + "Epoch : 78 [15/27(56%)]\tLoss: 0.000547\n", + "Epoch : 78 [18/27(67%)]\tLoss: 0.001713\n", + "Epoch : 78 [21/27(78%)]\tLoss: 0.007516\n", + "Epoch : 78 [24/27(89%)]\tLoss: 0.000572\n", + "Epoch : 79 [0/27(0%)]\tLoss: 0.007731\n", + "Epoch : 79 [3/27(11%)]\tLoss: 0.003421\n", + "Epoch : 79 [6/27(22%)]\tLoss: 0.005041\n", + "Epoch : 79 [9/27(33%)]\tLoss: 0.016165\n", + "Epoch : 79 [12/27(44%)]\tLoss: 0.004626\n", + "Epoch : 79 [15/27(56%)]\tLoss: 0.003515\n", + "Epoch : 79 [18/27(67%)]\tLoss: 0.002267\n", + "Epoch : 79 [21/27(78%)]\tLoss: 0.002394\n", + "Epoch : 79 [24/27(89%)]\tLoss: 0.000829\n", + "Epoch : 80 [0/27(0%)]\tLoss: 0.002733\n", + "Epoch : 80 [3/27(11%)]\tLoss: 0.007885\n", + "Epoch : 80 [6/27(22%)]\tLoss: 0.004937\n", + "Epoch : 80 [9/27(33%)]\tLoss: 0.005145\n", + "Epoch : 80 [12/27(44%)]\tLoss: 0.010941\n", + "Epoch : 80 [15/27(56%)]\tLoss: 0.032275\n", + "Epoch : 80 [18/27(67%)]\tLoss: 0.006226\n", + "Epoch : 80 [21/27(78%)]\tLoss: 0.001445\n", + "Epoch : 80 [24/27(89%)]\tLoss: 0.007635\n", + "Epoch : 81 [0/27(0%)]\tLoss: 0.005885\n", + "Epoch : 81 [3/27(11%)]\tLoss: 0.003400\n", + "Epoch : 81 [6/27(22%)]\tLoss: 0.002791\n", + "Epoch : 81 [9/27(33%)]\tLoss: 0.021213\n", + "Epoch : 81 [12/27(44%)]\tLoss: 0.034365\n", + "Epoch : 81 [15/27(56%)]\tLoss: 0.022092\n", + "Epoch : 81 [18/27(67%)]\tLoss: 0.000121\n", + "Epoch : 81 [21/27(78%)]\tLoss: 0.001980\n", + "Epoch : 81 [24/27(89%)]\tLoss: 0.002592\n", + "Epoch : 82 [0/27(0%)]\tLoss: 0.017041\n", + "Epoch : 82 [3/27(11%)]\tLoss: 0.005260\n", + "Epoch : 82 [6/27(22%)]\tLoss: 0.006043\n", + "Epoch : 82 [9/27(33%)]\tLoss: 0.024416\n", + "Epoch : 82 [12/27(44%)]\tLoss: 0.014002\n", + "Epoch : 82 [15/27(56%)]\tLoss: 0.007204\n", + "Epoch : 82 [18/27(67%)]\tLoss: 0.000580\n", + "Epoch : 82 [21/27(78%)]\tLoss: 0.000316\n", + "Epoch : 82 [24/27(89%)]\tLoss: 0.004074\n", + "Epoch : 83 [0/27(0%)]\tLoss: 0.006957\n", + "Epoch : 83 [3/27(11%)]\tLoss: 0.004941\n", + "Epoch : 83 [6/27(22%)]\tLoss: 0.012785\n", + "Epoch : 83 [9/27(33%)]\tLoss: 0.019560\n", + "Epoch : 83 [12/27(44%)]\tLoss: 0.022634\n", + "Epoch : 83 [15/27(56%)]\tLoss: 0.005855\n", + "Epoch : 83 [18/27(67%)]\tLoss: 0.001021\n", + "Epoch : 83 [21/27(78%)]\tLoss: 0.003918\n", + "Epoch : 83 [24/27(89%)]\tLoss: 0.006115\n", + "Epoch : 84 [0/27(0%)]\tLoss: 0.008229\n", + "Epoch : 84 [3/27(11%)]\tLoss: 0.004553\n", + "Epoch : 84 [6/27(22%)]\tLoss: 0.006029\n", + "Epoch : 84 [9/27(33%)]\tLoss: 0.012086\n", + "Epoch : 84 [12/27(44%)]\tLoss: 0.010213\n", + "Epoch : 84 [15/27(56%)]\tLoss: 0.002733\n", + "Epoch : 84 [18/27(67%)]\tLoss: 0.000261\n", + "Epoch : 84 [21/27(78%)]\tLoss: 0.002922\n", + "Epoch : 84 [24/27(89%)]\tLoss: 0.000075\n", + "Epoch : 85 [0/27(0%)]\tLoss: 0.007002\n", + "Epoch : 85 [3/27(11%)]\tLoss: 0.001235\n", + "Epoch : 85 [6/27(22%)]\tLoss: 0.003936\n", + "Epoch : 85 [9/27(33%)]\tLoss: 0.006748\n", + "Epoch : 85 [12/27(44%)]\tLoss: 0.006647\n", + "Epoch : 85 [15/27(56%)]\tLoss: 0.011972\n", + "Epoch : 85 [18/27(67%)]\tLoss: 0.005725\n", + "Epoch : 85 [21/27(78%)]\tLoss: 0.002795\n", + "Epoch : 85 [24/27(89%)]\tLoss: 0.000429\n", + "Epoch : 86 [0/27(0%)]\tLoss: 0.002919\n", + "Epoch : 86 [3/27(11%)]\tLoss: 0.001636\n", + "Epoch : 86 [6/27(22%)]\tLoss: 0.005413\n", + "Epoch : 86 [9/27(33%)]\tLoss: 0.003237\n", + "Epoch : 86 [12/27(44%)]\tLoss: 0.015509\n", + "Epoch : 86 [15/27(56%)]\tLoss: 0.005416\n", + "Epoch : 86 [18/27(67%)]\tLoss: 0.001268\n", + "Epoch : 86 [21/27(78%)]\tLoss: 0.000758\n", + "Epoch : 86 [24/27(89%)]\tLoss: 0.000359\n", + "Epoch : 87 [0/27(0%)]\tLoss: 0.000587\n", + "Epoch : 87 [3/27(11%)]\tLoss: 0.002780\n", + "Epoch : 87 [6/27(22%)]\tLoss: 0.004563\n", + "Epoch : 87 [9/27(33%)]\tLoss: 0.012802\n", + "Epoch : 87 [12/27(44%)]\tLoss: 0.015963\n", + "Epoch : 87 [15/27(56%)]\tLoss: 0.005406\n", + "Epoch : 87 [18/27(67%)]\tLoss: 0.001703\n", + "Epoch : 87 [21/27(78%)]\tLoss: 0.002209\n", + "Epoch : 87 [24/27(89%)]\tLoss: 0.003504\n", + "Epoch : 88 [0/27(0%)]\tLoss: 0.010096\n", + "Epoch : 88 [3/27(11%)]\tLoss: 0.001262\n", + "Epoch : 88 [6/27(22%)]\tLoss: 0.005607\n", + "Epoch : 88 [9/27(33%)]\tLoss: 0.007885\n", + "Epoch : 88 [12/27(44%)]\tLoss: 0.002648\n", + "Epoch : 88 [15/27(56%)]\tLoss: 0.003421\n", + "Epoch : 88 [18/27(67%)]\tLoss: 0.000955\n", + "Epoch : 88 [21/27(78%)]\tLoss: 0.001133\n", + "Epoch : 88 [24/27(89%)]\tLoss: 0.001574\n", + "Epoch : 89 [0/27(0%)]\tLoss: 0.003432\n", + "Epoch : 89 [3/27(11%)]\tLoss: 0.000209\n", + "Epoch : 89 [6/27(22%)]\tLoss: 0.004993\n", + "Epoch : 89 [9/27(33%)]\tLoss: 0.003158\n", + "Epoch : 89 [12/27(44%)]\tLoss: 0.004872\n", + "Epoch : 89 [15/27(56%)]\tLoss: 0.000421\n", + "Epoch : 89 [18/27(67%)]\tLoss: 0.000131\n", + "Epoch : 89 [21/27(78%)]\tLoss: 0.000903\n", + "Epoch : 89 [24/27(89%)]\tLoss: 0.000608\n", + "Epoch : 90 [0/27(0%)]\tLoss: 0.001255\n", + "Epoch : 90 [3/27(11%)]\tLoss: 0.000581\n", + "Epoch : 90 [6/27(22%)]\tLoss: 0.000863\n", + "Epoch : 90 [9/27(33%)]\tLoss: 0.001341\n", + "Epoch : 90 [12/27(44%)]\tLoss: 0.003321\n", + "Epoch : 90 [15/27(56%)]\tLoss: 0.000938\n", + "Epoch : 90 [18/27(67%)]\tLoss: 0.000737\n", + "Epoch : 90 [21/27(78%)]\tLoss: 0.000055\n", + "Epoch : 90 [24/27(89%)]\tLoss: 0.001655\n", + "Epoch : 91 [0/27(0%)]\tLoss: 0.000629\n", + "Epoch : 91 [3/27(11%)]\tLoss: 0.000534\n", + "Epoch : 91 [6/27(22%)]\tLoss: 0.001156\n", + "Epoch : 91 [9/27(33%)]\tLoss: 0.000877\n", + "Epoch : 91 [12/27(44%)]\tLoss: 0.000788\n", + "Epoch : 91 [15/27(56%)]\tLoss: 0.005168\n", + "Epoch : 91 [18/27(67%)]\tLoss: 0.003361\n", + "Epoch : 91 [21/27(78%)]\tLoss: 0.000991\n", + "Epoch : 91 [24/27(89%)]\tLoss: 0.005316\n", + "Epoch : 92 [0/27(0%)]\tLoss: 0.001775\n", + "Epoch : 92 [3/27(11%)]\tLoss: 0.001998\n", + "Epoch : 92 [6/27(22%)]\tLoss: 0.002178\n", + "Epoch : 92 [9/27(33%)]\tLoss: 0.002146\n", + "Epoch : 92 [12/27(44%)]\tLoss: 0.007103\n", + "Epoch : 92 [15/27(56%)]\tLoss: 0.002679\n", + "Epoch : 92 [18/27(67%)]\tLoss: 0.005262\n", + "Epoch : 92 [21/27(78%)]\tLoss: 0.061544\n", + "Epoch : 92 [24/27(89%)]\tLoss: 0.002038\n", + "Epoch : 93 [0/27(0%)]\tLoss: 0.001316\n", + "Epoch : 93 [3/27(11%)]\tLoss: 0.000958\n", + "Epoch : 93 [6/27(22%)]\tLoss: 0.002880\n", + "Epoch : 93 [9/27(33%)]\tLoss: 0.010612\n", + "Epoch : 93 [12/27(44%)]\tLoss: 0.012958\n", + "Epoch : 93 [15/27(56%)]\tLoss: 0.001336\n", + "Epoch : 93 [18/27(67%)]\tLoss: 0.016597\n", + "Epoch : 93 [21/27(78%)]\tLoss: 0.049158\n", + "Epoch : 93 [24/27(89%)]\tLoss: 0.006003\n", + "Epoch : 94 [0/27(0%)]\tLoss: 0.004714\n", + "Epoch : 94 [3/27(11%)]\tLoss: 0.010011\n", + "Epoch : 94 [6/27(22%)]\tLoss: 0.004439\n", + "Epoch : 94 [9/27(33%)]\tLoss: 0.001451\n", + "Epoch : 94 [12/27(44%)]\tLoss: 0.000886\n", + "Epoch : 94 [15/27(56%)]\tLoss: 0.006360\n", + "Epoch : 94 [18/27(67%)]\tLoss: 0.002133\n", + "Epoch : 94 [21/27(78%)]\tLoss: 0.079832\n", + "Epoch : 94 [24/27(89%)]\tLoss: 0.002157\n", + "Epoch : 95 [0/27(0%)]\tLoss: 0.001896\n", + "Epoch : 95 [3/27(11%)]\tLoss: 0.011519\n", + "Epoch : 95 [6/27(22%)]\tLoss: 0.005444\n", + "Epoch : 95 [9/27(33%)]\tLoss: 0.011615\n", + "Epoch : 95 [12/27(44%)]\tLoss: 0.004645\n", + "Epoch : 95 [15/27(56%)]\tLoss: 0.007385\n", + "Epoch : 95 [18/27(67%)]\tLoss: 0.010379\n", + "Epoch : 95 [21/27(78%)]\tLoss: 0.002049\n", + "Epoch : 95 [24/27(89%)]\tLoss: 0.001327\n", + "Epoch : 96 [0/27(0%)]\tLoss: 0.004393\n", + "Epoch : 96 [3/27(11%)]\tLoss: 0.003464\n", + "Epoch : 96 [6/27(22%)]\tLoss: 0.007382\n", + "Epoch : 96 [9/27(33%)]\tLoss: 0.010950\n", + "Epoch : 96 [12/27(44%)]\tLoss: 0.010316\n", + "Epoch : 96 [15/27(56%)]\tLoss: 0.005168\n", + "Epoch : 96 [18/27(67%)]\tLoss: 0.016796\n", + "Epoch : 96 [21/27(78%)]\tLoss: 0.003665\n", + "Epoch : 96 [24/27(89%)]\tLoss: 0.003306\n", + "Epoch : 97 [0/27(0%)]\tLoss: 0.015664\n", + "Epoch : 97 [3/27(11%)]\tLoss: 0.004716\n", + "Epoch : 97 [6/27(22%)]\tLoss: 0.004391\n", + "Epoch : 97 [9/27(33%)]\tLoss: 0.010534\n", + "Epoch : 97 [12/27(44%)]\tLoss: 0.015354\n", + "Epoch : 97 [15/27(56%)]\tLoss: 0.006859\n", + "Epoch : 97 [18/27(67%)]\tLoss: 0.006830\n", + "Epoch : 97 [21/27(78%)]\tLoss: 0.002797\n", + "Epoch : 97 [24/27(89%)]\tLoss: 0.001982\n", + "Epoch : 98 [0/27(0%)]\tLoss: 0.009272\n", + "Epoch : 98 [3/27(11%)]\tLoss: 0.001727\n", + "Epoch : 98 [6/27(22%)]\tLoss: 0.009806\n", + "Epoch : 98 [9/27(33%)]\tLoss: 0.010110\n", + "Epoch : 98 [12/27(44%)]\tLoss: 0.009517\n", + "Epoch : 98 [15/27(56%)]\tLoss: 0.006432\n", + "Epoch : 98 [18/27(67%)]\tLoss: 0.004106\n", + "Epoch : 98 [21/27(78%)]\tLoss: 0.001207\n", + "Epoch : 98 [24/27(89%)]\tLoss: 0.000695\n", + "Epoch : 99 [0/27(0%)]\tLoss: 0.003822\n", + "Epoch : 99 [3/27(11%)]\tLoss: 0.075437\n", + "Epoch : 99 [6/27(22%)]\tLoss: 0.011430\n", + "Epoch : 99 [9/27(33%)]\tLoss: 0.012405\n", + "Epoch : 99 [12/27(44%)]\tLoss: 0.006619\n", + "Epoch : 99 [15/27(56%)]\tLoss: 0.008588\n", + "Epoch : 99 [18/27(67%)]\tLoss: 0.008705\n", + "Epoch : 99 [21/27(78%)]\tLoss: 0.012579\n", + "Epoch : 99 [24/27(89%)]\tLoss: 0.003084\n", + "--- 1.3169726252555847 minutes ---\n" ] } ], @@ -1206,7 +1716,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABesElEQVR4nO3deXgT1cIG8DdpadoCXdi6QNl3hFJZaulVEctlURQU4QpXEBU+ERStXgFldQEUcWVRRMAVEAREQRAQRFlkh7IKWmyFLiDStKVrcr4/jpM0pUmTNMm06ft7nnkySWYmJ9M08+acM2c0QggBIiIiIi+hVbsARERERK7EcENEREReheGGiIiIvArDDREREXkVhhsiIiLyKgw3RERE5FUYboiIiMir+KpdAE8zGo24dOkSateuDY1Go3ZxiIiIyA5CCGRnZyMyMhJare26mWoXbi5duoSoqCi1i0FEREROSE1NRaNGjWwuU+3CTe3atQHInRMUFKRyaYiIiMgeer0eUVFRpuO4LdUu3ChNUUFBQQw3REREVYw9XUrYoZiIiIi8CsMNEREReRWGGyIiIvIq1a7PDRERuZbBYEBRUZHaxSAv4OfnV+5p3vZguCEiIqcIIZCeno5r166pXRTyElqtFs2aNYOfn1+FtsNwQ0RETlGCTYMGDRAYGMiBUalClEF209LS0Lhx4wp9nhhuiIjIYQaDwRRs6tatq3ZxyEvUr18fly5dQnFxMWrUqOH0dtihmIiIHKb0sQkMDFS5JORNlOYog8FQoe0w3BARkdPYFEWu5KrPE8MNEREReRWGGyIiIvIqDDdEREQV1LRpU7z99tt2L79z505oNBq3n0a/fPlyhISEuPU1KiOGGxcpKgIuXgSSk9UuCRERWaPRaGxOM2bMcGq7Bw4cwJgxY+xevkePHkhLS0NwcLBTr0e28VRwF9mzB+jZE2jTBjhzRu3SEBFRWdLS0kzzq1atwrRp03D27FnTY7Vq1TLNCyFgMBjg61v+obJ+/foOlcPPzw/h4eEOrUP2Y82NiwQFyVu9Xt1yEBGpRQggN1edSQj7yhgeHm6agoODodFoTPfPnDmD2rVr47vvvkOXLl2g0+nw888/47fffsO9996LsLAw1KpVC926dcO2bdsstlu6WUqj0WDJkiUYNGgQAgMD0apVK2zYsMH0fOlmKaX5aMuWLWjXrh1q1aqFvn37WoSx4uJiPPXUUwgJCUHdunUxceJEjBw5EgMHDnTo77Ro0SK0aNECfn5+aNOmDT799NMSf0OBGTNmoHHjxtDpdIiMjMRTTz1len7hwoVo1aoV/P39ERYWhsGDBzv02p7CcOMiDDdEVN1dvw7UqqXOdP26697HpEmTMGfOHJw+fRqdOnVCTk4O+vfvj+3bt+PIkSPo27cvBgwYgJSUFJvbmTlzJoYMGYLjx4+jf//+GD58OK5evWpj/13HG2+8gU8//RS7du1CSkoKnnvuOdPzr732Gj7//HMsW7YMu3fvhl6vx/r16x16b+vWrcOECRPw7LPP4sSJE/i///s/jBo1Cjt27AAAfPXVV3jrrbfwwQcf4Ny5c1i/fj06duwIADh48CCeeuopvPTSSzh79iw2b96M2267zaHX9xhRzWRlZQkAIisry6XbzcwUQv52EKK42KWbJiKqdPLy8sSpU6dEXl6e6bGcHPP3oKennBzH38OyZctEcHCw6f6OHTsEALF+/fpy1+3QoYN47733TPebNGki3nrrLdN9AGLKlCkl9k2OACC+++47i9f6+++/TWUBIM6fP29aZ8GCBSIsLMx0PywsTMydO9d0v7i4WDRu3Fjce++9dr/HHj16iNGjR1ss88ADD4j+/fsLIYSYN2+eaN26tSgsLLxhW1999ZUICgoSer3e6utVVFmfK4Ujx2/W3LiIUnMDANnZ6pWDiEgtgYFATo46kysHSu7atavF/ZycHDz33HNo164dQkJCUKtWLZw+fbrcmptOnTqZ5mvWrImgoCBkZmZaXT4wMBAtWrQw3Y+IiDAtn5WVhYyMDHTv3t30vI+PD7p06eLQezt9+jTi4+MtHouPj8fp06cBAA888ADy8vLQvHlzjB49GuvWrUNxcTEAoHfv3mjSpAmaN2+Ohx56CJ9//jmuu7LKzIUYblxEpwOUi5gy3BBRdaTRADVrqjO5cqDkmjVrWtx/7rnnsG7dOsyaNQs//fQTjh49io4dO6KwsNDmdkpfG0mj0cBoNDq0vLC3M5GLREVF4ezZs1i4cCECAgLwxBNP4LbbbkNRURFq166Nw4cPY8WKFYiIiMC0adMQHR1dKa8Kz3DjQux3Q0TkfXbv3o2HH34YgwYNQseOHREeHo4LFy54tAzBwcEICwvDgQMHTI8ZDAYcPnzYoe20a9cOu3fvtnhs9+7daN++vel+QEAABgwYgHfffRc7d+7E3r17kZSUBADw9fVFQkICXn/9dRw/fhwXLlzADz/8UIF35h48FdyFgoKAK1cYboiIvEmrVq2wdu1aDBgwABqNBlOnTrVZA+MuTz75JGbPno2WLVuibdu2eO+99/D33387dD2m//3vfxgyZAhiYmKQkJCAb775BmvXrjWd/bV8+XIYDAbExsYiMDAQn332GQICAtCkSRN8++23+P3333HbbbchNDQUmzZtgtFoRJs2bdz1lp3GcONCtWvLW4YbIiLv8eabb+KRRx5Bjx49UK9ePUycOBF6Fb7oJ06ciPT0dIwYMQI+Pj4YM2YM+vTpAx8fH7u3MXDgQLzzzjt44403MGHCBDRr1gzLli1Dz549AQAhISGYM2cOEhMTYTAY0LFjR3zzzTeoW7cuQkJCsHbtWsyYMQP5+flo1aoVVqxYgQ4dOrjpHTtPIzzdoKcyvV6P4OBgZGVlIahkL2AXuO024KefgC+/BB54wKWbJiKqVPLz85GcnIxmzZrB399f7eJUS0ajEe3atcOQIUPw8ssvq10cl7D1uXLk+M2aGxdinxsiInKXP/74A99//z1uv/12FBQUYP78+UhOTsawYcPULlqlww7FLsRwQ0RE7qLVarF8+XJ069YN8fHxSEpKwrZt29CuXTu1i1bpsObGhRhuiIjIXaKiom4404nKxpobF2K4ISIiUh/DjQsx3BAREamP4caFlHDDEYqJiIjUw3DjQqy5ISIiUh/DjQsx3BAREamP4caFOEIxEVH10LNnTzz99NOm+02bNsXbb79tcx2NRoP169dX+LVdtR1bZsyYgc6dO7v1NdxJ1XCza9cuDBgwAJGRkQ7/sXbv3g1fX99KtfNZc0NEVLkNGDAAffv2LfO5n376CRqNBsePH3d4uwcOHMCYMWMqWjwL1gJGWloa+vXr59LX8jaqhpvc3FxER0djwYIFDq137do1jBgxAnfeeaebSuYchhsiosrt0UcfxdatW/Hnn3/e8NyyZcvQtWtXdOrUyeHt1q9fH4GBga4oYrnCw8Oh0+k88lpVlarhpl+/fnjllVcwaNAgh9Z7/PHHMWzYMMTFxZW7bEFBAfR6vcXkLiXDTfW6YhcRUdVw9913o379+li+fLnF4zk5OVi9ejUeffRR/PXXX3jwwQfRsGFDBAYGomPHjlixYoXN7ZZuljp37hxuu+02+Pv7o3379ti6desN60ycOBGtW7dGYGAgmjdvjqlTp6KoqAiAvDr3zJkzcezYMWg0Gmg0GlOZS7d0JCUloVevXggICEDdunUxZswY5OTkmJ5/+OGHMXDgQLzxxhuIiIhA3bp1MW7cONNr2cNoNOKll15Co0aNoNPp0LlzZ2zevNn0fGFhIcaPH4+IiAj4+/ujSZMmmD17NgBACIEZM2agcePG0Ol0iIyMxFNPPWX3azujyo1QvGzZMvz+++/47LPP8Morr5S7/OzZszFz5kwPlMwcbgwGIC8P8FCIJyKqHIQArl9X57UDAwGNptzFfH19MWLECCxfvhwvvvgiNP+ss3r1ahgMBjz44IPIyclBly5dMHHiRAQFBWHjxo146KGH0KJFC3Tv3r3c1zAajbjvvvsQFhaGX375BVlZWRb9cxS1a9fG8uXLERkZiaSkJIwePRq1a9fG888/j6FDh+LEiRPYvHkztm3bBgAIDg6+YRu5ubno06cP4uLicODAAWRmZuKxxx7D+PHjLQLcjh07EBERgR07duD8+fMYOnQoOnfujNGjR5f7fgDgnXfewbx58/DBBx8gJiYGS5cuxT333IOTJ0+iVatWePfdd7FhwwZ8+eWXaNy4MVJTU5GamgoA+Oqrr/DWW29h5cqV6NChA9LT03Hs2DG7XtdpopIAINatW2dzmV9//VU0aNBAnD17VgghxPTp00V0dLTNdfLz80VWVpZpSk1NFQBEVlaWi0puZjAIodEIAQiRlubyzRMRVRp5eXni1KlTIi8vz/xgTo78AlRjysmxu+ynT58WAMSOHTtMj916663iv//9r9V17rrrLvHss8+a7t9+++1iwoQJpvtNmjQRb731lhBCiC1btghfX19x8eJF0/Pfffdduce5uXPnii5dupjuWzvGldzO4sWLRWhoqMgp8f43btwotFqtSE9PF0IIMXLkSNGkSRNRXFxsWuaBBx4QQ4cOtVqW0q8dGRkpXn31VYtlunXrJp544gkhhBBPPvmk6NWrlzAajTdsa968eaJ169aisLDQ6uspyvxc/SMrK8vu43eVOVvKYDBg2LBhmDlzJlq3bm33ejqdDkFBQRaTu2i1PGOKiKiya9u2LXr06IGlS5cCAM6fP4+ffvoJjz76KAB5vHn55ZfRsWNH1KlTB7Vq1cKWLVuQkpJi1/ZPnz6NqKgoREZGmh4rqxvFqlWrEB8fj/DwcNSqVQtTpkyx+zVKvlZ0dDRq1qxpeiw+Ph5GoxFnz541PdahQwf4+PiY7kdERCAzM9Ou19Dr9bh06RLi4+MtHo+Pj8fp06cByKavo0ePok2bNnjqqafw/fffm5Z74IEHkJeXh+bNm2P06NFYt24diouLHXqfjqoy4SY7OxsHDx7E+PHj4evrC19fX7z00ks4duwYfH198cMPP6hdRAAcpZiIqrHAQCAnR53JwX4Ajz76KL766itkZ2dj2bJlaNGiBW6//XYAwNy5c/HOO+9g4sSJ2LFjB44ePYo+ffqgsLDQZbtq7969GD58OPr3749vv/0WR44cwYsvvujS1yipRo0aFvc1Gg2MRqPLtn/zzTcjOTkZL7/8MvLy8jBkyBAMHjwYgLzg59mzZ7Fw4UIEBATgiSeewG233eZQnx9HVZk+N0FBQUhKSrJ4bOHChfjhhx+wZs0aNGvWTKWSWeIZU0RUbWk0QIkahMpsyJAhmDBhAr744gt88sknGDt2rKn/ze7du3Hvvffiv//9LwDZh+bXX39F+/bt7dp2u3btkJqairS0NERERAAA9u3bZ7HMnj170KRJE7z44oumx/744w+LZfz8/GAwGMp9reXLlyM3N9dUe7N7925otVq0adPGrvKWJygoCJGRkdi9e7cpACqvU7IPUlBQEIYOHYqhQ4di8ODB6Nu3L65evYo6deogICAAAwYMwIABAzBu3Di0bdsWSUlJuPnmm11SxtJUDTc5OTk4f/686X5ycjKOHj2KOnXqoHHjxpg8eTIuXryITz75BFqtFjfddJPF+g0aNIC/v/8Nj6uJ4YaIqPKrVasWhg4dismTJ0Ov1+Phhx82PdeqVSusWbMGe/bsQWhoKN58801kZGTYHW4SEhLQunVrjBw5EnPnzoVer7cIMcprpKSkYOXKlejWrRs2btyIdevWWSzTtGlT03GxUaNGqF279g2ngA8fPhzTp0/HyJEjMWPGDFy+fBlPPvkkHnroIYSFhTm3c8rwv//9D9OnT0eLFi3QuXNnLFu2DEePHsXnn38OAHjzzTcRERGBmJgYaLVarF69GuHh4QgJCcHy5cthMBgQGxuLwMBAfPbZZwgICECTJk1cVr7SVG2WOnjwIGJiYhATEwMASExMRExMDKZNmwZADlTkaPuj2tjnhoioanj00Ufx999/o0+fPhb9Y6ZMmYKbb74Zffr0Qc+ePREeHo6BAwfavV2tVot169YhLy8P3bt3x2OPPYZXX33VYpl77rkHzzzzDMaPH4/OnTtjz549mDp1qsUy999/P/r27Ys77rgD9evXL/N09MDAQGzZsgVXr15Ft27dMHjwYNx5552YP3++YzujHE899RQSExPx7LPPomPHjti8eTM2bNiAVq1aAZBnfr3++uvo2rUrunXrhgsXLmDTpk3QarUICQnBhx9+iPj4eHTq1Anbtm3DN998g7p167q0jCVphKheI7Lo9XoEBwcjKyvLLZ2LBw8GvvoKmD8fGDfO5ZsnIqoU8vPzkZycjGbNmsHf31/t4pCXsPW5cuT4XWU6FFcVbJYiIiJSF8ONizHcEBERqYvhxsUYboiIiNTFcONiDDdERETqYrhxMYYbIqpOqtk5KeRmrvo8Mdy4GEcoJqLqQBnx9rpaF8okr6SM0FzyUhHOqDIjFFcVrLkhourAx8cHISEhpusTBQYGmkb4JXKG0WjE5cuXERgYCF/fisUThhsXY7ghouoiPDwcAOy+ACNRebRaLRo3blzhoMxw42IcoZiIqguNRoOIiAg0aNDArRdBpOrDz88PWm3Fe8ww3LgYa26IqLrx8fGpcB8JIldih2IXU8JNXh7AHzJERESex3DjYkqzFMAzpoiIiNTAcONifn6Acq0vNk0RERF5HsONG7DfDRERkXoYbtyA4YaIiEg9DDduwFGKiYiI1MNw4wasuSEiIlIPw40bMNwQERGph+HGDThKMRERkXoYbtyANTdERETqYbhxA4YbIiIi9TDcuAHDDRERkXoYbtyA4YaIiEg9DDduwHBDRESkHoYbN2C4ISIiUg/DjRtwhGIiIiL1MNy4AWtuiIiI1MNw4wYMN0REROphuHGDkiMUC6FuWYiIiKobhhs3UGpuhAByc9UtCxERUXXDcOMGgYGA9p89y6YpIiIiz2K4cQONhv1uiIiI1MJw4yYMN0REROpguHEThhsiIiJ1qBpudu3ahQEDBiAyMhIajQbr16+3ufzatWvRu3dv1K9fH0FBQYiLi8OWLVs8U1gHMdwQERGpQ9Vwk5ubi+joaCxYsMCu5Xft2oXevXtj06ZNOHToEO644w4MGDAAR44ccXNJHcdRiomIiNThq+aL9+vXD/369bN7+bffftvi/qxZs/D111/jm2++QUxMTJnrFBQUoKCgwHRf76GqFNbcEBERqaNK97kxGo3Izs5GnTp1rC4ze/ZsBAcHm6aoqCiPlI3hhoiISB1VOty88cYbyMnJwZAhQ6wuM3nyZGRlZZmm1NRUj5St5CjFRERE5DmqNktVxBdffIGZM2fi66+/RoMGDawup9PpoNPpPFgyiTU3RERE6qiS4WblypV47LHHsHr1aiQkJKhdnDIx3BAREamjyjVLrVixAqNGjcKKFStw1113qV0cqxhuiIiI1KFqzU1OTg7Onz9vup+cnIyjR4+iTp06aNy4MSZPnoyLFy/ik08+ASCbokaOHIl33nkHsbGxSE9PBwAEBAQgODhYlfdgDcMNERGROlStuTl48CBiYmJMp3EnJiYiJiYG06ZNAwCkpaUhJSXFtPzixYtRXFyMcePGISIiwjRNmDBBlfLbwnBDRESkDo0QQqhdCE/S6/UIDg5GVlYWgpQE4gZ79gDx8UDz5sBvv7ntZYiIiKoFR47fVa7PTVXBEYqJiIjUwXDjJmyWIiIiUgfDjZso4aagQE5ERETkGQw3blKrlnmeTVNERESew3DjJr6+QGCgnGfTFBERkecw3LgR+90QERF5HsONGzHcEBEReR7DjRsx3BAREXkew40bMdwQERF5HsONGzHcEBEReR7DjRtxlGIiIiLPY7hxI9bcEBEReR7DjRsx3BAREXkew40b1a4tbxluiIiIPIfhxo1Yc0NEROR5DDduxHBDRETkeQw3blRmuLl+HcjNVaU8RERE1QHDjRvdEG4MBqBbN6BjRyA/X7VyEREReTOGGze6IdwkJwOnTplviYiIyOUYbtzohkH8Tp40P3n8uMfLQ0REVB0w3LhRyXBjNMIy3CQlqVImIiIib8dw40ZKuAGAnByw5oaIiMgDGG7cSKcDatSQ83o9WHNDRETkAQw3bqTRlBil+GoxcOaM+cmMDCAzU52CEREReTGGGzdTmqYKT/8GFBQAgYFA8+byQdbeEBERuRzDjZuZ+t0oTVLt2wPR0XKe4YaIiMjlGG7cTAk3NX79J9x06CAH8QMYboiIiNzAV+0CeDsl3AT8XiLcNGsm53nGFBERkcsx3LiZEm6C/iwRblq2lPMnT8pLMvj4qFM4IiIiL8RmKTcLCgJ8UYTQzLPygQ4dgBYtgIAAIC8P+O03dQtIRETkZRhu3CwoCGiJ8/AxFAG1agGNG8uamg4d5ALsd0NERORSDDduFhQEdECJM6U0GjnPTsVERERuwXDjZhbhRqmtAczhhp2KiYiIXIodit2sdm0goqxw06mTvGXNDRERkUupWnOza9cuDBgwAJGRkdBoNFi/fn256+zcuRM333wzdDodWrZsieXLl7u9nBVRbs3Nb78BubmeLxgREZGXUjXc5ObmIjo6GgsWLLBr+eTkZNx111244447cPToUTz99NN47LHHsGXLFjeX1HnBAYVojV/lnZLhpkEDOQlheUFNIiIiqhBVm6X69euHfv362b38+++/j2bNmmHevHkAgHbt2uHnn3/GW2+9hT59+pS5TkFBAQoKCkz39Xp9xQrtoAZZ51ADxdBrghDUqJHlk506Adu2yaap7t09Wi4iIiJvVaU6FO/duxcJCQkWj/Xp0wd79+61us7s2bMRHBxsmqKiotxdTAt102WtzBmfDuYzpRTsVExERORyVSrcpKenIywszOKxsLAw6PV65OXllbnO5MmTkZWVZZpSU1M9UVSToFQZbpIMHSBEqSfZqZiIiMjlvP5sKZ1OB51Op9rrK9eUShIdUFAA+PuXeLJkzY0QN9bsEBERkcOqVM1NeHg4MjIyLB7LyMhAUFAQAgICVCqVbb5nTwAATqIDbuju0749oNUCf/0FpKd7vnBEREReqEqFm7i4OGzfvt3isa1btyIuLk6lEpWjoACa8+cBWAk3AQFAq1Zynk1TRERELqFquMnJycHRo0dx9OhRAPJU76NHjyIlJQWA7C8zYsQI0/KPP/44fv/9dzz//PM4c+YMFi5ciC+//BLPPPOMGsUv39mzgMGAa5oQpCHixnADsFMxERGRi6kabg4ePIiYmBjExMQAABITExETE4Np06YBANLS0kxBBwCaNWuGjRs3YuvWrYiOjsa8efOwZMkSq6eBq+6f8Wt+8+8AQFN2uGGnYiIiIpdStUNxz549IW44hcisrNGHe/bsiSNHjrixVC70T7hJqdUByIPtmhuGGyIiIpeoUn1uqpx/ws2lUDkysc1wc+oUUFzsoYIRERF5L4Ybd/on3FxuYCPcNGsG1KwJFBQA5855sHBERETeieHGXfLz5UUxAfwdaSPcaLXATTfJeXYqJiIiqjCGG3c5cwYwGoE6dYB/RlW2elkrdiomIiJyGYYbd1Gu9N2hA4KC5cjD2dlWlmWnYiIiIpdhuHGXkuEmSM5arbnhWDdEREQuw3DjLs6EmwsXbFTvEBERkT0YbtxFCTc33VR+uKlbF4iMlPMnTri9aERERN6M4cYdrl8Hfv9dznfogNq15azVcAOYOxWzaYqIiKhCGG7c4cwZQAigfn2gfv3ya24AdiomIiJyEYYbd1CaljrI8W0cCjesuSEiIqoQhht3KNGZGLAz3JQc68bG9baIiIjINoYbd7ASbq5ft3H5qLZtAR8f4No14OJFtxeRiIjIWzHcuEOpcKN0KAZsnOmt08mAA7BpioiIqAIYblwtJ0eOVwOYwo1OJyegnGFs2KmYiIiowhhuXO30aXkbFibHr/kHOxUTERF5BsONq5VqklI43KmYiIiInMJw42oVCTdKzc2ZM0BhoevLRkREVA0w3LialXBj1yjFjRvLFFRUBJw9657yEREReTmGG1erSM2NRsNOxURERBXEcONK2dlASoqcdybcAAw3REREFcRw40qnTsnbiAggNNTiKbvDDS+gSUREVCEMN66kNEnddNMNT7HmhoiIyDMYblzJSn8bwIlwk5oK/P2368pGRERUTTDcuJId4cbmCMUAEBwsz5oquT0iIiKyG8ONK7mi5gYAWrSQt3/84ZpyERERVSMMN65y7Rrw559yvn37G552KNxERclbZXtERERkN4YbV1HOlGrUSDYtleJQuGnUSN4y3BARETnMV+0CeI06dYAJE4DAwDKftmuEYoUSblJTXVM2IiKiaoThxlXatgXeftvq06y5ISIi8gw2S3lIyXAjRDkLM9wQERE5jeHGQ5RwYzQC16+Xs7DSoTgjg1cHJyIichDDjYfUrCmviwnY0TRVty6g08n5ixfdWi4iIiJvw3DjIRqNA/1uNBo2TRERETlJ9XCzYMECNG3aFP7+/oiNjcX+/fttLv/222+jTZs2CAgIQFRUFJ555hnk5+d7qLQVY/coxQDDDRERkZNUDTerVq1CYmIipk+fjsOHDyM6Ohp9+vRBZmZmmct/8cUXmDRpEqZPn47Tp0/jo48+wqpVq/DCCy94uOTO4UB+RERE7qdquHnzzTcxevRojBo1Cu3bt8f777+PwMBALF26tMzl9+zZg/j4eAwbNgxNmzbFv//9bzz44IM2a3sKCgqg1+stJrU4dTo4x7ohIiJyiGrhprCwEIcOHUJCQoK5MFotEhISsHfv3jLX6dGjBw4dOmQKM7///js2bdqE/v37W32d2bNnIzg42DRFKTUiKuBYN0RERO7nVLhJTU3FnyUOuvv378fTTz+NxYsX272NK1euwGAwICwszOLxsLAwpKenl7nOsGHD8NJLL+Ff//oXatSogRYtWqBnz542m6UmT56MrKws05SqYk2IU6MUM9wQERE5xKlwM2zYMOzYsQMAkJ6ejt69e2P//v148cUX8dJLL7m0gCXt3LkTs2bNwsKFC3H48GGsXbsWGzduxMsvv2x1HZ1Oh6CgIItJLexzQ0RE5H5OhZsTJ06ge/fuAIAvv/wSN910E/bs2YPPP/8cy5cvt2sb9erVg4+PDzIyMiwez8jIQHh4eJnrTJ06FQ899BAee+wxdOzYEYMGDcKsWbMwe/ZsGI1GZ96KRznVLJWezoH8iIiIHOBUuCkqKoLun0Hmtm3bhnvuuQcA0LZtW6Slpdm1DT8/P3Tp0gXbt283PWY0GrF9+3bExcWVuc7169eh1VoW2cfHBwAgyr2mgfocCjf16gF+fvJaDXbuUyIiInIy3HTo0AHvv/8+fvrpJ2zduhV9+/YFAFy6dAl169a1ezuJiYn48MMP8fHHH+P06dMYO3YscnNzMWrUKADAiBEjMHnyZNPyAwYMwKJFi7By5UokJydj69atmDp1KgYMGGAKOZWZQ+FGqwUaNpTzbJoiIiKym1NXBX/ttdcwaNAgzJ07FyNHjkR0dDQAYMOGDabmKnsMHToUly9fxrRp05Ceno7OnTtj8+bNpk7GKSkpFjU1U6ZMgUajwZQpU3Dx4kXUr18fAwYMwKuvvurM2/A4h8INIPvdJCcz3BARETlAI5xszzEYDNDr9QgNDTU9duHCBQQGBqJBgwYuK6Cr6fV6BAcHIysry+Odi1etAv7zH6BnT+Cf/ti2DR8OfPEFMHcu8Nxz7i4eERFRpeXI8dupZqm8vDwUFBSYgs0ff/yBt99+G2fPnq3UwUZtDtfc8HRwIiIihzkVbu6991588sknAIBr164hNjYW8+bNw8CBA7Fo0SKXFtCbMNwQERG5n1Ph5vDhw7j11lsBAGvWrEFYWBj++OMPfPLJJ3j33XddWkBv4lSfG4DhhoiIyAFOhZvr16+j9j/D7X7//fe47777oNVqccstt+CPP/5waQG9iUMjFAO8vhQREZETnAo3LVu2xPr165GamootW7bg3//+NwAgMzNT1RGAKztl1+Tn2zkunxJu0tKAoiK3lYuIiMibOBVupk2bhueeew5NmzZF9+7dTYPuff/994iJiXFpAb1JUBCgDMdTamDmsjVoANSoIQfys3K9LSIiIrLkVLgZPHgwUlJScPDgQWzZssX0+J133om33nrLZYXzNr6+QNu2cv74cTtW4EB+REREDnMq3ABAeHg4YmJicOnSJdMVwrt37462ytGbyvTPeIc4dszOFdjvhoiIyCFOhRuj0YiXXnoJwcHBaNKkCZo0aYKQkBC8/PLLVeIClmrq3FneHj1q5wo8HZyIiMghTl1+4cUXX8RHH32EOXPmID4+HgDw888/Y8aMGcjPz68yl0NQA8MNERGRezkVbj7++GMsWbLEdDVwAOjUqRMaNmyIJ554guHGBqVZ6vx5ICcHqFWrnBU41g0REZFDnGqWunr1apl9a9q2bYurV69WuFDerEEDICJCngCVlGTHCuxzQ0RE5BCnwk10dDTmz59/w+Pz589Hp06dKlwob+dQ0xSbpYiIiBziVLPU66+/jrvuugvbtm0zjXGzd+9epKamYtOmTS4toDfq3Bn47jsHw01aGlBcLM8nJyIiIqucqrm5/fbb8euvv2LQoEG4du0arl27hvvuuw8nT57Ep59+6uoyeh2l341d4SYsTAYag8HOkf+IiIiqN40QQrhqY8eOHcPNN98Mg8Hgqk26nF6vR3BwMLKyslS7VMTZs3Iwv4AAIDvbPGqxVU2aACkpwN69wC23eKSMRERElYkjx2+nB/Ej57VsCQQGAnl5wLlzdqzAfjdERER2Y7hRgY8PoPS7ZqdiIiIi12K4UYlDl2HgWDdERER2c+jUm/vuu8/m89euXatIWaoVp04H51g3RERE5XIo3AQHB5f7/IgRIypUoOqCY90QERG5h0PhZtmyZe4qR7XTsSOg0QDp6fIM77AwGwsz3BAREdmNfW5UUrMm0KqVnC+3340Sbi5dkuPdEBERkVUMNyqyu2kqIkKeYlVczIH8iIiIysFwoyK7w42Pjww4AJumiIiIysFwoyKHLsPAfjdERER2YbhRkVJzc/asHK3YJoYbIiIiuzDcqCgiAqhfHzAagRMnyllYGciPY90QERHZxHCjIo3GgaYp1twQERHZheFGZUrTlN2ngzPcEBER2cRwozK7z5hiuCEiIrILw43KStbcGI02FlT63Fy8WM6CRERE1RvDjcratAF0OiAnB/j9dxsLhocDWi1QVARkZnqsfERERFUNw43KfH2Bm26S8zb73dSoIQMOwKYpIiIiG1QPNwsWLEDTpk3h7++P2NhY7N+/3+by165dw7hx4xAREQGdTofWrVtj06ZNHiqte7DfDRERkeuoGm5WrVqFxMRETJ8+HYcPH0Z0dDT69OmDTCvNLoWFhejduzcuXLiANWvW4OzZs/jwww/RsGFDD5fctewONxzrhoiIqFy+ar74m2++idGjR2PUqFEAgPfffx8bN27E0qVLMWnSpBuWX7p0Ka5evYo9e/agRo0aAICmTZvafI2CggIUFBSY7uv1ete9ARfhWDdERESuo1rNTWFhIQ4dOoSEhARzYbRaJCQkYO/evWWus2HDBsTFxWHcuHEICwvDTTfdhFmzZsFgMFh9ndmzZyM4ONg0RSm1H5VIp07y9s8/gb/+srEgww0REVG5VAs3V65cgcFgQFhYmMXjYWFhSE9PL3Od33//HWvWrIHBYMCmTZswdepUzJs3D6+88orV15k8eTKysrJMU2olbNIJDgaaN5fzNjsVM9wQERGVS9VmKUcZjUY0aNAAixcvho+PD7p06YKLFy9i7ty5mD59epnr6HQ66HQ6D5fUcdHR8lTwo0eBXr2sLMQ+N0REROVSreamXr168PHxQUZGhsXjGRkZCFdOeS4lIiICrVu3ho+Pj+mxdu3aIT09HYWFhW4tr7vZdRkGpeaGA/kRERFZpVq48fPzQ5cuXbB9+3bTY0ajEdu3b0dcXFyZ68THx+P8+fMwljiw//rrr4iIiICfn5/by+xOdp0xFREhr7ZZWAhcueKBUhEREVU9qp4KnpiYiA8//BAff/wxTp8+jbFjxyI3N9d09tSIESMwefJk0/Jjx47F1atXMWHCBPz666/YuHEjZs2ahXHjxqn1FlxGCTenTgElTu6y5OcHKH2U2O+GiIioTKr2uRk6dCguX76MadOmIT09HZ07d8bmzZtNnYxTUlKg1ZrzV1RUFLZs2YJnnnkGnTp1QsOGDTFhwgRMnDhRrbfgMlFRQEgIcO2aDDgxMTYWTE+X/W5uvtmDJSQiIqoaNEIIoXYhPEmv1yM4OBhZWVkICgpSuzgW7rgD2LkTWLYMePhhKwvddx+wbh0wfz7gBTVWRERE9nDk+K365RfIzK5+NzwdnIiIyCaGm0qE4YaIiKjiGG4qkZKXYbDaWMixboiIiGxiuKlE2rcHatQAsrKAlBQrC7HmhoiIyCaGm0rEz08GHMBG01TJcFO9+oITERHZheGmkin3CuGRkfK2oKCcq2wSERFVTww3lUy5l2HQ6cwD+bHfDRER0Q0YbioZnjFFRERUMQw3lYzSLJWcLEcrLhPDDRERkVUMN5VMnTrms72tNk0x3BAREVnFcFMJKZeMOnzYygIc64aIiMgqhptKqGtXeXvwoJUFWHNDRERkFcNNJdSli7w9dMjKAgw3REREVjHcVEJKuDl7FtDry1iAA/kRERFZxXBTCTVoADRuLOfL7HfTsKG8zcsDrl71WLmIiIiqAoabSspm05S/P1C/vpxn0xQREZEFhptKyms7FV+9CixfLi8fQURE5AYMN5WUEm7K7VT86qvA7NnA1q1Vo4lqyhRg1Chg1iy1S0JERF6K4aaSUpqlzp2zMlJx9+7ydu9e4IUXgH//G6hbF2jZEvjPf4A33gB27rTSI1lFP/4ob7/4gp2hiYjILTRCVK8jjF6vR3BwMLKyshAUFKR2cWxq1gy4cAHYvh3o1avUk0IAP/8M7N8PHDgg269+++3GjWi1wNy5QGKiJ4psW1YWEBpqDjWHDplHLCQiIrLBkeO3r4fKRE7o2lWGm0OHygg3Gg1w661yUly9Kk+vUsLOwYNASgrwv/8B8fFAbKwni3+jAwcsa2tWrWK4ISIil2OzVCWmNE1Z7VRcWp06QEICMHky8NVXwB9/AMOGAUYjMHKkPHVcTb/8Im/r1ZO3X37JpikiInI5hptKrNwzpuzx3ntARIQcEfDFF11SLqft2ydvExOBmjVltdT+/aoWiYiIvA/DTSWm1Nz8/jvw999ObqROHWDJEjn/9tvmDr2eJoS55qZnT+Cee+T8qlXqlIeIiLwWw00lFhoKNG8u562eEm6P/v2B0aNlwBg1CsjOdkn5HHLhAnD5MlCjBhATAwwdKh9fvVo2m1HldvUq0KEDMHy42iWhysxgAJ5+Gnj9dbVLQtUcw00l55KmKQCYNw9o2hRITpYdjD1NaZLq3FmOsNy3LxAUJAch3LvX8+UhxyxbBpw6JU/hP3VK7dJQZbVuHfDOO8DEicAHH6hdGqrGGG4quXIH87NX7dryAAXIL50tWyq4QQcpTVK33CJvdTpg4EA5z6apyk0IYPFi8/2PP1avLFS5vfOOef7JJ4Hdu9UrC1VrDDeVnMNnTNnSsycwYYKcf/TRCnTkcYJSc1PydPSSTVMGg2tfr7hYDmL4zDNyNGSeleW8XbuAX3813//0U7l/iUo6fFiOveXrK2tmi4qA++8HLl5Uu2RUDTHcVHLKMDAXLgB//eWCDc6aBbRuLb9wlKDjbgUFwJEjcr5kuElIkB2L0tOBn35yzets3CiDW0QEcMcdshP1iy8C33xT8e1XV0qtzcMPy1Gw09Lk5T68yZUrsnYxN1ftklRdSq3NAw8Aa9YAHTsCGRnAffcB+fnqlo2qHYabSi4kBGjVSs472jR19qys+bFo9QkMlM0KWq38Bb5unauKat2xY0BhoTwwtmhhftzPDxg0SM5/+aVz287Oluv+5z/ySul33w0sXSoPVnXqmKu+XnjB9bVD1cGVK/JABQDjx8txkwB58VNv8fXXsj/aLbfIfmAdOwKPPAIsXCgHnuRFXsuXkQGsXCnnJ0yQQz2sXy9/vOzfD4wbx9pT8ixRzWRlZQkAIisrS+2i2O0//xECEOLVVx1bb9QouV7XrmU8OXmyfLJ+fSEyM11STqveeUe+Vv/+Nz63ZYu5HEVF9m/z+nUh/vtfIXQ6ub4yNWwoxPjxQmzfLrd39aoQISHyuY8/dt17ciejUYiRI+X+ysur2LaOHBHiwQeF+PVX59afN0/uu5tvlvcPHZL3/fzkvnVGdrbcjtHo3PquYjQKMWuWEBqNfE+1all+lpSpRg0hunQR4v/+T4hly4T46y91y10ZzZgh91VsrOXj338vhFYrn5s/X52ykddw5PjNcFMFvPGG/G647z7718nNFaJ2bbmej488nljIzxeiY0fzht15oBk2TL7OSy/d+FxRkRD16snnt261f5sTJpgPPi1bCjFxohD79glhMNy47Jw5crmmTeX7ruw2bTK/N0cTbUmFhUK0aye3c/vtjv+NjUYh2rSR67//vvkx5XOzcKHjZTIahejRQ64/erRjgdaV8vJkOFb28xNPyP118aIQX38txJQpQvTtK0TdumWHnbvvFuLzz8v4x6qG8vOFCAuT++aLL258fu5c+ZyvrxA//uj58pHXYLixoSqGm5075XdD48b2r/PFF5bfx99/X8ZCR47ILxxAiM8+c1Vxb9S8uXyNLVvKfv7//k8+/9hj9m1v+3bzG1u7tvyDdm6uEBERcvl333Ws7J5mNMpfv8r7q1lTHnCd8dZblh+CDRscW//HH81l0OvNjyu1Od27O16m9esty9Svn+cDQlqaeR/7+AixYIH1ZY1GIZKThfjySyGef16I6GjL8gcGyqrVr78WoqDAU+/APZwt/yefyH0RGSkDYmlGo6w9BIRo0ECIlJSKlZOqLYYbG6piuMnKMn+X2tuC1K+f+ccSIMTUqVYWfPllc7NQTo7LymySmWku/N9/l72MElbq1Cn7y7Gka9eEiIqSyz/+uP3leP998/sseaCubL7/XpbT31+Izp3l/IgRjm8nI0OIoCC5fqdO8rZtW8dqSpQat9Gjb9y28sE6edL+7RkM5lqfvn2FCAgwN3ldumT/diri8GEhGjWSrxsaKsS2bY5v4+RJWbPTooVl0AkJkQFdaRL1hF9+kYGxuNj5bZw7J8TAgbL5yNHwbzTKJjtAiFdesb5cbq7589y1q2xWJnJQlQs38+fPF02aNBE6nU50795d/PLLL3att2LFCgFA3HvvvXa/VlUMN0KYWwe++678ZdPS5A9SQIjnnpO3PXtaWbiw0Fyz8sYbLi2zEEKIb781H1itKS42V2tv2mR7ew8/LJdr3tyxX/yFhbL5ylrzWGVgNAoRHy/L+PTTQuzfbz5w7tvn2LYee8wcHP76y9y88sEH9q1/5YrsVwMIceDAjc/fc4987vnn7S/TihVyneBg2V9n3z4ZNgEhmjRxLCg5Y80aWdMCyH8oZ/shKYxG+Td6+mlzzaAy1asnxCOPyM9/RftNlaW4WIjp0839hdq0kbWvjoScv/8W4tlnZTObUm5fX8c+az//LNfT6cr/5ZWcbP4cjhypfp8rdzlyRH6Xrl0rg2NZTeXerrjYLX3TqlS4WblypfDz8xNLly4VJ0+eFKNHjxYhISEiIyPD5nrJycmiYcOG4tZbb60W4Ub5Ef3yy+Uv++ab5r59p06ZKwKs1jp/9JG5yjg316XlFlOmmL/MbBk3Ti738MPWl1m3Ti6j0cgvVUcpB9fatYW4fNmxddPShPjwQ/fW+vzwg/lAoTRFKWEuNtb+L8mDB80HPWU/vf22vB8WZl8oVD5EMTFlH4TWrpXPR0TYV0tRVCRE69Y3fojPnxeiVStzzcfOnfa9R0cYjTLQKgfwPn2s1yI6q7hY/v1Gj5Y1kCWDTq1aQgwZIj9/rvjeSU8X4s47LZsulfnWrYX49FPbf5OiIiEWLTL3dVNq0u6+W843ayZrSO3xwANynUcesW/5bdvMv7zmzfNcwDl9WtY4ulN2thDPPGPuQF2y6bJ7dyEefVT+H/7wg+PfP5XdtWuy28H06UL07i2/Y++/3+UvU6XCTffu3cW4ceNM9w0Gg4iMjBSzZ8+2uk5xcbHo0aOHWLJkiRg5cqTNcJOfny+ysrJMU2pqapUMN8qxZuDA8peNiZHLLlggvzuU77A9e6ysUFgoO9sCsp+GK/XuLbe7aJHt5XbtMv+qL6vTb0aG+Vf+xInOlcVgMFeNP/us/etduGDeP337uu+XWM+e8jXGjzc/dumS+SyeTz8tfxtGoxBxcXL54cPNjxcUmJtRpk8vfxtt29r+uxUUmH+Fl1fbJoQ8ywiQ65QOiJcvmzsZ+/nJjrrOyM2VYemnn2QfmXfekZ+VhATzgWbCBPc3GRUVyaapcePk2XslD3R+fvIsuA8/dO5ss507hQgPNx80P/1U7s9ZsyxDVatWsi9M6fe6dasQN91kXq5tW/Pf79o18+d86NDyg0dKijmoHDtm/3tQvswAWZs6bZoQZ886th8cMWuW5fsdM0bWcrmy78/GjbJTpPI6vXrJWlN/f8u/f8mpYUMZ8CrSpKgGo1HWei5fLvdlx47mH1Mlp9atXf7SVSbcFBQUCB8fH7Fu3TqLx0eMGCHuueceq+tNmzZNDPznKF9euJk+fboAcMNU1cKNcuxv1Mj2cklJcrkaNWTLghAyEAFCvPaajRUXL5YLhYe7rj3cYDD3+zh8uPxlIyPlsqU7vhqN5jfRsWPFznj67jtz7Yg9X27JyeYvfGWyEbydpnTe9fMTIjXV8rnZs+VzkZHl17p8+qn51/yff1o+9+WX5uds9XFRPmw1a9quaXjqKbnckCG2y1RQYN6Hc+eWvcz16/KXXsl9XPrgajTKcm/fLk8rHjdOBpe2bWUotnYQUZpbFi+2XU53MBhkv5hJk8w1V8oUECDHayir2a+s7bz6qrlWoH37G5vx9Hq530qe4aWEnFOnhBgwwPx4nTpCvPfejX3c9u0z96dassR2mSZOlMtZbfO2wmiUQ1EoTYTK1KWLDD7OdqAvS8kau7Kmpk1ln7YlS+QB29GapLQ0GQRLbq9k34HiYiHOnJH/e1Onyu+x0n21YmPd3yTrKitWmMN16alFCyEeekieRXn0qFtCW5UJNxcvXhQAxJ5SVQr/+9//RHcrZ2L89NNPomHDhuLyP9V61aXmJjvbHI7T060v9/zzcpmSu0Q5ueXuu228QEGB+ZeHq84oUtrEAgLs+7WsnN5dssZBCDk+jZLYjhypWJmMRnlaNCCriW1JTpZ9QZSDxKuvynkfH1k74EpK7cL//d+Nz+XlmftFvfii9W3o9ea+H7Nm3fh8yTOxxoyxvp3hw+Uy5Z29dviwOZDZqoVYtMgcnG01exoMQiQmmr8sH3lEhqFHHpG1Ucp4RbamgAC5r+LjZZPJU0/JA/7Ro7bfiycYjfIg9sorlrUngOxku3Rp2fvn8mVZY6gsO2KE7c7/ZYWckiFvwgTb/SGUoRMCAuT/cFlyc2WHbEA2FzsjO1vWoPTvb64BAuQX3Z13yuZye5vHyqKMvaP8P1y5IjtfJybK/V26+QiQ/z/DhskgfO6c9bBjMMjaN+UzqdXKDo72npSRnS1fQ/nx5+cnPxflnVBRERVpAlTGhFL2k04n/8f+9z/597d1UHIhrw03er1eNG3aVGwqUQ1eXrgprar2uRHCPGTJxo1lP19cbK4F/+or8+NKv9SQkHJaVJSDUGSkazpBKk0Rt95q3/J79sjla9Uy1x798Yf5C6CsA7YzlNfRamVbfFl+/90y2Pz5p/wHVw78jRq5rt18927zgSc5uexllP5GOp31ZSZNMv+Csvb3++kn83sv68B15Yp5YMT9+22X22g0n4llbcyb69fNNXLvvWd7e4p33im7mlspd8uWshbi+eflZ2z7dvl3vHat6nRSNRrl3334cHPHbUAGhmeeMTfT/Pyz+ewuf395wLf3Per1MqgoIeeuu6x/3ksyGMzNyR07ll2T+8EH8vlmzVzzCz0zU7ajK82TJcPqnDmOHfSNRllLomzDWpW1Xi/E5s1CvPCCEP/6l+XfQZkaNZLjIX30kRC//Sa3ffq0ELfdZl7m5pvloJTOSE0193UCZLN5ebXcjjAaZf+4zp3le1m/3vFtFBXJvmRKGRMTVRsvrMqEG0ebpY4cOSIACB8fH9Ok0WiERqMRPj4+4vz58+W+ZlUONw89JD9bM2eW/fy2bebvx5KfvaIic59Dm03j+fnmL1JbY3/YSxm/5rnn7FveaDTXHq1dK79ke/WS9+PiXNtXQjnbp6xOb7/9Zi5H69aW1eTZ2eZT1/r3d03/G+VXua2aJKPRvC8GD77x+XPnzF/OX39t+/WUJr4BA258Thkbp3Nn+w6iSv8Ja2PeKNuLinLsC3HDBlmbNWSI7CO0cqX88LrjzCO1ZWbKA3jp5s8ePcw1Gq1bO9avpaScHOs1MNakpckTDAA5wGFJRqMQHTrI5+bNc65Mtvz+u6wlbd/e8qB/8GD56xqNMqwo6zlyBuj167Kz79Sp8gdZybPIlKlxY/P/WWCg/PxX9HvJaJQ1WEoI9fGRNbQVCRBGoxDffGPugFlyGj7c/jOZ9HrzuCIajerjhFWZcCOE7FA8vkQHSoPBIBo2bFhmh+K8vDyRlJRkMd17772iV69eIikpSRTYMQhVVQ43ygkvZR2ThJAnJAFlt2worR7ljoA+f775F0tF07nSeXfNGvvXUc5dHzpU/iMpXyIVPW23tKQkc+1AyRqK334zj6NTOtgojh0zdxR8/fWKleOXX8xfaOWF8+PHzVXppc8qUvpT9OlTfig5c8Z80Cy5HaPRXD1o7+jDtsa8yc42HyA//NC+7VVnxcWyWvbuuy1rrh58UJ2xmZRLoyg/NhRbt8rHatZ0/VlnJRmNstOq0lFaq5W1BtaafoxGc7s8UPGTI3Jz5Xt94QUZNJXPOSAP+NZqUJ2VkSHDvPIa7doJsXevY9swGmVtVPfu5u3UqiXD0vPPm78/wsPL/xF08aI5HAUEOFfr42JVKtysXLlS6HQ6sXz5cnHq1CkxZswYERISItL/acN76KGHxKRJk6yuX52apZQhJSIjb3wuJ8dcO1PWWdIzZ5ozg015eeZmhPLOcLIlJ8f8j1S6g6wtShtaQIA5QLiiFqksI0bI7SckyPvnz5uDTZs2tjvdKh2wfXxk84KzlCrp8k6VVzzxhFw+OtrcHKB0kvb1ta/ZQQghxo6V63Ttaq59UpqsAgMdO2XZ2pg3Sht9ixbu7UvgjZKT5T/tp5+q29SmhIWQENlELIT5M1viLFe3ysgwj3AMyBqu0qOdG43yDEhlGXfUMGRny9fdtcu9f5O1a83jfmk0so/guHHye3DnTuvN4du3m8fJUv6Pn3/ecvl9+8xnQgKyya2sWpykJPN3YYMG8kdYJVClwo0QQrz33nuicePGws/PT3Tv3l3sKzGI1O233y5G2vjir07hpmReKH3c/ewz+Xjz5mX/3+3YYQ5G5f5fKjUmjRs7PyS7cvZPw4aOrWc0mjvPArLt311fJMnJ5qrnDz4wN8m1bVv+iLklh5SPijKfmuYI5SKUWq39p8JeuWLuyPnBB/LvozSTJSba/9rp6eZTzFeskI8p11oqr6N1aWWNefP33+bOlvacwk6VU2GhuRYgPl6GZ6VW6cwZz5Zl40bzAReQ7fSXL8v/xaefNj/urh9DnvTXX+aq+LKmBg2EuOMOGXreecc8jAQgfxQ+84z1Tr55ebIjsHIwiYiwPEN1+3ZzP8c2bWRtdiVR5cKNJ1XlcCOEuan7m28sH+/TRz5ubQiT69fNx/FyP6vXr5tP93P29NnXX5frO3K1T4XSMTY42LFaH2c8+aTll0a7drK/gT30evMAdHff7XgIU/q+lD47rDzKVdbr1TN3nGzQwPEzS5RLbzRtKsOc0pHY0V9pBQXmwZSUzv7Tppn3Z1Ubx4Ms/fab+WCnnLHQr586ZdHr5RlwSsCqV0+IQYPM/7/2jsBdVZw8Kc8Wff552SG8dL+skpOfnxwjy95T6ffuNf8wAmRN9qJF5gPFv/7lllGGK4LhxoaqHm6UMF8yxFy6ZA7h585ZX1cZ2235cjteSOkI2rSpc00K990n17c5uI4VmZnydExnrvvjqPR0c3teu3aOn9J45Ig5FDjSefHoUXO1s6OdPUte7VuZPvrIsW0IIasClVPHlQtCRkc7V1OmnMY/ZIj8Na1ckn71ase3RZXPypWWn7fNm9Utz759lqfTazTVp19XdrYcG2n5clkDc/fd8kea0mzoiOvXLWtxlGno0ErZeZ/hxoaqHm7ee09+9u66y/zYG2/Ix3r0sL2u0nxuV6tDbq653deZA6fyC+/HHx1f19O++Ub2wnZ2rAblFHpfX/s7AA4ebGcnKCs2bzZ/EZXsN+OoJUssv9ScrdI/csT861G5rlXnztXzujre6tFHzc22leGU+4ICOTZMmzZyoEJy3p495kEmn3++0v7fMtzYUNXDjTJES3i4+ftF+dFdXv/fb76Ry9k9KraSmpo3d+x0x9RUuZ6Pj3uuNF7ZGI3mUUobN5Ydk23tL2UYaUDOO+vBB2WnwYp09isuNrd1BgZWbNA05YOoTKXbTqlqu35dnvp9/LjaJSF3KCiQl5qpxBw5fmuEEALViF6vR3BwMLKyshAUFKR2cRx2/ToQFAQYDMCffwJ//QVERwN+fkBaGlCnjvV1//4bqFtXHnnS04GwsHJeLDcXaNYMuHwZWL4cGDnSvkJ+9RUweDDQuTNw5Iid76yK0+uBLl2A8+flfa1W7uCGDeXUqJF5ftUqYNMm4P77gTVrnH9NoxEoKAACAipW9h9+APr1A55+GnjtNee38/bbwDPPyPnYWGDvXkCjqVjZiIj+4cjx29dDZSIXCQwEOnQAjh8HDh4Efv5ZPn7XXbaDDQCEhgI33QQkJQE//STzh001awLPPQdMnAi8+iowfDjga8dH5pdf5G1sbPnLeougIBnqHnoIOHUKKC6WaTMtTf6hyjJlSsVeU6uteLABgF69ZDjz86vYdoYNA55/HigqAl55hcGGiFTDcFMFdekiw83+/cDnn8vHRoywb91bb3Ug3ADAE08Ar78OnDsHrFwJ/Pe/5a+zb5+8rU7hBgA6dQKOHZM1KpmZwMWLcvrzT/P8xYsy8Nxzj6zZqix0uopvo0EDYO1a4MoV4M47K749IiInsVmqClq4EBg3TjYx/fWXrLFJS7Pvh/fKlcCDDwIxMcDhw3a+4OzZwAsvAC1byuBSt671ZYuLZS1GXp6swWjXzs4XISIiss6R47fWQ2UiF+raVd7+9Ze8HTrU/haFW2+Vt8eOyZYIu4wbJ3+Vnz8PxMXJWhxrkpJksAkOBtq0sfMFiIiIXIfhpgrq1Mmy68tDD9m/bsOGQPPmsuVkzx47VwoKkp1OmzSRweaWW2S7VlmU/jbdu8s+IURERB7Go08V5O8vOwYDsqXollscW1+pvbGWT8rUoYMMLt27A1evAgkJwGef3bhcdexMTERElQrDTRV1++3y9tFHHT8pxalwA8hTm3fskKcwFxbKKqOZM+W55Yrq2pmYiIgqDXYorqL0emDnTnkKuI+PY+v++qvsDqPTAVlZTpwoYzQCkyfLs6gAeQbVkiWyr01oqHwsMxOoX9/BDRMREZWNHYqrgaAgeTaxo8EGAFq1kv2DCwqAAweceHGtVg72tnixLMBnnwG9ewObN8vnmzdnsCEiItUw3FRDGk0FmqZKGj1aBpqgILkhZQwcRzsBERERuRDDTTWlhJtduyq4oYQEedpVkybymhAA+9sQEZGqGG6qKSXc7NljziROU86kiouTp3L171/h8hERETmL4aaaio4GateWHZOPH3fBBsPCgN275ciCLVu6YINERETOYbippnx8gPh4OV+hfjclaTTyyp5EREQqYripxlzSqZiIiKiSYbipxkqGm+o12hEREXkzhptqrFs3ecHNjAx5TUwiIiJvwHBTjfn7y0tFAWyaIiIi78FwU82x3w0REXkbhptq7rbb5O3KlcBHH7HvDRERVX0MN9VcQoK8+GZ+PvDYY8Dw4XLsGyIioqqK4aaa8/UFNmwA5syRY9+sWAF06QIcPqx2yYiIiJzDcEPQaoGJE+V1pho3lmdOxcUB777LZioiIqp6GG7IpEcP4MgRYOBAoLAQmDABGDQIuHpV7ZIRERHZj+GGLNSpA6xdC7z3nhwD5+uvgc6d5QU2iYiIqgKGG7qBRgOMHw/s2yevgZmaKs+qeusttUtGRERUPoYbsiomRnYsHj4cMBiAxETg11/VLhUREZFtDDdkU+3awKefAr17y/urVqlbHiIiovIw3FC5NBpg2DA5z3BDRESVXaUINwsWLEDTpk3h7++P2NhY7N+/3+qyH374IW699VaEhoYiNDQUCQkJNpcn1xg4UHYwPnkSOHFC7dIQERFZp3q4WbVqFRITEzF9+nQcPnwY0dHR6NOnDzIzM8tcfufOnXjwwQexY8cO7N27F1FRUfj3v/+Nixcverjk1UtICNC3r5xfuVLVohAREdmkEULdYdpiY2PRrVs3zJ8/HwBgNBoRFRWFJ598EpMmTSp3fYPBgNDQUMyfPx8jRowod3m9Xo/g4GBkZWUhKCiowuWvTlaskM1TLVvKjsUajdolIiKi6sKR47eqNTeFhYU4dOgQEhISTI9ptVokJCRg7969dm3j+vXrKCoqQp06dcp8vqCgAHq93mIi5wwYAAQEyBGMeXkGIiKqrFQNN1euXIHBYEBYWJjF42FhYUhPT7drGxMnTkRkZKRFQCpp9uzZCA4ONk1RUVEVLnd1VasWcPfdcp5NU0REVFmp3uemIubMmYOVK1di3bp18Pf3L3OZyZMnIysryzSlpqZ6uJTe5T//kbdffgkYjeqWhYiIqCy+ar54vXr14OPjg4yMDIvHMzIyEB4ebnPdN954A3PmzMG2bdvQqVMnq8vpdDrodDqXlJeAfv3k2DcpKXIE4x491C4RERGRJVVrbvz8/NClSxds377d9JjRaMT27dsRFxdndb3XX38dL7/8MjZv3oyuXbt6oqj0j4AA4N575TybpoiIqDJSvVkqMTERH374IT7++GOcPn0aY8eORW5uLkaNGgUAGDFiBCZPnmxa/rXXXsPUqVOxdOlSNG3aFOnp6UhPT0dOTo5ab6HaUZqmVq+Wl2UgIiKqTFRtlgKAoUOH4vLly5g2bRrS09PRuXNnbN682dTJOCUlBVqtOYMtWrQIhYWFGDx4sMV2pk+fjhkzZniy6NVW795AaCiQng7s2gXccYfaJSIiIjJTfZwbT+M4N64xejSwZAkwZgzwwQdql4aIiLxdlRnnhqquoUPl7VdfAUVF6paFiIioJIYbckrPnkCDBsBffwEl+oMTERGpjuGGnOLrCzzwgJznWVNERFSZMNyQ05SmqXXrgIICdctCRESkYLghp8XHAw0bAno9sHmz2qUhIiKSGG7IaVqtufaGTVNERFRZMNxQhSjhZsMGIDfX9rLXrwMTJgAREcDHH7u/bEREVD0x3FCFdOsGNGsmg8vGjdaX27cPiIkB3n1XDv738MPA4sUeKyYREVUjDDdUIRqN+XIMZTVNFRYCL74o++f8+qvso6Ms/3//B8yf77myEhFR9cBwQxWmNE1t2iQ7FyuOHwe6dwdmzQKMRuC//wWSkoAvvgCee04u8+STwFtveb7MRETkvRhuqMI6dQLatpWng3/9tbyY5muvAV27AseOAXXrAmvWAJ9+Kq9JpdEAr78OvPCCXD8xUS5PRETkCgw3VGElm6YWLQJuuw2YNEleluGee4CTJ4H7779xnVdeAZRrnU6aBLz8skeLTUREXorhhlxCaZrauxfYsweoXRtYtgxYvx745wLvN9BogOnTgVdflfenTQOmTgWq16VciYjI1RhuyCXatgVuuUXO33GH7Fvz8MMywJTnhReAuXPl/CuvAJMnM+AQEZHzfNUuAHmP9euBM2eAW2+VA/w54rnnAD8/OQ7Oa6/Js6zmzbMvHBEREZXEcEMuExZmvQnKHk89BdSoATzxhDyDSq8HFi6UoYeIiMhebJaiSmXsWODDD2WNzUcfAb17A1euqF0qIiKqShhuqNJ57DHg229lp+Rdu+RYOSdOqF0qIiKqKhhuqFLq319esqF5cyA5GYiLk4GHiIioPAw3VGm1bw/s3w/07Ank5Mgxc+bO5ZlURERkG8MNVWp16wJbtgBjxshQ8/zzwKhRcjRkIiKisjDcUKXn5we8/z7w3nuAjw/w8cdyLJ2MDLVLRkRElRHDDVUJGg0wfjzw3XdAcLAcCblbN+DoUbVLRkRElQ3DDVUpvXsDv/wCtG4NpKYC//qXDDxEREQKhhuqctq0kWdS9eoF5OYCAwYAS5aoXSoiIqosGG6oSgoNlTU2I0YABgMwerS88CbPpCIiIoYbqrL8/IDly4EpU+T9l18GRo6U16UiIqLqi+GGqjSNRoaaxYvlmVSffioHAMzKUrtkRESkFoYb8gqjRwPffAPUrAls3y6vTP7nn2qXioiI1MBwQ16jXz95LarwcCApCbjlFuD4cbVLRUREnsZwQ17l5pvlmVTt2gEXL8pTxTdvVrtURETkSQw35HWaNAF27wZuvx3IzpY1Oj16ACtWsLMxEVF1wHBDXik0VF6TauxYoEYNOaLxsGEy+MyYAaSlqV1CIiJyF4Yb8lo6HbBwIZCSAsycCUREAOnpcr5xYxl29uzh2DhERN6mUoSbBQsWoGnTpvD390dsbCz2799vc/nVq1ejbdu28Pf3R8eOHbFp0yYPlZSqovBwOcDfhQvAypVAfDxQXCybqeLjga5d5YU5Dx8G8vLULi0REVWU6uFm1apVSExMxPTp03H48GFER0ejT58+yMzMLHP5PXv24MEHH8Sjjz6KI0eOYODAgRg4cCBOnDjh4ZJTVePnBwwdCvz8swwyjzwC+PvL+bFjgS5d5KnkrVoBgwYBU6cCq1YBJ05Uzr46RiNQUOCZmiejEcjPl6NBExFVdhoh1K2Uj42NRbdu3TB//nwAgNFoRFRUFJ588klMmjTphuWHDh2K3NxcfPvtt6bHbrnlFnTu3Bnvv/9+ua+n1+sRHByMrKwsBAUFue6NUJX011/yulTffSdDzF9/lb2cry/QooXsy1OzpuVUq5blfa3WMnAo8yVvi4tlYCoosLwtOZ+fL6+ddf265aQ8lp9vfo0aNWQznJ+fvC05X6OGHOxQCMsylJ4vKjKXoXSZSoaa4GC5H0pPdeqY949WK19Tq7WcL3lbVjlK3gJlb6P0fWUbtiaDQb4P5T2Wvi0slMv5+cn9Vfq25Lyvr/lWmUrfF0IGQlu3Go1c1sfH+qS8z5KTsl/KetyasvZJ6ceNRiAnR07Z2XIqPZ+TIz97eXny82ft1tcXCAmRnxXltuR8SIj8YWEwyKm42DxfcrL2eMnnjEbzPim9b0reNxot1y99X5mKiuS2rd2W/JyU/mwo8z4+Zb+H0u9Hq73xM1DWZ6Lk5770pKzj7y//35Xb0vM1apT/OSi5v0r/v5aeL09ICBAbW/5yjnDk+O3r2pd2TGFhIQ4dOoTJkyebHtNqtUhISMDevXvLXGfv3r1ITEy0eKxPnz5Yv359mcsXFBSgoKDAdF+v11e84OQ16tYFJk6UkxBAZiZw8qQMOidOmOf1euDsWbVLa11RkZw8IStLThcueOb1qGriIJrVW1yc7NOoFlXDzZUrV2AwGBAWFmbxeFhYGM6cOVPmOunp6WUun56eXubys2fPxsyZM11TYPJqGg0QFianXr3Mjwshv6jPnZO/YHNz5ZSTY54vOZX8BVRy2yVvfX0ta1f8/CznlV9bNWsCgYFlTzVryl9jpWuAyqoNKl2Gsn7Zlqz9KV0e5Zdpfj7w99/m6epVy/t//y1/2ZeuqSir9qL065e1n0quX3p7ylRWLUbpSaldsVYz4+cnX08JibZqeYqLzZPya770Y9Zqq0r+8lVqlGxNynu2VeNiT927UlNka9Jq5Weqdm051apleavMBwbKGoGAADmVnvf3l/vg2jVzEC5rXqnhsVZrZe9zWq3l+7S2n5RaDmWd0jUjynaVz0rpWjrlVqOx/EyUNW8w3FjO0vNarbn2qHSNTsn7yue85HzJx5TlCwrkPlW+A0rOFxTIsln725f+nyuv5tEerVrZt5y7qBpuPGHy5MkWNT16vR5RUVEqloiqGo0GiIqSU3UXFAQ0aKB2KYiIbFM13NSrVw8+Pj7IyMiweDwjIwPh4eFlrhMeHu7Q8jqdDjqdzjUFJiIiokpP1bOl/Pz80KVLF2zfvt30mNFoxPbt2xEXF1fmOnFxcRbLA8DWrVutLk9ERETVi+rNUomJiRg5ciS6du2K7t274+2330Zubi5GjRoFABgxYgQaNmyI2bNnAwAmTJiA22+/HfPmzcNdd92FlStX4uDBg1i8eLGab4OIiIgqCdXDzdChQ3H58mVMmzYN6enp6Ny5MzZv3mzqNJySkgJtiR5jPXr0wBdffIEpU6bghRdeQKtWrbB+/XrcdNNNar0FIiIiqkRUH+fG0zjODRERUdXjyPFb9RGKiYiIiFyJ4YaIiIi8CsMNEREReRWGGyIiIvIqDDdERETkVRhuiIiIyKsw3BAREZFXYbghIiIir8JwQ0RERF5F9csveJoyILNer1e5JERERGQv5bhtz4UVql24yc7OBgBERUWpXBIiIiJyVHZ2NoKDg20uU+2uLWU0GnHp0iXUrl0bGo3GpdvW6/WIiopCamoqr1vlAdzfnsX97Vnc357F/e1ZzuxvIQSys7MRGRlpcUHtslS7mhutVotGjRq59TWCgoL4z+FB3N+exf3tWdzfnsX97VmO7u/yamwU7FBMREREXoXhhoiIiLwKw40L6XQ6TJ8+HTqdTu2iVAvc357F/e1Z3N+exf3tWe7e39WuQzERERF5N9bcEBERkVdhuCEiIiKvwnBDREREXoXhhoiIiLwKw42LLFiwAE2bNoW/vz9iY2Oxf/9+tYvkNXbt2oUBAwYgMjISGo0G69evt3heCIFp06YhIiICAQEBSEhIwLlz59QpbBU3e/ZsdOvWDbVr10aDBg0wcOBAnD171mKZ/Px8jBs3DnXr1kWtWrVw//33IyMjQ6USV22LFi1Cp06dTAOZxcXF4bvvvjM9z33tXnPmzIFGo8HTTz9teoz73HVmzJgBjUZjMbVt29b0vDv3NcONC6xatQqJiYmYPn06Dh8+jOjoaPTp0weZmZlqF80r5ObmIjo6GgsWLCjz+ddffx3vvvsu3n//ffzyyy+oWbMm+vTpg/z8fA+XtOr78ccfMW7cOOzbtw9bt25FUVER/v3vfyM3N9e0zDPPPINvvvkGq1evxo8//ohLly7hvvvuU7HUVVejRo0wZ84cHDp0CAcPHkSvXr1w77334uTJkwC4r93pwIED+OCDD9CpUyeLx7nPXatDhw5IS0szTT///LPpObfua0EV1r17dzFu3DjTfYPBICIjI8Xs2bNVLJV3AiDWrVtnum80GkV4eLiYO3eu6bFr164JnU4nVqxYoUIJvUtmZqYAIH788UchhNy3NWrUEKtXrzYtc/r0aQFA7N27V61iepXQ0FCxZMkS7ms3ys7OFq1atRJbt24Vt99+u5gwYYIQgp9vV5s+fbqIjo4u8zl372vW3FRQYWEhDh06hISEBNNjWq0WCQkJ2Lt3r4olqx6Sk5ORnp5usf+Dg4MRGxvL/e8CWVlZAIA6deoAAA4dOoSioiKL/d22bVs0btyY+7uCDAYDVq5cidzcXMTFxXFfu9G4ceNw1113WexbgJ9vdzh37hwiIyPRvHlzDB8+HCkpKQDcv6+r3YUzXe3KlSswGAwICwuzeDwsLAxnzpxRqVTVR3p6OgCUuf+V58g5RqMRTz/9NOLj43HTTTcBkPvbz88PISEhFstyfzsvKSkJcXFxyM/PR61atbBu3Tq0b98eR48e5b52g5UrV+Lw4cM4cODADc/x8+1asbGxWL58Odq0aYO0tDTMnDkTt956K06cOOH2fc1wQ0RlGjduHE6cOGHRRk6u16ZNGxw9ehRZWVlYs2YNRo4ciR9//FHtYnml1NRUTJgwAVu3boW/v7/axfF6/fr1M8136tQJsbGxaNKkCb788ksEBAS49bXZLFVB9erVg4+Pzw09vDMyMhAeHq5SqaoPZR9z/7vW+PHj8e2332LHjh1o1KiR6fHw8HAUFhbi2rVrFstzfzvPz88PLVu2RJcuXTB79mxER0fjnXfe4b52g0OHDiEzMxM333wzfH194evrix9//BHvvvsufH19ERYWxn3uRiEhIWjdujXOnz/v9s83w00F+fn5oUuXLti+fbvpMaPRiO3btyMuLk7FklUPzZo1Q3h4uMX+1+v1+OWXX7j/nSCEwPjx47Fu3Tr88MMPaNasmcXzXbp0QY0aNSz299mzZ5GSksL97SJGoxEFBQXc125w5513IikpCUePHjVNXbt2xfDhw03z3Ofuk5OTg99++w0RERHu/3xXuEsyiZUrVwqdTieWL18uTp06JcaMGSNCQkJEenq62kXzCtnZ2eLIkSPiyJEjAoB48803xZEjR8Qff/whhBBizpw5IiQkRHz99dfi+PHj4t577xXNmjUTeXl5Kpe86hk7dqwIDg4WO3fuFGlpaabp+vXrpmUef/xx0bhxY/HDDz+IgwcPiri4OBEXF6diqauuSZMmiR9//FEkJyeL48ePi0mTJgmNRiO+//57IQT3tSeUPFtKCO5zV3r22WfFzp07RXJysti9e7dISEgQ9erVE5mZmUII9+5rhhsXee+990Tjxo2Fn5+f6N69u9i3b5/aRfIaO3bsEABumEaOHCmEkKeDT506VYSFhQmdTifuvPNOcfbsWXULXUWVtZ8BiGXLlpmWycvLE0888YQIDQ0VgYGBYtCgQSItLU29QldhjzzyiGjSpInw8/MT9evXF3feeacp2AjBfe0JpcMN97nrDB06VERERAg/Pz/RsGFDMXToUHH+/HnT8+7c1xohhKh4/Q8RERFR5cA+N0RERORVGG6IiIjIqzDcEBERkVdhuCEiIiKvwnBDREREXoXhhoiIiLwKww0RERF5FYYbIiIi8ioMN0RU7Wk0Gqxfv17tYhCRizDcEJGqHn74YWg0mhumvn37ql00IqqifNUuABFR3759sWzZMovHdDqdSqUhoqqONTdEpDqdTofw8HCLKTQ0FIBsMlq0aBH69euHgIAANG/eHGvWrLFYPykpCb169UJAQADq1q2LMWPGICcnx2KZpUuXokOHDtDpdIiIiMD48eMtnr9y5QoGDRqEwMBAtGrVChs2bHDvmyYit2G4IaJKb+rUqbj//vtx7NgxDB8+HP/5z39w+vRpAEBubi769OmD0NBQHDhwAKtXr8a2bdsswsuiRYswbtw4jBkzBklJSdiwYQNatmxp8RozZ87EkCFDcPz4cfTv3x/Dhw/H1atXPfo+ichFXHJtcSIiJ40cOVL4+PiImjVrWkyvvvqqEEIIAOLxxx+3WCc2NlaMHTtWCCHE4sWLRWhoqMjJyTE9v3HjRqHVakV6eroQQojIyEjx4osvWi0DADFlyhTT/ZycHAFAfPfddy57n0TkOexzQ0Squ+OOO7Bo0SKLx+rUqWOaj4uLs3guLi4OR48eBQCcPn0a0dHRqFmzpun5+Ph4GI1GnD17FhqNBpcuXcKdd95pswydOnUyzdesWRNBQUHIzMx09i0RkYoYbohIdTVr1ryhmchVAgIC7FquRo0aFvc1Gg2MRqM7ikREbsY+N0RU6e3bt++G++3atQMAtGvXDseOHUNubq7p+d27d0Or1aJNmzaoXbs2mjZtiu3bt3u0zESkHtbcEJHqCgoKkJ6ebvGYr68v6tWrBwBYvXo1unbtin/961/4/PPPsX//fnz00UcAgOHDh2P69OkYOXIkZsyYgcuXL+PJJ5/EQw89hLCwMADAjBkz8Pjjj6NBgwbo168fsrOzsXv3bjz55JOefaNE5BEMN0Skus2bNyMiIsLisTZt2uDMmTMA5JlMK1euxBNPPIGIiAisWLEC7du3BwAEBgZiy5YtmDBhArp164bAwEDcf//9ePPNN03bGjlyJPLz8/HWW2/hueeeQ7169TB48GDPvUEi8iiNEEKoXQgiIms0Gg3WrVuHgQMHql0UIqoi2OeGiIiIvArDDREREXkV9rkhokqNLedE5CjW3BAREZFXYbghIiIir8JwQ0RERF6F4YaIiIi8CsMNEREReRWGGyIiIvIqDDdERETkVRhuiIiIyKv8P4CoTgT2madTAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACPeUlEQVR4nO2dd5wT1frGn2SXbbAFWNgiCyy9SJMmYMHrKiAXBSzojyvIRbxXxYbtclXAihUrig2xgnIR7CAgvVdBpUovu/RtbE3m98fxZCbZSTLJpmyS5/v55DOTyWRyMpud88zzvuc9JkVRFBBCCCGERBDmYDeAEEIIISTQUAARQgghJOKgACKEEEJIxEEBRAghhJCIgwKIEEIIIREHBRAhhBBCIg4KIEIIIYREHNHBbkBNxGq14tixY0hMTITJZAp2cwghhBBiAEVRUFhYiMzMTJjNrj0eCiAdjh07hqysrGA3gxBCCCFecPjwYTRq1MjlPhRAOiQmJgIQJzApKSnIrSGEEEKIEQoKCpCVlWXrx11BAaSDDHslJSVRABFCCCEhhpH0FSZBE0IIISTioAAihBBCSMRBAUQIIYSQiIM5QIQQQvyOxWJBRUVFsJtBQpxatWohKirKJ8eiACKEEOI3FEVBbm4uzp07F+ymkDAhJSUF6enp1a7TRwFECCHEb0jx07BhQyQkJLC4LPEaRVFw/vx5nDhxAgCQkZFRreNRABFCCPELFovFJn7q168f7OaQMCA+Ph4AcOLECTRs2LBa4TAmQRNCCPELMucnISEhyC0h4YT8PVU3p4wCiBBCiF9h2Iv4El/9niiACCGEEBJxUAARQgghJOKgACKEEEICQNOmTfHaa68Z3n/p0qUwmUx+LyEwY8YMpKSk+PUzaiIUQMQ9VitQWhrsVhBCSEAwmUwuH5MmTfLquBs2bMAdd9xheP/evXvj+PHjSE5O9urziGs4DJ6455prgC1bgD//BOrUCXZrCCHErxw/fty2/uWXX2LChAnYtWuXbVsdzXVQURRYLBZER7vvThs0aOBRO2JiYpCenu7Re4hx6AAR96xZA5w4ARw4EOyWEEJCHEUBiouD81AUY21MT0+3PZKTk2EymWzPd+7cicTERPz000/o2rUrYmNjsXLlSvz555+47rrrkJaWhjp16qB79+5YtGiR3XEdQ2AmkwkffPABhgwZgoSEBLRs2RLffvut7XXHEJgMVS1YsABt27ZFnTp10L9/fzvBVllZiXvvvRcpKSmoX78+Hn30UYwcORKDBw/26O/0zjvvoHnz5oiJiUHr1q3x6aefav6GCiZNmoTGjRsjNjYWmZmZuPfee22vv/3222jZsiXi4uKQlpaGG264waPPDhQUQMQ9ZWViWV4e3HYQQkKe8+eFkRyMx/nzvvse//nPf/D8889jx44d6NixI4qKinDNNddg8eLF2LJlC/r3749Bgwbh0KFDLo/z5JNP4qabbsK2bdtwzTXXYPjw4Thz5oyL83ceL7/8Mj799FMsX74chw4dwkMPPWR7/YUXXsDnn3+Ojz76CKtWrUJBQQHmzZvn0XebO3cu7rvvPjz44IP47bff8K9//QujRo3CkiVLAABz5szBq6++infffRd79uzBvHnz0KFDBwDAxo0bce+99+Kpp57Crl27MH/+fFx22WUefX7AUEgV8vPzFQBKfn5+sJsSfKxWRTGZFAVQlLVrg90aQkgIUVJSovzxxx9KSUmJbVtRkbicBONRVOT5d/joo4+U5ORk2/MlS5YoAJR58+a5fW/79u2VN9980/a8SZMmyquvvmp7DkB5/PHHNeemSAGg/PTTT3afdfbsWVtbACh79+61vWfq1KlKWlqa7XlaWpry0ksv2Z5XVlYqjRs3Vq677jrD37F3797KmDFj7Pa58cYblWuuuUZRFEV55ZVXlFatWinl5eVVjjVnzhwlKSlJKSgocPp51UXvdyXxpP+mA0RcU1mp+sZ0gAgh1SQhASgqCs7DlwWpu3XrZve8qKgIDz30ENq2bYuUlBTUqVMHO3bscOsAdezY0bZeu3ZtJCUl2ea60iMhIQHNmze3Pc/IyLDtn5+fj7y8PPTo0cP2elRUFLp27erRd9uxYwf69Oljt61Pnz7YsWMHAODGG29ESUkJmjVrhjFjxmDu3LmorKwEAFx11VVo0qQJmjVrhltvvRWff/45zvvSevMhFEDENTL8BQDVLDtOCCEmE1C7dnAevixIXbt2bbvnDz30EObOnYvnnnsOK1aswNatW9GhQweUu7lxrFWrlsP5McFqtXq0v2I0uclHZGVlYdeuXXj77bcRHx+Pu+66C5dddhkqKiqQmJiIzZs3Y+bMmcjIyMCECRPQqVMnvw/l9wYKIOIa7T8vHSBCCNFl1apVuO222zBkyBB06NAB6enpOBDggSPJyclIS0vDhg0bbNssFgs2b97s0XHatm2LVatW2W1btWoV2rVrZ3seHx+PQYMG4Y033sDSpUuxZs0abN++HQAQHR2NnJwcvPjii9i2bRsOHDiAX375pRrfzD9wGDxxDR0gQghxS8uWLfH1119j0KBBMJlMeOKJJ1w6Of7innvuweTJk9GiRQu0adMGb775Js6ePevR/FkPP/wwbrrpJnTp0gU5OTn47rvv8PXXX9tGtc2YMQMWiwU9e/ZEQkICPvvsM8THx6NJkyb4/vvvsW/fPlx22WWoW7cufvzxR1itVrRu3dpfX9lrKICIa7QCiA4QIYToMmXKFPzzn/9E7969kZqaikcffRQFBQUBb8ejjz6K3NxcjBgxAlFRUbjjjjvQr18/REVFGT7G4MGD8frrr+Pll1/Gfffdh+zsbHz00Ufo27cvACAlJQXPP/88xo0bB4vFgg4dOuC7775D/fr1kZKSgq+//hqTJk1CaWkpWrZsiZkzZ6J9+/Z++sbeY1ICHTwMAQoKCpCcnIz8/HwkJSUFuznBZfduQCr3mTOBm28ObnsIISFDaWkp9u/fj+zsbMTFxQW7ORGJ1WpF27ZtcdNNN+Hpp58OdnN8gqvflSf9Nx0g4ho6QIQQEjIcPHgQP//8My6//HKUlZXhrbfewv79+/F///d/wW5ajYNJ0MQ1zAEihJCQwWw2Y8aMGejevTv69OmD7du3Y9GiRWjbtm2wm1bjoANEXMNRYIQQEjJkZWVVGcFF9KEDRFxDB4gQQkgYQgFEXEMBRAghJAyhACKuYQiMEEJIGEIBRFxDB4gQQkgYQgFEXMNh8IQQQsIQCiDiGq3ooQNECCGG6du3L+6//37b86ZNm+K1115z+R6TyYR58+ZV+7N9dRxXTJo0CZ07d/brZ/gTCiDiGjpAhJAIY9CgQejfv7/uaytWrIDJZMK2bds8Pu6GDRtwxx13VLd5djgTIcePH8eAAQN8+lnhBgUQcQ1zgAghEcbo0aOxcOFCHDlypMprH330Ebp164aOHTt6fNwGDRogISHBF010S3p6OmJjYwPyWaEKBRBxDUeBEUIijL///e9o0KABZsyYYbe9qKgIs2fPxujRo3H69GnccsstuOCCC5CQkIAOHTpg5syZLo/rGALbs2cPLrvsMsTFxaFdu3ZYuHBhlfc8+uijaNWqFRISEtCsWTM88cQTqPjrZnTGjBl48skn8euvv8JkMsFkMtna7BgC2759O/72t78hPj4e9evXxx133IGioiLb67fddhsGDx6Ml19+GRkZGahfvz7uvvtu22cZwWq14qmnnkKjRo0QGxuLzp07Y/78+bbXy8vLMXbsWGRkZCAuLg5NmjTB5MmTAQCKomDSpElo3LgxYmNjkZmZiXvvvdfwZ3sDK0ET19ABIoT4EkUBzp8PzmcnJAAmk9vdoqOjMWLECMyYMQOPPfYYTH+9Z/bs2bBYLLjllltQVFSErl274tFHH0VSUhJ++OEH3HrrrWjevDl69Ojh9jOsViuGDh2KtLQ0rFu3Dvn5+Xb5QpLExETMmDEDmZmZ2L59O8aMGYPExEQ88sgjGDZsGH777TfMnz8fixYtAgAkJydXOUZxcTH69euHXr16YcOGDThx4gRuv/12jB071k7kLVmyBBkZGViyZAn27t2LYcOGoXPnzhgzZozb7wMAr7/+Ol555RW8++676NKlC6ZPn45rr70Wv//+O1q2bIk33ngD3377Lb766is0btwYhw8fxuHDhwEAc+bMwauvvopZs2ahffv2yM3Nxa+//mroc71GIVXIz89XACj5+fnBbkrweewxRRGXLEX5v/8LdmsIISFESUmJ8scffyglJSXqxqIi9ZoS6EdRkeG279ixQwGgLFmyxLbt0ksvVf7xj384fc/AgQOVBx980Pb88ssvV+677z7b8yZNmiivvvqqoiiKsmDBAiU6Olo5evSo7fWffvpJAaDMnTvX6We89NJLSteuXW3PJ06cqHTq1KnKftrjvPfee0rdunWVIs33/+GHHxSz2azk5uYqiqIoI0eOVJo0aaJUVlba9rnxxhuVYcOGOW2L42dnZmYqzz77rN0+3bt3V+666y5FURTlnnvuUf72t78pVqu1yrFeeeUVpVWrVkp5ebnTz5Po/q7+wpP+O6ghsOXLl2PQoEHIzMw0lLF+22232Ww+7aN9+/a2fSZNmlTl9TZt2vj5m4QxdIAIIRFImzZt0Lt3b0yfPh0AsHfvXqxYsQKjR48GAFgsFjz99NPo0KED6tWrhzp16mDBggU4dOiQoePv2LEDWVlZyMzMtG3r1atXlf2+/PJL9OnTB+np6ahTpw4ef/xxw5+h/axOnTqhdu3atm19+vSB1WrFrl27bNvat2+PqKgo2/OMjAycOHHC0GcUFBTg2LFj6NOnj932Pn36YMeOHQBEH75161a0bt0a9957L37++WfbfjfeeCNKSkrQrFkzjBkzBnPnzkVlZaVH39NTgiqAiouL0alTJ0ydOtXQ/q+//jqOHz9uexw+fBj16tXDjTfeaLdf+/bt7fZbuXKlP5ofGTAHiBDiSxISgKKi4Dw8TEAePXo05syZg8LCQnz00Udo3rw5Lr/8cgDASy+9hNdffx2PPvoolixZgq1bt6Jfv34o9+F1cs2aNRg+fDiuueYafP/999iyZQsee+wxn36Gllq1atk9N5lMsFqtPjv+RRddhP379+Ppp59GSUkJbrrpJtxwww0AxCSuu3btwttvv434+HjcdddduOyyyzzKQfKUoOYADRgwwKNhesnJyXbxzXnz5uHs2bMYNWqU3X7R0dFIT0/3WTsjGjpAhBBfYjIBGieiJnPTTTfhvvvuwxdffIFPPvkEd955py0faNWqVbjuuuvwj3/8A4DI6dm9ezfatWtn6Nht27bF4cOHcfz4cWRkZAAA1q5da7fP6tWr0aRJEzz22GO2bQcPHrTbJyYmBhaLxe1nzZgxA8XFxTYXaNWqVTCbzWjdurWh9rojKSkJmZmZWLVqlU0kys/R5kQlJSVh2LBhGDZsGG644Qb0798fZ86cQb169RAfH49BgwZh0KBBuPvuu9GmTRts374dF110kU/a6EhIJ0F/+OGHyMnJQZMmTey279mzB5mZmYiLi0OvXr0wefJkNG7c2OlxysrKUKbp6AsKCvzW5pCDdYAIIRFKnTp1MGzYMIwfPx4FBQW47bbbbK+1bNkS//vf/7B69WrUrVsXU6ZMQV5enmEBlJOTg1atWmHkyJF46aWXUFBQYCd05GccOnQIs2bNQvfu3fHDDz9g7ty5dvs0bdoU+/fvx9atW9GoUSMkJiZWGf4+fPhwTJw4ESNHjsSkSZNw8uRJ3HPPPbj11luRlpbm3cnR4eGHH8bEiRPRvHlzdO7cGR999BG2bt2Kzz//HAAwZcoUZGRkoEuXLjCbzZg9ezbS09ORkpKCGTNmwGKxoGfPnkhISMBnn32G+Pj4Kv27LwnZYfDHjh3DTz/9hNtvv91ue8+ePTFjxgzMnz8f77zzDvbv349LL70UhYWFTo81efJkm7uUnJyMrKwsfzc/dGAlaEJIBDN69GicPXsW/fr1s8vXefzxx3HRRRehX79+6Nu3L9LT0zF48GDDxzWbzZg7dy5KSkrQo0cP3H777Xj22Wft9rn22mvxwAMPYOzYsejcuTNWr16NJ554wm6f66+/Hv3798cVV1yBBg0a6A7FT0hIwIIFC3DmzBl0794dN9xwA6688kq89dZbnp0MN9x7770YN24cHnzwQXTo0AHz58/Ht99+i5YtWwIQI9pefPFFdOvWDd27d8eBAwfw448/wmw2IyUlBe+//z769OmDjh07YtGiRfjuu+9Qv359n7ZRi0lRFMVvR/cAk8mEuXPnGv4BTZ48Ga+88gqOHTuGmJgYp/udO3cOTZo0wZQpU2zJa47oOUBZWVnIz89HUlKSR98j7LjhBmDOHLHeqxewenVw20MICRlKS0uxf/9+ZGdnIy4uLtjNIWGCq99VQUEBkpOTDfXfIRkCUxQF06dPx6233upS/ABASkoKWrVqhb179zrdJzY2lhUzncEcIEIIIWFISIbAli1bhr179zp1dLQUFRXhzz//tCWZEQ/hKDBCCCFhSFAFUFFREbZu3YqtW7cCgC2RS9Y4GD9+PEaMGFHlfR9++CF69uyJCy+8sMprDz30EJYtW4YDBw5g9erVGDJkCKKionDLLbf49buELXSACCGEhCFBDYFt3LgRV1xxhe35uHHjAAAjR47EjBkzcPz48SoFn/Lz8zFnzhy8/vrrusc8cuQIbrnlFpw+fRoNGjTAJZdcgrVr16JBgwb++yLhDEeBEUIICUOCKoD69u0LVznYjhPRAaIW0HkX88jMmjXLF00jEo4CI4RUkxoy1oaECb76PYVkDhAJIHSACCFeIisLu7ppJcRT5O/JsXK1p4TkKDASQJgDRAjxkqioKKSkpNjmk0pISLBVUibEUxRFwfnz53HixAmkpKTYzVvmDRRAxDUcBUYIqQZyWiKjk2oS4o6UlBSfTHdFAURcQweIEFINTCYTMjIy0LBhQ79ObEkig1q1alXb+ZFQABHXMAeIEOIDoqKifNZxEeILmARNXKMVPVYr4GbWYUIIISQUoAAirtE6QADDYIQQQsICCiDiHIulquNDAUQIISQMoAAiztHL+WEeECGEkDCAAog4xzH8BdABIoQQEhZQABHnaAVQTIxY0gEihBASBlAAEedIsRMTA8TGinU6QIQQQsIACiDiHOkAxcYCcs4VOkCEEELCAAog4hwpgGJi1BCYMwdo9mxgxAigtDQwbSOEEEKqAQUQcY50e4w4QM89B3z6KbBqVWDaRgghhFQDToVBnKMNgZn/0srOHKDiYrEsKfF/uwghhJBqQgFEnKMNgZlMYt2ZAyT3ZY4QIYSQEIACiDhH6wBJnDlAFECEEEJCCAog4hxtDpDVar/NEQogQgghIQQFEHGONgQmBZA7B4h1ggghhIQAFEDEOdoQWGWlWNdzeBSFDhAhhJCQggKIOEcbAnM1Cqyy0n2IjBBCCKlBUAAR52hDYBI9gaOdM4wCiBBCSAhAAUScY3QUGAUQIYSQEIMCiDjH6CgwCiBCCCEhBgUQcY7WAbJYxDodIEIIIWEA5wIjztHmALmaC4wCiBBCSIhBB4g4RxsCk84PHSBCCCFhAB0g4hxtCIwOECGEkDCCAog4RxsCk0Ph3TlArARNCCEkBKAAIs7RhsBcOUClpVXfQwghhNRgKICIc7QhMKMOEAUQIYSQEIACiDiHo8AIIYSEKRRAxDnaEBgdIEIIIWFEUAXQ8uXLMWjQIGRmZsJkMmHevHku91+6dClMJlOVR25urt1+U6dORdOmTREXF4eePXti/fr1fvwWYQxHgRFCCAlTgiqAiouL0alTJ0ydOtWj9+3atQvHjx+3PRo2bGh77csvv8S4ceMwceJEbN68GZ06dUK/fv1w4sQJXzc//PFmFBgFECGEkBAgqIUQBwwYgAEDBnj8voYNGyIlJUX3tSlTpmDMmDEYNWoUAGDatGn44YcfMH36dPznP//RfU9ZWRnKNJ14QUGBx20KS4yOAqMAIoQQEmKEZA5Q586dkZGRgauuugqrVq2ybS8vL8emTZuQk5Nj22Y2m5GTk4M1a9Y4Pd7kyZORnJxse2RlZfm1/SEDR4ERQggJU0JKAGVkZGDatGmYM2cO5syZg6ysLPTt2xebN28GAJw6dQoWiwVpaWl270tLS6uSJ6Rl/PjxyM/Ptz0OHz7s1+8RMngzCoyFEAkhhIQAITUXWOvWrdG6dWvb8969e+PPP//Eq6++ik8//dTr48bGxiI2NtYXTQwvjI4CYyFEQgghIUZIOUB69OjRA3v37gUApKamIioqCnl5eXb75OXlIT09PRjNc8/mzYCb0W9Bg6PACCGEhCkhL4C2bt2KjIwMAEBMTAy6du2KxYsX2163Wq1YvHgxevXqFawmumboUGDIEGDfvmC3pCocBUYIISRMCWoIrKioyObeAMD+/fuxdetW1KtXD40bN8b48eNx9OhRfPLJJwCA1157DdnZ2Wjfvj1KS0vxwQcf4JdffsHPP/9sO8a4ceMwcuRIdOvWDT169MBrr72G4uJi26iwGkVJCXDwoFjfvx9o1iy47XGEDhAhhJAwJagCaOPGjbjiiitsz8eNGwcAGDlyJGbMmIHjx4/j0KFDttfLy8vx4IMP4ujRo0hISEDHjh2xaNEiu2MMGzYMJ0+exIQJE5Cbm4vOnTtj/vz5VRKjawRHjqjrLpK0gwYrQRNCCAlTTIqiKMFuRE2joKAAycnJyM/PR1JSkv8+6JdfgCuvFOsvvQQ89JD/PgsAiouB5cuBv/1NiBp3xMQIwXP4sHCoLrsMaNUK2LXLfr+bbwa+/FKsx8UJZytUWLIEaN0ayMwMdksIIYRUE0/675DPAQpptMPtA+EAvfgicM01wIcfut/XalXdnnDNAdq0SYjBf/wj2C0hhBASYCiAgolWAB0/7v/Pk+FEI3WOtELHkxwgqxWwWLxvYyDZulUs//wzqM0ghBASeCiAgkmgHaDiYrE8f979vlpR40kOkLN9aiL794vl2bPBbQchhJCAQwEUTDQJ3gFxgKTw8VQAuasErS2E6GyfmogUQIWFQGVlcNtCCCEkoFAABZNAO0CeCCApYqKjAbPZMwco1AQQAJw7F7RmEEIICTwUQMFEK4DOnq0qJHyNNw6QHC1mNAfI2T41Ea0AYhiMEEIiCgqgYFFQIB4AEBUllv52gbwRQNL50TpAjpUTQlEAlZTYn+8zZ4LXFkIIIQGHAihYSPenbl3gggvEek0SQNoiiIDqAAFV82VCUQAdOGD/nA4QIYREFBRAwUIKoKwsQE7U6u9EaF+EwICqeUChKIC04S+AAogQQiKMoE6FEdFoBVD0X3+GmuQAOQuBAULgJCRU3Vf7ek2HAogQQiIaCqBgoRVAMqemJgkgVyEwZw6Q2SwKIVIAEUIIqeEwBBYsZA2grCwgI0Os+zMEVlGhChdZENEVjiEwk0l1qrQCR1HUfRMTq75eU5ECKD5eLJkETQghEQUFULCQDlDjxmoOkD8dIO0Epd6EwADVBdI6QJWVwvUBVAEUCpWgpQDq3Fks6QARQkhEQQEULAKdBK0VPSUlqmhxhmMIDFDFkNbh0eb/1KlT9fWaihRAF10klhRAhBASUTAHKBgoir0AkmEYfzpAjq5Paal9IrMjjiEwQN8B0gqgUAmBnTunVn7u0kUsKYAIISSioAAKBqdPq/NnXXCB/SgwRRH5Nr7GMe/n/HnPBZArB8hsVo9X0wWQdH8aNBACFGAOECGERBgMgQUD6f6kpQmBkZYmnldU+K8jdnSA3OUBSRHjLgdIK5T0BFJNRAqg7GxRiBKgA0QIIREGBVAw0Ia/ACEe6tUT6/4Kg3kqgDx1gCiACCGEhBAUQMHAUQAB/h8K7wsBFM4OUHFxaIxeI4QQ4hMogIKBtgaQxN9D4X0RAnPlAMXFhaYASklRt9MFIoSQiIECKBjoOUD+HgofTg6QogB79rgfyu8MrQCKigKSk8VzJkITQkjEQAEUDFyFwGqKA2Q0B0iOZouN1RdI/uDTT4FWrYDJkz1/r6KoM8FnZ4sl84AIISTioAAKBtoq0JJQCIHVFAdo1Sr7pSfk5YlCkCaTev4pgAghJOKgAAo0Fgtw9KhYD7Uk6JoyCmzvXrHctcvz98rwV6NGanvlCDwKIEIIiRgogAJNXp6YPysqShU9QM1zgGpyDpAUQAcO2FeiNoI2/0dCB4gQQiIOCqBAI8NfmZlCBElqahK00VFggRJApaXqObRagX37PHu/KwHEJGhCCIkYKIACjV4CNKC6QefOqYnFvsTbHKCa5gDt2ycSmSWehsHoABFCCAEFUODRqwEEiHo0Umzk5fn+c+VcYHLesVDNAdqzx/757t2evZ8CiBBCCCiAAo8zB8hk8m8YTAqe1FT7587QC4G5coACVQhR5v9IfCGAmARNCCERBwVQoHEmgAD/JkJ7KoD0QmA1yQFq0UIsPQmBVVaqDhwdIEIIiWgogAKNKwHkz6HwUvA0aGD/3BlGR4HpFUIMhAM0cKBYeuIAHTkiyhDExIgkdAmToAkhJOKgAAo0oeIAucoBcpcE7c9K0NIBGjBALE+cEInjRpDhryZNALPmp08HiBBCIg4KoEBSXq6KG20VaElNygFyVQna2xDY998L58Yxj8co2iHwXbqojplRF0gv/wdgDhAhhEQgQRVAy5cvx6BBg5CZmQmTyYR58+a53P/rr7/GVVddhQYNGiApKQm9evXCggUL7PaZNGkSTCaT3aNNmzZ+/BYecOyYGMIdG6uGorT4cz6wQDpAzgTQ228DP/4IXH+9mI7CU+QQ+KQkcf5atxbbqyuApANUUuKfEgSEEEJqHEEVQMXFxejUqROmTp1qaP/ly5fjqquuwo8//ohNmzbhiiuuwKBBg7Blyxa7/dq3b4/jx4/bHitXrvRH8z1HuheNGolRX45UJwS2f78QGM46cF8IoOo6QPIzt20DHnjA9efrIZ2jFi3E+WvVSjw3mgjtTAAlJal/D7pAhBASEUQH88MHDBiAATKXwwCvvfaa3fPnnnsO33zzDb777jt06dLFtj06OhrpUkwYoKysDGWaKRUKCgoMv9cjnNUAklQnCfrBB4G5c4WbccstVV/3RQisug6Q1vV5913giiuAYcNct0OLzP9p2VIspQCqrgNkNos6TGfPiod2ihJCCCFhSUjnAFmtVhQWFqKezOH4iz179iAzMxPNmjXD8OHDcUgKDydMnjwZycnJtkeWM4FSXVwlQAOqA5SXJ6Z58IRffxVLPfFktariw18OkJE6QLINffqI5Zgx+vlA2krPWrQOEOB5COzIEbHUy79iHhAhhEQUIS2AXn75ZRQVFeGmm26ybevZsydmzJiB+fPn45133sH+/ftx6aWXorCw0Olxxo8fj/z8fNvjsBQqvubCC4GRI4G+ffVfT0sTy4oKz4Zkl5aq7oaee6UNiwUzB0i245lngEsvBQoLgZtuElWqV60C/vtfoFMnoHZt4Oefq75fCiA9B8idYFQUNbSo5/BwJBghhEQUQQ2BVYcvvvgCTz75JL755hs0bNjQtl0bUuvYsSN69uyJJk2a4KuvvsLo0aN1jxUbG4tYbUfvL/7+d/FwRkwMUL8+cPq06KylWHHH3r2qa6IngLRip379qtscURT/jAKTDlBiIvDFF0DnzsCWLaJNjrO6v/sucPXV9tsciyBmZ4upPc6fFwnmjRo5/05nzqjt0guPUgARQkhEEZIO0KxZs3D77bfjq6++Qk5Ojst9U1JS0KpVK+z1duh1oPEmEXrnTnU9P7/q63IesNhYIT4A4eI4q9dTWakKKncOkCeFEKUAio8XYuXTT8XzsjKRg3PzzcDTT4ttCxdWFVoylCkFUK1aQLNmYt1dGEyez3r17L+ThMUQCSEkogg5ATRz5kyMGjUKM2fOxEBZDdgFRUVF+PPPP5ERKomt3iRCawWQKwcoIUE8JM6GomvdGG9GgTkTVvLz4uLEcsAAYN06YMUK4ORJYOZMEQZr2FCEx1atUt8rh8AnJorXJUZHgsnz6ex3QAeIEEIiiqAKoKKiImzduhVbt24FAOzfvx9bt261JS2PHz8eI0aMsO3/xRdfYMSIEXjllVfQs2dP5ObmIjc3F/ka1+Ohhx7CsmXLcODAAaxevRpDhgxBVFQUbtEbGVUT8cYB0nb+eg6QVgDFxqpDvp2FwbQCx1ejwBRFdYvi49XtPXoAl1yizlJvNgP9+4v1H39U93McAi8xmggtBZCz0YFMgiaEkIgiqAJo48aN6NKli20I+7hx49ClSxdMmDABAHD8+HG7EVzvvfceKisrcffddyMjI8P2uO+++2z7HDlyBLfccgtat26Nm266CfXr18fatWvRQK/wYE3E3w6QyaS6QM4EkBQ1ZrMqTIDq5QBVVKiJyloBpMc114jlTz+p2xyHwEuMDoWnA0QIIURDUJOg+/btC8XZkGcAM2bMsHu+dOlSt8ecNWtWNVsVZDydDkNR3OcASaFTu7ZYJiSIvCB3AsgxV6Y6DpA23CZDYM64+mohvn7/HTh4UMzd5TgEXiIdIIbACCGEeEDI5QCFO9bmwuFQvvvOWIXjY8eAoiL1uTsHSLt0FwLThr8A43WAKiqq1vKR4S+TST8JWUvdukDv3mJdukDuHKD9+13PQm9UADEJmhBCIgIKoBrGgqhrsBh/g6m4WFR0dhwe7ogUSVJU+EIAVdcBctwHsE+A1psGxBEZBpN5QM4coPR0oE4dEV7780/nx3MngJgDRAghEQUFUA3j951RuBWf4lx0fVEjZ/x412+Q4a+LLhLLoiLAYrHfx1cCyGgOkOM+gP0QeCPIek6LFwtR5zgEXmIyGUuEdlUEEWAIjBBCIgwKoBrGsWPAcWRifNpHYsOrr9onAzsiBVD37uo2x6rXvgqBOTpAimJcAMkQmLv8H0mnTkKsnD8PfPyxcHjq1FGrZWsxkgjtbhQYBRAhhEQUFEA1jGPHxHKeZRBwzz3iyciRzofFyxBYx46qY+OYCO0vB6iyUh3ZFRsLREWp4a3qOkAmkxoGe/NNsXQcAi9xVwuouFgVhe4coLIy5/WRCCGEhA0UQDUMKYDOnQPw4otC2Jw8CYwYoT/flXSA2rQBkpPFumMekL9ygPQKJjobCeapAAJUAeQsAVriLgQm3Z+EBLUStiOJiULAAUyEJoSQCIACqIYhBVBpKVCKOGDWLCEaFi60LwwICGdD5sa0aQMkJYl1fwkgRwfIlQBylQRtlJwc+zpEjvk/EnchMG0CtLMEbJOJYTBCCIkgKIBqEIqiCiDgr0hW27bA7beLDXPm2L9BdvipqWJCUekAVTcEZjQHSK9gojMHSK8KtDuSkkSVaIkzB0gKoLw8/TpI7kaASSiACCEkYqAAqkHk59unn5w799fK0KFi+e23Iu9GInNeZAjImQMkJ0P1lwOkN2GqL0JggBoGA5w7QImJqrjRywNyNwJMQgFECCERAwVQAJk7F7jpJuDdd/Vf17o/gEYAXXKJcHnOnAGWL1d30Ob/AL5zgNzlAFksIh9JWwTRcZ9ACiBAdYFkvpAWdyPAJCyGSAghEQMFUADZvRuYPRtYuVL/9aNH7Z/bBFB0NHDddWL966/VHRwFkK9ygNxVggZEGMwTB8jTYfCSdu2ABx8EHnnEtYPjKg/IaAiMxRAJISRioAAKINnZYrl/v/7rTh0gABgyRCznzVNHgzkTQM4cIDkXmFx66wABngsgbx0gkwl4+WXghRdc72fEAWIIjBBCyF9QAAWQpk3F8sAB/dddCqArrxS5LkePAhs2CBEk3Q6ZA+TvYfBaB6i8PDACyCi+cIAogAghJGKgAAog0gE6dkx/ii+XAiguDhg4UKx//TVw+LAQFbVqqQf2dwhMW+iwokINa2kFkN50GYB3w+A9QSuAHCdipQAihBDiAAVQAElNFdpDUdTyPVqkAJK6w04AAeposK+/VsNfLVuqQ9D9nQRtMtkLHG9ygPzlADVrJobjFxaK4fCSigrg1CmxbjQHiEnQhBAS9lAABRCTyXUYTAogGdGqIoAGDBBiY+9etSaQzP8B/F8IEbCvBeRKADkrhOgvARQTozph2jCYFEPR0aJWkivoABFCSMRAARRgXCVCSwHUrp1YVhFAdeoAV18t1mfMEEs9AeSvQoiA9w6Qv0NggFooUSuAZPgrLU04RK6gACKEkIiBAijAOHOArFa1r27fXiyrCCBADYNJh0XaRYB+ErSi+NYBkgJI6wAZqQPk7xAYoJ8IbTT/B6AAIoSQCIICKMA4E0CnT6uaRpo6ugJo0CB10k7tzoC+A1RRIQoXAr4NgdW0UWCAbwWQYyI1IYSQsIICKMA4C4HJ8FfDhkCDBmJdVwDVrw9cfrn63J0DpBU5vgyBBaoOkCdUVwDJJOiKCnX6EEIIIWEJBVCAceYASQGUmQmkpIh1XQEEqGGwjAxV9ACqA1RaqgoQ2ZFHRaniRSuA9JwOfzhA3laC9gQpgPbuVV0vo/OAAeK8yHPEMBghhIQ1FEABRjpAubn2E596JICGDweuugp4+GH77VIAAaoLpM3/kTV8pABSFP2CRJ7mANUUBygrS7SlogI4eFBsMzoPGCDOD/OACCEkIqAACjB164qCzoDaRwP6Aqi0VDVO7EhJAX7+GXjgAfvtUVHqNBd6AkiiFSF6YTApXtw5QN4UQvSnADKbq44E8yQEBlAAEUJIhEABFGCc1QLSCqCkJNWscRzR7hbHRGjHecAAURNHChk9ASSdHX/kAPkzBAZUzQPyVACxGCIhhEQEFEBBQC8RWiuAzGZVxzgNgznDMRFazwHSPnclgKqTA+RYCDEQw+AB+0lRrVbPcoAAVQDJ6tGEEELCEgqgIKDnAB09KpaZmWLpNg/IGY7VoL0RQK5CYDU5Bwiwd4BOnwYqK8XztDRj77/gArF0nJiNEEJIWEEBFATchcCAagggx/nAquMA6YXA9BwgI4UQgxECk+5Paqr+d9FDCqAjR3zfNkIIITUGCqAg4BgCq6xUp6yqEQ6Qr0eBWSxqSCxQDtDBg+oJNjICTCIFkLTkCCGEhCUUQEHA0QE6cUKkq5jNohAi4AMBVB0HyOgoMKMCSDuUzd8CKDVVnDxFAVauFNuM5v8AQKNGYkkHiBBCwhoKoCAgBdDJk6JOoQx/paers1xUOwTmCwfIV6PAtAWP/B0CM5nUofDLlomlJwKIDhAhhEQEFEBBICVFFTgHDqgCSPa9ch8gSA6QrytBSweoVi37ecz8hQyDbdoklt44QGfO2As3QgghYQUFUJDQhsEcE6CBGuIAucsBMloIMVAjwCRSAMnpMDwRQMnJ6rmhC0QIIWELBVCQ0CZC+1QAOSZBy7nAvMkBMjoKzGgILNACSOKJADKZGAYjhJAIIKgCaPny5Rg0aBAyMzNhMpkwb948t+9ZunQpLrroIsTGxqJFixaYMWNGlX2mTp2Kpk2bIi4uDj179sT69et93/hq4jcHyNMQmOOs5xaL6pz4ahRYoIbASxwFkCejwAAmQhNCSATglQA6fPgwjmg6h/Xr1+P+++/He++959FxiouL0alTJ0ydOtXQ/vv378fAgQNxxRVXYOvWrbj//vtx++23Y8GCBbZ9vvzyS4wbNw4TJ07E5s2b0alTJ/Tr1w8nTpzwqG3+psaGwLSToxrNAdKrA6StBB2oKtASmQQt8cQBAugAEUJIBOCVAPq///s/LFmyBACQm5uLq666CuvXr8djjz2Gp556yvBxBgwYgGeeeQZDhgwxtP+0adOQnZ2NV155BW3btsXYsWNxww034NVXX7XtM2XKFIwZMwajRo1Cu3btMG3aNCQkJGD69OlOj1tWVoaCggK7h79xFwKTc3L6zAHSzgUGOBdAWufG16PAAiWAEhPtRY+nAkg6QBRAhBAStnglgH777Tf06NEDAPDVV1/hwgsvxOrVq/H555/rhqR8xZo1a5CTk2O3rV+/flizZg0AoLy8HJs2bbLbx2w2Iycnx7aPHpMnT0ZycrLtkZWV5Z8voCEkHCApdrSEQg4QoIbB6tQRD09gNWhCCAl7vBJAFRUViP2r01u0aBGuvfZaAECbNm1wXM6+7Qdyc3OR5jCnU1paGgoKClBSUoJTp07BYrHo7pMrp0XQYfz48cjPz7c9Dh8+7Jf2a5EC6MwZUQ8I8EMStKJ4L4BiY9Up6bV44wDJEFigcoAAVQB56v4AdIAIISQC8EoAtW/fHtOmTcOKFSuwcOFC9O/fHwBw7Ngx1K9f36cNDASxsbFISkqye/ibxERAe6pq1bJ/LgVQaal9IWW3SAdIDlP3VAC5GgGm3R4qDpA3AogOECGEhD1eCaAXXngB7777Lvr27YtbbrkFnTp1AgB8++23ttCYP0hPT0eenDTrL/Ly8pCUlIT4+HikpqYiKipKd590T0cCBQDpAgHC/dEaLomJ6nOZzmOI2rXVNxYUVM8B0kNb56cmC6C//x3IygJuusnz90oBlJurjogjhBASVkR786a+ffvi1KlTKCgoQF2ZrQvgjjvuQIJjR+tDevXqhR9//NFu28KFC9GrVy8AQExMDLp27YrFixdj8ODBAACr1YrFixdj7NixfmuXt2Rnq8WKteEvQMwLlpwsQmDnzgEOUT3nmM1CPRUUCOXkawEkBU5JiZjAzHFfV4UQAxkCa9MGOHTIu/empYmK1RaLmKXW8Y9DCCEk5PHKASopKUFZWZlN/Bw8eBCvvfYadu3ahYZyNk8DFBUVYevWrdi6dSsAMcx969atOPRXxzV+/HiMGDHCtv+///1v7Nu3D4888gh27tyJt99+G1999RUeeOAB2z7jxo3D+++/j48//hg7duzAnXfeieLiYowaNcqbr+pXHB0gR3ySCO1tCMydA1RYqG4zmgMUSAeoOkRFqaEzhsEIISQs8coBuu666zB06FD8+9//xrlz59CzZ0/UqlULp06dwpQpU3DnnXcaOs7GjRtxxRVX2J6PGzcOADBy5EjMmDEDx48ft4khAMjOzsYPP/yABx54AK+//joaNWqEDz74AP369bPtM2zYMJw8eRITJkxAbm4uOnfujPnz51dJjK4J+E0AaYfCe+sAucsBKipSt9XEEFh1adRIiB8mQhNCSFjilQDavHmzrfbO//73P6SlpWHLli2YM2cOJkyYYFgA9e3bF4qiOH1db0h93759sWXLFpfHHTt2bI0MeTkiawEB9hOhSqrtAJ09qwoaX+cASQcoKgqI1vyM9AohBiMEVl2YCE0IIWGNVyGw8+fPIzExEQDw888/Y+jQoTCbzbj44otx8OBBnzYwnPG7A6Qd+u+rEJijA+S4n3zdalUTiEMtBAawGjQhhPiLgoKq0zAFAa8EUIsWLTBv3jwcPnwYCxYswNVXXw0AOHHiRECGkIcLfhdA2ppMju6LtyEwRwfImQACVDEVqiEwgAKIEEJ8zfvvi+kOHn00qM3wSgBNmDABDz30EJo2bYoePXrYRmH9/PPP6NKli08bGM4kJADNmolR6y1aVH292iEw6QDFx4vRYY4fDgiRUlmpbjc6CizcBRBDYIQQ4h8WLhRpEkEuT+NVDtANN9yASy65BMePH7fVAAKAK6+80vC8XkTw/fdiKowmTaq+5jMHyHEeMMA+JFZSIobOA8ZHgTmbMV47fYY8VjAqQVcXOkCEEOJ7SkuB5cvF+lVXBbUpXgkgQBQlTE9Pt80K36hRI78WQQxX2rYVDz185gDp1WbSipHz51UBZHQUmMRRAJlMQgRVVISPA6Qo+tOCEEJ8x/nzwIIFwNVX69+0kfBg1SrRJ2RkAO3bB7UpXoXArFYrnnrqKSQnJ6NJkyZo0qQJUlJS8PTTT8Mqi+ORauMzB0hPAJlM+nlARkeBSfT2cyyGGIoCSCZllZR48QcghHjMq68CQ4eKJQlfFi4Uy6uuCvqNpVcC6LHHHsNbb72F559/Hlu2bMGWLVvw3HPP4c0338QTTzzh6zZGLNV2gE6cEEtn1bn1BJDRUWASvf0cawGF4jD4+Hh1cjbHMNju3cCdd6rnlxBSfWRZ/D17gtsO4l+0AijIeBUC+/jjj/HBBx/YZoEHgI4dO+KCCy7AXXfdhWeffdZnDYxkqu0ASTfOEwF05ozr9zg6QHqixlEAheIweECEwU6fFmGwCy9Utz/8MPDtt0JoPv988NpHSDixe7dYOszlSMKIkyeBzZvFek5OcNsCLx2gM2fOoE2bNlW2t2nTBmdkB0qqTbUFkMQTAbRxo1hqktvtqI4DFGoCSC8RurQUWLRIrK9fH/g2EeLI7NlA69bAX1MKhSQWC7B3r1jX1i8j4cXixWLZsWPQR4ABXgqgTp064a233qqy/a233kLHjh2r3SgiqHYITGJUACkKsGGDWHeW0G4kB8ixGnQohsAA/aHwS5eq52vjRtVlIyRYzJ4t3JNvvgl2S7zn0CE1/5AOUM3h/HnRL/iKGhT+ArwMgb344osYOHAgFi1aZKsBtGbNGhw+fLjKbO3Ee6QAKi0VD8P6wVsHaO9eobZiY4EOHfTf440DFMohMMDeAfrhB3W9sBDYtcv5MD5CAoG8Qwrlkg0y/AWIMInVWrV2GQkss2cDI0YAY8YAb7xR/eMpCvDzz2K9hgggr35hl19+OXbv3o0hQ4bg3LlzOHfuHIYOHYrff/8dn376qa/bGLEkJqpJ8vn5HrzRWwdIhnQuuqiq0yPxxAEKlxCYdIAURRVA8nszDEaCjRRAx44FtRnVYtcudd1iEbl3JHgsWAAMHy5uXj/7TK37Vh127RLX0thY4NJLq388H+C1xM7MzMSzzz6LOXPmYM6cOXjmmWdw9uxZfPjhh75sX0RjNqtaxqMwmLcOkOzMu3d3fmxPHSBFCV0B5OgA7dwJ7N8vvt/IkWKbDBkSEizCzQECmAcUTFavFuUIZArD2bO+yS+T4a9LLnHeJwUYeow1HK/ygOLjxSztEk8FkKuClp46QNIFAkIvB8gxCVq6P337An/7m1inA0SCTTgKIOYBec933wH16gHz53v+3l9/Ba65RvQJ/fsD/fqJ7TJ5uTrUsPAXQAFU4/FKAJlM9mEwIwKoogLYskU8dyWAjDhA2kKI0v0BQtcBOn1afA8pgAYOVM/R1q1q8iYhgUZR1IvDyZPOf4uKAhw44NuEVl8iQ2CyAjQFkPe8+aZwbT7/3LP37d0rBE9+PtCnDzBnjhBBQPUFUEWFGEACiErfNQQKoBqOT4bCOysrrxVA27eLi2dKiv7MrBJPHSApgMxm53lFNZWUFFW07dgBrFwp1gcOBJo2FYUSKyqAbduC1UIS6ZSUqKEKQK3+7sgHHwDZ2cDbbwemXZ5QUiJGgQFA795iSQHkHSUlwIoVYt3T69Ktt4rz3qmTmKQyIQG48krx2ooV1bvRW7sWKCoCGjRwXmIlCHg0Cmzo0KEuXz/HKQN8jk+GwhtxgLThL1flyc1mEV6TSXHuCiFqh8CH2nxaJpMIg+3ZA3z0EVBZKeqtNG8uXu/RA/jpJ3HuXOVNEeIvHC8MR48Kce7I6tViWRPFuqz/k5IiCo4uXMgcIG9ZuVIddbtjhxDHRm48y8vVfMb//U/teC68EGjYUFS9X7sWuPxy79olw185OTVqdJ9HLUlOTnb5aNKkCUaMGOGvtkYkPnGAPBFARjpy7T+UOwcoVIfAS2QYTI5uHDhQfU2GwZgH5B3nzgFz5zKEWB30BJAeBw6IZUGBP1vjHTL81bo1kJYm1ukAeYcUGoAQP9rRda7Yt0/c1Napo97gAeImUOY7VicMVsPq/0g8coA++ugjf7WDOCFgDpCR/B9JTIwqbNwVQgzVEWASmQgt6xBoBZAUixwJ5h1PPSUmvnzvPVFrhHiO44XB2VB4KYA8qqcRIGQCdKtWFEDVRQoNs1nUUtq2zX4aH2dIodSqVVWn/sorgVmzhAB66inP2mO1Au+8o14ja5gAqjleFNElIA5QXh7wxx9i3dcOUKgLIOkAAaIw0yWXqM/ludq5s2Z2LDUdOenl/v3BbUcoY8QBqqwEDh8W6zXxd6oVQHJ6BAogz8nLE6O4AGDIELE0GvLUunCOyDyg9etF8VejHDggBM/YsUIIDRum3lDWECiAajgBEUBr1ojRIVlZQEaG+2NrR4IZDYGF2hB4iVYAXX21/Xdv2FDkWyiKOpM1MY7s5Dh/oPcYEUDHjqk5e6ESAmMOkOfIOQq7dFEnGvWFAMrOFo/KSmD5cvfHUhTg/ffFbAK//CJuft94A/jiC2NtCSAUQDWcgITAiorE0kj4C4gsB0h7x6INf0kYBvOeEyfEkgLIe+SFQSaW6gkgGf4Car4DJAWQnA4jkFgswpWsqaUC3KGtsyPn5PRUALVqpf+6dIGM5AFNmgTccYfoV/r0EW24554alfwsqXktInYExAGSGB3J5IkDFOoCSOsADRhQ9XUmQnuHotAB8gXywiBLV7gTQO4coLNnAysATp9W//4tWohh0kBwpsN4/HEhAL79NrCf6wsURc3/ufpqNe/n6FFj59GVAwQYF0DnzwOvvy7Wn3oKWLbMdVmVIEMBVMMJiAMk8ZUDpFcIMVRDYJ07i+Jg992n5idooQDyjqIiNTx69mxw2+IPNmxQOyR/Ii8M7dqJ5dGjVQWMowBy5qwsWSJqW3ma6FodZMeblSXqldWqBaSmim16eUCKImqWaWsf+Yrt28XSF9M+BJrffxc1oOLihOuSlCTCVoD6vZxx5gxw6pRYd+YAyZFg27apzq0eX30lXMbsbOCxx+xnJKiBUADVcALmAJlMQNeuxo6tFUDu6gCF+jD4mBhRUv611/Rfv+giYe0eOeK8CB2pirZzCzcHaN060QkNGCBCOf7EUQCVllYVlFoBpChqyNuRDRvE62vX+rqVztGGvySu8oDmzhXhnfHjfd8W+Tt01cHXVKTYvvxy9ZpsNAwm/wYXXCCGwevRsKF6vCVLnB/r3XfFcsyYGhnycqTmtzDCCZgAatu26iSqzoikEJg76tRROx/mARlH28mEkwA6cQK44QbhUFgsQhj7E3lhyMgQ8z8BVcNgBw/aP3cWBpPHCuTfQy/3xNVQeFnQcccO37cllAWQ3jxbHTqIpTsB5C78JXEXBtu2TYjn6Ghg1CjXx6ohUADVcKQAKi1VzRRDeBoCMxr+ArxLgg7VEJgRGAbzHG3nVlAgRpiEOpWVwM0324sef+exSNGSkqLmqznWAtI6QIDzROhgCCDpPmg7X1cCSJZO8EfYVH7vUBuCX1Ymcm0A+3m2jDpAvhJA770nloMH66cL1EAogGo4iYlqXSqPBnBINycmRihyPbQCyJOpHLwZBh+uDhCgCiA6QMZxvMsOh2l0Hn9chAdq1waaNRPbZG6Fv9ATQFoHyGJR59mSNyHOLiRSVAQy+dhVCExPiMj9fS2AFCV0HaBVq8SNZnq6fdFDKYB++00tg6CHUQF02WWiL9m3D/jzT/vXiovVavn/+pdn7Q8iFEA1HLNZNXM86iMaNRI/1qws5/v42wEKh0rQRpDicf360B1CG2gcO7dQD4PNnQu88IJY//BDkTwPBMcB0gqgY8eEMxUdrYoMdyGwc+dcd5i+Qg47B+wFkHQPHHOAKivVjtcbAeRqypXCQvU7h5oDpJ1mQlvFuUULIXpLSqoKFi1GBZC2EOwtt9gXRfzyS/G7at5cTZgOASiAQgCv8oAaNhR3BvPnO98nMVFceLKz1bsFIzAHyJ4OHcRoh3PnmAhtFMe77FAWQHv3AiNHivUHHhAVb+VIpmALIJn/k5Wl5gi5C4EpSmAcucOHhSipVct+AldnDtChQ+roL0+G6xcXA3//u/j+zubG0gqqc+fEtStU0Mv/AcQ1STpCzsJgFos6Ga2zEWBa3nlHjBTcsAEYOlQVlSGW/CwJnZZGMPK65XFx1B49XNdgMJvFkM8dO+xFjTu8mQw1nHOAatUCmjQR667utIiKY+cWykPhP/pI3A337q26QPXri2V1Q2B79oiquno5Ulqh4kwAyfyfpk3VsLi7EBgQGEEqw1ktWtgPl3YmgOT+gP3NlSvOnRN5MT/8IGrUrFunv5/j9w2VMNjZs+o8jrL6sxZ5Y+tsKPzBg0LExMaq1zBXtGkD/PijCPMuWgSMGAFs3izc71q1Qib5WUIBFAK0by+WfilPER+vL2JcQQeoKlJoyrsp4ppwcoDkPFvXXqveHEgBVF0H6P77RVXdn36q+lpJieqIGBFAMpbuLgQGeP738CZk5iz04kwAyXCZxJ1oPnlShGPkyDHAuSANVQF08KAQwg0a6E9j5C4R2pkIdUWPHiLkW6uWqPsjC8QOGSIiDyEEBVAI0K2bWNaY6aa8KYQY7gKoeXOxDDcBdOIEcN114g7al8jOTV4wQ1kAybCntgMyEgKrrHTficsQlt6EsVKwREWJO/LMTPHcWwdIK4A8EW5PPCEEn9ahMYJeAjSg5gCdOGFftNHx+K7O3dGjIml3yxbxG5PhIaMCyNd5QJ98Atx9t+9zq2RYwNkcju4EkNH8H0euugr47DORcyTFYgglP0tqhACaOnUqmjZtiri4OPTs2RPrXQwn7tu3L0wmU5XHQM08TbfddluV1/v37x+Ir+IXZH3CjRuD2w4bWgfIXSHESBgGD6gOULiFwGbOFFMDDB/u2wkq5UWzTRuxDDcBZMQBGjJEvEdv+gqJ7LD1OmRt+MtkUh2gEydUZ0jPAdITQKWl9knCnvw9vv9eHNNVgTw9nAkgZ9NhGHWA8vOBSy8Fdu4Ug0GWLxfPgeA4QBaLmBH97bd9XypD77enRdYC2rdPfyZ3bwUQANx0EzB1qlhv3x644grPjxFkgi6AvvzyS4wbNw4TJ07E5s2b0alTJ/Tr1w8nnPwAv/76axw/ftz2+O233xAVFYUbb7zRbr/+/fvb7Tdz5sxAfB2/0LmzSNc5frxqiY+g4E0OULg7QOEaAtu3Tyzz84EHH/TNMcvL1c5LCqBQzgFyJYBc5QCtXStEh7O7c0VR368nPrUCCBCuk/zflG2SDlKTJq5DYI7n3xMHSLbNsd6QO5x1vrVqqedPK/ykYJKhGme/mQULhGOWmQmsXCmOLx25YAigbdtU8eFK7HqDOwGUmqo6g7/9VvX16gggALjzTnFnvmiR/Qi0ECHoAmjKlCkYM2YMRo0ahXbt2mHatGlISEjA9OnTdfevV68e0tPTbY+FCxciISGhigCKjY21269u3bqB+Dp+oXZtUagZqCFhMClwoqL048aRmAOkDYGF01B4KYAA4IsvjM0G7Q45PUR0tHreQtUBKitT2+6JA1RZqb7mbLqM/HzXQ7MdBZDZbB8Gs1pVAeQuBOY46svo38NiUduvF6ZzRkmJWp9Ib/SRYx5QWZn6XeTIJmcCSLbn4ovVxF53AsjxWL4Mga1Yoa77+g7WnQACXIfBqiuAABGiCJHCh44EVQCVl5dj06ZNyNFkr5vNZuTk5GDNmjWGjvHhhx/i5ptvRu3ate22L126FA0bNkTr1q1x55134rSLO5qysjIUFBTYPWoaMg+oRoTB5F2ms+TpSBRAsvBdfn7oduZ6SAEkL6J33eW6nooRZOfSoIEqFEL1nEn3IyZGHa4JqB1uYaH+kOqTJ1Wh7EwAaTtrvQ5ZChkpgAD7ROjjx0UoLCpKbHflADkKIKMO0OnTqkjzxAE6ckR8/4QENeSlxbEW0L59QtAlJrp3DeV5k38D7bo7B0ieI186QCtXqus1SQAVFamOlJEh8GFIUAXQqVOnYLFYkCbV/l+kpaUh10C+wfr16/Hbb7/h9ttvt9vev39/fPLJJ1i8eDFeeOEFLFu2DAMGDIDFSQLa5MmTkZycbHtkuSoeGCRqlACSAsedAKqoiIxh8IAQeLLzCZcwmKKod/XTp4tOafdu4MUXq3dc2bmkpamioaaEwJYv9yyPS3ZA6en2IYCUFLUeip640woabwWQowME2AsgKUiysoTb5ioHyPH8GxWk2nZ54gBpk3f1QieODpA2X0i6+c5+M1K8eSOApNXuKwdIUYw7QLt3iyKa2sRvdxgRQM7mBJPnNDXVXrxHEEEPgVWHDz/8EB06dEAPhyrGN998M6699lp06NABgwcPxvfff48NGzZg6dKluscZP3488vPzbY/DclhrDUImQm/aVAMiLHSA9Am3ROi8PPH3M5vFRfTVV8X2Z5+tnsjTjgCTF96a4ADt3Qv07SuGsxvFWQdkNqsdtV6nq3UYjAogx398owJIFhn0RwhMKxROnBC1dozgruN2FEAyAbplS/cCSJ436S4C9qPy9ASG/L7SXfKVA7Rvn33+lisBdNddwO23q4UNjeCpA6T9DenNwxZhBFUApaamIioqCnkOajsvLw/pbmKKxcXFmDVrFkaPHu32c5o1a4bU1FTsdXLRjo2NRVJSkt2jptGpk3Cy8/J8n0fnMUYdoEgTQOE2FF7e0TdqJP6mw4aJ4a9lZWJIr7dKXOsAyc6sJgggOZXJnj3Gv5urDsjVUHhPHaDy8qrCxZ0A0iZAA8ZCYNKpNRoCc3TqjYbBPBVAnjhAeiEwKYasVv0q144CyFcOkHR/5DXRlQCS+ThGywkoijEB1KaNCDUWFAiHyfHzKICCQ0xMDLp27YrFmsRKq9WKxYsXo1evXi7fO3v2bJSVleEf//iH2885cuQITp8+jQxXP5IaTkKCWhAx6InQnjhAkRICA8LPAZL5PzK/yWQSw15jY8VdqrfxWGcOULCtTRkiqKgwPhWEqw7IVSK0toN1FpZx3O7YKXvqABkJgWVni6U3DhDgOwHkmAMkRYERB0gvBBYTozpgeufbUQCdPOlZKMoZMv9HFgt0JoAqK9XXpHB1R36+en111bfFxAATJ4r1++5TzyUFUPBDYOPGjcP777+Pjz/+GDt27MCdd96J4uJijPqrpPaIESMwfvz4Ku/78MMPMXjwYNTX2pwAioqK8PDDD2Pt2rU4cOAAFi9ejOuuuw4tWrRAv379AvKd/EWNqQckBY4zUROJhRAB3wyFf+opMblqTXBEpACSnSIgOqA+fcT6jh3eHVcvB6iyUszZFEy0ORJGQyBGBJBeh+upA+T4HkBfAMlRYMeOOQ+BlZVVTWSXx5IuprcOkNE8IG9DYJ44QA59g8s8IMeyDEaKVBpBOkA33SSW+fn6v/Njx1TBJUfHuUOew+Rk99fXhx4SdXrOnxc1vSoqKIBQAwTQsGHD8PLLL2PChAno3Lkztm7divnz59sSow8dOoTjDhNM7tq1CytXrtQNf0VFRWHbtm249tpr0apVK4wePRpdu3bFihUrEOvplA81jBqTCG3UASopUecwigQBJDsPbx0gRRF5Nhs3ivl2go3szKQDJJGCyJOkVy1aB0g7FYs/RZ/VKubs2rnT+T7a+ZJ8KYB8EQJzfA/g3gGSfx8pgBIT1f0cw2COAig/X3/+MUdkm2Q5DE8dIGepDloBVFSkuiOe5ABpHSDtc8fzWlqq5i6lp6vns7p5QCdOCLfFZBIOUEKC2K43YbJW9HgqgIxENsxm4OOPxbnbuFE4QswBQnSwGwAAY8eOxdixY3Vf00tcbt26NRQndnl8fDwWLFjgy+bVGLRTYihKEOtOGc0B0v6NIiEEJjuPvDwx/Fnb4Rjh0CG1I9q0CTAQ3vUrjiEwSXUFkNYBMpnERTk3Vwigxo29O6Y7li4F/vlPMY+R3oSYZ86IodmObXSHtzlA2uPn5wu31HFC4uoIoPPn1b+fzAGKihK/ycJC8Zna4efyWFq37+xZ/SHqWqQD1KmTmBTT6G/C3RQOUgBJEQGI81m3rmsBVFKiihmjAkgex2wW5yctTZyPEyfUUWHeIMNfF14o2pyZKdzhY8eqTlKtHXjjDwEEiNGA774r3KjJk8W2qKiq/98RRNAdIGKcjh3FaNaTJ+3/XwKOUQdISyQIoORk9SLrjQukne026IleUDszbacIqBdMXzhAQGCGwsu/x6ZN+iEIx9myjSbB+sIBAvTDMnKbs8lB9QRQfLwqEKxW0ak3aqS+7mwkmDz3qalqrpARR0626eKLxdJXOUDyt2GxALImXMuWYim/n16eljzX0dHqd5U4E0Dye9atK86X/OzqJkJLAXTJJWKpDU86or2g5+aquT2u8FQAAcCNNwK33aY+b9ZM/3odIVAAhRBxcWoRVHdhsOJioFcvcdPrc6Rl6sw6dfyHio1Va6KEO9VJhN6yxX7dF0mY3lJerl6UnTlA2irRRrFa1ZCP7NgDMRRedhYWi/4/j2ONFCMOkMWi7ledHCBAPwwm3ydHPxgRQIDqAgFC/GinrnE2Ekweq25dz/4e0smRAsiIKC4vV7+bs85bOx2GFBKyWJ8UQKWlVYWCNv/H0SJ3J4Dk99a6T9VB5v/IechcCSBH10frRjrDGwEEAG+8of5PR2gBREmE9Erhg9GZ4X/8UUw19Mknvp+AGJdcIi50r7+u/7qjAIqE/B9JdYbCax2goiLPZ9f2JQcPqpV65R2xRAqgo0c9rwp99qyaWyLDK4EUQIDqKGiRAkiKBSOdn5ytXOsaaHHmAFmt6vGleDEigLQJx4piTADJ/B+JMwdIeyz593CXCG2xqG2UAujMGf1h9lqkkIuOrpqorEUKESkkZGedmKjeUDmbw8wx/KXd5iwEJr+3LxygoiL1hsZTBwgwFgbzVgAlJgL/+x9w2WViktYIhgIoxDA6Euybb8TSYvHttDY2mjYVFzA9oqKgaB2fSAh/SXzhAEnBGMwwmDb85Xgn3bChEEaKYjxfQSI7/rp1VaEciFpA7gSQDIHJ8htGBJA8ZsOG+nPiOcsBOntWvStp104sHQWQxaKeDz0HqLRUnWJDujoSVwLI2VB4KQJSUoxPTyKHipvNwlGQAsLdMG5tArQrZ1gKIFn4TIbAzGZV9DkKIGcjwIDAOkBr14q/YZMmIvcGMOYASQFuZCi8twIIALp0AZYtA/r39/y9YQQFUIjhmAitR0UF8MMP6vNgFE6sMGlcIDpA7jlzRr0I3nCDWAZTADlLgAaEIPI2Edox/wcITA6QVgCtXWv/z2O1qgLoyivF0hMB5KwDcuYAyXOQkqKKFUcBdPas2kYpkrQCSDo2ZjNQp479e7UCSCZAS/RCYFo3SRsCc+cAyfakpgoBaPQ34S4BWuIwRZJduMZZIrSzEWDaba5ygADfOECO+T+AMQdI3uF64gCF6ESkNQEKoBCjQwdxk3D6tPObhBUr7PMDAy2ASkuBUosqgJRIEkDe1gKS4a/sbOBvfxPrNUEAOSZAS7zNA9KOAJMEIgSm7XROnLDvpPftEyOH4uKA3r3t2+kKowLozBn7OLTsWNPS1DCgowCSnbRWJGmnw9CGrBwdOk9DYEVFar6ZJw6QFDKyA5af5S4R2mjH7fi6duSUMwHkTQjM0QGSAqg6DpBj/g+gCiDHYfDnz6vtloLJnyEwYoMCKMSIjVXntnMWBpPhL0mgBdC8eUA51MRLa0wEhsCOHDE2kkMiBVCXLupdYDAToZ3VAJL40gGqbghs8WIgJwf4/nv9161WtbOWI6K0YTCZ/9O+vdpJGbn7NyqAtA6L9thGBFBqqioWS0vFEHbAef4P4HkITIqImBghAj11gGT7jP4mjHbcWpF8wQVA7drqc3cOkC9CYN46QBUVwmUE9AWQowMk3Z86ddSLuzsBdP686uJRAHkNBVAI4ioRWlGAb78V69L9DrQA+vBDoByqA1QRFUEOUGqqSDLUzqRuBCmAOncWtUfi40VnJyvgBhqjDpCnAsiXDlB5OfDww0L8LF4MvPmm/n6nT4vEa5MJuO46sU12UIAqgDp2VNt17pyaY+MMdx15rVqq46IVE9pz4KxTloIoNVV0/LLzl52yKwEkO1rAuQDShsAc3aRAOUCeCCCZ/yOpTghMm4gP+N4B2rJFCJR69dTK0oD6fYuKVCELqAIoK0u9aLvLAZLnPi6uag4YMQwFUAgiDQLtNVyyfbu4/sTFASNGiG2BFEAHDoi+SCuASs0RJIBMJu8SoWUCdOfOIrm8UyfxPFhhMHcOkLe1gHyVA7Rzpxh59PLL6jZnd82yw01NVe/ItQ6QzP/p0EF0rDKh2VmFZsfjuurI9YbCa8+BEQcIUEWGEQHUtKn4DvHx9jWAAP0QmDb/BzAuSAPpADkO1/YmBFa3rhou1H43x1Fg8nOLiozPbq9l4UKx7NPHPsm7Th31/GtdICmAGjdWC4EeOuR6bjztOQxaRdzQhwIoBOnbV/zmly5VQ80SGf666ir1pimQAmjGDPF/Gx2vEUCIoBAY4HkidGmpOq9Wly5iKVVuMATQ2bNVJ8d0JJgO0BdfABddJERj/frAK6+I7c46DW1nIUd5/fqr2rlpHSCzWRUl7hwATwSQ1gHyNAQm99W+15UAqlcP+OorYO7cqiUp3DlAztqsh78dIG0OkKcOkF4ILDpafZ9WkDomQScmqkVePXWBFAX4/HOxPmRI1df1wmBSuGdlCcFqMonyEq4EOPN/fAIFUAjSqhUwZoxYv+ce+/xKKYCuu079X/NEAO3dK3Jw5SAGT7BYxHRLAFCnvnrhPW+NIAcI8NwB+u03cfLq11fzNy66SCw3b/Z9+9whRU3DhvZ5F1qkADp92n3dFy3VzQEqKgJGjxZTHlx1lRAvd90lXjt/Xv8YsrPJyBCdTEaGCIFs2iSOJ/9OHTvat82oANKGnBzRGwrvbwEEAEOHAnqTP7vKAZLH8tYBkgIoP9+1m+fNKDCjDpCrEJh2u54Akt/bZPJ+KPzWreJmJi5O/A0c0RNAWgeoVi11H1dhMAogn0ABFKI8+6y4Bvz6K/Dee2LbkSPimm4yAX//u9qX6o26dMaHHwJLlgBPP+15mxYvFjczKSlAUqoqgIoiTQB56gBpE6ClnS0doM2bA58I7S78BYi7ZHmX7YkL5MoBKioSCaSuWLRIOGbZ2cD8+aKziItTj6fXaWiFismkukBr1gC//y7u2rVixMgwaEUx1pEbdYBOn7a/k5EdtHzdUwHkDE9CYJ46QNqimc5cIG1CurtRYA0bqv8Pjg6QuzpA1RFA8rMBzxOhP/tMLAcN0s/NcecAAfZhMGdQAPkECqAQJTVVFSmPPy6uVd99J55ffLG4XkoBVFAg+hYjyL5sxQrPBjEBQjwBwPDhgDlWI4AqI0wAeToUXpsALWnXTtjwBQXezy7vLe4SoCXe5AHpOUDJyWpH5y4PSBa4+vvf7fMrXHUajp2FVgBpw18SI3f/Z86oSdKuOnK9HCB53IYN7UeKaR2X6jpAzvAkBFZY6FqQOjpAgPvQqExId3yfHrVqAY8+CowcaZ9MDOg7QNqJUJ1VmHYUQBaL+v21AsgbB8hiEeFZwPlExq4cICmAZCI0BZDfoQAKYf71L5G3eeaMEEHa8BcgbtLlhORGw2DyulVSol8w1xmnT4vh74CIUGhzD/LLIywHSAqgAwfsR5s4QyZAy/wfQFz8g5UIbcQBAjzPAyouVici1XZ+UVHGJuC0Wu0FkBZXnYZjZyGnbVi7Vl8AGQmByWPWr+96MklHB0hR7IVDrVpqZ64Ng/lbALkKgWlrCzn7e1RUqG3UCkB3eUDahHQjk3BOniwSCx0TffUEkDzH2t+TI44CSFueQB4T8M4B+uUX4W7Vq+e8wrKjAFIU+xCYdkkB5HcogEKY6Gh15O+774oQFKAKIEB1gTwVQICINhjl88/FDXGXLn/145qL27myCHOAMjOFe1NZ6b6eh9Uq4piAvQMEBC8R2lUVaC2eFkOUgiIurmr1YiN5J1u2iAt/7drA5Zfbv+aJA9S1q/jnyc1VBZW3AshdB+SYA1RYqFqrUtTo5QE5E0AyfFTdEFhhoRpadTxWVJS67uzvIdsaFWXvtrgTxb7quPUEkPacORsZ5SiA5Pvr1LGfNNabofAy/DVsmHNx5yiAzp5VbwrkiD35W2YOkN+hAApxLr8cuPlmcSNRWSlyBbVusScCqKjI/hosR3MaQQ58sM0+r7mYnC2JMAFkNqt5QO7CV3v3igtgXFzVRM9gCyB3ITBPHSBt/o9jB2VkKLwsdHj11eooHYkrAaRNggbE8HDptsm2ywJ0gG8FkKMDJB0FbW0fTwSQrxwgRVHj4o45QIB7QSqFWMOG9qFIdw6Q0QRod7hygFxNsOoogPTyfwDPiyEWFwNffy3WnYW/gKoCSLo/qanqlEF0gAIGBVAY8NJLIv8QsHd/AM8EkLxmyb5l40ZjpVmKi9U++tpr/9qouQM6XRxhITDAeCK0zP/p2LHq5LLaRGhXNUF8icWi3nm6c4Bc5QD9+qvI1C8pUbfp5f9IjDhAzsJfgPO7ZkXR7yxkHhAgXIy2bdXnRsIfngog2eHqJYHLTlkKoPJyNUfH1wIoNla9OZFhMMcQmLbdzhKh9fJ/gMA7QCUlYsg44D4BWvuaOwHkqQP07bdCUGZn2/+2HNEKIO1kwvL3C7jPAaqoUH8rFEDVggIoDGjUSIwE69VLHREs8UQAyWtWu3aiP1AUMSLMHRs2iH4zM1PN49MKoFPF8UGb0SFoyDyg3btd76ctgOhI+/aiw8rPD1wi9LFjogOOjq5aRM8RbWfnKND++U+RmPbcc+o2vc5f4m4ofG6u+KEBwDXXVH3d2V3zuXNqB6ntLGQeEAC0bi0cOIk/Q2B6ItDRAZL7amc9l+fs/HnR0XorgEymqnlAescy6gA5JoBrHSB3NZmqg17ivC8FkKcOkAx//eMfrgsTyu9dWirOu2MCNKD+lk+e1C/EKNsUHe36uxK3UACFCcOHA6tXV618740DlJ0tZhcAjOUByWTp3r01//saAVSsxNvlGkYE0r1xrFTpiHYIvCO1aqm5KYEKg0kV3KSJWhHZGY0biz94SYl9R3HggFq/6PXX1U7GiAPkzHL88Uex7NZNf9SVvGvOzVUFD6B2uHXr2osc7V26NvwF2I8Acua8eRMCc0yAlkgBJDtlbTE/GV6qU0cNkeTleS+AgKojwVyFwDx1gGTnXVxcdXoPwHczmJvN6veQvxlfhsA8cYBOnAAWLBDrw4e73jcuTj3Px45VTYAGxPeSo1fk61rkOUxLsw8/Eo/h2QtzPCmGKPs+bwWQnfOrEUAliK/WxMohyZVXiuXmza7rqegNgdcS6DwgownQgPgbS5dIG/KYO1ddLyxUKzW7coDcOQ4y/0cv/AWITk8KhCNH1O2O+T+SJk3UTlibAA2ogkQbinLEUwFUUSHOhSsBJB0gPSdDW5zvwAF1CL43AsixFpCemHI3H5gzByguTr3o6OUB+TJ3RQoJ2f7qOEBa8Qeo5/rUKfv6THp8+aXYp3t34Sa6QxsGc6wBBIi/tSejGonXUACFOd6EwLKzxXQbUVFiLk5XgxEUxb0AKkVc5Amg9HTgwgvFCfrlF/19cnPFw2yu2glLpADypCZBdTCaAC3RywOSyaBXXSWWb7whOhJXDpCrEFhZmZqR70wAmUz6YTBnnYXJJEbrREdXDaklJKij1Jz9cI12QgkJqvN0+rS+CDQigLTv2bVLLM3mqqPpjKANgVksqsjzJATmzAECVBtaLw/IHwLImxBYYaH4XTnOAyapX1/8RhRF38nSog1/GUErgPRCYIBnoxqJ11AAhTlSAOXmur+R0QqgpCSgZ0/x3JUL9Oef4voQE6PO3gCADhDg3kaT+T+tWqlZ7I5ceaXo6Fau1J/91tcYrQEkcUx6zcsDVq0S6x98IEJ7RUVi0lJvHaDly8UxMjL0Q4USvURoV53Fyy+Lz9Nz39yFQDzphLR5QEZygIwKIG29Hk/QhsC09YA8SYJ2Vc1Z/ib0HCBfjQIDqgogIyGw5GQ1tHv6tPMQmDa/xtXFa+tWYP16sf+wYcbarecAaUNg2ueuKptTAFUbCqAwR4aJLRbX/8eKovZh8gbOSBhs9Wqx7NrVYWQyBZDqgDg7gTKvpUcP58fIzhaVcAHgiSd81zZneOoAOQqgb74RP6bu3cVFfNIksf2tt9SEcE9zgGT4a+BA1zkPnjhAgOi0ZK6FI65GghUWqrVbjHRCWjHhbQhM+x6tAPIGbQhMho9q17avg+MPB8jT8+YObxwgs9l+ZJ4zAQQYGw341ltiOXSo+8rWEimADh9WrXlvHKDq5lERCqBwJzpa/T9xFQY7e1Z1wh0F0OLFzqej0g1/AQyBAcBll4k/wL59VYsFVlQAs2aJ9Ztvdn2cCRNE57RoEbB0qV+aasNbB0h+Pxn+kjNhDxok1HFxsfoD9MQBUhR1jpeBA123RS9vwsiEpXq4mgpBHjMx0flksVq0Ha67JGhtyMVfAkjrAOkNgde22V0StCcOkKfnzR3eCCDt6+4EkLvpMM6cUQug3XOPsTYD6m9xyxZRvM1s1s9RA/QFkC9dtAiHAigCMJIHJK9VaWlqNKZnT3GdOnkS2L5d/31OBZDmbrIE8VUmu44I6tRRT4yjC7RwobgAN2igOkXOaNoUGDNGrD/xhP9qAhUUqJ2UHMbvDm0O0LlzajlyORO2yQQ8+aT9ezzJAdq5Uxw7JkZV5M7Qu2t2lgTtDlchME9DEO4cINkhV1QIV8ZZRy7FhgyLVFcAaR0gx2O5coDKy9XtrhwgxxpYvnYuvAmBAcYFkDsH6MMPxXD2Tp2APn2Mt1sKIDlS8oILqtYAYwgsIFAARQBGBJA2/0cSE6POOKAXxSksVIVR794OLzIEJpDixrGstrxzvPnmqhc/PR57TCTTrlypDrn1NdJZSE833rnKH8zhwyL8VVkpCklpR8Ncc40a5tOGILRoQ2BagSfDX1dc4T7h19MQmCt8KYBkh3v0qPinAeyFQ3y86oicPKmGwqQzJJHvkefHlyEwx1FQrhwgeU6085hp6dJF5Nns3Wtfv8rXHbdWAJWUqOE1ow7Q6dOqeNL7Hq5+AxYL8PbbYv2eezzLxZICSI7kcwx/Aepv+fDhqvY7BZDPoACKALwVQIDz/hsQdemsVvG/WiXCwBCYQLoWv/yiZqEXFakzx7qrGyLJzFSrXD7+uH9coJ07xdJx5m1XpKeL5C+LRdT8AVT3R6J1gZo21a8vJDsgi0UVCYA6w6+z0V9atAJInp+aIICkmPjjD7GMiak6Wac2D8hdCEziixCYOweouNi+rhLgfBoM7Xv79hXrMiSqfZ8/BJCRiVAl2srbRkJgeg7Qjz8K27xuXeCWWzxrt+PF0jEBWu4TFSVcQe3nW60MgfkQCqAIoDoCSPbfy5erczhKZAK0buV3OkCC7t3FHfeZM2rNn3nzRIXX5s1dJ0A78uijwinYtEkVBr7EGwFkNqs/GjmqTeb/aOnfX9QH+uor/ePEx6vDxbWFE+WPzHGOFz1kTaKSEiEiqpN06yr8UV0B1LBhVccgGAIoP995DlBysipuHBPTXeX/SK6/XiznzFG3+dMB0oa/3Lkx8rwePCgEBuA6BKZ38ZKzUN9+u/MRnM5wPG96DlB0tHrh1obBTp8WLitgPOmaOIUCKAIwUgzRmQBq3170KyUlquMrcZr/A1AASaKjRfgGUG00o2XzHWnYELj/frH+xBNV78yrizcCCLD/0TRp4nyo+uDBal0jPRzzTr77Tjg53brpdxKOxMaqneuhQ2qHW6eO5/VyXHV+nuYVyQ5X/pPpdVyBFEB6ITDHY5nNqsBwDINJB8JVBzx4sPhtr1unFqb0pwAymgCt3UeOSoyJ0RcxzpKgd+4U/8smE3DnnZ63OybGPrzp7LftKqSbmup8xnliGAqgCMATB8hxKg1t9GLSJPXapyhqWZoq+T9AFQF05ox64xJxaOsJ5OWpQsho+EvLgw+Ku/PffhN3uwMHitDTH3+4D4sdOmRfJdmRHTvEUjsxqBG0AmjoUO9q0wBVh8LLitJ6jpIztJ2GFCqejgADjI0C89QBkn8fVwLo4EF1AlnHzjwpyb7WhC9DYHo5MM4SoV0NgZdkZKgXBvl3rKkCqF49/d+sFMG5ufb/W1OniuWgQcbLRTii/U3qhcC0232R00Z0oQCKANwJIEWxnwfMkdtuEzfhhYXAf/8rtu3eLa6LcXFiEEQV/hJASlQUFLNI8nVXUDVskQJo5UpgxgwRx+/RA2jZ0vNj1a0rRp+kpYnwzo8/CleofXvghhucv6+4WPwRu3fXd44qKtRRO9VxgBzzfzxB2+EWFqqZ94MHGz+GttOoTmchO78zZ9QwicRbAeR4bC1SAEkXLiamqmulnQ4D8I0D5CwEBjhPhHZVBFGLYxjMn6PAZBs9EUBS3OqJP0Bt5+HDQrCMHAl88on4HwaAsWO9ajYAewHkzAFyVdaBAsgnUABFAFIAFRSI/FtH8vJEfo/ZrH8zYjar9b4++kgUPpWpGd26OXFi/9poio83VFA1rGndWsQRy8qAZ54R27xxfyTXXy8uhL/+Crz0kpqpPneumvPiyK+/ivBKbi6wbVvV1/fvFx19QoL7WeAdad5cLBs2dBIPNYh2KPz8+WKUTMuWnjlS2uHD1eks6tVTc2AclXt1BZArB0i6cKmp+q6ELwSQkWHwQPUcIEB17lasEP/8/kqCLi5W/ybuhsADVUWSXv4PIH5LMscnN1eIn5EjxUW0dWv3ZRlc4YkDZLSyOfEYCqAIIClJvZmUUQEtMvzVqJF9MVgtPXsKJwgQoz5dJkADqiqKj/doYuWwxGRSL5ZFRWJ0h9Gy+a6O2bEj8NBDwM8/iwuqogiho4dMUAbE8D1HpPPQurXnM0wPHAjccQfw7rvuZ5B3hbbDlaPkZC6JUXzlAEVFqR2lNhG6pEQVDZ7mAElcCSAZlnHmZPhSAJWXq99NzwWprgPUtKnI+bJagdmz1eP4qvPWjvbas0csPXGAJM4EkMkEvP+++D0uWgQ8/LD4n4uOFnkB3oZ6AVUAxcU5F23yt/zTT8Lhvfpq4NNPxTYKIJ9QIwTQ1KlT0bRpU8TFxaFnz55Yv369031nzJgBk8lk94iTo0f+QlEUTJgwARkZGYiPj0dOTg72yH+QCMVVGMxZArQjkyeLIq7r1wMffyy26eb/AKoAioujAALs7xavusr3IzjkRGzOZo2XRdcAYOPGqq97mwANiL/1u+96FqrSQ3ZEeXnADz+IdU+PqQ0bVPduWe+Hu2KFWKalGRcgSUn2tZ5cCSAZbvOnANKG1lwVVayuAwSoYTA5giImxrng8BTtkHcZvvWlAJLExoo5+V58UdxglJdX/wZGCqCsLOdCqnt3IY4qKkSO38KFqkPobe4RsSPoAujLL7/EuHHjMHHiRGzevBmdOnVCv379cMJFb5mUlITjx4/bHgcdqmW++OKLeOONNzBt2jSsW7cOtWvXRr9+/VDqOI47gvCFAEpPByZOFOvyOu3UAZJWEh0ggVYAVSf85QwpgLRCR4t2u54D5G0CtC+RLsS8eSI8k5amzshrFL0kaG8FkF4itMxn8cSZMpnsO1lXAkjiTwEUFaXOgSbDe54IIKMOEKDmhMkSAOnp1XNOHJG/GXmDayQEVqeOfdzeU0Hmi/bLCXhdjYps0EDkH0nxM2MG8Oyz4uGPa0gEYqAErX+ZMmUKxowZg1GjRgEApk2bhh9++AHTp0/Hf/7zH933mEwmpDv551MUBa+99hoef/xxXPdX7ZBPPvkEaWlpmDdvHm52N+9SmGJEADmOANPjnnuEK7xrlxBMTm8CW7USF9oLL6wy12NEkpYG/OtfIsRRnURhZ8gLqZ4AKisTo8Ykf/wh8ia08zFVxwHyFbIjkjc0117reUhNCqC8PHVoszejwICqDpDFoobmPP0b1q+vHkcvCdpR8PhTAAHCOdEWnDSaBF1aqs4gb8QBat1ahG9+/10893Xopm5dMYJDTmRoxAEymcR+UiA7S4L2JxdfLG46pGPpjPh4cVMSzBuTMCaoDlB5eTk2bdqEHM3dsdlsRk5ODtbIIjM6FBUVoUmTJsjKysJ1112H3+U/F4D9+/cjNzfX7pjJycno2bOn02OWlZWhoKDA7hFu+MIBAsSN0zvviP9Llzch2dniAjNrFh0gybRpoiK0p4XTjCAdoN9/V4dRS37/XdQgqFdPdEBWq31OkKLULAEk8SakVq+een7lD9tXIbDVq8V6Sopa6dgo2o7ZFw6Q2ex5bSMtciSYxOgweBn+iokxLsC0YtEfAkiLEQHkuJ+vQnKe0qaNuJCSoBFUAXTq1ClYLBakOVwQ0tLSkCttVgdat26N6dOn45tvvsFnn30Gq9WK3r1748hf9U3k+zw55uTJk5GcnGx7ZBkpuhZiuBJArobA63HFFeIm8Omn3ezYsCFQqxYFUCC44ALRiVosVWeula5Qly4irwCwzwM6cUIk9ppM3g3N9xXajqhOHeBvf/P8GCZT1VE11RVAstOX0zpce63nReikm+JsLrTERPtjuhNAKSnVC8VoE4hNpqqCCNB3gLT5P0Y/X+YBAb4bAi9xNoeZO2qCACJBJ+g5QJ7Sq1cvjBgxAp07d8bll1+Or7/+Gg0aNMC7777r9THHjx+P/Px82+Pw4cM+bHHNwFk1aItFLTPhSV6ds9FielAABQCTyXkYTD6/6CJVAGnzgKT7k52tTkcRDLSd2YAB3rdFG1aIi3M/N5QztD9cRVEFkDchTNkxN2igH9YzmexdIGcCqHNnIT68EYdatOckKcn5nF6A6gBZrcL+BdQ7KiN07KiWSqADRGoQQRVAqampiIqKQp7DfDt5eXlOc3wcqVWrFrp06YK9f40CkO/z5JixsbFISkqye4QbzhygI0dEdCQmxvtUCXdQAAUIZyPBZLjrootE4SbA3gGqCQnQgH1HVJ0RZVoHKCPDe6dE+8PdtEncKdSuLYYje4rscPXyfyRaAeQYEpOkpIjEWGdzqhlFe41zlgOjdYAsFlETZ8YMIZYeecT4Z5lMwPjx4u9rZFJbT9C23chEqBIKIIIgC6CYmBh07doVixcvtm2zWq1YvHgxehksqGaxWLB9+3Zk/HVnkZ2djfT0dLtjFhQUYN26dYaPGY5IAXT8uDopOaCmSTRp4nn5F6NQAAUIvZFglZVqbSCtANq9W61nUxPyfwDhbNSuLR7XXOP9cbQCqDqqXjsKTLo/11zjXd6GFBOuEoeNOECAsF+rOxJJKxSc5fJIYVBSAtx6q6iCajaLuew8mZ4EAEaPFkJK/kZ9hVYAGZkIVaI9v8FIgiY1gqCPAhs3bhxGjhyJbt26oUePHnjttddQXFxsGxU2YsQIXHDBBZg8eTIA4KmnnsLFF1+MFi1a4Ny5c3jppZdw8OBB3H777QDECLH7778fzzzzDFq2bIns7Gw88cQTyMzMxODq1ikJYdLTxbXLYhHXc+lEezICzFvkdb2oSFxLmffnJ2QIbPt2UaskJkYM1yspETk1LVqIH0HTpiLxa/NmEUqpKQKodm2RJB4dXb0RTo4OkLdoc4Dk8HdvR/D16SP+Hlde6XwfowLIFxgRQElJwlWxWICZM8X6559XvwaOL9GKF0/OGR0gghoggIYNG4aTJ09iwoQJyM3NRefOnTF//nxbEvOhQ4dg1lgTZ8+exZgxY5Cbm4u6deuia9euWL16Ndq1a2fb55FHHkFxcTHuuOMOnDt3Dpdccgnmz59fpWBiJBEdLW4+jx8Xg7McBZA/62olJYlrf3m5GArvrPI7qSZNmogO4exZMez9oovU8FfnzqrF1727EEAbNtQsAQSIOdKqi68FUFmZcMxiYkTVa2/o3VuMHHB1DdIKIKPJvN6iDYE5E0CyftHJk0L8zJwJ3Hijf9vlKdUVQCaT9zliJOSpEUnQY8eOxcGDB1FWVoZ169ahp6b42dKlSzFDTj4H4NVXX7Xtm5ubix9++AFdunSxO57JZMJTTz2F3NxclJaWYtGiRWjVqlWgvk6NRS8PyNMRYN5gMjEMFhBMpqphMG0CtESbB3T+vFp3J9g5QL5CmwRdHQFUu7Z9yYKrr1YLCHqDuxswKYBq1/a/Tart9F2FgORkf19+WfPED1A1BGYUKYBSUqo3fQsJaWqEACKBQQqgb79VnZ9AOEAABVDAcCaAtDcJ2pFgu3aJ9dRU/7sOgeKCC9RckOqOOtImLfujgKUW2Sn7O/wFGAuBAcA33wjLWDuUvSbhrQMk57wLF9FPvIICKIKQJtiHHwLNmon/fRkhoQAKE2Qe0KZN9gUPtQ6QXD94UJ3bqiaEv3xFTIwqfKorgGTSclSUqP/jT2RbfT1PnB5GQmCASLiuycJY23ZPBFDjxmL04/ff+7xJJHQIeg4QCRyPPy6uZT/+CKxapaZ+AEIQ+RMKoAAhxc2vv4q8lYICMZmj9k43OVncAe/aJUb0AOElgADgoYeA+fOBSy+t3nHkD7dvX/8LgauvBu691/9CCzAeAqvpeBsCA9Q7QhKx0AGKIJKSgEcfBZYtE3MgfvUVMGYMMGWK/113zgcWIJo3F3kqZWXAF1+IbR07Vq1cKfOAZEHEcBNADzwALFhQ/WlHZD7iX6NM/UpcHPD6665HivkKow5QTcdbB4gQUABFLCkpIqfxvfdEX+Fv6AAFCLNZdYGmTxdLh0ECANQ8IAlzIfR59FFg3z4g3CZRNpoDVNOJjlYT0ymAiIdQAJGAQAEUQKQAksP99IrPSQdIEm4OkK+IjvZ/glwwCBcBBKjFLj2ZnoMQMAeIBAgKoADiKHj0BFCXLsItslpFjpB26DgJf4xMhREqvP8+sG0b0KlTsFtCQgw6QCQgUAAFEDkSDBCjlzp0qLpPQgLQvr1Yb9WKtVAijbg4UeTQbPb9DO2B5tJLgbvvrv70ICTioANEAoIUQCdPiom1ea3yI61aCYFz/jzQrp3zAnzdu4tpM5j/E5l8+62oGs7cGRKh0AEiAUGOAisrAwoLg9uWsCcqSkx9AbiefHLMGDFq7K9590iE0aeP72dnJySEoAAiASE+XszHCTAMFhAGDRJLVx3cxRcDe/cC/fsHpk2EEFKDoAAiAYN5QAHk4YfF8O0bbgh2SwghpEZCAUQChhRAa9aIPCDiR6KiwnP4NiGE+AgKIBIwWrQQy4ceEvm38+aJUdiEEEJIoKEAIgHj9deBBx8UA5Q2bQKGDBHlaBYuDHbLCCGERBoUQCRg1KsHvPwycOAAMH68qGC/bZuYZYAhMUIIIYGEAogEnAYNgOeeEzm6UVHAmTPAsWPBbhUhhJBIggKIBI3UVKBZM7G+Y0dw20IIISSyoAAiQUUWIaYAIoQQEkgogEhQoQAihBASDCiASFBp104sKYAIIYQEEgogElToABFCCAkGFEAkqLRpI5Z5eWJiakIIISQQUACRoJKYCDRqJNbpAhFCCAkUFEAk6DAMRgghJNBQAJGgIwXQH38Etx2EEEIiBwogEnToABFCCAk0FEAk6FAAEUIICTQUQCToyFpABw8C588Hty2EEEIiAwogEnQaNADq1xczwu/aFezWEEIIiQQogEiNgGEwQgghgYQCiNQIKIAIIYQEEgogUiOgACKEEBJIaoQAmjp1Kpo2bYq4uDj07NkT69evd7rv+++/j0svvRR169ZF3bp1kZOTU2X/2267DSaTye7Rv39/f38NUg0ogAghhASSoAugL7/8EuPGjcPEiROxefNmdOrUCf369cOJEyd091+6dCluueUWLFmyBGvWrEFWVhauvvpqHD161G6//v374/jx47bHzJkzA/F1iJdIAbR7N1BREdy2EEIICX+CLoCmTJmCMWPGYNSoUWjXrh2mTZuGhIQETJ8+XXf/zz//HHfddRc6d+6MNm3a4IMPPoDVasXixYvt9ouNjUV6errtUbdu3UB8HeIlWVlAQgJQWQn8+afrfX/6SYwa++yzwLSNEEJI+BFUAVReXo5NmzYhJyfHts1sNiMnJwdr1qwxdIzz58+joqIC9erVs9u+dOlSNGzYEK1bt8add96J06dPOz1GWVkZCgoK7B4ksJjN6szwrsJg5eXA2LHAmTPAM8+IofOEEEKIpwRVAJ06dQoWiwVpaWl229PS0pCbm2voGI8++igyMzPtRFT//v3xySefYPHixXjhhRewbNkyDBgwABaLRfcYkydPRnJysu2RlZXl/ZciXiMLIroSQB98AOzbJ9Z37QI2bNDf7/Bh4JprgHnzfNpEQgghYUJ0sBtQHZ5//nnMmjULS5cuRVxcnG37zTffbFvv0KEDOnbsiObNm2Pp0qW48sorqxxn/PjxGDdunO15QUEBRVAQcJcIXVQEPPWUWG/QADh5Evj4Y6BHj6r7PvmkCJXt2wcMHuyX5hJCCAlhguoApaamIioqCnl5eXbb8/LykJ6e7vK9L7/8Mp5//nn8/PPP6Nixo8t9mzVrhtTUVOzdu1f39djYWCQlJdk9SOBxJ4Befx3IywOaNQNkitjMmUBZmf1+eXnAp5+K9V27WF2aEEJIVYIqgGJiYtC1a1e7BGaZ0NyrVy+n73vxxRfx9NNPY/78+ejWrZvbzzly5AhOnz6NjIwMn7Sb+AcpgHbuBKxW+9dOnwZefFGsP/MMMGAAkJkJnD0L/PCD/b5Tp4pcIck33/ivzYQQQkKToI8CGzduHN5//318/PHH2LFjB+68804UFxdj1KhRAIARI0Zg/Pjxtv1feOEFPPHEE5g+fTqaNm2K3Nxc5ObmoqioCABQVFSEhx9+GGvXrsWBAwewePFiXHfddWjRogX69esXlO9IjNG8ORAdDRQXA0eO2L82eTJQUAB07gwMGwZERQH/+Id47eOP1f3Onwfeflusy2gnBRAhhBBHgi6Ahg0bhpdffhkTJkxA586dsXXrVsyfP9+WGH3o0CEcP37ctv8777yD8vJy3HDDDcjIyLA9Xn75ZQBAVFQUtm3bhmuvvRatWrXC6NGj0bVrV6xYsQKxsbFB+Y7EGLVqAS1bivXff1e3HzoEvPWWWJ88WYwYA4ARI8Tyxx9FPhAAfPKJcIuaNgU+/FBsW7NGhMUIIYQQiUlROJDYkYKCAiQnJyM/P5/5QAHm+uuBr78WIqdpUyGIzpwRo70uvxxYsgQwmdT9u3UDNm0S+UFjx4ow2u7dwGuvAffdB3TvDmzcCLz/PnD77cH6VoQQQgKBJ/130B0gQrSMHAkkJ4scoH37gAUL1KHuzz9vL37k/oAIg/3wgxA/ycnAP/8ptl93nVjqhcEsFmDaNGDLFv98F0IIITUXOkA60AEKLooC5OYCe/YIQbNnj3B2brut6r4nT4pk6MpKoEULYO9e4JFHgBdeEK9v3w507AjExQGnTgG1a6vvffll4OGHRf0hbciNEEJIaOJJ/00BpAMFUGgxeLDq8ERHA/v3A40aieeKIpKr9+8XobUhQ8T2w4eFqCouFs/z8oCGDQPedEIIIT6EITASUcgwGADcfLMqfgARMtMLgz3wgCp+AGDVKv+2kRBCSM2CAoiEPNdcA6Sni8TpBx+s+rqsBP3ddyJU9tNPwJw5Yij95ZeL11auDFhzCSGE1ABCeioMQgAgNhZYsUIURezcuerrffoA9eqJ0WSLF4vRYoBwgTp3BpYtowAihJBIgzlAOjAHKPwYOVLUCJJziF1wgag4LWsGRUcD587ZJ0kTQggJLZgDRIgDMg9IFkx8/XWgTh2gcWORM1RZCaxfH7z2EUIICSwUQCQiuPpqESoDgP79gaFDxbrJBFxyiVhfsSI4bSOEEBJ4KIBIRFCnjqgM3bq1mCxVW1Dx0kvFknlAhBASOTAHSAfmAEUW27YBnToJkXT2rMgHIoQQEnowB4gQD2jfXkyfUVQkxBAhhJDwhwKIRDxRUUDv3mKdYTBCCIkMKIAIAROhCSEk0qAAIgT2idDMiiOEkPCHAogQAN27AzExYhb6ffuC3RpCCCH+hgKIEABxcUC3bmKdeUCEEBL+UAAR8hcyD4gCiBBCwh8KIEL+ggURCSEkcqAAIuQv5FD4nTvVOcMIIYSEJxRAhPxFvXqiKCIAfPBBcNtCCCHEv1AAEaJhzBix/O9/gWnTgtsWQggh/oMCiBAN994LPPKIWL/zTmD69OC2hxBCiH+gACJEg8kEPP88cP/94vnttwOffhrUJhFCCPEDFECEOGAyAVOmAHfdJapC33YbMGtWsFtFCCHEl1AAEaKDyQS8+abICbJagZEjgXXrgt0qQgghvoICiBAnmM0iEXrIEKC8HLj+eiAvL9itIoQQ4gsogAhxgdkMzJgBtG4NHD0KDBsGVFYGu1WEEEKqCwUQIW5ISgLmzgXq1AGWLQMefTTYLSKEEFJdKIAIMUDbtsDHH4v1KVOYFE0IIaEOBRAhBhk6FPjPf8T66NFilNibbwILFwKHD4sRY4QQQkIDk6Lwsu1IQUEBkpOTkZ+fj6SkpGA3h9QgLBZgwAAhehxJSQF69AAuvhjo2VM86td3fqyKCiGcsrKAWrX81mRCCIkYPOm/KYB0oAAirigrA/73P+C338TEqTt3Anv36idHX3AB0K6dmGOsfXsgKgrYtAnYuBHYulUcq3lz4LnngBtvFMPvCSGEeIcn/XeNCIFNnToVTZs2RVxcHHr27In169e73H/27Nlo06YN4uLi0KFDB/z44492ryuKggkTJiAjIwPx8fHIycnBnj17/PkVSAQRGwsMHw5MniySo3fsAIqLhaiZOhUYMQJo1Urse/SocItee03UFPrnP8U+69YJ8WMyAX/+KUaXXXyxSLImhBDif4IugL788kuMGzcOEydOxObNm9GpUyf069cPJ06c0N1/9erVuOWWWzB69Ghs2bIFgwcPxuDBg/Hbb7/Z9nnxxRfxxhtvYNq0aVi3bh1q166Nfv36obS0NFBfi0QYMTFA164iL+jjj4Fdu4Bz54DVq4H33xdTa1x1FdC3LzBuHPDFF8Du3UB+PjBpElC7NrB+vXi9Xz/xnkOHfNvGoiKA/wKEkJpAZSVQUhLcNgQ9BNazZ090794db731FgDAarUiKysL99xzD/4jM041DBs2DMXFxfj+++9t2y6++GJ07twZ06ZNg6IoyMzMxIMPPoiHHnoIAJCfn4+0tDTMmDEDN998s9s2MQRGAk1eHvDkk8B774k8I0m7dkIQ1a0rBNXZs2JZWCguIBaLuoyOBhISgPh4sYyKAnJzhQt17Jh4j8kENGsmRrW1ayfCb/n5wPHjYp9jx4Dz54G4OHEc+ZDHlevR0UJMyUdZmfr5ct/YWJHnVF6uLsvKxEO+z2IReVINGwJpaWKZmCiOJR9ms2hTYaEQcYWF4n2xsaKdchkVJR5ms7rUrkdFiarelZXqQ1FE/lWtWkLEylwsi0XsK5eAGp40mcT7FEW8ZrWKdfkZ8hEdrR67Vi3xXB5T/t3ko6JCfZSX258rq1Wc09q11WVUlPr5cqk9RkUFUFAAnDypPs6cEe2PjlbbGBsryjtoH/I8yIc8b9rPkg95fmQvoj1HMTHq70j+nQB1f/lwh+N5jYoS56e0VHSgpaXi+5pM9g/Hv4/j52rbrH1PUZH6KCxUjy9/x5WV4hzK8xQTY3+O5O8lIUH8lpOSxDI+vmqIW/5O5N/EbLb/G1ZWim3a32dMTNWH/D/RniP5O5OPggLxfy4feXlVv5v8TO11JTERSE0FGjQQj6Qk9f9I7qc9t/L7O7bx9Glg/371cfiwCP3Lyad9hSf9d7RvP9ozysvLsWnTJowfP962zWw2IycnB2vWrNF9z5o1azBu3Di7bf369cO8efMAAPv370dubi5ycnJsrycnJ6Nnz55Ys2aNrgAqKytDWVmZ7XlBQUF1vhYhHpOWBrz9NvDAA8IdWrBAhMn++EM8fIWiiJDbn38CmnsIQggJOAcPBvfzgyqATp06BYvFgrS0NLvtaWlp2Llzp+57cnNzdffPzc21vS63OdvHkcmTJ+PJJ5/06jsQ4ktatgQmThSPM2eAxYuBX34Rd1l164qRZnXrirsy6SrIO77KSuGUlJSIZUWFEFYXXABkZorl+fOqqNqxA9i3TxwvM1M8MjKECyDvrrUPeeySEvFZcXHqIyam6ueXldnftdaqpbo18mE2izvDvDzgxAmxLC62d0csFvVuOjFRtK9WLXsnSbpJWldCLrWui+Mdt8kkPkO6LuXl4u+gvZM2axIF5F2uySS2yyVQ9bMdnZ2KCrGv/Gy51Lot8lzFxqpL6YAVF6sPq9X+802mqsepU0c4avLOvV49sZ/27r60VBxP63po3YCKCrGfdNOkU6I9N/IhHRV5jhxdGpnzpn1oz60WrTPk6GRo3T/pMEVH23+29m+kbbf2c6Xj4/h31bphtWuL4zu6LY6/GfnbkscFVNeyoEAsHcM9ilLVDbRaq7qG8lxq3UFHp1C+Vx5P/j60f6c6dcT/t3ykp4v/K62rpHVepauUnw+cOiUeJ0+K76N1ObXfW/v9HduYnAxkZ9s/MjK8ukz6jKAKoJrC+PHj7VylgoICZGVlBbFFhIgO68YbxcNXyE6xb1/fHZMQQkKRoCZBp6amIioqCnkOM0zm5eUhPT1d9z3p6eku95dLT44ZGxuLpKQkuwchhBBCwpegCqCYmBh07doVixcvtm2zWq1YvHgxevXqpfueXr162e0PAAsXLrTtn52djfT0dLt9CgoKsG7dOqfHJIQQQkhkEfQQ2Lhx4zBy5Eh069YNPXr0wGuvvYbi4mKMGjUKADBixAhccMEFmDx5MgDgvvvuw+WXX45XXnkFAwcOxKxZs7Bx40a89957AACTyYT7778fzzzzDFq2bIns7Gw88cQTyMzMxODBg4P1NQkhhBBSgwi6ABo2bBhOnjyJCRMmIDc3F507d8b8+fNtScyHDh2CWZMp17t3b3zxxRd4/PHH8d///hctW7bEvHnzcOGFF9r2eeSRR1BcXIw77rgD586dwyWXXIL58+cjLi4u4N+PEEIIITWPoNcBqomwDhAhhBASeoTcVBiEEEIIIYGEAogQQgghEQcFECGEEEIiDgogQgghhEQcFECEEEIIiTgogAghhBAScVAAEUIIISTioAAihBBCSMRBAUQIIYSQiCPoU2HURGRx7IKCgiC3hBBCCCFGkf22kUkuKIB0KCwsBABkZWUFuSWEEEII8ZTCwkIkJye73IdzgelgtVpx7NgxJCYmwmQy+fTYBQUFyMrKwuHDhznPmJ/huQ4cPNeBg+c6cPBcBw5fnWtFUVBYWIjMzEy7idT1oAOkg9lsRqNGjfz6GUlJSfyHChA814GD5zpw8FwHDp7rwOGLc+3O+ZEwCZoQQgghEQcFECGEEEIiDgqgABMbG4uJEyciNjY22E0Je3iuAwfPdeDguQ4cPNeBIxjnmknQhBBCCIk46AARQgghJOKgACKEEEJIxEEBRAghhJCIgwKIEEIIIREHBVAAmTp1Kpo2bYq4uDj07NkT69evD3aTQp7Jkyeje/fuSExMRMOGDTF48GDs2rXLbp/S0lLcfffdqF+/PurUqYPrr78eeXl5QWpx+PD888/DZDLh/vvvt23jufYdR48exT/+8Q/Ur18f8fHx6NChAzZu3Gh7XVEUTJgwARkZGYiPj0dOTg727NkTxBaHJhaLBU888QSys7MRHx+P5s2b4+mnn7abS4rn2juWL1+OQYMGITMzEyaTCfPmzbN73ch5PXPmDIYPH46kpCSkpKRg9OjRKCoq8kn7KIACxJdffolx48Zh4sSJ2Lx5Mzp16oR+/frhxIkTwW5aSLNs2TLcfffdWLt2LRYuXIiKigpcffXVKC4utu3zwAMP4LvvvsPs2bOxbNkyHDt2DEOHDg1iq0OfDRs24N1330XHjh3ttvNc+4azZ8+iT58+qFWrFn766Sf88ccfeOWVV1C3bl3bPi+++CLeeOMNTJs2DevWrUPt2rXRr18/lJaWBrHloccLL7yAd955B2+99RZ27NiBF154AS+++CLefPNN2z48195RXFyMTp06YerUqbqvGzmvw4cPx++//46FCxfi+++/x/Lly3HHHXf4poEKCQg9evRQ7r77bttzi8WiZGZmKpMnTw5iq8KPEydOKACUZcuWKYqiKOfOnVNq1aqlzJ4927bPjh07FADKmjVrgtXMkKawsFBp2bKlsnDhQuXyyy9X7rvvPkVReK59yaOPPqpccsklTl+3Wq1Kenq68tJLL9m2nTt3TomNjVVmzpwZiCaGDQMHDlT++c9/2m0bOnSoMnz4cEVReK59BQBl7ty5tudGzusff/yhAFA2bNhg2+enn35STCaTcvTo0Wq3iQ5QACgvL8emTZuQk5Nj22Y2m5GTk4M1a9YEsWXhR35+PgCgXr16AIBNmzahoqLC7ty3adMGjRs35rn3krvvvhsDBw60O6cAz7Uv+fbbb9GtWzfceOONaNiwIbp06YL333/f9vr+/fuRm5trd66Tk5PRs2dPnmsP6d27NxYvXozdu3cDAH799VesXLkSAwYMAMBz7S+MnNc1a9YgJSUF3bp1s+2Tk5MDs9mMdevWVbsNnAw1AJw6dQoWiwVpaWl229PS0rBz584gtSr8sFqtuP/++9GnTx9ceOGFAIDc3FzExMQgJSXFbt+0tDTk5uYGoZWhzaxZs7B582Zs2LChyms8175j3759eOeddzBu3Dj897//xYYNG3DvvfciJiYGI0eOtJ1PvWsKz7Vn/Oc//0FBQQHatGmDqKgoWCwWPPvssxg+fDgA8Fz7CSPnNTc3Fw0bNrR7PTo6GvXq1fPJuacAImHD3Xffjd9++w0rV64MdlPCksOHD+O+++7DwoULERcXF+zmhDVWqxXdunXDc889BwDo0qULfvvtN0ybNg0jR44McuvCi6+++gqff/45vvjiC7Rv3x5bt27F/fffj8zMTJ7rMIchsACQmpqKqKioKqNh8vLykJ6eHqRWhRdjx47F999/jyVLlqBRo0a27enp6SgvL8e5c+fs9ue595xNmzbhxIkTuOiiixAdHY3o6GgsW7YMb7zxBqKjo5GWlsZz7SMyMjLQrl07u21t27bFoUOHAMB2PnlNqT4PP/ww/vOf/+Dmm29Ghw4dcOutt+KBBx7A5MmTAfBc+wsj5zU9Pb3KQKHKykqcOXPGJ+eeAigAxMTEoGvXrli8eLFtm9VqxeLFi9GrV68gtiz0URQFY8eOxdy5c/HLL78gOzvb7vWuXbuiVq1adud+165dOHToEM+9h1x55ZXYvn07tm7dant069YNw4cPt63zXPuGPn36VCnnsHv3bjRp0gQAkJ2djfT0dLtzXVBQgHXr1vFce8j58+dhNtt3hVFRUbBarQB4rv2FkfPaq1cvnDt3Dps2bbLt88svv8BqtaJnz57Vb0S106iJIWbNmqXExsYqM2bMUP744w/ljjvuUFJSUpTc3NxgNy2kufPOO5Xk5GRl6dKlyvHjx22P8+fP2/b597//rTRu3Fj55ZdflI0bNyq9evVSevXqFcRWhw/aUWCKwnPtK9avX69ER0crzz77rLJnzx7l888/VxISEpTPPvvMts/zzz+vpKSkKN98842ybds25brrrlOys7OVkpKSILY89Bg5cqRywQUXKN9//72yf/9+5euvv1ZSU1OVRx55xLYPz7V3FBYWKlu2bFG2bNmiAFCmTJmibNmyRTl48KCiKMbOa//+/ZUuXboo69atU1auXKm0bNlSueWWW3zSPgqgAPLmm28qjRs3VmJiYpQePXooa9euDXaTQh4Auo+PPvrItk9JSYly1113KXXr1lUSEhKUIUOGKMePHw9eo8MIRwHEc+07vvvuO+XCCy9UYmNjlTZt2ijvvfee3etWq1V54oknlLS0NCU2Nla58sorlV27dgWptaFLQUGBct999ymNGzdW4uLilGbNmimPPfaYUlZWZtuH59o7lixZont9HjlypKIoxs7r6dOnlVtuuUWpU6eOkpSUpIwaNUopLCz0SftMiqIpd0kIIYQQEgEwB4gQQgghEQcFECGEEEIiDgogQgghhEQcFECEEEIIiTgogAghhBAScVAAEUIIISTioAAihBBCSMRBAUQIIYSQiIMCiBBCDGAymTBv3rxgN4MQ4iMogAghNZ7bbrsNJpOpyqN///7BbhohJESJDnYDCCHECP3798dHH31kty02NjZIrSGEhDp0gAghIUFsbCzS09PtHnXr1gUgwlPvvPMOBgwYgPj4eDRr1gz/+9//7N6/fft2/O1vf0N8fDzq16+PO+64A0VFRXb7TJ8+He3bt0dsbCwyMjIwduxYu9dPnTqFIUOGICEhAS1btsS3337r3y9NCPEbFECEkLDgiSeewPXXX49ff/0Vw4cPx80334wdO3YAAIqLi9GvXz/UrVsXGzZswOzZs7Fo0SI7gfPOO+/g7rvvxh133IHt27fj22+/RYsWLew+48knn8RNN92Ebdu24ZprrsHw4cNx5syZgH5PQoiP8Mmc8oQQ4kdGjhypREVFKbVr17Z7PPvss4qiKAoA5d///rfde3r27KnceeediqIoynvvvafUrVtXKSoqsr3+ww8/KGazWcnNzVUURVEyMzOVxx57zGkbACiPP/647XlRUZECQPnpp5989j0JIYGDOUCEkJDgiiuuwDvvvGO3rV69erb1Xr162b3Wq1cvbN26FQCwY8cOdOrUCbVr17a93qdPH1itVuzatQsmkwnHjh3DlVde6bINHTt2tK3Xrl0bSUlJOHHihLdfiRASRCiACCEhQe3atauEpHxFfHy8of1q1apl99xkMsFqtfqjSYQQP8McIEJIWLB27doqz9u2bQsAaNu2LX799VcUFxfbXl+1ahXMZjNat26NxMRENG3aFIsXLw5omwkhwYMOECEkJCgrK0Nubq7dtujoaKSmpgIAZs+ejW7duuGSSy7B559/jvXr1+PDDz8EAAwfPhwTJ07EyJEjMWnSJJw8eRL33HMPbr31VqSlpQEAJk2ahH//+99o2LAhBgwYgMLCQqxatQr33HNPYL8oISQgUAARQkKC+fPnIyMjw25b69atsXPnTgBihNasWbNw1113ISMjAzNnzkS7du0AAAkJCViwYAHuu+8+dO/eHQkJCbj++usxZcoU27FGjhyJ0tJSvPrqq3jooYeQmpqKG264IXBfkBASUEyKoijBbgQhhFQHk8mEuXPnYvDgwcFuCiEkRGAOECGEEEIiDgogQgghhEQczAEihIQ8jOQTQjyFDhAhhBBCIg4KIEIIIYREHBRAhBBCCIk4KIAIIYQQEnFQABFCCCEk4qAAIoQQQkjEQQFECCGEkIiDAogQQgghEcf/AxJzkDyjCX+xAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1239,7 +1749,61 @@ "cell_type": "code", "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Waiting for W&B process to finish... (success)." + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "

Run history:


testing_loss▁█
train_loss▂▃█▅▃▇▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
validation_loss▆▅▄█▅▄▃▂▂▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

Run summary:


testing_loss2.98037
train_loss0.00308
validation_loss0.50709

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run flowing-lion-6 at: https://wandb.ai/ai4s2s/test-LSTM-ridge/runs/2tknu0at
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Find logs at: ./wandb/run-20230613_125153-2tknu0at/logs" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# switch model into evaluation mode\n", "model.eval()\n", @@ -1272,12 +1836,12 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9pUlEQVR4nO3deXxU1f3/8fckkIRAMjGQFWMMoISIbEEg4BJqgKBlsVbcQ5CiRbBgsED6s0JQi1ioWBfAUsFWrdBvhYLaKEZxwUgETGXNV2hYhCwoMmPCNwFn5vfHNCNjFhJIZjK5r+fjcR9y7z333s9MU/LmnHPvNTkcDocAAAAMyM/bBQAAAHgLQQgAABgWQQgAABgWQQgAABgWQQgAABgWQQgAABgWQQgAABhWO28X0NrZ7XYdO3ZMISEhMplM3i4HAAA0gsPh0HfffafY2Fj5+dXf70MQOodjx44pLi7O22UAAIDzcOTIEV188cX17icInUNISIgk5xcZGhrq5WoAAEBjWK1WxcXFuX6P14cgdA41w2GhoaEEIQAAfMy5prUwWRoAABgWQQgAABgWQQgAABgWc4Saic1m05kzZ7xdBlqp9u3by9/f39tlAAB+hCB0gRwOh0pLS3Xy5Elvl4JWLiwsTNHR0TyPCgBaEYLQBaoJQZGRkQoODuaXHGpxOBw6deqUysvLJUkxMTFerggAUIMgdAFsNpsrBHXu3Nnb5aAV69ChgySpvLxckZGRDJMBQCvBZOkLUDMnKDg42MuVwBfU/JwwlwwAWg+CUDNgOAyNwc8JALQ+PhWEPvzwQ40ZM0axsbEymUxav359g+03b94sk8lUayktLfVMwQAAn2OzO5R/4Bv9s/Co8g98I5vd4e2S0IJ8ao5QZWWl+vbtq3vuuUc/+9nPGn1cUVGR2+sxIiMjW6I8AICPy91VopyNe1RiqXJtizEHad6YJKX35kaHtsingtDo0aM1evToJh8XGRmpsLCw5i8I55SZmamTJ0+6eu9SU1PVr18/LV269LzP2RznAIAfy91Voqkv79CP+39KLVWa+vIOLbtrAGGoDfKpobHz1a9fP8XExGjEiBHasmVLg22rq6tltVrdlpbmjW7YzMxM11BhQECAevTooQULFuj7779v0eu+/vrrevTRRxvVtmZo88fPaGrKOQCgMWx2h3I27qkVgiS5tuVs3MMwWRvkUz1CTRUTE6Ply5dr4MCBqq6u1sqVK5WamqqtW7dqwIABdR6zcOFC5eTkeKxGb3bDpqena9WqVaqurtZbb72ladOmqX379srOznZrd/r0aQUEBDTLNcPDw1vFOQDgbAXFJ9z+Hv4xh6QSS5UKik8opTuPS2lL2nSPUM+ePXXfffcpOTlZQ4cO1YsvvqihQ4fqqaeeqveY7OxsWSwW13LkyJEWq6+mG/bH/+er6YbN3VXSYteWpMDAQEVHRys+Pl5Tp05VWlqaNmzYoMzMTI0fP16PP/64YmNj1bNnT0nSkSNHNGHCBIWFhSk8PFzjxo3TwYMHXeez2WzKyspSWFiYOnfurNmzZ8vhcP/XU2pqqmbOnOlar66u1pw5cxQXF6fAwED16NFDf/7zn3Xw4EENHz5cknTRRRfJZDIpMzOzznN8++23ysjI0EUXXaTg4GCNHj1aX375pWv/6tWrFRYWprffflu9evVSp06dlJ6erpKSH77fzZs3a9CgQerYsaPCwsI0bNgwHTp0qJm+aQCtXfl39Yeg82kH39Gmg1BdBg0apP3799e7PzAwUKGhoW5LS2iN3bAdOnTQ6dOnJUl5eXkqKirSpk2b9MYbb+jMmTMaNWqUQkJC9NFHH2nLli2uQFFzzJIlS7R69Wq9+OKL+vjjj3XixAmtW7euwWtmZGTob3/7m/74xz9q7969WrFihTp16qS4uDj94x//kOSc7F5SUqKnn366znNkZmZq27Zt2rBhg/Lz8+VwOHTDDTe4Pa/n1KlTWrx4sf7617/qww8/1OHDh/XQQw9Jkr7//nuNHz9e1113nb744gvl5+fr3nvv5XZ3wEAiQ4KatR18R5seGqtLYWFhq3jFQWvqhnU4HMrLy9Pbb7+tBx54QMePH1fHjh21cuVK15DYyy+/LLvdrpUrV7oCwqpVqxQWFqbNmzdr5MiRWrp0qbKzs1139C1fvlxvv/12vdf93//9X61du1abNm1SWlqaJKlbt26u/TVDYA1Ndv/yyy+1YcMGbdmyRUOHDpUkvfLKK4qLi9P69et1yy23SHI+xHD58uXq3r27JGn69OlasGCBJMlqtcpiseinP/2pa3+vXr2a/kUC8FmDEsIVYw5SqaWqzn+gmiRFm4M0KIGh+bbGp4JQRUWFW29OcXGxCgsLFR4erksuuUTZ2dk6evSo/vKXv0iSli5dqoSEBF1xxRWqqqrSypUr9d577+mdd97x1kdwaQ3dsG+88YY6deqkM2fOyG6364477tD8+fM1bdo0XXnllW7zgv79739r//79CgkJcTtHVVWVDhw4IIvFopKSEg0ePNi1r127dho4cGCt4bEahYWF8vf313XXXXfen2Hv3r1q166d23U7d+6snj17au/eva5twcHBrpAjOeeP1bz7Kzw8XJmZmRo1apRGjBihtLQ0TZgwoVUEZgCe4e9n0rwxSZr68g6ZJLcwVNM3PG9Mkvz96Clua3wqCG3bts01b0SSsrKyJEkTJ07U6tWrVVJSosOHD7v2nz59WrNmzdLRo0cVHBysPn366N1333U7h7e0hm7Y4cOHa9myZQoICFBsbKzatfvhx6Fjx45ubSsqKpScnKxXXnml1nkiIiLO6/o179/yhPbt27utm0wmt4C2atUq/epXv1Jubq7WrFmjhx9+WJs2bdKQIUM8ViMA70rvHaNldw2odQNLNM8RatN8KgilpqbW27sgOSfFnm327NmaPXt2C1d1flpDN2zHjh3Vo0ePRrUdMGCA1qxZo8jIyHrnTcXExGjr1q269tprJTnn3mzfvr3eO/SuvPJK2e12ffDBB66hsbPV9EjZbLZ66+rVq5e+//57bd261TU09s0336ioqEhJSUmN+mw1+vfvr/79+ys7O1spKSl69dVXCUKAwaT3jtGIpGgVFJ9Q+XdVigxx/j1MT1DbZbjJ0q1FTTes9EO3a43W2A175513qkuXLho3bpw++ugjFRcXa/PmzfrVr36lr776SpI0Y8YMPfHEE1q/fr327dun+++/v9YzgM526aWXauLEibrnnnu0fv161znXrl0rSYqPj5fJZNIbb7yh48ePq6KiotY5LrvsMo0bN05TpkzRxx9/rH//+9+666671LVrV40bN65Rn624uFjZ2dnKz8/XoUOH9M477+jLL79knhBgUP5+JqV076xx/boqpXvnVvP3MFoGQciLarpho83uw1/R5qBW9wTT4OBgffjhh7rkkkv0s5/9TL169dLkyZNVVVXl6iGaNWuW7r77bk2cOFEpKSkKCQnRTTfd1OB5ly1bpp///Oe6//77lZiYqClTpqiyslKS1LVrV+Xk5Gju3LmKiorS9OnT6zzHqlWrlJycrJ/+9KdKSUmRw+HQW2+9VWs4rKHPtm/fPt188826/PLLde+992ratGm67777mvANAQB8kcnR0FgTZLVaZTabZbFYag0JVVVVqbi4WAkJCQoKOv+5PDa7g25YA2iunxcAwLk19Pv7bD41R6itqumGBQAAnsXQGAAAMCyCEAAAMCyCEAAAMCyCEAAAMCyCEAAAMCyCEAAAMCyCEAAAMCyCEHzK/Pnz1a9fP2+XodTUVM2cOdPbZQAALhBByKBKS0s1Y8YM9ejRQ0FBQYqKitKwYcO0bNkynTp1ytvlnbfNmzfLZDI1+I4zb54PANC68GTp1sBukw59IlWUSZ2ipPihkp9/i13uP//5j4YNG6awsDD97ne/05VXXqnAwEDt3LlTL7zwgrp27aqxY8fWeeyZM2ca/Q6v1uz06dOut9sDAIyLHiFv27NBWtpbeumn0j8mO/+7tLdzewu5//771a5dO23btk0TJkxQr1691K1bN40bN05vvvmmxowZ42prMpm0bNkyjR07Vh07dtTjjz8uyfmy1O7duysgIEA9e/bUX//6V9cxBw8elMlkUmFhoWvbyZMnZTKZtHnzZkk/9LTk5eVp4MCBCg4O1tChQ1VUVORW6xNPPKGoqCiFhIS4XvJan4MHD2r48OGSpIsuukgmk0mZmZmSnENZ06dP18yZM9WlSxeNGjXqnHU2dD5Jstvtmj17tsLDwxUdHa358+c39n8CAEArQRDypj0bpLUZkvWY+3ZriXN7C4Shb775Ru+8846mTZumjh071tnGZHJ/4ev8+fN10003aefOnbrnnnu0bt06zZgxQ7NmzdKuXbt03333adKkSXr//febXM//+3//T0uWLNG2bdvUrl073XPPPa59a9eu1fz58/W73/1O27ZtU0xMjJ5//vl6zxUXF6d//OMfkqSioiKVlJTo6aefdu1/6aWXFBAQoC1btmj58uXnrK0x5+vYsaO2bt2qJ598UgsWLNCmTZua/B0AALyHoTFvsduk3DmSHHXsdEgySblzpcQbm3WYbP/+/XI4HOrZs6fb9i5durh6W6ZNm6ZFixa59t1xxx2aNGmSa/32229XZmam7r//fklSVlaWPv30Uy1evNjVg9JYjz/+uK677jpJ0ty5c3XjjTeqqqpKQUFBWrp0qSZPnqzJkydLkh577DG9++679fYK+fv7Kzw8XJIUGRmpsLAwt/2XXXaZnnzySdf6wYMHG6ztXOfr06eP5s2b5zr3s88+q7y8PI0YMaJRnx0A4H30CHnLoU9q9wS5cUjWo852HlBQUKDCwkJdccUVqq6udts3cOBAt/W9e/dq2LBhbtuGDRumvXv3Nvm6ffr0cf05JiZGklReXu66zuDBg93ap6SkNPkaNZKTk8/72LqcXbvkrL+mdgCAb6BHyFsqypq3XSP16NFDJpOp1lycbt26SZI6dOhQ65j6htDq4+fnzNcOxw+9XWfOnKmz7dkTr2uG5Ox2e5Ou11g//hxNqbMuP540bjKZWqx2AEDLoEfIWzpFNW+7RurcubNGjBihZ599VpWVled1jl69emnLli1u27Zs2aKkpCRJUkREhCSppKTEtf/sCclNuc7WrVvdtn366acNHlNzJ5jNZjvn+RtTZ1POBwDwPfQIeUv8UCk01jkxus55Qibn/vihzX7p559/XsOGDdPAgQM1f/589enTR35+fvrss8+0b9++cw4h/frXv9aECRPUv39/paWlaePGjXr99df17rvvSnL2Kg0ZMkRPPPGEEhISVF5erocffrjJdc6YMUOZmZkaOHCghg0bpldeeUW7d+929V7VJT4+XiaTSW+88YZuuOEGdejQQZ06daqzbWPqbMr5AAC+hx4hb/Hzl9JrJiSbfrTzv+vpT7TI84S6d++uzz//XGlpacrOzlbfvn01cOBAPfPMM3rooYf06KOPNnj8+PHj9fTTT2vx4sW64oortGLFCq1atUqpqamuNi+++KK+//57JScna+bMmXrssceaXOett96q3/72t5o9e7aSk5N16NAhTZ06tcFjunbtqpycHM2dO1dRUVGaPn16g+3PVWdTzwcA8C0mx9kTJFCL1WqV2WyWxWJRaGio276qqioVFxcrISFBQUFB53eBPRucd4+dPXE6tKszBCXV/VBD+KZm+XkBADRKQ7+/z8bQmLcljXXeIu/BJ0sDAAAnglBr4OcvJVzj7SoAADAc5ggBAADDIggBAADDIgg1A+abozH4OQGA1ocgdAFqnix86tQpL1cCX1Dzc/LjJ1IDALyHydIXwN/fX2FhYa73SwUHB9d6czvgcDh06tQplZeXKywsTP7+3BEIAK0FQegCRUdHSxIv28Q5hYWFuX5eAACtA0HoAplMJsXExCgyMrJJL+yEsbRv356eIABohQhCzcTf359fdAAA+Bifmiz94YcfasyYMYqNjZXJZNL69evPeczmzZs1YMAABQYGqkePHlq9enWL1wkAAHyDTwWhyspK9e3bV88991yj2hcXF+vGG2/U8OHDVVhYqJkzZ+oXv/iF3n777RauFAAA+AKfGhobPXq0Ro8e3ej2y5cvV0JCgpYsWSJJ6tWrlz7++GM99dRTGjVqVJ3HVFdXq7q62rVutVovrGgAaC52G+8lBJqZTwWhpsrPz1daWprbtlGjRmnmzJn1HrNw4ULl5OS0cGUA0ER7Nki5cyTrsR+2hcZK6YucL28GcF58amisqUpLSxUVFeW2LSoqSlarVf/3f/9X5zHZ2dmyWCyu5ciRI54oFQDqt2eDtDbDPQRJkrXEuX3PBu/UBbQBbbpH6HwEBgYqMDDQ22UAgJPd5uwJUl2vaHFIMkm5c6XEGxkmA85Dm+4Rio6OVllZmdu2srIyhYaGqkOHDl6qCgCa4NAntXuC3Dgk61FnOwBN1qaDUEpKivLy8ty2bdq0SSkpKV6qCACaqKLs3G2a0g6AG58KQhUVFSosLFRhYaEk5+3xhYWFOnz4sCTn/J6MjAxX+1/+8pf6z3/+o9mzZ2vfvn16/vnntXbtWj344IPeKB8Amq5T1LnbNKUdADc+FYS2bdum/v37q3///pKkrKws9e/fX4888ogkqaSkxBWKJCkhIUFvvvmmNm3apL59+2rJkiVauXJlvbfOA0CrEz/UeXeY6nuhs0kK7epsB6DJTA6Ho64ZePgvq9Uqs9ksi8Wi0NBQb5cDwIhq7hqT5D5p+r/haMJfuIUe+JHG/v72qR4hADCkpLHOsBMa4749NJYQBFwgbp8HAF+QNNZ5izxPlgaaFUEIAHyFn7+UcI23qwDaFIbGAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYflcEHruued06aWXKigoSIMHD1ZBQUG9bVevXi2TyeS2BAUFebBaAADQmvlUEFqzZo2ysrI0b9487dixQ3379tWoUaNUXl5e7zGhoaEqKSlxLYcOHfJgxQAAoDXzqSD0hz/8QVOmTNGkSZOUlJSk5cuXKzg4WC+++GK9x5hMJkVHR7uWqKgoD1YMAABaM58JQqdPn9b27duVlpbm2ubn56e0tDTl5+fXe1xFRYXi4+MVFxencePGaffu3Q1ep7q6Wlar1W0BAABtk88Eoa+//lo2m61Wj05UVJRKS0vrPKZnz5568cUX9c9//lMvv/yy7Ha7hg4dqq+++qre6yxcuFBms9m1xMXFNevnAAAArYfPBKHzkZKSooyMDPXr10/XXXedXn/9dUVERGjFihX1HpOdnS2LxeJajhw54sGKAQCAJ7XzdgGN1aVLF/n7+6usrMxte1lZmaKjoxt1jvbt26t///7av39/vW0CAwMVGBh4QbUCAADf4DM9QgEBAUpOTlZeXp5rm91uV15enlJSUhp1DpvNpp07dyomJqalygQAAD7EZ3qEJCkrK0sTJ07UwIEDNWjQIC1dulSVlZWaNGmSJCkjI0Ndu3bVwoULJUkLFizQkCFD1KNHD508eVK///3vdejQIf3iF7/w5scAAACthE8FoVtvvVXHjx/XI488otLSUvXr10+5ubmuCdSHDx+Wn98PnVzffvutpkyZotLSUl100UVKTk7WJ598oqSkJG99BAAA0IqYHA6Hw9tFtGZWq1Vms1kWi0WhoaHeLgcAADRCY39/+8wcIQAAgOZGEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIZFEAIAAIbVztsFAAAA47HZHSooPqHy76oUGRKkQQnh8vczebwOghAAAPCo3F0lytm4RyWWKte2GHOQ5o1JUnrvGI/WwtAYAADwmNxdJZr68g63ECRJpZYqTX15h3J3lXi0HoIQAADwCJvdoZyNe+SoY1/NtpyNe2Sz19WiZRCEAACARxQUn6jVE3Q2h6QSS5UKik94rCaCEAAA8Ijy7+oPQefTrjkQhAAAgEdEhgQ1a7vmQBACAAAeMSghXDHmINV3k7xJzrvHBiWEe6wmghAAAPAIfz+T5o1JkqRaYahmfd6YJI8+T4ggBAAAPCa9d4yW3TVAsaHtNcRvj8b6faIhfnsUG9pey+4a4PHnCPFARQAA4FHpfp9pVNAcmU4fc21zBMXK5LdI0liP1kKPEAAA8Jw9G6S1GTJZj7ltNllLpLUZzv0eRBACAACeYbdJuXOkhh6pmDvX2c5DCEIAAMAzDn0i/agnyJ1Dsh51tvMQghAAAPCMirLmbdcMCEIAAMAzOkU1b7tm4HNB6LnnntOll16qoKAgDR48WAUFBQ22//vf/67ExEQFBQXpyiuv1FtvveWhSgEAgJv4oVJorGo/RaiGSQrt6mznIT4VhNasWaOsrCzNmzdPO3bsUN++fTVq1CiVl5fX2f6TTz7R7bffrsmTJ+vzzz/X+PHjNX78eO3atcvDlQMAAPn5S+mL/rtSzyMV059wtvMQk8Ph8Ny77i/Q4MGDddVVV+nZZ5+VJNntdsXFxemBBx7Q3Llza7W/9dZbVVlZqTfeeMO1bciQIerXr5+WL19e5zWqq6tVXV3tWrdarYqLi5PFYlFoaGgzfyIAAAxozwbn3WNnT5wO7eoMQUnN8xwhq9Uqs9l8zt/fPvNAxdOnT2v79u3Kzs52bfPz81NaWpry8/PrPCY/P19ZWVlu20aNGqX169fXe52FCxcqJyenWWoGAAB1SBorJd7ovDusosw5Jyh+qEd7gmr4zNDY119/LZvNpqgo9wlUUVFRKi0trfOY0tLSJrWXpOzsbFksFtdy5MiRCy8eAAC48/OXEq6Rrvy5879eCEGSD/UIeUpgYKACAwO9XQYAAPAAn+kR6tKli/z9/VVW5v5sgbKyMkVHR9d5THR0dJPaAwAAY/GZIBQQEKDk5GTl5eW5ttntduXl5SklJaXOY1JSUtzaS9KmTZvqbQ8AAIzFp4bGsrKyNHHiRA0cOFCDBg3S0qVLVVlZqUmTJkmSMjIy1LVrVy1cuFCSNGPGDF133XVasmSJbrzxRr322mvatm2bXnjhBW9+DAAA0Er4VBC69dZbdfz4cT3yyCMqLS1Vv379lJub65oQffjwYfn5/dDJNXToUL366qt6+OGH9Zvf/EaXXXaZ1q9fr969e3vrIwAAgFbEp54j5A2NfQ4BAABoPRr7+9tn5ggBAAA0N4IQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLJ96sjSAVspukw59IlWUSZ2ipPihkp+/t6sCgHMiCAG4MHs2SLlzJOuxH7aFxkrpi6Sksd6rCwAagaExAOdvzwZpbYZ7CJIka4lz+54N3qkLABqJIATg/Nhtzp4g1fW6wv9uy53rbAcArRRBCMD5OfRJ7Z4gNw7JetTZDgBaKYIQgPNTUda87QDACwhCAM5Pp6jmbQcAXkAQAnB+4oc67w6TqZ4GJim0q7MdALRSBCEA58fP33mLvKTaYei/6+lP8DwhAK0aQQjA+UsaK034ixQa4749NNa5necIAWjleKAigAuTNFZKvJEnSwPwSQQhABfOz19KuMbbVQBAkzE0BgAADIsgBAAADIsgBAAADIsgBAAADOuCJktXVVVpzZo1qqys1IgRI3TZZZc1V10AAAAtrtFBKCsrS2fOnNEzzzwjSTp9+rRSUlK0e/duBQcHa/bs2dq0aZNSUlJarFgAAIDm1OihsXfeeUcjRoxwrb/yyis6dOiQvvzyS3377be65ZZb9Nhjj7VIkQAAAC2h0UHo8OHDSkpKcq2/8847+vnPf674+HiZTCbNmDFDn3/+eYsUCQAA0BIaHYT8/PzkcDhc659++qmGDBniWg8LC9O3337bvNUBAAC0oEYHoV69emnjxo2SpN27d+vw4cMaPny4a/+hQ4cUFRXV/BUCAAC0kEZPlp49e7Zuu+02vfnmm9q9e7duuOEGJSQkuPa/9dZbGjRoUIsUCQAA0BIa3SN000036a233lKfPn304IMPas2aNW77g4ODdf/99zd7gQAAAC2l0UFowYIFSklJ0VNPPaU5c+YoODjYbf+8efOUmpra3PW5nDhxQnfeeadCQ0MVFhamyZMnq6KiosFjUlNTZTKZ3JZf/vKXLVYjALQkm92h/APf6J+FR5V/4BvZ7I5zHwSgQSbH2TOgG+Dv76+SkhJFRka2dE11Gj16tEpKSrRixQqdOXNGkyZN0lVXXaVXX3213mNSU1N1+eWXa8GCBa5twcHBCg0NbfR1rVarzGazLBZLk44DgOaUu6tEORv3qMRS5doWYw7SvDFJSu8d48XKgNapsb+/Gz1HqJF5qUXs3btXubm5+uyzzzRw4EBJ0jPPPKMbbrhBixcvVmxsbL3HBgcHKzo62lOlAkCzy91Voqkv79CP/xYutVRp6ss7tOyuAYQh4Dw16V1jJpOppepoUH5+vsLCwlwhSJLS0tLk5+enrVu3NnjsK6+8oi5duqh3797Kzs7WqVOnGmxfXV0tq9XqtgCAt9jsDuVs3FMrBElybcvZuIdhMuA8NeldY5dffvk5w9CJEycuqKC6lJaW1hqSa9euncLDw1VaWlrvcXfccYfi4+MVGxurL774QnPmzFFRUZFef/31eo9ZuHChcnJymq12ALgQBcUn3IbDfswhqcRSpYLiE0rp3tlzhQFtRJOCUE5Ojsxmc7NdfO7cuVq0aFGDbfbu3Xve57/33ntdf77yyisVExOj66+/XgcOHFD37t3rPCY7O1tZWVmudavVqri4uPOuAQAuRPl39Yeg82kHwF2TgtBtt93WrJOlZ82apczMzAbbdOvWTdHR0SovL3fb/v333+vEiRNNmv8zePBgSdL+/fvrDUKBgYEKDAxs9DkBoCVFhgQ1azsA7hodhFpiflBERIQiIiLO2S4lJUUnT57U9u3blZycLEl67733ZLfbXeGmMQoLCyVJMTFMKgTgGwYlhCvGHKRSS1Wd84RMkqLNQRqUEO7p0oA2odGTpb1511ivXr2Unp6uKVOmqKCgQFu2bNH06dN12223ue4YO3r0qBITE1VQUCBJOnDggB599FFt375dBw8e1IYNG5SRkaFrr71Wffr08dpnAYCm8Pczad4Y5wuvf/zP0Zr1eWOS5O/nnZtZAF/X6CBkt9u99gwhyXn3V2Jioq6//nrdcMMNuvrqq/XCCy+49p85c0ZFRUWuu8ICAgL07rvvauTIkUpMTNSsWbN08803u96XBgC+Ir13jJbdNUDRZvfhr2hzELfOAxeo0Q9UNCoeqAigtbDZHSooPqHy76oUGeIcDqMnCKhbsz9QEQDgXf5+Jm6RB5pZkx6oCAAA0JYQhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGH5TBB6/PHHNXToUAUHByssLKxRxzgcDj3yyCOKiYlRhw4dlJaWpi+//LJlCwUAAD7DZ4LQ6dOndcstt2jq1KmNPubJJ5/UH//4Ry1fvlxbt25Vx44dNWrUKFVVVbVgpQAAwFeYHA6Hw9tFNMXq1as1c+ZMnTx5ssF2DodDsbGxmjVrlh566CFJksViUVRUlFavXq3bbrutUdezWq0ym82yWCwKDQ290PIlSTa7QwXFJ1T+XZUiQ4I0KCFc/n6mZjk3AABo/O/vdh6syaOKi4tVWlqqtLQ01zaz2azBgwcrPz+/3iBUXV2t6upq17rVam3WunJ3lShn4x6VWH7olYoxB2nemCSl945p1msBAICG+czQWFOVlpZKkqKioty2R0VFufbVZeHChTKbza4lLi6u2WrK3VWiqS/vcAtBklRqqdLUl3cod1dJs10LAACcm1eD0Ny5c2UymRpc9u3b59GasrOzZbFYXMuRI0ea5bw2u0M5G/eornHImm05G/fIZvepkUoAAHyaV4fGZs2apczMzAbbdOvW7bzOHR0dLUkqKytTTMwPQ05lZWXq169fvccFBgYqMDDwvK7ZkILiE7V6gs7mkFRiqVJB8QmldO/c7NcHAAC1eTUIRUREKCIiokXOnZCQoOjoaOXl5bmCj9Vq1datW5t051lzKf+ucXeqNbYdAAC4cD4zR+jw4cMqLCzU4cOHZbPZVFhYqMLCQlVUVLjaJCYmat26dZIkk8mkmTNn6rHHHtOGDRu0c+dOZWRkKDY2VuPHj/d4/ZEhQc3aDgAAXDifuWvskUce0UsvveRa79+/vyTp/fffV2pqqiSpqKhIFovF1Wb27NmqrKzUvffeq5MnT+rqq69Wbm6ugoI8HzYGJYQrxhykUktVnfOETJKizc5b6QEAgGf43HOEPK05nyNUc9eYJLcwVPMEoWV3DeAWegAAmkFjf3/7zNBYW5DeO0bL7hqgaLN7j1S0OYgQBACAF/jM0Fhbkd47RiOSonmyNAAArQBByAv8/UzcIg8AQCvA0BgAADAsghAAADAsghAAADAsghAAADAsghAAADAsghAAADAsghAAADAsniOENs1md/DwSgBAvQhCaLNyd5UoZ+MelViqXNtizEGaNyaJ15kAACQxNIY2quYFt2eHIEkqtVRp6ss7lLurxEuVAQBaE4IQ2hyb3aGcjXvkqGNfzbacjXtks9fVAgBgJAQhtDkFxSdq9QSdzSGpxFKlguITnisKANAqEYTQ5pR/V38IOp92AIC2iyCENicyJKhZ2wEA2i6CENqcQQnhijEHqb6b5E1y3j02KCHck2UBAFohghDaHH8/k+aNSZKkWmGoZn3emCSeJwQAIAihbUrvHaNldw1QtNl9+CvaHKRldw3gOUIAAEk8UBFtWHrvGI1IiubJ0gCAehGE0Kb5+5mU0r2zt8sAALRSDI0BAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADD8pkg9Pjjj2vo0KEKDg5WWFhYo47JzMyUyWRyW9LT01u2UAAA4DN85qWrp0+f1i233KKUlBT9+c9/bvRx6enpWrVqlWs9MDCwJcoDAAA+yGeCUE5OjiRp9erVTTouMDBQ0dHRjW5fXV2t6upq17rVam3S9QAAgO/wmaGx87V582ZFRkaqZ8+emjp1qr755psG2y9cuFBms9m1xMXFeahSAADgaW06CKWnp+svf/mL8vLytGjRIn3wwQcaPXq0bDZbvcdkZ2fLYrG4liNHjniwYgAA4EleHRqbO3euFi1a1GCbvXv3KjEx8bzOf9ttt7n+fOWVV6pPnz7q3r27Nm/erOuvv77OYwIDA5lHBACAQXg1CM2aNUuZmZkNtunWrVuzXa9bt27q0qWL9u/fX28QAgAAxuHVIBQREaGIiAiPXe+rr77SN998o5iYGI9dEwAAtF4+M0fo8OHDKiws1OHDh2Wz2VRYWKjCwkJVVFS42iQmJmrdunWSpIqKCv3617/Wp59+qoMHDyovL0/jxo1Tjx49NGrUKG99DHia3SYVfyTt/B/nf+31zw8DABiPz9w+/8gjj+ill15yrffv31+S9P777ys1NVWSVFRUJIvFIkny9/fXF198oZdeekknT55UbGysRo4cqUcffZQ5QEaxZ4OUO0eyHvthW2islL5IShrrvboAAK2GyeFwOLxdRGtmtVplNptlsVgUGhrq7XLQWHs2SGszJP34x9vk/M+EvxCGAKANa+zvb58ZGgMazW5z9gTVCkH6YVvuXIbJAAAEIbRBhz5xHw6rxSFZjzrbAQAMjSCEtqeirHnbAQDaLIIQ2p5OUc3bDgDQZhGE0PbED3XeHVYzMboWkxTa1dkOAGBoBCG0PX7+zlvkJdUOQ/9dT3/C2Q4AYGgEIbRNSWOdt8iH/ugp4qGx3DoPAHDxmQcqAk2WNFZKvNF5d1hFmXNOUPxQeoIAAC4EIbRtfv5SwjXergIA0EoxNAYAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAzLJ4LQwYMHNXnyZCUkJKhDhw7q3r275s2bp9OnTzd4XFVVlaZNm6bOnTurU6dOuvnmm1VWVuahqgEAQGvnE0Fo3759stvtWrFihXbv3q2nnnpKy5cv129+85sGj3vwwQe1ceNG/f3vf9cHH3ygY8eO6Wc/+5mHqgYAAK2dyeFwOLxdxPn4/e9/r2XLluk///lPnfstFosiIiL06quv6uc//7kkZ6Dq1auX8vPzNWTIkEZdx2q1ymw2y2KxKDQ0tNnqBwAALaexv799okeoLhaLReHh4fXu3759u86cOaO0tDTXtsTERF1yySXKz8+v97jq6mpZrVa3BQAAtE0+GYT279+vZ555Rvfdd1+9bUpLSxUQEKCwsDC37VFRUSotLa33uIULF8psNruWuLi45iobAAC0Ml4NQnPnzpXJZGpw2bdvn9sxR48eVXp6um655RZNmTKl2WvKzs6WxWJxLUeOHGn2awAAgNahnTcvPmvWLGVmZjbYplu3bq4/Hzt2TMOHD9fQoUP1wgsvNHhcdHS0Tp8+rZMnT7r1CpWVlSk6Orre4wIDAxUYGNio+gEAbZDdJh36RKookzpFSfFDJT9/b1eFFuLVIBQREaGIiIhGtT169KiGDx+u5ORkrVq1Sn5+DXdmJScnq3379srLy9PNN98sSSoqKtLhw4eVkpJywbUDANqgPRuk3DmS9dgP20JjpfRFUtJY79WFFuMTc4SOHj2q1NRUXXLJJVq8eLGOHz+u0tJSt7k+R48eVWJiogoKCiRJZrNZkydPVlZWlt5//31t375dkyZNUkpKSqPvGAMAGMieDdLaDPcQJEnWEuf2PRu8UxdalFd7hBpr06ZN2r9/v/bv36+LL77YbV/N3f9nzpxRUVGRTp065dr31FNPyc/PTzfffLOqq6s1atQoPf/88x6tHQDgA+w2Z0+Q6nqijEOSScqdKyXeyDBZG+OzzxHyFJ4jBAAGUPyR9NJPz91u4htSwjUtXw8uWJt/jhAAAM2mopGvX2psO/gMghAAAJ2imrcdfAZBCACA+KHOu8NkqqeBSQrt6myHNoUgBACAn7/zFnlJtcPQf9fTn2CidBtEEAIAQHI+J2jCX6TQGPftobHO7TxHqE3yidvnAQDwiKSxzlvkebK0YRCEAAA4m58/t8gbCENjAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsHjpKoALZrM7VFB8QuXfVSkyJEiDEsLl72fydlkAcE4EIQAXJHdXiXI27lGJpcq1LcYcpHljkpTeO8aLlQHAuTE05g12m1T8kbTzf5z/tdu8XRFwXnJ3lWjqyzvcQpAklVqqNPXlHcrdVeKlygCgcegR8rQ9G6TcOZL12A/bQmOl9EVS0ljv1QU0kc3uUM7GPXLUsc8hySQpZ+MejUiKZpgMQKtFj5An7dkgrc1wD0GSZC1xbt+zwTt1AeehoPhErZ6gszkklViqVFB8wnNFAUATEYQ8xW5z9gTV++9nSblzGSaDzyj/rv4QdD7tAMAbCEKecuiT2j1BbhyS9aizHeADIkOCmrUdAHgDQchTKsqatx3gZYMSwhVjDlJ9s39Mct49Nigh3JNlAUCTEIQ8pVNU87YDvMzfz6R5Y5IkqVYYqlmfNyaJidIAWjWCkKfED3XeHdbQv59DuzrbAT4ivXeMlt01QNFm9+GvaHOQlt01gOcIAWj1uH3eU/z8nbfIr82QMwydPWn6v+Eo/QlnO8CHpPeO0YikaJ4sDcAnEYQ8KWmsNOEv9TxH6AmeIwSf5e9nUkr3zt4uAwCajCDkaUljpcQbnXeHVZQ55wTFD6UnCAAALyAIeYOfv5RwjberAADA8HxisvTBgwc1efJkJSQkqEOHDurevbvmzZun06dPN3hcamqqTCaT2/LLX/7SQ1UDAIDWzid6hPbt2ye73a4VK1aoR48e2rVrl6ZMmaLKykotXry4wWOnTJmiBQsWuNaDg4NbulwAAOAjfCIIpaenKz093bXerVs3FRUVadmyZecMQsHBwYqOjm70taqrq1VdXe1at1qtTS8YAAD4BJ8YGquLxWJRePi5n1j7yiuvqEuXLurdu7eys7N16tSpBtsvXLhQZrPZtcTFxTVXyQAAoJUxORyOut4C2qrt379fycnJWrx4saZMmVJvuxdeeEHx8fGKjY3VF198oTlz5mjQoEF6/fXX6z2mrh6huLg4WSwWhYaGNuvnAAAALcNqtcpsNp/z97dXg9DcuXO1aNGiBtvs3btXiYmJrvWjR4/quuuuU2pqqlauXNmk67333nu6/vrrtX//fnXv3r1RxzT2iwQAAK2HTwSh48eP65tvvmmwTbdu3RQQECBJOnbsmFJTUzVkyBCtXr1afn5NG9mrrKxUp06dlJubq1GjRjXqGIIQAAC+p7G/v706WToiIkIRERGNanv06FENHz5cycnJWrVqVZNDkCQVFhZKkmJieP8RAADwkcnSR48eVWpqqi655BItXrxYx48fV2lpqUpLS93aJCYmqqCgQJJ04MABPfroo9q+fbsOHjyoDRs2KCMjQ9dee6369OnjrY8CAABaEZ+4fX7Tpk3av3+/9u/fr4svvthtX83I3pkzZ1RUVOS6KywgIEDvvvuuli5dqsrKSsXFxenmm2/Www8/3KRr15yf2+gBAPAdNb+3zzUDyCfvGvOkr776ilvoAQDwUUeOHKnViXI2gtA52O12HTt2TCEhITKZTM123prb8o8cOcIk7BbGd+0ZfM+ewffsGXzPntGS37PD4dB3332n2NjYBucV+8TQmDf5+fk1mCQvVGhoKP8n8xC+a8/ge/YMvmfP4Hv2jJb6ns1m8znb+MRkaQAAgJZAEAIAAIZFEPKSwMBAzZs3T4GBgd4upc3ju/YMvmfP4Hv2DL5nz2gN3zOTpQEAgGHRIwQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIOQlzz33nC699FIFBQVp8ODBrpfFovl8+OGHGjNmjGJjY2UymbR+/Xpvl9TmLFy4UFdddZVCQkIUGRmp8ePHq6ioyNtltUnLli1Tnz59XA+eS0lJ0b/+9S9vl9WmPfHEEzKZTJo5c6a3S2lz5s+fL5PJ5LYkJiZ6pRaCkBesWbNGWVlZmjdvnnbs2KG+fftq1KhRKi8v93ZpbUplZaX69u2r5557ztultFkffPCBpk2bpk8//VSbNm3SmTNnNHLkSFVWVnq7tDbn4osv1hNPPKHt27dr27Zt+slPfqJx48Zp9+7d3i6tTfrss8+0YsUK9enTx9ultFlXXHGFSkpKXMvHH3/slTq4fd4LBg8erKuuukrPPvusJOf7zOLi4vTAAw9o7ty5Xq6ubTKZTFq3bp3Gjx/v7VLatOPHjysyMlIffPCBrr32Wm+X0+aFh4fr97//vSZPnuztUtqUiooKDRgwQM8//7wee+wx9evXT0uXLvV2WW3K/PnztX79ehUWFnq7FHqEPO306dPavn270tLSXNv8/PyUlpam/Px8L1YGXDiLxSLJ+QsaLcdms+m1115TZWWlUlJSvF1OmzNt2jTdeOONbn9Po/l9+eWXio2NVbdu3XTnnXfq8OHDXqmDl6562Ndffy2bzaaoqCi37VFRUdq3b5+XqgIunN1u18yZMzVs2DD17t3b2+W0STt37lRKSoqqqqrUqVMnrVu3TklJSd4uq0157bXXtGPHDn322WfeLqVNGzx4sFavXq2ePXuqpKREOTk5uuaaa7Rr1y6FhIR4tBaCEIBmMW3aNO3atctr4/xG0LNnTxUWFspiseh//ud/NHHiRH3wwQeEoWZy5MgRzZgxQ5s2bVJQUJC3y2nTRo8e7fpznz59NHjwYMXHx2vt2rUeH+olCHlYly5d5O/vr7KyMrftZWVlio6O9lJVwIWZPn263njjDX344Ye6+OKLvV1OmxUQEKAePXpIkpKTk/XZZ5/p6aef1ooVK7xcWduwfft2lZeXa8CAAa5tNptNH374oZ599llVV1fL39/fixW2XWFhYbr88su1f/9+j1+bOUIeFhAQoOTkZOXl5bm22e125eXlMdYPn+NwODR9+nStW7dO7733nhISErxdkqHY7XZVV1d7u4w24/rrr9fOnTtVWFjoWgYOHKg777xThYWFhKAWVFFRoQMHDigmJsbj16ZHyAuysrI0ceJEDRw4UIMGDdLSpUtVWVmpSZMmebu0NqWiosLtXxfFxcUqLCxUeHi4LrnkEi9W1nZMmzZNr776qv75z38qJCREpaWlkiSz2awOHTp4ubq2JTs7W6NHj9Yll1yi7777Tq+++qo2b96st99+29ultRkhISG15rd17NhRnTt3Zt5bM3vooYc0ZswYxcfH69ixY5o3b578/f11++23e7wWgpAX3HrrrTp+/LgeeeQRlZaWql+/fsrNza01gRoXZtu2bRo+fLhrPSsrS5I0ceJErV692ktVtS3Lli2TJKWmprptX7VqlTIzMz1fUBtWXl6ujIwMlZSUyGw2q0+fPnr77bc1YsQIb5cGNNlXX32l22+/Xd98840iIiJ09dVX69NPP1VERITHa+E5QgAAwLCYIwQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIAQAAAyLIATA0DIzMzV+/HhvlwHASwhCAFpcZmamTCZTrSU9Pd3bpenpp59uNa9cMZlMWr9+vbfLAAyFd40B8Ij09HStWrXKbVtgYKCXqpFsNptMJpPMZrPXagDgffQIAfCIwMBARUdHuy0XXXSRNm/erICAAH300Ueutk8++aQiIyNVVlYmyflS1+nTp2v69Okym83q0qWLfvvb3+rsVyVWV1froYceUteuXdWxY0cNHjxYmzdvdu1fvXq1wsLCtGHDBiUlJSkwMFCHDx+uNTSWmpqqBx54QDNnztRFF12kqKgo/elPf1JlZaUmTZqkkJAQ9ejRQ//617/cPt+uXbs0evRoderUSVFRUbr77rv19ddfu533V7/6lWbPnq3w8HBFR0dr/vz5rv2XXnqpJOmmm26SyWRyrQNoWQQhAF6VmpqqmTNn6u6775bFYtHnn3+u3/72t1q5cqWioqJc7V566SW1a9dOBQUFevrpp/WHP/xBK1eudO2fPn268vPz9dprr+mLL77QLbfcovT0dH355ZeuNqdOndKiRYu0cuVK7d69W5GRkXXW9NJLL6lLly4qKCjQAw88oKlTp+qWW27R0KFDtWPHDo0cOVJ33323Tp06JUk6efKkfvKTn6h///7atm2bcnNzVVZWpgkTJtQ6b8eOHbV161Y9+eSTWrBggTZt2iRJ+uyzzyRJq1atUklJiWsdQAtzAEALmzhxosPf39/RsWNHt+Xxxx93OBwOR3V1taNfv36OCRMmOJKSkhxTpkxxO/66665z9OrVy2G3213b5syZ4+jVq5fD4XA4Dh065PD393ccPXrU7bjrr7/ekZ2d7XA4HI5Vq1Y5JDkKCwtr1TZu3Di3a1199dWu9e+//97RsWNHx9133+3aVlJS4pDkyM/PdzgcDsejjz7qGDlypNt5jxw54pDkKCoqqvO8DofDcdVVVznmzJnjWpfkWLduXT3fIoCWwBwhAB4xfPhwLVu2zG1beHi4JCkgIECvvPKK+vTpo/j4eD311FO1jh8yZIhMJpNrPSUlRUuWLJHNZtPOnTtls9l0+eWXux1TXV2tzp07u9YDAgLUp0+fc9Z6dht/f3917txZV155pWtbTU9VeXm5JOnf//633n//fXXq1KnWuQ4cOOCq68fXjomJcZ0DgHcQhAB4RMeOHdWjR49693/yySeSpBMnTujEiRPq2LFjo89dUVEhf39/bd++Xf7+/m77zg4nHTp0cAtT9Wnfvr3buslkcttWcw673e66/pgxY7Ro0aJa54qJiWnwvDXnAOAdBCEAXnfgwAE9+OCD+tOf/qQ1a9Zo4sSJevfdd+Xn98M0xq1bt7od8+mnn+qyyy6Tv7+/+vfvL5vNpvLycl1zzTWeLl8DBgzQP/7xD1166aVq1+78/1pt3769bDZbM1YG4FyYLA3AI6qrq1VaWuq2fP3117LZbLrrrrs0atQoTZo0SatWrdIXX3yhJUuWuB1/+PBhZWVlqaioSH/729/0zDPPaMaMGZKkyy+/XHfeeacyMjL0+uuvq7i4WAUFBVq4cKHefPPNFv9s06ZN04kTJ3T77bfrs88+04EDB/T2229r0qRJTQo2l156qfLy8lRaWqpvv/22BSsGUIMeIQAekZub6zZMJEk9e/bUHXfcoUOHDumNN96Q5BxKeuGFF3T77bdr5MiR6tu3ryQpIyND//d//6dBgwbJ399fM2bM0L333us616pVq/TYY49p1qxZOnr0qLp06aIhQ4bopz/9aYt/ttjYWG3ZskVz5szRyJEjVV1drfj4eKWnp7v1ap3LkiVLlJWVpT/96U/q2rWrDh482HJFA5AkmRyOsx7EAQCtUGpqqvr166elS5d6uxQAbQxDYwAAwLAIQgAAwLAYGgMAAIZFjxAAADAsghAAADAsghAAADAsghAAADAsghAAADAsghAAADAsghAAADAsghAAADCs/w+wqHWiGhij+QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8xUlEQVR4nO3deXxU1f3/8fdkgIRsEwNZMcYACqTsIBBwCQUhaBGs+wahFFsECwYLpD9riEsBlYp1Qa0VsGqFfisW1EYxFa0SiICprCnQsAhZUGSGhCbgzPz+GBkZSUISkpnM3Nfz8ZiH3HvPvfOZKXXennPuuSan0+kUAACAAQX5ugAAAABfIQgBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDauPrAlo7h8Ohw4cPKyIiQiaTydflAACABnA6nTp+/LgSExMVFFR3vw9B6BwOHz6spKQkX5cBAACa4ODBg7rwwgvrPE4QOoeIiAhJri8yMjLSx9UAAICGsNlsSkpKcv+O14UgdA6nh8MiIyMJQgAA+JlzTWthsjQAADAsghAAADAsghAAADAs5ggBAFolu92uU6dO+boMtFJt27aV2Ww+7+sQhAAArYrT6VRZWZmOHTvm61LQykVFRSk+Pv681vkjCAEAWpXTISg2NlahoaEsZouzOJ1OnThxQhUVFZKkhISEJl/Lr4LQxx9/rMcff1ybN29WaWmpVq1apfHjx9d7zrp165SVlaXt27crKSlJDzzwgDIzM71SLwCgcex2uzsEdejQwdfloBVr3769JKmiokKxsbFNHibzq8nSVVVV6tOnj5599tkGtS8pKdG1116r4cOHq6ioSDNnztTPf/5zvffeey1cKQCgKU7PCQoNDfVxJfAHp/+enM9cMr/qERozZozGjBnT4PbPP/+8UlJStGjRIklSjx499Mknn+jJJ5/U6NGjW6pMAMB5YjgMDdEcf0/8Kgg1VkFBgUaOHOmxb/To0Zo5c2ad59TU1Kimpsa9bbPZWqo8AGgch13av16qLJfC46TkoVLQ+d81AxhZQAehsrIyxcXFeeyLi4uTzWbT//73P/f44pnmz5+v3Nxcb5UIAA2zY7WUN0eyHf5+X2SilLFQSr3Od3UBfs6v5gh5Q3Z2tqxWq/t18OBBX5cEwOh2rJZWTvAMQZJkK3Xt37HaN3XBJzIzMz1uFEpPT693pKMhmuMa/iqge4Ti4+NVXl7usa+8vFyRkZG19gZJUnBwsIKDg71RHgCcm8Pu6gmSs5aDTkkmKW+u1P1ahsl+wO5wqrDkqCqOVys2IkSDUqJlDmq5uUeZmZlavny5JNdifxdddJEmTJig3/zmN2rTpuV+bt988021bdu2QW3XrVun4cOH65tvvlFUVFSTrhFoAjoIpaWl6d133/XYt3btWqWlpfmoIgBopP3rz+4J8uCUbIdc7VKu8FpZrV3etlLlrtmhUmu1e1+CJUQ5Y1OV0bPpa86cS0ZGhpYuXaqamhq9++67mjZtmtq2bavs7GyPdidPnlS7du2a5T2jo6NbxTX8lV8NjVVWVqqoqEhFRUWSXLfHFxUV6cCBA5Jcw1oTJkxwt//lL3+p//73v5o9e7Z27dql5557TitXrtR9993ni/IBoPEqy8/dpjHtDCBvW6mmvrrFIwRJUpm1WlNf3aK8baUt9t7BwcGKj49XcnKypk6dqpEjR2r16tXu4axHH31UiYmJ6tatmyTp4MGDuvnmmxUVFaXo6GiNGzdO+/btc1/PbrcrKytLUVFR6tChg2bPni2n07N38IfDWjU1NZozZ46SkpIUHBysrl276k9/+pP27dun4cOHS5IuuOACmUwm97p6P7zGN998owkTJuiCCy5QaGioxowZo927d7uPL1u2TFFRUXrvvffUo0cPhYeHKyMjQ6Wl33+369at06BBgxQWFqaoqCgNGzZM+/fvb6Zvuvn4VRDatGmT+vXrp379+kmSsrKy1K9fPz344IOSpNLSUncokqSUlBS98847Wrt2rfr06aNFixbppZde4tZ5AP4jPO7cbRrTLsDZHU7lrtlR50CiJOWu2SG7o7YWza99+/Y6efKkJCk/P1/FxcVau3at3n77bZ06dUqjR49WRESE/vWvf+nTTz91B4rT5yxatEjLli3Tyy+/rE8++URHjx7VqlWr6n3PCRMm6C9/+Yv+8Ic/aOfOnXrhhRcUHh6upKQk/e1vf5MkFRcXq7S0VE899VSt18jMzNSmTZu0evVqFRQUyOl06pprrvFYr+fEiRN64okn9Oc//1kff/yxDhw4oPvvv1+S9O2332r8+PG66qqr9MUXX6igoEB33313q1wWwa+GxtLT089KwmdatmxZred8/vnnLVgVALSg5KGuu8Nspap9npDJdTx5qLcra5UKS46e1RN0JqekUmu1CkuOKq1Ly61c7XQ6lZ+fr/fee0/33nuvjhw5orCwML300kvuIbFXX31VDodDL730kjsgLF26VFFRUVq3bp1GjRqlxYsXKzs7Wz/96U8ludbHq29R4P/85z9auXKl1q5d614+pnPnzu7jp4fAYmNjPeYInWn37t1avXq1Pv30Uw0d6vp79dprrykpKUlvvfWWbrrpJkmuRQyff/55denSRZI0ffp0PfTQQ5JcS89YrVb95Cc/cR/v0aNH479IL/CrHiEAMJwgs+sWeUnSD/9r+rvtjAVMlP5OxfG6Q1BT2jXW22+/rfDwcIWEhGjMmDG65ZZbNG/ePElSr169POYF/fvf/9aePXsUERGh8PBwhYeHKzo6WtXV1dq7d6+sVqtKS0s1ePBg9zlt2rTRwIED63z/oqIimc1mXXXVVU3+DDt37lSbNm083rdDhw7q1q2bdu7c6d4XGhrqDjmS63lfp5/9FR0drczMTI0ePVpjx47VU0895TFs1poQhACgtUu9Trr5FSnyB5N8IxNd+1lHyC02IqRZ2zXW6Uc67d69W//73/+0fPlyhYWFSZL7n6dVVlZqwIAB7rmvp1//+c9/dPvttzfp/eu6I7ol/PAuM5PJ5DFqs3TpUhUUFGjo0KFasWKFLr30Um3YsMFr9TWUXw2NAYBhpV7nukWelaXrNSglWgmWEJVZq+saSFS8xXUrfUsICwtT165dG9S2f//+WrFihWJjYxUZGVlrm4SEBG3cuFFXXnmlJNfcm82bN6t///61tu/Vq5ccDoc++uijs56sIMndI2W32+usq0ePHvr222+1ceNG99DY119/reLiYqWmpjbos512el5vdna20tLS9Prrr2vIkCGNukZLo0cIAPxFkNl1i3yvG13/JASdxRxkUs5Y1491HQOJyhmb2qLrCTXUHXfcoY4dO2rcuHH617/+pZKSEq1bt06/+tWv9OWXX0qSZsyYoQULFuitt97Srl27dM899+jYsWN1XvPiiy/WxIkT9bOf/UxvvfWW+5orV66UJCUnJ8tkMuntt9/WkSNHVFlZedY1LrnkEo0bN05TpkzRJ598on//+9+688471alTJ40bN65Bn62kpETZ2dkqKCjQ/v379f7772v37t2tcp4QQQgAEFAyeiZoyZ39FW/xHP6Kt4RoyZ39W3QdocYIDQ3Vxx9/rIsuukg//elP1aNHD02ePFnV1dXuHqJZs2bprrvu0sSJE5WWlqaIiAhdf/319V53yZIluvHGG3XPPfeoe/fumjJliqqqqiRJnTp1Um5urubOnau4uDhNnz691mssXbpUAwYM0E9+8hOlpaXJ6XTq3XffbfCii6Ghodq1a5duuOEGXXrppbr77rs1bdo0/eIXv2jEN+QdJmd9t2FBNptNFotFVqu1zq5LAEDzqK6uVklJiVJSUhQScn7zeLy9sjS8r76/Lw39/WaOEAAgIJmDTC16izwCA0NjAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAAAY3Lx589S3b19fl6H09HTNnDnTq+9JEAIAoJmUlZVpxowZ6tq1q0JCQhQXF6dhw4ZpyZIlOnHihK/La7J169bJZDLV+5wzX17vfLCyNAAgMDns0v71UmW5FB4nJQ9t0QfV/ve//9WwYcMUFRWl3/3ud+rVq5eCg4O1detWvfjii+rUqZOuu+66Ws89depUg5/j1ZqdPHnS/YR7f0GPEAAg8OxYLS3uKS3/ifS3ya5/Lu7p2t9C7rnnHrVp00abNm3SzTffrB49eqhz584aN26c3nnnHY0dO9bd1mQyacmSJbruuusUFhamRx99VJLrgaldunRRu3bt1K1bN/35z392n7Nv3z6ZTCYVFRW59x07dkwmk0nr1q2T9H1PS35+vgYOHKjQ0FANHTpUxcXFHrUuWLBAcXFxioiIcD/otS779u3T8OHDJUkXXHCBTCaTMjMzJbmGsqZPn66ZM2eqY8eOGj169DnrrO96kuRwODR79mxFR0crPj5e8+bNa+j/BE1CEAIABJYdq6WVEyTbYc/9tlLX/hYIQ19//bXef/99TZs2TWFhYbW2MZk8H/g6b948XX/99dq6dat+9rOfadWqVZoxY4ZmzZqlbdu26Re/+IUmTZqkDz/8sNH1/L//9/+0aNEibdq0SW3atNHPfvYz97GVK1dq3rx5+t3vfqdNmzYpISFBzz33XJ3XSkpK0t/+9jdJUnFxsUpLS/XUU0+5jy9fvlzt2rXTp59+queff/6ctTXkemFhYdq4caMee+wxPfTQQ1q7dm2jv4OGYmgMABA4HHYpb44kZy0HnZJMUt5cqfu1zTpMtmfPHjmdTnXr1s1jf8eOHd29LdOmTdPChQvdx26//XZNmjTJvX3bbbcpMzNT99xzjyQpKytLGzZs0BNPPOHuQWmoRx99VFdddZUkae7cubr22mtVXV2tkJAQLV68WJMnT9bkyZMlSY888og++OCDOnuFzGazoqOjJUmxsbGKioryOH7JJZfosccec2/v27ev3trOdb3evXsrJyfHfe1nnnlG+fn5uvrqqxv02RuLHiEAQODYv/7sniAPTsl2yNXOCwoLC1VUVKQf/ehHqqmp8Tg2cOBAj+2dO3dq2LBhHvuGDRumnTt3Nvp9e/fu7f5zQkKCJKmiosL9PoMHD/Zon5aW1uj3OG3AgAFNPrc2Z9Yuueo/XXtLoEcIABA4Ksubt10Dde3aVSaT6ay5OJ07d5YktW/f/qxz6hpCq0tQkKvvwun8vrfr1KlTtbY9c+L16SE5h8PRqPdrqB9+jsbUWZsfTho3mUwtVrtEjxAAIJCExzVvuwbq0KGDrr76aj3zzDOqqqpq0jV69OihTz/91GPfp59+qtTUVElSTEyMJKm0tNR9/MwJyY15n40bN3rs27BhQ73nnL4TzG63n/P6DamzMddrafQIAQACR/JQKTLRNTG61nlCJtfx5KHN/tbPPfechg0bpoEDB2revHnq3bu3goKC9Nlnn2nXrl3nHEL69a9/rZtvvln9+vXTyJEjtWbNGr355pv64IMPJLl6lYYMGaIFCxYoJSVFFRUVeuCBBxpd54wZM5SZmamBAwdq2LBheu2117R9+3Z371VtkpOTZTKZ9Pbbb+uaa65R+/btFR4eXmvbhtTZmOu1NHqEAACBI8gsZZyekGz6wcHvtjMWtMh6Ql26dNHnn3+ukSNHKjs7W3369NHAgQP19NNP6/7779fDDz9c7/njx4/XU089pSeeeEI/+tGP9MILL2jp0qVKT093t3n55Zf17bffasCAAZo5c6YeeeSRRtd5yy236Le//a1mz56tAQMGaP/+/Zo6dWq953Tq1Em5ubmaO3eu4uLiNH369Hrbn6vOxl6vJZmcZw7i4Sw2m00Wi0VWq1WRkZG+LgcAAlp1dbVKSkqUkpKikJCQpl9ox2rX3WNnTpyO7OQKQam1L2oI/1Pf35eG/n4zNAYACDyp17lukffiytLwTwQhAEBgCjJLKVf4ugq0cswRAgAAhkUQAgAAhkUQAgC0OtzHg4Zojr8nBCEAQKtxelXhEydO+LgS+IPTf09+uBp1YzBZGgDQapjNZkVFRbmfLRUaGnrWU9sBp9OpEydOqKKiQlFRUTKbm343IEEIANCqxMfHS1KLPmgTgSEqKsr996WpCEIAgFbFZDIpISFBsbGxjXpYJ4ylbdu259UTdBpBCADQKpnN5mb5oQPqw2RpAABgWAQhAABgWAQhAABgWH4XhJ599lldfPHFCgkJ0eDBg1VYWFhn22XLlslkMnm8zutpxgAAIKD4VRBasWKFsrKylJOToy1btqhPnz4aPXp0vbdYRkZGqrS01P3av3+/FysGAACtmV8Fod///veaMmWKJk2apNTUVD3//PMKDQ3Vyy+/XOc5JpNJ8fHx7ldcXJwXKwYAAK2Z3wShkydPavPmzRo5cqR7X1BQkEaOHKmCgoI6z6usrFRycrKSkpI0btw4bd++vd73qampkc1m83gBAIDA5DdB6KuvvpLdbj+rRycuLk5lZWW1ntOtWze9/PLL+vvf/65XX31VDodDQ4cO1Zdfflnn+8yfP18Wi8X9SkpKatbPAQAAWg+/CUJNkZaWpgkTJqhv37666qqr9OabbyomJkYvvPBCnedkZ2fLarW6XwcPHvRixQAAwJv8ZmXpjh07ymw2q7y83GN/eXl5g58z0rZtW/Xr10979uyps01wcLCCg4PPq1YAAOAf/KZHqF27dhowYIDy8/Pd+xwOh/Lz85WWltaga9jtdm3dulUJCQktVSYAAPAjftMjJElZWVmaOHGiBg4cqEGDBmnx4sWqqqrSpEmTJEkTJkxQp06dNH/+fEnSQw89pCFDhqhr1646duyYHn/8ce3fv18///nPffkxAABAK+FXQeiWW27RkSNH9OCDD6qsrEx9+/ZVXl6eewL1gQMHFBT0fSfXN998oylTpqisrEwXXHCBBgwYoPXr1ys1NdVXHwEAALQiJqfT6fR1Ea2ZzWaTxWKR1WpVZGSkr8sBAAAN0NDfb7+ZIwQAANDcCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCw2vi6AAAAWhO7w6nCkqOqOF6t2IgQDUqJljnI5Ouy0EIIQgAAfCdvW6ly1+xQqbXavS/BEqKcsanK6Jngw8rQUhgaAwBArhA09dUtHiFIksqs1Zr66hblbSv1UWVoSQQhAIDh2R1O5a7ZIWctx07vy12zQ3ZHbS3gzwhCAADDKyw5elZP0Jmckkqt1SosOeq9ogKdwy6V/Eva+n+ufzrsPimDOUIAAMOrOF53CGpKO5zDjtVS3hzJdvj7fZGJUsZCKfU6r5ZCjxAAwPBiI0KatR3qsWO1tHKCZwiSJFupa/+O1V4thyAEADC8QSnRSrCEqK6b5E1y3T02KCXam2UFHofd1RNU32ysvLleHSYjCAEADM8cZFLO2FRJOisMnd7OGZvKekLna//6s3uCPDgl2yFXOy8hCAEAICmjZ4KW3Nlf8RbP4a94S4iW3NmfdYSaQ2V587ZrBkyWBgDgOxk9E3R1ajwrS7eU8LjmbdcMCEIAAJzBHGRSWpcOvi4jMCUPdd0dZitV7fOETK7jyUO9VpLfDY09++yzuvjiixUSEqLBgwersLCw3vZ//etf1b17d4WEhKhXr1569913vVQpAADwEGR23SIvqc7ZWBkLXO28VZLX3qkZrFixQllZWcrJydGWLVvUp08fjR49WhUVFbW2X79+vW677TZNnjxZn3/+ucaPH6/x48dr27ZtXq4cAABIcq0TdPMrUuQP5lxFJrr2e3kdIZPT6fSb9cIHDx6syy67TM8884wkyeFwKCkpSffee6/mzp17VvtbbrlFVVVVevvtt937hgwZor59++r555+v9T1qampUU1Pj3rbZbEpKSpLValVkZGQzfyIAAAzKYXfdHVZZ7poTlDy0WXuCbDabLBbLOX+//aZH6OTJk9q8ebNGjhzp3hcUFKSRI0eqoKCg1nMKCgo82kvS6NGj62wvSfPnz5fFYnG/kpKSmucDAACA7wWZpZQrpF43uv7pxeEwjzJ88q5N8NVXX8lutysuznMmeVxcnMrKymo9p6ysrFHtJSk7O1tWq9X9Onjw4PkXDwAAWiXuGvuB4OBgBQcH+7oMAADgBX7TI9SxY0eZzWaVl3suslReXq74+Phaz4mPj29UewAAYCx+E4TatWunAQMGKD8/373P4XAoPz9faWlptZ6Tlpbm0V6S1q5dW2d7AABgLH41NJaVlaWJEydq4MCBGjRokBYvXqyqqipNmjRJkjRhwgR16tRJ8+fPlyTNmDFDV111lRYtWqRrr71Wb7zxhjZt2qQXX3zRlx8DAAC0En4VhG655RYdOXJEDz74oMrKytS3b1/l5eW5J0QfOHBAQUHfd3INHTpUr7/+uh544AH95je/0SWXXKK33npLPXv29NVHAAAArYhfrSPkCw1dhwAAALQeAbeOEAAAQHMjCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMPyq6fPA2ilHHZp/3qpslwKj5OSh0pBZl9XBQDnRBACcH52rJby5ki2w9/vi0yUMhZKqdf5ri4AaACGxgA03Y7V0soJniFIkmylrv07VvumLgBoIIIQgKZx2F09QXLWcvC7fXlzXe0AoJUiCAFomv3rz+4J8uCUbIdc7QCglSIIAWiayvLmbQcAPkAQAtA04XHN2w4AfIAgBKBpkoe67g6TqY4GJimyk6sdALRSBCEATRNkdt0iL+nsMPTddsYC1hMC0KoRhAA0Xep10s2vSJEJnvsjE137WUcIQCvHgooAzk/qdVL3a1lZGoBfIggBOH9BZinlCl9XAcCP2B1OFZYcVcXxasVGhGhQSrTMQXXNOWw5BCEAAOBVedtKlbtmh0qt1e59CZYQ5YxNVUbPhHrObH7MEQIAAF6Tt61UU1/d4hGCJKnMWq2pr25R3rZSr9ZDEAIAAF5hdziVu2ZHfQ/mUe6aHbI7amvRMghCAADAKwpLjp7VE3Qmp6RSa7UKS456rSaCEAAA8IqK43WHoKa0aw4EIQAA4BWxESHN2q45EIQAAIBXDEqJVoIlpL4H8yjB4rqV3lsIQgAAwCvMQSbljE2VVOeDeZQzNtWr6wkRhAAAgNdk9EzQkjv7K97iOfwVbwnRkjv7e30dIRZUBAAAXpXRM0FXp8azsjQAADAmc5BJaV06+LoMhsYAAIBxEYQAAIBhEYQAAIBhEYQAAIBh+U0QOnr0qO644w5FRkYqKipKkydPVmVlZb3npKeny2Qyebx++ctfeqliAADQ2vnNXWN33HGHSktLtXbtWp06dUqTJk3S3Xffrddff73e86ZMmaKHHnrIvR0aGtrSpQIAAD/hF0Fo586dysvL02effaaBAwdKkp5++mldc801euKJJ5SYmFjnuaGhoYqPj/dWqQAAwI/4xdBYQUGBoqKi3CFIkkaOHKmgoCBt3Lix3nNfe+01dezYUT179lR2drZOnDhRb/uamhrZbDaPFwAACEx+0SNUVlam2NhYj31t2rRRdHS0ysrK6jzv9ttvV3JyshITE/XFF19ozpw5Ki4u1ptvvlnnOfPnz1dubm6z1Q4AAFovnwahuXPnauHChfW22blzZ5Ovf/fdd7v/3KtXLyUkJGjEiBHau3evunTpUus52dnZysrKcm/bbDYlJSU1uQYAANB6+TQIzZo1S5mZmfW26dy5s+Lj41VRUeGx/9tvv9XRo0cbNf9n8ODBkqQ9e/bUGYSCg4MVHBzc4GsCAAD/5dMgFBMTo5iYmHO2S0tL07Fjx7R582YNGDBAkvTPf/5TDofDHW4aoqioSJKUkODdJ9sCAIDWyS8mS/fo0UMZGRmaMmWKCgsL9emnn2r69Om69dZb3XeMHTp0SN27d1dhYaEkae/evXr44Ye1efNm7du3T6tXr9aECRN05ZVXqnfv3r78OAAAoJXwiyAkue7+6t69u0aMGKFrrrlGl19+uV588UX38VOnTqm4uNh9V1i7du30wQcfaNSoUerevbtmzZqlG264QWvWrPHVRwAAAK2Myel0On1dRGtms9lksVhktVoVGRnp63IAAEADNPT32296hAAAAJobQQgAABgWQQgAABgWQQgAABgWQQgAABgWQQgAABgWQQgAABjWeT1io7q6WitWrFBVVZWuvvpqXXLJJc1VFwAAQItrcBDKysrSqVOn9PTTT0uSTp48qbS0NG3fvl2hoaGaPXu21q5dq7S0tBYrFgAAoDk1eGjs/fff19VXX+3efu2117R//37t3r1b33zzjW666SY98sgjLVIkAABAS2hwEDpw4IBSU1Pd2++//75uvPFGJScny2QyacaMGfr8889bpEgAAICW0OAgFBQUpDMfS7ZhwwYNGTLEvR0VFaVvvvmmeasDAABoQQ0OQj169HA/uX379u06cOCAhg8f7j6+f/9+xcXFNX+FAAAALaTBk6Vnz56tW2+9Ve+88462b9+ua665RikpKe7j7777rgYNGtQiRQIAALSEBvcIXX/99Xr33XfVu3dv3XfffVqxYoXH8dDQUN1zzz3NXiAAAEBLMTnPnPhTj4ceekj333+/QkNDW7qmVsVms8lischqtSoyMtLX5QAAgAZo6O93g3uEcnNzVVlZ2SzFAQAAtAYNDkIN7DgCAADwG4161pjJZGqpOgAAALyuUc8au/TSS88Zho4ePXpeBQEAAHhLo4JQbm6uLBZLS9UCAADgVY0KQrfeeqtiY2NbqhYAAACvavAcIeYHAQCAQMNdYwAAwLAaPDTmcDhasg4AAACva9Tt8wAAAIGEIAQAAAyLIAQAAAyrUbfPo3nYHU4VlhxVxfFqxUaEaFBKtMxB3JUHAIC3EYS8LG9bqXLX7FCptdq9L8ESopyxqcromeDDygAAMB6Gxrwob1uppr66xSMESVKZtVpTX92ivG2lPqoMAABjIgh5id3hVO6aHaptNabT+3LX7JDdwXpNAAB4C0HISwpLjp7VE3Qmp6RSa7UKS3hoLQAA3kIQ8pKK43WHoKa0AwAA548g5CWxESHN2g4AAJw/gpCXDEqJVoIlRHXdJG+S6+6xQSnR3iwLAABDIwh5iTnIpJyxqZJ0Vhg6vZ0zNpX1hAAA8CKCkBdl9EzQkjv7K97iOfwVbwnRkjv7s44QAABexoKKXpbRM0FXp8azsjQAAK2A3/QIPfrooxo6dKhCQ0MVFRXVoHOcTqcefPBBJSQkqH379ho5cqR2797dsoU2gDnIpLQuHTSubyeldelACAIAwEf8JgidPHlSN910k6ZOndrgcx577DH94Q9/0PPPP6+NGzcqLCxMo0ePVnU1t6gDAADJ5HQ6/Wop42XLlmnmzJk6duxYve2cTqcSExM1a9Ys3X///ZIkq9WquLg4LVu2TLfeemuD3s9ms8lischqtSoyMvJ8ywcAAF7Q0N9vv+kRaqySkhKVlZVp5MiR7n0Wi0WDBw9WQUFBnefV1NTIZrN5vACgNbA7nCrY+7X+XnRIBXu/5pE8QDMI2MnSZWVlkqS4uDiP/XFxce5jtZk/f75yc3NbtDYAaKy8baXKXbPD41E9CZYQ5YxN5Y5T4Dz4tEdo7ty5MplM9b527drl1Zqys7NltVrdr4MHD3r1/QHgh/K2lWrqq1vOel5hmbVaU1/dorxtpT6qDPB/Pu0RmjVrljIzM+tt07lz5yZdOz4+XpJUXl6uhITv/2upvLxcffv2rfO84OBgBQcHN+k9AaC52R1O5a7ZodoGwZxyLciau2aHrk6N5w5UoAl8GoRiYmIUExPTItdOSUlRfHy88vPz3cHHZrNp48aNjbrzDAB8qbDk6Fk9QWdySiq1Vquw5KjSunTwXmFAgPCbydIHDhxQUVGRDhw4ILvdrqKiIhUVFamystLdpnv37lq1apUkyWQyaebMmXrkkUe0evVqbd26VRMmTFBiYqLGjx/vo08BAI1Tcbxhy300tB0AT34zWfrBBx/U8uXL3dv9+vWTJH344YdKT0+XJBUXF8tqtbrbzJ49W1VVVbr77rt17NgxXX755crLy1NICE94B+AfYiMa9u+rhrYD4Mnv1hHyNtYRAuBLdodTly/8p8qs1bXOEzLJ9bzCT+b8mDlCwBkMv44QAAQCc5BJOWNTJblCz5lOb+eMTSUEAU1EEAKAVi6jZ4KW3Nlf8RbP4a94S4iW3NmfdYSA8+A3c4QAwMgyeibo6tR4FZYcVcXxasVGhGhQSjQ9QcB5IggBgJ8wB5m4RR5oZgyNAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAw+Lp8whododThSVHVXG8WrERIRqUEi1zkMnXZQEAWgmCEAJW3rZS5a7ZoVJrtXtfgiVEOWNTldEzwYeVAQBaC4bGEJDytpVq6qtbPEKQJJVZqzX11S3K21bqo8oAAK0JQQgBx+5wKnfNDjlrOXZ6X+6aHbI7amsBADASghACTmHJ0bN6gs7klFRqrVZhyVHvFQUAaJUIQgg4FcfrDkFNaQcACFwEIQSc2IiQZm0HAAhcBCEEnEEp0UqwhKium+RNct09Nigl2ptlAQBaIYIQAo45yKScsamSdFYYOr2dMzaV9YQAAAQhBKaMnglacmd/xVs8h7/iLSFacmd/1hECAEhiQUUEsIyeCbo6NZ6VpQEAdSIIIaCZg0xK69LB12UAAFophsYAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBh+U0QevTRRzV06FCFhoYqKiqqQedkZmbKZDJ5vDIyMlq2UAAA4Df85qGrJ0+e1E033aS0tDT96U9/avB5GRkZWrp0qXs7ODi4JcoDAAB+yG+CUG5uriRp2bJljTovODhY8fHxDW5fU1Ojmpoa97bNZmvU+wEAAP/hN0NjTbVu3TrFxsaqW7dumjp1qr7++ut628+fP18Wi8X9SkpK8lKlAADA2wI6CGVkZOiVV15Rfn6+Fi5cqI8++khjxoyR3W6v85zs7GxZrVb36+DBg16sGAAAeJNPh8bmzp2rhQsX1ttm586d6t69e5Ouf+utt7r/3KtXL/Xu3VtdunTRunXrNGLEiFrPCQ4OZh4RAAAG4dMgNGvWLGVmZtbbpnPnzs32fp07d1bHjh21Z8+eOoMQAAAwDp8GoZiYGMXExHjt/b788kt9/fXXSkhI8Np7AgCA1stv5ggdOHBARUVFOnDggOx2u4qKilRUVKTKykp3m+7du2vVqlWSpMrKSv3617/Whg0btG/fPuXn52vcuHHq2rWrRo8e7auPAQAAWhG/uX3+wQcf1PLly93b/fr1kyR9+OGHSk9PlyQVFxfLarVKksxms7744gstX75cx44dU2JiokaNGqWHH36YOUBG4rBL+9dLleVSeJyUPFQKMvu6KgBAK2FyOp1OXxfRmtlsNlksFlmtVkVGRvq6HDTGjtVS3hzJdvj7fZGJUsZCKfU639UFAGhxDf399puhMaBRdqyWVk7wDEGSZCt17d+x2jd1AQBaFYIQAo/D7uoJUm2dnd/ty5vragcAMDSCEALP/vVn9wR5cEq2Q652AABDIwgh8FSWN287AEDAIggh8ITHNW87AEDAIggh8CQPdd0dJlMdDUxSZCdXOwCAoRGEEHiCzK5b5CWdHYa+285YwHpCAACCEAJU6nXSza9IkT94nEpkoms/6wgBAORHK0sDjZZ6ndT9WlaWBgDUiSCEwBZkllKu8HUVAIBWiqExAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWH4RhPbt26fJkycrJSVF7du3V5cuXZSTk6OTJ0/We151dbWmTZumDh06KDw8XDfccIPKy8u9VDUAAGjt/CII7dq1Sw6HQy+88IK2b9+uJ598Us8//7x+85vf1HvefffdpzVr1uivf/2rPvroIx0+fFg//elPvVQ1AABo7UxOp9Pp6yKa4vHHH9eSJUv03//+t9bjVqtVMTExev3113XjjTdKcgWqHj16qKCgQEOGDGnQ+9hsNlksFlmtVkVGRjZb/QAAoOU09PfbL3qEamO1WhUdHV3n8c2bN+vUqVMaOXKke1/37t110UUXqaCgoM7zampqZLPZPF4AACAw+WUQ2rNnj55++mn94he/qLNNWVmZ2rVrp6ioKI/9cXFxKisrq/O8+fPny2KxuF9JSUnNVTYAAGhlfBqE5s6dK5PJVO9r165dHuccOnRIGRkZuummmzRlypRmryk7O1tWq9X9OnjwYLO/BwAAaB3a+PLNZ82apczMzHrbdO7c2f3nw4cPa/jw4Ro6dKhefPHFes+Lj4/XyZMndezYMY9eofLycsXHx9d5XnBwsIKDgxtUPwAA8G8+DUIxMTGKiYlpUNtDhw5p+PDhGjBggJYuXaqgoPo7swYMGKC2bdsqPz9fN9xwgySpuLhYBw4cUFpa2nnXDgAIUA67tH+9VFkuhcdJyUOlILOvq0IL8WkQaqhDhw4pPT1dycnJeuKJJ3TkyBH3sdO9O4cOHdKIESP0yiuvaNCgQbJYLJo8ebKysrIUHR2tyMhI3XvvvUpLS2vwHWMAAIPZsVrKmyPZDn+/LzJRylgopV7nu7rQYvwiCK1du1Z79uzRnj17dOGFF3ocO333/6lTp1RcXKwTJ064jz355JMKCgrSDTfcoJqaGo0ePVrPPfecV2sHAPiJHaullRMk/WBVGVupa//NrxCGApDfriPkLawjBAAG4LBLi3t69gR5MLl6hmZuZZjMTwT8OkIAADSb/evrCUGS5JRsh1ztEFAIQgAAVDbwOZQNbQe/QRACACA8rnnbwW8QhAAASB7qmgMkUx0NTFJkJ1c7BBSCEAAAQWbXLfKSzg5D321nLGCidAAiCAEAILlujb/5FSkywXN/ZCK3zgcwv1hHCAAAr0i9Tup+LStLGwhBCACAMwWZpZQrfF0FvIShMQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFhtfF0AAP9ndzhVWHJUFcerFRsRokEp0TIHmXxdFgCcE0HIFxx2af96qbJcCo+TkodKQWZfVwU0Sd62UuWu2aFSa7V7X4IlRDljU5XRM8GHlQHAuRGEvG3HailvjmQ7/P2+yEQpY6GUep3v6gKaIG9bqaa+ukXOH+wvs1Zr6qtbtOTO/oQhAK0ac4S8acdqaeUEzxAkSbZS1/4dq31TF9AEdodTuWt2nBWCJLn35a7ZIbujthYA0DoQhLzFYXf1BNX3s5E319UO8AOFJUc9hsN+yCmp1FqtwpKj3isKABqJIOQt+9ef3RPkwSnZDrnaAX6g4njdIagp7QDAFwhC3lJZ3rztAB+LjQhp1nYA4AsEIW8Jj2vedoCPDUqJVoIlRHXdJG+S6+6xQSnR3iwLABqFIOQtyUNdd4fV97MR2cnVDvAD5iCTcsamSjr7b/Xp7ZyxqawnBKBVIwh5S5DZdYu8pDp/NjIWsJ4Q/EpGzwQtubO/4i2ew1/xlhBunQfgF0xOp5N7W+ths9lksVhktVoVGRl5/hesdR2hTq4QxDpC8FOsLA2gtWno7zcLKnpb6nVS92tZWRoBxRxkUlqXDr4uAwAajSDkC0FmKeUKX1cBAIDhMUcIAAAYll8EoX379mny5MlKSUlR+/bt1aVLF+Xk5OjkyZP1npeeni6TyeTx+uUvf+mlqgEAQGvnF0Nju3btksPh0AsvvKCuXbtq27ZtmjJliqqqqvTEE0/Ue+6UKVP00EMPubdDQ0NbulwAAOAn/CIIZWRkKCMjw73duXNnFRcXa8mSJecMQqGhoYqPj2/pEgEAgB/yi6Gx2litVkVHn3vF2tdee00dO3ZUz549lZ2drRMnTtTbvqamRjabzeMFAAACk1/0CP3Qnj179PTTT5+zN+j2229XcnKyEhMT9cUXX2jOnDkqLi7Wm2++Wec58+fPV25ubnOXDAAAWiGfLqg4d+5cLVy4sN42O3fuVPfu3d3bhw4d0lVXXaX09HS99NJLjXq/f/7znxoxYoT27NmjLl261NqmpqZGNTU17m2bzaakpKTmW1ARAAC0uIYuqOjTIHTkyBF9/fXX9bbp3Lmz2rVrJ0k6fPiw0tPTNWTIEC1btkxBQY0b2auqqlJ4eLjy8vI0evToBp3T7CtLAwCAFucXK0vHxMQoJiamQW0PHTqk4cOHa8CAAVq6dGmjQ5AkFRUVSZISEnj+EQAA8JM5QocOHVJ6erqSk5P1xBNP6MiRI+5jp+8IO3TokEaMGKFXXnlFgwYN0t69e/X666/rmmuuUYcOHfTFF1/ovvvu05VXXqnevXs3+L1Pd5gxaRoAAP9x+nf7XANffhGE1q5dqz179mjPnj268MILPY6d/oCnTp1ScXGx+66wdu3a6YMPPtDixYtVVVWlpKQk3XDDDXrggQca9d7Hjx+XJCUlJTXDJwEAAN50/PhxWSyWOo/z9PlzcDgcOnz4sCIiImQyNd/TtE9Pwj548CBzj1oY37V38D17B9+zd/A9e0dLfs9Op1PHjx9XYmJivdNp/KJHyJeCgoLO6oVqTpGRkfyfzEv4rr2D79k7+J69g+/ZO1rqe66vJ+g0v11QEQAA4HwRhAAAgGERhHwkODhYOTk5Cg4O9nUpAY/v2jv4nr2D79k7+J69ozV8z0yWBgAAhkWPEAAAMCyCEAAAMCyCEAAAMCyCEAAAMCyCkI88++yzuvjiixUSEqLBgwersLDQ1yUFnI8//lhjx45VYmKiTCaT3nrrLV+XFHDmz5+vyy67TBEREYqNjdX48eNVXFzs67IC0pIlS9S7d2/3wnNpaWn6xz/+4euyAtqCBQtkMpk0c+ZMX5cScObNmyeTyeTx6t69u09qIQj5wIoVK5SVlaWcnBxt2bJFffr00ejRo1VRUeHr0gJKVVWV+vTpo2effdbXpQSsjz76SNOmTdOGDRu0du1anTp1SqNGjVJVVZWvSws4F154oRYsWKDNmzdr06ZN+vGPf6xx48Zp+/btvi4tIH322Wd64YUXGvWQbjTOj370I5WWlrpfn3zyiU/q4PZ5Hxg8eLAuu+wyPfPMM5JczzNLSkrSvffeq7lz5/q4usBkMpm0atUqjR8/3telBLQjR44oNjZWH330ka688kpflxPwoqOj9fjjj2vy5Mm+LiWgVFZWqn///nruuef0yCOPqG/fvlq8eLGvywoo8+bN01tvvaWioiJfl0KPkLedPHlSmzdv1siRI937goKCNHLkSBUUFPiwMuD8Wa1WSa4faLQcu92uN954Q1VVVUpLS/N1OQFn2rRpuvbaaz3+PY3mt3v3biUmJqpz58664447dODAAZ/UwUNXveyrr76S3W5XXFycx/64uDjt2rXLR1UB58/hcGjmzJkaNmyYevbs6etyAtLWrVuVlpam6upqhYeHa9WqVUpNTfV1WQHljTfe0JYtW/TZZ5/5upSANnjwYC1btkzdunVTaWmpcnNzdcUVV2jbtm2KiIjwai0EIQDNYtq0adq2bZvPxvmNoFu3bioqKpLVatX//d//aeLEifroo48IQ83k4MGDmjFjhtauXauQkBBflxPQxowZ4/5z7969NXjwYCUnJ2vlypVeH+olCHlZx44dZTabVV5e7rG/vLxc8fHxPqoKOD/Tp0/X22+/rY8//lgXXnihr8sJWO3atVPXrl0lSQMGDNBnn32mp556Si+88IKPKwsMmzdvVkVFhfr37+/eZ7fb9fHHH+uZZ55RTU2NzGazDysMXFFRUbr00ku1Z88er783c4S8rF27dhowYIDy8/Pd+xwOh/Lz8xnrh99xOp2aPn26Vq1apX/+859KSUnxdUmG4nA4VFNT4+syAsaIESO0detWFRUVuV8DBw7UHXfcoaKiIkJQC6qsrNTevXuVkJDg9femR8gHsrKyNHHiRA0cOFCDBg3S4sWLVVVVpUmTJvm6tIBSWVnp8V8XJSUlKioqUnR0tC666CIfVhY4pk2bptdff11///vfFRERobKyMkmSxWJR+/btfVxdYMnOztaYMWN00UUX6fjx43r99de1bt06vffee74uLWBEREScNb8tLCxMHTp0YN5bM7v//vs1duxYJScn6/Dhw8rJyZHZbNZtt93m9VoIQj5wyy236MiRI3rwwQdVVlamvn37Ki8v76wJ1Dg/mzZt0vDhw93bWVlZkqSJEydq2bJlPqoqsCxZskSSlJ6e7rF/6dKlyszM9H5BAayiokITJkxQaWmpLBaLevfurffee09XX321r0sDGu3LL7/Ubbfdpq+//loxMTG6/PLLtWHDBsXExHi9FtYRAgAAhsUcIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQCGlpmZqfHjx/u6DAA+QhAC0OIyMzNlMpnOemVkZPi6ND311FOt5pErJpNJb731lq/LAAyFZ40B8IqMjAwtXbrUY19wcLCPqpHsdrtMJpMsFovPagDge/QIAfCK4OBgxcfHe7wuuOACrVu3Tu3atdO//vUvd9vHHntMsbGxKi8vl+R6qOv06dM1ffp0WSwWdezYUb/97W915qMSa2pqdP/996tTp04KCwvT4MGDtW7dOvfxZcuWKSoqSqtXr1ZqaqqCg4N14MCBs4bG0tPTde+992rmzJm64IILFBcXpz/+8Y+qqqrSpEmTFBERoa5du+of//iHx+fbtm2bxowZo/DwcMXFxemuu+7SV1995XHdX/3qV5o9e7aio6MVHx+vefPmuY9ffPHFkqTrr79eJpPJvQ2gZRGEAPhUenq6Zs6cqbvuuktWq1Wff/65fvvb3+qll15SXFycu93y5cvVpk0bFRYW6qmnntLvf/97vfTSS+7j06dPV0FBgd544w198cUXuummm5SRkaHdu3e725w4cUILFy7USy+9pO3btys2NrbWmpYvX66OHTuqsLBQ9957r6ZOnaqbbrpJQ4cO1ZYtWzRq1CjdddddOnHihCTp2LFj+vGPf6x+/fpp06ZNysvLU3l5uW6++eazrhsWFqaNGzfqscce00MPPaS1a9dKkj777DNJ0tKlS1VaWureBtDCnADQwiZOnOg0m83OsLAwj9ejjz7qdDqdzpqaGmffvn2dN998szM1NdU5ZcoUj/OvuuoqZ48ePZwOh8O9b86cOc4ePXo4nU6nc//+/U6z2ew8dOiQx3kjRoxwZmdnO51Op3Pp0qVOSc6ioqKzahs3bpzHe11++eXu7W+//dYZFhbmvOuuu9z7SktLnZKcBQUFTqfT6Xz44Yedo0aN8rjuwYMHnZKcxcXFtV7X6XQ6L7vsMuecOXPc25Kcq1atquNbBNASmCMEwCuGDx+uJUuWeOyLjo6WJLVr106vvfaaevfureTkZD355JNnnT9kyBCZTCb3dlpamhYtWiS73a6tW7fKbrfr0ksv9TinpqZGHTp0cG+3a9dOvXv3PmetZ7Yxm83q0KGDevXq5d53uqeqoqJCkvTvf/9bH374ocLDw8+61t69e911/fC9ExIS3NcA4BsEIQBeERYWpq5du9Z5fP369ZKko0eP6ujRowoLC2vwtSsrK2U2m7V582aZzWaPY2eGk/bt23uEqbq0bdvWY9tkMnnsO30Nh8Phfv+xY8dq4cKFZ10rISGh3uuevgYA3yAIAfC5vXv36r777tMf//hHrVixQhMnTtQHH3ygoKDvpzFu3LjR45wNGzbokksukdlsVr9+/WS321VRUaErrrjC2+Wrf//++tvf/qaLL75Ybdo0/V+rbdu2ld1ub8bKAJwLk6UBeEVNTY3Kyso8Xl999ZXsdrvuvPNOjR49WpMmTdLSpUv1xRdfaNGiRR7nHzhwQFlZWSouLtZf/vIXPf3005oxY4Yk6dJLL9Udd9yhCRMm6M0331RJSYkKCws1f/58vfPOOy3+2aZNm6ajR4/qtttu02effaa9e/fqvffe06RJkxoVbC6++GLl5+errKxM33zzTQtWDOA0eoQAeEVeXp7HMJEkdevWTbfffrv279+vt99+W5JrKOnFF1/UbbfdplGjRqlPnz6SpAkTJuh///ufBg0aJLPZrBkzZujuu+92X2vp0qV65JFHNGvWLB06dEgdO3bUkCFD9JOf/KTFP1tiYqI+/fRTzZkzR6NGjVJNTY2Sk5OVkZHh0at1LosWLVJWVpb++Mc/qlOnTtq3b1/LFQ1AkmRyOs9YiAMAWqH09HT17dtXixcv9nUpAAIMQ2MAAMCwCEIAAMCwGBoDAACGRY8QAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwrP8PlFTatpj1uEsAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1321,7 +1885,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -1357,7 +1921,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -1402,7 +1966,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -1439,7 +2003,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -1460,20 +2024,20 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE of LSTM forecasts is 3.56\n", - "The MSE of baseline ridge forecasts is 3.04\n" + "The MSE of LSTM forecasts is 2.626\n", + "The MSE of baseline ridge forecasts is 3.039\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMCElEQVR4nO3de1wU9f4/8NewCrhcFlHYBUW8oFxSVFAUuwgnFKw8WGZWmqIeNdPSsCPwrRNillpq2g0tE/yVnbRSj5oHAwstJVGJzBuJIZhyS3MJCNTd+f3BYXPlIuBe2J3X8/HYR87MZ2beu4fDvpjPZz4jiKIogoiIiEiCbMxdABEREZG5MAgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkdTB3Ae2dVqvFpUuX4OTkBEEQzF0OERERtYAoivjjjz/g6ekJG5umr/swCN3GpUuX4OXlZe4yiIiIqA0uXLiA7t27N7mdQeg2nJycANR9kM7OzmauhoiIiFqioqICXl5euu/xpjAI3UZ9d5izszODEBERkYW53bAWDpYmIiIiyWIQIiIiIsliECIiIiLJ4hghA9FoNLh+/bq5yyBqoGPHjpDJZOYug4ioXWIQukOiKKKkpARXr141dylETXJxcYFKpeJcWEREt2AQukP1Icjd3R1yuZxfNNSuiKKI6upqlJWVAQA8PDzMXBERUfvCIHQHNBqNLgR16dLF3OUQNapTp04AgLKyMri7u7ObjIjoJhwsfQfqxwTJ5XIzV0LUvPqfUY5jIyLSxyBkAOwOo/aOP6NERI2zqCB04MABjB07Fp6enhAEATt27Gi2fWZmJgRBaPAqKSkxTcFERGRxNFoRWecu4z+5F5F17jI0WtHcJZERWdQYoaqqKgwcOBDTp0/HI4880uL98vLy9B6P4e7ubozyiIjIwqWdKEbSrlMoVtfo1nko7JE4NgBR/XmzgTWyqCA0ZswYjBkzptX7ubu7w8XFxfAF0W3FxMTg6tWruqt3YWFhGDRoENasWdPmYxriGEREt0o7UYw5H+fg1us/JeoazPk4B8mTgxiGrJBFdY211aBBg+Dh4YFRo0bh4MGDzbatra1FRUWF3svYzHEZNiYmRtdVaGtrCx8fHyxZsgQ3btww6nm3bduGV155pUVt67s2b52jqTXHMJbFixdj0KBBTW4vKCjAk08+CU9PT9jb26N79+6Ijo7GmTNnkJqa2miX7c2v8+fPY/HixRAEAVFRUQ2O/8Ybb0AQBISFhRnvTRJJiEYrImnXqQYhCIBuXdKuU+wms0IWdUWotTw8PLBu3ToMGTIEtbW12LBhA8LCwnD48GEEBQU1us+yZcuQlJRkshrNeRk2KioKKSkpqK2txZ49ezB37lx07NgRCQkJeu2uXbsGW1tbg5zT1dW1XRzDmK5fv45Ro0bB19cX27Ztg4eHB3799Vf897//xdWrVzFx4kS9cPPII4+gf//+WLJkiW6dm5sbgLqf4W+++Qa//vorunfvrtu+ceNG9OjRw3RvisjKZRdc0fs9fCsRQLG6BtkFVxDah9OlWBOrviLk6+uL2bNnIzg4GCNGjMDGjRsxYsQIvPnmm03uk5CQALVarXtduHDBaPXVX4a99f989Zdh004UG+3cAGBnZweVSgVvb2/MmTMHERER2LlzJ2JiYjBu3Di8+uqr8PT0hK+vLwDgwoULeOyxx+Di4gJXV1dER0fj/PnzuuNpNBrExsbCxcUFXbp0waJFiyCK+n89hYWFYcGCBbrl2tpaxMXFwcvLC3Z2dvDx8cGHH36I8+fPIzw8HADQuXNnCIKAmJiYRo/x+++/Y8qUKejcuTPkcjnGjBmDs2fP6ranpqbCxcUFe/fuhb+/PxwdHREVFYXi4r8+38zMTISEhMDBwQEuLi64++67UVhY2KbP9eTJkzh37hzee+89DB8+HN7e3rj77ruxdOlSDB8+HJ06dYJKpdK9bG1tIZfL9dbVz/Xj7u6O0aNHY9OmTbrjHzp0CL/99hsefPDBNtVHRA2V/dF0CGpLO7IcVh2EGhMSEoL8/Pwmt9vZ2cHZ2VnvZQzt8TJsp06dcO3aNQDAvn37kJeXh/T0dOzevRvXr19HZGQknJyc8O233+LgwYO6QFG/z6pVq5CamoqNGzfiu+++w5UrV7B9+/ZmzzllyhT8+9//xltvvYXTp09j/fr1cHR0hJeXF7744gsAdYPdi4uLsXbt2kaPERMTg6NHj2Lnzp3IysqCKIp44IEH9ObMqa6uxsqVK/HRRx/hwIEDKCoqwgsvvAAAuHHjBsaNG4eRI0fi+PHjyMrKwqxZs9p8y7mbmxtsbGzw+eefQ6PRtOkYN5s+fTpSU1N1yxs3bsSkSZMMdpWOiAB3J3uDtiPLYdVdY43Jzc1tF48ZaE+XYUVRxL59+7B37148++yzKC8vh4ODAzZs2KD7sv3444+h1WqxYcMGXUBISUmBi4sLMjMzMXr0aKxZswYJCQm6O/rWrVuHvXv3Nnnen3/+GVu3bkV6ejoiIiIAAL1799Ztr+8Ca26w+9mzZ7Fz504cPHgQI0aMAABs3rwZXl5e2LFjByZMmACgrrtq3bp16NOnDwBg3rx5uq6oiooKqNVqPPTQQ7rt/v7+rf8g/6dbt2546623sGjRIiQlJWHIkCEIDw/HpEmT9N5fSz300EN4+umnceDAAQQHB2Pr1q347rvvsHHjxjbXSET6Qnq5wkNhjxJ1TaN/oAoAVAp7hPRq313z1HoWdUWosrISubm5yM3NBVA3IDU3NxdFRUUA6rq1pkyZomu/Zs0a/Oc//0F+fj5OnDiBBQsW4Ouvv8bcuXPNUb6e9nAZdvfu3XB0dIS9vT3GjBmDiRMnYvHixQCAAQMG6F1x+PHHH5Gfnw8nJyc4OjrC0dERrq6uqKmpwblz56BWq1FcXIxhw4bp9unQoQOGDBnS5Plzc3Mhk8kwcuTINr+H06dPo0OHDnrn7dKlC3x9fXH69GndOrlcrgs5QN3Ym/rnb7m6uiImJgaRkZEYO3Ys1q5dq+s2Kyoq0r1fR0dHvPbaay2qa+7cuSgpKcHmzZsRGhqKzz77DHfddRfS09Nb/R47duyIyZMnIyUlBZ999hn69euHwMDAVh+HiJomsxGQODYAQF3ouVn9cuLYAMhsODmptbGoK0JHjx7VjRsBgNjYWADA1KlTkZqaiuLiYl0oAuoG+S5cuBAXL16EXC5HYGAgMjIy9I5hLu3hMmx4eDiSk5Nha2sLT09PdOjw14+Dg4ODXtvKykoEBwdj8+bNDY5TP7C3teqfgWUKHTt21FsWBEFv/FJKSgqee+45pKWlYcuWLXjppZeQnp6OIUOG6II30LqB2k5OThg7dizGjh2LpUuXIjIyEkuXLsWoUaNaXf/06dMxbNgwnDhxAtOnT2/1/kR0e1H9PZA8OajBDSwqziNk1SwqCIWFhTUYfHuzm8dRAMCiRYuwaNEiI1fVNu3hMqyDgwN8fHxa1DYoKAhbtmyBu7t7k+OmPDw8cPjwYdx3330A6sbeHDt2rMk79AYMGACtVov9+/frusZuVn9FqrlxNv7+/rhx4wYOHz6s6xq7fPky8vLyEBAQ0KL3Vm/w4MEYPHgwEhISEBoaik8++QTDhw9v8WfUHEEQ4Ofnh0OHDrVp/7vuugt33XUXjh8/jieffPKO6yGixkX198CoABWyC66g7I8auDvV/R7mlSDrZVFdY9bE0i7DTpo0CV27dkV0dDS+/fZbFBQUIDMzE8899xx+/fVXAMD8+fOxfPly7NixA2fOnMEzzzzTYA6gm/Xs2RNTp07F9OnTsWPHDt0xt27dCgDw9vaGIAjYvXs3ysvLUVlZ2eAYffv2RXR0NGbOnInvvvsOP/74IyZPnoxu3bohOjq6Re+toKAACQkJyMrKQmFhIb766iucPXv2tuOE/vzzT11Xbf3r3LlzyM3NRXR0ND7//HOcOnUK+fn5+PDDD7Fx48YW19SYr7/+GsXFxZwclMjIZDYCQvt0QfSgbgjt06Xd/B4m42AQMqP6y7AqhX73l0ph3+5mMJXL5Thw4AB69OiBRx55BP7+/pgxYwZqamp0V4gWLlyIp556ClOnTkVoaCicnJzw8MMPN3vc5ORkPProo3jmmWfg5+eHmTNnoqqqCkDdoOOkpCTEx8dDqVRi3rx5jR4jJSUFwcHBeOihhxAaGgpRFLFnz54G3WHNvbczZ85g/Pjx6NevH2bNmoW5c+di9uzZze73888/664i1b9mz56N7t27o2fPnkhKSsKwYcMQFBSEtWvXIikpCS+++GKLampM/a39RERkOILYXF8ToaKiAgqFAmq1ukGXUE1NDQoKCtCrVy/Y27d9LI9GK/IyLBmVoX5WiYgsRXPf3zezqDFC1qr+MiwRERGZFrvGiIiISLIYhIiIiEiyGISIiIhIshiEiIiISLIYhIiIiEiyGISIiIhIshiEiIiISLIYhMioYmJiMG7cON1yWFgYFixYcEfHNMQxTEUQBOzYsaPJ7efPn4cgCHoPdiUiItNhEJKomJgYCIIAQRBga2sLHx8fLFmyBDdu3DDqebdt24ZXXnmlRW0zMzMhCEKD55W15hjGsnjxYt3nJ5PJ4OXlhVmzZuHKlSt67YqLizFmzBgzVUlERLfDmaXbA60GKDwEVJYCjkrAewRgIzP6aaOiopCSkoLa2lrs2bMHc+fORceOHZGQkKDX7tq1a7onwd8pV1fXdnEMQ7jrrruQkZEBjUaD06dPY/r06VCr1diyZYuujUqlMmOFRER0O7wiZG6ndgJr+gObHgK+mFH33zX969YbmZ2dHVQqFby9vTFnzhxERERg586duu6sV199FZ6envD19QUAXLhwAY899hhcXFzg6uqK6OhonD9/Xnc8jUaD2NhYuLi4oEuXLli0aBFufZTdrd1atbW1iIuLg5eXF+zs7ODj44MPP/wQ58+fR3h4OACgc+fOEAQBMTExjR7j999/x5QpU9C5c2fI5XKMGTMGZ8+e1W1PTU2Fi4sL9u7dC39/fzg6OiIqKgrFxcW6NpmZmQgJCdE92PTuu+9GYWFhs59fhw4doFKp0K1bN0RERGDChAlIT0/Xa3Nr11h2djYGDx4Me3t7DBkyBD/88EOD4+7cuRN9+/aFvb09wsPDsWnTpgZXxr777jvce++96NSpE7y8vPDcc8/pHlZLREQtxyBkTqd2AlunABWX9NdXFNetN0EYulmnTp1w7do1AMC+ffuQl5eH9PR07N69G9evX0dkZCScnJzw7bff4uDBg7pAUb/PqlWrkJqaio0bN+K7777DlStXsH379mbPOWXKFPz73//GW2+9hdOnT2P9+vVwdHSEl5cXvvjiCwBAXl4eiouLsXbt2kaPERMTg6NHj2Lnzp3IysqCKIp44IEHcP36dV2b6upqrFy5Eh999BEOHDiAoqIivPDCCwCAGzduYNy4cRg5ciSOHz+OrKwszJo1C4LQ8gffnj9/Hnv37m32ylllZSUeeughBAQE4NixY1i8eLGuhnoFBQV49NFHMW7cOPz444+YPXt2gyfWnzt3DlFRURg/fjyOHz+OLVu24LvvvsO8efNaXC8REf2PSM1Sq9UiAFGtVjfY9ueff4qnTp0S//zzz9YfWHNDFFf5iWKicxMvhSiu8q9rZwRTp04Vo6OjRVEURa1WK6anp4t2dnbiCy+8IE6dOlVUKpVibW2trv1HH30k+vr6ilqtVreutrZW7NSpk7h3715RFEXRw8NDfP3113Xbr1+/Lnbv3l13HlEUxZEjR4rz588XRVEU8/LyRABienp6ozV+8803IgDx999/11t/8zF+/vlnEYB48OBB3fbffvtN7NSpk7h161ZRFEUxJSVFBCDm5+fr2rz77ruiUqkURVEUL1++LAIQMzMzW/DJ1UlMTBRtbGxEBwcH0d7eXgQgAhBXr16t1w6AuH37dlEURXH9+vVily5d9H5ekpOTRQDiDz/8IIqiKMbFxYn9+/fXO8aLL76o9znMmDFDnDVrll6bb7/9VrSxsWnyZ/GOflaJiCxQc9/fN+MVIXMpPNTwSpAeEai4WNfOSHbv3g1HR0fY29tjzJgxmDhxIhYvXgwAGDBggN7VjR9//BH5+flwcnKCo6MjHB0d4erqipqaGpw7dw5qtRrFxcUYNmyYbp8OHTpgyJAhTZ4/NzcXMpkMI0eObPN7OH36NDp06KB33i5dusDX1xenT5/WrZPL5ejTp49u2cPDA2VlZQDqxhzFxMQgMjISY8eOxdq1a3XdZkVFRbr36+joiNdee013DF9fX+Tm5uLIkSOIi4tDZGQknn322WZrDQwMhL29vW5daGioXpu8vDwMHTpUb11ISIje8o8//ojU1FS9uiIjI6HValFQUHDbz4yIiP7CwdLmUllq2HZtEB4ejuTkZNja2sLT0xMdOvz14+Dg4KBfRmUlgoODsXnz5gbHcXNza9P5O3Xq1Kb92qJjx456y4Ig6I1fSklJwXPPPYe0tDRs2bIFL730EtLT0zFkyBC9W9tvHqhdf7cdACxfvhwPPvggkpKSjH5HW2VlJWbPno3nnnuuwbYePXoY9dxERNaGV4TMxVFp2HZt4ODgAB8fH/To0UMvBDUmKCgIZ8+ehbu7O3x8fPReCoUCCoUCHh4eOHz4sG6fGzdu4NixY00ec8CAAdBqtdi/f3+j2+uvSGk0miaP4e/vjxs3buid9/Lly8jLy0NAQECz7+lWgwcPRkJCAg4dOoT+/fvjk08+QYcOHfTea3N3rL300ktYuXIlLl1q/Eqfv78/jh8/jpqaGt2677//Xq+Nr68vjh49qrfuyJEjestBQUE4depUg/8dfHx8DHZ3HxGRVDAImYv3CMDZE0BTA3IFwLlbXbt2YNKkSejatSuio6Px7bffoqCgAJmZmXjuuefw66+/AgDmz5+P5cuXY8eOHThz5gyeeeaZBnMA3axnz56YOnUqpk+fjh07duiOuXXrVgCAt7c3BEHA7t27UV5ejsrKygbH6Nu3L6KjozFz5kx89913+PHHHzF58mR069YN0dHRLXpvBQUFSEhIQFZWFgoLC/HVV1/h7Nmz8Pf3b9VnFBoaisDAQL3us5s9+eSTEAQBM2fOxKlTp7Bnzx6sXLlSr83s2bNx5swZxMXF4eeff8bWrVuRmpoKALrB23FxcTh06BDmzZuH3NxcnD17Fv/5z384WJqIqA0YhMzFRgZErfjfwq1h6H/LUctNMp9QS8jlchw4cAA9evTAI488An9/f8yYMQM1NTVwdnYGACxcuBBPPfUUpk6ditDQUDg5OeHhhx9u9rjJycl49NFH8cwzz8DPzw8zZ87U3QberVs3JCUlIT4+Hkqlsskv+pSUFAQHB+Ohhx5CaGgoRFHEnj17GnSHNffezpw5g/Hjx6Nfv36YNWsW5s6di9mzZ7fiE6rz/PPPY8OGDbhw4UKDbY6Ojti1axd++uknDB48GC+++CJWrFih16ZXr174/PPPsW3bNgQGBiI5OVl315idnR0AIDAwEPv378fPP/+Me++9F4MHD8bLL78MT0/PVtdLRCR1gijeMtEL6amoqIBCoYBardZ94derqalBQUEBevXqpTcAtlVO7QTS4vQHTjt3qwtBAX+/g8rJWrz66qtYt25do+GqpQzys0pEZEGa+/6+GQdLm1vA3wG/B80yszS1T++99x6GDh2KLl264ODBg3jjjTfY7UVEZCQMQu2BjQzoda+5q6B24uzZs1i6dCmuXLmCHj16YOHChQ0ee0JERIbBIETUzrz55pt48803zV0GEZEkcLA0ERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQWZTFixdj0KBB5i4DYWFhWLBggbnLICKiO2RRQejAgQMYO3YsPD09IQgCduzYcdt9MjMzERQUBDs7O/j4+OgeYCl1JSUlmD9/Pnx8fGBvbw+lUom7774bycnJqK6uNnd5bZaZmQlBEJp92Ks5j0dERO2LRQWhqqoqDBw4EO+++26L2hcUFODBBx9EeHg4cnNzsWDBAvzjH//A3r17jVxp62i0GhwpOYI9v+zBkZIj0Gg1Rj3fL7/8gsGDB+Orr77Ca6+9hh9++AFZWVlYtGgRdu/ejYyMjCb3vX79ulFrM5Vr166ZuwQiImoHLCoIjRkzBkuXLr3tE83rrVu3Dr169cKqVavg7++PefPm4dFHH2121t7a2lpUVFTovYwpozADkV9EYvre6Yj7Ng7T905H5BeRyChsOozcqWeeeQYdOnTA0aNH8dhjj8Hf3x+9e/dGdHQ0vvzyS4wdO1bXVhAEJCcn4+9//zscHBzw6quvAqh7anyfPn1ga2sLX19ffPTRR7p9zp8/D0EQkJubq1t39epVCIKAzMxMAH9dadm3bx+GDBkCuVyOESNGIC8vT6/W5cuXQ6lUwsnJSfe0+6acP38e4eHhAIDOnTtDEATExMQAqOvKmjdvHhYsWICuXbsiMjLytnU2dzwA0Gq1WLRoEVxdXaFSqbB48eKW/k9A1Cam/qOJSAosKgi1VlZWFiIiIvTWRUZGIisrq8l9li1bBoVCoXt5eXkZrb6MwgzEZsaitLpUb31ZdRliM2ONEoYuX76Mr776CnPnzoWDg0OjbQRB0FtevHgxHn74Yfz000+YPn06tm/fjvnz52PhwoU4ceIEZs+ejWnTpuGbb75pdT0vvvgiVq1ahaNHj6JDhw6YPn26btvWrVuxePFivPbaazh69Cg8PDzw3nvvNXksLy8vfPHFFwCAvLw8FBcXY+3atbrtmzZtgq2tLQ4ePIh169bdtraWHM/BwQGHDx/G66+/jiVLliA9Pb3VnwFRS5jjjyYiKbDqIFRSUgKlUqm3TqlUoqKiAn/++Wej+yQkJECtVuteFy5cMEptGq0Gy7OXQ4TYYFv9uhXZKwz+F19+fj5EUYSvr6/e+q5du8LR0RGOjo6Ii4vT2/bkk09i2rRp6N27N3r06IGVK1ciJiYGzzzzDPr164fY2Fg88sgjWLlyZavrefXVVzFy5EgEBAQgPj4ehw4d0l31WbNmDWbMmIEZM2bA19cXS5cuRUBAQJPHkslkcHV1BQC4u7tDpVJBoVDotvft2xevv/46fH19G7z/thwvMDAQiYmJ6Nu3L6ZMmYIhQ4Zg3759rf4MiG7HHH80EUmFVQehtrCzs4Ozs7PeyxhyynIa/FK7mQgRJdUlyCnLMcr5b5WdnY3c3FzcddddqK2t1ds2ZMgQveXTp0/j7rvv1lt399134/Tp060+b2BgoO7fHh4eAICysjLdeYYNG6bXPjQ0tNXnqBccHNzmfRtzc+1AXf31tRMZirn+aCKSCqsOQiqVCqWl+mGjtLQUzs7O6NSpk5mqqlNeXW7Qdi3l4+MDQRAajMXp3bs3fHx8Gv1cmupCa4qNTd2PlSj+9Yu7qUHWHTt21P27vktOq9W26nwtdev7aE2djbm5dqCufmPVTtLV3v5oIrI2Vh2EQkNDG3RVpKen39FVBUNxk7sZtF1LdenSBaNGjcI777yDqqqqNh3D398fBw8e1Ft38OBBXbeVm1tdzcXFxbrtNw9Ibs15Dh8+rLfu+++/b3YfW1tbAIBGc/u/jltSZ2uOR2QM5vqjiUgqLCoIVVZWIjc3V/dlVVBQgNzcXBQVFQGoG98zZcoUXfunn34av/zyCxYtWoQzZ87gvffew9atW/H888+bo3w9Qe5BUMqVECA0ul2AAJVchSD3IIOf+7333sONGzcwZMgQbNmyBadPn0ZeXh4+/vhjnDlzBjKZrNn9//nPfyI1NRXJyck4e/YsVq9ejW3btuGFF14AAHTq1AnDhw/H8uXLcfr0aezfvx8vvfRSq+ucP38+Nm7ciJSUFPz8889ITEzEyZMnm93H29sbgiBg9+7dKC8vR2VlZZNtW1Jna45HZAzm+qOJSCosKggdPXoUgwcPxuDBgwEAsbGxGDx4MF5++WUAdX/Z14ciAOjVqxe+/PJLpKenY+DAgVi1ahU2bNiAyMhIs9R/M5mNDPEh8QDQIAzVL8eFxEFm03woaYs+ffrghx9+QEREBBISEjBw4EAMGTIEb7/9Nl544QW88sorze4/btw4rF27FitXrsRdd92F9evXIyUlBWFhYbo2GzduxI0bNxAcHIwFCxZg6dKlra5z4sSJ+Ne//oVFixYhODgYhYWFmDNnTrP7dOvWDUlJSYiPj4dSqcS8efOabX+7Olt7PCJDM+cfTURSIIg3D5CgBioqKqBQKKBWqxsMnK6pqUFBQQF69eoFe3v7Nh0/ozADy7OX640BUMlViAuJQ4R3RDN7ErWcIX5WyXzq7xoDoDdouj4crQ5bzd8XRLdo7vv7Zh1MWBM1IsI7AuFe4cgpy0F5dTnc5G4Icg8yypUgIrJMEd4RWB22usEfTUq5kn80Ed0hBqF2QGYjw1DVUHOXQUTtGP9oIjIOBiEiIgvBP5qIDM+iBksTERERGRKDkAFwvDm1d/wZJSJqHIPQHaifWbi6utrMlRA1r/5n9NbZsImIpI5jhO6ATCaDi4uL7vlScrm8wZPbicxJFEVUV1ejrKwMLi4ut50sk4hIahiE7pBKpQIAPmyT2jUXFxfdzyoREf2FQegOCYIADw8PuLu7t+qBnUSm0rFjR14JIiJqAoOQgchkMn7ZEBERWRgOliYiIiLJYhAiIiIiyWIQIiIiIsniGCEiIiIyPa0GKDwEVJYCjkrAewRghmfnMQgRERGRaZ3aCaTFARWX/lrn7AlErQAC/m7SUtg1RkRERKZzaiewdYp+CAKAiuK69ad2mrQcBiEiIiIyDa2m7koQGnv+4f/WpcXXtTMRBiEiIiIyjcJDDa8E6RGBiot17UyEQYiIiIhMo7LUsO0MgEGIiIiITMNRadh2BsAgRERERKbhPaLu7jAITTQQAOdude1MhEGIiIiITMNGVneLPICGYeh/y1HLTTqfEIMQERERmU7A34HH/h/g7KG/3tmzbr2J5xHihIpERERkWgF/B/we5MzSREREJFE2MqDXveaugl1jREREJF28IkTWrZ081I+IiNonBiGyXu3ooX5ERNQ+sWuMrFM7e6gfERG1TwxCZH3a4UP9iIiofWIQIuvTDh/qR0RE7RODEFmfdvhQPyIiap8sLgi9++676NmzJ+zt7TFs2DBkZ2c32TY1NRWCIOi97O3tTVgtmUU7fKgfERG1TxYVhLZs2YLY2FgkJiYiJycHAwcORGRkJMrKyprcx9nZGcXFxbpXYWGhCSsms2iHD/UjIqL2yaKC0OrVqzFz5kxMmzYNAQEBWLduHeRyOTZu3NjkPoIgQKVS6V5KJa8CWL12+FA/IiJqnywmCF27dg3Hjh1DRESEbp2NjQ0iIiKQlZXV5H6VlZXw9vaGl5cXoqOjcfLkyWbPU1tbi4qKCr0XWaB29lA/IiJqnyxmQsXffvsNGo2mwRUdpVKJM2fONLqPr68vNm7ciMDAQKjVaqxcuRIjRozAyZMn0b1790b3WbZsGZKSkgxeP5lBO3qoHxFZEM5ILykWE4TaIjQ0FKGhobrlESNGwN/fH+vXr8crr7zS6D4JCQmIjY3VLVdUVMDLy8votZKRtJOH+hGRheCM9JJjMUGoa9eukMlkKC3Vv+W5tLQUKpWqRcfo2LEjBg8ejPz8/Cbb2NnZwc7O7o5qJSIiC1Q/I/2tk7HWz0jPbnWrZDFjhGxtbREcHIx9+/bp1mm1Wuzbt0/vqk9zNBoNfvrpJ3h4eNy+MRERSQdnpJcsiwlCABAbG4sPPvgAmzZtwunTpzFnzhxUVVVh2rRpAIApU6YgISFB137JkiX46quv8MsvvyAnJweTJ09GYWEh/vGPf5jrLRARUXvEGekly2K6xgBg4sSJKC8vx8svv4ySkhIMGjQIaWlpugHURUVFsLH5K9v9/vvvmDlzJkpKStC5c2cEBwfj0KFDCAgIMNdbICKi9ogz0kuWIIpiY9cB6X8qKiqgUCigVqvh7Oxs7nKIiMgYCr4FNj10+3ZTd/MGDAvR0u9vi+oaIyIiMgrOSC9ZDEJERESckV6yGISIiIgAzkgvURY1WJqIiMioOCO95DAIERER3Ywz0ksKu8aIiIhIshiEiIiISLLYNUZEZCn4VHQig2MQIiKyBHwqOpFRsGuMiKi9q38q+q3Pwqp/Kvqpneapi8gKMAgR0Z3TauoeUfDT53X/5RO6DYdPRScyKnaNEdGdYZeNcbXmqei85Zuo1XhFiIjajl02xsenohMZFYMQEbUNu2xMw1Fp2HZEpIdBiIjapjVdNtR2fCo6kVExCBFR27DLxjT4VHQio2IQIqK2YZeN6fCp6ERGw7vGiKht6rtsKorR+DghoW47u2wMg09FJyuj0YrILriCsj9q4O5kj5BerpDZNNUFbDwMQkTUNvVdNlunoK6L5uYwxC4bo+BT0clKpJ0oRtKuUyhW1+jWeSjskTg2AFH9PZrZ0/DYNUZEbccuGyJqpbQTxZjzcY5eCAKAEnUN5nycg7QTxSath1eEiOjOsMuGiFpIoxWRtOtUk5NuCACSdp3CqACVybrJGISI6M6xy4aIWiC74EqDK0E3EwEUq2uQXXAFoX26mKQmdo0RERGRSZT90XQIaks7Q2AQIiIiIpNwd7I3aDtDYNeYOWg1HE9BRESSE9LLFR4Ke5Soa5qadAMqRd2t9KbCIGRqfFI3ERFJlMxGQOLYAMz5OKepSTeQODbApPMJsWvMlPikbiIikrio/h5InhwEpcIWMvk5dHDOhUx+DkqFLZInB5l8HiFeETKV2z6pW6h7Urffg+wmIyIiq9bB6SQcfVagqvqvZxE6ypXo4BQPgBMqWic+qZuIiAgZhRmIzYxFabX+A5nLqssQmxmLjMIMk9bDIGQqfFI3ERFJnEarwfLs5RAb6R2pX7ciewU0Wo3JamIQMhU+qZuIiCQupyynwZWgm4kQUVJdgpyyHJPVxCBkKvVP6kZTI+EFwLkbn9RNRERWq7y63KDtDIFByFTqn9QNoGEY4pO6iYjI+rnJ3QzazhAsLgi9++676NmzJ+zt7TFs2DBkZ2c32/6zzz6Dn58f7O3tMWDAAOzZs8dElTaCT+omIiIJC3IPglKuhNBE74gAASq5CkHuQSaryaKC0JYtWxAbG4vExETk5ORg4MCBiIyMRFlZWaPtDx06hCeeeAIzZszADz/8gHHjxmHcuHE4ceKEiSu/ScDfgQUngKm7gfEf1v13wU8MQUREZPVkNjLEh8QDQIMwVL8cFxIHmQl7RwRRFBub2KZdGjZsGIYOHYp33nkHAKDVauHl5YVnn30W8fHxDdpPnDgRVVVV2L17t27d8OHDMWjQIKxbt67Rc9TW1qK2tla3XFFRAS8vL6jVajg7Oxv4HREREUlPRmEGlmcv1xs4rZKrEBcShwjvCIOco6KiAgqF4rbf3xYzoeK1a9dw7NgxJCQk6NbZ2NggIiICWVlZje6TlZWF2NhYvXWRkZHYsWNHk+dZtmwZkpKSDFIzERERNRThHYFwr3DklOWgvLocbnI3BLkHmfRKUD2LCUK//fYbNBoNlEr928uVSiXOnDnT6D4lJSWNti8pKWnyPAkJCXrhqf6KEBERERmOzEaGoaqh5i7DcoKQqdjZ2cHOzs7cZRAREZEJWMxg6a5du0Imk6G0VH8iptLSUqhUqkb3UalUrWpPRERE0mIxQcjW1hbBwcHYt2+fbp1Wq8W+ffsQGhra6D6hoaF67QEgPT29yfZEREQkLRbVNRYbG4upU6diyJAhCAkJwZo1a1BVVYVp06YBAKZMmYJu3bph2bJlAID58+dj5MiRWLVqFR588EF8+umnOHr0KN5//31zvg0iIiJqJywqCE2cOBHl5eV4+eWXUVJSgkGDBiEtLU03ILqoqAg2Nn9d5BoxYgQ++eQTvPTSS/i///s/9O3bFzt27ED//v3N9RaIiIioHbGoeYTMoaXzEBAREVH70dLvb4sZI0RERERkaAxCREREJFkMQkRERCRZDEJEREQkWQxCREREJFkMQkRERCRZDEJEREQkWQxCREREJFkWNbM0EbVPGq0GOWU5KK8uh5vcDUHuQZDZyMxdFhHRbTEIEdEdySjMwPLs5SitLtWtU8qViA+JR4R3hBkrIyK6PXaNEVGbZRRmIDYzVi8EAUBZdRliM2ORUZhhpsqIiFqGQYiI2kSj1WB59nKIaPi4wvp1K7JXQKPVmLo0IqIWYxAiojbJKctpcCXoZiJElFSXIKcsx4RVERG1DoMQEbVJeXW5QdsREZkDgxARtYmb3M2g7YiIzIFBiIjaJMg9CEq5EgKERrcLEKCSqxDkHmTiyoiIWo5BiIjaRGYjQ3xIPAA0CEP1y3EhcZxPiIjaNQYhImqzCO8IrA5bDXe5u956pVyJ1WGrOY8QEbV7nFCRiO5IhHcEwr3CObM0EVkkBiEiumMyGxmGqoaauwwiolZj1xgRERFJFoMQERERSRaDEBEREUkWgxARERFJ1h0Nlq6pqcGWLVtQVVWFUaNGoW/fvoaqi4iIiMjoWhyEYmNjcf36dbz99tsAgGvXriE0NBQnT56EXC7HokWLkJ6ejtDQUKMVS0RERGRILe4a++qrrzBq1Cjd8ubNm1FYWIizZ8/i999/x4QJE7B06VKjFElERERkDC0OQkVFRQgICNAtf/XVV3j00Ufh7e0NQRAwf/58/PDDD0YpkoiIiMgYWhyEbGxsIIqibvn777/H8OHDdcsuLi74/fffDVsdERERkRG1OAj5+/tj165dAICTJ0+iqKgI4eHhuu2FhYVQKpWGr5CIiIjISFo8WHrRokV4/PHH8eWXX+LkyZN44IEH0KtXL932PXv2ICQkxChFEhERERlDi68IPfzww9izZw8CAwPx/PPPY8uWLXrb5XI5nnnmGYMXSERERGQsLQ5CS5YsQWhoKN58803ExcVBLpfrbU9MTERYWJih69O5cuUKJk2aBGdnZ7i4uGDGjBmorKxsdp+wsDAIgqD3evrpp41WIxGRMWm0IrLOXcZ/ci8i69xlaLTi7XciomYJ4s0joJshk8lQXFwMd3d3Y9fUqDFjxqC4uBjr16/H9evXMW3aNAwdOhSffPJJk/uEhYWhX79+WLJkiW6dXC6Hs7Nzi89bUVEBhUIBtVrdqv2IiAwp7UQxknadQrG6RrfOQ2GPxLEBiOrvYcbKiNqnln5/t3iMUAvzklGcPn0aaWlpOHLkCIYMGQIAePvtt/HAAw9g5cqV8PT0bHJfuVwOlUplqlKJiAwu7UQx5nycg1t/C5eoazDn4xwkTw5iGCJqo1Y9a0wQBGPV0aysrCy4uLjoQhAAREREwMbGBocPH252382bN6Nr167o378/EhISUF1d3Wz72tpaVFRU6L2IiMxFoxWRtOtUgxAEQLcuadcpdpMRtVGrnjXWr1+/24ahK1eu3FFBjSkpKWnQJdehQwe4urqipKSkyf2efPJJeHt7w9PTE8ePH0dcXBzy8vKwbdu2JvdZtmwZkpKSDFY7EdGdyC64otcddisRQLG6BtkFVxDap4vpCiOyEq0KQklJSVAoFAY7eXx8PFasWNFsm9OnT7f5+LNmzdL9e8CAAfDw8MD999+Pc+fOoU+fPo3uk5CQgNjYWN1yRUUFvLy82lwDEdGdKPuj6RDUlnZEpK9VQejxxx836GDphQsXIiYmptk2vXv3hkqlQllZmd76Gzdu4MqVK60a/zNs2DAAQH5+fpNByM7ODnZ2di0+JhGRMbk72Ru0HRHpa3EQMsb4IDc3N7i5ud22XWhoKK5evYpjx44hODgYAPD1119Dq9Xqwk1L5ObmAgA8PDiokIgsQ0gvV3go7FGirml0nJAAQKWwR0gvV1OXRmQVWjxY2px3jfn7+yMqKgozZ85EdnY2Dh48iHnz5uHxxx/X3TF28eJF+Pn5ITs7GwBw7tw5vPLKKzh27BjOnz+PnTt3YsqUKbjvvvsQGBhotvdCRNQaMhsBiWPrHnh965+j9cuJYwMgszHPzSxElq7FQUir1ZptDiGg7u4vPz8/3H///XjggQdwzz334P3339dtv379OvLy8nR3hdna2iIjIwOjR4+Gn58fFi5ciPHjx+uel0ZEZCmi+nsgeXIQVAr97i+Vwp63zhPdoRZPqChVnFCRiNoLjVZEdsEVlP1RA3enuu4wXgkiapzBJ1QkIiLzktkIvEWeyMBaNaEiERERkTVhECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsmymCD06quvYsSIEZDL5XBxcWnRPqIo4uWXX4aHhwc6deqEiIgInD171riFEhERkcWwmCB07do1TJgwAXPmzGnxPq+//jreeustrFu3DocPH4aDgwMiIyNRU1NjxEqJiIjIUgiiKIrmLqI1UlNTsWDBAly9erXZdqIowtPTEwsXLsQLL7wAAFCr1VAqlUhNTcXjjz/eovNVVFRAoVBArVbD2dn5TssHAGi0IrILrqDsjxq4O9kjpJcrZDaCQY5NRERELf/+7mDCmkyqoKAAJSUliIiI0K1TKBQYNmwYsrKymgxCtbW1qK2t1S1XVFQYtK60E8VI2nUKxeq/rkp5KOyRODYAUf09DHouIiIiap7FdI21VklJCQBAqVTqrVcqlbptjVm2bBkUCoXu5eXlZbCa0k4UY87HOXohCABK1DWY83EO0k4UG+xcREREdHtmDULx8fEQBKHZ15kzZ0xaU0JCAtRqte514cIFgxxXoxWRtOsUGuuHrF+XtOsUNFqL6qkkIiKyaGbtGlu4cCFiYmKabdO7d+82HVulUgEASktL4eHxV5dTaWkpBg0a1OR+dnZ2sLOza9M5m5NdcKXBlaCbiQCK1TXILriC0D5dDH5+IiIiasisQcjNzQ1ubm5GOXavXr2gUqmwb98+XfCpqKjA4cOHW3XnmaGU/dGyO9Va2o6IiIjunMWMESoqKkJubi6Kioqg0WiQm5uL3NxcVFZW6tr4+flh+/btAABBELBgwQIsXboUO3fuxE8//YQpU6bA09MT48aNM3n97k72Bm1HREREd85i7hp7+eWXsWnTJt3y4MGDAQDffPMNwsLCAAB5eXlQq9W6NosWLUJVVRVmzZqFq1ev4p577kFaWhrs7U0fNkJ6ucJDYY8SdU2j44QEACpF3a30REREZBoWN4+QqRlyHqH6u8YA6IWh+hmEkicH8RZ6IiIiA2jp97fFdI1Zg6j+HkieHASVQv+KlEphzxBERERkBhbTNWYtovp7YFSAijNLExERtQMMQmYgsxF4izwREVE7wK4xIiIikiwGISIiIpIsBiEiIiKSLAYhIiIikiwGISIiIpIsBiEiIiKSLAYhIiIikizOI0RWTaMVOXklERE1iUGIrFbaiWIk7TqFYnWNbp2Hwh6JYwP4OBMiIgLArjGyUvUPuL05BAFAiboGcz7OQdqJYjNVRkRE7QmDEFkdjVZE0q5TEBvZVr8uadcpaLSNtSAiIilhECKrk11wpcGVoJuJAIrVNcguuGK6ooiIqF1iECKrU/ZH0yGoLe2IiMh6MQiR1XF3sjdoOyIisl4MQmR1Qnq5wkNhj6ZukhdQd/dYSC9XU5ZFRETtEIMQWR2ZjYDEsQEA0CAM1S8njg3gfEJERMQgRNYpqr8HkicHQaXQ7/5SKeyRPDmI8wgREREATqhIViyqvwdGBag4szQRETWJQYismsxGQGifLuYug4iI2il2jREREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZFlMEHr11VcxYsQIyOVyuLi4tGifmJgYCIKg94qKijJuoURERGQxLOahq9euXcOECRMQGhqKDz/8sMX7RUVFISUlRbdsZ2dnjPKIiIjIAllMEEpKSgIApKamtmo/Ozs7qFSqFrevra1FbW2tbrmioqJV5yMiIiLLYTFdY22VmZkJd3d3+Pr6Ys6cObh8+XKz7ZctWwaFQqF7eXl5mahSIiIiMjWrDkJRUVH4f//v/2Hfvn1YsWIF9u/fjzFjxkCj0TS5T0JCAtRqte514cIFE1ZMREREpmTWrrH4+HisWLGi2TanT5+Gn59fm47/+OOP6/49YMAABAYGok+fPsjMzMT999/f6D52dnYcR0RERCQRZg1CCxcuRExMTLNtevfubbDz9e7dG127dkV+fn6TQYiIiIikw6xByM3NDW5ubiY736+//orLly/Dw8PDZOckIiKi9stixggVFRUhNzcXRUVF0Gg0yM3NRW5uLiorK3Vt/Pz8sH37dgBAZWUl/vnPf+L777/H+fPnsW/fPkRHR8PHxweRkZHmehtkYhqtBkdKjmDPL3twpOQINNqmx4cREZH0WMzt8y+//DI2bdqkWx48eDAA4JtvvkFYWBgAIC8vD2q1GgAgk8lw/PhxbNq0CVevXoWnpydGjx6NV155hWOAJCKjMAPLs5ejtLpUt04pVyI+JB4R3hFmrIyIiNoLQRRF0dxFtGcVFRVQKBRQq9VwdnY2dznUQhmFGYjNjIUI/R9vAQIAYHXYaoYhIiIr1tLvb4vpGiNqKY1Wg+XZyxuEIAC6dSuyV7CbjIiIGITI+uSU5eh1h91KhIiS6hLklOWYsCoiImqPGITI6pRXlxu0HRERWS8GIbI6bvKWTcnQ0nZERGS9GITI6gS5B0EpV+oGRt9KgACVXIUg9yATV0ZERO0NgxBZHZmNDPEh8QDQIAzVL8eFxEFmIzN5bURE1L4wCJFVivCOwOqw1XCXu+utV8qVvHWeiIh0LGZCRaLWivCOQLhXOHLKclBeXQ43uRuC3IN4JYiIiHQYhMiqyWxkGKoaau4yiIionWLXGBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJlkUEofPnz2PGjBno1asXOnXqhD59+iAxMRHXrl1rdr+amhrMnTsXXbp0gaOjI8aPH4/S0lITVU1ERETtnUUEoTNnzkCr1WL9+vU4efIk3nzzTaxbtw7/93//1+x+zz//PHbt2oXPPvsM+/fvx6VLl/DII4+YqGoiIiJq7wRRFEVzF9EWb7zxBpKTk/HLL780ul2tVsPNzQ2ffPIJHn30UQB1gcrf3x9ZWVkYPnx4i85TUVEBhUIBtVoNZ2dng9VPRERExtPS72+LuCLUGLVaDVdX1ya3Hzt2DNevX0dERIRunZ+fH3r06IGsrKwm96utrUVFRYXei4iIiKyTRQah/Px8vP3225g9e3aTbUpKSmBrawsXFxe99UqlEiUlJU3ut2zZMigUCt3Ly8vLUGUTERFRO2PWIBQfHw9BEJp9nTlzRm+fixcvIioqChMmTMDMmTMNXlNCQgLUarXudeHCBYOfg4iIiNqHDuY8+cKFCxETE9Nsm969e+v+fenSJYSHh2PEiBF4//33m91PpVLh2rVruHr1qt5VodLSUqhUqib3s7Ozg52dXYvqJyIi66PRapBTloPy6nK4yd0Q5B4EmY3M3GWRkZg1CLm5ucHNza1FbS9evIjw8HAEBwcjJSUFNjbNX8wKDg5Gx44dsW/fPowfPx4AkJeXh6KiIoSGht5x7UREZH0yCjOwPHs5Sqv/mmpFKVciPiQeEd4RzexJlsoixghdvHgRYWFh6NGjB1auXIny8nKUlJTojfW5ePEi/Pz8kJ2dDQBQKBSYMWMGYmNj8c033+DYsWOYNm0aQkNDW3zHGBERSUdGYQZiM2P1QhAAlFWXITYzFhmFGWaqjIzJrFeEWio9PR35+fnIz89H9+7d9bbV3/1//fp15OXlobq6WrftzTffhI2NDcaPH4/a2lpERkbivffeM2ntRETU/mm0GizPXg4RDWeUESFCgIAV2SsQ7hXObjIrY7HzCJkK5xEiIrJ+R0qOYPre6bdttzFyI4aqhpqgIrpTVj+PEBERkaGUV5cbtB1ZDgYhIiKSPDd5y27caWk7shwMQkREJHlB7kFQypUQIDS6XYAAlVyFIPcgE1dGxsYgREREkiezkSE+JB4AGoSh+uW4kDgOlLZCDEJEREQAIrwjsDpsNdzl7nrrlXIlVoet5jxCVsoibp8nIiIyhQjvCIR7hXNmaQlhECIiIrqJzEbGW+QlhF1jREREJFkMQkRERCRZDEJEREQkWQxCREREJFkMQkRERCRZDEJEREQkWQxCREREJFkMQkRERCRZDEJEREQkWQxCREREJFkMQkRERCRZDEJEREQkWXzoKhHdMY1WRHbBFZT9UQN3J3uE9HKFzEYwd1lERLfFIEREdyTtRDGSdp1CsbpGt85DYY/EsQGI6u9hxsqIiG6PXWNmoNFqcKTkCPb8sgdHSo5Ao9WYuySiNkk7UYw5H+fohSAAKFHXYM7HOUg7UWymyoiIWoZXhEwsozADy7OXo7S6VLdOKVciPiQeEd4RZqyMqHU0WhFJu05BbGSbCEAAkLTrFEYFqNhNRkTtFq8ImVBGYQZiM2P1QhAAlFWXITYzFhmFGWaqjKj1sguuNLgSdDMRQLG6BtkFV0xXFBFRKzEImYhGq8Hy7OUQG/n7uX7diuwV7CYji1H2R9MhqC3tiIjMgUHIRHLKchpcCbqZCBEl1SXIKcsxYVVEbefuZG/QdkRE5sAgZCLl1eUGbUdkbiG9XOGhsEdTo38E1N09FtLL1ZRlERG1CoOQibjJ3QzajsjcZDYCEscGAECDMFS/nDg2gAOliahdYxAykSD3ICjlSghN/P0sQIBKrkKQe5CJKyNqu6j+HkieHASVQr/7S6WwR/LkIM4jRETtHm+fNxGZjQzxIfGIzYyFAEFv0HR9OIoLiYPMRmauEonaJKq/B0YFqDizNBFZJEEUxcamAaH/qaiogEKhgFqthrOz8x0fr7F5hFRyFeJC4jiPEBERkYG09PubV4RMLMI7AuFe4cgpy0F5dTnc5G4Icg/ilSAiIiIzYBAyA5mNDENVQ81dBhERkeRZxGDp8+fPY8aMGejVqxc6deqEPn36IDExEdeuXWt2v7CwMAiCoPd6+umnTVQ1ERERtXcWcUXozJkz0Gq1WL9+PXx8fHDixAnMnDkTVVVVWLlyZbP7zpw5E0uWLNEty+VyY5dLREREFsIiglBUVBSioqJ0y71790ZeXh6Sk5NvG4TkcjlUKlWLz1VbW4va2lrdckVFResLJiIiIotgEV1jjVGr1XB1vf2MtZs3b0bXrl3Rv39/JCQkoLq6utn2y5Ytg0Kh0L28vLwMVTIRERG1MxZ5+3x+fj6Cg4OxcuVKzJw5s8l277//Pry9veHp6Ynjx48jLi4OISEh2LZtW5P7NHZFyMvLy2C3zxMREZHxtfT2ebMGofj4eKxYsaLZNqdPn4afn59u+eLFixg5ciTCwsKwYcOGVp3v66+/xv3334/8/Hz06dOnRfsYeh4hIiIiMj6LCELl5eW4fPlys2169+4NW1tbAMClS5cQFhaG4cOHIzU1FTY2revZq6qqgqOjI9LS0hAZGdmifRiEiIiILI9FTKjo5uYGN7eWPWT04sWLCA8PR3BwMFJSUlodggAgNzcXAODhwecfERERkYUMlr548SLCwsLQo0cPrFy5EuXl5SgpKUFJSYleGz8/P2RnZwMAzp07h1deeQXHjh3D+fPnsXPnTkyZMgX33XcfAgMDzfVWiIiIqB2xiNvn09PTkZ+fj/z8fHTv3l1vW33P3vXr15GXl6e7K8zW1hYZGRlYs2YNqqqq4OXlhfHjx+Oll15q1bnrj8/b6ImIiCxH/ff27UYAWeRdY6b066+/8hZ6IiIiC3XhwoUGF1FuxiB0G1qtFpcuXYKTkxMEQTDYcetvy79w4QIHYRsZP2vT4OdsGvycTYOfs2kY83MWRRF//PEHPD09mx1XbBFdY+ZkY2PTbJK8U87Ozvw/mYnwszYNfs6mwc/ZNPg5m4axPmeFQnHbNhYxWJqIiIjIGBiEiIiISLIYhMzEzs4OiYmJsLOzM3cpVo+ftWnwczYNfs6mwc/ZNNrD58zB0kRERCRZvCJEREREksUgRERERJLFIERERESSxSBEREREksUgZCbvvvsuevbsCXt7ewwbNkz3sFgynAMHDmDs2LHw9PSEIAjYsWOHuUuyOsuWLcPQoUPh5OQEd3d3jBs3Dnl5eeYuyyolJycjMDBQN/FcaGgo/vvf/5q7LKu2fPlyCIKABQsWmLsUq7N48WIIgqD38vPzM0stDEJmsGXLFsTGxiIxMRE5OTkYOHAgIiMjUVZWZu7SrEpVVRUGDhyId99919ylWK39+/dj7ty5+P7775Geno7r169j9OjRqKqqMndpVqd79+5Yvnw5jh07hqNHj+Jvf/sboqOjcfLkSXOXZpWOHDmC9evXIzAw0NylWK277roLxcXFutd3331nljp4+7wZDBs2DEOHDsU777wDoO55Zl5eXnj22WcRHx9v5uqskyAI2L59O8aNG2fuUqxaeXk53N3dsX//ftx3333mLsfqubq64o033sCMGTPMXYpVqaysRFBQEN577z0sXboUgwYNwpo1a8xdllVZvHgxduzYgdzcXHOXwitCpnbt2jUcO3YMERERunU2NjaIiIhAVlaWGSsjunNqtRpA3Rc0GY9Go8Gnn36KqqoqhIaGmrscqzN37lw8+OCDer+nyfDOnj0LT09P9O7dG5MmTUJRUZFZ6uBDV03st99+g0ajgVKp1FuvVCpx5swZM1VFdOe0Wi0WLFiAu+++G/379zd3OVbpp59+QmhoKGpqauDo6Ijt27cjICDA3GVZlU8//RQ5OTk4cuSIuUuxasOGDUNqaip8fX1RXFyMpKQk3HvvvThx4gScnJxMWguDEBEZxNy5c3HixAmz9fNLga+vL3Jzc6FWq/H5559j6tSp2L9/P8OQgVy4cAHz589Heno67O3tzV2OVRszZozu34GBgRg2bBi8vb2xdetWk3f1MgiZWNeuXSGTyVBaWqq3vrS0FCqVykxVEd2ZefPmYffu3Thw4AC6d+9u7nKslq2tLXx8fAAAwcHBOHLkCNauXYv169ebuTLrcOzYMZSVlSEoKEi3TqPR4MCBA3jnnXdQW1sLmUxmxgqtl4uLC/r164f8/HyTn5tjhEzM1tYWwcHB2Ldvn26dVqvFvn372NdPFkcURcybNw/bt2/H119/jV69epm7JEnRarWora01dxlW4/7778dPP/2E3Nxc3WvIkCGYNGkScnNzGYKMqLKyEufOnYOHh4fJz80rQmYQGxuLqVOnYsiQIQgJCcGaNWtQVVWFadOmmbs0q1JZWan310VBQQFyc3Ph6uqKHj16mLEy6zF37lx88skn+M9//gMnJyeUlJQAABQKBTp16mTm6qxLQkICxowZgx49euCPP/7AJ598gszMTOzdu9fcpVkNJyenBuPbHBwc0KVLF457M7AXXngBY8eOhbe3Ny5duoTExETIZDI88cQTJq+FQcgMJk6ciPLycrz88ssoKSnBoEGDkJaW1mAANd2Zo0ePIjw8XLccGxsLAJg6dSpSU1PNVJV1SU5OBgCEhYXprU9JSUFMTIzpC7JiZWVlmDJlCoqLi6FQKBAYGIi9e/di1KhR5i6NqNV+/fVXPPHEE7h8+TLc3Nxwzz334Pvvv4ebm5vJa+E8QkRERCRZHCNEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIEREkhYTE4Nx48aZuwwiMhMGISIyupiYGAiC0OAVFRVl7tKwdu3advPIFUEQsGPHDnOXQSQpfNYYEZlEVFQUUlJS9NbZ2dmZqRpAo9FAEAQoFAqz1UBE5scrQkRkEnZ2dlCpVHqvzp07IzMzE7a2tvj22291bV9//XW4u7ujtLQUQN1DXefNm4d58+ZBoVCga9eu+Ne//oWbH5VYW1uLF154Ad26dYODgwOGDRuGzMxM3fbU1FS4uLhg586dCAgIgJ2dHYqKihp0jYWFheHZZ5/FggUL0LlzZyiVSnzwwQeoqqrCtGnT4OTkBB8fH/z3v//Ve38nTpzAmDFj4OjoCKVSiaeeegq//fab3nGfe+45LFq0CK6urlCpVFi8eLFue8+ePQEADz/8MARB0C0TkXExCBGRWYWFhWHBggV46qmnoFar8cMPP+Bf//oXNmzYAKVSqWu3adMmdOjQAdnZ2Vi7di1Wr16NDRs26LbPmzcPWVlZ+PTTT3H8+HFMmDABUVFROHv2rK5NdXU1VqxYgQ0bNuDkyZNwd3dvtKZNmzaha9euyM7OxrPPPos5c+ZgwoQJGDFiBHJycjB69Gg89dRTqK6uBgBcvXoVf/vb3zB48GAcPXoUaWlpKC0txWOPPdbguA4ODjh8+DBef/11LFmyBOnp6QCAI0eOAABSUlJQXFysWyYiIxOJiIxs6tSpokwmEx0cHPRer776qiiKolhbWysOGjRIfOyxx8SAgABx5syZevuPHDlS9Pf3F7VarW5dXFyc6O/vL4qiKBYWFooymUy8ePGi3n7333+/mJCQIIqiKKakpIgAxNzc3Aa1RUdH653rnnvu0S3fuHFDdHBwEJ966induuLiYhGAmJWVJYqiKL7yyivi6NGj9Y574cIFEYCYl5fX6HFFURSHDh0qxsXF6ZYBiNu3b2/iUyQiY+AYISIyifDwcCQnJ+utc3V1BQDY2tpi8+bNCAwMhLe3N958880G+w8fPhyCIOiWQ0NDsWrVKmg0Gvz000/QaDTo16+f3j61tbXo0qWLbtnW1haBgYG3rfXmNjKZDF26dMGAAQN06+qvVJWVlQEAfvzxR3zzzTdwdHRscKxz587p6rr13B4eHrpjEJF5MAgRkUk4ODjAx8enye2HDh0CAFy5cgVXrlyBg4NDi49dWVkJmUyGY8eOQSaT6W27OZx06tRJL0w1pWPHjnrLgiDoras/hlar1Z1/7NixWLFiRYNjeXh4NHvc+mMQkXkwCBGR2Z07dw7PP/88PvjgA2zZsgVTp05FRkYGbGz+GsZ4+PBhvX2+//579O3bFzKZDIMHD4ZGo0FZWRnuvfdeU5ePoKAgfPHFF+jZsyc6dGj7r9WOHTtCo9EYsDIiuh0OliYik6itrUVJSYne67fffoNGo8HkyZMRGRmJadOmISUlBcePH8eqVav09i8qKkJsbCzy8vLw73//G2+//Tbmz58PAOjXrx8mTZqEKVOmYNu2bSgoKEB2djaWLVuGL7/80ujvbe7cubhy5QqeeOIJHDlyBOfOncPevXsxbdq0VgWbnj17Yt++fSgpKcHvv/9uxIqJqB6vCBGRSaSlpel1EwGAr68vnnzySRQWFmL37t0A6rqS3n//fTzxxBMYPXo0Bg4cCACYMmUK/vzzT4SEhEAmk2H+/PmYNWuW7lgpKSlYunQpFi5ciIsXL6Jr164YPnw4HnroIaO/N09PTxw8eBBxcXEYPXo0amtr4e3tjaioKL2rWrezatUqxMbG4oMPPkC3bt1w/vx54xVNRAAAQRRvmoiDiKgdCgsLw6BBg7BmzRpzl0JEVoZdY0RERCRZDEJEREQkWewaIyIiIsniFSEiIiKSLAYhIiIikiwGISIiIpIsBiEiIiKSLAYhIiIikiwGISIiIpIsBiEiIiKSLAYhIiIikqz/DzKgy2cN5040AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNAElEQVR4nO3de1xUZf4H8M+ZUS7DZRCFGVBEFFPwCiiK1oqJgZWpa2mlKeqqa1oa9hPYTMQ0sdS0G1omWummlbrqthiQaCmKSqSmkhqCKbckB4VAnTm/P4jJiYuAMMPM+bxfr3m558xzzvnOyMbH53nOcwRRFEUQERERSZDM1AUQERERmQqDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSVYrUxfQ0ul0Oly9ehUODg4QBMHU5RAREVE9iKKIGzduwN3dHTJZ7f0+DEL3cPXqVXh4eJi6DCIiImqEy5cvo0OHDrW+zyB0Dw4ODgAqv0hHR0cTV0NERET1UVJSAg8PD/3v8dowCN1D1XCYo6MjgxAREZGZude0Fk6WJiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyTKrIHTw4EGMHDkS7u7uEAQBu3btuucxqamp8Pf3h7W1Nby9vbFp06Zmr5OIiIjMg1kFodLSUvTp0wfvvfdevdpnZ2fjsccew9ChQ5GZmYl58+bhH//4B/bt29fMlRIREZE5MKsFFUeMGIERI0bUu/26devg5eWFVatWAQB8fHzw3Xff4a233kJoaGhzlUlERERmwqyCUEOlpaUhJCTEYF9oaCjmzZtX6zEVFRWoqKjQb5eUlDRXeUREDaLVaZFRmIGisiK4KFzg7+oPuUxu6rKIzJpFB6H8/HyoVCqDfSqVCiUlJfj9999ha2tb7Zjly5cjNjbWWCUSEdVLck4y4tLjUFBWoN+nUqgQFRiFEM+QOo4korqY1RwhY4iOjoZGo9G/Ll++bOqSiEjiknOSEZEaYRCCAKCwrBARqRFIzkk2UWVE5s+ig5BarUZBgeF/OAoKCuDo6FhjbxAAWFtb6x+wygetEpGpaXVaxKXHQYRY7b2qfSvSV0Cr0xq7NCKLYNFBKCgoCCkpKQb7kpKSEBQUZKKKiIgaJqMwo1pP0N1EiMgvy0dGYYYRqyKyHGYVhG7evInMzExkZmYCqLw9PjMzE7m5uQAqh7UmTZqkb//Pf/4TP//8MxYsWIBz587h/fffx/bt2/HSSy+ZonwiogYrKitq0nZEZMisgtDx48fh5+cHPz8/AEBERAT8/PywaNEiAEBeXp4+FAGAl5cX/vvf/yIpKQl9+vTBqlWrsGHDBt46T0Rmw0Xh0qTtiMiQIIpi9YFn0ispKYFSqYRGo+F8ISIyOq1Oi9AvQ1FYVljjPCEBAlQKFRLHJvJWeqK71Pf3t1n1CBERSY1cJkdUYBSAytBzt6rtyMBIhiCiRmIQIiJq4UI8Q7A6eDVcFa4G+1UKFVYHr+Y6QkT3waIXVCQishQhniEY6jGUK0sTNTEGISIiMyGXydFf3d/UZRBZFA6NERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWTx6fNERERkfDotkHMYuFkA2KsAz0GATG70MhiEiIiIyLjO7AYSI4GSq3/uc3QHwlYAvk8YtRQOjREREZHxnNkNbJ9kGIIAoCSvcv+Z3UYth0GIiIiIjEOnrewJgljDm3/sS4yqbGckDEJERERkHDmHq/cEGRCBkiuV7YyEQYiIiIiM42ZB07ZrAgxCREREZBz2qqZt1wQYhIiIiMg4PAdV3h0GoZYGAuDYvrKdkTAIERERkXHI5JW3yAOoHob+2A6LM+p6QgxCREREZDy+TwDjPgYc3Qz3O7pX7jfyOkJcUJGIiIiMy/cJoPtjXFmaiIiIJEomB7weMnUVHBojIiIi6WIQIiIiIsliECIiIiLJ4hwhsmw6bYuYjEdERC0TgxBZrjO7Kx/ud/dzbRzdK9ewMPLtmURE1DJxaIws05ndwPZJ1R/uV5JXuf/MbtPURURELQqDEFkenbayJwhiDW/+sS8xqrIdERFJGoMQWZ6cw9V7ggyIQMmVynZERCRpDEJkeW4WNG07IiKyWAxCZHnsVU3bjoiILJbZBaH33nsPnTp1go2NDQYMGID09PRa227atAmCIBi8bGxsjFgtmYTnoMq7w6o92biKADi2r2xHRESSZlZBaNu2bYiIiEBMTAwyMjLQp08fhIaGorCwsNZjHB0dkZeXp3/l5OQYsWIyCZm88hZ5ANXD0B/bYXFcT4iIiMwrCK1evRrTp0/HlClT4Ovri3Xr1kGhUGDjxo21HiMIAtRqtf6lUnE4RBJ8nwDGfQw4uhnud3Sv3M91hIiICGa0oOKtW7dw4sQJREdH6/fJZDKEhIQgLS2t1uNu3rwJT09P6HQ6+Pv74/XXX0ePHj1qbV9RUYGKigr9dklJSdN8ADI+3yeA7o9xZWkiIqqV2fQI/frrr9BqtdV6dFQqFfLz82s8plu3bti4cSP+85//4NNPP4VOp8OgQYPwyy+/1Hqd5cuXQ6lU6l8eHh5N+jnIyGRywOshoNeTlX8yBBER0V3MJgg1RlBQECZNmoS+fftiyJAh2LFjB1xcXLB+/fpaj4mOjoZGo9G/Ll++bMSKiYjI5HRaIPtb4NQXlX9y8VWLZjZDY+3atYNcLkdBgeHaLwUFBVCr1fU6R+vWreHn54cLFy7U2sba2hrW1tb3VSsREZkpPqNQcsymR8jKygoBAQFISUnR79PpdEhJSUFQUFC9zqHVanHq1Cm4ubnduzEREUkLn1EoSWYThAAgIiICH374ITZv3oyzZ89i1qxZKC0txZQpUwAAkyZNMphMvWTJEnz99df4+eefkZGRgYkTJyInJwf/+Mc/TPURiIioJeIzCiXLbIbGAGD8+PEoKirCokWLkJ+fj759+yIxMVE/gTo3Nxcy2Z/Z7rfffsP06dORn5+PNm3aICAgAIcPH4avr6+pPgIREbVEDXlGoddDRiuLmp8gimJN8Zf+UFJSAqVSCY1GA0dHR1OXQ0REzeHUF8CX0+7dbuxHlXehUotX39/fZjU0RkRE1Cz4jELJYhAiIiLiMwoli0GIiIiIzyiULAYhIiIigM8olCizumuMiIioWfEZhZLDIERERHS3qmcUkiRwaIyIiIgki0GIiIiIJItBiIiIiCSLQYiIiIgki5OliYjMhU7Lu5mImhiDEBGROTizu/Lp6Hc/GNTRvXIRQK5vQ9RoHBojImrpzuwGtk+q/nT0krzK/Wd2m6YuIgvAIERE1JLptJU9QRBrePOPfYlRle2IqMEYhIjo/um0QPa3wKkvKv/kL+Wmk3O4ek+QAREouVLZjogajHOEiOj+cO5K87pZ0LTtiMgAe4SIqPE4d6X52auath0RGWAQIqLG4dwV4/AcVNnDBqGWBgLg2L6yHRE1GIMQETUO564Yh0xeOcwIoHoY+mM7LI7rCRE1EoMQETUO564Yj+8TwLiPAUc3w/2O7pX7OReLqNE4WZqIGodzV4zL9wmg+2NcWZqoiTEIEVHjVM1dKclDzfOEhMr3OXel6cjkgNdDpq6CyKJwaIyIGodzV4jIAjAIEVHjce4KEZk5Do0R0f3h3BUiMmMMQkR0/zh3hYjMFIfGiIiISLIYhIiIiEiyODRGRER0F61ORHp2MQpvlMPVwQaBXs6Qy2p7xAmZOwYhIiKiPySezkPsnjPI05Tr97kpbRAz0hdhPd3qOJLMFYfGTEGnBbK/BU59UfknH0pJRGRyiafzMOvTDIMQBAD5mnLM+jQDiafzTFQZNSf2CBnbmd2VT+y++2GVju6VC9NxzRUiIpPQ6kTE7jlT4xrpIiqXCI3dcwbDfdUcJrMw7BEypjO7ge2Tqj+xuySvcv+Z3aapi4hI4tKzi6v1BN1NBJCnKUd6drHxirJwWp0Wx/KP4aufv8Kx/GPQmmh0hD1CxqLTVvYE1fXvjcSoyoXpuBAdEZFRFd6oPQQ1ph3VLTknGXHpcSgoK9DvUylUiAqMQohniFFrYY+QseQcrt4TZEAESq5UtiMiIqNydbBp0nZUu+ScZESkRhiEIAAoLCtERGoEknOSjVoPg5Cx3Cy4d5uGtCMioiYT6OUMN6VNtccHVxFQefdYoJezMcuyOFqdFnHpcRBrGB2p2rcifYVRh8kYhIzFXtW07YiIqMnIZQJiRvoCQLUwVLUdM9KXE6XvU0ZhRrWeoLuJEJFflo+Mwgyj1cQgZCyegyrvDqvr3xuO7SvbERGR0YX1dEP8RH+olYbDX2qlDeIn+nMdoSZQVFbUpO2aAidLG4tMXnmL/PZJqAxDd3cL/hGOwuI4UZqIyITCerphuK+aK0s3ExeFS5O2awoMQsbk+wQw7uNa1hGK4zpCREQtgFwmIKhLW1OXYZH8Xf2hUqhQWFZY4zwhAQJUChX8Xf2NVpPZDY2999576NSpE2xsbDBgwACkp6fX2f7zzz9H9+7dYWNjg169euGrr74yUqW18H0CmHcamLwXGPtR5Z/zTjEEERGRxZPL5IgKjAJQGXruVrUdGRgJuRFHR8wqCG3btg0RERGIiYlBRkYG+vTpg9DQUBQWFtbY/vDhw3jmmWcwbdo0fP/99xg9ejRGjx6N06dPG7nyv5DJAa+HgF5PVv7J4TAiIpKIEM8QrA5eDVeFq8F+lUKF1cGrjb6OkCCKYk0r/LVIAwYMQP/+/fHuu+8CAHQ6HTw8PPDCCy8gKiqqWvvx48ejtLQUe/fu1e8bOHAg+vbti3Xr1tV4jYqKClRUVOi3S0pK4OHhAY1GA0dHxyb+RERERNKk1WmRUZiBorIiuChc4O/q36Q9QSUlJVAqlff8/W02PUK3bt3CiRMnEBLyZ1KUyWQICQlBWlpajcekpaUZtAeA0NDQWtsDwPLly6FUKvUvDw+PpvkAREREpCeXydFf3R+Pdn4U/dX9jTocdjezCUK//vortFotVCrDdXZUKhXy8/NrPCY/P79B7QEgOjoaGo1G/7p8+fL9F09EREQtEu8a+wtra2tYW1ubugwiIiIyArPpEWrXrh3kcjkKCgxXpCwoKIBara7xGLVa3aD2REREJC1mE4SsrKwQEBCAlJQU/T6dToeUlBQEBQXVeExQUJBBewBISkqqtT0RERFJi1kNjUVERGDy5Mno168fAgMDsWbNGpSWlmLKlCkAgEmTJqF9+/ZYvnw5AGDu3LkYMmQIVq1ahcceewyfffYZjh8/jg8++MCUH4OIiIhaCLMKQuPHj0dRUREWLVqE/Px89O3bF4mJifoJ0bm5uZDJ/uzkGjRoELZu3YqFCxfiX//6F7p27Ypdu3ahZ8+epvoIRERE1IKY1TpCplDfdQiIiIio5bC4dYSIiIiImhqDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJllk9fZ6IWiatTouMwgwUlRXBReECf1d/yGVyU5dFRHRPDEJEdF+Sc5IRlx6HgrIC/T6VQoWowCiEeIaYsDIionvj0BgRNVpyTjIiUiMMQhAAFJYVIiI1Ask5ySaqjIiofhiEiKhRtDot4tLjIEKs9l7VvhXpK6DVaY1dGhFRvTEIEVGjZBRmVOsJupsIEfll+cgozDBiVUREDcMgRESNUlRW1KTtiIhMgUGIiBrFReHSpO2IiEyBQYiIGsXf1R8qhQoChBrfFyBArVDD39XfyJUREdUfgxARNYpcJkdUYBQAVAtDVduRgZFcT4iIWjQGISJqtBDPEKwOXg1XhavBfpVChdXBq7mOEBG1eFxQkYjuS4hnCIZ6DOXK0kRklhiEiOi+yWVy9Ff3N3UZRGRGtDoR6dnFKLxRDlcHGwR6OUMuq3nOYXNiECIiIiKjSjydh9g9Z5CnKdfvc1PaIGakL8J6uhm1Fs4RIiIiIqNJPJ2HWZ9mGIQgAMjXlGPWpxlIPJ1n1HoYhIiIiMgotDoRsXvO1PBgHuj3xe45A62uphbNg0GIiIiIjCI9u7haT9DdRAB5mnKkZxcbrSYGISIiIjKKwhu1h6DGtGsKnCxNRES10mq1uH37tqnLIAvhqpChvcO9l9ZwVchQXl53GGrdujXk8vtfpoNBiIiIqhFFEfn5+bh+/bqpSyELohSBpcNU0OrEGucJCQDkMgHKO9eRnX39nudzcnKCWq2GIDT+tnsGISIiqqYqBLm6ukKhUNzXLxqiu7mU38LV67X39rg72cDBxqrOc4iiiLKyMhQWFgIA3Nwaf8s9gxARERnQarX6ENS2bVtTl0MWxsbGBlbWNrh6vRy3tTr9/tZyGdydbKC0rTsEVbG1tQUAFBYWwtXVtdHDZAxCRERkoGpOkEKhMHElZKmUtlZwtGmN0got7uh0aCWTwc5a3uCex6qf0du3bzMIERFR0+JwGDUnQRBgb3N/MaQpfkZ5+zwRERFJFoMQERERSRaDEBERUQOFh4dj9OjR+u3g4GDMmzfvvs7ZFOeghmMQIiKiZqPViUi7eA3/ybyCtIvXmv0ZUuHh4RAEAYIgwMrKCt7e3liyZAnu3LnTrNfdsWMHXnvttXq1TU1NhSAI1dZoasg5msvixYvRt2/fWt/Pzs7Gs88+C3d3d9jY2KBDhw4YNWoUzp07h02bNum/+9pely5dwuLFiyEIAsLCwqqd/80334QgCAgODm6+D/kXZhOEiouLMWHCBDg6OsLJyQnTpk3DzZs36zwmODi42l/CP//5TyNVTEQkbYmn8/Dgim/wzIdHMPezTDzz4RE8uOKbZn+6eFhYGPLy8nD+/HnMnz8fixcvxptvvlmt3a1bt5rsms7OznBwcDD5OZrT7du3MXz4cGg0GuzYsQNZWVnYtm0bevXqhevXr2P8+PHIy8vTv4KCgjB9+nSDfR4eHgAq1/3Zv38/fvnlF4NrbNy4ER07djTq5zKbIDRhwgT8+OOPSEpKwt69e3Hw4EHMmDHjnsf99S/hjTfeMEK1RETSlng6D7M+zaj2gM18TTlmfZrRrGHI2toaarUanp6emDVrFkJCQrB79279cNayZcvg7u6Obt26AQAuX76McePGwcnJCc7Ozhg1ahQuXbqkP59Wq0VERAScnJzQtm1bLFiwAKJo2LP112GtiooKREZGwsPDA9bW1vD29sZHH32ES5cuYejQoQCANm3aQBAEhIeH13iO3377DZMmTUKbNm2gUCgwYsQInD9/Xv/+pk2b4OTkhH379sHHxwf29vb6EFglNTUVgYGBsLOzg5OTEwYPHoycnJxGfa8//vgjLl68iPfffx8DBw6Ep6cnBg8ejKVLl2LgwIGwtbWFWq3Wv6ysrKBQKAz2Vd3i7urqikceeQSbN2/Wn//w4cP49ddf8dhjjzWqvsYyiyB09uxZJCYmYsOGDRgwYAAefPBBvPPOO/jss89w9erVOo/961+Co6OjkaomIpImrU5E7J4zNT5CoWpf7J4zzT5MVsXW1lbf+5OSkoKsrCz9P6pv376N0NBQODg44Ntvv8WhQ4f0gaLqmFWrVmHTpk3YuHEjvvvuOxQXF2Pnzp11XnPSpEn497//jbfffhtnz57F+vXrYW9vDw8PD3z55ZcAgKysLOTl5WHt2rU1niM8PBzHjx/H7t27kZaWBlEU8eijjxo8+62srAwrV67EJ598goMHDyI3Nxcvv/wyAODOnTsYPXo0hgwZgpMnTyItLQ0zZsxo9C3nLi4ukMlk+OKLL6DVaht1jrtNnToVmzZt0m9v3LgREyZMgJVV/RZUbCpmEYTS0tLg5OSEfv366feFhIRAJpPh6NGjdR67ZcsWtGvXDj179kR0dDTKysrqbF9RUYGSkhKDFxER1V96dnG1nqC7iQDyNOVIzy5u1jpEUURycjL27duHhx9+GABgZ2eHDRs2oEePHujRowe2bdsGnU6HDRs2oFevXvDx8UFCQgJyc3ORmpoKAFizZg2io6Px97//HT4+Pli3bh2USmWt1/3pp5+wfft2bNy4EWPGjEHnzp0xbNgwjB8/HnK5HM7OzgAqe0XUanWN5zp//jx2796NDRs24KGHHkKfPn2wZcsWXLlyBbt27dK3u337NtatW4d+/frB398fc+bMQUpKCgCgpKQEGo0Gjz/+OLp06QIfHx9Mnjy50UNP7du3x9tvv41FixahTZs2ePjhh/Haa6/h559/btT5Hn/8cZSUlODgwYMoLS3F9u3bMXXq1Ead636YRRDKz8+Hq6urwb5WrVrB2dkZ+fn5tR737LPP4tNPP8X+/fsRHR2NTz75BBMnTqzzWsuXL4dSqdS/qsYziYiofgpv1P3U8Ia2a6i9e/fC3t4eNjY2GDFiBMaPH4/FixcDAHr16mXQ4/DDDz/gwoULcHBwgL29Pezt7eHs7Izy8nJcvHgRGo0GeXl5GDBggP6YVq1aGfzD/K8yMzMhl8sxZMiQRn+Gs2fPolWrVgbXbdu2Lbp164azZ8/q9ykUCnTp0kW/7ebmpn/+lrOzM8LDwxEaGoqRI0di7dq1+mGz3Nxc/ee1t7fH66+/Xq+6Zs+ejfz8fGzZsgVBQUH4/PPP0aNHDyQlJTX4M7Zu3RoTJ05EQkICPv/8czzwwAPo3bt3g89zv0y6snRUVBRWrFhRZ5u7/8Ib6u45RL169YKbmxuGDRuGixcvGvzg3C06OhoRERH67ZKSEoYhIqIGcHWwadJ2DTV06FDEx8fDysoK7u7uaNXqz191dnZ2Bm1v3ryJgIAAbNmypdp5XFxcGnX9qmdgGUPr1q0NtgVBMJi/lJCQgBdffBGJiYnYtm0bFi5ciKSkJPTr1w+ZmZn6dlW9VPXh4OCAkSNHYuTIkVi6dClCQ0OxdOlSDB8+vMH1T506FQMGDMDp06dN0hsEmDgIzZ8/Xz9JrDadO3eGWq3WJ9wqd+7cQXFxMdRqdb2vV5WsL1y4UGsQsra2hrW1db3PSUREhgK9nOGmtEG+przGeUICALXSBoFe9f/l2xB2dnbw9vauV1t/f39s27YNrq6utc4hdXNzw9GjR/G3v/0NQOXvnxMnTsDf37/G9r169YJOp8OBAwcQEhJS7f2qHqm65tn4+Pjgzp07OHr0KAYNGgQAuHbtGrKysuDr61uvz1bFz88Pfn5+iI6ORlBQELZu3YqBAwfW+zuqiyAI6N69Ow4fPtyo46uGKE+ePIlnn332vutpDJMGIRcXl3ol7qCgIFy/fh0nTpxAQEAAAOCbb76BTqcz6Da8l6r06+bm1qh6iYjo3uQyATEjfTHr0wwIgEEYqpqmGzPSF3KZ6Z9lNmHCBLz55psYNWoUlixZgg4dOiAnJwc7duzAggUL0KFDB8ydOxdxcXHo2rUrunfvjtWrV1dbA+hunTp1wuTJkzF16lS8/fbb6NOnD3JyclBYWIhx48bB09MTgiBg7969ePTRR2Frawt7e3uDc3Tt2hWjRo3C9OnTsX79ejg4OCAqKgrt27fHqFGj6vXZsrOz8cEHH+CJJ56Au7s7srKycP78eUyaNKnO437//XeD3iKgshfoxo0biImJwXPPPQdfX19YWVnhwIED2LhxIyIjI+tVU02++eYb3L59G05OTo0+x/0wizlCPj4+CAsLw/Tp05Geno5Dhw5hzpw5ePrpp+Hu7g4AuHLlCrp374709HQAwMWLF/Haa6/hxIkTuHTpEnbv3o1Jkybhb3/7m0nGIImIpCSspxviJ/pDrTQc/lIrbRA/0R9hPVvGP0gVCgUOHjyIjh076idDT5s2DeXl5foeovnz5+O5557D5MmTERQUBAcHB4wZM6bO88bHx+PJJ5/E888/j+7du2P69OkoLS0FUDnpODY2FlFRUVCpVJgzZ06N50hISEBAQAAef/xxBAUFQRRFfPXVV9WGw+r6bOfOncPYsWPxwAMPYMaMGZg9ezZmzpxZ53E//fSTvhep6jVz5kx06NABnTp1QmxsLAYMGAB/f3+sXbsWsbGxeOWVV+pVU02qbu03FUH862IILVRxcTHmzJmDPXv2QCaTYezYsXj77bf1KfrSpUvw8vLC/v37ERwcjMuXL2PixIk4ffo0SktL4eHhgTFjxmDhwoUNuoW+pKQESqUSGo2Gt94TkSSUl5cjOzsbXl5esLG5v3k8Wp2I9OxiFN4oh6tD5XBYS+gJIstQ189qfX9/m3RorCGcnZ2xdevWWt/v1KmTwQQxDw8PHDhwwBilERFRLeQyAUFd2pq6DKJamcXQGBEREVFzYBAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJuq91hMrLy7Ft2zaUlpZi+PDh6Nq1a1PVRURERNTs6t0jFBERgRdeeEG/fevWLQQFBWH69On417/+BT8/P6SlpTVLkURERC1JeHg4Ro8erd8ODg7GvHnz7uucTXEOYxEEAbt27ar1/UuXLkEQhGrPLGuJ6h2Evv76awwfPly/vWXLFuTk5OD8+fP47bff8NRTT2Hp0qXNUiQREZkpnRbI/hY49UXln7ran7jeFMLDwyEIAgRBgJWVFby9vbFkyRLcuXOnWa+7Y8cOvPbaa/Vqm5qaCkEQqj24tSHnaC6LFy/Wf39yuRweHh6YMWMGiouLDdrl5eVhxIgRJqqyadV7aCw3Nxe+vr767a+//hpPPvkkPD09AQBz587Fo48+2vQVEhGReTqzG0iMBEqu/rnP0R0IWwH4PtFslw0LC0NCQgIqKirw1VdfYfbs2WjdujWio6MN2t26dQtWVlZNck1nZ+cWcY6m0KNHDyQnJ0Or1eLs2bOYOnUqNBoNtm3bpm+jVqtNWGHTqnePkEwmM3iW15EjRzBw4ED9tpOTE3777bemrY6IiMzTmd3A9kmGIQgASvIq95/Z3WyXtra2hlqthqenJ2bNmoWQkBDs3r1bP5y1bNkyuLu7o1u3bgCAy5cvY9y4cXBycoKzszNGjRqFS5cu6c+n1WoREREBJycntG3bFgsWLMBfn1f+12GtiooKREZGwsPDA9bW1vD29sZHH32ES5cuYejQoQCANm3aQBAEhIeH13iO3377DZMmTUKbNm2gUCgwYsQInD9/Xv/+pk2b4OTkhH379sHHxwf29vYICwtDXl6evk1qaioCAwP1T3gfPHgwcnJy6vz+WrVqBbVajfbt2yMkJARPPfUUkpKSDNr8dWgsPT0dfn5+sLGxQb9+/fD9999XO+/u3bvRtWtX2NjYYOjQodi8eXO1nrHvvvsODz30EGxtbeHh4YEXX3wRpaWlddZ7v+odhHx8fLBnzx4AwI8//ojc3Fz9XyYA5OTkQKVSNX2FRERkXnTayp4giDW8+ce+xKhmHyarYmtri1u3bgEAUlJSkJWVhaSkJOzduxe3b99GaGgoHBwc8O233+LQoUP6QFF1zKpVq7Bp0yZs3LgR3333HYqLi7Fz5846rzlp0iT8+9//xttvv42zZ89i/fr1sLe3h4eHB7788ksAQFZWFvLy8rB27doazxEeHo7jx49j9+7dSEtLgyiKePTRR3H79m19m7KyMqxcuRKffPIJDh48iNzcXLz88ssAgDt37mD06NEYMmQITp48ibS0NMyYMQOCINT7u7t06RL27dtXZ8/ZzZs38fjjj8PX1xcnTpzA4sWL9TVUyc7OxpNPPonRo0fjhx9+wMyZM/HKK68YtLl48SLCwsIwduxYnDx5Etu2bcN3332HOXPm1LveRhHraceOHaKVlZX48MMPiyqVSnz88ccN3l+wYIH41FNP1fd0ZkOj0YgARI1GY+pSiIiM4vfffxfPnDkj/v777407wc8HRTHG8d6vnw82beGiKE6ePFkcNWqUKIqiqNPpxKSkJNHa2lp8+eWXxcmTJ4sqlUqsqKjQt//kk0/Ebt26iTqdTr+voqJCtLW1Ffft2yeKoii6ubmJb7zxhv7927dvix06dNBfRxRFcciQIeLcuXNFURTFrKwsEYCYlJRUY4379+8XAYi//fabwf67z/HTTz+JAMRDhw7p3//1119FW1tbcfv27aIoimJCQoIIQLxw4YK+zXvvvSeqVCpRFEXx2rVrIgAxNTW1Ht9cpZiYGFEmk4l2dnaijY2NiMrkKq5evdqgHQBx586doiiK4vr168W2bdsa/LzEx8eLAMTvv/9eFEVRjIyMFHv27GlwjldeecXge5g2bZo4Y8YMgzbffvutKJPJav1ZrOtntb6/v+vdIzRmzBh89dVX6N27N1566SWDsUIAUCgUeP7555sknBERkRm7WdC07Rpo7969sLe3h42NDUaMGIHx48dj8eLFAIBevXoZ9G788MMPuHDhAhwcHGBvbw97e3s4OzujvLwcFy9ehEajQV5eHgYMGKA/plWrVujXr1+t18/MzIRcLseQIUMa/RnOnj2LVq1aGVy3bdu26NatG86ePavfp1Ao0KVLF/22m5sbCgsLAVTOOQoPD0doaChGjhyJtWvX6ofNcnNz9Z/X3t4er7/+uv4c3bp1Q2ZmJo4dO4bIyEiEhoYa3DVeU629e/eGjY2Nfl9QUJBBm6ysLPTv399gX2BgoMH2Dz/8gE2bNhnUFRoaCp1Oh+zs7Ht+Z41V78nSS5Yswcsvv4xhw4bV+H5MTEyTFUVERGbMvp7TJOrbroGGDh2K+Ph4WFlZwd3dHa1a/fmrzs7OzqDtzZs3ERAQgC1btlQ7j4uLS6Oub2tr26jjGqN169YG24IgGMxfSkhIwIsvvojExERs27YNCxcuRFJSEvr162dwa/vdE7Wr7rYDgLi4ODz22GOIjY1t9jvabt68iZkzZ+LFF1+s9l7Hjh2b7br17hGKjY3FzZs3m60QIiKyEJ6DKu8OQ21zUQTAsX1lu2ZgZ2cHb29vdOzY0SAE1cTf3x/nz5+Hq6srvL29DV5KpRJKpRJubm44evSo/pg7d+7gxIkTtZ6zV69e0Ol0OHDgQI3vV/VIabW1z5Hy8fHBnTt3DK577do1ZGVlGdzBXR9+fn6Ijo7G4cOH0bNnT2zduhWtWrUy+Kx13bG2cOFCrFy5ElevXq3xfR8fH5w8eRLl5eX6fUeOHDFo061bNxw/ftxg37Fjxwy2/f39cebMmWp/D97e3k12d19N6h2ERLGmSW9ERER/IZNX3iIPoHoY+mM7LK6ynYlNmDAB7dq1w6hRo/Dtt98iOzsbqampePHFF/HLL78AqFweJi4uDrt27cK5c+fw/PPPV1sD6G6dOnXC5MmTMXXqVOzatUt/zu3btwMAPD09IQgC9u7di6Kioho7Gbp27YpRo0Zh+vTp+O677/DDDz9g4sSJaN++PUaNGlWvz5adnY3o6GikpaUhJycHX3/9Nc6fPw8fH58GfUdBQUHo3bu3wfDZ3Z599lkIgoDp06fjzJkz+Oqrr7By5UqDNjNnzsS5c+cQGRmJn376Cdu3b8emTZsAQD95OzIyEocPH8acOXOQmZmJ8+fP4z//+U+zT5Zu0LPGGjLTnIiIJMz3CWDcx4Cjm+F+R/fK/c24jlBDKBQKHDx4EB07dsTf//53+Pj4YNq0aSgvL4ejoyMAYP78+XjuuecwefJkBAUFwcHBAWPGjKnzvPHx8XjyySfx/PPPo3v37pg+fbr+NvD27dsjNjYWUVFRUKlUtf6iT0hIQEBAAB5//HEEBQVBFEV89dVX1YbD6vps586dw9ixY/HAAw9gxowZmD17NmbOnNmAb6jSSy+9hA0bNuDy5cvV3rO3t8eePXtw6tQp+Pn54ZVXXsGKFSsM2nh5eeGLL77Ajh070Lt3b8THx+vvGrO2tgYA9O7dGwcOHMBPP/2Ehx56CH5+fli0aBHc3d0bXG9DCGI9u3pkMhmUSuU9w9BfV580dyUlJVAqldBoNPr/UxARWbLy8nJkZ2fDy8vLYAJso+i0QM7hyonR9qrK4bAW0BNEprds2TKsW7euxnBVX3X9rNb393eDHroaGxsLpVLZuGqJiEh6ZHLA6yFTV0EtwPvvv4/+/fujbdu2OHToEN58883mXyOoHhoUhJ5++mm4uro2Vy1ERERkoc6fP4+lS5eiuLgYHTt2xPz586s99sQU6h2EOD+IiIiIGuutt97CW2+9ZeoyquFdY0RERCRZ9e4R0ul0zVkHERERkdE16PZ5IiIiIkvCIERERESSxSBEREREktWg2+epaWh1ItKzi1F4oxyuDjYI9HKGXMa78oiIiIyNQcjIEk/nIXbPGeRp/nw4nZvSBjEjfRHW062OI4mIyJItXrwYu3btMngqvCkEBwejb9++WLNmjUnrMBYOjRlR4uk8zPo0wyAEAUC+phyzPs1A4uk8E1VGRNQ8tDotjuUfw1c/f4Vj+ceg1dX+xPWmkp+fj7lz58Lb2xs2NjZQqVQYPHgw4uPjUVZW1uzXby6pqakQBKHOB76a8nzmij1CRqLViYjdcwY1rcYkovJ5zLF7zmC4r5rDZERkEZJzkhGXHoeCsgL9PpVChajAKIR4hjTLNX/++WcMHjwYTk5OeP3119GrVy9YW1vj1KlT+OCDD9C+fXs88UTND3y9fft2vR9o2pLdunULVlZWpi7DbLBHyEjSs4ur9QTdTQSQpylHerZlPbSWiKQpOScZEakRBiEIAArLChGRGoHknORmue7zzz+PVq1a4fjx4xg3bhx8fHzQuXNnjBo1Cv/9738xcuRIfVtBEBAfH48nnngCdnZ2WLZsGYDKJ8d36dIFVlZW6NatGz755BP9MZcuXYIgCAbDV9evX4cgCEhNTQXwZ09LSkoK+vXrB4VCgUGDBiErK8ug1ri4OKhUKjg4OOifeF+bS5cuYejQoQCANm3aQBAEhIeHA6gcypozZw7mzZuHdu3aITQ09J511nU+oHLtwAULFsDZ2RlqtRqLFy+u71+B2WEQMpLCG7X/gDemHRFRS6XVaRGXHgexhj7wqn0r0lc0+TDZtWvX8PXXX2P27Nmws7Orsc1fHxe1ePFijBkzBqdOncLUqVOxc+dOzJ07F/Pnz8fp06cxc+ZMTJkyBfv3729wPa+88gpWrVqF48ePo1WrVpg6dar+ve3bt2Px4sV4/fXXcfz4cbi5ueH999+v9VweHh748ssvAQBZWVnIy8vD2rVr9e9v3rwZVlZWOHToENatW3fP2upzPjs7Oxw9ehRvvPEGlixZgqSkpAZ/B+aAQ2NG4upg06TtiIhaqozCjGo9QXcTISK/LB8ZhRnor+7fZNe9cOECRFFEt27dDPa3a9dO39sye/ZsrFixQv/es88+iylTpui3n3nmGYSHh+P5558HAERERODIkSNYuXKlvgelvpYtW4YhQ4YAAKKiovDYY4+hvLwcNjY2WLNmDaZNm4Zp06YBAJYuXYrk5ORae4XkcjmcnZ0BAK6urnBycjJ4v2vXrnjjjTf025cuXaqztnudr3fv3oiJidGf+91330VKSgqGDx9er89uTtgjZCSBXs5wU9qgttk/AirvHgv0cjZmWURETa6orKhJ292v9PR0ZGZmokePHqioqDB4r1+/fgbbZ8+exeDBgw32DR48GGfPnm3wdXv37q3/325ulXcFFxYW6q8zYMAAg/ZBQUENvkaVgICARh9bk7trByrrr6rd0jAIGYlcJiBmpC8AVAtDVdsxI305UZqIzJ6LwqVJ29WXt7c3BEGoNhenc+fO8Pb2hq2tbbVjahtCq41MVvlr8+4Hkd++fbvGtndPvK4akmuu53b+9XM0pM6a/HXSuCAIFvvMUQYhIwrr6Yb4if5QKw2Hv9RKG8RP9Oc6QkRkEfxd/aFSqCDU0gcuQIBaoYa/q3+TXrdt27YYPnw43n33XZSWljbqHD4+Pjh06JDBvkOHDsHXt/Ifsi4uleEtL+/P5U4as+6Pj48Pjh49arDvyJEjdR5TdSeYVnvvuVX1qbMh57NknCNkZGE93TDcV82VpYnIYsllckQFRiEiNQICBINJ01XhKDIwEnKZvMmv/f7772Pw4MHo168fFi9ejN69e0Mmk+HYsWM4d+7cPYeQ/u///g/jxo2Dn58fQkJCsGfPHuzYsQPJyZV3udna2mLgwIGIi4uDl5cXCgsLsXDhwgbXOXfuXISHh6Nfv34YPHgwtmzZgh9//BGdO3eu9RhPT08IgoC9e/fi0Ucfha2tLezt7WtsW586G3I+S2Y2PULLli3DoEGDoFAoqk3qqo0oili0aBHc3Nxga2uLkJAQnD9/vnkLrQe5TEBQl7YY1bc9grq0ZQgiIosT4hmC1cGr4apwNdivUqiwOnh1s60j1KVLF3z//fcICQlBdHQ0+vTpg379+uGdd97Byy+/jNdee63O40ePHo21a9di5cqV6NGjB9avX4+EhAQEBwfr22zcuBF37txBQEAA5s2bh6VLlza4zvHjx+PVV1/FggULEBAQgJycHMyaNavOY9q3b4/Y2FhERUVBpVJhzpw5dba/V50NPZ+lEsS7BxBbsJiYGDg5OeGXX37BRx99VK+VMFesWIHly5dj8+bN8PLywquvvopTp07hzJkzsLGp391ZJSUlUCqV0Gg0cHR0vM9PQUTU8pWXlyM7OxteXl71/m9lbbQ6LTIKM1BUVgQXhQv8Xf2bpSeIpKmun9X6/v42m6Gx2NhYAMCmTZvq1V4URaxZswYLFy7EqFGjAAAff/wxVCoVdu3ahaeffrq5SiUioj/IZfImvUWeqKmZzdBYQ2VnZyM/Px8hIX92vyqVSgwYMABpaWm1HldRUYGSkhKDFxFRS6DViUi7eA3/ybyCtIvXoNWZRYc+UYtmNj1CDZWfnw8AUKlUBvtVKpX+vZosX75c3/tERNRSJJ7OQ+yeMwaP6nFT2iBmpC/vOCW6DybtEYqKioIgCHW+zp07Z9SaoqOjodFo9K/Lly8b9fpERH+VeDoPsz7NqPa8wnxNOWZ9moHE03m1HElE92LSHqH58+cbPOStJnXdSlgXtVoNACgoKNCv6Fm13bdv31qPs7a2hrW1daOuSUTU1LQ6EbF7ztTw1K7KhzULAGL3nMFwX3WT34FqqQvokeVoip9RkwYhFxcX/aJPTc3LywtqtRopKSn64FNSUoKjR4/e8xZFIqKWIj27uFpP0N1EAHmacqRnFyOoS9smuaaVlRVkMhmuXr0KFxcXWFlZVXtYKZEpiaKIW7duoaioCDKZTL84ZGOYzRyh3NxcFBcXIzc3F1qtVr9Cpre3t34BqO7du2P58uUYM2YMBEHQr5vQtWtX/e3z7u7uGD16tOk+CBFRAxTeqD0ENaZdfchkMnh5eSEvLw9Xr15tsvMSNTWFQoGOHTvqHynSGGYThBYtWoTNmzfrt/38/AAA+/fv1y90lZWVBY1Go2+zYMEClJaWYsaMGbh+/ToefPBBJCYm3ve6GERExuLqUL//XtW3XX1ZWVmhY8eOuHPnjuQfwUAtk1wuR6tWre67t9JsFlQ0FS6oSESmpNWJeHDFN8jXlNc4T0hA5fMKv4t8mKvUE92lvr+/LXYdISIiSyCXCYgZWfnAz7/GnKrtmJG+DEFEjcQgRETUwoX1dEP8RH+olYbDX2qlDeIn+nMdIaL7YDZzhIiIpCyspxuG+6qRnl2MwhvlcHWwQaCXM3uCiO4TgxARkZmQy4Qmu0WeiCpxaIyIiIgki0GIiIiIJItBiIiIiCSLQYiIiIgki0GIiIiIJItBiIiIiCSLQYiIiIgki0GIiIiIJItBiIiIiCSLQYiIiIgki0GIiIiIJItBiIiIiCSLQYiIiIgki0+fJ4um1YlIzy5G4Y1yuDrYINDLGXKZYOqyiIiohWAQIouVeDoPsXvOIE9Trt/nprRBzEhfhPV0M2FlRETUUnBojCxS4uk8zPo0wyAEAUC+phyzPs1A4uk8E1VGREQtCYMQWRytTkTsnjMQa3ival/snjPQ6mpqQUREUsIgRBYnPbu4Wk/Q3UQAeZpypGcXG68oIiJqkRiEyOIU3qg9BDWmHRERWS4GIbI4rg42TdqOiIgsF4MQWZxAL2e4KW1Q203yAirvHgv0cjZmWURE1AIxCJHFkcsExIz0BYBqYahqO2akL9cTIiIiBiGyTGE93RA/0R9qpeHwl1ppg/iJ/lxHiIiIAHBBRbJgYT3dMNxXzZWliYioVgxCZNHkMgFBXdqaugwiImqhODRGREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJJlNkFo2bJlGDRoEBQKBZycnOp1THh4OARBMHiFhYU1b6FERERkNszmoau3bt3CU089haCgIHz00Uf1Pi4sLAwJCQn6bWtr6+Yoj4iIiMyQ2QSh2NhYAMCmTZsadJy1tTXUanW921dUVKCiokK/XVJS0qDrERERkfkwm6GxxkpNTYWrqyu6deuGWbNm4dq1a3W2X758OZRKpf7l4eFhpEqJiIjI2Cw6CIWFheHjjz9GSkoKVqxYgQMHDmDEiBHQarW1HhMdHQ2NRqN/Xb582YgVExERkTGZdGgsKioKK1asqLPN2bNn0b1790ad/+mnn9b/7169eqF3797o0qULUlNTMWzYsBqPsba25jwiIiIiiTBpEJo/fz7Cw8PrbNO5c+cmu17nzp3Rrl07XLhwodYgRERERNJh0iDk4uICFxcXo13vl19+wbVr1+Dm5ma0axIREVHLZTZzhHJzc5GZmYnc3FxotVpkZmYiMzMTN2/e1Lfp3r07du7cCQC4efMm/u///g9HjhzBpUuXkJKSglGjRsHb2xuhoaGm+hhERETUgpjN7fOLFi3C5s2b9dt+fn4AgP379yM4OBgAkJWVBY1GAwCQy+U4efIkNm/ejOvXr8Pd3R2PPPIIXnvtNc4BkhCtTouMwgwUlRXBReECf1d/yGVyU5dFREQthCCKomjqIlqykpISKJVKaDQaODo6mrocaoDknGTEpcehoKxAv0+lUCEqMAohniEmrIyIiJpbfX9/m83QGFFDJOckIyI1wiAEAUBhWSEiUiOQnJNsosqIiKglYRAii6PVaRGXHgcR1Ts7q/atSF8Bra729aSIiEgaGITI4mQUZlTrCbqbCBH5ZfnIKMwwYlVERNQSMQiRxSkqK2rSdkREZLkYhMjiuCjqtzZVfdsREZHlYhAii+Pv6g+VQgUBQo3vCxCgVqjh7+pv5MqIiKilYRAiiyOXyREVGAUA1cJQ1XZkYCTXEyIiIgYhskwhniFYHbwargpXg/0qhQqrg1dzHSEiIgJgRitLEzVUiGcIhnoM5crSRERUKwYhsmhymRz91f1NXQYREbVQHBojIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIskyiyB06dIlTJs2DV5eXrC1tUWXLl0QExODW7du1XlceXk5Zs+ejbZt28Le3h5jx45FQUGBkaomIiKils4sgtC5c+eg0+mwfv16/Pjjj3jrrbewbt06/Otf/6rzuJdeegl79uzB559/jgMHDuDq1av4+9//bqSqiYiIqKUTRFEUTV1EY7z55puIj4/Hzz//XOP7Go0GLi4u2Lp1K5588kkAlYHKx8cHaWlpGDhwYL2uU1JSAqVSCY1GA0dHxyarn4iIiJpPfX9/m0WPUE00Gg2cnZ1rff/EiRO4ffs2QkJC9Pu6d++Ojh07Ii0trdbjKioqUFJSYvAiIiIiy2SWQejChQt45513MHPmzFrb5Ofnw8rKCk5OTgb7VSoV8vPzaz1u+fLlUCqV+peHh0dTlU1EREQtjEmDUFRUFARBqPN17tw5g2OuXLmCsLAwPPXUU5g+fXqT1xQdHQ2NRqN/Xb58ucmvQURERC1DK1NefP78+QgPD6+zTefOnfX/++rVqxg6dCgGDRqEDz74oM7j1Go1bt26hevXrxv0ChUUFECtVtd6nLW1NaytretVPxEREZk3kwYhFxcXuLi41KvtlStXMHToUAQEBCAhIQEyWd2dWQEBAWjdujVSUlIwduxYAEBWVhZyc3MRFBR037UTEZFl0uq0yCjMQFFZEVwULvB39YdcJjd1WdRMTBqE6uvKlSsIDg6Gp6cnVq5ciaKiIv17Vb07V65cwbBhw/Dxxx8jMDAQSqUS06ZNQ0REBJydneHo6IgXXngBQUFB9b5jjIiIpCU5Jxlx6XEoKPtzzTmVQoWowCiEeIbUcSSZK7MIQklJSbhw4QIuXLiADh06GLxXdff/7du3kZWVhbKyMv17b731FmQyGcaOHYuKigqEhobi/fffN2rtRERkHpJzkhGRGgERhqvKFJYVIiI1AquDVzMMWSCzXUfIWLiOEBGR5dPqtAj9MtSgJ+huAgSoFCokjk3kMJmZsPh1hIiIiJpKRmFGrSEIAESIyC/LR0ZhhhGrImNgECIiIskrKiu6d6MGtCPzwSBERESS56Ko3x3M9W1H5oNBiIiIJM/f1R8qhQoChBrfFyBArVDD39XfyJVRc2MQIiIiyZPL5IgKjAKAamGoajsyMJITpS0QgxARERGAEM8QrA5eDVeFq8F+lULFW+ctmFmsI0RERGQMIZ4hGOoxlCtLSwiDEBER0V3kMjn6q/ubugwyEg6NERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFktTJ1AURk/rQ6EenZxSi8UQ5XBxsEejlDLhNMXRYR0T0xCJmAVqdFRmEGisqK4KJwgb+rP+QyuanLImqUxNN5iN1zBnmacv0+N6UNYkb6IqynmwkrIyK6NwYhI0vOSUZcehwKygr0+1QKFaICoxDiGWLCyogaLvF0HmZ9mgHxL/vzNeWY9WkG4if6MwwRUYvGOUJGlJyTjIjUCIMQBACFZYWISI1Ack6yiSojajitTkTsnjPVQhAA/b7YPWeg1dXUgoioZWAQMhKtTou49DiINfzaqNq3In0FtDqtsUsjapT07GKD4bC/EgHkacqRnl1svKKIiBqIQchIMgozqvUE3U2EiPyyfGQUZhixKqLGK7xRewhqTDsiIlNgEDKSorKiJm1HZGquDjZN2o6IyBQYhIzEReHSpO2ITC3QyxluShvUdpO8gMq7xwK9nI1ZFhFRgzAIGYm/qz9UChWEWn5tCBCgVqjh7+pv5MqIGkcuExAz0hcAqv1UV23HjPTlekJE1KIxCBmJXCZHVGAUAFQLQ1XbkYGRXE+IzEpYTzfET/SHWmk4/KVW2vDWeSIyC4Ioiry3tQ4lJSVQKpXQaDRwdHS87/PVtI6QWqFGZGAk1xEis8WVpYmopanv728GoXto6iAEcGVpIiKi5lbf399cWdoE5DI5+qv7m7oMIiIiyeMcISIiIpIsswhCly5dwrRp0+Dl5QVbW1t06dIFMTExuHXrVp3HBQcHQxAEg9c///lPI1VNRERELZ1ZDI2dO3cOOp0O69evh7e3N06fPo3p06ejtLQUK1eurPPY6dOnY8mSJfpthULR3OUSERGRmTCLIBQWFoawsDD9dufOnZGVlYX4+Ph7BiGFQgG1Wt3cJRIREZEZMouhsZpoNBo4O997xdotW7agXbt26NmzJ6Kjo1FWVlZn+4qKCpSUlBi8iIiIyDKZRY/QX124cAHvvPPOPXuDnn32WXh6esLd3R0nT55EZGQksrKysGPHjlqPWb58OWJjY5u6ZCIiImqBTLqOUFRUFFasWFFnm7Nnz6J79+767StXrmDIkCEIDg7Ghg0bGnS9b775BsOGDcOFCxfQpUuXGttUVFSgoqJCv11SUgIPD48mXUeIiIiImpdZLKhYVFSEa9eu1dmmc+fOsLKyAgBcvXoVwcHBGDhwIDZt2gSZrGEje6WlpbC3t0diYiJCQ0PrdUxzLKhIREREzcssFlR0cXGBi0v9nrZ+5coVDB06FAEBAUhISGhwCAKAzMxMAICbG59/RERERGYyR+jKlSsIDg6Gp6cnVq5ciaKiIv17VXeEXblyBcOGDcPHH3+MwMBAXLx4EVu3bsWjjz6Ktm3b4uTJk3jppZfwt7/9Db179673tas6zDhpmoiIyHxU/d6+18CXWQShpKQkXLhwARcuXECHDh0M3qv6gLdv30ZWVpb+rjArKyskJydjzZo1KC0thYeHB8aOHYuFCxc26No3btwAAHh4eDTBJyEiIiJjunHjBpRKZa3v86Gr96DT6XD16lU4ODhAEJruadpVk7AvX77MuUfNjN+1cfB7Ng5+z8bB79k4mvN7FkURN27cgLu7e53TacyiR8iUZDJZtV6opuTo6Mj/kxkJv2vj4PdsHPyejYPfs3E01/dcV09QFbNdUJGIiIjofjEIERERkWQxCJmItbU1YmJiYG1tbepSLB6/a+Pg92wc/J6Ng9+zcbSE75mTpYmIiEiy2CNEREREksUgRERERJLFIERERESSxSBEREREksUgZCLvvfceOnXqBBsbGwwYMADp6emmLsniHDx4ECNHjoS7uzsEQcCuXbtMXZLFWb58Ofr37w8HBwe4urpi9OjRyMrKMnVZFik+Ph69e/fWLzwXFBSE//3vf6Yuy6LFxcVBEATMmzfP1KVYnMWLF0MQBINX9+7dTVILg5AJbNu2DREREYiJiUFGRgb69OmD0NBQFBYWmro0i1JaWoo+ffrgvffeM3UpFuvAgQOYPXs2jhw5gqSkJNy+fRuPPPIISktLTV2axenQoQPi4uJw4sQJHD9+HA8//DBGjRqFH3/80dSlWaRjx45h/fr1DXpINzVMjx49kJeXp3999913JqmDt8+bwIABA9C/f3+8++67ACqfZ+bh4YEXXngBUVFRJq7OMgmCgJ07d2L06NGmLsWiFRUVwdXVFQcOHMDf/vY3U5dj8ZydnfHmm29i2rRppi7Foty8eRP+/v54//33sXTpUvTt2xdr1qwxdVkWZfHixdi1axcyMzNNXQp7hIzt1q1bOHHiBEJCQvT7ZDIZQkJCkJaWZsLKiO6fRqMBUPkLmpqPVqvFZ599htLSUgQFBZm6HIsze/ZsPPbYYwb/naamd/78ebi7u6Nz586YMGECcnNzTVIHH7pqZL/++iu0Wi1UKpXBfpVKhXPnzpmoKqL7p9PpMG/ePAwePBg9e/Y0dTkW6dSpUwgKCkJ5eTns7e2xc+dO+Pr6mrosi/LZZ58hIyMDx44dM3UpFm3AgAHYtGkTunXrhry8PMTGxuKhhx7C6dOn4eDgYNRaGISIqEnMnj0bp0+fNtk4vxR069YNmZmZ0Gg0+OKLLzB58mQcOHCAYaiJXL58GXPnzkVSUhJsbGxMXY5FGzFihP5/9+7dGwMGDICnpye2b99u9KFeBiEja9euHeRyOQoKCgz2FxQUQK1Wm6gqovszZ84c7N27FwcPHkSHDh1MXY7FsrKygre3NwAgICAAx44dw9q1a7F+/XoTV2YZTpw4gcLCQvj7++v3abVaHDx4EO+++y4qKiogl8tNWKHlcnJywgMPPIALFy4Y/dqcI2RkVlZWCAgIQEpKin6fTqdDSkoKx/rJ7IiiiDlz5mDnzp345ptv4OXlZeqSJEWn06GiosLUZViMYcOG4dSpU8jMzNS/+vXrhwkTJiAzM5MhqBndvHkTFy9ehJubm9GvzR4hE4iIiMDkyZPRr18/BAYGYs2aNSgtLcWUKVNMXZpFuXnzpsG/LrKzs5GZmQlnZ2d07NjRhJVZjtmzZ2Pr1q34z3/+AwcHB+Tn5wMAlEolbG1tTVydZYmOjsaIESPQsWNH3LhxA1u3bkVqair27dtn6tIshoODQ7X5bXZ2dmjbti3nvTWxl19+GSNHjoSnpyeuXr2KmJgYyOVyPPPMM0avhUHIBMaPH4+ioiIsWrQI+fn56Nu3LxITE6tNoKb7c/z4cQwdOlS/HRERAQCYPHkyNm3aZKKqLEt8fDwAIDg42GB/QkICwsPDjV+QBSssLMSkSZOQl5cHpVKJ3r17Y9++fRg+fLipSyNqsF9++QXPPPMMrl27BhcXFzz44IM4cuQIXFxcjF4L1xEiIiIiyeIcISIiIpIsBiEiIiKSLAYhIiIikiwGISIiIpIsBiEiIiKSLAYhIiIikiwGISIiIpIsBiEiIiKSLAYhIpK08PBwjB492tRlEJGJMAgRUbMLDw+HIAjVXmFhYaYuDWvXrm0xj1wRBAG7du0ydRlEksJnjRGRUYSFhSEhIcFgn7W1tYmqAbRaLQRBgFKpNFkNRGR67BEiIqOwtraGWq02eLVp0wapqamwsrLCt99+q2/7xhtvwNXVFQUFBQAqH+o6Z84czJkzB0qlEu3atcOrr76Kux+VWFFRgZdffhnt27eHnZ0dBgwYgNTUVP37mzZtgpOTE3bv3g1fX19YW1sjNze32tBYcHAwXnjhBcybNw9t2rSBSqXChx9+iNLSUkyZMgUODg7w9vbG//73P4PPd/r0aYwYMQL29vZQqVR47rnn8Ouvvxqc98UXX8SCBQvg7OwMtVqNxYsX69/v1KkTAGDMmDEQBEG/TUTNi0GIiEwqODgY8+bNw3PPPQeNRoPvv/8er776KjZs2ACVSqVvt3nzZrRq1Qrp6elYu3YtVq9ejQ0bNujfnzNnDtLS0vDZZ5/h5MmTeOqppxAWFobz58/r25SVlWHFihXYsGEDfvzxR7i6utZY0+bNm9GuXTukp6fjhRdewKxZs/DUU09h0KBByMjIwCOPPILnnnsOZWVlAIDr16/j4Ycfhp+fH44fP47ExEQUFBRg3Lhx1c5rZ2eHo0eP4o033sCSJUuQlJQEADh27BgAICEhAXl5efptImpmIhFRM5s8ebIol8tFOzs7g9eyZctEURTFiooKsW/fvuK4ceNEX19fcfr06QbHDxkyRPTx8RF1Op1+X2RkpOjj4yOKoijm5OSIcrlcvHLlisFxw4YNE6Ojo0VRFMWEhAQRgJiZmVmttlGjRhlc68EHH9Rv37lzR7SzsxOfe+45/b68vDwRgJiWliaKoii+9tpr4iOPPGJw3suXL4sAxKysrBrPK4qi2L9/fzEyMlK/DUDcuXNnLd8iETUHzhEiIqMYOnQo4uPjDfY5OzsDAKysrLBlyxb07t0bnp6eeOutt6odP3DgQAiCoN8OCgrCqlWroNVqcerUKWi1WjzwwAMGx1RUVKBt27b6bSsrK/Tu3fuetd7dRi6Xo23btujVq5d+X1VPVWFhIQDghx9+wP79+2Fvb1/tXBcvXtTX9ddru7m56c9BRKbBIERERmFnZwdvb+9a3z98+DAAoLi4GMXFxbCzs6v3uW/evAm5XI4TJ05ALpcbvHd3OLG1tTUIU7Vp3bq1wbYgCAb7qs6h0+n01x85ciRWrFhR7Vxubm51nrfqHERkGgxCRGRyFy9exEsvvYQPP/wQ27Ztw+TJk5GcnAyZ7M9pjEePHjU45siRI+jatSvkcjn8/Pyg1WpRWFiIhx56yNjlw9/fH19++SU6deqEVq0a/5/V1q1bQ6vVNmFlRHQvnCxNREZRUVGB/Px8g9evv/4KrVaLiRMnIjQ0FFOmTEFCQgJOnjyJVatWGRyfm5uLiIgIZGVl4d///jfeeecdzJ07FwDwwAMPYMKECZg0aRJ27NiB7OxspKenY/ny5fjvf//b7J9t9uzZKC4uxjPPPINjx47h4sWL2LdvH6ZMmdKgYNOpUyekpKQgPz8fv/32WzNWTERV2CNEREaRmJhoMEwEAN26dcOzzz6LnJwc7N27F0DlUNIHH3yAZ555Bo888gj69OkDAJg0aRJ+//13BAYGQi6XY+7cuZgxY4b+XAkJCVi6dCnmz5+PK1euoF27dhg4cCAef/zxZv9s7u7uOHToECIjI/HII4+goqICnp6eCAsLM+jVupdVq1YhIiICH374Idq3b49Lly41X9FEBAAQRPGuhTiIiFqg4OBg9O3bF2vWrDF1KURkYTg0RkRERJLFIERERESSxaExIiIikiz2CBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZP0/qE8BjwIVpQ8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1497,7 +2061,7 @@ "plt.xlabel(\"Experiment\")\n", "plt.ylabel(\"TS\")\n", "plt.legend()\n", - "plt.show()\n" + "plt.show()" ] } ], From 7dcbb2a927f04868ed2ef30066274d335789e5e7 Mon Sep 17 00:00:00 2001 From: Yang Date: Tue, 13 Jun 2023 16:53:52 +0200 Subject: [PATCH 04/13] fix index error --- workflow/comp_pred_ridge_and_LSTM.ipynb | 1157 +++-------------------- workflow/pred_temperature_ridge.ipynb | 44 +- 2 files changed, 149 insertions(+), 1052 deletions(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index e011421..62b9fc3 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -24,7 +24,18 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import lilio\n", "import numpy as np\n", @@ -35,7 +46,11 @@ "from s2spy import preprocess\n", "import torch\n", "from torch import nn\n", - "from torch.autograd import Variable" + "from torch.autograd import Variable\n", + "\n", + "# for reproducibility \n", + "np.random.seed(0)\n", + "torch.manual_seed(0)" ] }, { @@ -553,69 +568,15 @@ "name": "stderr", "output_type": "stream", "text": [ - "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", - "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" + "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n" ] }, { - "data": { - "text/html": [ - "Tracking run with wandb version 0.15.4" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Run data is saved locally in /home/yangliu/AI4S2S/cookbook/workflow/wandb/run-20230613_125153-2tknu0at" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Syncing run flowing-lion-6 to Weights & Biases (docs)
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View project at https://wandb.ai/ai4s2s/test-LSTM-ridge" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View run at https://wandb.ai/ai4s2s/test-LSTM-ridge/runs/2tknu0at" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" + ] } ], "source": [ @@ -624,7 +585,7 @@ "\n", "# define hyperparameters and the \n", "hyperparameters = dict(\n", - " epoch = 100,\n", + " epoch = 10,\n", " input_dim = lat_precursor*lon_precursor,\n", " hidden_dim = lat_precursor*lon_precursor*2,\n", " output_dim = 1,\n", @@ -636,8 +597,8 @@ ")\n", "\n", "# initialize weights & biases service\n", - "mode = 'online'\n", - "#mode = 'disabled'\n", + "#mode = 'online'\n", + "mode = 'disabled'\n", "wandb.init(config=hyperparameters, project='test-LSTM-ridge', entity='ai4s2s', mode=mode)\n", "config = wandb.config" ] @@ -747,907 +708,97 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/27(0%)]\tLoss: 2.165582\n", - "Epoch : 0 [3/27(11%)]\tLoss: 2.707063\n", - "Epoch : 0 [6/27(22%)]\tLoss: 3.939999\n", - "Epoch : 0 [9/27(33%)]\tLoss: 3.234633\n", - "Epoch : 0 [12/27(44%)]\tLoss: 8.445068\n", - "Epoch : 0 [15/27(56%)]\tLoss: 2.638636\n", - "Epoch : 0 [18/27(67%)]\tLoss: 0.399618\n", - "Epoch : 0 [21/27(78%)]\tLoss: 1.214677\n", - "Epoch : 0 [24/27(89%)]\tLoss: 6.242445\n", - "Epoch : 1 [0/27(0%)]\tLoss: 2.000005\n", - "Epoch : 1 [3/27(11%)]\tLoss: 2.992116\n", - "Epoch : 1 [6/27(22%)]\tLoss: 4.789081\n", - "Epoch : 1 [9/27(33%)]\tLoss: 0.480854\n", - "Epoch : 1 [12/27(44%)]\tLoss: 3.631541\n", - "Epoch : 1 [15/27(56%)]\tLoss: 3.119281\n", - "Epoch : 1 [18/27(67%)]\tLoss: 3.124379\n", - "Epoch : 1 [21/27(78%)]\tLoss: 0.219105\n", - "Epoch : 1 [24/27(89%)]\tLoss: 5.125325\n", - "Epoch : 2 [0/27(0%)]\tLoss: 4.415288\n", - "Epoch : 2 [3/27(11%)]\tLoss: 5.862941\n", - "Epoch : 2 [6/27(22%)]\tLoss: 9.001224\n", - "Epoch : 2 [9/27(33%)]\tLoss: 0.388244\n", - "Epoch : 2 [12/27(44%)]\tLoss: 4.476913\n", - "Epoch : 2 [15/27(56%)]\tLoss: 2.381039\n", - "Epoch : 2 [18/27(67%)]\tLoss: 0.078652\n", - "Epoch : 2 [21/27(78%)]\tLoss: 0.732189\n", - "Epoch : 2 [24/27(89%)]\tLoss: 4.983542\n", - "Epoch : 3 [0/27(0%)]\tLoss: 1.406693\n", - "Epoch : 3 [3/27(11%)]\tLoss: 2.987978\n", - "Epoch : 3 [6/27(22%)]\tLoss: 4.348095\n", - "Epoch : 3 [9/27(33%)]\tLoss: 0.515473\n", - "Epoch : 3 [12/27(44%)]\tLoss: 4.230004\n", - "Epoch : 3 [15/27(56%)]\tLoss: 1.525575\n", - "Epoch : 3 [18/27(67%)]\tLoss: 1.084604\n", - "Epoch : 3 [21/27(78%)]\tLoss: 0.497783\n", - "Epoch : 3 [24/27(89%)]\tLoss: 4.580351\n", - "Epoch : 4 [0/27(0%)]\tLoss: 2.131794\n", - "Epoch : 4 [3/27(11%)]\tLoss: 1.115512\n", - "Epoch : 4 [6/27(22%)]\tLoss: 3.768852\n", - "Epoch : 4 [9/27(33%)]\tLoss: 0.158061\n", - "Epoch : 4 [12/27(44%)]\tLoss: 3.041686\n", - "Epoch : 4 [15/27(56%)]\tLoss: 0.964813\n", - "Epoch : 4 [18/27(67%)]\tLoss: 1.942379\n", - "Epoch : 4 [21/27(78%)]\tLoss: 0.241821\n", - "Epoch : 4 [24/27(89%)]\tLoss: 4.358902\n", - "Epoch : 5 [0/27(0%)]\tLoss: 0.168820\n", - "Epoch : 5 [3/27(11%)]\tLoss: 0.369634\n", - "Epoch : 5 [6/27(22%)]\tLoss: 6.775401\n", - "Epoch : 5 [9/27(33%)]\tLoss: 0.324252\n", - "Epoch : 5 [12/27(44%)]\tLoss: 1.939004\n", - "Epoch : 5 [15/27(56%)]\tLoss: 0.168663\n", - "Epoch : 5 [18/27(67%)]\tLoss: 1.815015\n", - "Epoch : 5 [21/27(78%)]\tLoss: 0.369833\n", - "Epoch : 5 [24/27(89%)]\tLoss: 4.611064\n", - "Epoch : 6 [0/27(0%)]\tLoss: 0.142775\n", - "Epoch : 6 [3/27(11%)]\tLoss: 0.464409\n", - "Epoch : 6 [6/27(22%)]\tLoss: 4.722649\n", - "Epoch : 6 [9/27(33%)]\tLoss: 0.143948\n", - "Epoch : 6 [12/27(44%)]\tLoss: 2.268274\n", - "Epoch : 6 [15/27(56%)]\tLoss: 0.595253\n", - "Epoch : 6 [18/27(67%)]\tLoss: 2.737630\n", - "Epoch : 6 [21/27(78%)]\tLoss: 0.904762\n", - "Epoch : 6 [24/27(89%)]\tLoss: 6.825067\n", - "Epoch : 7 [0/27(0%)]\tLoss: 0.174022\n", - "Epoch : 7 [3/27(11%)]\tLoss: 0.590742\n", - "Epoch : 7 [6/27(22%)]\tLoss: 2.841745\n", - "Epoch : 7 [9/27(33%)]\tLoss: 0.306665\n", - "Epoch : 7 [12/27(44%)]\tLoss: 1.591414\n", - "Epoch : 7 [15/27(56%)]\tLoss: 0.195446\n", - "Epoch : 7 [18/27(67%)]\tLoss: 0.946510\n", - "Epoch : 7 [21/27(78%)]\tLoss: 2.026141\n", - "Epoch : 7 [24/27(89%)]\tLoss: 3.504912\n", - "Epoch : 8 [0/27(0%)]\tLoss: 0.544945\n", - "Epoch : 8 [3/27(11%)]\tLoss: 0.847015\n", - "Epoch : 8 [6/27(22%)]\tLoss: 2.664871\n", - "Epoch : 8 [9/27(33%)]\tLoss: 0.145366\n", - "Epoch : 8 [12/27(44%)]\tLoss: 2.158564\n", - "Epoch : 8 [15/27(56%)]\tLoss: 0.584567\n", - "Epoch : 8 [18/27(67%)]\tLoss: 0.647607\n", - "Epoch : 8 [21/27(78%)]\tLoss: 1.387323\n", - "Epoch : 8 [24/27(89%)]\tLoss: 2.996511\n", - "Epoch : 9 [0/27(0%)]\tLoss: 0.360243\n", - "Epoch : 9 [3/27(11%)]\tLoss: 0.755343\n", - "Epoch : 9 [6/27(22%)]\tLoss: 2.554468\n", - "Epoch : 9 [9/27(33%)]\tLoss: 0.091759\n", - "Epoch : 9 [12/27(44%)]\tLoss: 1.624673\n", - "Epoch : 9 [15/27(56%)]\tLoss: 0.252278\n", - "Epoch : 9 [18/27(67%)]\tLoss: 2.158764\n", - "Epoch : 9 [21/27(78%)]\tLoss: 0.938115\n", - "Epoch : 9 [24/27(89%)]\tLoss: 8.669566\n", - "Epoch : 10 [0/27(0%)]\tLoss: 0.330278\n", - "Epoch : 10 [3/27(11%)]\tLoss: 1.053571\n", - "Epoch : 10 [6/27(22%)]\tLoss: 2.672359\n", - "Epoch : 10 [9/27(33%)]\tLoss: 0.270874\n", - "Epoch : 10 [12/27(44%)]\tLoss: 1.256855\n", - "Epoch : 10 [15/27(56%)]\tLoss: 1.558229\n", - "Epoch : 10 [18/27(67%)]\tLoss: 1.460921\n", - "Epoch : 10 [21/27(78%)]\tLoss: 2.205369\n", - "Epoch : 10 [24/27(89%)]\tLoss: 3.979985\n", - "Epoch : 11 [0/27(0%)]\tLoss: 1.607574\n", - "Epoch : 11 [3/27(11%)]\tLoss: 0.971925\n", - "Epoch : 11 [6/27(22%)]\tLoss: 2.552127\n", - "Epoch : 11 [9/27(33%)]\tLoss: 0.288146\n", - "Epoch : 11 [12/27(44%)]\tLoss: 1.726070\n", - "Epoch : 11 [15/27(56%)]\tLoss: 0.407576\n", - "Epoch : 11 [18/27(67%)]\tLoss: 0.999833\n", - "Epoch : 11 [21/27(78%)]\tLoss: 0.155258\n", - "Epoch : 11 [24/27(89%)]\tLoss: 4.892887\n", - "Epoch : 12 [0/27(0%)]\tLoss: 3.298238\n", - "Epoch : 12 [3/27(11%)]\tLoss: 0.379981\n", - "Epoch : 12 [6/27(22%)]\tLoss: 4.465544\n", - "Epoch : 12 [9/27(33%)]\tLoss: 2.631683\n", - "Epoch : 12 [12/27(44%)]\tLoss: 1.620102\n", - "Epoch : 12 [15/27(56%)]\tLoss: 1.366819\n", - "Epoch : 12 [18/27(67%)]\tLoss: 0.163617\n", - "Epoch : 12 [21/27(78%)]\tLoss: 1.300070\n", - "Epoch : 12 [24/27(89%)]\tLoss: 1.490708\n", - "Epoch : 13 [0/27(0%)]\tLoss: 1.798358\n", - "Epoch : 13 [3/27(11%)]\tLoss: 5.229220\n", - "Epoch : 13 [6/27(22%)]\tLoss: 5.356652\n", - "Epoch : 13 [9/27(33%)]\tLoss: 0.558033\n", - "Epoch : 13 [12/27(44%)]\tLoss: 0.554176\n", - "Epoch : 13 [15/27(56%)]\tLoss: 0.562831\n", - "Epoch : 13 [18/27(67%)]\tLoss: 3.078015\n", - "Epoch : 13 [21/27(78%)]\tLoss: 0.097591\n", - "Epoch : 13 [24/27(89%)]\tLoss: 1.286733\n", - "Epoch : 14 [0/27(0%)]\tLoss: 2.589076\n", - "Epoch : 14 [3/27(11%)]\tLoss: 1.397058\n", - "Epoch : 14 [6/27(22%)]\tLoss: 2.377434\n", - "Epoch : 14 [9/27(33%)]\tLoss: 0.343470\n", - "Epoch : 14 [12/27(44%)]\tLoss: 1.442883\n", - "Epoch : 14 [15/27(56%)]\tLoss: 0.206578\n", - "Epoch : 14 [18/27(67%)]\tLoss: 0.736069\n", - "Epoch : 14 [21/27(78%)]\tLoss: 0.561026\n", - "Epoch : 14 [24/27(89%)]\tLoss: 0.698505\n", - "Epoch : 15 [0/27(0%)]\tLoss: 2.071312\n", - "Epoch : 15 [3/27(11%)]\tLoss: 1.224311\n", - "Epoch : 15 [6/27(22%)]\tLoss: 1.821460\n", - "Epoch : 15 [9/27(33%)]\tLoss: 0.609283\n", - "Epoch : 15 [12/27(44%)]\tLoss: 0.999557\n", - "Epoch : 15 [15/27(56%)]\tLoss: 0.632253\n", - "Epoch : 15 [18/27(67%)]\tLoss: 1.757801\n", - "Epoch : 15 [21/27(78%)]\tLoss: 0.339127\n", - "Epoch : 15 [24/27(89%)]\tLoss: 0.556197\n", - "Epoch : 16 [0/27(0%)]\tLoss: 0.543385\n", - "Epoch : 16 [3/27(11%)]\tLoss: 0.952744\n", - "Epoch : 16 [6/27(22%)]\tLoss: 1.134769\n", - "Epoch : 16 [9/27(33%)]\tLoss: 0.126529\n", - "Epoch : 16 [12/27(44%)]\tLoss: 0.567179\n", - "Epoch : 16 [15/27(56%)]\tLoss: 0.604810\n", - "Epoch : 16 [18/27(67%)]\tLoss: 0.927818\n", - "Epoch : 16 [21/27(78%)]\tLoss: 0.477070\n", - "Epoch : 16 [24/27(89%)]\tLoss: 0.339777\n", - "Epoch : 17 [0/27(0%)]\tLoss: 2.173811\n", - "Epoch : 17 [3/27(11%)]\tLoss: 0.839119\n", - "Epoch : 17 [6/27(22%)]\tLoss: 0.231632\n", - "Epoch : 17 [9/27(33%)]\tLoss: 0.089765\n", - "Epoch : 17 [12/27(44%)]\tLoss: 0.302901\n", - "Epoch : 17 [15/27(56%)]\tLoss: 0.486890\n", - "Epoch : 17 [18/27(67%)]\tLoss: 0.981440\n", - "Epoch : 17 [21/27(78%)]\tLoss: 0.269975\n", - "Epoch : 17 [24/27(89%)]\tLoss: 0.196218\n", - "Epoch : 18 [0/27(0%)]\tLoss: 0.492132\n", - "Epoch : 18 [3/27(11%)]\tLoss: 0.852551\n", - "Epoch : 18 [6/27(22%)]\tLoss: 2.896696\n", - "Epoch : 18 [9/27(33%)]\tLoss: 0.021014\n", - "Epoch : 18 [12/27(44%)]\tLoss: 0.167133\n", - "Epoch : 18 [15/27(56%)]\tLoss: 0.730786\n", - "Epoch : 18 [18/27(67%)]\tLoss: 1.153913\n", - "Epoch : 18 [21/27(78%)]\tLoss: 0.380019\n", - "Epoch : 18 [24/27(89%)]\tLoss: 0.182739\n", - "Epoch : 19 [0/27(0%)]\tLoss: 0.542237\n", - "Epoch : 19 [3/27(11%)]\tLoss: 0.781398\n", - "Epoch : 19 [6/27(22%)]\tLoss: 0.687168\n", - "Epoch : 19 [9/27(33%)]\tLoss: 0.082213\n", - "Epoch : 19 [12/27(44%)]\tLoss: 0.275319\n", - "Epoch : 19 [15/27(56%)]\tLoss: 0.137905\n", - "Epoch : 19 [18/27(67%)]\tLoss: 1.099945\n", - "Epoch : 19 [21/27(78%)]\tLoss: 0.363372\n", - "Epoch : 19 [24/27(89%)]\tLoss: 1.022495\n", - "Epoch : 20 [0/27(0%)]\tLoss: 0.320546\n", - "Epoch : 20 [3/27(11%)]\tLoss: 2.144863\n", - "Epoch : 20 [6/27(22%)]\tLoss: 0.219787\n", - "Epoch : 20 [9/27(33%)]\tLoss: 0.350720\n", - "Epoch : 20 [12/27(44%)]\tLoss: 0.965799\n", - "Epoch : 20 [15/27(56%)]\tLoss: 1.005978\n", - "Epoch : 20 [18/27(67%)]\tLoss: 1.142012\n", - "Epoch : 20 [21/27(78%)]\tLoss: 0.293700\n", - "Epoch : 20 [24/27(89%)]\tLoss: 0.099300\n", - "Epoch : 21 [0/27(0%)]\tLoss: 0.123133\n", - "Epoch : 21 [3/27(11%)]\tLoss: 0.648110\n", - "Epoch : 21 [6/27(22%)]\tLoss: 0.075299\n", - "Epoch : 21 [9/27(33%)]\tLoss: 0.034576\n", - "Epoch : 21 [12/27(44%)]\tLoss: 0.948630\n", - "Epoch : 21 [15/27(56%)]\tLoss: 0.657102\n", - "Epoch : 21 [18/27(67%)]\tLoss: 1.187829\n", - "Epoch : 21 [21/27(78%)]\tLoss: 0.250696\n", - "Epoch : 21 [24/27(89%)]\tLoss: 0.363517\n", - "Epoch : 22 [0/27(0%)]\tLoss: 0.049788\n", - "Epoch : 22 [3/27(11%)]\tLoss: 0.397964\n", - "Epoch : 22 [6/27(22%)]\tLoss: 0.194088\n", - "Epoch : 22 [9/27(33%)]\tLoss: 0.115681\n", - "Epoch : 22 [12/27(44%)]\tLoss: 0.478896\n", - "Epoch : 22 [15/27(56%)]\tLoss: 0.094406\n", - "Epoch : 22 [18/27(67%)]\tLoss: 1.638833\n", - "Epoch : 22 [21/27(78%)]\tLoss: 2.182560\n", - "Epoch : 22 [24/27(89%)]\tLoss: 0.277138\n", - "Epoch : 23 [0/27(0%)]\tLoss: 0.068115\n", - "Epoch : 23 [3/27(11%)]\tLoss: 0.558467\n", - "Epoch : 23 [6/27(22%)]\tLoss: 0.014625\n", - "Epoch : 23 [9/27(33%)]\tLoss: 0.008719\n", - "Epoch : 23 [12/27(44%)]\tLoss: 0.228991\n", - "Epoch : 23 [15/27(56%)]\tLoss: 0.065078\n", - "Epoch : 23 [18/27(67%)]\tLoss: 1.047851\n", - "Epoch : 23 [21/27(78%)]\tLoss: 0.283403\n", - "Epoch : 23 [24/27(89%)]\tLoss: 0.190449\n", - "Epoch : 24 [0/27(0%)]\tLoss: 0.144198\n", - "Epoch : 24 [3/27(11%)]\tLoss: 0.531428\n", - "Epoch : 24 [6/27(22%)]\tLoss: 0.015961\n", - "Epoch : 24 [9/27(33%)]\tLoss: 0.025087\n", - "Epoch : 24 [12/27(44%)]\tLoss: 0.078965\n", - "Epoch : 24 [15/27(56%)]\tLoss: 0.143226\n", - "Epoch : 24 [18/27(67%)]\tLoss: 0.382125\n", - "Epoch : 24 [21/27(78%)]\tLoss: 0.388937\n", - "Epoch : 24 [24/27(89%)]\tLoss: 0.042536\n", - "Epoch : 25 [0/27(0%)]\tLoss: 0.013288\n", - "Epoch : 25 [3/27(11%)]\tLoss: 0.241563\n", - "Epoch : 25 [6/27(22%)]\tLoss: 0.053403\n", - "Epoch : 25 [9/27(33%)]\tLoss: 0.026124\n", - "Epoch : 25 [12/27(44%)]\tLoss: 0.030751\n", - "Epoch : 25 [15/27(56%)]\tLoss: 0.104127\n", - "Epoch : 25 [18/27(67%)]\tLoss: 0.059731\n", - "Epoch : 25 [21/27(78%)]\tLoss: 0.119981\n", - "Epoch : 25 [24/27(89%)]\tLoss: 0.220442\n", - "Epoch : 26 [0/27(0%)]\tLoss: 0.041044\n", - "Epoch : 26 [3/27(11%)]\tLoss: 0.088752\n", - "Epoch : 26 [6/27(22%)]\tLoss: 0.184612\n", - "Epoch : 26 [9/27(33%)]\tLoss: 0.020591\n", - "Epoch : 26 [12/27(44%)]\tLoss: 0.016959\n", - "Epoch : 26 [15/27(56%)]\tLoss: 0.035054\n", - "Epoch : 26 [18/27(67%)]\tLoss: 0.114078\n", - "Epoch : 26 [21/27(78%)]\tLoss: 0.241334\n", - "Epoch : 26 [24/27(89%)]\tLoss: 0.017600\n", - "Epoch : 27 [0/27(0%)]\tLoss: 0.076440\n", - "Epoch : 27 [3/27(11%)]\tLoss: 0.027202\n", - "Epoch : 27 [6/27(22%)]\tLoss: 0.000888\n", - "Epoch : 27 [9/27(33%)]\tLoss: 0.149428\n", - "Epoch : 27 [12/27(44%)]\tLoss: 0.016366\n", - "Epoch : 27 [15/27(56%)]\tLoss: 0.016546\n", - "Epoch : 27 [18/27(67%)]\tLoss: 0.020087\n", - "Epoch : 27 [21/27(78%)]\tLoss: 0.226587\n", - "Epoch : 27 [24/27(89%)]\tLoss: 0.075453\n", - "Epoch : 28 [0/27(0%)]\tLoss: 0.053734\n", - "Epoch : 28 [3/27(11%)]\tLoss: 0.097537\n", - "Epoch : 28 [6/27(22%)]\tLoss: 0.027725\n", - "Epoch : 28 [9/27(33%)]\tLoss: 0.045538\n", - "Epoch : 28 [12/27(44%)]\tLoss: 0.001511\n", - "Epoch : 28 [15/27(56%)]\tLoss: 0.001316\n", - "Epoch : 28 [18/27(67%)]\tLoss: 0.149150\n", - "Epoch : 28 [21/27(78%)]\tLoss: 0.109228\n", - "Epoch : 28 [24/27(89%)]\tLoss: 0.006560\n", - "Epoch : 29 [0/27(0%)]\tLoss: 0.097825\n", - "Epoch : 29 [3/27(11%)]\tLoss: 0.084024\n", - "Epoch : 29 [6/27(22%)]\tLoss: 0.037685\n", - "Epoch : 29 [9/27(33%)]\tLoss: 0.028807\n", - "Epoch : 29 [12/27(44%)]\tLoss: 0.009060\n", - "Epoch : 29 [15/27(56%)]\tLoss: 0.028304\n", - "Epoch : 29 [18/27(67%)]\tLoss: 0.184303\n", - "Epoch : 29 [21/27(78%)]\tLoss: 0.146030\n", - "Epoch : 29 [24/27(89%)]\tLoss: 0.017388\n", - "Epoch : 30 [0/27(0%)]\tLoss: 0.016573\n", - "Epoch : 30 [3/27(11%)]\tLoss: 0.050876\n", - "Epoch : 30 [6/27(22%)]\tLoss: 0.094633\n", - "Epoch : 30 [9/27(33%)]\tLoss: 0.039363\n", - "Epoch : 30 [12/27(44%)]\tLoss: 0.003056\n", - "Epoch : 30 [15/27(56%)]\tLoss: 0.026231\n", - "Epoch : 30 [18/27(67%)]\tLoss: 0.002918\n", - "Epoch : 30 [21/27(78%)]\tLoss: 0.015903\n", - "Epoch : 30 [24/27(89%)]\tLoss: 0.004225\n", - "Epoch : 31 [0/27(0%)]\tLoss: 0.021567\n", - "Epoch : 31 [3/27(11%)]\tLoss: 0.009078\n", - "Epoch : 31 [6/27(22%)]\tLoss: 0.002445\n", - "Epoch : 31 [9/27(33%)]\tLoss: 0.005757\n", - "Epoch : 31 [12/27(44%)]\tLoss: 0.003607\n", - "Epoch : 31 [15/27(56%)]\tLoss: 0.007257\n", - "Epoch : 31 [18/27(67%)]\tLoss: 0.004647\n", - "Epoch : 31 [21/27(78%)]\tLoss: 0.002931\n", - "Epoch : 31 [24/27(89%)]\tLoss: 0.001393\n", - "Epoch : 32 [0/27(0%)]\tLoss: 0.006320\n", - "Epoch : 32 [3/27(11%)]\tLoss: 0.006671\n", - "Epoch : 32 [6/27(22%)]\tLoss: 0.013190\n", - "Epoch : 32 [9/27(33%)]\tLoss: 0.001489\n", - "Epoch : 32 [12/27(44%)]\tLoss: 0.002135\n", - "Epoch : 32 [15/27(56%)]\tLoss: 0.008317\n", - "Epoch : 32 [18/27(67%)]\tLoss: 0.002061\n", - "Epoch : 32 [21/27(78%)]\tLoss: 0.057687\n", - "Epoch : 32 [24/27(89%)]\tLoss: 0.005457\n", - "Epoch : 33 [0/27(0%)]\tLoss: 0.005294\n", - "Epoch : 33 [3/27(11%)]\tLoss: 0.009268\n", - "Epoch : 33 [6/27(22%)]\tLoss: 0.014863\n", - "Epoch : 33 [9/27(33%)]\tLoss: 0.006466\n", - "Epoch : 33 [12/27(44%)]\tLoss: 0.001140\n", - "Epoch : 33 [15/27(56%)]\tLoss: 0.004929\n", - "Epoch : 33 [18/27(67%)]\tLoss: 0.002275\n", - "Epoch : 33 [21/27(78%)]\tLoss: 0.022681\n", - "Epoch : 33 [24/27(89%)]\tLoss: 0.046061\n", - "Epoch : 34 [0/27(0%)]\tLoss: 0.004679\n", - "Epoch : 34 [3/27(11%)]\tLoss: 0.002847\n", - "Epoch : 34 [6/27(22%)]\tLoss: 0.014616\n", - "Epoch : 34 [9/27(33%)]\tLoss: 0.009736\n", - "Epoch : 34 [12/27(44%)]\tLoss: 0.006233\n", - "Epoch : 34 [15/27(56%)]\tLoss: 0.000076\n", - "Epoch : 34 [18/27(67%)]\tLoss: 0.013585\n", - "Epoch : 34 [21/27(78%)]\tLoss: 0.014144\n", - "Epoch : 34 [24/27(89%)]\tLoss: 0.020752\n", - "Epoch : 35 [0/27(0%)]\tLoss: 0.004063\n", - "Epoch : 35 [3/27(11%)]\tLoss: 0.008594\n", - "Epoch : 35 [6/27(22%)]\tLoss: 0.016024\n", - "Epoch : 35 [9/27(33%)]\tLoss: 0.008412\n", - "Epoch : 35 [12/27(44%)]\tLoss: 0.001858\n", - "Epoch : 35 [15/27(56%)]\tLoss: 0.001279\n", - "Epoch : 35 [18/27(67%)]\tLoss: 0.007570\n", - "Epoch : 35 [21/27(78%)]\tLoss: 0.111190\n", - "Epoch : 35 [24/27(89%)]\tLoss: 0.000041\n", - "Epoch : 36 [0/27(0%)]\tLoss: 0.016177\n", - "Epoch : 36 [3/27(11%)]\tLoss: 0.003477\n", - "Epoch : 36 [6/27(22%)]\tLoss: 0.008380\n", - "Epoch : 36 [9/27(33%)]\tLoss: 0.001977\n", - "Epoch : 36 [12/27(44%)]\tLoss: 0.002040\n", - "Epoch : 36 [15/27(56%)]\tLoss: 0.001428\n", - "Epoch : 36 [18/27(67%)]\tLoss: 0.002310\n", - "Epoch : 36 [21/27(78%)]\tLoss: 0.002781\n", - "Epoch : 36 [24/27(89%)]\tLoss: 0.007472\n", - "Epoch : 37 [0/27(0%)]\tLoss: 0.018091\n", - "Epoch : 37 [3/27(11%)]\tLoss: 0.005040\n", - "Epoch : 37 [6/27(22%)]\tLoss: 0.002468\n", - "Epoch : 37 [9/27(33%)]\tLoss: 0.011147\n", - "Epoch : 37 [12/27(44%)]\tLoss: 0.000222\n", - "Epoch : 37 [15/27(56%)]\tLoss: 0.006889\n", - "Epoch : 37 [18/27(67%)]\tLoss: 0.016902\n", - "Epoch : 37 [21/27(78%)]\tLoss: 0.050832\n", - "Epoch : 37 [24/27(89%)]\tLoss: 0.004451\n", - "Epoch : 38 [0/27(0%)]\tLoss: 0.000540\n", - "Epoch : 38 [3/27(11%)]\tLoss: 0.013577\n", - "Epoch : 38 [6/27(22%)]\tLoss: 0.004578\n", - "Epoch : 38 [9/27(33%)]\tLoss: 0.012195\n", - "Epoch : 38 [12/27(44%)]\tLoss: 0.011953\n", - "Epoch : 38 [15/27(56%)]\tLoss: 0.005956\n", - "Epoch : 38 [18/27(67%)]\tLoss: 0.010243\n", - "Epoch : 38 [21/27(78%)]\tLoss: 0.009388\n", - "Epoch : 38 [24/27(89%)]\tLoss: 0.023255\n", - "Epoch : 39 [0/27(0%)]\tLoss: 0.005384\n", - "Epoch : 39 [3/27(11%)]\tLoss: 0.006630\n", - "Epoch : 39 [6/27(22%)]\tLoss: 0.004046\n", - "Epoch : 39 [9/27(33%)]\tLoss: 0.020013\n", - "Epoch : 39 [12/27(44%)]\tLoss: 0.006084\n", - "Epoch : 39 [15/27(56%)]\tLoss: 0.000914\n", - "Epoch : 39 [18/27(67%)]\tLoss: 0.004860\n", - "Epoch : 39 [21/27(78%)]\tLoss: 0.013558\n", - "Epoch : 39 [24/27(89%)]\tLoss: 0.004742\n", - "Epoch : 40 [0/27(0%)]\tLoss: 0.007065\n", - "Epoch : 40 [3/27(11%)]\tLoss: 0.000703\n", - "Epoch : 40 [6/27(22%)]\tLoss: 0.005277\n", - "Epoch : 40 [9/27(33%)]\tLoss: 0.015385\n", - "Epoch : 40 [12/27(44%)]\tLoss: 0.002268\n", - "Epoch : 40 [15/27(56%)]\tLoss: 0.020380\n", - "Epoch : 40 [18/27(67%)]\tLoss: 0.020612\n", - "Epoch : 40 [21/27(78%)]\tLoss: 0.009756\n", - "Epoch : 40 [24/27(89%)]\tLoss: 0.006306\n", - "Epoch : 41 [0/27(0%)]\tLoss: 0.000797\n", - "Epoch : 41 [3/27(11%)]\tLoss: 0.002614\n", - "Epoch : 41 [6/27(22%)]\tLoss: 0.012496\n", - "Epoch : 41 [9/27(33%)]\tLoss: 0.000782\n", - "Epoch : 41 [12/27(44%)]\tLoss: 0.013241\n", - "Epoch : 41 [15/27(56%)]\tLoss: 0.017738\n", - "Epoch : 41 [18/27(67%)]\tLoss: 0.001024\n", - "Epoch : 41 [21/27(78%)]\tLoss: 0.000291\n", - "Epoch : 41 [24/27(89%)]\tLoss: 0.012213\n", - "Epoch : 42 [0/27(0%)]\tLoss: 0.058207\n", - "Epoch : 42 [3/27(11%)]\tLoss: 0.003017\n", - "Epoch : 42 [6/27(22%)]\tLoss: 0.004682\n", - "Epoch : 42 [9/27(33%)]\tLoss: 0.001278\n", - "Epoch : 42 [12/27(44%)]\tLoss: 0.000598\n", - "Epoch : 42 [15/27(56%)]\tLoss: 0.003465\n", - "Epoch : 42 [18/27(67%)]\tLoss: 0.002337\n", - "Epoch : 42 [21/27(78%)]\tLoss: 0.001915\n", - "Epoch : 42 [24/27(89%)]\tLoss: 0.000727\n", - "Epoch : 43 [0/27(0%)]\tLoss: 0.049471\n", - "Epoch : 43 [3/27(11%)]\tLoss: 0.002677\n", - "Epoch : 43 [6/27(22%)]\tLoss: 0.000484\n", - "Epoch : 43 [9/27(33%)]\tLoss: 0.002717\n", - "Epoch : 43 [12/27(44%)]\tLoss: 0.019955\n", - "Epoch : 43 [15/27(56%)]\tLoss: 0.007386\n", - "Epoch : 43 [18/27(67%)]\tLoss: 0.000740\n", - "Epoch : 43 [21/27(78%)]\tLoss: 0.006719\n", - "Epoch : 43 [24/27(89%)]\tLoss: 0.007326\n", - "Epoch : 44 [0/27(0%)]\tLoss: 0.001286\n", - "Epoch : 44 [3/27(11%)]\tLoss: 0.003251\n", - "Epoch : 44 [6/27(22%)]\tLoss: 0.002411\n", - "Epoch : 44 [9/27(33%)]\tLoss: 0.001286\n", - "Epoch : 44 [12/27(44%)]\tLoss: 0.002326\n", - "Epoch : 44 [15/27(56%)]\tLoss: 0.006027\n", - "Epoch : 44 [18/27(67%)]\tLoss: 0.006092\n", - "Epoch : 44 [21/27(78%)]\tLoss: 0.009012\n", - "Epoch : 44 [24/27(89%)]\tLoss: 0.005644\n", - "Epoch : 45 [0/27(0%)]\tLoss: 0.000465\n", - "Epoch : 45 [3/27(11%)]\tLoss: 0.002603\n", - "Epoch : 45 [6/27(22%)]\tLoss: 0.003632\n", - "Epoch : 45 [9/27(33%)]\tLoss: 0.002700\n", - "Epoch : 45 [12/27(44%)]\tLoss: 0.001863\n", - "Epoch : 45 [15/27(56%)]\tLoss: 0.004521\n", - "Epoch : 45 [18/27(67%)]\tLoss: 0.003515\n", - "Epoch : 45 [21/27(78%)]\tLoss: 0.000967\n", - "Epoch : 45 [24/27(89%)]\tLoss: 0.005907\n", - "Epoch : 46 [0/27(0%)]\tLoss: 0.003442\n", - "Epoch : 46 [3/27(11%)]\tLoss: 0.006687\n", - "Epoch : 46 [6/27(22%)]\tLoss: 0.002997\n", - "Epoch : 46 [9/27(33%)]\tLoss: 0.000674\n", - "Epoch : 46 [12/27(44%)]\tLoss: 0.001867\n", - "Epoch : 46 [15/27(56%)]\tLoss: 0.003120\n", - "Epoch : 46 [18/27(67%)]\tLoss: 0.006717\n", - "Epoch : 46 [21/27(78%)]\tLoss: 0.030350\n", - "Epoch : 46 [24/27(89%)]\tLoss: 0.004500\n", - "Epoch : 47 [0/27(0%)]\tLoss: 0.000072\n", - "Epoch : 47 [3/27(11%)]\tLoss: 0.004060\n", - "Epoch : 47 [6/27(22%)]\tLoss: 0.002339\n", - "Epoch : 47 [9/27(33%)]\tLoss: 0.000138\n", - "Epoch : 47 [12/27(44%)]\tLoss: 0.000878\n", - "Epoch : 47 [15/27(56%)]\tLoss: 0.002705\n", - "Epoch : 47 [18/27(67%)]\tLoss: 0.001039\n", - "Epoch : 47 [21/27(78%)]\tLoss: 0.002347\n", - "Epoch : 47 [24/27(89%)]\tLoss: 0.025937\n", - "Epoch : 48 [0/27(0%)]\tLoss: 0.004123\n", - "Epoch : 48 [3/27(11%)]\tLoss: 0.002874\n", - "Epoch : 48 [6/27(22%)]\tLoss: 0.002901\n", - "Epoch : 48 [9/27(33%)]\tLoss: 0.003811\n", - "Epoch : 48 [12/27(44%)]\tLoss: 0.004812\n", - "Epoch : 48 [15/27(56%)]\tLoss: 0.002271\n", - "Epoch : 48 [18/27(67%)]\tLoss: 0.005182\n", - "Epoch : 48 [21/27(78%)]\tLoss: 0.002203\n", - "Epoch : 48 [24/27(89%)]\tLoss: 0.004684\n", - "Epoch : 49 [0/27(0%)]\tLoss: 0.001364\n", - "Epoch : 49 [3/27(11%)]\tLoss: 0.000798\n", - "Epoch : 49 [6/27(22%)]\tLoss: 0.002933\n", - "Epoch : 49 [9/27(33%)]\tLoss: 0.000107\n", - "Epoch : 49 [12/27(44%)]\tLoss: 0.002307\n", - "Epoch : 49 [15/27(56%)]\tLoss: 0.001784\n", - "Epoch : 49 [18/27(67%)]\tLoss: 0.000430\n", - "Epoch : 49 [21/27(78%)]\tLoss: 0.004199\n", - "Epoch : 49 [24/27(89%)]\tLoss: 0.012413\n", - "Epoch : 50 [0/27(0%)]\tLoss: 0.002844\n", - "Epoch : 50 [3/27(11%)]\tLoss: 0.000329\n", - "Epoch : 50 [6/27(22%)]\tLoss: 0.002911\n", - "Epoch : 50 [9/27(33%)]\tLoss: 0.000274\n", - "Epoch : 50 [12/27(44%)]\tLoss: 0.010750\n", - "Epoch : 50 [15/27(56%)]\tLoss: 0.001465\n", - "Epoch : 50 [18/27(67%)]\tLoss: 0.000258\n", - "Epoch : 50 [21/27(78%)]\tLoss: 0.008810\n", - "Epoch : 50 [24/27(89%)]\tLoss: 0.009023\n", - "Epoch : 51 [0/27(0%)]\tLoss: 0.000229\n", - "Epoch : 51 [3/27(11%)]\tLoss: 0.001903\n", - "Epoch : 51 [6/27(22%)]\tLoss: 0.003380\n", - "Epoch : 51 [9/27(33%)]\tLoss: 0.000516\n", - "Epoch : 51 [12/27(44%)]\tLoss: 0.001882\n", - "Epoch : 51 [15/27(56%)]\tLoss: 0.002592\n", - "Epoch : 51 [18/27(67%)]\tLoss: 0.004617\n", - "Epoch : 51 [21/27(78%)]\tLoss: 0.003285\n", - "Epoch : 51 [24/27(89%)]\tLoss: 0.002782\n", - "Epoch : 52 [0/27(0%)]\tLoss: 0.000958\n", - "Epoch : 52 [3/27(11%)]\tLoss: 0.002233\n", - "Epoch : 52 [6/27(22%)]\tLoss: 0.000381\n", - "Epoch : 52 [9/27(33%)]\tLoss: 0.001019\n", - "Epoch : 52 [12/27(44%)]\tLoss: 0.010180\n", - "Epoch : 52 [15/27(56%)]\tLoss: 0.002051\n", - "Epoch : 52 [18/27(67%)]\tLoss: 0.001435\n", - "Epoch : 52 [21/27(78%)]\tLoss: 0.008015\n", - "Epoch : 52 [24/27(89%)]\tLoss: 0.003072\n", - "Epoch : 53 [0/27(0%)]\tLoss: 0.006546\n", - "Epoch : 53 [3/27(11%)]\tLoss: 0.002769\n", - "Epoch : 53 [6/27(22%)]\tLoss: 0.000396\n", - "Epoch : 53 [9/27(33%)]\tLoss: 0.000688\n", - "Epoch : 53 [12/27(44%)]\tLoss: 0.006115\n", - "Epoch : 53 [15/27(56%)]\tLoss: 0.001142\n", - "Epoch : 53 [18/27(67%)]\tLoss: 0.000385\n", - "Epoch : 53 [21/27(78%)]\tLoss: 0.005339\n", - "Epoch : 53 [24/27(89%)]\tLoss: 0.004006\n", - "Epoch : 54 [0/27(0%)]\tLoss: 0.013569\n", - "Epoch : 54 [3/27(11%)]\tLoss: 0.002459\n", - "Epoch : 54 [6/27(22%)]\tLoss: 0.000955\n", - "Epoch : 54 [9/27(33%)]\tLoss: 0.003040\n", - "Epoch : 54 [12/27(44%)]\tLoss: 0.000949\n", - "Epoch : 54 [15/27(56%)]\tLoss: 0.000474\n", - "Epoch : 54 [18/27(67%)]\tLoss: 0.001806\n", - "Epoch : 54 [21/27(78%)]\tLoss: 0.006910\n", - "Epoch : 54 [24/27(89%)]\tLoss: 0.001890\n", - "Epoch : 55 [0/27(0%)]\tLoss: 0.002992\n", - "Epoch : 55 [3/27(11%)]\tLoss: 0.000975\n", - "Epoch : 55 [6/27(22%)]\tLoss: 0.001484\n", - "Epoch : 55 [9/27(33%)]\tLoss: 0.002307\n", - "Epoch : 55 [12/27(44%)]\tLoss: 0.002465\n", - "Epoch : 55 [15/27(56%)]\tLoss: 0.005831\n", - "Epoch : 55 [18/27(67%)]\tLoss: 0.000953\n", - "Epoch : 55 [21/27(78%)]\tLoss: 0.003342\n", - "Epoch : 55 [24/27(89%)]\tLoss: 0.003402\n", - "Epoch : 56 [0/27(0%)]\tLoss: 0.000558\n", - "Epoch : 56 [3/27(11%)]\tLoss: 0.000035\n", - "Epoch : 56 [6/27(22%)]\tLoss: 0.000993\n", - "Epoch : 56 [9/27(33%)]\tLoss: 0.000060\n", - "Epoch : 56 [12/27(44%)]\tLoss: 0.004163\n", - "Epoch : 56 [15/27(56%)]\tLoss: 0.000947\n", - "Epoch : 56 [18/27(67%)]\tLoss: 0.000640\n", - "Epoch : 56 [21/27(78%)]\tLoss: 0.002635\n", - "Epoch : 56 [24/27(89%)]\tLoss: 0.000441\n", - "Epoch : 57 [0/27(0%)]\tLoss: 0.002567\n", - "Epoch : 57 [3/27(11%)]\tLoss: 0.001318\n", - "Epoch : 57 [6/27(22%)]\tLoss: 0.001618\n", - "Epoch : 57 [9/27(33%)]\tLoss: 0.002171\n", - "Epoch : 57 [12/27(44%)]\tLoss: 0.001350\n", - "Epoch : 57 [15/27(56%)]\tLoss: 0.000914\n", - "Epoch : 57 [18/27(67%)]\tLoss: 0.004738\n", - "Epoch : 57 [21/27(78%)]\tLoss: 0.003063\n", - "Epoch : 57 [24/27(89%)]\tLoss: 0.001859\n", - "Epoch : 58 [0/27(0%)]\tLoss: 0.001437\n", - "Epoch : 58 [3/27(11%)]\tLoss: 0.015777\n", - "Epoch : 58 [6/27(22%)]\tLoss: 0.002156\n", - "Epoch : 58 [9/27(33%)]\tLoss: 0.000765\n", - "Epoch : 58 [12/27(44%)]\tLoss: 0.001760\n", - "Epoch : 58 [15/27(56%)]\tLoss: 0.000151\n", - "Epoch : 58 [18/27(67%)]\tLoss: 0.005978\n", - "Epoch : 58 [21/27(78%)]\tLoss: 0.002859\n", - "Epoch : 58 [24/27(89%)]\tLoss: 0.002177\n", - "Epoch : 59 [0/27(0%)]\tLoss: 0.023313\n", - "Epoch : 59 [3/27(11%)]\tLoss: 0.012350\n", - "Epoch : 59 [6/27(22%)]\tLoss: 0.000831\n", - "Epoch : 59 [9/27(33%)]\tLoss: 0.004895\n", - "Epoch : 59 [12/27(44%)]\tLoss: 0.001073\n", - "Epoch : 59 [15/27(56%)]\tLoss: 0.003966\n", - "Epoch : 59 [18/27(67%)]\tLoss: 0.001225\n", - "Epoch : 59 [21/27(78%)]\tLoss: 0.001054\n", - "Epoch : 59 [24/27(89%)]\tLoss: 0.002225\n", - "Epoch : 60 [0/27(0%)]\tLoss: 0.006518\n", - "Epoch : 60 [3/27(11%)]\tLoss: 0.000358\n", - "Epoch : 60 [6/27(22%)]\tLoss: 0.006067\n", - "Epoch : 60 [9/27(33%)]\tLoss: 0.000791\n", - "Epoch : 60 [12/27(44%)]\tLoss: 0.003521\n", - "Epoch : 60 [15/27(56%)]\tLoss: 0.001167\n", - "Epoch : 60 [18/27(67%)]\tLoss: 0.001594\n", - "Epoch : 60 [21/27(78%)]\tLoss: 0.000941\n", - "Epoch : 60 [24/27(89%)]\tLoss: 0.000711\n", - "Epoch : 61 [0/27(0%)]\tLoss: 0.000285\n", - "Epoch : 61 [3/27(11%)]\tLoss: 0.002134\n", - "Epoch : 61 [6/27(22%)]\tLoss: 0.006245\n", - "Epoch : 61 [9/27(33%)]\tLoss: 0.007066\n", - "Epoch : 61 [12/27(44%)]\tLoss: 0.000710\n", - "Epoch : 61 [15/27(56%)]\tLoss: 0.003380\n", - "Epoch : 61 [18/27(67%)]\tLoss: 0.003647\n", - "Epoch : 61 [21/27(78%)]\tLoss: 0.000117\n", - "Epoch : 61 [24/27(89%)]\tLoss: 0.002038\n", - "Epoch : 62 [0/27(0%)]\tLoss: 0.006347\n", - "Epoch : 62 [3/27(11%)]\tLoss: 0.000199\n", - "Epoch : 62 [6/27(22%)]\tLoss: 0.009960\n", - "Epoch : 62 [9/27(33%)]\tLoss: 0.007803\n", - "Epoch : 62 [12/27(44%)]\tLoss: 0.001826\n", - "Epoch : 62 [15/27(56%)]\tLoss: 0.004682\n", - "Epoch : 62 [18/27(67%)]\tLoss: 0.000577\n", - "Epoch : 62 [21/27(78%)]\tLoss: 0.001755\n", - "Epoch : 62 [24/27(89%)]\tLoss: 0.005519\n", - "Epoch : 63 [0/27(0%)]\tLoss: 0.008374\n", - "Epoch : 63 [3/27(11%)]\tLoss: 0.009556\n", - "Epoch : 63 [6/27(22%)]\tLoss: 0.029916\n", - "Epoch : 63 [9/27(33%)]\tLoss: 0.020160\n", - "Epoch : 63 [12/27(44%)]\tLoss: 0.006415\n", - "Epoch : 63 [15/27(56%)]\tLoss: 0.002987\n", - "Epoch : 63 [18/27(67%)]\tLoss: 0.002143\n", - "Epoch : 63 [21/27(78%)]\tLoss: 0.002115\n", - "Epoch : 63 [24/27(89%)]\tLoss: 0.014553\n", - "Epoch : 64 [0/27(0%)]\tLoss: 0.012283\n", - "Epoch : 64 [3/27(11%)]\tLoss: 0.016525\n", - "Epoch : 64 [6/27(22%)]\tLoss: 0.014457\n", - "Epoch : 64 [9/27(33%)]\tLoss: 0.015272\n", - "Epoch : 64 [12/27(44%)]\tLoss: 0.004393\n", - "Epoch : 64 [15/27(56%)]\tLoss: 0.003420\n", - "Epoch : 64 [18/27(67%)]\tLoss: 0.008526\n", - "Epoch : 64 [21/27(78%)]\tLoss: 0.001536\n", - "Epoch : 64 [24/27(89%)]\tLoss: 0.010710\n", - "Epoch : 65 [0/27(0%)]\tLoss: 0.010371\n", - "Epoch : 65 [3/27(11%)]\tLoss: 0.009163\n", - "Epoch : 65 [6/27(22%)]\tLoss: 0.003097\n", - "Epoch : 65 [9/27(33%)]\tLoss: 0.013085\n", - "Epoch : 65 [12/27(44%)]\tLoss: 0.009666\n", - "Epoch : 65 [15/27(56%)]\tLoss: 0.001656\n", - "Epoch : 65 [18/27(67%)]\tLoss: 0.003273\n", - "Epoch : 65 [21/27(78%)]\tLoss: 0.001753\n", - "Epoch : 65 [24/27(89%)]\tLoss: 0.002492\n", - "Epoch : 66 [0/27(0%)]\tLoss: 0.013604\n", - "Epoch : 66 [3/27(11%)]\tLoss: 0.002817\n", - "Epoch : 66 [6/27(22%)]\tLoss: 0.005497\n", - "Epoch : 66 [9/27(33%)]\tLoss: 0.007583\n", - "Epoch : 66 [12/27(44%)]\tLoss: 0.004148\n", - "Epoch : 66 [15/27(56%)]\tLoss: 0.002476\n", - "Epoch : 66 [18/27(67%)]\tLoss: 0.000908\n", - "Epoch : 66 [21/27(78%)]\tLoss: 0.000975\n", - "Epoch : 66 [24/27(89%)]\tLoss: 0.003194\n", - "Epoch : 67 [0/27(0%)]\tLoss: 0.005222\n", - "Epoch : 67 [3/27(11%)]\tLoss: 0.002511\n", - "Epoch : 67 [6/27(22%)]\tLoss: 0.006225\n", - "Epoch : 67 [9/27(33%)]\tLoss: 0.013064\n", - "Epoch : 67 [12/27(44%)]\tLoss: 0.006748\n", - "Epoch : 67 [15/27(56%)]\tLoss: 0.007703\n", - "Epoch : 67 [18/27(67%)]\tLoss: 0.000690\n", - "Epoch : 67 [21/27(78%)]\tLoss: 0.001104\n", - "Epoch : 67 [24/27(89%)]\tLoss: 0.002537\n", - "Epoch : 68 [0/27(0%)]\tLoss: 0.008376\n", - "Epoch : 68 [3/27(11%)]\tLoss: 0.007181\n", - "Epoch : 68 [6/27(22%)]\tLoss: 0.006500\n", - "Epoch : 68 [9/27(33%)]\tLoss: 0.010536\n", - "Epoch : 68 [12/27(44%)]\tLoss: 0.005779\n", - "Epoch : 68 [15/27(56%)]\tLoss: 0.006140\n", - "Epoch : 68 [18/27(67%)]\tLoss: 0.006007\n", - "Epoch : 68 [21/27(78%)]\tLoss: 0.000937\n", - "Epoch : 68 [24/27(89%)]\tLoss: 0.000401\n", - "Epoch : 69 [0/27(0%)]\tLoss: 0.012246\n", - "Epoch : 69 [3/27(11%)]\tLoss: 0.009671\n", - "Epoch : 69 [6/27(22%)]\tLoss: 0.005848\n", - "Epoch : 69 [9/27(33%)]\tLoss: 0.005858\n", - "Epoch : 69 [12/27(44%)]\tLoss: 0.007618\n", - "Epoch : 69 [15/27(56%)]\tLoss: 0.002949\n", - "Epoch : 69 [18/27(67%)]\tLoss: 0.003690\n", - "Epoch : 69 [21/27(78%)]\tLoss: 0.002018\n", - "Epoch : 69 [24/27(89%)]\tLoss: 0.000361\n", - "Epoch : 70 [0/27(0%)]\tLoss: 0.002632\n", - "Epoch : 70 [3/27(11%)]\tLoss: 0.002760\n", - "Epoch : 70 [6/27(22%)]\tLoss: 0.003471\n", - "Epoch : 70 [9/27(33%)]\tLoss: 0.003390\n", - "Epoch : 70 [12/27(44%)]\tLoss: 0.007057\n", - "Epoch : 70 [15/27(56%)]\tLoss: 0.003654\n", - "Epoch : 70 [18/27(67%)]\tLoss: 0.001132\n", - "Epoch : 70 [21/27(78%)]\tLoss: 0.001917\n", - "Epoch : 70 [24/27(89%)]\tLoss: 0.000800\n", - "Epoch : 71 [0/27(0%)]\tLoss: 0.001944\n", - "Epoch : 71 [3/27(11%)]\tLoss: 0.002012\n", - "Epoch : 71 [6/27(22%)]\tLoss: 0.003315\n", - "Epoch : 71 [9/27(33%)]\tLoss: 0.001387\n", - "Epoch : 71 [12/27(44%)]\tLoss: 0.012276\n", - "Epoch : 71 [15/27(56%)]\tLoss: 0.005031\n", - "Epoch : 71 [18/27(67%)]\tLoss: 0.000263\n", - "Epoch : 71 [21/27(78%)]\tLoss: 0.000923\n", - "Epoch : 71 [24/27(89%)]\tLoss: 0.003455\n", - "Epoch : 72 [0/27(0%)]\tLoss: 0.007063\n", - "Epoch : 72 [3/27(11%)]\tLoss: 0.002166\n", - "Epoch : 72 [6/27(22%)]\tLoss: 0.005293\n", - "Epoch : 72 [9/27(33%)]\tLoss: 0.006091\n", - "Epoch : 72 [12/27(44%)]\tLoss: 0.004507\n", - "Epoch : 72 [15/27(56%)]\tLoss: 0.000793\n", - "Epoch : 72 [18/27(67%)]\tLoss: 0.002462\n", - "Epoch : 72 [21/27(78%)]\tLoss: 0.001144\n", - "Epoch : 72 [24/27(89%)]\tLoss: 0.001592\n", - "Epoch : 73 [0/27(0%)]\tLoss: 0.009085\n", - "Epoch : 73 [3/27(11%)]\tLoss: 0.001079\n", - "Epoch : 73 [6/27(22%)]\tLoss: 0.002494\n", - "Epoch : 73 [9/27(33%)]\tLoss: 0.010433\n", - "Epoch : 73 [12/27(44%)]\tLoss: 0.003412\n", - "Epoch : 73 [15/27(56%)]\tLoss: 0.001183\n", - "Epoch : 73 [18/27(67%)]\tLoss: 0.000636\n", - "Epoch : 73 [21/27(78%)]\tLoss: 0.000267\n", - "Epoch : 73 [24/27(89%)]\tLoss: 0.001644\n", - "Epoch : 74 [0/27(0%)]\tLoss: 0.001289\n", - "Epoch : 74 [3/27(11%)]\tLoss: 0.004364\n", - "Epoch : 74 [6/27(22%)]\tLoss: 0.003250\n", - "Epoch : 74 [9/27(33%)]\tLoss: 0.005289\n", - "Epoch : 74 [12/27(44%)]\tLoss: 0.003343\n", - "Epoch : 74 [15/27(56%)]\tLoss: 0.000704\n", - "Epoch : 74 [18/27(67%)]\tLoss: 0.001660\n", - "Epoch : 74 [21/27(78%)]\tLoss: 0.000674\n", - "Epoch : 74 [24/27(89%)]\tLoss: 0.000767\n", - "Epoch : 75 [0/27(0%)]\tLoss: 0.000569\n", - "Epoch : 75 [3/27(11%)]\tLoss: 0.001588\n", - "Epoch : 75 [6/27(22%)]\tLoss: 0.011132\n", - "Epoch : 75 [9/27(33%)]\tLoss: 0.008010\n", - "Epoch : 75 [12/27(44%)]\tLoss: 0.007420\n", - "Epoch : 75 [15/27(56%)]\tLoss: 0.002779\n", - "Epoch : 75 [18/27(67%)]\tLoss: 0.001659\n", - "Epoch : 75 [21/27(78%)]\tLoss: 0.004181\n", - "Epoch : 75 [24/27(89%)]\tLoss: 0.006561\n", - "Epoch : 76 [0/27(0%)]\tLoss: 0.007190\n", - "Epoch : 76 [3/27(11%)]\tLoss: 0.001753\n", - "Epoch : 76 [6/27(22%)]\tLoss: 0.008862\n", - "Epoch : 76 [9/27(33%)]\tLoss: 0.005736\n", - "Epoch : 76 [12/27(44%)]\tLoss: 0.003190\n", - "Epoch : 76 [15/27(56%)]\tLoss: 0.002686\n", - "Epoch : 76 [18/27(67%)]\tLoss: 0.001043\n", - "Epoch : 76 [21/27(78%)]\tLoss: 0.005806\n", - "Epoch : 76 [24/27(89%)]\tLoss: 0.004925\n", - "Epoch : 77 [0/27(0%)]\tLoss: 0.003276\n", - "Epoch : 77 [3/27(11%)]\tLoss: 0.005156\n", - "Epoch : 77 [6/27(22%)]\tLoss: 0.005343\n", - "Epoch : 77 [9/27(33%)]\tLoss: 0.011902\n", - "Epoch : 77 [12/27(44%)]\tLoss: 0.008803\n", - "Epoch : 77 [15/27(56%)]\tLoss: 0.003181\n", - "Epoch : 77 [18/27(67%)]\tLoss: 0.000799\n", - "Epoch : 77 [21/27(78%)]\tLoss: 0.004063\n", - "Epoch : 77 [24/27(89%)]\tLoss: 0.003239\n", - "Epoch : 78 [0/27(0%)]\tLoss: 0.003676\n", - "Epoch : 78 [3/27(11%)]\tLoss: 0.008454\n", - "Epoch : 78 [6/27(22%)]\tLoss: 0.003726\n", - "Epoch : 78 [9/27(33%)]\tLoss: 0.018076\n", - "Epoch : 78 [12/27(44%)]\tLoss: 0.004571\n", - "Epoch : 78 [15/27(56%)]\tLoss: 0.000547\n", - "Epoch : 78 [18/27(67%)]\tLoss: 0.001713\n", - "Epoch : 78 [21/27(78%)]\tLoss: 0.007516\n", - "Epoch : 78 [24/27(89%)]\tLoss: 0.000572\n", - "Epoch : 79 [0/27(0%)]\tLoss: 0.007731\n", - "Epoch : 79 [3/27(11%)]\tLoss: 0.003421\n", - "Epoch : 79 [6/27(22%)]\tLoss: 0.005041\n", - "Epoch : 79 [9/27(33%)]\tLoss: 0.016165\n", - "Epoch : 79 [12/27(44%)]\tLoss: 0.004626\n", - "Epoch : 79 [15/27(56%)]\tLoss: 0.003515\n", - "Epoch : 79 [18/27(67%)]\tLoss: 0.002267\n", - "Epoch : 79 [21/27(78%)]\tLoss: 0.002394\n", - "Epoch : 79 [24/27(89%)]\tLoss: 0.000829\n", - "Epoch : 80 [0/27(0%)]\tLoss: 0.002733\n", - "Epoch : 80 [3/27(11%)]\tLoss: 0.007885\n", - "Epoch : 80 [6/27(22%)]\tLoss: 0.004937\n", - "Epoch : 80 [9/27(33%)]\tLoss: 0.005145\n", - "Epoch : 80 [12/27(44%)]\tLoss: 0.010941\n", - "Epoch : 80 [15/27(56%)]\tLoss: 0.032275\n", - "Epoch : 80 [18/27(67%)]\tLoss: 0.006226\n", - "Epoch : 80 [21/27(78%)]\tLoss: 0.001445\n", - "Epoch : 80 [24/27(89%)]\tLoss: 0.007635\n", - "Epoch : 81 [0/27(0%)]\tLoss: 0.005885\n", - "Epoch : 81 [3/27(11%)]\tLoss: 0.003400\n", - "Epoch : 81 [6/27(22%)]\tLoss: 0.002791\n", - "Epoch : 81 [9/27(33%)]\tLoss: 0.021213\n", - "Epoch : 81 [12/27(44%)]\tLoss: 0.034365\n", - "Epoch : 81 [15/27(56%)]\tLoss: 0.022092\n", - "Epoch : 81 [18/27(67%)]\tLoss: 0.000121\n", - "Epoch : 81 [21/27(78%)]\tLoss: 0.001980\n", - "Epoch : 81 [24/27(89%)]\tLoss: 0.002592\n", - "Epoch : 82 [0/27(0%)]\tLoss: 0.017041\n", - "Epoch : 82 [3/27(11%)]\tLoss: 0.005260\n", - "Epoch : 82 [6/27(22%)]\tLoss: 0.006043\n", - "Epoch : 82 [9/27(33%)]\tLoss: 0.024416\n", - "Epoch : 82 [12/27(44%)]\tLoss: 0.014002\n", - "Epoch : 82 [15/27(56%)]\tLoss: 0.007204\n", - "Epoch : 82 [18/27(67%)]\tLoss: 0.000580\n", - "Epoch : 82 [21/27(78%)]\tLoss: 0.000316\n", - "Epoch : 82 [24/27(89%)]\tLoss: 0.004074\n", - "Epoch : 83 [0/27(0%)]\tLoss: 0.006957\n", - "Epoch : 83 [3/27(11%)]\tLoss: 0.004941\n", - "Epoch : 83 [6/27(22%)]\tLoss: 0.012785\n", - "Epoch : 83 [9/27(33%)]\tLoss: 0.019560\n", - "Epoch : 83 [12/27(44%)]\tLoss: 0.022634\n", - "Epoch : 83 [15/27(56%)]\tLoss: 0.005855\n", - "Epoch : 83 [18/27(67%)]\tLoss: 0.001021\n", - "Epoch : 83 [21/27(78%)]\tLoss: 0.003918\n", - "Epoch : 83 [24/27(89%)]\tLoss: 0.006115\n", - "Epoch : 84 [0/27(0%)]\tLoss: 0.008229\n", - "Epoch : 84 [3/27(11%)]\tLoss: 0.004553\n", - "Epoch : 84 [6/27(22%)]\tLoss: 0.006029\n", - "Epoch : 84 [9/27(33%)]\tLoss: 0.012086\n", - "Epoch : 84 [12/27(44%)]\tLoss: 0.010213\n", - "Epoch : 84 [15/27(56%)]\tLoss: 0.002733\n", - "Epoch : 84 [18/27(67%)]\tLoss: 0.000261\n", - "Epoch : 84 [21/27(78%)]\tLoss: 0.002922\n", - "Epoch : 84 [24/27(89%)]\tLoss: 0.000075\n", - "Epoch : 85 [0/27(0%)]\tLoss: 0.007002\n", - "Epoch : 85 [3/27(11%)]\tLoss: 0.001235\n", - "Epoch : 85 [6/27(22%)]\tLoss: 0.003936\n", - "Epoch : 85 [9/27(33%)]\tLoss: 0.006748\n", - "Epoch : 85 [12/27(44%)]\tLoss: 0.006647\n", - "Epoch : 85 [15/27(56%)]\tLoss: 0.011972\n", - "Epoch : 85 [18/27(67%)]\tLoss: 0.005725\n", - "Epoch : 85 [21/27(78%)]\tLoss: 0.002795\n", - "Epoch : 85 [24/27(89%)]\tLoss: 0.000429\n", - "Epoch : 86 [0/27(0%)]\tLoss: 0.002919\n", - "Epoch : 86 [3/27(11%)]\tLoss: 0.001636\n", - "Epoch : 86 [6/27(22%)]\tLoss: 0.005413\n", - "Epoch : 86 [9/27(33%)]\tLoss: 0.003237\n", - "Epoch : 86 [12/27(44%)]\tLoss: 0.015509\n", - "Epoch : 86 [15/27(56%)]\tLoss: 0.005416\n", - "Epoch : 86 [18/27(67%)]\tLoss: 0.001268\n", - "Epoch : 86 [21/27(78%)]\tLoss: 0.000758\n", - "Epoch : 86 [24/27(89%)]\tLoss: 0.000359\n", - "Epoch : 87 [0/27(0%)]\tLoss: 0.000587\n", - "Epoch : 87 [3/27(11%)]\tLoss: 0.002780\n", - "Epoch : 87 [6/27(22%)]\tLoss: 0.004563\n", - "Epoch : 87 [9/27(33%)]\tLoss: 0.012802\n", - "Epoch : 87 [12/27(44%)]\tLoss: 0.015963\n", - "Epoch : 87 [15/27(56%)]\tLoss: 0.005406\n", - "Epoch : 87 [18/27(67%)]\tLoss: 0.001703\n", - "Epoch : 87 [21/27(78%)]\tLoss: 0.002209\n", - "Epoch : 87 [24/27(89%)]\tLoss: 0.003504\n", - "Epoch : 88 [0/27(0%)]\tLoss: 0.010096\n", - "Epoch : 88 [3/27(11%)]\tLoss: 0.001262\n", - "Epoch : 88 [6/27(22%)]\tLoss: 0.005607\n", - "Epoch : 88 [9/27(33%)]\tLoss: 0.007885\n", - "Epoch : 88 [12/27(44%)]\tLoss: 0.002648\n", - "Epoch : 88 [15/27(56%)]\tLoss: 0.003421\n", - "Epoch : 88 [18/27(67%)]\tLoss: 0.000955\n", - "Epoch : 88 [21/27(78%)]\tLoss: 0.001133\n", - "Epoch : 88 [24/27(89%)]\tLoss: 0.001574\n", - "Epoch : 89 [0/27(0%)]\tLoss: 0.003432\n", - "Epoch : 89 [3/27(11%)]\tLoss: 0.000209\n", - "Epoch : 89 [6/27(22%)]\tLoss: 0.004993\n", - "Epoch : 89 [9/27(33%)]\tLoss: 0.003158\n", - "Epoch : 89 [12/27(44%)]\tLoss: 0.004872\n", - "Epoch : 89 [15/27(56%)]\tLoss: 0.000421\n", - "Epoch : 89 [18/27(67%)]\tLoss: 0.000131\n", - "Epoch : 89 [21/27(78%)]\tLoss: 0.000903\n", - "Epoch : 89 [24/27(89%)]\tLoss: 0.000608\n", - "Epoch : 90 [0/27(0%)]\tLoss: 0.001255\n", - "Epoch : 90 [3/27(11%)]\tLoss: 0.000581\n", - "Epoch : 90 [6/27(22%)]\tLoss: 0.000863\n", - "Epoch : 90 [9/27(33%)]\tLoss: 0.001341\n", - "Epoch : 90 [12/27(44%)]\tLoss: 0.003321\n", - "Epoch : 90 [15/27(56%)]\tLoss: 0.000938\n", - "Epoch : 90 [18/27(67%)]\tLoss: 0.000737\n", - "Epoch : 90 [21/27(78%)]\tLoss: 0.000055\n", - "Epoch : 90 [24/27(89%)]\tLoss: 0.001655\n", - "Epoch : 91 [0/27(0%)]\tLoss: 0.000629\n", - "Epoch : 91 [3/27(11%)]\tLoss: 0.000534\n", - "Epoch : 91 [6/27(22%)]\tLoss: 0.001156\n", - "Epoch : 91 [9/27(33%)]\tLoss: 0.000877\n", - "Epoch : 91 [12/27(44%)]\tLoss: 0.000788\n", - "Epoch : 91 [15/27(56%)]\tLoss: 0.005168\n", - "Epoch : 91 [18/27(67%)]\tLoss: 0.003361\n", - "Epoch : 91 [21/27(78%)]\tLoss: 0.000991\n", - "Epoch : 91 [24/27(89%)]\tLoss: 0.005316\n", - "Epoch : 92 [0/27(0%)]\tLoss: 0.001775\n", - "Epoch : 92 [3/27(11%)]\tLoss: 0.001998\n", - "Epoch : 92 [6/27(22%)]\tLoss: 0.002178\n", - "Epoch : 92 [9/27(33%)]\tLoss: 0.002146\n", - "Epoch : 92 [12/27(44%)]\tLoss: 0.007103\n", - "Epoch : 92 [15/27(56%)]\tLoss: 0.002679\n", - "Epoch : 92 [18/27(67%)]\tLoss: 0.005262\n", - "Epoch : 92 [21/27(78%)]\tLoss: 0.061544\n", - "Epoch : 92 [24/27(89%)]\tLoss: 0.002038\n", - "Epoch : 93 [0/27(0%)]\tLoss: 0.001316\n", - "Epoch : 93 [3/27(11%)]\tLoss: 0.000958\n", - "Epoch : 93 [6/27(22%)]\tLoss: 0.002880\n", - "Epoch : 93 [9/27(33%)]\tLoss: 0.010612\n", - "Epoch : 93 [12/27(44%)]\tLoss: 0.012958\n", - "Epoch : 93 [15/27(56%)]\tLoss: 0.001336\n", - "Epoch : 93 [18/27(67%)]\tLoss: 0.016597\n", - "Epoch : 93 [21/27(78%)]\tLoss: 0.049158\n", - "Epoch : 93 [24/27(89%)]\tLoss: 0.006003\n", - "Epoch : 94 [0/27(0%)]\tLoss: 0.004714\n", - "Epoch : 94 [3/27(11%)]\tLoss: 0.010011\n", - "Epoch : 94 [6/27(22%)]\tLoss: 0.004439\n", - "Epoch : 94 [9/27(33%)]\tLoss: 0.001451\n", - "Epoch : 94 [12/27(44%)]\tLoss: 0.000886\n", - "Epoch : 94 [15/27(56%)]\tLoss: 0.006360\n", - "Epoch : 94 [18/27(67%)]\tLoss: 0.002133\n", - "Epoch : 94 [21/27(78%)]\tLoss: 0.079832\n", - "Epoch : 94 [24/27(89%)]\tLoss: 0.002157\n", - "Epoch : 95 [0/27(0%)]\tLoss: 0.001896\n", - "Epoch : 95 [3/27(11%)]\tLoss: 0.011519\n", - "Epoch : 95 [6/27(22%)]\tLoss: 0.005444\n", - "Epoch : 95 [9/27(33%)]\tLoss: 0.011615\n", - "Epoch : 95 [12/27(44%)]\tLoss: 0.004645\n", - "Epoch : 95 [15/27(56%)]\tLoss: 0.007385\n", - "Epoch : 95 [18/27(67%)]\tLoss: 0.010379\n", - "Epoch : 95 [21/27(78%)]\tLoss: 0.002049\n", - "Epoch : 95 [24/27(89%)]\tLoss: 0.001327\n", - "Epoch : 96 [0/27(0%)]\tLoss: 0.004393\n", - "Epoch : 96 [3/27(11%)]\tLoss: 0.003464\n", - "Epoch : 96 [6/27(22%)]\tLoss: 0.007382\n", - "Epoch : 96 [9/27(33%)]\tLoss: 0.010950\n", - "Epoch : 96 [12/27(44%)]\tLoss: 0.010316\n", - "Epoch : 96 [15/27(56%)]\tLoss: 0.005168\n", - "Epoch : 96 [18/27(67%)]\tLoss: 0.016796\n", - "Epoch : 96 [21/27(78%)]\tLoss: 0.003665\n", - "Epoch : 96 [24/27(89%)]\tLoss: 0.003306\n", - "Epoch : 97 [0/27(0%)]\tLoss: 0.015664\n", - "Epoch : 97 [3/27(11%)]\tLoss: 0.004716\n", - "Epoch : 97 [6/27(22%)]\tLoss: 0.004391\n", - "Epoch : 97 [9/27(33%)]\tLoss: 0.010534\n", - "Epoch : 97 [12/27(44%)]\tLoss: 0.015354\n", - "Epoch : 97 [15/27(56%)]\tLoss: 0.006859\n", - "Epoch : 97 [18/27(67%)]\tLoss: 0.006830\n", - "Epoch : 97 [21/27(78%)]\tLoss: 0.002797\n", - "Epoch : 97 [24/27(89%)]\tLoss: 0.001982\n", - "Epoch : 98 [0/27(0%)]\tLoss: 0.009272\n", - "Epoch : 98 [3/27(11%)]\tLoss: 0.001727\n", - "Epoch : 98 [6/27(22%)]\tLoss: 0.009806\n", - "Epoch : 98 [9/27(33%)]\tLoss: 0.010110\n", - "Epoch : 98 [12/27(44%)]\tLoss: 0.009517\n", - "Epoch : 98 [15/27(56%)]\tLoss: 0.006432\n", - "Epoch : 98 [18/27(67%)]\tLoss: 0.004106\n", - "Epoch : 98 [21/27(78%)]\tLoss: 0.001207\n", - "Epoch : 98 [24/27(89%)]\tLoss: 0.000695\n", - "Epoch : 99 [0/27(0%)]\tLoss: 0.003822\n", - "Epoch : 99 [3/27(11%)]\tLoss: 0.075437\n", - "Epoch : 99 [6/27(22%)]\tLoss: 0.011430\n", - "Epoch : 99 [9/27(33%)]\tLoss: 0.012405\n", - "Epoch : 99 [12/27(44%)]\tLoss: 0.006619\n", - "Epoch : 99 [15/27(56%)]\tLoss: 0.008588\n", - "Epoch : 99 [18/27(67%)]\tLoss: 0.008705\n", - "Epoch : 99 [21/27(78%)]\tLoss: 0.012579\n", - "Epoch : 99 [24/27(89%)]\tLoss: 0.003084\n", - "--- 1.3169726252555847 minutes ---\n" + "Epoch : 0 [0/27(0%)]\tLoss: 2.147859\n", + "Epoch : 0 [3/27(11%)]\tLoss: 2.838991\n", + "Epoch : 0 [6/27(22%)]\tLoss: 4.700762\n", + "Epoch : 0 [9/27(33%)]\tLoss: 2.927927\n", + "Epoch : 0 [12/27(44%)]\tLoss: 8.235095\n", + "Epoch : 0 [15/27(56%)]\tLoss: 3.152937\n", + "Epoch : 0 [18/27(67%)]\tLoss: 1.321228\n", + "Epoch : 0 [21/27(78%)]\tLoss: 0.238537\n", + "Epoch : 0 [24/27(89%)]\tLoss: 6.549410\n", + "Epoch : 1 [0/27(0%)]\tLoss: 2.094426\n", + "Epoch : 1 [3/27(11%)]\tLoss: 2.990226\n", + "Epoch : 1 [6/27(22%)]\tLoss: 5.637078\n", + "Epoch : 1 [9/27(33%)]\tLoss: 0.746574\n", + "Epoch : 1 [12/27(44%)]\tLoss: 3.033168\n", + "Epoch : 1 [15/27(56%)]\tLoss: 2.280286\n", + "Epoch : 1 [18/27(67%)]\tLoss: 0.193785\n", + "Epoch : 1 [21/27(78%)]\tLoss: 2.557035\n", + "Epoch : 1 [24/27(89%)]\tLoss: 7.860909\n", + "Epoch : 2 [0/27(0%)]\tLoss: 4.077698\n", + "Epoch : 2 [3/27(11%)]\tLoss: 1.303299\n", + "Epoch : 2 [6/27(22%)]\tLoss: 2.873337\n", + "Epoch : 2 [9/27(33%)]\tLoss: 0.622593\n", + "Epoch : 2 [12/27(44%)]\tLoss: 4.604242\n", + "Epoch : 2 [15/27(56%)]\tLoss: 1.467831\n", + "Epoch : 2 [18/27(67%)]\tLoss: 4.344764\n", + "Epoch : 2 [21/27(78%)]\tLoss: 0.670500\n", + "Epoch : 2 [24/27(89%)]\tLoss: 4.583524\n", + "Epoch : 3 [0/27(0%)]\tLoss: 2.920188\n", + "Epoch : 3 [3/27(11%)]\tLoss: 1.507501\n", + "Epoch : 3 [6/27(22%)]\tLoss: 3.524598\n", + "Epoch : 3 [9/27(33%)]\tLoss: 0.152751\n", + "Epoch : 3 [12/27(44%)]\tLoss: 2.574660\n", + "Epoch : 3 [15/27(56%)]\tLoss: 0.970052\n", + "Epoch : 3 [18/27(67%)]\tLoss: 0.679160\n", + "Epoch : 3 [21/27(78%)]\tLoss: 1.840932\n", + "Epoch : 3 [24/27(89%)]\tLoss: 4.953326\n", + "Epoch : 4 [0/27(0%)]\tLoss: 1.933493\n", + "Epoch : 4 [3/27(11%)]\tLoss: 1.163767\n", + "Epoch : 4 [6/27(22%)]\tLoss: 3.193460\n", + "Epoch : 4 [9/27(33%)]\tLoss: 0.198850\n", + "Epoch : 4 [12/27(44%)]\tLoss: 2.312027\n", + "Epoch : 4 [15/27(56%)]\tLoss: 0.589022\n", + "Epoch : 4 [18/27(67%)]\tLoss: 1.609872\n", + "Epoch : 4 [21/27(78%)]\tLoss: 0.392519\n", + "Epoch : 4 [24/27(89%)]\tLoss: 4.259182\n", + "Epoch : 5 [0/27(0%)]\tLoss: 2.218642\n", + "Epoch : 5 [3/27(11%)]\tLoss: 0.902634\n", + "Epoch : 5 [6/27(22%)]\tLoss: 2.880584\n", + "Epoch : 5 [9/27(33%)]\tLoss: 0.322327\n", + "Epoch : 5 [12/27(44%)]\tLoss: 1.675611\n", + "Epoch : 5 [15/27(56%)]\tLoss: 0.282689\n", + "Epoch : 5 [18/27(67%)]\tLoss: 1.899767\n", + "Epoch : 5 [21/27(78%)]\tLoss: 0.384892\n", + "Epoch : 5 [24/27(89%)]\tLoss: 4.489583\n", + "Epoch : 6 [0/27(0%)]\tLoss: 1.115306\n", + "Epoch : 6 [3/27(11%)]\tLoss: 1.023765\n", + "Epoch : 6 [6/27(22%)]\tLoss: 2.508713\n", + "Epoch : 6 [9/27(33%)]\tLoss: 0.422266\n", + "Epoch : 6 [12/27(44%)]\tLoss: 1.836682\n", + "Epoch : 6 [15/27(56%)]\tLoss: 0.374262\n", + "Epoch : 6 [18/27(67%)]\tLoss: 1.706558\n", + "Epoch : 6 [21/27(78%)]\tLoss: 0.313639\n", + "Epoch : 6 [24/27(89%)]\tLoss: 3.754131\n", + "Epoch : 7 [0/27(0%)]\tLoss: 3.516588\n", + "Epoch : 7 [3/27(11%)]\tLoss: 0.938229\n", + "Epoch : 7 [6/27(22%)]\tLoss: 3.811188\n", + "Epoch : 7 [9/27(33%)]\tLoss: 0.161626\n", + "Epoch : 7 [12/27(44%)]\tLoss: 2.201589\n", + "Epoch : 7 [15/27(56%)]\tLoss: 0.450430\n", + "Epoch : 7 [18/27(67%)]\tLoss: 1.552927\n", + "Epoch : 7 [21/27(78%)]\tLoss: 0.262236\n", + "Epoch : 7 [24/27(89%)]\tLoss: 2.693389\n", + "Epoch : 8 [0/27(0%)]\tLoss: 0.699863\n", + "Epoch : 8 [3/27(11%)]\tLoss: 1.064229\n", + "Epoch : 8 [6/27(22%)]\tLoss: 2.403443\n", + "Epoch : 8 [9/27(33%)]\tLoss: 1.199810\n", + "Epoch : 8 [12/27(44%)]\tLoss: 2.658897\n", + "Epoch : 8 [15/27(56%)]\tLoss: 1.581239\n", + "Epoch : 8 [18/27(67%)]\tLoss: 1.668870\n", + "Epoch : 8 [21/27(78%)]\tLoss: 0.265352\n", + "Epoch : 8 [24/27(89%)]\tLoss: 2.040637\n", + "Epoch : 9 [0/27(0%)]\tLoss: 1.674989\n", + "Epoch : 9 [3/27(11%)]\tLoss: 1.018218\n", + "Epoch : 9 [6/27(22%)]\tLoss: 2.660330\n", + "Epoch : 9 [9/27(33%)]\tLoss: 0.151746\n", + "Epoch : 9 [12/27(44%)]\tLoss: 0.950755\n", + "Epoch : 9 [15/27(56%)]\tLoss: 1.026690\n", + "Epoch : 9 [18/27(67%)]\tLoss: 1.508369\n", + "Epoch : 9 [21/27(78%)]\tLoss: 0.281834\n", + "Epoch : 9 [24/27(89%)]\tLoss: 1.335783\n", + "--- 0.016478101412455242 minutes ---\n" ] } ], @@ -1716,7 +867,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACPeUlEQVR4nO2dd5wT1frGn2SXbbAFWNgiCyy9SJMmYMHrKiAXBSzojyvIRbxXxYbtclXAihUrig2xgnIR7CAgvVdBpUovu/RtbE3m98fxZCbZSTLJpmyS5/v55DOTyWRyMpud88zzvuc9JkVRFBBCCCGERBDmYDeAEEIIISTQUAARQgghJOKgACKEEEJIxEEBRAghhJCIgwKIEEIIIREHBRAhhBBCIg4KIEIIIYREHNHBbkBNxGq14tixY0hMTITJZAp2cwghhBBiAEVRUFhYiMzMTJjNrj0eCiAdjh07hqysrGA3gxBCCCFecPjwYTRq1MjlPhRAOiQmJgIQJzApKSnIrSGEEEKIEQoKCpCVlWXrx11BAaSDDHslJSVRABFCCCEhhpH0FSZBE0IIISTioAAihBBCSMRBAUQIIYSQiIM5QIQQQvyOxWJBRUVFsJtBQpxatWohKirKJ8eiACKEEOI3FEVBbm4uzp07F+ymkDAhJSUF6enp1a7TRwFECCHEb0jx07BhQyQkJLC4LPEaRVFw/vx5nDhxAgCQkZFRreNRABFCCPELFovFJn7q168f7OaQMCA+Ph4AcOLECTRs2LBa4TAmQRNCCPELMucnISEhyC0h4YT8PVU3p4wCiBBCiF9h2Iv4El/9niiACCGEEBJxUAARQgghJOKgACKEEEICQNOmTfHaa68Z3n/p0qUwmUx+LyEwY8YMpKSk+PUzaiIUQMQ9VitQWhrsVhBCSEAwmUwuH5MmTfLquBs2bMAdd9xheP/evXvj+PHjSE5O9urziGs4DJ6455prgC1bgD//BOrUCXZrCCHErxw/fty2/uWXX2LChAnYtWuXbVsdzXVQURRYLBZER7vvThs0aOBRO2JiYpCenu7Re4hx6AAR96xZA5w4ARw4EOyWEEJCHEUBiouD81AUY21MT0+3PZKTk2EymWzPd+7cicTERPz000/o2rUrYmNjsXLlSvz555+47rrrkJaWhjp16qB79+5YtGiR3XEdQ2AmkwkffPABhgwZgoSEBLRs2RLffvut7XXHEJgMVS1YsABt27ZFnTp10L9/fzvBVllZiXvvvRcpKSmoX78+Hn30UYwcORKDBw/26O/0zjvvoHnz5oiJiUHr1q3x6aefav6GCiZNmoTGjRsjNjYWmZmZuPfee22vv/3222jZsiXi4uKQlpaGG264waPPDhQUQMQ9ZWViWV4e3HYQQkKe8+eFkRyMx/nzvvse//nPf/D8889jx44d6NixI4qKinDNNddg8eLF2LJlC/r3749Bgwbh0KFDLo/z5JNP4qabbsK2bdtwzTXXYPjw4Thz5oyL83ceL7/8Mj799FMsX74chw4dwkMPPWR7/YUXXsDnn3+Ojz76CKtWrUJBQQHmzZvn0XebO3cu7rvvPjz44IP47bff8K9//QujRo3CkiVLAABz5szBq6++infffRd79uzBvHnz0KFDBwDAxo0bce+99+Kpp57Crl27MH/+fFx22WUefX7AUEgV8vPzFQBKfn5+sJsSfKxWRTGZFAVQlLVrg90aQkgIUVJSovzxxx9KSUmJbVtRkbicBONRVOT5d/joo4+U5ORk2/MlS5YoAJR58+a5fW/79u2VN9980/a8SZMmyquvvmp7DkB5/PHHNeemSAGg/PTTT3afdfbsWVtbACh79+61vWfq1KlKWlqa7XlaWpry0ksv2Z5XVlYqjRs3Vq677jrD37F3797KmDFj7Pa58cYblWuuuUZRFEV55ZVXlFatWinl5eVVjjVnzhwlKSlJKSgocPp51UXvdyXxpP+mA0RcU1mp+sZ0gAgh1SQhASgqCs7DlwWpu3XrZve8qKgIDz30ENq2bYuUlBTUqVMHO3bscOsAdezY0bZeu3ZtJCUl2ea60iMhIQHNmze3Pc/IyLDtn5+fj7y8PPTo0cP2elRUFLp27erRd9uxYwf69Oljt61Pnz7YsWMHAODGG29ESUkJmjVrhjFjxmDu3LmorKwEAFx11VVo0qQJmjVrhltvvRWff/45zvvSevMhFEDENTL8BQDVLDtOCCEmE1C7dnAevixIXbt2bbvnDz30EObOnYvnnnsOK1aswNatW9GhQweUu7lxrFWrlsP5McFqtXq0v2I0uclHZGVlYdeuXXj77bcRHx+Pu+66C5dddhkqKiqQmJiIzZs3Y+bMmcjIyMCECRPQqVMnvw/l9wYKIOIa7T8vHSBCCNFl1apVuO222zBkyBB06NAB6enpOBDggSPJyclIS0vDhg0bbNssFgs2b97s0XHatm2LVatW2W1btWoV2rVrZ3seHx+PQYMG4Y033sDSpUuxZs0abN++HQAQHR2NnJwcvPjii9i2bRsOHDiAX375pRrfzD9wGDxxDR0gQghxS8uWLfH1119j0KBBMJlMeOKJJ1w6Of7innvuweTJk9GiRQu0adMGb775Js6ePevR/FkPP/wwbrrpJnTp0gU5OTn47rvv8PXXX9tGtc2YMQMWiwU9e/ZEQkICPvvsM8THx6NJkyb4/vvvsW/fPlx22WWoW7cufvzxR1itVrRu3dpfX9lrKICIa7QCiA4QIYToMmXKFPzzn/9E7969kZqaikcffRQFBQUBb8ejjz6K3NxcjBgxAlFRUbjjjjvQr18/REVFGT7G4MGD8frrr+Pll1/Gfffdh+zsbHz00Ufo27cvACAlJQXPP/88xo0bB4vFgg4dOuC7775D/fr1kZKSgq+//hqTJk1CaWkpWrZsiZkzZ6J9+/Z++sbeY1ICHTwMAQoKCpCcnIz8/HwkJSUFuznBZfduQCr3mTOBm28ObnsIISFDaWkp9u/fj+zsbMTFxQW7ORGJ1WpF27ZtcdNNN+Hpp58OdnN8gqvflSf9Nx0g4ho6QIQQEjIcPHgQP//8My6//HKUlZXhrbfewv79+/F///d/wW5ajYNJ0MQ1zAEihJCQwWw2Y8aMGejevTv69OmD7du3Y9GiRWjbtm2wm1bjoANEXMNRYIQQEjJkZWVVGcFF9KEDRFxDB4gQQkgYQgFEXEMBRAghJAyhACKuYQiMEEJIGEIBRFxDB4gQQkgYQgFEXMNh8IQQQsIQCiDiGq3ooQNECCGG6du3L+6//37b86ZNm+K1115z+R6TyYR58+ZV+7N9dRxXTJo0CZ07d/brZ/gTCiDiGjpAhJAIY9CgQejfv7/uaytWrIDJZMK2bds8Pu6GDRtwxx13VLd5djgTIcePH8eAAQN8+lnhBgUQcQ1zgAghEcbo0aOxcOFCHDlypMprH330Ebp164aOHTt6fNwGDRogISHBF010S3p6OmJjYwPyWaEKBRBxDUeBEUIijL///e9o0KABZsyYYbe9qKgIs2fPxujRo3H69GnccsstuOCCC5CQkIAOHTpg5syZLo/rGALbs2cPLrvsMsTFxaFdu3ZYuHBhlfc8+uijaNWqFRISEtCsWTM88cQTqPjrZnTGjBl48skn8euvv8JkMsFkMtna7BgC2759O/72t78hPj4e9evXxx133IGioiLb67fddhsGDx6Ml19+GRkZGahfvz7uvvtu22cZwWq14qmnnkKjRo0QGxuLzp07Y/78+bbXy8vLMXbsWGRkZCAuLg5NmjTB5MmTAQCKomDSpElo3LgxYmNjkZmZiXvvvdfwZ3sDK0ET19ABIoT4EkUBzp8PzmcnJAAmk9vdoqOjMWLECMyYMQOPPfYYTH+9Z/bs2bBYLLjllltQVFSErl274tFHH0VSUhJ++OEH3HrrrWjevDl69Ojh9jOsViuGDh2KtLQ0rFu3Dvn5+Xb5QpLExETMmDEDmZmZ2L59O8aMGYPExEQ88sgjGDZsGH777TfMnz8fixYtAgAkJydXOUZxcTH69euHXr16YcOGDThx4gRuv/12jB071k7kLVmyBBkZGViyZAn27t2LYcOGoXPnzhgzZozb7wMAr7/+Ol555RW8++676NKlC6ZPn45rr70Wv//+O1q2bIk33ngD3377Lb766is0btwYhw8fxuHDhwEAc+bMwauvvopZs2ahffv2yM3Nxa+//mroc71GIVXIz89XACj5+fnBbkrweewxRRGXLEX5v/8LdmsIISFESUmJ8scffyglJSXqxqIi9ZoS6EdRkeG279ixQwGgLFmyxLbt0ksvVf7xj384fc/AgQOVBx980Pb88ssvV+677z7b8yZNmiivvvqqoiiKsmDBAiU6Olo5evSo7fWffvpJAaDMnTvX6We89NJLSteuXW3PJ06cqHTq1KnKftrjvPfee0rdunWVIs33/+GHHxSz2azk5uYqiqIoI0eOVJo0aaJUVlba9rnxxhuVYcOGOW2L42dnZmYqzz77rN0+3bt3V+666y5FURTlnnvuUf72t78pVqu1yrFeeeUVpVWrVkp5ebnTz5Po/q7+wpP+O6ghsOXLl2PQoEHIzMw0lLF+22232Ww+7aN9+/a2fSZNmlTl9TZt2vj5m4QxdIAIIRFImzZt0Lt3b0yfPh0AsHfvXqxYsQKjR48GAFgsFjz99NPo0KED6tWrhzp16mDBggU4dOiQoePv2LEDWVlZyMzMtG3r1atXlf2+/PJL9OnTB+np6ahTpw4ef/xxw5+h/axOnTqhdu3atm19+vSB1WrFrl27bNvat2+PqKgo2/OMjAycOHHC0GcUFBTg2LFj6NOnj932Pn36YMeOHQBEH75161a0bt0a9957L37++WfbfjfeeCNKSkrQrFkzjBkzBnPnzkVlZaVH39NTgiqAiouL0alTJ0ydOtXQ/q+//jqOHz9uexw+fBj16tXDjTfeaLdf+/bt7fZbuXKlP5ofGTAHiBDiSxISgKKi4Dw8TEAePXo05syZg8LCQnz00Udo3rw5Lr/8cgDASy+9hNdffx2PPvoolixZgq1bt6Jfv34o9+F1cs2aNRg+fDiuueYafP/999iyZQsee+wxn36Gllq1atk9N5lMsFqtPjv+RRddhP379+Ppp59GSUkJbrrpJtxwww0AxCSuu3btwttvv434+HjcdddduOyyyzzKQfKUoOYADRgwwKNhesnJyXbxzXnz5uHs2bMYNWqU3X7R0dFIT0/3WTsjGjpAhBBfYjIBGieiJnPTTTfhvvvuwxdffIFPPvkEd955py0faNWqVbjuuuvwj3/8A4DI6dm9ezfatWtn6Nht27bF4cOHcfz4cWRkZAAA1q5da7fP6tWr0aRJEzz22GO2bQcPHrTbJyYmBhaLxe1nzZgxA8XFxTYXaNWqVTCbzWjdurWh9rojKSkJmZmZWLVqlU0kys/R5kQlJSVh2LBhGDZsGG644Qb0798fZ86cQb169RAfH49BgwZh0KBBuPvuu9GmTRts374dF110kU/a6EhIJ0F/+OGHyMnJQZMmTey279mzB5mZmYiLi0OvXr0wefJkNG7c2OlxysrKUKbp6AsKCvzW5pCDdYAIIRFKnTp1MGzYMIwfPx4FBQW47bbbbK+1bNkS//vf/7B69WrUrVsXU6ZMQV5enmEBlJOTg1atWmHkyJF46aWXUFBQYCd05GccOnQIs2bNQvfu3fHDDz9g7ty5dvs0bdoU+/fvx9atW9GoUSMkJiZWGf4+fPhwTJw4ESNHjsSkSZNw8uRJ3HPPPbj11luRlpbm3cnR4eGHH8bEiRPRvHlzdO7cGR999BG2bt2Kzz//HAAwZcoUZGRkoEuXLjCbzZg9ezbS09ORkpKCGTNmwGKxoGfPnkhISMBnn32G+Pj4Kv27LwnZYfDHjh3DTz/9hNtvv91ue8+ePTFjxgzMnz8f77zzDvbv349LL70UhYWFTo81efJkm7uUnJyMrKwsfzc/dGAlaEJIBDN69GicPXsW/fr1s8vXefzxx3HRRRehX79+6Nu3L9LT0zF48GDDxzWbzZg7dy5KSkrQo0cP3H777Xj22Wft9rn22mvxwAMPYOzYsejcuTNWr16NJ554wm6f66+/Hv3798cVV1yBBg0a6A7FT0hIwIIFC3DmzBl0794dN9xwA6688kq89dZbnp0MN9x7770YN24cHnzwQXTo0AHz58/Ht99+i5YtWwIQI9pefPFFdOvWDd27d8eBAwfw448/wmw2IyUlBe+//z769OmDjh07YtGiRfjuu+9Qv359n7ZRi0lRFMVvR/cAk8mEuXPnGv4BTZ48Ga+88gqOHTuGmJgYp/udO3cOTZo0wZQpU2zJa47oOUBZWVnIz89HUlKSR98j7LjhBmDOHLHeqxewenVw20MICRlKS0uxf/9+ZGdnIy4uLtjNIWGCq99VQUEBkpOTDfXfIRkCUxQF06dPx6233upS/ABASkoKWrVqhb179zrdJzY2lhUzncEcIEIIIWFISIbAli1bhr179zp1dLQUFRXhzz//tCWZEQ/hKDBCCCFhSFAFUFFREbZu3YqtW7cCgC2RS9Y4GD9+PEaMGFHlfR9++CF69uyJCy+8sMprDz30EJYtW4YDBw5g9erVGDJkCKKionDLLbf49buELXSACCGEhCFBDYFt3LgRV1xxhe35uHHjAAAjR47EjBkzcPz48SoFn/Lz8zFnzhy8/vrrusc8cuQIbrnlFpw+fRoNGjTAJZdcgrVr16JBgwb++yLhDEeBEUIICUOCKoD69u0LVznYjhPRAaIW0HkX88jMmjXLF00jEo4CI4RUkxoy1oaECb76PYVkDhAJIHSACCFeIisLu7ppJcRT5O/JsXK1p4TkKDASQJgDRAjxkqioKKSkpNjmk0pISLBVUibEUxRFwfnz53HixAmkpKTYzVvmDRRAxDUcBUYIqQZyWiKjk2oS4o6UlBSfTHdFAURcQweIEFINTCYTMjIy0LBhQ79ObEkig1q1alXb+ZFQABHXMAeIEOIDoqKifNZxEeILmARNXKMVPVYr4GbWYUIIISQUoAAirtE6QADDYIQQQsICCiDiHIulquNDAUQIISQMoAAiztHL+WEeECGEkDCAAog4xzH8BdABIoQQEhZQABHnaAVQTIxY0gEihBASBlAAEedIsRMTA8TGinU6QIQQQsIACiDiHOkAxcYCcs4VOkCEEELCAAog4hwpgGJi1BCYMwdo9mxgxAigtDQwbSOEEEKqAQUQcY50e4w4QM89B3z6KbBqVWDaRgghhFQDToVBnKMNgZn/0srOHKDiYrEsKfF/uwghhJBqQgFEnKMNgZlMYt2ZAyT3ZY4QIYSQEIACiDhH6wBJnDlAFECEEEJCCAog4hxtDpDVar/NEQogQgghIQQFEHGONgQmBZA7B4h1ggghhIQAFEDEOdoQWGWlWNdzeBSFDhAhhJCQggKIOEcbAnM1Cqyy0n2IjBBCCKlBUAAR52hDYBI9gaOdM4wCiBBCSAhAAUScY3QUGAUQIYSQEIMCiDjH6CgwCiBCCCEhBgUQcY7WAbJYxDodIEIIIWEA5wIjztHmALmaC4wCiBBCSIhBB4g4RxsCk84PHSBCCCFhAB0g4hxtCIwOECGEkDCCAog4RxsCk0Ph3TlArARNCCEkBKAAIs7RhsBcOUClpVXfQwghhNRgKICIc7QhMKMOEAUQIYSQEIACiDiHo8AIIYSEKRRAxDnaEBgdIEIIIWFEUAXQ8uXLMWjQIGRmZsJkMmHevHku91+6dClMJlOVR25urt1+U6dORdOmTREXF4eePXti/fr1fvwWYQxHgRFCCAlTgiqAiouL0alTJ0ydOtWj9+3atQvHjx+3PRo2bGh77csvv8S4ceMwceJEbN68GZ06dUK/fv1w4sQJXzc//PFmFBgFECGEkBAgqIUQBwwYgAEDBnj8voYNGyIlJUX3tSlTpmDMmDEYNWoUAGDatGn44YcfMH36dPznP//RfU9ZWRnKNJ14QUGBx20KS4yOAqMAIoQQEmKEZA5Q586dkZGRgauuugqrVq2ybS8vL8emTZuQk5Nj22Y2m5GTk4M1a9Y4Pd7kyZORnJxse2RlZfm1/SEDR4ERQggJU0JKAGVkZGDatGmYM2cO5syZg6ysLPTt2xebN28GAJw6dQoWiwVpaWl270tLS6uSJ6Rl/PjxyM/Ptz0OHz7s1+8RMngzCoyFEAkhhIQAITUXWOvWrdG6dWvb8969e+PPP//Eq6++ik8//dTr48bGxiI2NtYXTQwvjI4CYyFEQgghIUZIOUB69OjRA3v37gUApKamIioqCnl5eXb75OXlIT09PRjNc8/mzYCb0W9Bg6PACCGEhCkhL4C2bt2KjIwMAEBMTAy6du2KxYsX2163Wq1YvHgxevXqFawmumboUGDIEGDfvmC3pCocBUYIISRMCWoIrKioyObeAMD+/fuxdetW1KtXD40bN8b48eNx9OhRfPLJJwCA1157DdnZ2Wjfvj1KS0vxwQcf4JdffsHPP/9sO8a4ceMwcuRIdOvWDT169MBrr72G4uJi26iwGkVJCXDwoFjfvx9o1iy47XGEDhAhhJAwJagCaOPGjbjiiitsz8eNGwcAGDlyJGbMmIHjx4/j0KFDttfLy8vx4IMP4ujRo0hISEDHjh2xaNEiu2MMGzYMJ0+exIQJE5Cbm4vOnTtj/vz5VRKjawRHjqjrLpK0gwYrQRNCCAlTTIqiKMFuRE2joKAAycnJyM/PR1JSkv8+6JdfgCuvFOsvvQQ89JD/PgsAiouB5cuBv/1NiBp3xMQIwXP4sHCoLrsMaNUK2LXLfr+bbwa+/FKsx8UJZytUWLIEaN0ayMwMdksIIYRUE0/675DPAQpptMPtA+EAvfgicM01wIcfut/XalXdnnDNAdq0SYjBf/wj2C0hhBASYCiAgolWAB0/7v/Pk+FEI3WOtELHkxwgqxWwWLxvYyDZulUs//wzqM0ghBASeCiAgkmgHaDiYrE8f979vlpR40kOkLN9aiL794vl2bPBbQchhJCAQwEUTDQJ3gFxgKTw8VQAuasErS2E6GyfmogUQIWFQGVlcNtCCCEkoFAABZNAO0CeCCApYqKjAbPZMwco1AQQAJw7F7RmEEIICTwUQMFEK4DOnq0qJHyNNw6QHC1mNAfI2T41Ea0AYhiMEEIiCgqgYFFQIB4AEBUllv52gbwRQNL50TpAjpUTQlEAlZTYn+8zZ4LXFkIIIQGHAihYSPenbl3gggvEek0SQNoiiIDqAAFV82VCUQAdOGD/nA4QIYREFBRAwUIKoKwsQE7U6u9EaF+EwICqeUChKIC04S+AAogQQiKMoE6FEdFoBVD0X3+GmuQAOQuBAULgJCRU3Vf7ek2HAogQQiIaCqBgoRVAMqemJgkgVyEwZw6Q2SwKIVIAEUIIqeEwBBYsZA2grCwgI0Os+zMEVlGhChdZENEVjiEwk0l1qrQCR1HUfRMTq75eU5ECKD5eLJkETQghEQUFULCQDlDjxmoOkD8dIO0Epd6EwADVBdI6QJWVwvUBVAEUCpWgpQDq3Fks6QARQkhEQQEULAKdBK0VPSUlqmhxhmMIDFDFkNbh0eb/1KlT9fWaihRAF10klhRAhBASUTAHKBgoir0AkmEYfzpAjq5Paal9IrMjjiEwQN8B0gqgUAmBnTunVn7u0kUsKYAIISSioAAKBqdPq/NnXXCB/SgwRRH5Nr7GMe/n/HnPBZArB8hsVo9X0wWQdH8aNBACFGAOECGERBgMgQUD6f6kpQmBkZYmnldU+K8jdnSA3OUBSRHjLgdIK5T0BFJNRAqg7GxRiBKgA0QIIREGBVAw0Ia/ACEe6tUT6/4Kg3kqgDx1gCiACCGEhBAUQMHAUQAB/h8K7wsBFM4OUHFxaIxeI4QQ4hMogIKBtgaQxN9D4X0RAnPlAMXFhaYASklRt9MFIoSQiIECKBjoOUD+HgofTg6QogB79rgfyu8MrQCKigKSk8VzJkITQkjEQAEUDFyFwGqKA2Q0B0iOZouN1RdI/uDTT4FWrYDJkz1/r6KoM8FnZ4sl84AIISTioAAKBtoq0JJQCIHVFAdo1Sr7pSfk5YlCkCaTev4pgAghJOKgAAo0Fgtw9KhYD7Uk6JoyCmzvXrHctcvz98rwV6NGanvlCDwKIEIIiRgogAJNXp6YPysqShU9QM1zgGpyDpAUQAcO2FeiNoI2/0dCB4gQQiIOCqBAI8NfmZlCBElqahK00VFggRJApaXqObRagX37PHu/KwHEJGhCCIkYKIACjV4CNKC6QefOqYnFvsTbHKCa5gDt2ycSmSWehsHoABFCCAEFUODRqwEEiHo0Umzk5fn+c+VcYHLesVDNAdqzx/757t2evZ8CiBBCCCiAAo8zB8hk8m8YTAqe1FT7587QC4G5coACVQhR5v9IfCGAmARNCCERBwVQoHEmgAD/JkJ7KoD0QmA1yQFq0UIsPQmBVVaqDhwdIEIIiWgogAKNKwHkz6HwUvA0aGD/3BlGR4HpFUIMhAM0cKBYeuIAHTkiyhDExIgkdAmToAkhJOKgAAo0oeIAucoBcpcE7c9K0NIBGjBALE+cEInjRpDhryZNALPmp08HiBBCIg4KoEBSXq6KG20VaElNygFyVQna2xDY998L58Yxj8co2iHwXbqojplRF0gv/wdgDhAhhEQgQRVAy5cvx6BBg5CZmQmTyYR58+a53P/rr7/GVVddhQYNGiApKQm9evXCggUL7PaZNGkSTCaT3aNNmzZ+/BYecOyYGMIdG6uGorT4cz6wQDpAzgTQ228DP/4IXH+9mI7CU+QQ+KQkcf5atxbbqyuApANUUuKfEgSEEEJqHEEVQMXFxejUqROmTp1qaP/ly5fjqquuwo8//ohNmzbhiiuuwKBBg7Blyxa7/dq3b4/jx4/bHitXrvRH8z1HuheNGolRX45UJwS2f78QGM46cF8IoOo6QPIzt20DHnjA9efrIZ2jFi3E+WvVSjw3mgjtTAAlJal/D7pAhBASEUQH88MHDBiAATKXwwCvvfaa3fPnnnsO33zzDb777jt06dLFtj06OhrpUkwYoKysDGWaKRUKCgoMv9cjnNUAklQnCfrBB4G5c4WbccstVV/3RQisug6Q1vV5913giiuAYcNct0OLzP9p2VIspQCqrgNkNos6TGfPiod2ihJCCCFhSUjnAFmtVhQWFqKezOH4iz179iAzMxPNmjXD8OHDcUgKDydMnjwZycnJtkeWM4FSXVwlQAOqA5SXJ6Z58IRffxVLPfFktariw18OkJE6QLINffqI5Zgx+vlA2krPWrQOEOB5COzIEbHUy79iHhAhhEQUIS2AXn75ZRQVFeGmm26ybevZsydmzJiB+fPn45133sH+/ftx6aWXorCw0Olxxo8fj/z8fNvjsBQqvubCC4GRI4G+ffVfT0sTy4oKz4Zkl5aq7oaee6UNiwUzB0i245lngEsvBQoLgZtuElWqV60C/vtfoFMnoHZt4Oefq75fCiA9B8idYFQUNbSo5/BwJBghhEQUQQ2BVYcvvvgCTz75JL755hs0bNjQtl0bUuvYsSN69uyJJk2a4KuvvsLo0aN1jxUbG4tYbUfvL/7+d/FwRkwMUL8+cPq06KylWHHH3r2qa6IngLRip379qtscURT/jAKTDlBiIvDFF0DnzsCWLaJNjrO6v/sucPXV9tsciyBmZ4upPc6fFwnmjRo5/05nzqjt0guPUgARQkhEEZIO0KxZs3D77bfjq6++Qk5Ojst9U1JS0KpVK+z1duh1oPEmEXrnTnU9P7/q63IesNhYIT4A4eI4q9dTWakKKncOkCeFEKUAio8XYuXTT8XzsjKRg3PzzcDTT4ttCxdWFVoylCkFUK1aQLNmYt1dGEyez3r17L+ThMUQCSEkogg5ATRz5kyMGjUKM2fOxEBZDdgFRUVF+PPPP5ERKomt3iRCawWQKwcoIUE8JM6GomvdGG9GgTkTVvLz4uLEcsAAYN06YMUK4ORJYOZMEQZr2FCEx1atUt8rh8AnJorXJUZHgsnz6ex3QAeIEEIiiqAKoKKiImzduhVbt24FAOzfvx9bt261JS2PHz8eI0aMsO3/xRdfYMSIEXjllVfQs2dP5ObmIjc3F/ka1+Ohhx7CsmXLcODAAaxevRpDhgxBVFQUbtEbGVUT8cYB0nb+eg6QVgDFxqpDvp2FwbQCx1ejwBRFdYvi49XtPXoAl1yizlJvNgP9+4v1H39U93McAi8xmggtBZCz0YFMgiaEkIgiqAJo48aN6NKli20I+7hx49ClSxdMmDABAHD8+HG7EVzvvfceKisrcffddyMjI8P2uO+++2z7HDlyBLfccgtat26Nm266CfXr18fatWvRQK/wYE3E3w6QyaS6QM4EkBQ1ZrMqTIDq5QBVVKiJyloBpMc114jlTz+p2xyHwEuMDoWnA0QIIURDUJOg+/btC8XZkGcAM2bMsHu+dOlSt8ecNWtWNVsVZDydDkNR3OcASaFTu7ZYJiSIvCB3AsgxV6Y6DpA23CZDYM64+mohvn7/HTh4UMzd5TgEXiIdIIbACCGEeEDI5QCFO9bmwuFQvvvOWIXjY8eAoiL1uTsHSLt0FwLThr8A43WAKiqq1vKR4S+TST8JWUvdukDv3mJdukDuHKD9+13PQm9UADEJmhBCIgIKoBrGgqhrsBh/g6m4WFR0dhwe7ogUSVJU+EIAVdcBctwHsE+A1psGxBEZBpN5QM4coPR0oE4dEV7780/nx3MngJgDRAghEQUFUA3j951RuBWf4lx0fVEjZ/x412+Q4a+LLhLLoiLAYrHfx1cCyGgOkOM+gP0QeCPIek6LFwtR5zgEXmIyGUuEdlUEEWAIjBBCIgwKoBrGsWPAcWRifNpHYsOrr9onAzsiBVD37uo2x6rXvgqBOTpAimJcAMkQmLv8H0mnTkKsnD8PfPyxcHjq1FGrZWsxkgjtbhQYBRAhhEQUFEA1jGPHxHKeZRBwzz3iyciRzofFyxBYx46qY+OYCO0vB6iyUh3ZFRsLREWp4a3qOkAmkxoGe/NNsXQcAi9xVwuouFgVhe4coLIy5/WRCCGEhA0UQDUMKYDOnQPw4otC2Jw8CYwYoT/flXSA2rQBkpPFumMekL9ygPQKJjobCeapAAJUAeQsAVriLgQm3Z+EBLUStiOJiULAAUyEJoSQCIACqIYhBVBpKVCKOGDWLCEaFi60LwwICGdD5sa0aQMkJYl1fwkgRwfIlQBylQRtlJwc+zpEjvk/EnchMG0CtLMEbJOJYTBCCIkgKIBqEIqiCiDgr0hW27bA7beLDXPm2L9BdvipqWJCUekAVTcEZjQHSK9gojMHSK8KtDuSkkSVaIkzB0gKoLw8/TpI7kaASSiACCEkYqAAqkHk59unn5w799fK0KFi+e23Iu9GInNeZAjImQMkJ0P1lwOkN2GqL0JggBoGA5w7QImJqrjRywNyNwJMQgFECCERAwVQAJk7F7jpJuDdd/Vf17o/gEYAXXKJcHnOnAGWL1d30Ob/AL5zgNzlAFksIh9JWwTRcZ9ACiBAdYFkvpAWdyPAJCyGSAghEQMFUADZvRuYPRtYuVL/9aNH7Z/bBFB0NHDddWL966/VHRwFkK9ygNxVggZEGMwTB8jTYfCSdu2ABx8EHnnEtYPjKg/IaAiMxRAJISRioAAKINnZYrl/v/7rTh0gABgyRCznzVNHgzkTQM4cIDkXmFx66wABngsgbx0gkwl4+WXghRdc72fEAWIIjBBCyF9QAAWQpk3F8sAB/dddCqArrxS5LkePAhs2CBEk3Q6ZA+TvYfBaB6i8PDACyCi+cIAogAghJGKgAAog0gE6dkx/ii+XAiguDhg4UKx//TVw+LAQFbVqqQf2dwhMW+iwokINa2kFkN50GYB3w+A9QSuAHCdipQAihBDiAAVQAElNFdpDUdTyPVqkAJK6w04AAeposK+/VsNfLVuqQ9D9nQRtMtkLHG9ygPzlADVrJobjFxaK4fCSigrg1CmxbjQHiEnQhBAS9lAABRCTyXUYTAogGdGqIoAGDBBiY+9etSaQzP8B/F8IEbCvBeRKADkrhOgvARQTozph2jCYFEPR0aJWkivoABFCSMRAARRgXCVCSwHUrp1YVhFAdeoAV18t1mfMEEs9AeSvQoiA9w6Qv0NggFooUSuAZPgrLU04RK6gACKEkIiBAijAOHOArFa1r27fXiyrCCBADYNJh0XaRYB+ErSi+NYBkgJI6wAZqQPk7xAYoJ8IbTT/B6AAIoSQCIICKMA4E0CnT6uaRpo6ugJo0CB10k7tzoC+A1RRIQoXAr4NgdW0UWCAbwWQYyI1IYSQsIICKMA4C4HJ8FfDhkCDBmJdVwDVrw9cfrn63J0DpBU5vgyBBaoOkCdUVwDJJOiKCnX6EEIIIWEJBVCAceYASQGUmQmkpIh1XQEEqGGwjAxV9ACqA1RaqgoQ2ZFHRaniRSuA9JwOfzhA3laC9gQpgPbuVV0vo/OAAeK8yHPEMBghhIQ1FEABRjpAubn2E596JICGDweuugp4+GH77VIAAaoLpM3/kTV8pABSFP2CRJ7mANUUBygrS7SlogI4eFBsMzoPGCDOD/OACCEkIqAACjB164qCzoDaRwP6Aqi0VDVO7EhJAX7+GXjgAfvtUVHqNBd6AkiiFSF6YTApXtw5QN4UQvSnADKbq44E8yQEBlAAEUJIhEABFGCc1QLSCqCkJNWscRzR7hbHRGjHecAAURNHChk9ASSdHX/kAPkzBAZUzQPyVACxGCIhhEQEFEBBQC8RWiuAzGZVxzgNgznDMRFazwHSPnclgKqTA+RYCDEQw+AB+0lRrVbPcoAAVQDJ6tGEEELCEgqgIKDnAB09KpaZmWLpNg/IGY7VoL0RQK5CYDU5Bwiwd4BOnwYqK8XztDRj77/gArF0nJiNEEJIWEEBFATchcCAagggx/nAquMA6YXA9BwgI4UQgxECk+5Paqr+d9FDCqAjR3zfNkIIITUGCqAg4BgCq6xUp6yqEQ6Qr0eBWSxqSCxQDtDBg+oJNjICTCIFkLTkCCGEhCUUQEHA0QE6cUKkq5jNohAi4AMBVB0HyOgoMKMCSDuUzd8CKDVVnDxFAVauFNuM5v8AQKNGYkkHiBBCwhoKoCAgBdDJk6JOoQx/paers1xUOwTmCwfIV6PAtAWP/B0CM5nUofDLlomlJwKIDhAhhEQEFEBBICVFFTgHDqgCSPa9ch8gSA6QrytBSweoVi37ecz8hQyDbdoklt44QGfO2As3QgghYQUFUJDQhsEcE6CBGuIAucsBMloIMVAjwCRSAMnpMDwRQMnJ6rmhC0QIIWELBVCQ0CZC+1QAOSZBy7nAvMkBMjoKzGgILNACSOKJADKZGAYjhJAIIKgCaPny5Rg0aBAyMzNhMpkwb948t+9ZunQpLrroIsTGxqJFixaYMWNGlX2mTp2Kpk2bIi4uDj179sT69et93/hq4jcHyNMQmOOs5xaL6pz4ahRYoIbASxwFkCejwAAmQhNCSATglQA6fPgwjmg6h/Xr1+P+++/He++959FxiouL0alTJ0ydOtXQ/vv378fAgQNxxRVXYOvWrbj//vtx++23Y8GCBbZ9vvzyS4wbNw4TJ07E5s2b0alTJ/Tr1w8nTpzwqG3+psaGwLSToxrNAdKrA6StBB2oKtASmQQt8cQBAugAEUJIBOCVAPq///s/LFmyBACQm5uLq666CuvXr8djjz2Gp556yvBxBgwYgGeeeQZDhgwxtP+0adOQnZ2NV155BW3btsXYsWNxww034NVXX7XtM2XKFIwZMwajRo1Cu3btMG3aNCQkJGD69OlOj1tWVoaCggK7h79xFwKTc3L6zAHSzgUGOBdAWufG16PAAiWAEhPtRY+nAkg6QBRAhBAStnglgH777Tf06NEDAPDVV1/hwgsvxOrVq/H555/rhqR8xZo1a5CTk2O3rV+/flizZg0AoLy8HJs2bbLbx2w2Iycnx7aPHpMnT0ZycrLtkZWV5Z8voCEkHCApdrSEQg4QoIbB6tQRD09gNWhCCAl7vBJAFRUViP2r01u0aBGuvfZaAECbNm1wXM6+7Qdyc3OR5jCnU1paGgoKClBSUoJTp07BYrHo7pMrp0XQYfz48cjPz7c9Dh8+7Jf2a5EC6MwZUQ8I8EMStKJ4L4BiY9Up6bV44wDJEFigcoAAVQB56v4AdIAIISQC8EoAtW/fHtOmTcOKFSuwcOFC9O/fHwBw7Ngx1K9f36cNDASxsbFISkqye/ibxERAe6pq1bJ/LgVQaal9IWW3SAdIDlP3VAC5GgGm3R4qDpA3AogOECGEhD1eCaAXXngB7777Lvr27YtbbrkFnTp1AgB8++23ttCYP0hPT0eenDTrL/Ly8pCUlIT4+HikpqYiKipKd590T0cCBQDpAgHC/dEaLomJ6nOZzmOI2rXVNxYUVM8B0kNb56cmC6C//x3IygJuusnz90oBlJurjogjhBASVkR786a+ffvi1KlTKCgoQF2ZrQvgjjvuQIJjR+tDevXqhR9//NFu28KFC9GrVy8AQExMDLp27YrFixdj8ODBAACr1YrFixdj7NixfmuXt2Rnq8WKteEvQMwLlpwsQmDnzgEOUT3nmM1CPRUUCOXkawEkBU5JiZjAzHFfV4UQAxkCa9MGOHTIu/empYmK1RaLmKXW8Y9DCCEk5PHKASopKUFZWZlN/Bw8eBCvvfYadu3ahYZyNk8DFBUVYevWrdi6dSsAMcx969atOPRXxzV+/HiMGDHCtv+///1v7Nu3D4888gh27tyJt99+G1999RUeeOAB2z7jxo3D+++/j48//hg7duzAnXfeieLiYowaNcqbr+pXHB0gR3ySCO1tCMydA1RYqG4zmgMUSAeoOkRFqaEzhsEIISQs8coBuu666zB06FD8+9//xrlz59CzZ0/UqlULp06dwpQpU3DnnXcaOs7GjRtxxRVX2J6PGzcOADBy5EjMmDEDx48ft4khAMjOzsYPP/yABx54AK+//joaNWqEDz74AP369bPtM2zYMJw8eRITJkxAbm4uOnfujPnz51dJjK4J+E0AaYfCe+sAucsBKipSt9XEEFh1adRIiB8mQhNCSFjilQDavHmzrfbO//73P6SlpWHLli2YM2cOJkyYYFgA9e3bF4qiOH1db0h93759sWXLFpfHHTt2bI0MeTkiawEB9hOhSqrtAJ09qwoaX+cASQcoKgqI1vyM9AohBiMEVl2YCE0IIWGNVyGw8+fPIzExEQDw888/Y+jQoTCbzbj44otx8OBBnzYwnPG7A6Qd+u+rEJijA+S4n3zdalUTiEMtBAawGjQhhPiLgoKq0zAFAa8EUIsWLTBv3jwcPnwYCxYswNVXXw0AOHHiRECGkIcLfhdA2ppMju6LtyEwRwfImQACVDEVqiEwgAKIEEJ8zfvvi+kOHn00qM3wSgBNmDABDz30EJo2bYoePXrYRmH9/PPP6NKli08bGM4kJADNmolR6y1aVH292iEw6QDFx4vRYY4fDgiRUlmpbjc6CizcBRBDYIQQ4h8WLhRpEkEuT+NVDtANN9yASy65BMePH7fVAAKAK6+80vC8XkTw/fdiKowmTaq+5jMHyHEeMMA+JFZSIobOA8ZHgTmbMV47fYY8VjAqQVcXOkCEEOJ7SkuB5cvF+lVXBbUpXgkgQBQlTE9Pt80K36hRI78WQQxX2rYVDz185gDp1WbSipHz51UBZHQUmMRRAJlMQgRVVISPA6Qo+tOCEEJ8x/nzwIIFwNVX69+0kfBg1SrRJ2RkAO3bB7UpXoXArFYrnnrqKSQnJ6NJkyZo0qQJUlJS8PTTT8Mqi+ORauMzB0hPAJlM+nlARkeBSfT2cyyGGIoCSCZllZR48QcghHjMq68CQ4eKJQlfFi4Uy6uuCvqNpVcC6LHHHsNbb72F559/Hlu2bMGWLVvw3HPP4c0338QTTzzh6zZGLNV2gE6cEEtn1bn1BJDRUWASvf0cawGF4jD4+Hh1cjbHMNju3cCdd6rnlxBSfWRZ/D17gtsO4l+0AijIeBUC+/jjj/HBBx/YZoEHgI4dO+KCCy7AXXfdhWeffdZnDYxkqu0ASTfOEwF05ozr9zg6QHqixlEAheIweECEwU6fFmGwCy9Utz/8MPDtt0JoPv988NpHSDixe7dYOszlSMKIkyeBzZvFek5OcNsCLx2gM2fOoE2bNlW2t2nTBmdkB0qqTbUFkMQTAbRxo1hqktvtqI4DFGoCSC8RurQUWLRIrK9fH/g2EeLI7NlA69bAX1MKhSQWC7B3r1jX1i8j4cXixWLZsWPQR4ABXgqgTp064a233qqy/a233kLHjh2r3SgiqHYITGJUACkKsGGDWHeW0G4kB8ixGnQohsAA/aHwS5eq52vjRtVlIyRYzJ4t3JNvvgl2S7zn0CE1/5AOUM3h/HnRL/iKGhT+ArwMgb344osYOHAgFi1aZKsBtGbNGhw+fLjKbO3Ee6QAKi0VD8P6wVsHaO9eobZiY4EOHfTf440DFMohMMDeAfrhB3W9sBDYtcv5MD5CAoG8Qwrlkg0y/AWIMInVWrV2GQkss2cDI0YAY8YAb7xR/eMpCvDzz2K9hgggr35hl19+OXbv3o0hQ4bg3LlzOHfuHIYOHYrff/8dn376qa/bGLEkJqpJ8vn5HrzRWwdIhnQuuqiq0yPxxAEKlxCYdIAURRVA8nszDEaCjRRAx44FtRnVYtcudd1iEbl3JHgsWAAMHy5uXj/7TK37Vh127RLX0thY4NJLq388H+C1xM7MzMSzzz6LOXPmYM6cOXjmmWdw9uxZfPjhh75sX0RjNqtaxqMwmLcOkOzMu3d3fmxPHSBFCV0B5OgA7dwJ7N8vvt/IkWKbDBkSEizCzQECmAcUTFavFuUIZArD2bO+yS+T4a9LLnHeJwUYeow1HK/ygOLjxSztEk8FkKuClp46QNIFAkIvB8gxCVq6P337An/7m1inA0SCTTgKIOYBec933wH16gHz53v+3l9/Ba65RvQJ/fsD/fqJ7TJ5uTrUsPAXQAFU4/FKAJlM9mEwIwKoogLYskU8dyWAjDhA2kKI0v0BQtcBOn1afA8pgAYOVM/R1q1q8iYhgUZR1IvDyZPOf4uKAhw44NuEVl8iQ2CyAjQFkPe8+aZwbT7/3LP37d0rBE9+PtCnDzBnjhBBQPUFUEWFGEACiErfNQQKoBqOT4bCOysrrxVA27eLi2dKiv7MrBJPHSApgMxm53lFNZWUFFW07dgBrFwp1gcOBJo2FYUSKyqAbduC1UIS6ZSUqKEKQK3+7sgHHwDZ2cDbbwemXZ5QUiJGgQFA795iSQHkHSUlwIoVYt3T69Ktt4rz3qmTmKQyIQG48krx2ooV1bvRW7sWKCoCGjRwXmIlCHg0Cmzo0KEuXz/HKQN8jk+GwhtxgLThL1flyc1mEV6TSXHuCiFqh8CH2nxaJpMIg+3ZA3z0EVBZKeqtNG8uXu/RA/jpJ3HuXOVNEeIvHC8MR48Kce7I6tViWRPFuqz/k5IiCo4uXMgcIG9ZuVIddbtjhxDHRm48y8vVfMb//U/teC68EGjYUFS9X7sWuPxy79olw185OTVqdJ9HLUlOTnb5aNKkCUaMGOGvtkYkPnGAPBFARjpy7T+UOwcoVIfAS2QYTI5uHDhQfU2GwZgH5B3nzgFz5zKEWB30BJAeBw6IZUGBP1vjHTL81bo1kJYm1ukAeYcUGoAQP9rRda7Yt0/c1Napo97gAeImUOY7VicMVsPq/0g8coA++ugjf7WDOCFgDpCR/B9JTIwqbNwVQgzVEWASmQgt6xBoBZAUixwJ5h1PPSUmvnzvPVFrhHiO44XB2VB4KYA8qqcRIGQCdKtWFEDVRQoNs1nUUtq2zX4aH2dIodSqVVWn/sorgVmzhAB66inP2mO1Au+8o14ja5gAqjleFNElIA5QXh7wxx9i3dcOUKgLIOkAAaIw0yWXqM/ludq5s2Z2LDUdOenl/v3BbUcoY8QBqqwEDh8W6zXxd6oVQHJ6BAogz8nLE6O4AGDIELE0GvLUunCOyDyg9etF8VejHDggBM/YsUIIDRum3lDWECiAajgBEUBr1ojRIVlZQEaG+2NrR4IZDYGF2hB4iVYAXX21/Xdv2FDkWyiKOpM1MY7s5Dh/oPcYEUDHjqk5e6ESAmMOkOfIOQq7dFEnGvWFAMrOFo/KSmD5cvfHUhTg/ffFbAK//CJuft94A/jiC2NtCSAUQDWcgITAiorE0kj4C4gsB0h7x6INf0kYBvOeEyfEkgLIe+SFQSaW6gkgGf4Car4DJAWQnA4jkFgswpWsqaUC3KGtsyPn5PRUALVqpf+6dIGM5AFNmgTccYfoV/r0EW24554alfwsqXktInYExAGSGB3J5IkDFOoCSOsADRhQ9XUmQnuHotAB8gXywiBLV7gTQO4coLNnAysATp9W//4tWohh0kBwpsN4/HEhAL79NrCf6wsURc3/ufpqNe/n6FFj59GVAwQYF0DnzwOvvy7Wn3oKWLbMdVmVIEMBVMMJiAMk8ZUDpFcIMVRDYJ07i+Jg992n5idooQDyjqIiNTx69mxw2+IPNmxQOyR/Ii8M7dqJ5dGjVQWMowBy5qwsWSJqW3ma6FodZMeblSXqldWqBaSmim16eUCKImqWaWsf+Yrt28XSF9M+BJrffxc1oOLihOuSlCTCVoD6vZxx5gxw6pRYd+YAyZFg27apzq0eX30lXMbsbOCxx+xnJKiBUADVcALmAJlMQNeuxo6tFUDu6gCF+jD4mBhRUv611/Rfv+giYe0eOeK8CB2pirZzCzcHaN060QkNGCBCOf7EUQCVllYVlFoBpChqyNuRDRvE62vX+rqVztGGvySu8oDmzhXhnfHjfd8W+Tt01cHXVKTYvvxy9ZpsNAwm/wYXXCCGwevRsKF6vCVLnB/r3XfFcsyYGhnycqTmtzDCCZgAatu26iSqzoikEJg76tRROx/mARlH28mEkwA6cQK44QbhUFgsQhj7E3lhyMgQ8z8BVcNgBw/aP3cWBpPHCuTfQy/3xNVQeFnQcccO37cllAWQ3jxbHTqIpTsB5C78JXEXBtu2TYjn6Ghg1CjXx6ohUADVcKQAKi1VzRRDeBoCMxr+ArxLgg7VEJgRGAbzHG3nVlAgRpiEOpWVwM0324sef+exSNGSkqLmqznWAtI6QIDzROhgCCDpPmg7X1cCSJZO8EfYVH7vUBuCX1Ymcm0A+3m2jDpAvhJA770nloMH66cL1EAogGo4iYlqXSqPBnBINycmRihyPbQCyJOpHLwZBh+uDhCgCiA6QMZxvMsOh2l0Hn9chAdq1waaNRPbZG6Fv9ATQFoHyGJR59mSNyHOLiRSVAQy+dhVCExPiMj9fS2AFCV0HaBVq8SNZnq6fdFDKYB++00tg6CHUQF02WWiL9m3D/jzT/vXiovVavn/+pdn7Q8iFEA1HLNZNXM86iMaNRI/1qws5/v42wEKh0rQRpDicf360B1CG2gcO7dQD4PNnQu88IJY//BDkTwPBMcB0gqgY8eEMxUdrYoMdyGwc+dcd5i+Qg47B+wFkHQPHHOAKivVjtcbAeRqypXCQvU7h5oDpJ1mQlvFuUULIXpLSqoKFi1GBZC2EOwtt9gXRfzyS/G7at5cTZgOASiAQgCv8oAaNhR3BvPnO98nMVFceLKz1bsFIzAHyJ4OHcRoh3PnmAhtFMe77FAWQHv3AiNHivUHHhAVb+VIpmALIJn/k5Wl5gi5C4EpSmAcucOHhSipVct+AldnDtChQ+roL0+G6xcXA3//u/j+zubG0gqqc+fEtStU0Mv/AcQ1STpCzsJgFos6Ga2zEWBa3nlHjBTcsAEYOlQVlSGW/CwJnZZGMPK65XFx1B49XNdgMJvFkM8dO+xFjTu8mQw1nHOAatUCmjQR667utIiKY+cWykPhP/pI3A337q26QPXri2V1Q2B79oiquno5Ulqh4kwAyfyfpk3VsLi7EBgQGEEqw1ktWtgPl3YmgOT+gP3NlSvOnRN5MT/8IGrUrFunv5/j9w2VMNjZs+o8jrL6sxZ5Y+tsKPzBg0LExMaq1zBXtGkD/PijCPMuWgSMGAFs3izc71q1Qib5WUIBFAK0by+WfilPER+vL2JcQQeoKlJoyrsp4ppwcoDkPFvXXqveHEgBVF0H6P77RVXdn36q+lpJieqIGBFAMpbuLgQGeP738CZk5iz04kwAyXCZxJ1oPnlShGPkyDHAuSANVQF08KAQwg0a6E9j5C4R2pkIdUWPHiLkW6uWqPsjC8QOGSIiDyEEBVAI0K2bWNaY6aa8KYQY7gKoeXOxDDcBdOIEcN114g7al8jOTV4wQ1kAybCntgMyEgKrrHTficsQlt6EsVKwREWJO/LMTPHcWwdIK4A8EW5PPCEEn9ahMYJeAjSg5gCdOGFftNHx+K7O3dGjIml3yxbxG5PhIaMCyNd5QJ98Atx9t+9zq2RYwNkcju4EkNH8H0euugr47DORcyTFYgglP0tqhACaOnUqmjZtiri4OPTs2RPrXQwn7tu3L0wmU5XHQM08TbfddluV1/v37x+Ir+IXZH3CjRuD2w4bWgfIXSHESBgGD6gOULiFwGbOFFMDDB/u2wkq5UWzTRuxDDcBZMQBGjJEvEdv+gqJ7LD1OmRt+MtkUh2gEydUZ0jPAdITQKWl9knCnvw9vv9eHNNVgTw9nAkgZ9NhGHWA8vOBSy8Fdu4Ug0GWLxfPgeA4QBaLmBH97bd9XypD77enRdYC2rdPfyZ3bwUQANx0EzB1qlhv3x644grPjxFkgi6AvvzyS4wbNw4TJ07E5s2b0alTJ/Tr1w8nnPwAv/76axw/ftz2+O233xAVFYUbb7zRbr/+/fvb7Tdz5sxAfB2/0LmzSNc5frxqiY+g4E0OULg7QOEaAtu3Tyzz84EHH/TNMcvL1c5LCqBQzgFyJYBc5QCtXStEh7O7c0VR368nPrUCCBCuk/zflG2SDlKTJq5DYI7n3xMHSLbNsd6QO5x1vrVqqedPK/ykYJKhGme/mQULhGOWmQmsXCmOLx25YAigbdtU8eFK7HqDOwGUmqo6g7/9VvX16gggALjzTnFnvmiR/Qi0ECHoAmjKlCkYM2YMRo0ahXbt2mHatGlISEjA9OnTdfevV68e0tPTbY+FCxciISGhigCKjY21269u3bqB+Dp+oXZtUagZqCFhMClwoqL048aRmAOkDYGF01B4KYAA4IsvjM0G7Q45PUR0tHreQtUBKitT2+6JA1RZqb7mbLqM/HzXQ7MdBZDZbB8Gs1pVAeQuBOY46svo38NiUduvF6ZzRkmJWp9Ib/SRYx5QWZn6XeTIJmcCSLbn4ovVxF53AsjxWL4Mga1Yoa77+g7WnQACXIfBqiuAABGiCJHCh44EVQCVl5dj06ZNyNFkr5vNZuTk5GDNmjWGjvHhhx/i5ptvRu3ate22L126FA0bNkTr1q1x55134rSLO5qysjIUFBTYPWoaMg+oRoTB5F2ms+TpSBRAsvBdfn7oduZ6SAEkL6J33eW6nooRZOfSoIEqFEL1nEn3IyZGHa4JqB1uYaH+kOqTJ1Wh7EwAaTtrvQ5ZChkpgAD7ROjjx0UoLCpKbHflADkKIKMO0OnTqkjzxAE6ckR8/4QENeSlxbEW0L59QtAlJrp3DeV5k38D7bo7B0ieI186QCtXqus1SQAVFamOlJEh8GFIUAXQqVOnYLFYkCbV/l+kpaUh10C+wfr16/Hbb7/h9ttvt9vev39/fPLJJ1i8eDFeeOEFLFu2DAMGDIDFSQLa5MmTkZycbHtkuSoeGCRqlACSAsedAKqoiIxh8IAQeLLzCZcwmKKod/XTp4tOafdu4MUXq3dc2bmkpamioaaEwJYv9yyPS3ZA6en2IYCUFLUeip640woabwWQowME2AsgKUiysoTb5ioHyPH8GxWk2nZ54gBpk3f1QieODpA2X0i6+c5+M1K8eSOApNXuKwdIUYw7QLt3iyKa2sRvdxgRQM7mBJPnNDXVXrxHEEEPgVWHDz/8EB06dEAPhyrGN998M6699lp06NABgwcPxvfff48NGzZg6dKluscZP3488vPzbY/DclhrDUImQm/aVAMiLHSA9Am3ROi8PPH3M5vFRfTVV8X2Z5+tnsjTjgCTF96a4ADt3Qv07SuGsxvFWQdkNqsdtV6nq3UYjAogx398owJIFhn0RwhMKxROnBC1dozgruN2FEAyAbplS/cCSJ436S4C9qPy9ASG/L7SXfKVA7Rvn33+lisBdNddwO23q4UNjeCpA6T9DenNwxZhBFUApaamIioqCnkOajsvLw/pbmKKxcXFmDVrFkaPHu32c5o1a4bU1FTsdXLRjo2NRVJSkt2jptGpk3Cy8/J8n0fnMUYdoEgTQOE2FF7e0TdqJP6mw4aJ4a9lZWJIr7dKXOsAyc6sJgggOZXJnj3Gv5urDsjVUHhPHaDy8qrCxZ0A0iZAA8ZCYNKpNRoCc3TqjYbBPBVAnjhAeiEwKYasVv0q144CyFcOkHR/5DXRlQCS+ThGywkoijEB1KaNCDUWFAiHyfHzKICCQ0xMDLp27YrFmsRKq9WKxYsXo1evXi7fO3v2bJSVleEf//iH2885cuQITp8+jQxXP5IaTkKCWhAx6InQnjhAkRICA8LPAZL5PzK/yWQSw15jY8VdqrfxWGcOULCtTRkiqKgwPhWEqw7IVSK0toN1FpZx3O7YKXvqABkJgWVni6U3DhDgOwHkmAMkRYERB0gvBBYTozpgeufbUQCdPOlZKMoZMv9HFgt0JoAqK9XXpHB1R36+en111bfFxAATJ4r1++5TzyUFUPBDYOPGjcP777+Pjz/+GDt27MCdd96J4uJijPqrpPaIESMwfvz4Ku/78MMPMXjwYNTX2pwAioqK8PDDD2Pt2rU4cOAAFi9ejOuuuw4tWrRAv379AvKd/EWNqQckBY4zUROJhRAB3wyFf+opMblqTXBEpACSnSIgOqA+fcT6jh3eHVcvB6iyUszZFEy0ORJGQyBGBJBeh+upA+T4HkBfAMlRYMeOOQ+BlZVVTWSXx5IuprcOkNE8IG9DYJ44QA59g8s8IMeyDEaKVBpBOkA33SSW+fn6v/Njx1TBJUfHuUOew+Rk99fXhx4SdXrOnxc1vSoqKIBQAwTQsGHD8PLLL2PChAno3Lkztm7divnz59sSow8dOoTjDhNM7tq1CytXrtQNf0VFRWHbtm249tpr0apVK4wePRpdu3bFihUrEOvplA81jBqTCG3UASopUecwigQBJDsPbx0gRRF5Nhs3ivl2go3szKQDJJGCyJOkVy1aB0g7FYs/RZ/VKubs2rnT+T7a+ZJ8KYB8EQJzfA/g3gGSfx8pgBIT1f0cw2COAig/X3/+MUdkm2Q5DE8dIGepDloBVFSkuiOe5ABpHSDtc8fzWlqq5i6lp6vns7p5QCdOCLfFZBIOUEKC2K43YbJW9HgqgIxENsxm4OOPxbnbuFE4QswBQnSwGwAAY8eOxdixY3Vf00tcbt26NRQndnl8fDwWLFjgy+bVGLRTYihKEOtOGc0B0v6NIiEEJjuPvDwx/Fnb4Rjh0CG1I9q0CTAQ3vUrjiEwSXUFkNYBMpnERTk3Vwigxo29O6Y7li4F/vlPMY+R3oSYZ86IodmObXSHtzlA2uPn5wu31HFC4uoIoPPn1b+fzAGKihK/ycJC8Zna4efyWFq37+xZ/SHqWqQD1KmTmBTT6G/C3RQOUgBJEQGI81m3rmsBVFKiihmjAkgex2wW5yctTZyPEyfUUWHeIMNfF14o2pyZKdzhY8eqTlKtHXjjDwEEiNGA774r3KjJk8W2qKiq/98RRNAdIGKcjh3FaNaTJ+3/XwKOUQdISyQIoORk9SLrjQukne026IleUDszbacIqBdMXzhAQGCGwsu/x6ZN+iEIx9myjSbB+sIBAvTDMnKbs8lB9QRQfLwqEKxW0ak3aqS+7mwkmDz3qalqrpARR0626eKLxdJXOUDyt2GxALImXMuWYim/n16eljzX0dHqd5U4E0Dye9atK86X/OzqJkJLAXTJJWKpDU86or2g5+aquT2u8FQAAcCNNwK33aY+b9ZM/3odIVAAhRBxcWoRVHdhsOJioFcvcdPrc6Rl6sw6dfyHio1Va6KEO9VJhN6yxX7dF0mY3lJerl6UnTlA2irRRrFa1ZCP7NgDMRRedhYWi/4/j2ONFCMOkMWi7ledHCBAPwwm3ydHPxgRQIDqAgFC/GinrnE2Ekweq25dz/4e0smRAsiIKC4vV7+bs85bOx2GFBKyWJ8UQKWlVYWCNv/H0SJ3J4Dk99a6T9VB5v/IechcCSBH10frRjrDGwEEAG+8of5PR2gBREmE9Erhg9GZ4X/8UUw19Mknvp+AGJdcIi50r7+u/7qjAIqE/B9JdYbCax2goiLPZ9f2JQcPqpV65R2xRAqgo0c9rwp99qyaWyLDK4EUQIDqKGiRAkiKBSOdn5ytXOsaaHHmAFmt6vGleDEigLQJx4piTADJ/B+JMwdIeyz593CXCG2xqG2UAujMGf1h9lqkkIuOrpqorEUKESkkZGedmKjeUDmbw8wx/KXd5iwEJr+3LxygoiL1hsZTBwgwFgbzVgAlJgL/+x9w2WViktYIhgIoxDA6Euybb8TSYvHttDY2mjYVFzA9oqKgaB2fSAh/SXzhAEnBGMwwmDb85Xgn3bChEEaKYjxfQSI7/rp1VaEciFpA7gSQDIHJ8htGBJA8ZsOG+nPiOcsBOntWvStp104sHQWQxaKeDz0HqLRUnWJDujoSVwLI2VB4KQJSUoxPTyKHipvNwlGQAsLdMG5tArQrZ1gKIFn4TIbAzGZV9DkKIGcjwIDAOkBr14q/YZMmIvcGMOYASQFuZCi8twIIALp0AZYtA/r39/y9YQQFUIjhmAitR0UF8MMP6vNgFE6sMGlcIDpA7jlzRr0I3nCDWAZTADlLgAaEIPI2Edox/wcITA6QVgCtXWv/z2O1qgLoyivF0hMB5KwDcuYAyXOQkqKKFUcBdPas2kYpkrQCSDo2ZjNQp479e7UCSCZAS/RCYFo3SRsCc+cAyfakpgoBaPQ34S4BWuIwRZJduMZZIrSzEWDaba5ygADfOECO+T+AMQdI3uF64gCF6ESkNQEKoBCjQwdxk3D6tPObhBUr7PMDAy2ASkuBUosqgJRIEkDe1gKS4a/sbOBvfxPrNUEAOSZAS7zNA9KOAJMEIgSm7XROnLDvpPftEyOH4uKA3r3t2+kKowLozBn7OLTsWNPS1DCgowCSnbRWJGmnw9CGrBwdOk9DYEVFar6ZJw6QFDKyA5af5S4R2mjH7fi6duSUMwHkTQjM0QGSAqg6DpBj/g+gCiDHYfDnz6vtloLJnyEwYoMCKMSIjVXntnMWBpPhL0mgBdC8eUA51MRLa0wEhsCOHDE2kkMiBVCXLupdYDAToZ3VAJL40gGqbghs8WIgJwf4/nv9161WtbOWI6K0YTCZ/9O+vdpJGbn7NyqAtA6L9thGBFBqqioWS0vFEHbAef4P4HkITIqImBghAj11gGT7jP4mjHbcWpF8wQVA7drqc3cOkC9CYN46QBUVwmUE9AWQowMk3Z86ddSLuzsBdP686uJRAHkNBVAI4ioRWlGAb78V69L9DrQA+vBDoByqA1QRFUEOUGqqSDLUzqRuBCmAOncWtUfi40VnJyvgBhqjDpCnAsiXDlB5OfDww0L8LF4MvPmm/n6nT4vEa5MJuO46sU12UIAqgDp2VNt17pyaY+MMdx15rVqq46IVE9pz4KxTloIoNVV0/LLzl52yKwEkO1rAuQDShsAc3aRAOUCeCCCZ/yOpTghMm4gP+N4B2rJFCJR69dTK0oD6fYuKVCELqAIoK0u9aLvLAZLnPi6uag4YMQwFUAgiDQLtNVyyfbu4/sTFASNGiG2BFEAHDoi+SCuASs0RJIBMJu8SoWUCdOfOIrm8UyfxPFhhMHcOkLe1gHyVA7Rzpxh59PLL6jZnd82yw01NVe/ItQ6QzP/p0EF0rDKh2VmFZsfjuurI9YbCa8+BEQcIUEWGEQHUtKn4DvHx9jWAAP0QmDb/BzAuSAPpADkO1/YmBFa3rhou1H43x1Fg8nOLiozPbq9l4UKx7NPHPsm7Th31/GtdICmAGjdWC4EeOuR6bjztOQxaRdzQhwIoBOnbV/zmly5VQ80SGf666ir1pimQAmjGDPF/Gx2vEUCIoBAY4HkidGmpOq9Wly5iKVVuMATQ2bNVJ8d0JJgO0BdfABddJERj/frAK6+I7c46DW1nIUd5/fqr2rlpHSCzWRUl7hwATwSQ1gHyNAQm99W+15UAqlcP+OorYO7cqiUp3DlAztqsh78dIG0OkKcOkF4ILDpafZ9WkDomQScmqkVePXWBFAX4/HOxPmRI1df1wmBSuGdlCcFqMonyEq4EOPN/fAIFUAjSqhUwZoxYv+ce+/xKKYCuu079X/NEAO3dK3Jw5SAGT7BYxHRLAFCnvnrhPW+NIAcI8NwB+u03cfLq11fzNy66SCw3b/Z9+9whRU3DhvZ5F1qkADp92n3dFy3VzQEqKgJGjxZTHlx1lRAvd90lXjt/Xv8YsrPJyBCdTEaGCIFs2iSOJ/9OHTvat82oANKGnBzRGwrvbwEEAEOHAnqTP7vKAZLH8tYBkgIoP9+1m+fNKDCjDpCrEJh2u54Akt/bZPJ+KPzWreJmJi5O/A0c0RNAWgeoVi11H1dhMAogn0ABFKI8+6y4Bvz6K/Dee2LbkSPimm4yAX//u9qX6o26dMaHHwJLlgBPP+15mxYvFjczKSlAUqoqgIoiTQB56gBpE6ClnS0doM2bA58I7S78BYi7ZHmX7YkL5MoBKioSCaSuWLRIOGbZ2cD8+aKziItTj6fXaWiFismkukBr1gC//y7u2rVixMgwaEUx1pEbdYBOn7a/k5EdtHzdUwHkDE9CYJ46QNqimc5cIG1CurtRYA0bqv8Pjg6QuzpA1RFA8rMBzxOhP/tMLAcN0s/NcecAAfZhMGdQAPkECqAQJTVVFSmPPy6uVd99J55ffLG4XkoBVFAg+hYjyL5sxQrPBjEBQjwBwPDhgDlWI4AqI0wAeToUXpsALWnXTtjwBQXezy7vLe4SoCXe5AHpOUDJyWpH5y4PSBa4+vvf7fMrXHUajp2FVgBpw18SI3f/Z86oSdKuOnK9HCB53IYN7UeKaR2X6jpAzvAkBFZY6FqQOjpAgPvQqExId3yfHrVqAY8+CowcaZ9MDOg7QNqJUJ1VmHYUQBaL+v21AsgbB8hiEeFZwPlExq4cICmAZCI0BZDfoQAKYf71L5G3eeaMEEHa8BcgbtLlhORGw2DyulVSol8w1xmnT4vh74CIUGhzD/LLIywHSAqgAwfsR5s4QyZAy/wfQFz8g5UIbcQBAjzPAyouVici1XZ+UVHGJuC0Wu0FkBZXnYZjZyGnbVi7Vl8AGQmByWPWr+96MklHB0hR7IVDrVpqZ64Ng/lbALkKgWlrCzn7e1RUqG3UCkB3eUDahHQjk3BOniwSCx0TffUEkDzH2t+TI44CSFueQB4T8M4B+uUX4W7Vq+e8wrKjAFIU+xCYdkkB5HcogEKY6Gh15O+774oQFKAKIEB1gTwVQICINhjl88/FDXGXLn/145qL27myCHOAMjOFe1NZ6b6eh9Uq4piAvQMEBC8R2lUVaC2eFkOUgiIurmr1YiN5J1u2iAt/7drA5Zfbv+aJA9S1q/jnyc1VBZW3AshdB+SYA1RYqFqrUtTo5QE5E0AyfFTdEFhhoRpadTxWVJS67uzvIdsaFWXvtrgTxb7quPUEkPacORsZ5SiA5Pvr1LGfNNabofAy/DVsmHNx5yiAzp5VbwrkiD35W2YOkN+hAApxLr8cuPlmcSNRWSlyBbVusScCqKjI/hosR3MaQQ58sM0+r7mYnC2JMAFkNqt5QO7CV3v3igtgXFzVRM9gCyB3ITBPHSBt/o9jB2VkKLwsdHj11eooHYkrAaRNggbE8HDptsm2ywJ0gG8FkKMDJB0FbW0fTwSQrxwgRVHj4o45QIB7QSqFWMOG9qFIdw6Q0QRod7hygFxNsOoogPTyfwDPiyEWFwNffy3WnYW/gKoCSLo/qanqlEF0gAIGBVAY8NJLIv8QsHd/AM8EkLxmyb5l40ZjpVmKi9U++tpr/9qouQM6XRxhITDAeCK0zP/p2LHq5LLaRGhXNUF8icWi3nm6c4Bc5QD9+qvI1C8pUbfp5f9IjDhAzsJfgPO7ZkXR7yxkHhAgXIy2bdXnRsIfngog2eHqJYHLTlkKoPJyNUfH1wIoNla9OZFhMMcQmLbdzhKh9fJ/gMA7QCUlYsg44D4BWvuaOwHkqQP07bdCUGZn2/+2HNEKIO1kwvL3C7jPAaqoUH8rFEDVggIoDGjUSIwE69VLHREs8UQAyWtWu3aiP1AUMSLMHRs2iH4zM1PN49MKoFPF8UGb0SFoyDyg3btd76ctgOhI+/aiw8rPD1wi9LFjogOOjq5aRM8RbWfnKND++U+RmPbcc+o2vc5f4m4ofG6u+KEBwDXXVH3d2V3zuXNqB6ntLGQeEAC0bi0cOIk/Q2B6ItDRAZL7amc9l+fs/HnR0XorgEymqnlAescy6gA5JoBrHSB3NZmqg17ivC8FkKcOkAx//eMfrgsTyu9dWirOu2MCNKD+lk+e1C/EKNsUHe36uxK3UACFCcOHA6tXV618740DlJ0tZhcAjOUByWTp3r01//saAVSsxNvlGkYE0r1xrFTpiHYIvCO1aqm5KYEKg0kV3KSJWhHZGY0biz94SYl9R3HggFq/6PXX1U7GiAPkzHL88Uex7NZNf9SVvGvOzVUFD6B2uHXr2osc7V26NvwF2I8Acua8eRMCc0yAlkgBJDtlbTE/GV6qU0cNkeTleS+AgKojwVyFwDx1gGTnXVxcdXoPwHczmJvN6veQvxlfhsA8cYBOnAAWLBDrw4e73jcuTj3Px45VTYAGxPeSo1fk61rkOUxLsw8/Eo/h2QtzPCmGKPs+bwWQnfOrEUAliK/WxMohyZVXiuXmza7rqegNgdcS6DwgownQgPgbS5dIG/KYO1ddLyxUKzW7coDcOQ4y/0cv/AWITk8KhCNH1O2O+T+SJk3UTlibAA2ogkQbinLEUwFUUSHOhSsBJB0gPSdDW5zvwAF1CL43AsixFpCemHI3H5gzByguTr3o6OUB+TJ3RQoJ2f7qOEBa8Qeo5/rUKfv6THp8+aXYp3t34Sa6QxsGc6wBBIi/tSejGonXUACFOd6EwLKzxXQbUVFiLk5XgxEUxb0AKkVc5Amg9HTgwgvFCfrlF/19cnPFw2yu2glLpADypCZBdTCaAC3RywOSyaBXXSWWb7whOhJXDpCrEFhZmZqR70wAmUz6YTBnnYXJJEbrREdXDaklJKij1Jz9cI12QgkJqvN0+rS+CDQigLTv2bVLLM3mqqPpjKANgVksqsjzJATmzAECVBtaLw/IHwLImxBYYaH4XTnOAyapX1/8RhRF38nSog1/GUErgPRCYIBnoxqJ11AAhTlSAOXmur+R0QqgpCSgZ0/x3JUL9Oef4voQE6PO3gCADhDg3kaT+T+tWqlZ7I5ceaXo6Fau1J/91tcYrQEkcUx6zcsDVq0S6x98IEJ7RUVi0lJvHaDly8UxMjL0Q4USvURoV53Fyy+Lz9Nz39yFQDzphLR5QEZygIwKIG29Hk/QhsC09YA8SYJ2Vc1Z/ib0HCBfjQIDqgogIyGw5GQ1tHv6tPMQmDa/xtXFa+tWYP16sf+wYcbarecAaUNg2ueuKptTAFUbCqAwR4aJLRbX/8eKovZh8gbOSBhs9Wqx7NrVYWQyBZDqgDg7gTKvpUcP58fIzhaVcAHgiSd81zZneOoAOQqgb74RP6bu3cVFfNIksf2tt9SEcE9zgGT4a+BA1zkPnjhAgOi0ZK6FI65GghUWqrVbjHRCWjHhbQhM+x6tAPIGbQhMho9q17avg+MPB8jT8+YObxwgs9l+ZJ4zAQQYGw341ltiOXSo+8rWEimADh9WrXlvHKDq5lERCqBwJzpa/T9xFQY7e1Z1wh0F0OLFzqej0g1/AQyBAcBll4k/wL59VYsFVlQAs2aJ9Ztvdn2cCRNE57RoEbB0qV+aasNbB0h+Pxn+kjNhDxok1HFxsfoD9MQBUhR1jpeBA123RS9vwsiEpXq4mgpBHjMx0flksVq0Ha67JGhtyMVfAkjrAOkNgde22V0StCcOkKfnzR3eCCDt6+4EkLvpMM6cUQug3XOPsTYD6m9xyxZRvM1s1s9RA/QFkC9dtAiHAigCMJIHJK9VaWlqNKZnT3GdOnkS2L5d/31OBZDmbrIE8VUmu44I6tRRT4yjC7RwobgAN2igOkXOaNoUGDNGrD/xhP9qAhUUqJ2UHMbvDm0O0LlzajlyORO2yQQ8+aT9ezzJAdq5Uxw7JkZV5M7Qu2t2lgTtDlchME9DEO4cINkhV1QIV8ZZRy7FhgyLVFcAaR0gx2O5coDKy9XtrhwgxxpYvnYuvAmBAcYFkDsH6MMPxXD2Tp2APn2Mt1sKIDlS8oILqtYAYwgsIFAARQBGBJA2/0cSE6POOKAXxSksVIVR794OLzIEJpDixrGstrxzvPnmqhc/PR57TCTTrlypDrn1NdJZSE833rnKH8zhwyL8VVkpCklpR8Ncc40a5tOGILRoQ2BagSfDX1dc4T7h19MQmCt8KYBkh3v0qPinAeyFQ3y86oicPKmGwqQzJJHvkefHlyEwx1FQrhwgeU6085hp6dJF5Nns3Wtfv8rXHbdWAJWUqOE1ow7Q6dOqeNL7Hq5+AxYL8PbbYv2eezzLxZICSI7kcwx/Aepv+fDhqvY7BZDPoACKALwVQIDz/hsQdemsVvG/WiXCwBCYQLoWv/yiZqEXFakzx7qrGyLJzFSrXD7+uH9coJ07xdJx5m1XpKeL5C+LRdT8AVT3R6J1gZo21a8vJDsgi0UVCYA6w6+z0V9atAJInp+aIICkmPjjD7GMiak6Wac2D8hdCEziixCYOweouNi+rhLgfBoM7Xv79hXrMiSqfZ8/BJCRiVAl2srbRkJgeg7Qjz8K27xuXeCWWzxrt+PF0jEBWu4TFSVcQe3nW60MgfkQCqAIoDoCSPbfy5erczhKZAK0buV3OkCC7t3FHfeZM2rNn3nzRIXX5s1dJ0A78uijwinYtEkVBr7EGwFkNqs/GjmqTeb/aOnfX9QH+uor/ePEx6vDxbWFE+WPzHGOFz1kTaKSEiEiqpN06yr8UV0B1LBhVccgGAIoP995DlBysipuHBPTXeX/SK6/XiznzFG3+dMB0oa/3Lkx8rwePCgEBuA6BKZ38ZKzUN9+u/MRnM5wPG96DlB0tHrh1obBTp8WLitgPOmaOIUCKAIwUgzRmQBq3170KyUlquMrcZr/A1AASaKjRfgGUG00o2XzHWnYELj/frH+xBNV78yrizcCCLD/0TRp4nyo+uDBal0jPRzzTr77Tjg53brpdxKOxMaqneuhQ2qHW6eO5/VyXHV+nuYVyQ5X/pPpdVyBFEB6ITDHY5nNqsBwDINJB8JVBzx4sPhtr1unFqb0pwAymgCt3UeOSoyJ0RcxzpKgd+4U/8smE3DnnZ63OybGPrzp7LftKqSbmup8xnliGAqgCMATB8hxKg1t9GLSJPXapyhqWZoq+T9AFQF05ox64xJxaOsJ5OWpQsho+EvLgw+Ku/PffhN3uwMHitDTH3+4D4sdOmRfJdmRHTvEUjsxqBG0AmjoUO9q0wBVh8LLitJ6jpIztJ2GFCqejgADjI0C89QBkn8fVwLo4EF1AlnHzjwpyb7WhC9DYHo5MM4SoV0NgZdkZKgXBvl3rKkCqF49/d+sFMG5ufb/W1OniuWgQcbLRTii/U3qhcC0232R00Z0oQCKANwJIEWxnwfMkdtuEzfhhYXAf/8rtu3eLa6LcXFiEEQV/hJASlQUFLNI8nVXUDVskQJo5UpgxgwRx+/RA2jZ0vNj1a0rRp+kpYnwzo8/CleofXvghhucv6+4WPwRu3fXd44qKtRRO9VxgBzzfzxB2+EWFqqZ94MHGz+GttOoTmchO78zZ9QwicRbAeR4bC1SAEkXLiamqmulnQ4D8I0D5CwEBjhPhHZVBFGLYxjMn6PAZBs9EUBS3OqJP0Bt5+HDQrCMHAl88on4HwaAsWO9ajYAewHkzAFyVdaBAsgnUABFAFIAFRSI/FtH8vJEfo/ZrH8zYjar9b4++kgUPpWpGd26OXFi/9poio83VFA1rGndWsQRy8qAZ54R27xxfyTXXy8uhL/+Crz0kpqpPneumvPiyK+/ivBKbi6wbVvV1/fvFx19QoL7WeAdad5cLBs2dBIPNYh2KPz8+WKUTMuWnjlS2uHD1eks6tVTc2AclXt1BZArB0i6cKmp+q6ELwSQkWHwQPUcIEB17lasEP/8/kqCLi5W/ybuhsADVUWSXv4PIH5LMscnN1eIn5EjxUW0dWv3ZRlc4YkDZLSyOfEYCqAIIClJvZmUUQEtMvzVqJF9MVgtPXsKJwgQoz5dJkADqiqKj/doYuWwxGRSL5ZFRWJ0h9Gy+a6O2bEj8NBDwM8/iwuqogiho4dMUAbE8D1HpPPQurXnM0wPHAjccQfw7rvuZ5B3hbbDlaPkZC6JUXzlAEVFqR2lNhG6pEQVDZ7mAElcCSAZlnHmZPhSAJWXq99NzwWprgPUtKnI+bJagdmz1eP4qvPWjvbas0csPXGAJM4EkMkEvP+++D0uWgQ8/LD4n4uOFnkB3oZ6AVUAxcU5F23yt/zTT8Lhvfpq4NNPxTYKIJ9QIwTQ1KlT0bRpU8TFxaFnz55Yv369031nzJgBk8lk94iTo0f+QlEUTJgwARkZGYiPj0dOTg72yH+QCMVVGMxZArQjkyeLIq7r1wMffyy26eb/AKoAioujAALs7xavusr3IzjkRGzOZo2XRdcAYOPGqq97mwANiL/1u+96FqrSQ3ZEeXnADz+IdU+PqQ0bVPduWe+Hu2KFWKalGRcgSUn2tZ5cCSAZbvOnANKG1lwVVayuAwSoYTA5giImxrng8BTtkHcZvvWlAJLExoo5+V58UdxglJdX/wZGCqCsLOdCqnt3IY4qKkSO38KFqkPobe4RsSPoAujLL7/EuHHjMHHiRGzevBmdOnVCv379cMJFb5mUlITjx4/bHgcdqmW++OKLeOONNzBt2jSsW7cOtWvXRr9+/VDqOI47gvCFAEpPByZOFOvyOu3UAZJWEh0ggVYAVSf85QwpgLRCR4t2u54D5G0CtC+RLsS8eSI8k5amzshrFL0kaG8FkF4itMxn8cSZMpnsO1lXAkjiTwEUFaXOgSbDe54IIKMOEKDmhMkSAOnp1XNOHJG/GXmDayQEVqeOfdzeU0Hmi/bLCXhdjYps0EDkH0nxM2MG8Oyz4uGPa0gEYqAErX+ZMmUKxowZg1GjRgEApk2bhh9++AHTp0/Hf/7zH933mEwmpDv551MUBa+99hoef/xxXPdX7ZBPPvkEaWlpmDdvHm52N+9SmGJEADmOANPjnnuEK7xrlxBMTm8CW7USF9oLL6wy12NEkpYG/OtfIsRRnURhZ8gLqZ4AKisTo8Ykf/wh8ia08zFVxwHyFbIjkjc0117reUhNCqC8PHVoszejwICqDpDFoobmPP0b1q+vHkcvCdpR8PhTAAHCOdEWnDSaBF1aqs4gb8QBat1ahG9+/10893Xopm5dMYJDTmRoxAEymcR+UiA7S4L2JxdfLG46pGPpjPh4cVMSzBuTMCaoDlB5eTk2bdqEHM3dsdlsRk5ODtbIIjM6FBUVoUmTJsjKysJ1112H3+U/F4D9+/cjNzfX7pjJycno2bOn02OWlZWhoKDA7hFu+MIBAsSN0zvviP9Llzch2dniAjNrFh0gybRpoiK0p4XTjCAdoN9/V4dRS37/XdQgqFdPdEBWq31OkKLULAEk8SakVq+een7lD9tXIbDVq8V6Sopa6dgo2o7ZFw6Q2ex5bSMtciSYxOgweBn+iokxLsC0YtEfAkiLEQHkuJ+vQnKe0qaNuJCSoBFUAXTq1ClYLBakOVwQ0tLSkCttVgdat26N6dOn45tvvsFnn30Gq9WK3r1748hf9U3k+zw55uTJk5GcnGx7ZBkpuhZiuBJArobA63HFFeIm8Omn3ezYsCFQqxYFUCC44ALRiVosVWeula5Qly4irwCwzwM6cUIk9ppM3g3N9xXajqhOHeBvf/P8GCZT1VE11RVAstOX0zpce63nReikm+JsLrTERPtjuhNAKSnVC8VoE4hNpqqCCNB3gLT5P0Y/X+YBAb4bAi9xNoeZO2qCACJBJ+g5QJ7Sq1cvjBgxAp07d8bll1+Or7/+Gg0aNMC7777r9THHjx+P/Px82+Pw4cM+bHHNwFk1aItFLTPhSV6ds9FielAABQCTyXkYTD6/6CJVAGnzgKT7k52tTkcRDLSd2YAB3rdFG1aIi3M/N5QztD9cRVEFkDchTNkxN2igH9YzmexdIGcCqHNnIT68EYdatOckKcn5nF6A6gBZrcL+BdQ7KiN07KiWSqADRGoQQRVAqampiIqKQp7DfDt5eXlOc3wcqVWrFrp06YK9f40CkO/z5JixsbFISkqye4QbzhygI0dEdCQmxvtUCXdQAAUIZyPBZLjrootE4SbA3gGqCQnQgH1HVJ0RZVoHKCPDe6dE+8PdtEncKdSuLYYje4rscPXyfyRaAeQYEpOkpIjEWGdzqhlFe41zlgOjdYAsFlETZ8YMIZYeecT4Z5lMwPjx4u9rZFJbT9C23chEqBIKIIIgC6CYmBh07doVixcvtm2zWq1YvHgxehksqGaxWLB9+3Zk/HVnkZ2djfT0dLtjFhQUYN26dYaPGY5IAXT8uDopOaCmSTRp4nn5F6NQAAUIvZFglZVqbSCtANq9W61nUxPyfwDhbNSuLR7XXOP9cbQCqDqqXjsKTLo/11zjXd6GFBOuEoeNOECAsF+rOxJJKxSc5fJIYVBSAtx6q6iCajaLuew8mZ4EAEaPFkJK/kZ9hVYAGZkIVaI9v8FIgiY1gqCPAhs3bhxGjhyJbt26oUePHnjttddQXFxsGxU2YsQIXHDBBZg8eTIA4KmnnsLFF1+MFi1a4Ny5c3jppZdw8OBB3H777QDECLH7778fzzzzDFq2bIns7Gw88cQTyMzMxODq1ikJYdLTxbXLYhHXc+lEezICzFvkdb2oSFxLmffnJ2QIbPt2UaskJkYM1yspETk1LVqIH0HTpiLxa/NmEUqpKQKodm2RJB4dXb0RTo4OkLdoc4Dk8HdvR/D16SP+Hlde6XwfowLIFxgRQElJwlWxWICZM8X6559XvwaOL9GKF0/OGR0gghoggIYNG4aTJ09iwoQJyM3NRefOnTF//nxbEvOhQ4dg1lgTZ8+exZgxY5Cbm4u6deuia9euWL16Ndq1a2fb55FHHkFxcTHuuOMOnDt3Dpdccgnmz59fpWBiJBEdLW4+jx8Xg7McBZA/62olJYlrf3m5GArvrPI7qSZNmogO4exZMez9oovU8FfnzqrF1727EEAbNtQsAQSIOdKqi68FUFmZcMxiYkTVa2/o3VuMHHB1DdIKIKPJvN6iDYE5E0CyftHJk0L8zJwJ3Hijf9vlKdUVQCaT9zliJOSpEUnQY8eOxcGDB1FWVoZ169ahp6b42dKlSzFDTj4H4NVXX7Xtm5ubix9++AFdunSxO57JZMJTTz2F3NxclJaWYtGiRWjVqlWgvk6NRS8PyNMRYN5gMjEMFhBMpqphMG0CtESbB3T+vFp3J9g5QL5CmwRdHQFUu7Z9yYKrr1YLCHqDuxswKYBq1/a/Tart9F2FgORkf19+WfPED1A1BGYUKYBSUqo3fQsJaWqEACKBQQqgb79VnZ9AOEAABVDAcCaAtDcJ2pFgu3aJ9dRU/7sOgeKCC9RckOqOOtImLfujgKUW2Sn7O/wFGAuBAcA33wjLWDuUvSbhrQMk57wLF9FPvIICKIKQJtiHHwLNmon/fRkhoQAKE2Qe0KZN9gUPtQ6QXD94UJ3bqiaEv3xFTIwqfKorgGTSclSUqP/jT2RbfT1PnB5GQmCASLiuycJY23ZPBFDjxmL04/ff+7xJJHQIeg4QCRyPPy6uZT/+CKxapaZ+AEIQ+RMKoAAhxc2vv4q8lYICMZmj9k43OVncAe/aJUb0AOElgADgoYeA+fOBSy+t3nHkD7dvX/8LgauvBu691/9CCzAeAqvpeBsCA9Q7QhKx0AGKIJKSgEcfBZYtE3MgfvUVMGYMMGWK/113zgcWIJo3F3kqZWXAF1+IbR07Vq1cKfOAZEHEcBNADzwALFhQ/WlHZD7iX6NM/UpcHPD6665HivkKow5QTcdbB4gQUABFLCkpIqfxvfdEX+Fv6AAFCLNZdYGmTxdLh0ECANQ8IAlzIfR59FFg3z4g3CZRNpoDVNOJjlYT0ymAiIdQAJGAQAEUQKQAksP99IrPSQdIEm4OkK+IjvZ/glwwCBcBBKjFLj2ZnoMQMAeIBAgKoADiKHj0BFCXLsItslpFjpB26DgJf4xMhREqvP8+sG0b0KlTsFtCQgw6QCQgUAAFEDkSDBCjlzp0qLpPQgLQvr1Yb9WKtVAijbg4UeTQbPb9DO2B5tJLgbvvrv70ICTioANEAoIUQCdPiom1ea3yI61aCYFz/jzQrp3zAnzdu4tpM5j/E5l8+62oGs7cGRKh0AEiAUGOAisrAwoLg9uWsCcqSkx9AbiefHLMGDFq7K9590iE0aeP72dnJySEoAAiASE+XszHCTAMFhAGDRJLVx3cxRcDe/cC/fsHpk2EEFKDoAAiAYN5QAHk4YfF8O0bbgh2SwghpEZCAUQChhRAa9aIPCDiR6KiwnP4NiGE+AgKIBIwWrQQy4ceEvm38+aJUdiEEEJIoKEAIgHj9deBBx8UA5Q2bQKGDBHlaBYuDHbLCCGERBoUQCRg1KsHvPwycOAAMH68qGC/bZuYZYAhMUIIIYGEAogEnAYNgOeeEzm6UVHAmTPAsWPBbhUhhJBIggKIBI3UVKBZM7G+Y0dw20IIISSyoAAiQUUWIaYAIoQQEkgogEhQoQAihBASDCiASFBp104sKYAIIYQEEgogElToABFCCAkGFEAkqLRpI5Z5eWJiakIIISQQUACRoJKYCDRqJNbpAhFCCAkUFEAk6DAMRgghJNBQAJGgIwXQH38Etx2EEEIiBwogEnToABFCCAk0FEAk6FAAEUIICTQUQCToyFpABw8C588Hty2EEEIiAwogEnQaNADq1xczwu/aFezWEEIIiQQogEiNgGEwQgghgYQCiNQIKIAIIYQEEgogUiOgACKEEBJIaoQAmjp1Kpo2bYq4uDj07NkT69evd7rv+++/j0svvRR169ZF3bp1kZOTU2X/2267DSaTye7Rv39/f38NUg0ogAghhASSoAugL7/8EuPGjcPEiROxefNmdOrUCf369cOJEyd091+6dCluueUWLFmyBGvWrEFWVhauvvpqHD161G6//v374/jx47bHzJkzA/F1iJdIAbR7N1BREdy2EEIICX+CLoCmTJmCMWPGYNSoUWjXrh2mTZuGhIQETJ8+XXf/zz//HHfddRc6d+6MNm3a4IMPPoDVasXixYvt9ouNjUV6errtUbdu3UB8HeIlWVlAQgJQWQn8+afrfX/6SYwa++yzwLSNEEJI+BFUAVReXo5NmzYhJyfHts1sNiMnJwdr1qwxdIzz58+joqIC9erVs9u+dOlSNGzYEK1bt8add96J06dPOz1GWVkZCgoK7B4ksJjN6szwrsJg5eXA2LHAmTPAM8+IofOEEEKIpwRVAJ06dQoWiwVpaWl229PS0pCbm2voGI8++igyMzPtRFT//v3xySefYPHixXjhhRewbNkyDBgwABaLRfcYkydPRnJysu2RlZXl/ZciXiMLIroSQB98AOzbJ9Z37QI2bNDf7/Bh4JprgHnzfNpEQgghYUJ0sBtQHZ5//nnMmjULS5cuRVxcnG37zTffbFvv0KEDOnbsiObNm2Pp0qW48sorqxxn/PjxGDdunO15QUEBRVAQcJcIXVQEPPWUWG/QADh5Evj4Y6BHj6r7PvmkCJXt2wcMHuyX5hJCCAlhguoApaamIioqCnl5eXbb8/LykJ6e7vK9L7/8Mp5//nn8/PPP6Nixo8t9mzVrhtTUVOzdu1f39djYWCQlJdk9SOBxJ4Befx3IywOaNQNkitjMmUBZmf1+eXnAp5+K9V27WF2aEEJIVYIqgGJiYtC1a1e7BGaZ0NyrVy+n73vxxRfx9NNPY/78+ejWrZvbzzly5AhOnz6NjIwMn7Sb+AcpgHbuBKxW+9dOnwZefFGsP/MMMGAAkJkJnD0L/PCD/b5Tp4pcIck33/ivzYQQQkKToI8CGzduHN5//318/PHH2LFjB+68804UFxdj1KhRAIARI0Zg/Pjxtv1feOEFPPHEE5g+fTqaNm2K3Nxc5ObmoqioCABQVFSEhx9+GGvXrsWBAwewePFiXHfddWjRogX69esXlO9IjNG8ORAdDRQXA0eO2L82eTJQUAB07gwMGwZERQH/+Id47eOP1f3Onwfeflusy2gnBRAhhBBHgi6Ahg0bhpdffhkTJkxA586dsXXrVsyfP9+WGH3o0CEcP37ctv8777yD8vJy3HDDDcjIyLA9Xn75ZQBAVFQUtm3bhmuvvRatWrXC6NGj0bVrV6xYsQKxsbFB+Y7EGLVqAS1bivXff1e3HzoEvPWWWJ88WYwYA4ARI8Tyxx9FPhAAfPKJcIuaNgU+/FBsW7NGhMUIIYQQiUlROJDYkYKCAiQnJyM/P5/5QAHm+uuBr78WIqdpUyGIzpwRo70uvxxYsgQwmdT9u3UDNm0S+UFjx4ow2u7dwGuvAffdB3TvDmzcCLz/PnD77cH6VoQQQgKBJ/130B0gQrSMHAkkJ4scoH37gAUL1KHuzz9vL37k/oAIg/3wgxA/ycnAP/8ptl93nVjqhcEsFmDaNGDLFv98F0IIITUXOkA60AEKLooC5OYCe/YIQbNnj3B2brut6r4nT4pk6MpKoEULYO9e4JFHgBdeEK9v3w507AjExQGnTgG1a6vvffll4OGHRf0hbciNEEJIaOJJ/00BpAMFUGgxeLDq8ERHA/v3A40aieeKIpKr9+8XobUhQ8T2w4eFqCouFs/z8oCGDQPedEIIIT6EITASUcgwGADcfLMqfgARMtMLgz3wgCp+AGDVKv+2kRBCSM2CAoiEPNdcA6Sni8TpBx+s+rqsBP3ddyJU9tNPwJw5Yij95ZeL11auDFhzCSGE1ABCeioMQgAgNhZYsUIURezcuerrffoA9eqJ0WSLF4vRYoBwgTp3BpYtowAihJBIgzlAOjAHKPwYOVLUCJJziF1wgag4LWsGRUcD587ZJ0kTQggJLZgDRIgDMg9IFkx8/XWgTh2gcWORM1RZCaxfH7z2EUIICSwUQCQiuPpqESoDgP79gaFDxbrJBFxyiVhfsSI4bSOEEBJ4KIBIRFCnjqgM3bq1mCxVW1Dx0kvFknlAhBASOTAHSAfmAEUW27YBnToJkXT2rMgHIoQQEnowB4gQD2jfXkyfUVQkxBAhhJDwhwKIRDxRUUDv3mKdYTBCCIkMKIAIAROhCSEk0qAAIgT2idDMiiOEkPCHAogQAN27AzExYhb6ffuC3RpCCCH+hgKIEABxcUC3bmKdeUCEEBL+UAAR8hcyD4gCiBBCwh8KIEL+ggURCSEkcqAAIuQv5FD4nTvVOcMIIYSEJxRAhPxFvXqiKCIAfPBBcNtCCCHEv1AAEaJhzBix/O9/gWnTgtsWQggh/oMCiBAN994LPPKIWL/zTmD69OC2hxBCiH+gACJEg8kEPP88cP/94vnttwOffhrUJhFCCPEDFECEOGAyAVOmAHfdJapC33YbMGtWsFtFCCHEl1AAEaKDyQS8+abICbJagZEjgXXrgt0qQgghvoICiBAnmM0iEXrIEKC8HLj+eiAvL9itIoQQ4gsogAhxgdkMzJgBtG4NHD0KDBsGVFYGu1WEEEKqCwUQIW5ISgLmzgXq1AGWLQMefTTYLSKEEFJdKIAIMUDbtsDHH4v1KVOYFE0IIaEOBRAhBhk6FPjPf8T66NFilNibbwILFwKHD4sRY4QQQkIDk6Lwsu1IQUEBkpOTkZ+fj6SkpGA3h9QgLBZgwAAhehxJSQF69AAuvhjo2VM86td3fqyKCiGcsrKAWrX81mRCCIkYPOm/KYB0oAAirigrA/73P+C338TEqTt3Anv36idHX3AB0K6dmGOsfXsgKgrYtAnYuBHYulUcq3lz4LnngBtvFMPvCSGEeIcn/XeNCIFNnToVTZs2RVxcHHr27In169e73H/27Nlo06YN4uLi0KFDB/z44492ryuKggkTJiAjIwPx8fHIycnBnj17/PkVSAQRGwsMHw5MniySo3fsAIqLhaiZOhUYMQJo1Urse/SocItee03UFPrnP8U+69YJ8WMyAX/+KUaXXXyxSLImhBDif4IugL788kuMGzcOEydOxObNm9GpUyf069cPJ06c0N1/9erVuOWWWzB69Ghs2bIFgwcPxuDBg/Hbb7/Z9nnxxRfxxhtvYNq0aVi3bh1q166Nfv36obS0NFBfi0QYMTFA164iL+jjj4Fdu4Bz54DVq4H33xdTa1x1FdC3LzBuHPDFF8Du3UB+PjBpElC7NrB+vXi9Xz/xnkOHfNvGoiKA/wKEkJpAZSVQUhLcNgQ9BNazZ090794db731FgDAarUiKysL99xzD/4jM041DBs2DMXFxfj+++9t2y6++GJ07twZ06ZNg6IoyMzMxIMPPoiHHnoIAJCfn4+0tDTMmDEDN998s9s2MQRGAk1eHvDkk8B774k8I0m7dkIQ1a0rBNXZs2JZWCguIBaLuoyOBhISgPh4sYyKAnJzhQt17Jh4j8kENGsmRrW1ayfCb/n5wPHjYp9jx4Dz54G4OHEc+ZDHlevR0UJMyUdZmfr5ct/YWJHnVF6uLsvKxEO+z2IReVINGwJpaWKZmCiOJR9ms2hTYaEQcYWF4n2xsaKdchkVJR5ms7rUrkdFiarelZXqQ1FE/lWtWkLEylwsi0XsK5eAGp40mcT7FEW8ZrWKdfkZ8hEdrR67Vi3xXB5T/t3ko6JCfZSX258rq1Wc09q11WVUlPr5cqk9RkUFUFAAnDypPs6cEe2PjlbbGBsryjtoH/I8yIc8b9rPkg95fmQvoj1HMTHq70j+nQB1f/lwh+N5jYoS56e0VHSgpaXi+5pM9g/Hv4/j52rbrH1PUZH6KCxUjy9/x5WV4hzK8xQTY3+O5O8lIUH8lpOSxDI+vmqIW/5O5N/EbLb/G1ZWim3a32dMTNWH/D/RniP5O5OPggLxfy4feXlVv5v8TO11JTERSE0FGjQQj6Qk9f9I7qc9t/L7O7bx9Glg/371cfiwCP3Lyad9hSf9d7RvP9ozysvLsWnTJowfP962zWw2IycnB2vWrNF9z5o1azBu3Di7bf369cO8efMAAPv370dubi5ycnJsrycnJ6Nnz55Ys2aNrgAqKytDWVmZ7XlBQUF1vhYhHpOWBrz9NvDAA8IdWrBAhMn++EM8fIWiiJDbn38CmnsIQggJOAcPBvfzgyqATp06BYvFgrS0NLvtaWlp2Llzp+57cnNzdffPzc21vS63OdvHkcmTJ+PJJ5/06jsQ4ktatgQmThSPM2eAxYuBX34Rd1l164qRZnXrirsy6SrIO77KSuGUlJSIZUWFEFYXXABkZorl+fOqqNqxA9i3TxwvM1M8MjKECyDvrrUPeeySEvFZcXHqIyam6ueXldnftdaqpbo18mE2izvDvDzgxAmxLC62d0csFvVuOjFRtK9WLXsnSbpJWldCLrWui+Mdt8kkPkO6LuXl4u+gvZM2axIF5F2uySS2yyVQ9bMdnZ2KCrGv/Gy51Lot8lzFxqpL6YAVF6sPq9X+802mqsepU0c4avLOvV49sZ/27r60VBxP63po3YCKCrGfdNOkU6I9N/IhHRV5jhxdGpnzpn1oz60WrTPk6GRo3T/pMEVH23+29m+kbbf2c6Xj4/h31bphtWuL4zu6LY6/GfnbkscFVNeyoEAsHcM9ilLVDbRaq7qG8lxq3UFHp1C+Vx5P/j60f6c6dcT/t3ykp4v/K62rpHVepauUnw+cOiUeJ0+K76N1ObXfW/v9HduYnAxkZ9s/MjK8ukz6jKAKoJrC+PHj7VylgoICZGVlBbFFhIgO68YbxcNXyE6xb1/fHZMQQkKRoCZBp6amIioqCnkOM0zm5eUhPT1d9z3p6eku95dLT44ZGxuLpKQkuwchhBBCwpegCqCYmBh07doVixcvtm2zWq1YvHgxevXqpfueXr162e0PAAsXLrTtn52djfT0dLt9CgoKsG7dOqfHJIQQQkhkEfQQ2Lhx4zBy5Eh069YNPXr0wGuvvYbi4mKMGjUKADBixAhccMEFmDx5MgDgvvvuw+WXX45XXnkFAwcOxKxZs7Bx40a89957AACTyYT7778fzzzzDFq2bIns7Gw88cQTyMzMxODBg4P1NQkhhBBSgwi6ABo2bBhOnjyJCRMmIDc3F507d8b8+fNtScyHDh2CWZMp17t3b3zxxRd4/PHH8d///hctW7bEvHnzcOGFF9r2eeSRR1BcXIw77rgD586dwyWXXIL58+cjLi4u4N+PEEIIITWPoNcBqomwDhAhhBASeoTcVBiEEEIIIYGEAogQQgghEQcFECGEEEIiDgogQgghhEQcFECEEEIIiTgogAghhBAScVAAEUIIISTioAAihBBCSMRBAUQIIYSQiCPoU2HURGRx7IKCgiC3hBBCCCFGkf22kUkuKIB0KCwsBABkZWUFuSWEEEII8ZTCwkIkJye73IdzgelgtVpx7NgxJCYmwmQy+fTYBQUFyMrKwuHDhznPmJ/huQ4cPNeBg+c6cPBcBw5fnWtFUVBYWIjMzEy7idT1oAOkg9lsRqNGjfz6GUlJSfyHChA814GD5zpw8FwHDp7rwOGLc+3O+ZEwCZoQQgghEQcFECGEEEIiDgqgABMbG4uJEyciNjY22E0Je3iuAwfPdeDguQ4cPNeBIxjnmknQhBBCCIk46AARQgghJOKgACKEEEJIxEEBRAghhJCIgwKIEEIIIREHBVAAmTp1Kpo2bYq4uDj07NkT69evD3aTQp7Jkyeje/fuSExMRMOGDTF48GDs2rXLbp/S0lLcfffdqF+/PurUqYPrr78eeXl5QWpx+PD888/DZDLh/vvvt23jufYdR48exT/+8Q/Ur18f8fHx6NChAzZu3Gh7XVEUTJgwARkZGYiPj0dOTg727NkTxBaHJhaLBU888QSys7MRHx+P5s2b4+mnn7abS4rn2juWL1+OQYMGITMzEyaTCfPmzbN73ch5PXPmDIYPH46kpCSkpKRg9OjRKCoq8kn7KIACxJdffolx48Zh4sSJ2Lx5Mzp16oR+/frhxIkTwW5aSLNs2TLcfffdWLt2LRYuXIiKigpcffXVKC4utu3zwAMP4LvvvsPs2bOxbNkyHDt2DEOHDg1iq0OfDRs24N1330XHjh3ttvNc+4azZ8+iT58+qFWrFn766Sf88ccfeOWVV1C3bl3bPi+++CLeeOMNTJs2DevWrUPt2rXRr18/lJaWBrHloccLL7yAd955B2+99RZ27NiBF154AS+++CLefPNN2z48195RXFyMTp06YerUqbqvGzmvw4cPx++//46FCxfi+++/x/Lly3HHHXf4poEKCQg9evRQ7r77bttzi8WiZGZmKpMnTw5iq8KPEydOKACUZcuWKYqiKOfOnVNq1aqlzJ4927bPjh07FADKmjVrgtXMkKawsFBp2bKlsnDhQuXyyy9X7rvvPkVReK59yaOPPqpccsklTl+3Wq1Kenq68tJLL9m2nTt3TomNjVVmzpwZiCaGDQMHDlT++c9/2m0bOnSoMnz4cEVReK59BQBl7ty5tudGzusff/yhAFA2bNhg2+enn35STCaTcvTo0Wq3iQ5QACgvL8emTZuQk5Nj22Y2m5GTk4M1a9YEsWXhR35+PgCgXr16AIBNmzahoqLC7ty3adMGjRs35rn3krvvvhsDBw60O6cAz7Uv+fbbb9GtWzfceOONaNiwIbp06YL333/f9vr+/fuRm5trd66Tk5PRs2dPnmsP6d27NxYvXozdu3cDAH799VesXLkSAwYMAMBz7S+MnNc1a9YgJSUF3bp1s+2Tk5MDs9mMdevWVbsNnAw1AJw6dQoWiwVpaWl229PS0rBz584gtSr8sFqtuP/++9GnTx9ceOGFAIDc3FzExMQgJSXFbt+0tDTk5uYGoZWhzaxZs7B582Zs2LChyms8175j3759eOeddzBu3Dj897//xYYNG3DvvfciJiYGI0eOtJ1PvWsKz7Vn/Oc//0FBQQHatGmDqKgoWCwWPPvssxg+fDgA8Fz7CSPnNTc3Fw0bNrR7PTo6GvXq1fPJuacAImHD3Xffjd9++w0rV64MdlPCksOHD+O+++7DwoULERcXF+zmhDVWqxXdunXDc889BwDo0qULfvvtN0ybNg0jR44McuvCi6+++gqff/45vvjiC7Rv3x5bt27F/fffj8zMTJ7rMIchsACQmpqKqKioKqNh8vLykJ6eHqRWhRdjx47F999/jyVLlqBRo0a27enp6SgvL8e5c+fs9ue595xNmzbhxIkTuOiiixAdHY3o6GgsW7YMb7zxBqKjo5GWlsZz7SMyMjLQrl07u21t27bFoUOHAMB2PnlNqT4PP/ww/vOf/+Dmm29Ghw4dcOutt+KBBx7A5MmTAfBc+wsj5zU9Pb3KQKHKykqcOXPGJ+eeAigAxMTEoGvXrli8eLFtm9VqxeLFi9GrV68gtiz0URQFY8eOxdy5c/HLL78gOzvb7vWuXbuiVq1adud+165dOHToEM+9h1x55ZXYvn07tm7dant069YNw4cPt63zXPuGPn36VCnnsHv3bjRp0gQAkJ2djfT0dLtzXVBQgHXr1vFce8j58+dhNtt3hVFRUbBarQB4rv2FkfPaq1cvnDt3Dps2bbLt88svv8BqtaJnz57Vb0S106iJIWbNmqXExsYqM2bMUP744w/ljjvuUFJSUpTc3NxgNy2kufPOO5Xk5GRl6dKlyvHjx22P8+fP2/b597//rTRu3Fj55ZdflI0bNyq9evVSevXqFcRWhw/aUWCKwnPtK9avX69ER0crzz77rLJnzx7l888/VxISEpTPPvvMts/zzz+vpKSkKN98842ybds25brrrlOys7OVkpKSILY89Bg5cqRywQUXKN9//72yf/9+5euvv1ZSU1OVRx55xLYPz7V3FBYWKlu2bFG2bNmiAFCmTJmibNmyRTl48KCiKMbOa//+/ZUuXboo69atU1auXKm0bNlSueWWW3zSPgqgAPLmm28qjRs3VmJiYpQePXooa9euDXaTQh4Auo+PPvrItk9JSYly1113KXXr1lUSEhKUIUOGKMePHw9eo8MIRwHEc+07vvvuO+XCCy9UYmNjlTZt2ijvvfee3etWq1V54oknlLS0NCU2Nla58sorlV27dgWptaFLQUGBct999ymNGzdW4uLilGbNmimPPfaYUlZWZtuH59o7lixZont9HjlypKIoxs7r6dOnlVtuuUWpU6eOkpSUpIwaNUopLCz0SftMiqIpd0kIIYQQEgEwB4gQQgghEQcFECGEEEIiDgogQgghhEQcFECEEEIIiTgogAghhBAScVAAEUIIISTioAAihBBCSMRBAUQIIYSQiIMCiBBCDGAymTBv3rxgN4MQ4iMogAghNZ7bbrsNJpOpyqN///7BbhohJESJDnYDCCHECP3798dHH31kty02NjZIrSGEhDp0gAghIUFsbCzS09PtHnXr1gUgwlPvvPMOBgwYgPj4eDRr1gz/+9//7N6/fft2/O1vf0N8fDzq16+PO+64A0VFRXb7TJ8+He3bt0dsbCwyMjIwduxYu9dPnTqFIUOGICEhAS1btsS3337r3y9NCPEbFECEkLDgiSeewPXXX49ff/0Vw4cPx80334wdO3YAAIqLi9GvXz/UrVsXGzZswOzZs7Fo0SI7gfPOO+/g7rvvxh133IHt27fj22+/RYsWLew+48knn8RNN92Ebdu24ZprrsHw4cNx5syZgH5PQoiP8Mmc8oQQ4kdGjhypREVFKbVr17Z7PPvss4qiKAoA5d///rfde3r27KnceeediqIoynvvvafUrVtXKSoqsr3+ww8/KGazWcnNzVUURVEyMzOVxx57zGkbACiPP/647XlRUZECQPnpp5989j0JIYGDOUCEkJDgiiuuwDvvvGO3rV69erb1Xr162b3Wq1cvbN26FQCwY8cOdOrUCbVr17a93qdPH1itVuzatQsmkwnHjh3DlVde6bINHTt2tK3Xrl0bSUlJOHHihLdfiRASRCiACCEhQe3atauEpHxFfHy8of1q1apl99xkMsFqtfqjSYQQP8McIEJIWLB27doqz9u2bQsAaNu2LX799VcUFxfbXl+1ahXMZjNat26NxMRENG3aFIsXLw5omwkhwYMOECEkJCgrK0Nubq7dtujoaKSmpgIAZs+ejW7duuGSSy7B559/jvXr1+PDDz8EAAwfPhwTJ07EyJEjMWnSJJw8eRL33HMPbr31VqSlpQEAJk2ahH//+99o2LAhBgwYgMLCQqxatQr33HNPYL8oISQgUAARQkKC+fPnIyMjw25b69atsXPnTgBihNasWbNw1113ISMjAzNnzkS7du0AAAkJCViwYAHuu+8+dO/eHQkJCbj++usxZcoU27FGjhyJ0tJSvPrqq3jooYeQmpqKG264IXBfkBASUEyKoijBbgQhhFQHk8mEuXPnYvDgwcFuCiEkRGAOECGEEEIiDgogQgghhEQczAEihIQ8jOQTQjyFDhAhhBBCIg4KIEIIIYREHBRAhBBCCIk4KIAIIYQQEnFQABFCCCEk4qAAIoQQQkjEQQFECCGEkIiDAogQQgghEcf/AxJzkDyjCX+xAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrrklEQVR4nO3dd3iTZRcG8DtpaWmhLVDoklL2pgMoFSqIDNnKEkS2DGUjooJsFFHZyEYBB0vmh0wBQfamzLJklVGGQBe7eb8/jumAtHQkeTPu33XlIg1pckpLc/I85zlHoyiKAiIiIiIboVU7ACIiIiJjYnJDRERENoXJDREREdkUJjdERERkU5jcEBERkU1hckNEREQ2hckNERER2RRHtQMwN51Ohxs3bsDNzQ0ajUbtcIiIiCgDFEVBXFwc/Pz8oNWmvzZjd8nNjRs34O/vr3YYRERElAVRUVEoWLBguvexu+TGzc0NgPzjuLu7qxwNERERZURsbCz8/f2TXsfTY3fJjX4ryt3dnckNERGRlclISQkLiomIiMimMLkhIiIim8LkhoiIiGyK3dXcEBGRcSUmJuLZs2dqh0E2wMnJ6ZXHvDOCyQ0REWWJoiiIjo7GgwcP1A6FbIRWq0WRIkXg5OSUrcdhckNERFmiT2y8vLzg6urKxqiULfomuzdv3kShQoWy9fPE5IaIiDItMTExKbHx9PRUOxyyEQUKFMCNGzfw/Plz5MiRI8uPw4JiIiLKNH2Njaurq8qRkC3Rb0clJiZm63GY3BARUZZxK4qMyVg/T0xuiIiIyKYwuSEiIiKbwuSGiIgomwoXLozJkydn+P7bt2+HRqMx+TH6BQsWIE+ePCZ9DkvE5IbI0iUmyoWIsk2j0aR7GTlyZJYe9+DBg+jevXuG71+tWjXcvHkTHh4eWXo+Sh+PghNZukaNgOPHgVOngLx51Y6GyKrdvHkz6frSpUsxfPhwnD17Num23LlzJ11XFAWJiYlwdHz1S2WBAgUyFYeTkxN8fHwy9TmUcVy5IbJkV68CmzYBN28CO3aoHQ1RuhQFSEhQ56IoGYvRx8cn6eLh4QGNRpP08ZkzZ+Dm5oYNGzagUqVKcHZ2xq5du/DPP//g3Xffhbe3N3Lnzo3Q0FBs2bIl1eO+uC2l0Wjw448/olmzZnB1dUWJEiWwZs2apL9/cVtKv320adMmlClTBrlz50b9+vVTJWPPnz9H3759kSdPHnh6euKLL75Ax44d0bRp00x9n2bOnIlixYrByckJpUqVwq+//prie6hg5MiRKFSoEJydneHn54e+ffsm/f2MGTNQokQJ5MyZE97e3mjZsmWmnttcmNwQWbLNm5OvHzigXhxEGfDwIZA7tzqXhw+N93UMGjQI3377LSIjIxEYGIj4+Hg0bNgQW7duxdGjR1G/fn00adIEV69eTfdxRo0ahVatWuH48eNo2LAh2rZti3v37qXz7/cQ48ePx6+//oodO3bg6tWrGDhwYNLff/fdd1i4cCHmz5+P3bt3IzY2FqtXr87U17Zq1Sr069cPn376KU6ePImPPvoInTt3xrZt2wAAK1aswKRJkzB79mycP38eq1evRoUKFQAAhw4dQt++fTF69GicPXsWGzduRI0aNTL1/GajqOjvv/9WGjdurPj6+ioAlFWrVmX4c3ft2qU4ODgoQUFBmXrOmJgYBYASExOTuWCJ1NCqlaLIm1JFqVNH7WiIkjx69Eg5ffq08ujRo6Tb4uOTf1zNfYmPz/zXMH/+fMXDwyPp423btikAlNWrV7/yc8uVK6f88MMPSR8HBAQokyZNSvoYgDJ06NAU/zbxCgBlw4YNqZ7r/v37SbEAUC5cuJD0OdOnT1e8vb2TPvb29lbGjRuX9PHz58+VQoUKKe+++26Gv8Zq1aop3bp1S3Wf9957T2nYsKGiKIoyYcIEpWTJksrTp09feqwVK1Yo7u7uSmxsbJrPl12Gfq70MvP6rerKTUJCAoKCgjB9+vRMfd6DBw/QoUMH1K5d20SREVmAxEQg5dL3wYOATqdePESv4OoKxMerczFmo+TKlSun+jg+Ph4DBw5EmTJlkCdPHuTOnRuRkZGvXLkJDAxMup4rVy64u7vj9u3bad7f1dUVxYoVS/rY19c36f4xMTG4desWqlSpkvT3Dg4OqFSpUqa+tsjISISHh6e6LTw8HJGRkQCA9957D48ePULRokXRrVs3rFq1Cs+fPwcA1K1bFwEBAShatCjat2+PhQsX4qExl8yMSNWC4gYNGqBBgwaZ/ryPP/4YH3zwARwcHDK9JEdkNY4eBe7dA9zdgWfPgJgY4Px5oFQptSMjMkijAXLlUjuK7Mv1whcxcOBAbN68GePHj0fx4sXh4uKCli1b4unTp+k+zouzkTQaDXTpvEExdH8lo8VERuLv74+zZ89iy5Yt2Lx5M3r27Ilx48bh77//hpubG44cOYLt27fjzz//xPDhwzFy5EgcPHjQ4o6bW13Nzfz583Hx4kWMGDEiQ/d/8uQJYmNjU12IrMKff8qftWoBFSvKddbdEJnd7t270alTJzRr1gwVKlSAj48PLl++bNYYPDw84O3tjYMHDybdlpiYiCNHjmTqccqUKYPdu3enum337t0oW7Zs0scuLi5o0qQJpk6diu3bt2Pv3r04ceIEAMDR0RF16tTB999/j+PHj+Py5cv466+/svGVmYZVHQU/f/48Bg0ahJ07d2boaB4AjB07FqNGjTJxZEQmoE9u3n5bVmx275bkpn17deMisjMlSpTAypUr0aRJE2g0GgwbNizdFRhT6dOnD8aOHYvixYujdOnS+OGHH3D//v1MzWP67LPP0KpVK4SEhKBOnTr4448/sHLlyqTTXwsWLEBiYiLCwsLg6uqK3377DS4uLggICMDatWtx8eJF1KhRA3nz5sX69euh0+lQygJXk61m5SYxMREffPABRo0ahZIlS2b48wYPHoyYmJikS1RUlAmjJDKS+Hhgzx65/vbbgH6fnSs3RGY3ceJE5M2bF9WqVUOTJk1Qr149VNSvpprRF198gTZt2qBDhw6oWrUqcufOjXr16iFnzpwZfoymTZtiypQpGD9+PMqVK4fZs2dj/vz5qFmzJgAgT548mDt3LsLDwxEYGIgtW7bgjz/+gKenJ/LkyYOVK1eiVq1aKFOmDGbNmoXFixejXLlyJvqKs06jmHtDLw0ajQarVq1K87z+gwcPkDdvXjg4OCTdptPpoCgKHBwc8Oeff6JWrVqvfJ7Y2Fh4eHggJiYG7u7uxgqfyLjWrQMaNwaKFgX++Qe4eBEoVgxwcgJiYwFnZ7UjJDv3+PFjXLp0CUWKFMnUiysZj06nQ5kyZdCqVSt89dVXaodjFOn9XGXm9dtqtqXc3d2T9vz0ZsyYgb/++gvLly9HkSJFVIqMyARSbkkBQJEigKcn8O+/0q04NFS92IhIFVeuXMGff/6JN998E0+ePMG0adNw6dIlfPDBB2qHZnFUTW7i4+Nx4cKFpI8vXbqEiIgI5MuXD4UKFcLgwYNx/fp1/PLLL9BqtShfvnyqz/fy8kLOnDlfup3I6umTm7p15U+NRramNmyQrSkmN0R2R6vVYsGCBRg4cCAURUH58uWxZcsWlClTRu3QLI6qyc2hQ4fw1ltvJX08YMAAAEDHjh2xYMEC3Lx585V9BIhsztWrwJkzgFYrJ6X0UiY3vXqpFx8RqcLf3/+lk05kmKrJTc2aNdM9w79gwYJ0P3/kyJFZnuBKZLH0IxfCwoCUvSNYVExElCFWc1qKyG7okxt9vY2efivqzBlp6EdERAYxuSGyJImJaSc3BQpIYTEAHDpk3riIiKwIkxsiS5Jy5EKKGTJJuDVFRPRKTG6ILEnKkQuGunAzuSEieiUmN0SW5MX+Ni9ickNkEWrWrIn+/fsnfVy4cGFMnjw53c/RaDRGGfZsrMdJz8iRIxEcHGzS5zAlJjdEluLFkQuGhIQADg7AjRvA9evmi43IRjRp0gT169c3+Hc7d+6ERqPB8ePHM/24Bw8eRPfu3bMbXippJRg3b95EgwYNjPpctobJDZGl+Ptv4NkzGblQrJjh++TKBeibVnL1hijTunTpgs2bN+PatWsv/d38+fNRuXJlBAYGZvpxCxQoAFdXV2OE+Eo+Pj5w5giWdDG5IbIUL3YlTgu3poiyrHHjxihQoMBLfdTi4+OxbNkydOnSBf/++y/atGmD1157Da6urqhQoQIWL16c7uO+uC11/vx51KhRAzlz5kTZsmWxWX8KMoUvvvgCJUuWhKurK4oWLYphw4bh2bNnAKTP26hRo3Ds2DFoNBpoNJqkmF/cljpx4gRq1aoFFxcXeHp6onv37oiPj0/6+06dOqFp06YYP348fH194enpiV69eiU9V0bodDqMHj0aBQsWhLOzM4KDg7Fx48akv3/69Cl69+4NX19f5MyZEwEBARg7diwAQFEUjBw5EoUKFYKzszP8/PzQt2/fDD93VljNbCkim/eqehu9KlWAuXOZ3JDlURTg4UN1ntvVVcaUvIKjoyM6dOiABQsWYMiQIdD89znLli1DYmIi2rRpg/j4eFSqVAlffPEF3N3dsW7dOrRv3x7FihVDFUOnGF+g0+nQvHlzeHt7Y//+/YiJiUlVn6Pn5uaGBQsWwM/PDydOnEC3bt3g5uaGzz//HK1bt8bJkyexceNGbNmyBQDg4eHx0mMkJCSgXr16qFq1Kg4ePIjbt2+ja9eu6N27d6oEbtu2bfD19cW2bdtw4cIFtG7dGsHBwejWrdsrvx4AmDJlCiZMmIDZs2cjJCQE8+bNwzvvvINTp06hRIkSmDp1KtasWYPff/8dhQoVQlRUFKKiogAAK1aswKRJk7BkyRKUK1cO0dHROHbsWIaeN8sUOxMTE6MAUGJiYtQOhSjZlSuKAiiKVqso9++nf99jx+S+bm6KkpholvCIXvTo0SPl9OnTyqNHj5JvjI+Xn001LvHxGY49MjJSAaBs27Yt6bbq1asr7dq1S/NzGjVqpHz66adJH7/55ptKv379kj4OCAhQJk2apCiKomzatElxdHRUrl+/nvT3GzZsUAAoq1atSvM5xo0bp1SqVCnp4xEjRihBQUEv3S/l48yZM0fJmzevEp/i61+3bp2i1WqV6OhoRVEUpWPHjkpAQIDy/PnzpPu89957SuvWrdOM5cXn9vPzU8aMGZPqPqGhoUrPnj0VRVGUPn36KLVq1VJ0Ot1LjzVhwgSlZMmSytOnT9N8Pj2DP1f/yczrN7eliCxBWiMXDClbVt6lxsUBZ8+aPDQiW1O6dGlUq1YN8+bNAwBcuHABO3fuRJcuXQAAiYmJ+Oqrr1ChQgXky5cPuXPnxqZNmzI86zAyMhL+/v7w8/NLuq1q1aov3W/p0qUIDw+Hj48PcufOjaFDh2Z6nmJkZCSCgoKQK1eupNvCw8Oh0+lwNsXvh3LlysHBwSHpY19fX9y+fTtDzxEbG4sbN24gPDw81e3h4eGIjIwEIFtfERERKFWqFPr27Ys/9SvRAN577z08evQIRYsWRbdu3bBq1So8f/48U19nZjG5IbIEaXUlNsTREahUSa5za4osiaurnPpT45LJYt4uXbpgxYoViIuLw/z581GsWDG8+eabAIBx48ZhypQp+OKLL7Bt2zZERESgXr16ePr0qdH+qfbu3Yu2bduiYcOGWLt2LY4ePYohQ4YY9TlSypEjR6qPNRoNdDqd0R6/YsWKuHTpEr766is8evQIrVq1QsuWLQHIwM+zZ89ixowZcHFxQc+ePVGjRo1M1fxkFpMbIrWlHLnwqmJiPRYVkyXSaOREnxqXDNTbpNSqVStotVosWrQIv/zyCz788MOk+pvdu3fj3XffRbt27RAUFISiRYvi3LlzGX7sMmXKICoqCjdv3ky6bd++fanus2fPHgQEBGDIkCGoXLkySpQogStXrqS6j5OTExITE1/5XMeOHUNCQkLSbbt374ZWq0WpUqUyHHN63N3d4efn99JE8t27d6Ns2bKp7te6dWvMnTsXS5cuxYoVK3Dv3j0AgIuLC5o0aYKpU6di+/bt2Lt3L06cOGGU+AxhQTGR2l41csEQJjdE2ZI7d260bt0agwcPRmxsLDp16pT0dyVKlMDy5cuxZ88e5M2bFxMnTsStW7dSvZCnp06dOihZsiQ6duyIcePGITY2FkOGDEl1nxIlSuDq1atYsmQJQkNDsW7dOqxatSrVfQoXLoxLly4hIiICBQsWhJub20tHwNu2bYsRI0agY8eOGDlyJO7cuYM+ffqgffv28Pb2zto/jgGfffYZRowYgWLFiiE4OBjz589HREQEFi5cCACYOHEifH19ERISAq1Wi2XLlsHHxwd58uTBggULkJiYiLCwMLi6uuK3336Di4sLAgICjBbfi7hyQ6S2lCMXXlg6TpM+uTl2DHj82DRxEdm4Ll264P79+6hXr16q+pihQ4eiYsWKqFevHmrWrAkfHx80bdo0w4+r1WqxatUqPHr0CFWqVEHXrl0xZsyYVPd555138Mknn6B3794IDg7Gnj17MGzYsFT3adGiBerXr4+33noLBQoUMHgc3dXVFZs2bcK9e/cQGhqKli1bonbt2pg2bVrm/jFeoW/fvhgwYAA+/fRTVKhQARs3bsSaNWtQokQJAHLy6/vvv0flypURGhqKy5cvY/369dBqtciTJw/mzp2L8PBwBAYGYsuWLfjjjz/g6elp1BhT0iiKopjs0S1QbGwsPDw8EBMTA3d3d7XDIQJq1pQGfjNmAD16ZOxzFAXw9gbu3AH27ZNCZCIzevz4MS5duoQiRYogZ86caodDNiK9n6vMvH5z5YZITRkZuWCIRsOtKSKiNDC5IVKTfuRCkSJpj1xIC5MbIiKDmNwQqSmjXYkNYXJDRGQQkxsiNWUnuQkNlT/PnQPu3zdeTEREVo7JDZFaoqKAM2cArVZOSmWWp2fyVtahQ8aNjSiD7OxMCpmYsX6emNwQqSUzIxfSwq0pUom+4+1DtQZlkk3Sd2hOOSoiK9jEj0gt+i2pjHYlNqRKFWDxYiY3ZHYODg7IkydP0nwiV1fXpA6/RFmh0+lw584duLq6wtExe+kJkxsiNaQcuZCVehs9/crN/v3S+4YvLmRGPj4+AJDhAYxEr6LValGoUKFsJ8pMbojUkJWRC4aEhAAODsCtW8C1a4C/v/FiJHoFjUYDX19feHl5mXQIItkPJycnaLXZr5hhckOkhqyMXDDExQUIDJRk6cABJjekCgcHh2zXSBAZEwuKidRgjC0pPRYVExGlwuSGyNzi44Hdu+V6doqJ9ZjcEBGlwuSGyNyyM3LBEH1yc+iQFCoTEdk5JjdE5payK7ExTjeVKQPkyiUrQmfOZP/xiIisHJMbInPLzsgFQxwcgMqV5Tq3poiImNwQmVV2Ry6khXU3RERJmNwQmZP+lFSVKlkfuWAIkxsioiRMbojMydhbUnr65Ob4ceDRI+M+NhGRlWFyQ2Quxhq5YIi/P+DtDTx/DkREGPexiYisDJMbInMx1sgFQzQabk0REf2HyQ2RuehXbbI7ciEtTG6IiAAwuSEyH329jTG6EhuiT24OHjTN4xMRWQkmN0TmkHLkgrHrbfT0vW7On5ftLyIiO8XkhsgcjD1ywZB8+YASJeT6oUOmeQ4iIivA5IbIHIw9ciEtoaHyJ+tuiMiOMbkhMgdTHQF/EYuKiYiY3BCZXFQUEBlp/JELhqRMbhTFtM9FRGShmNwQmZqpRi4YEhwMODoCt25JUkVEZIeY3BCZmqlGLhji4gIEBsp1bk0RkZ1ickNkSjodsGWLXDdHcgOw7oaI7B6TGyJTOnoU+Pdf04xcSAuTGyKyc0xuiExJvyX11lumGblgiD65OXRIhnUSEdkZJjdEpmTOehu90qWB3LmBhAQ5pUVEZGeY3BCZijlGLhji4JA8ioFbU0Rkh5jcEJmKOUYupIV1N0Rkx5jcEJlKyq7Ephy5YAiTGyKyY0xuiExFX29Tt675n1uf3Bw/Djx6ZP7nJyJSEZMbIlMw58gFQwoWBHx85LTU0aPmf34iIhUxuTGWY8eAtm2Bjz9WOxKyBClHLuTNa/7n12i4NUVEdkvV5GbHjh1o0qQJ/Pz8oNFosHr16nTvv3LlStStWxcFChSAu7s7qlatik2bNpkn2Fd5/BhYtAhYuZIDC0mdI+AvYnJDRHZK1eQmISEBQUFBmD59eobuv2PHDtStWxfr16/H4cOH8dZbb6FJkyY4agnL7oGBMrDwzh0OLLR3aoxcMITJDRHZKY2iWMYyg0ajwapVq9C0adNMfV65cuXQunVrDB8+PEP3j42NhYeHB2JiYuDu7p6FSNMREgJERAArVgDNmxv3scl6HD4sfWbc3GT0grk6E7/o/n0gXz65fvcu4OmpThxEREaQmddvq6650el0iIuLQz79L3ADnjx5gtjY2FQXk9E3Tjt0yHTPQZZPvyVVq5Z6iQ0gtT4lS8r1gwfVi4OIyMysOrkZP3484uPj0apVqzTvM3bsWHh4eCRd/P39TReQPrk5fNh0z0GWzxLqbfS4NUVEdshqk5tFixZh1KhR+P333+Hl5ZXm/QYPHoyYmJikS5QJ62Eu5EmxcmMZu31kbmqNXEgLkxsiskOOageQFUuWLEHXrl2xbNky1KlTJ937Ojs7w9nZ2eQxbdsGtOpWHtc1TnC6dw+4fFna7pN92bFDvZELhqRMbhTF/J2SiYhUYHUrN4sXL0bnzp2xePFiNGrUSO1wkuTPDzzVOOOYEggA0B1g3Y1dStmV2BISiaAgqfu5cwe4ckXtaIiIzELV5CY+Ph4RERGIiIgAAFy6dAkRERG4evUqANlS6tChQ9L9Fy1ahA4dOmDChAkICwtDdHQ0oqOjERMTo0b4qVSoIIekjmhka2rHJCY3dsmS6m0AIGdOSXAAbk0Rkd1QNbk5dOgQQkJCEBISAgAYMGAAQkJCko5137x5MynRAYA5c+bg+fPn6NWrF3x9fZMu/fr1UyX+F9WpA5TvJMlN4v5DmDlT5YDIvNQeuZAW1t0QkZ2xmD435mLSPjeAjGEIDsYDeCC/5h5Wr9GicWPjPw1ZoHnzgC5dgNdfB/buVTuaZD//DHTqBFSvLjVBRERWyG763FiksmWhODsjD2JQRPkHrVuz7Y3dsLQtKT39ys3hw8Dz5+rGQkRkBkxujC1HDmiCgwEAncsfwsOHQKNGwKVL6oZFJpZy5ELduurG8qJSpaRb8sOHwOnTakdDRGRyTG5M4b9mfp/WPITAQOD2baBhQ+DePZXjItM5elRGLbi5AWFhakeTmlYLhIbKddbdEJEdYHJjCv8lN87HD2H9eqBgQeDMGaBZM+DJE5VjI9OwlJELaWFRMRHZESY3pqAfw3DkCF7zScT69YC7u9RyduokOxhkYyy13kaPyQ0R2REmN6ZQujTg6iqt+M+dS+qB4+gILFkCfPml2gGSUVnayAVD9MnNyZNAQoK6sRARmRiTG1NwdAT+692jPypVpw7w449y03ffAbNmqRQbGZ9+5ELhwpYxcsGQ114D/PyAxESpDyIismFMbkylcoohmv/p2BEYNUqu9+oFrF2rQlxkfCm3pCxh5EJauDVFRHaCyY2pGEhuAGDYMKBzZ6m7YQ8cG2Hp9TZ6TG6IyE4wuTEVfXJz9GiqxmkaDTB7trRCefgQaNxYBoiTlbLUkQuGMLkhIjvB5MZUSpYEcucGHj2Sc+Ap5MgBLF8OBAYCt24BDRoA9++rFCdlz+bN8meVKkDevOrG8ir6hPvSJZkSTkRko5jcmIpWC1SqJNcN7D25uyNVD5ymTdkDxyrpkxtL35ICAA8POckHAAcPqhsLEZEJMbkxpTTqbvReew3sgWPNdLrk5MbSRi6khVtTRGQHmNyY0iuSGwAv9cAZMsRMsVH2WfLIhbQwuSEiO8DkxpT0yU1EhPRBSUPKHjjffsseOFbD0kcuGJIyuVEUdWMhIjIRJjemVKyY1Dk8eQKcOpXuXdkDxwpZyxHwlAIDAScnWXHiqHoislFMbkxJo0m3qPhF7IFjRRISLH/kgiHOzkBwsFzn1hQR2SgmN6aWgbobPfbAsSJ//235IxfSwrobIrJxTG5MLRPJDcAeOFbDWkYuGMLkhohsHJMbU9MnN8ePZ7iRDXvgWAFrrLfR0yc3R46kW+hORGStmNyYWuHCQL588iJy4kSGP409cCzYtWvWM3LBkBIlpND90aNXFroTEVkjJjemptFkemtKjz1wLJQ1jVwwRKsFQkPlOremiMgGMbkxhywmNwB74Fgk/ZaUtXQlNoR1N0Rkw5jcmEM2khuAPXAsSsqRC9ZYb6PH5IaIbBiTG3PQJzcnT0qdQxawB46FsMaRC4bok5tTp4D4eHVjISIyMiY35lCwIODlBSQmAseOZekh2APHQljjyAVDfH3l51Knk1NTREQ2hMmNOaQsKj58OMsPwx44FsAWtqT0uDVFRDaKyY25ZLPuRo89cFSUkADs2iXXrbmYWI/JDRHZKCY35mKk5AZgDxzVpBy5ULy42tFkH5MbIrJRTG7MRT9A8/RpWQHIJvbAUYE1j1wwpFIl+TquXJF9TiIiG8Hkxlz8/OSi0wEREUZ5yBd74MyebZSHpbRY88gFQ9zdgTJl5PrBg+rGQkRkRExuzMmIW1N6KXvg9Owp21VkAtY+ciEt+q0pJjdEZEOY3JiTfmvKyE1qUvbAadUqWweyKC36U1KhodY5ciEtrLshIhvE5MacTLByA6TugZOQwB44JmFrW1J6KZMbRVE3FiIiI2FyY076lZuzZ4HYWKM+dMoeONHRQMOG7IFjNLYycsGQChUAZ2fg3j3g4kW1oyEiMgomN+bk7Q34+8s75KNHjf7wKXvgREYCzZqxB45R2MrIBUOcnIDgYLnOrSkishFMbszNRFtTeil74Pz9d3ItDmWDftXG2kcupIV1N0RkY5jcmJuJkxsgdQ+cxYuBoUNN9lT2QV9vYwtdiQ1hckNENobJjbmZIbkBUvfAGTuWPXCyLOXIBVurt9HTJzdHjkgHZiIiK8fkxtz0RcUXLpi84pc9cIzA1kYuGFK8OJAnD/D4MXDypNrREBFlG5Mbc/P0BIoUketHjpj86dgDJ5tsbeSCIVqt9O8BuDVFRDaByY0azLQ1BbAHTrbZ6hHwF7HuhohsCJMbNeiTGzMto7AHThZduyaDTm1t5IIhTG6IyIYwuVGDGVdu9NgDJwtsdeSCIfptqVOngLg4dWMhIsomJjdqqFhR/rx0SZrDmQl74GSSrY5cMMTXN7nBpBlqwYiITInJjRry5AFKlJDrZq7wZQ+cDNLpgC1b5Lo9JDcAt6aIyGYwuVGLCltTeuyBkwEREcDdu7Y5ciEtTG6IyEYwuVGLiskNwB44r6TfknrrLdscuWAIkxsishFMbtSib+anUnIDsAdOuuyp3kavUiXpHXD1qhyrIyKyUkxu1BISIi8kUVHArVuqhMAeOGmwh5ELhri5AWXLyvWDB9WNhYgoG5jcqMXdHShVSq6ruGTCHjgG2MPIhbRwa4qIbACTGzWpXHejxx44L0jZldhWRy6khckNEdkAJjdqspDkBni5B06bNkBsrNpRqURfb1O3rrpxqCFlcqMo6sZCRJRFTG7UZEHJDZC6B86qVbJV9fffakdlZvY0csGQChUAZ2fgwQOZXE9EZIVUTW527NiBJk2awM/PDxqNBqtXr37l52zfvh0VK1aEs7MzihcvjgULFpg8TpMJDpYX0Zs3gRs31I4GgPTA2bZNBpdfuSInoQcOBB4/VjsyM0k5ciFfPnVjUUOOHMkdtLk1RURWStXkJiEhAUFBQZg+fXqG7n/p0iU0atQIb731FiIiItC/f3907doVmzZtMnGkJpIrV/LpFAtZvQGAN94Ajh0DunWTnYkJE+SU8NGjakdmBvZ4BPxFrLshIiunanLToEEDfP3112jWrFmG7j9r1iwUKVIEEyZMQJkyZdC7d2+0bNkSkyZNMnGkJmRhW1N6bm7AnDnAH38A3t6yU1OlCjBmDPD8udrRmYg9jlwwhMkNEVk5q6q52bt3L+rUqZPqtnr16mHv3r1pfs6TJ08QGxub6mJRLDS50WvcGDh5EmjRQpKaoUOB6tWB8+fVjswE7HHkgiH65OboUeDpU3VjISLKAqtKbqKjo+Ht7Z3qNm9vb8TGxuLRo0cGP2fs2LHw8PBIuvj7+5sj1IzTJzeHD1vs6ZT8+YFly4BffwU8PIB9+6RcaMYMiw05a+xx5IIhxYoBefNKP4ATJ9SOhogo06wqucmKwYMHIyYmJukSFRWldkipBQbK8aTbt+WkjoXSaIB27eS1rlYt4OFDoFcvoH594Pp1taMzEtbbCI2GW1NEZNWsKrnx8fHBrRdGFdy6dQvu7u5wcXEx+DnOzs5wd3dPdbEoLi5A+fJy3UK3plLy95cDRVOmADlzSj5QoQKwZInakWWTvY5cSAuTGyKyYlaV3FStWhVbt25NddvmzZtRtWpVlSIyEguvu3mRVgv07SslGZUry7iGNm2A998H7t1TO7ossueRC4YwuSEiK6ZqchMfH4+IiAhEREQAkKPeERERuHr1KgDZUurQoUPS/T/++GNcvHgRn3/+Oc6cOYMZM2bg999/xyeffKJG+MZjZcmNXunSwJ49wMiRgIMDsHSpLEJt3Kh2ZFmg729Tt679jVwwJDRU/oyMtONW1URkrVRNbg4dOoSQkBCEhIQAAAYMGICQkBAMHz4cAHDz5s2kRAcAihQpgnXr1mHz5s0ICgrChAkT8OOPP6JevXqqxG80KZMbK6vQzZEDGDFCioxLl5Z+hA0aAD16yE6P1WC9TWre3kBAgPw8qjjYlYgoKzSKYmWvptkUGxsLDw8PxMTEWE79zZMncvz42TPg4kVpD2yFHj0CBg+WehxADt38+itg8buG165JMZFWC9y5Y5+diQ1p1UqOyX37LfDFF2pHQ0R2LjOv31ZVc2OznJ3l1BRgdVtTKbm4AJMnSx+8ggWBf/6RbsdDhlh4uxR7H7mQFtbdEJGVYnJjKay07saQ2rXlyHj79tL095tv5HXy5Em1I0sDt6QMY3JDRFaKyY2lsKHkBgDy5AF++QVYvhzw9JRZVZUqAePHA4mJakeXQsqRC3XrqhuLpalYUbbqrl2zmMGuREQZweTGUqTsVKzTqRuLEbVoISs2jRvL1tRnn0kD4EuX1I7sP/qRC7lzA6+/rnY0liV3bqBcObl+8KC6sRARZQKTG0tRrpzU3sTESLGKDfHxAdasAX78UV4vd+6UEqOffrKAw2H6Lalatex75EJauDVFRFaIyY2lyJFDBjYBNrM1lZJGA3TpIttTb7wBxMcDXbsC774LvNB02rxYb5M+JjdEZIWY3FgSG6u7MaRoUWD7duD77wEnJ+CPP6Tx38qVKgTDkQuvpk9uDh60qe1SIrJtTG4siR0kN4B0M/7sM/kyg4Kk5KVFC6BjR9mVM5sdO6S3UEAARy6kpVw5OeMfEwOcP692NEREGcLkxpLok5sjR+ziXXKFCsD+/dL4T6uV01UVKgB//WWmAFJuSXHkgmE5csipKYBbU0RkNZjcWJLSpQFXVylIOXdO7WjMwtlZ+uDs2CEdjaOipE9O//7S8dikWG+TMay7ISIrw+TGkjg6Av/N2bL1rakXhYfLqeyPPpKPp0yRBQOT/TNcuwacPi1LRrVqmehJbASTGyKyMkxuLI2d1N0Ykjs3MGsWsH494OsLnDkjrWdGjZLSGKPiyIWM0yc3EREyB42IyMIxubE0dpzc6DVoIOMbWrWSbsYjR8rKzpkzRnwSfXLDrsSvVqSItJl++hQ4flztaIiIXilLyU1UVBSuXbuW9PGBAwfQv39/zJkzx2iB2S19cnP0KPD8ubqxqMjTE1iyBFi0SEY5HDwoO3Y//GCEWmudLjm5Yb3Nq2k03JoiIquSpeTmgw8+wLZt2wAA0dHRqFu3Lg4cOIAhQ4Zg9OjRRg3Q7pQsKfszDx8aeanC+mg0QJs2Mr7h7beBx4+Bvn2BevWk8DjLOHIh85jcEJEVyVJyc/LkSVT575fd77//jvLly2PPnj1YuHAhFixYYMz47I9Wm3z01o63plJ67TVg40Zg2jRpubJlixwZ/+23LI5v4MiFzGNyQ0RWJEvJzbNnz+Ds7AwA2LJlC9555x0AQOnSpXHz5k3jRWevWHfzEo0G6NVLFl3CwqSnXPv2Updz924mH4xHwDMvNFT+PHPGzJ0WiYgyL0vJTbly5TBr1izs3LkTmzdvRv369QEAN27cgKenp1EDtEtMbtJUsqRMTPjqKzk5v3y5jG9Yty6DD5CQAOzeLddZTJxxBQpIYTHAn0sisnhZSm6+++47zJ49GzVr1kSbNm0QFBQEAFizZk3SdhVlgz65iYgwwRlo6+foCAwdKt2Ny5aVwZuNGwPduwNxca/45B075NRPQABQooRZ4rUZ3JoiIiuRpeSmZs2auHv3Lu7evYt58+Yl3d69e3fMmjXLaMHZrWLFAA8P6Sly6pTa0VisihWBw4eBAQNk22ruXJlVpZ+FaRBHLmQdkxsishJZSm4ePXqEJ0+eIG/evACAK1euYPLkyTh79iy8vLyMGqBd0mqBSpXkOrcA0pUzJzBhgsyjKlQIuHQJqFED+OKLNPrNsd4m65jcEJGVyFJy8+677+KXX34BADx48ABhYWGYMGECmjZtipkzZxo1QLvFuptMqVlTGv916iQnqL7/Xmpgjx1LcSeOXMiekBAZ6X7jBnD9utrREBGlKUvJzZEjR1C9enUAwPLly+Ht7Y0rV67gl19+wdSpU40aoN1icpNp7u7A/PnAqlVS/3rihHQ2TtrZ27JF/qxcmSMXsiJXLqneBrh6Q0QWLUvJzcOHD+Hm5gYA+PPPP9G8eXNotVq8/vrruHLlilEDtFv65Ob4cc7zyaSmTaXxX/Xqcjjqvfdk0Dq3pIyAW1NEZAWylNwUL14cq1evRlRUFDZt2oS3/3uxuH37Ntzd3Y0aoN0qXFhWF549kyUIyhQvLzkm7ucHREYCH3fXQeHIhexjckNEViBLyc3w4cMxcOBAFC5cGFWqVEHVqlUByCpOSEiIUQO0WxpN8urN4cPqxmKlvLxkPpWDA3B6cQQ0HLmQffrk5tAhIwz5IiIyjSwlNy1btsTVq1dx6NAhbNq0Ken22rVrY9KkSUYLzu6x7ibbqlcHvvkGeBuyJfWgEkcuZEvZsoCrKxAbC5w7p3Y0REQGZSm5AQAfHx+EhITgxo0bSRPCq1SpgtKlSxstOLvH5MYoBg4E2uSXLalJJ9/GgwfqxmPVHB2T2xRwa4qILFSWkhudTofRo0fDw8MDAQEBCAgIQJ48efDVV19Bx6Vq49EnNydPAo8eqRuLFdM+SkBgrHT2W/xvXXTunMWBmyRYd0NEFi5Lyc2QIUMwbdo0fPvttzh69CiOHj2Kb775Bj/88AOGDRtm7BjtV8GCUjjy/LmcmqKs2bEDmqdP8cQ3AFdylMDq1cDEiWoHZcWY3BCRhctScvPzzz/jxx9/RI8ePRAYGIjAwED07NkTc+fOxYIFC4wcoh1LWVTMrams++8IuHPjtzFpsoxc+OKL5PmZlEn65CYigm0KiMgiZSm5uXfvnsHamtKlS+PevXvZDopS4BiG7EvR36ZHD+D994HERKB1a+DOHXVDs0oBAUD+/NKmIFULaCIiy5Cl5CYoKAjTpk176fZp06YhMDAw20FRCly5yZ7r11ONXNBogDlzgFKl5K/atZNEhzJBo+HWFBFZNMesfNL333+PRo0aYcuWLUk9bvbu3YuoqCisX7/eqAHaPX1yc/q0tNvNlUvdeKyNvnFfipELbm7S4K9KFVnUGTMGGD5cxRitUZUqwPr1TG6IyCJlaeXmzTffxLlz59CsWTM8ePAADx48QPPmzXHq1Cn8+uuvxo7Rvvn5Ab6+0jAtIkLtaKxPGiMXypcH9DNeR45MHjtFGcSVGyKyYBpFMd6h2GPHjqFixYpItOB1/tjYWHh4eCAmJsZ6RkW88w7wxx/A5MlAv35qR2M9dDrA2xu4exfYsUM6+r2ga1fgp59k0ObRo8Brr6kQpzW6e1f+0QDg/n0gTx5VwyEi25eZ1+8sN/EjM2LdTdZERMiLcDojF374AQgKksLi99+XGlnKgPz5gaJF5Tp/LonIwjC5sQZMbrJGX29TK+2RCy4uwLJlUoezaxcwZIgZ47N23JoiIgvF5MYa6I+Dnz0rM30oY/T1NnXrpnu3EiWA+fPl+rhxwJo1Jo7LVjC5ISILlanTUs2bN0/37x9waI9peHsD/v5AVJQUhrz5ptoRWb7792UpBnhlcgMALVpIOdOUKUDHjsCRI0CRIiaO0drpk5v9+2WehUajbjxERP/J1MqNh4dHupeAgAB06NDBVLHaN25NZc6SJcDTp0CFCkDJkhn6lO+/B8LCgAcPgFat2Hz3lUJCAAcHIDpamgYREVmITK3czNev3ZP5Va4MrFoFHD6sdiTWYd48+fPDDzO8ouDkBPz+u7xmHzoEDBgATJ9uwhitnaurJI8REbI1VbCg2hEREQFgzY314MpNxp08Kf9Ojo5A27aZ+tRChYDffpPrM2bIAhClg3U3RGSBmNxYC31R8fnzsm9CadOvML7zTnIvlkxo0AD48ku53rUrcOaMEWOzNUxuiMgCMbmxFp6eyRWuR46oG4sle/YM0HfJ7tw5yw8zahRQs6ZMvGjZUv4kA/TJzaFDHNJFRBaDyY014dbUq61bJx35fHyA+vWz/DCOjsDixfIwp04BPXvKgSB6QdmyMu8sLk5aFRARWQAmN9aEyc2r6QuJO3SQDCUbfHwkwdFqgV9+SX5oSsHBIXnLlFtTRGQhmNxYE/2LCJMbw6KjZVI1kK0tqZRq1gS++kqu9+4NHDtmlIe1Lay7ISILw+TGmlSsKH9eugT8+6+6sViiX3+Vuo+qVYHSpY32sIMGAQ0bAo8fS/1NTIzRHto2MLkhIgvD5Maa5M0LFC8u19nvJjVFST4lZaRVGz39tlShQsCFC0CXLqy/SUWf3Bw7JhkgEZHKmNxYG9bdGHbgABAZKZMwW7c2+sN7ekqDvxw5gBUrgKlTjf4U1qtQIcDLC3j+XBr6ERGpjMmNtWFyY5i+2rdlS8Dd3SRPERYGjB8v1wcOBPbtM8nTWB+NhltTRGRRmNxYGyY3L3v4MLmVsJG3pF7Up4/kT8+fy/wplj79h8kNEVkQJjfWJiRE3ilHRQG3bqkdjWVYuRKIjZUmhyaemK7RAD/+KKVPUVFA+/aATmfSp7QOTG6IyIIwubE27u5AqVJynUXFQl9I3KmTVP+amIcHsHw5kDMnsGED8O23Jn9KyxcaKn+ePw/cu6duLERk91RPbqZPn47ChQsjZ86cCAsLw4FXvPObPHkySpUqBRcXF/j7++OTTz7BY3s7ocGtqWSXLgF//SVLKh07mu1pg4KAadPk+rBhwLZtZntqy5QvX/JJPv5cEpHKVE1uli5digEDBmDEiBE4cuQIgoKCUK9ePdy+fdvg/RctWoRBgwZhxIgRiIyMxE8//YSlS5fiS/2UQ3vB5CbZzz/Ln7VrAwEBZn3qDz+UfEqnA9q0AW7eNOvTWx5uTRGRhVA1uZk4cSK6deuGzp07o2zZspg1axZcXV0xL40+93v27EF4eDg++OADFC5cGG+//TbatGnzytUem6NPbux9W0qnAxYskOsffmj2p9dogBkzgPLlpfypTRspNLZbTG6IyEKoltw8ffoUhw8fRp06dZKD0WpRp04d7N271+DnVKtWDYcPH05KZi5evIj169ejYcOGaT7PkydPEBsbm+pi9YKDpbbkxg252Ktt24ArV6QIpmlTVUJwdZX6m9y5gb//BoYPVyUMy5AyuWGXQyL7tWkT8OSJqiGoltzcvXsXiYmJ8Pb2TnW7t7c3oqOjDX7OBx98gNGjR+ONN95Ajhw5UKxYMdSsWTPdbamxY8fCw8Mj6eLv72/Ur0MVuXLJNGbAvldv9IXEbdpI8z6VlColJ6gAYOzY5PFWdic4WIaV3rolR8mIyP6sXy/zamrXBhISVAtD9YLizNi+fTu++eYbzJgxA0eOHMHKlSuxbt06fKWfbGjA4MGDERMTk3SJspVfuvZed/PggbQKBlTZknpR69ZAz55yvX174OpVdeNRhYsLEBgo17k1RWR/Tp0C3n9fSgZKl5albZWoltzkz58fDg4OuPVCr5Zbt27Bx8fH4OcMGzYM7du3R9euXVGhQgU0a9YM33zzDcaOHQtdGs1GnJ2d4e7unupiE+w9uVm6VOYYlSuX/G+hsokTJZR796TB39OnakekAtbdENmnO3eAJk2AuDigRg0pSNRoVAtHteTGyckJlSpVwtatW5Nu0+l02Lp1K6pWrWrwcx4+fAjtC31MHBwcAACKve3xp0xu7O1rB5LHLXz4oar/gVJydpb5U3nyAPv3A599pnZEKmByQ2R/njwBmjeX1hxFi8qqupOTqiGpui01YMAAzJ07Fz///DMiIyPRo0cPJCQkoPN/LfQ7dOiAwYMHJ92/SZMmmDlzJpYsWYJLly5h8+bNGDZsGJo0aZKU5NiNwEDAwQG4fRu4dk3taMzr9Gl58XR0BNq1UzuaVIoUkQnigAzXXLZM3XjMTp/cHDoEJCaqGwsRmZ6iAB9/DOzaJU1m164F8udXOyo4qvnkrVu3xp07dzB8+HBER0cjODgYGzduTCoyvnr1aqqVmqFDh0Kj0WDo0KG4fv06ChQogCZNmmDMmDFqfQnqcXGRM8jHjskLiS0USmeUvpC4USOZRm1hmjQBPv8c+P57oEsXafhXsqTaUZlJ6dJydCw+Xqa0ly+vdkREZErjx0tLDq1Wlq7LlFE7IgCARrGz/ZzY2Fh4eHggJibG+utvunYFfvoJ+PJLwF4SvGfPgIIFZcXqf/8D3nlH7YgMev4cqFUL2LlTFtn27VP1QJd5vfUWsH27/GxaQLE3EZnImjXShkNRZKm6Tx+TPl1mXr+t6rQUvcAei4o3bJDExssLaNBA7WjS5Ogog8oLFACOHzf5/3nLwrobItt3/DjwwQfJ21K9e6sdUSpMbqyZPRYV6wuJO3QAcuRQN5ZX8PMDFi2SeueffkqeFGHzbDm52b9fkmp3d+CNN4DBg6Wvx4MHakdGZD63bsn+e0KC9LOZOtViDnbocVvKmj15Ari5yVbNxYtSzWrLbt2SLannz6Wfgr6RoYUbPRoYMUK2pfbvBypUUDsiE4uKAgoVkoL3uDjb2I87fFi+ievWGf57jUb2H6tXl8sbb0h2S2RrHj+Wred9+6SYcN8+IG9eszw1t6XshbNzctM0e9ia+u03SWzCwqwmsQGAoUOBt98GHj0C3ntPXu9tWsGCgI+PnJY6elTtaLInIkJqCipXlsTGwQHo3BnYs0dWETt3lmnoiiLF/dOmSUfH114DihUDOnWSZbtz5+xndZVsl6JIree+fdLz4o8/zJbYZBaTG2tnL3U3ipJ8Suq/VgHWQquVvOy114CzZ4Fu3Wz8dU6jsf6tqZMngZYtgZAQKVzXaKTtQGSkJDVVq8rP4bx5wPnzMuPt99+luCo4WO5/8aLsRXbtKjM6fH3lMadMAY4c4VF5sj5jxwILF0qSv3y5RR8DZXJj7ewluTl0SLaicuaU9t5WpkABee1zdJTmyjNmqB2RiVlrcnPmjMwqCwyURmQajfy8nToF/PorUKKE4c/z9ZVlualTZbXq/n2pxRk8WLaonJxkW3XFCqB/f6BSJXnHW7++nHTcsUOW+4ks1cqVwJAhcn3aNKm1sWCq9rkhI9AnN4cPyzwPrY3mq/pC4hYtZAq4FapWDfjuO+DTT4FPPpHX/9BQtaMyEWtLbs6fl+KoRYvk/xEgP2sjR2atV4+HhxQe60/0PX4sCfrOnXLZvRuIjZXpyZs2yX2cnOQH4o03pG4nPFyW/onUduSIDM0DZHXy44/VjScDWFBs7Z49k6LiJ09kXz+td5bW7NEjeWccEwNs2WLx7xjSoyjSpXz1aqBwYfmdYaFb1tlz/z6QL59cv3sX8PRUN560XLwIfP21tJXWbxO9+64kNcHBpnvexETgxInkZGfnTiA6OvV9NBqpPtcXKVevziJlMr8bN+TNyvXrQL160oHYUZ11kcy8fjO5sQWvvy7HcBYvtsotm1datAho2xYICJAXIytfnXrwQHYlLl6U05SrV1v9l2RYqVKScG/YINsvluTKFdkOmj9fitQB6Xg9apR8c8xNUYB//kmd7Fy48PL9ihZNneyUKGFxR3DJhjx8CLz5pqw6likD7N2r6so5T0vZG1uvu9EXEnfqZBNZQJ48MnPK2VkOG4wfr3ZEJmKJW1PXrgE9e0pSMHeuJDb16snpj7Vr1UlsAElQihdPu0g5JER+9lmkTOaiKPLzeOiQrML+8YdVlQRY/ysF2XZyc+UKoJ8c36mTqqEYU8WK8noEyPSMHTvUjcckLCm5uXkT6NdPEoiZM2U7Vz8fY+NGaS9gaVIWKR85Aty7J6tgX34pqzbOzukXKf/9t2zpEmXF6NHJpyBWrpTWBlaE21K24ORJ2ZvPnVvqUmxgdSOJvgNerVrJSY6NUBSp0Vu4UF7Hjh4F/psZaxv275ct0wIF5EVYje2T27elinvGjOTTSNWry89VzZrmj8eY0ipSTsnJSd786LexWKRMGbF0aXKJw48/ygRgC8Cam3TYZHLz/Lm0g3/0SPpwlC6tdkTGodPJO+1Ll+QYbrt2akdkdPHxssARGSn5259/SgsJm/D4sfxcPnsm38PChc333HfvAuPGyZHVhw/ltqpVJampXds261RYpEzGcOCA1Nk8fixHOy1o35zJTTpsMrkB5B3Znj22lQRs2yav+O7usq3g6qp2RCZx+rScAH74EBg+XGpabUZoqKwuLF0KtGpl+ue7dw+YOFH2/OLjk2MYPVpqa2wxqUmLokiNTspk5/z5l+9XpIj8/tBfypWzrdVfyrhr1+T/S3S0FNj/738W9W6LBcX2yBbrbvSFxO+/b7OJDSCTJGbPlutffSWrNzbDXHU3MTGSFRYpIvUm8fFShPvHH7I9Vr++fSU2gHy9L46AuHlTqtn79k0uUr50SVpo9+ghzQvz5ZP+PGPGANu3J698kW1LSADeeUcSm/Ll5ZSqBSU2mcWVG1vx668yKTs8HNi1S+1osi8mRgpRHj2SkyyWWPBpZB99BMyZA+TPL/U3BQuqHZER/PyzvLhWr26aqum4OCm4HT8+eTJ3hQqS6DRtan8JTWbFxsr/r9275bJvn7zIpeToKIlQeLg0GAwPl9lhZDt0OileX7lSauQOHDDvNnIGcVsqHTab3ERGyhKAq6skBio1WTKauXOB7t2lt8KpU3bxIvX4sXQxPnpU/ty+HciRQ+2osslUP5fx8cD06VJX8++/clvZstJ8r0ULbqtk1fPnwPHj8gZJn/Bcv/7y/YoWTb2VVbYs/82t2dChslLn5AT89Zd8Ty0Qk5t02Gxyk5gopyDi46WoMCst4y1J1aryLnLcOGDgQLWjMZt//pETvTExwIABwIQJakeUTTqd/FzGxcnUbP0U+6x6+FCOcn/3HXDnjtxWsqQkNa1aWfUyukVSFODq1eREZ9cu+f3y4stGnjySkeuTndBQm95Ktim//ZY8WuHnn2UHwEIxuUmHzSY3gFS479ghtSrW3BNG/27fwUEK3OxsCXzVKhnRAMgqcbNm6saTbbVry7vBuXOl+VxWPH4se3ZjxyafACpaVNoEfPCB9a9UWpOYmJe3sl6sy3F0lCw95eqOTfU5sBF790pLhKdPgUGD5P+XBWNBsb2ylaLiBQvkz4YN7S6xASSZGTBArnfqJKs5Vi07RcVPnkiPmuLFpQlfdLTUAvz0k0zw7tCBiY25eXjIybPRo6X31IMHwMGDwOTJUrfh5yfbW/v3y8m1Fi3k/3Hx4kDHjpLknj6dPKCU1HHlitSlPX0qf44Zo3ZERsWVG1uyeLG8iw0Lk3dT1uj5c8DfX17EVq2S/3R26NkzWYjbu1dqOffsAXLmVDuqLNIvRQUHS0FRRjx7Jknu11/LtgggPxdDh0rG5+RkomAp2xQFuHw5eWVn925pNPriS03evMlbWW+8IW/OXFxUCdnuxMXJv/uJE0BQkGw35s6tdlSvxG2pdNh0cnP+vNQfODvLD681VqOuXSvTJAsUkEJGa/wajCQqShKbf/+V2upZs6y0rvr6dTn65eAgp3PSq8V4/lxO/n31lRxRBmQl4MsvZUvL2dk8MZNxPXggmbo+2dm//+XREDlyvLyV5eWlSrg2LTFR3mysWSNbhQcPyhsHK8DkJh02ndzodNKjIiZG3iEHB6sdUeY1by7v9G2imjb7Nm2SliOKAnTrJg13rXLR4rXXZBDkrl2GT2IkJkpfjdGjk6dhe3sDgwdLZsd39Lbl2TMgIiK5SHn37pe7KQMy4DRlslO6tJVm+Bbk88/loIazs8wfs6I2G6y5sVdabfJUY2usu7lzR5quATKNllCvHvDDD/KtnTtXetHdu6d2VFmQVt2NTgcsWSJdcTt0kMQmf37pW3PxotTZMLGxPTlyyImq/v2B5csl8f3nH+CXX6Thk/605/nzsj3ZrZscMsifX1Z2v/tOkiL9vDDKmPnzJbHRX7eixCazmNzYGn1R8eHD6saRFb/9JtsSoaHWf5TdiHr1khXk3LllIsXrr0uzWavyYnKj08mLWmAg0KYNcPasrDqOHSvbUZ9+yqPE9kSjkdNv7dvL/uuJE5LFr1snW5JvvilFZ/fuydb1oEHSGNLDQ+p2vvjCBirvTWznTkkcAWDYMPl/Z8OY3Ngaaz0xpSjJ4xa4avOSRo2kqDggQN7MhoVZ2ZB0fXKzf7/Mq6lYUU7WnDolPVL0NTaDBllFYSOZQd68cmJSPwZCfwR9wgTZvvb2lpM+e/cC338vDT8HDkzuVE3JLl6UY5jPngEtW0pfKBvHmhtbc+mSvAPKkUOKiq2lAPPwYUnMnJ1l/k3evGpHZJFu35YDZHv3ygno6dOlJMXiPXjw8vfUzQ345BO55MmjRlRkzRRFVmt275Z6Lf1QNk9PGb/RvbtdH0hIEhsrTVFPn5ayhR07rHZVlDU39qxwYVnef/ZMjl9ai3nz5M/mzZnYpMPLS/rhtW0rO3gffSS5QWKi2pG9Qp48MvMJAHLlkq2Gy5flRYiJDWWFRpPcO2fTJmDDBqnL+fdfoHdv2fJcv/7lI+j25PlzGTx8+rScOvzf/6w2scksJje2RqOxvqLix4/lnRfALakMyJkz+bQ0IL3T3nlH3qBZtN9+k+Nely7JVkO+fGpHRLakfn0Z8TFjhhQenzkj+7n16kkNjz367DNJ+lxcJLF57TW1IzIbJje2yNrqblavlm2LQoWAWrXUjsYqaDTSz+733+X31vr1clL28mW1I0tHYKBURxcooHYkZKscHYEePeTU3WefSd+EzZulLcZHHwG3bqkdofnMmSPvfACZGaV/XbATTG5skbUlN/pC4o4dOfgwk957T7bQfX1lF7JKFSk8JrJrHh5SZBwZKQW0Op282JcoAXz7re0fId+2Td5IANI76r331I1HBUxubJE+uTl58uUuoJbm6lV5ZwVY97BPFVWuLCesQ0KkVdBbbwELF6odFZEFKFoUWLZMjkFXriyHLAYPlmaAS5faZj3O+fMyz+v5cznuPXSo2hGpgsmNLfL3l6X/58+B48fVjiZ9v/wiv2Bq1pRfRJQlBQvK72/9HLx27eR3GmcTEkFmV+3fL8VqBQvK0Mj335e93P371Y7OeO7flyaH9+9Lv4iffrLbjs5MbmyRRmMdW1M6HXvbGFGuXMCKFdIqBpCa3datgYcP1Y2LyCJotZL1nz0rWzWurtJT4fXXZeDwlStqR5g9z54BrVrJ1+fvL7WMdtzdm8mNrbKG5GbnTmku5eYmy6iUbVqtNPldsEBafCxfDtSoId3tiQiS1AwbJts3nTvLm8HFi2WrasgQ2bqyRp98AmzZIl/fmjWAj4/aEamKyY2tsobkRr9q07q1LDuQ0XTsKB2MPT2lP2JoKHDkiNpREVkQPz/pr3X4sGyLP34MfPONFB3/+KMVNI9KYfp0uWg0UnBnjUOTjYzJja3SJzenTwMJCerGYkhcnBT6AcCHH6obi42qXl0KjcuUkZWb6tWBlSvVjorIwoSESGfM1aulKeCtWzKos2JF65hxsnmzDJgFZNm2aVNVw7EUTG5slZ+fnA/W6YCICLWjednvv0sxSKlSsudNJlG0qJQV1Ksn/9wtWsjvP1s8JEKUZRoN8O67Muts0iTpmn38OFCnjhTonjmjdoSGnTkjx7wTE4EOHYDPP1c7IovB5MaWWfLWlH7cwocf2m01v7l4eMgg5T595OMvv5RT90+eqBoWkeVxcgL695cmgH37SlPAtWtldEjfvjLawVL8+y/QuLEMFA0Plz4+/F2ahMmNLbPU5ObsWek05+AAtG+vdjR2wdERmDpVtuUdHOQEfu3a0heHiF7g6QlMmSK9wt55R9pq/PCDbFtNmiT9FtT09Kk0J/znHyAgQPabrWVIspkwubFl+uTm8GF143jRggXyZ/36snVGZtOzp4ya8fCQYcphYbIST0QGlColM5m2bAGCgmRMzIABQLlyUqOjxv6uoshg0O3bgdy5gT/+kIm6lAqTG1umH6B55ozlHG98/lzmnAAsJFZJ3brAvn1AsWIyw7JaNWDjRrWjIrJgtWvLm8QffwS8vWXbqlkzmYVn7mOIU6cCc+fKFtSSJbJlRi9hcmPLvL2lmZOiAEePqh2N+PNP4OZNmdrbuLHa0dit0qWlMWuNGjJNvFEjWXVnoTFRGhwcgC5dpD/OkCFAzpyyelK5svTLMUczqQ0bZOUIAMaPl/+4ZBCTG1tnaXU3+kLidu2keI9U4+kpp0g//FAO1fXtK7P2nj1TOzIiC+bmBnz9tdQOtm0r7wgWLJD+OKNHm64l+KlT0hNMp5Mk65NPTPM8NoLJja3Tb01ZQnJz9650zgQ4bsFCODnJSvv338sq98yZQMOGUlpAROkoVAj47TfZ461WTZKaESOAkiVlhpUxB7vduSNH0uPiZLl1xgyejHoFJje2zpJWbhYulGWBSpWAwEC1o6H/aDTAZ59JfWSuXFI7+frrUlZARK8QFgbs2iW9uwoXBq5fl54zYWEyYia7njwBmjeXArmiRWWAHFe9X4nJja3Tr9ycP6/+23EOybRo77wjv6P9/WXFPSwM+PtvtaMisgIajTTTi4wEvv1Wtq4OHZJVlpYtZYZeVigK0KOH/Md0d5eeO/nzGzd2G8Xkxtblzy/vJgB1hwsdPQocOybvONq0US8OSldwsIxsqFIFuHdPTlbpy6SI6BVy5gS++EKWPT/+WCbZrlghM1A++yzzbzAnTJA3hVqtrAyVKWOSsG0Rkxt7YAlbU/pXyGbNgHz51IuDXsnHRw6BtG4tu4hdusjvZWuaI0ikKi8vKWA7dgx4+21pujd+vBQdz5ghLTFeZc2a5HEKkyfLDBXKMCY39kDt5ObxY6m3AbglZSVcXIDFi6U+EpDfy82bA/Hx6sZFZFXKlwc2bZIj3GXLyqGKXr2k5nDDhrR7Lxw/Dnzwgfz9xx9L0z7KFCY39kDt5GbNGuD+faBgQRlER1ZBowFGjpQkx9lZvo3h4cDVq2pHRmRl6teXVZwZM6RUIDJSjiXWry8jHlK6dUtORiUkSPPAqVN5MioLmNzYg4oV5c9Ll9QZ/KYvJO7YURphkVV5/33ZpvL2ljeUVapIA0AiygRHRykOPn9e9nmdnKSpaVCQrM7cvi2r3M2ayTuIkiWBZcuAHDnUjtwqMbmxB3nzysA3wPxzpq5dk2VZQEZRk1V6/XUpNA4MlDeWb74pnd+JKJPy5JHGUqdPy0kqnQ6YPVt+R9euDezdK/f54w/53U1ZwuTGXqi1NfXLL7JvXKNGcoJFVqlQITmR2qSJtN5o00a2rTiygSgLihWTlZmdO+X3c1wcsGePrG4vXy4rN5Rlqic306dPR+HChZEzZ06EhYXhwIED6d7/wYMH6NWrF3x9feHs7IySJUti/fr1ZorWiqmR3CgKe9vYGDc3YNUqYOBA+XjUKElyHj1SNy4iq/XGG7LP++uvcv2XX2QFh7JF1eRm6dKlGDBgAEaMGIEjR44gKCgI9erVw+3btw3e/+nTp6hbty4uX76M5cuX4+zZs5g7dy5ee+01M0duhdRIbnbtkn4PuXPL8ivZBAcHYNw4Gdvg6AgsXQrUrAlER6sdGZGV0mpl3t7OnXJKirJNoyjqLSqHhYUhNDQU06ZNAwDodDr4+/ujT58+GDRo0Ev3nzVrFsaNG4czZ84gRxaLrGJjY+Hh4YGYmBi4u7tnK36rEhsr+7iKIkUTXl6mf84PP5SVmw8/BH76yfTPR2a3fTvQooU0/PP3lzKBoCC1oyIiW5SZ12/VVm6ePn2Kw4cPo06Ko8FarRZ16tTB3r17DX7OmjVrULVqVfTq1Qve3t4oX748vvnmGySm013syZMniI2NTXWxS+7uQKlSct0cRcXx8dJRE5DkhmxSzZqyol6qFBAVJUfF9bNRiYjUolpyc/fuXSQmJsLb2zvV7d7e3ohOY3374sWLWL58ORITE7F+/XoMGzYMEyZMwNdff53m84wdOxYeHh5JF39/f6N+HVbFnFtTy5ZJn4aSJWViLtms4sXlgEedOvItb9pUtq1YaExEalG9oDgzdDodvLy8MGfOHFSqVAmtW7fGkCFDMGvWrDQ/Z/DgwYiJiUm6REVFmTFiC2PO5EY/bqFTJzagsgN58wLr10sbD0WRrvFdu0rXeSIic3NU64nz588PBwcH3Lp1K9Xtt27dgo+Pj8HP8fX1RY4cOeCQohFcmTJlEB0djadPn8LJwBh4Z2dnODs7Gzd4a6WfEG7q5Ob8eSkm1mqBDh1M+1xkMXLkAKZPl9l+/ftLfvvPPzI30NNT7eiIyJ6otnLj5OSESpUqYevWrUm36XQ6bN26FVWrVjX4OeHh4bhw4QJ0Ol3SbefOnYOvr6/BxIZeEBwsCceNG3IxlQUL5M969QCeZLMrGg3Qpw+wdq0cG//7byAsDDhzRu3IiMieqLotNWDAAMydOxc///wzIiMj0aNHDyQkJKDzfz1ROnTogMGDByfdv0ePHrh37x769euHc+fOYd26dfjmm2/Qq1cvtb4E65I7t7ytBkxXVJyYCPz8s1xnIbHdatBA6nAKF5bVm9dfBzZvVjsqIrIXqiY3rVu3xvjx4zF8+HAEBwcjIiICGzduTCoyvnr1Km7evJl0f39/f2zatAkHDx5EYGAg+vbti379+hk8Nk5pMHXdzebNwPXrQL580sqW7Fa5cjKyITwciImRhGfCBODcOeDZM7WjIyJbpmqfGzXYbZ8bvWnTZN+gYUNg3TrjP36rVnJSqm9fYMoU4z8+WZ0nT4Du3aXxqp6Dg6zqFC8OlCiR+lK4sDQHJMqIS5eARYvkV1pIiNrRkCll5vWbyY292bcPqFpVmvhFRxv3JNO//wJ+fnJE5uhRqfEhgpygmjpViowvXAAePkz7vo6OQJEiLyc9JUrIfCsOlidAkubx44Gvv5Zh2gDQqBEwdKhsg5LtYXKTDrtPbh49kkrPxETg6lVpK2ssP/wgKzbBwZLcEBmgKMDNm3Ko7sXLhQvJL1SG5MgBFC1qOPHx95d6ebJ9f/0F9OwJnD0rH5cpI9f1Z03q1JEk58031YuRjC8zr99c/LU3Li5A+fLAsWNSd2PM5EY/JJOFxJQOjUYW+Pz8Xn7x0emkZMtQ4vPPP7IoePZs8otaSs7OMmjZUOLj58fExxbcugV8+imwcKF87OUFTJwo45guXADGjpX5k1u2yKV6dUly6tZluy17w5Ube9S1q8x6+vJLYMwY4zxmRIRseDs5yTFzNjYhI0tMBK5dM5z4XLyYfpGyi0vaiY+vL1/4LF1iIjB7tvzKiomR71ePHvLrK0+e1Pe9fBn4/nv5FadvIlmliiQ5jRvze23NuC2VDiY3AGbNkt8Mb78NbNpknMfs10+KKt57L3mmFJGZPH8uu6yGtrkuXZK/T0uuXIYLm0uUkJUBvhiq6/Bh+XV18KB8XKkSMHMmEBqa/uddvy41ObNny248IENdhwyRYa9cybM+TG7SweQGsh0VGirHte/ezf5v7ydPpFnfv/9KD/4GDYwTJ5ERPHsGXLlieMXn8uXkOg1D3NwMJz6lS8t/HzKdmBhZbZkxQ75H7u6yUtOjR+aKym/flq2r6dNlni8gNTpffgm8/z5P5lkTJjfpYHIDSUbc3OS3/sWLcjQlO5YvlxWb116TVxEeZyEr8fSprOy8uNpz/rz8KKf121GrBdq0kRfIsmXNG7OtUxRgyRJgwAA50AnIv/WECbKFmFX37sni8pQpwIMHcluxYsDgwUD79rKjTpaNyU06mNz8p3JlWe9dtgxo2TJ7j9WokazYDB4MfPONceIjUtmTJ5L7G1rx0c/f1WiA5s1lq4M9VrLv3DmgVy8pBgaAkiVlxaVOHeM9R0yMrAZNnCgL14Ccq/jiC6BLFyBnTuM9FxlXZl6/uetor4zVqfj6dWDjRrneqVP2HovIgjg7y/bFO+/ICZ1Zs4CtW6W25/BhSWoURQaDVqwoxar79qkdtXV69AgYPhyoUEESG2dnYPRo4Phx4yY2AODhIe/DLl+W1SAfH0lWe/eWReyJE4GEBOM+J5kfkxt7Zazk5tdfZUP8jTfkbRaRHahYUZKakyflGLJWKw2/q1aVF+Pt29Pe0qLUNm6UpOarr2SbsH594NQpYNgwSXJMJVcu2fq6dEkat/v7yzbYp59Kl+yxY4HYWNM9P5kWkxt7lTK5yepvYUVJ7m3z37BTIntSrpz0XDlzRto7OTrK6s5bbwE1ashhRCY5hl2/LqV6DRpIDyM/P9klX79eamHMJWdO2Qq7cAH48UdpEnn3rtRTBQQAI0dKvQ5ZFyY39qpcOXlbFBMjv1myYs8e2STPlUt+SxHZqRIlpK/KhQvSOdfZGdi1S1YhqlQB/ve/9E9l2ZPnz4FJk+TE2fLlcv7gk08kQWzZUr2j905OUnNz9qwsSJcuLYXHo0ZJkjNokJy8IuvA5MZe5cghTR+ArG9N6Vdt3ntPTl8R2bmAACmAvXhRtjxcXeW/V9OmMpVk6VJpSGev9u2TReMBA+RY9uuvS/3SxImW8yvE0RFo1062HH//HQgMlFi/+062qz75RPqUkmVjcmPPslN3k5Agv6kBjlsgeoGfnxSrXr4s2xtubsCJE9JXpWxZ4Oef0++obGvu3QM++gioVk0mv+TNC8yZA+zenfwey9I4OMj7tqNHZeWtcmUpfJ48WQqPe/aUdgFkmZjc2LPsJDfLl8vbmeLFpZiYiF5SoIA0nrtyRbY38uaVndxOnaT+fvZsOXJuqxRFErlSpSSZURT52s+eBbp1s44uwVqtnJg7cECKn8PDpfB55kz59deli2xHkmWxgh8tMhl9cnP4cOYLAubNkz87dWJ/eqJXyJtXjjpfuSLbG15esqrz8cdSPDtlCvDwodpRGtepU0DNmvIr4u5dKfPbsUN2swsUUDu6zNNogHr1gJ075TRc7dpSPzRvniRv7doBp0+rHSXpMbmxZ2XKyETB+Hh5O5lR//wjv6U0GqBjR9PFR2Rj3NyAzz+X48dTpkhT7+vXgf79Zavj+++BuDi1o8yehAQpvg0Oll8Trq6S0B09KlO6rZ1GI9Pst2yRMxWNGsl7w4ULgfLlpSg6IkLtKInJjT1zdExuq5qZrakFC+TPt98GChY0elhEts7VFejbV94nzJ4thaq3b0uX3IAAaWB3/77aUWbemjVSU/Tdd7Kq8e67sprx+edyhsHWVK0KrF37clPHkBCgSRNg/361I7RfTG7sXWbrbhITk5MbFhITZYuzM9C9uyyc6mtT7t8HRoyQJOfLL4E7d9SO8tWuXJFE5t13pYNzQIAkOqtXy3Vbp2/qeOKEzMHSaiXpef11eQ+4Y4faEdofJjf2LrPJzdatwLVrUkTwzjumi4vIjuTIAXToIHUqS5dKx964OOmSGxAgR6ct8fjx06eySlO2rCQzjo6yJXXqlKxc2Jvy5YFFi4DISKk1cnAANm+WbawaNeQ6mzqaB5Mbe6dPbo4elXXkV9EXErdtywlzREbm4AC0aiU1G6tXJx8/njTJ8o4f79gh2y+DBkkxdI0acsx77Fjp62nPSpaUwukLF6Ro3MlJCpHffjt5K4tJjmkxubF3JUsCuXPLb6czZ9K/77178hsX4LgFIhPSamWLJ63jxx9+KNPJ1XDnjqxKvPmm1NPkzy9batu3ywoOJStcWL5n//wD9Osn7wf375dVrZAQ6ajBztWmweTG3jk4yIYx8OqtqcWLpSlHYGByITIRmcyLx4/r1JEF1vnzZTxA27ayBWQOOp30qilVSpIZjUYa8509K1tq7AiRtoIFpfnf5ctSXJ07t6xyvfeebGUtXJixhXPKOCY3lLrfTXr04xY+/JC/yYjMSH/8ePNmYO9eoHFjSTYWLZIXxxYtgCNHTPf8ERGyevTRR1LwHBwsx6BnzQLy5TPd89oab2+pUbp8WfoeeXhIfU67dtKZY948++pcbUpMbihjRcXHj0vykyOHvF0kIlW8/jrwxx+SzOgHTa5cCVSqJD1X9u413nPFxckspUqVZC5U7txS/3PwoMRBWePpKR2rr1yRDtaenlKf06WL1OSoteVoS5jcUHJyExGR9tsG/arNO+/IJjsRqSokBFi2TAY8tmsndTrr18v8ptq1gW3bsl60qijy2KVLy3aKTidbKGfOSMNBR0djfiX2y8NDjvtfvgyMHy+rYIcPy/d2wQIWHWcHkxuS/u8eHsDjx4b7hz99Cvz2m1xnITGRRSlbFvj1V6l96dJFEo+//gJq1ZKxbxs2ZO5F8p9/gAYN5NTWjRvy62HjRpmQ/dprpvs67Fnu3MCnn0odTs2a0uW5c2fpmfPggdrRWScmNyRv+dIrKl67VobD+PpKdSMRWZzixYEff5TkpFcvaRC4Zw/QsKEszq5alf7JnCdPpDNyuXLApk1yfHn4cGlMx//25lGwoIx1GDtWktSlS6W+afdutSOzPkxuSKRXd6PfkurQgevRRBauUCFg2jSZX/XppzLq4cgRGQ8QGCiHHhMTU3/Oli3SOHDECEly6tSRpGbUKBk/R+bj4CC9g3bvBooWlbqcGjXke8ETVRnH5IZEWsnNzZuykQ9wS4rIivj6Sh3HlSvAkCGAu7scG//gAzmZM3++jEpo0waoW1eKWH18JPn5809pgUXqqVJFequ2by8rbiNHAm+9ZTlNHC0dkxsS+uTm2DF566b366/yP6taNWlwQURWJX9+4Ouv5UXxq6+kaPX8eenoEBAALFkiO9N9+kjB8Pvvs9ODpXB3B375RUoe3dyAXbuAoCCpf6L0MbkhUaSIzIt69kyOXwBShajfkuKqDZFVy5MHGDpUkpxx46TnCgCEhsrR7qlT5VwBWZ62beUwa1gYEBMDtG4txePx8WpHZrmY3JDQaF7emtq3T97KubrK0Qkisnq5cwMDB0pNzv790hdHf56ALFfRotKpeuhQ+XU9b558317Ve9VeMbmhZC8mN/pVm5YtZX2UiGyGi4vUdTg4qB0JZVSOHLK1uG2bnKw6f16a/o0fzxlVL2JyQ8lSJjcJCbIZD8jmPBERWYQ335TyyObNpZLgs8/kuP7Nm2pHZjmY3FAyfXJz8qRMcouLk7XQGjXUjYuIiFLJl0+mis+ZI6twW7bIUf+1a9WOzDIwuaFk/v5AgQLSTGH4cLmtUycenSAiskAaDdCtm/QxCg6WXqtNmsjJt0eP1I5OXUxuKFnKouJbt+Tjjh3VjYmIiNJVurSc//jkE/l42jSpp9IffLVHTG4oNX1yA0ib0kKF1IuFiIgyxNkZmDhRZol5eUliExoKzJhhnwM4mdxQaimTGxYSExFZlfr1gePHZfjp48cyZ6xpU9mysidMbii111+XvjY+PvI/goiIrIq3txQWT54sA1DXrJFi461b1Y7MfJjcUGpeXnIUfN8+IGdOtaMhIqIs0GqBfv2AAwekJufmTZkhNmgQ8PSp2tGZHpMbelmZMjJ0hoiIrFpQkHQx/ugjqb357jsgPFwaANoyJjdEREQ2zNUVmDULWLFCRggeOgSEhAA//2y7xcZMboiIiOxA8+ZSbFyzpjSh79QJ+OAD4MEDlQMzASY3REREdqJgQelmPGaMzBVbskQaAO7Zo3ZkxsXkhoiIyI44OABffgns3i0Tdq5ckSk7o0dLg3pbwOSGiIjIDoWFAUePAu3aAYmJwIgRwFtvAVevqh1Z9jG5ISIislPu7sCvv8rFzQ3YtUtOWC1bpnZk2cPkhoiIyM61awdERMhqzoMHQKtWQJcuUnhsjZjcEBEREYoWBXbuBIYMkbnJ8+YBFSvK1HFrw+SGiIiIAAA5cgBffw1s2yYnq86dk6k8EyYAOp3a0WUckxsiIiJK5c03gWPHpDfOs2fAwIEylPPmTbUjyxgmN0RERPSSfPmA5cuBOXMAFxdg82YZwLlundqRvRqTGyIiIjJIowG6dZP5VEFBwN27QOPGQN++wOPHakeXNotIbqZPn47ChQsjZ86cCAsLw4EDBzL0eUuWLIFGo0HTpk1NGyAREZEdK1MG2L8f6N9fPv7hB6BKFeDUKVXDSpPqyc3SpUsxYMAAjBgxAkeOHEFQUBDq1auH27dvp/t5ly9fxsCBA1G9enUzRUpERGS/nJ2BSZOA9esBLy/gxAmgcmVg5kzLG8CpenIzceJEdOvWDZ07d0bZsmUxa9YsuLq6Yt68eWl+TmJiItq2bYtRo0ahaNGiZoyWiIjIvjVoIAM469eXramePYFmzWTLylKomtw8ffoUhw8fRp06dZJu02q1qFOnDvbu3Zvm540ePRpeXl7o0qXLK5/jyZMniI2NTXUhIiKirPP2lsLiSZMAJyfgf/+Tmpy//lI7MqFqcnP37l0kJibC29s71e3e3t6Ijo42+Dm7du3CTz/9hLlz52boOcaOHQsPD4+ki7+/f7bjJiIisndardTg7N8PlC4N3LgB1KkDDBokx8dVjU3dp8+cuLg4tG/fHnPnzkX+/Pkz9DmDBw9GTExM0iUqKsrEURIREdmP4GDg0CGge3epvfnuOyA8HHj4UL2YHNV7aiB//vxwcHDArVu3Ut1+69Yt+Pj4vHT/f/75B5cvX0aTJk2SbtP91zLR0dERZ8+eRbFixVJ9jrOzM5ydnU0QPREREQFArlzA7NlAvXpA166S8Li6qhePqsmNk5MTKlWqhK1btyYd59bpdNi6dSt69+790v1Lly6NEydOpLpt6NChiIuLw5QpU7jlREREpKLmzeWIeN686sahanIDAAMGDEDHjh1RuXJlVKlSBZMnT0ZCQgI6d+4MAOjQoQNee+01jB07Fjlz5kT58uVTfX6ePHkA4KXbiYiIyPwKFlQ7AgtIblq3bo07d+5g+PDhiI6ORnBwMDZu3JhUZHz16lVotVZVGkREREQq0iiKpbXeMa3Y2Fh4eHggJiYG7u7uaodDREREGZCZ128uiRAREZFNYXJDRERENoXJDREREdkUJjdERERkU5jcEBERkU1hckNEREQ2hckNERER2RQmN0RERGRTmNwQERGRTWFyQ0RERDaFyQ0RERHZFNUHZ5qbfpRWbGysypEQERFRRulftzMyEtPukpu4uDgAgL+/v8qREBERUWbFxcXBw8Mj3fvY3VRwnU6HGzduwM3NDRqNxqiPHRsbC39/f0RFRXHiuAXg98Oy8PthWfj9sDz8nqRPURTExcXBz88PWm36VTV2t3Kj1WpRsGBBkz6Hu7s7fzAtCL8floXfD8vC74fl4fckba9asdFjQTERERHZFCY3REREZFOY3BiRs7MzRowYAWdnZ7VDIfD7YWn4/bAs/H5YHn5PjMfuCoqJiIjItnHlhoiIiGwKkxsiIiKyKUxuiIiIyKYwuSEiIiKbwuTGSKZPn47ChQsjZ86cCAsLw4EDB9QOyW6NHTsWoaGhcHNzg5eXF5o2bYqzZ8+qHRb959tvv4VGo0H//v3VDsVuXb9+He3atYOnpydcXFxQoUIFHDp0SO2w7FJiYiKGDRuGIkWKwMXFBcWKFcNXX32VoflJlDYmN0awdOlSDBgwACNGjMCRI0cQFBSEevXq4fbt22qHZpf+/vtv9OrVC/v27cPmzZvx7NkzvP3220hISFA7NLt38OBBzJ49G4GBgWqHYrfu37+P8PBw5MiRAxs2bMDp06cxYcIE5M2bV+3Q7NJ3332HmTNnYtq0aYiMjMR3332H77//Hj/88IPaoVk1HgU3grCwMISGhmLatGkAZH6Vv78/+vTpg0GDBqkcHd25cwdeXl74+++/UaNGDbXDsVvx8fGoWLEiZsyYga+//hrBwcGYPHmy2mHZnUGDBmH37t3YuXOn2qEQgMaNG8Pb2xs//fRT0m0tWrSAi4sLfvvtNxUjs25cucmmp0+f4vDhw6hTp07SbVqtFnXq1MHevXtVjIz0YmJiAAD58uVTORL71qtXLzRq1CjV/xUyvzVr1qBy5cp477334OXlhZCQEMydO1ftsOxWtWrVsHXrVpw7dw4AcOzYMezatQsNGjRQOTLrZneDM43t7t27SExMhLe3d6rbvb29cebMGZWiIj2dTof+/fsjPDwc5cuXVzscu7VkyRIcOXIEBw8eVDsUu3fx4kXMnDkTAwYMwJdffomDBw+ib9++cHJyQseOHdUOz+4MGjQIsbGxKF26NBwcHJCYmIgxY8agbdu2aodm1ZjckE3r1asXTp48iV27dqkdit2KiopCv379sHnzZuTMmVPtcOyeTqdD5cqV8c033wAAQkJCcPLkScyaNYvJjQp+//13LFy4EIsWLUK5cuUQERGB/v37w8/Pj9+PbGByk0358+eHg4MDbt26ler2W7duwcfHR6WoCAB69+6NtWvXYseOHShYsKDa4ditw4cP4/bt26hYsWLSbYmJidixYwemTZuGJ0+ewMHBQcUI7Yuvry/Kli2b6rYyZcpgxYoVKkVk3z777DMMGjQI77//PgCgQoUKuHLlCsaOHcvkJhtYc5NNTk5OqFSpErZu3Zp0m06nw9atW1G1alUVI7NfiqKgd+/eWLVqFf766y8UKVJE7ZDsWu3atXHixAlEREQkXSpXroy2bdsiIiKCiY2ZhYeHv9Qa4dy5cwgICFApIvv28OFDaLWpX4odHByg0+lUisg2cOXGCAYMGICOHTuicuXKqFKlCiZPnoyEhAR07txZ7dDsUq9evbBo0SL873//g5ubG6KjowEAHh4ecHFxUTk6++Pm5vZSvVOuXLng6enJOigVfPLJJ6hWrRq++eYbtGrVCgcOHMCcOXMwZ84ctUOzS02aNMGYMWNQqFAhlCtXDkePHsXEiRPx4Ycfqh2aVeNRcCOZNm0axo0bh+joaAQHB2Pq1KkICwtTOyy7pNFoDN4+f/58dOrUybzBkEE1a9bkUXAVrV27FoMHD8b58+dRpEgRDBgwAN26dVM7LLsUFxeHYcOGYdWqVbh9+zb8/PzQpk0bDB8+HE5OTmqHZ7WY3BAREZFNYc0NERER2RQmN0RERGRTmNwQERGRTWFyQ0RERDaFyQ0RERHZFCY3REREZFOY3BAREZFNYXJDRERENoXJDRHZPY1Gg9WrV6sdBhEZCZMbIlJVp06doNFoXrrUr19f7dCIyEpxcCYRqa5+/fqYP39+qtucnZ1VioaIrB1XbohIdc7OzvDx8Ul1yZs3LwDZMpo5cyYaNGgAFxcXFC1aFMuXL0/1+SdOnECtWrXg4uICT09PdO/eHfHx8anuM2/ePJQrVw7Ozs7w9fVF7969U/393bt30axZM7i6uqJEiRJYs2aNab9oIjIZJjdEZPGGDRuGFi1a4NixY2jbti3ef/99REZGAgASEhJQr1495M2bFwcPHsSyZcuwZcuWVMnLzJkz0atXL3Tv3h0nTpzAmjVrULx48VTPMWrUKLRq1QrHjx9Hw4YN0bZtW9y7d8+sXycRGYlCRKSijh07Kg4ODkquXLlSXcaMGaMoiqIAUD7++ONUnxMWFqb06NFDURRFmTNnjpI3b14lPj4+6e/XrVunaLVaJTo6WlEURfHz81OGDBmSZgwAlKFDhyZ9HB8frwBQNmzYYLSvk4jMhzU3RKS6t956CzNnzkx1W758+ZKuV61aNdXfVa1aFREREQCAyMhIBAUFIVeuXEl/Hx4eDp1Oh7Nnz0Kj0eDGjRuoXbt2ujEEBgYmXc+VKxfc3d1x+/btrH5JRKQiJjdEpLpcuXK9tE1kLC4uLhm6X44cOVJ9rNFooNPpTBESEZkYa26IyOLt27fvpY/LlCkDAChTpgyOHTuGhISEpL/fvXs3tFotSpUqBTc3NxQuXBhbt241a8xEpB6u3BCR6p48eYLo6OhUtzk6OiJ//vwAgGXLlqFy5cp44403sHDhQhw4cAA//fQTAKBt27YYMWIEOnbsiJEjR+LOnTvo06cP2rdvD29vbwDAyJEj8fHHH8PLywsNGjRAXFwcdu/ejT59+pj3CyUis2ByQ0Sq27hxI3x9fVPdVqpUKZw5cwaAnGRasmQJevbsCV9fXyxevBhly5YFALi6umLTpk3o168fQkND4erqihYtWmDixIlJj9WxY0c8fvwYkyZNwsCBA5E/f360bNnSfF8gEZmVRlEURe0giIjSotFosGrVKjRt2lTtUIjISrDmhoiIiGwKkxsiIiKyKay5ISKLxp1zIsosrtwQERGRTWFyQ0RERDaFyQ0RERHZFCY3REREZFOY3BAREZFNYXJDRERENoXJDREREdkUJjdERERkU/4PLwU8aoLIm9UAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1749,61 +900,7 @@ "cell_type": "code", "execution_count": 21, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "Waiting for W&B process to finish... (success)." - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "

Run history:


testing_loss▁█
train_loss▂▃█▅▃▇▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
validation_loss▆▅▄█▅▄▃▂▂▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

Run summary:


testing_loss2.98037
train_loss0.00308
validation_loss0.50709

" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View run flowing-lion-6 at: https://wandb.ai/ai4s2s/test-LSTM-ridge/runs/2tknu0at
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Find logs at: ./wandb/run-20230613_125153-2tknu0at/logs" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# switch model into evaluation mode\n", "model.eval()\n", @@ -1841,7 +938,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8xUlEQVR4nO3deXxU1f3/8fdkgIRsEwNZMcYACqTsIBBwCQUhaBGs+wahFFsECwYLpD9riEsBlYp1Qa0VsGqFfisW1EYxFa0SiICprCnQsAhZUGSGhCbgzPz+GBkZSUISkpnM3Nfz8ZiH3HvPvfOZKXXennPuuSan0+kUAACAAQX5ugAAAABfIQgBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDauPrAlo7h8Ohw4cPKyIiQiaTydflAACABnA6nTp+/LgSExMVFFR3vw9B6BwOHz6spKQkX5cBAACa4ODBg7rwwgvrPE4QOoeIiAhJri8yMjLSx9UAAICGsNlsSkpKcv+O14UgdA6nh8MiIyMJQgAA+JlzTWthsjQAADAsghAAADAsghAAADAs5ggBAFolu92uU6dO+boMtFJt27aV2Ww+7+sQhAAArYrT6VRZWZmOHTvm61LQykVFRSk+Pv681vkjCAEAWpXTISg2NlahoaEsZouzOJ1OnThxQhUVFZKkhISEJl/Lr4LQxx9/rMcff1ybN29WaWmpVq1apfHjx9d7zrp165SVlaXt27crKSlJDzzwgDIzM71SLwCgcex2uzsEdejQwdfloBVr3769JKmiokKxsbFNHibzq8nSVVVV6tOnj5599tkGtS8pKdG1116r4cOHq6ioSDNnztTPf/5zvffeey1cKQCgKU7PCQoNDfVxJfAHp/+enM9cMr/qERozZozGjBnT4PbPP/+8UlJStGjRIklSjx499Mknn+jJJ5/U6NGjW6pMAMB5YjgMDdEcf0/8Kgg1VkFBgUaOHOmxb/To0Zo5c2ad59TU1Kimpsa9bbPZWqo8AGgch13av16qLJfC46TkoVLQ+d81AxhZQAehsrIyxcXFeeyLi4uTzWbT//73P/f44pnmz5+v3Nxcb5UIAA2zY7WUN0eyHf5+X2SilLFQSr3Od3UBfs6v5gh5Q3Z2tqxWq/t18OBBX5cEwOh2rJZWTvAMQZJkK3Xt37HaN3XBJzIzMz1uFEpPT693pKMhmuMa/iqge4Ti4+NVXl7usa+8vFyRkZG19gZJUnBwsIKDg71RHgCcm8Pu6gmSs5aDTkkmKW+u1P1ahsl+wO5wqrDkqCqOVys2IkSDUqJlDmq5uUeZmZlavny5JNdifxdddJEmTJig3/zmN2rTpuV+bt988021bdu2QW3XrVun4cOH65tvvlFUVFSTrhFoAjoIpaWl6d133/XYt3btWqWlpfmoIgBopP3rz+4J8uCUbIdc7VKu8FpZrV3etlLlrtmhUmu1e1+CJUQ5Y1OV0bPpa86cS0ZGhpYuXaqamhq9++67mjZtmtq2bavs7GyPdidPnlS7du2a5T2jo6NbxTX8lV8NjVVWVqqoqEhFRUWSXLfHFxUV6cCBA5Jcw1oTJkxwt//lL3+p//73v5o9e7Z27dql5557TitXrtR9993ni/IBoPEqy8/dpjHtDCBvW6mmvrrFIwRJUpm1WlNf3aK8baUt9t7BwcGKj49XcnKypk6dqpEjR2r16tXu4axHH31UiYmJ6tatmyTp4MGDuvnmmxUVFaXo6GiNGzdO+/btc1/PbrcrKytLUVFR6tChg2bPni2n07N38IfDWjU1NZozZ46SkpIUHBysrl276k9/+pP27dun4cOHS5IuuOACmUwm97p6P7zGN998owkTJuiCCy5QaGioxowZo927d7uPL1u2TFFRUXrvvffUo0cPhYeHKyMjQ6Wl33+369at06BBgxQWFqaoqCgNGzZM+/fvb6Zvuvn4VRDatGmT+vXrp379+kmSsrKy1K9fPz344IOSpNLSUncokqSUlBS98847Wrt2rfr06aNFixbppZde4tZ5AP4jPO7cbRrTLsDZHU7lrtlR50CiJOWu2SG7o7YWza99+/Y6efKkJCk/P1/FxcVau3at3n77bZ06dUqjR49WRESE/vWvf+nTTz91B4rT5yxatEjLli3Tyy+/rE8++URHjx7VqlWr6n3PCRMm6C9/+Yv+8Ic/aOfOnXrhhRcUHh6upKQk/e1vf5MkFRcXq7S0VE899VSt18jMzNSmTZu0evVqFRQUyOl06pprrvFYr+fEiRN64okn9Oc//1kff/yxDhw4oPvvv1+S9O2332r8+PG66qqr9MUXX6igoEB33313q1wWwa+GxtLT089KwmdatmxZred8/vnnLVgVALSg5KGuu8Nspap9npDJdTx5qLcra5UKS46e1RN0JqekUmu1CkuOKq1Ly61c7XQ6lZ+fr/fee0/33nuvjhw5orCwML300kvuIbFXX31VDodDL730kjsgLF26VFFRUVq3bp1GjRqlxYsXKzs7Wz/96U8ludbHq29R4P/85z9auXKl1q5d614+pnPnzu7jp4fAYmNjPeYInWn37t1avXq1Pv30Uw0d6vp79dprrykpKUlvvfWWbrrpJkmuRQyff/55denSRZI0ffp0PfTQQ5JcS89YrVb95Cc/cR/v0aNH479IL/CrHiEAMJwgs+sWeUnSD/9r+rvtjAVMlP5OxfG6Q1BT2jXW22+/rfDwcIWEhGjMmDG65ZZbNG/ePElSr169POYF/fvf/9aePXsUERGh8PBwhYeHKzo6WtXV1dq7d6+sVqtKS0s1ePBg9zlt2rTRwIED63z/oqIimc1mXXXVVU3+DDt37lSbNm083rdDhw7q1q2bdu7c6d4XGhrqDjmS63lfp5/9FR0drczMTI0ePVpjx47VU0895TFs1poQhACgtUu9Trr5FSnyB5N8IxNd+1lHyC02IqRZ2zXW6Uc67d69W//73/+0fPlyhYWFSZL7n6dVVlZqwIAB7rmvp1//+c9/dPvttzfp/eu6I7ol/PAuM5PJ5DFqs3TpUhUUFGjo0KFasWKFLr30Um3YsMFr9TWUXw2NAYBhpV7nukWelaXrNSglWgmWEJVZq+saSFS8xXUrfUsICwtT165dG9S2f//+WrFihWJjYxUZGVlrm4SEBG3cuFFXXnmlJNfcm82bN6t///61tu/Vq5ccDoc++uijs56sIMndI2W32+usq0ePHvr222+1ceNG99DY119/reLiYqWmpjbos512el5vdna20tLS9Prrr2vIkCGNukZLo0cIAPxFkNl1i3yvG13/JASdxRxkUs5Y1491HQOJyhmb2qLrCTXUHXfcoY4dO2rcuHH617/+pZKSEq1bt06/+tWv9OWXX0qSZsyYoQULFuitt97Srl27dM899+jYsWN1XvPiiy/WxIkT9bOf/UxvvfWW+5orV66UJCUnJ8tkMuntt9/WkSNHVFlZedY1LrnkEo0bN05TpkzRJ598on//+9+688471alTJ40bN65Bn62kpETZ2dkqKCjQ/v379f7772v37t2tcp4QQQgAEFAyeiZoyZ39FW/xHP6Kt4RoyZ39W3QdocYIDQ3Vxx9/rIsuukg//elP1aNHD02ePFnV1dXuHqJZs2bprrvu0sSJE5WWlqaIiAhdf/319V53yZIluvHGG3XPPfeoe/fumjJliqqqqiRJnTp1Um5urubOnau4uDhNnz691mssXbpUAwYM0E9+8hOlpaXJ6XTq3XffbfCii6Ghodq1a5duuOEGXXrppbr77rs1bdo0/eIXv2jEN+QdJmd9t2FBNptNFotFVqu1zq5LAEDzqK6uVklJiVJSUhQScn7zeLy9sjS8r76/Lw39/WaOEAAgIJmDTC16izwCA0NjAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAADAsAhCAAAY3Lx589S3b19fl6H09HTNnDnTq+9JEAIAoJmUlZVpxowZ6tq1q0JCQhQXF6dhw4ZpyZIlOnHihK/La7J169bJZDLV+5wzX17vfLCyNAAgMDns0v71UmW5FB4nJQ9t0QfV/ve//9WwYcMUFRWl3/3ud+rVq5eCg4O1detWvfjii+rUqZOuu+66Ws89depUg5/j1ZqdPHnS/YR7f0GPEAAg8OxYLS3uKS3/ifS3ya5/Lu7p2t9C7rnnHrVp00abNm3SzTffrB49eqhz584aN26c3nnnHY0dO9bd1mQyacmSJbruuusUFhamRx99VJLrgaldunRRu3bt1K1bN/35z392n7Nv3z6ZTCYVFRW59x07dkwmk0nr1q2T9H1PS35+vgYOHKjQ0FANHTpUxcXFHrUuWLBAcXFxioiIcD/otS779u3T8OHDJUkXXHCBTCaTMjMzJbmGsqZPn66ZM2eqY8eOGj169DnrrO96kuRwODR79mxFR0crPj5e8+bNa+j/BE1CEAIABJYdq6WVEyTbYc/9tlLX/hYIQ19//bXef/99TZs2TWFhYbW2MZk8H/g6b948XX/99dq6dat+9rOfadWqVZoxY4ZmzZqlbdu26Re/+IUmTZqkDz/8sNH1/L//9/+0aNEibdq0SW3atNHPfvYz97GVK1dq3rx5+t3vfqdNmzYpISFBzz33XJ3XSkpK0t/+9jdJUnFxsUpLS/XUU0+5jy9fvlzt2rXTp59+queff/6ctTXkemFhYdq4caMee+wxPfTQQ1q7dm2jv4OGYmgMABA4HHYpb44kZy0HnZJMUt5cqfu1zTpMtmfPHjmdTnXr1s1jf8eOHd29LdOmTdPChQvdx26//XZNmjTJvX3bbbcpMzNT99xzjyQpKytLGzZs0BNPPOHuQWmoRx99VFdddZUkae7cubr22mtVXV2tkJAQLV68WJMnT9bkyZMlSY888og++OCDOnuFzGazoqOjJUmxsbGKioryOH7JJZfosccec2/v27ev3trOdb3evXsrJyfHfe1nnnlG+fn5uvrqqxv02RuLHiEAQODYv/7sniAPTsl2yNXOCwoLC1VUVKQf/ehHqqmp8Tg2cOBAj+2dO3dq2LBhHvuGDRumnTt3Nvp9e/fu7f5zQkKCJKmiosL9PoMHD/Zon5aW1uj3OG3AgAFNPrc2Z9Yuueo/XXtLoEcIABA4Ksubt10Dde3aVSaT6ay5OJ07d5YktW/f/qxz6hpCq0tQkKvvwun8vrfr1KlTtbY9c+L16SE5h8PRqPdrqB9+jsbUWZsfTho3mUwtVrtEjxAAIJCExzVvuwbq0KGDrr76aj3zzDOqqqpq0jV69OihTz/91GPfp59+qtTUVElSTEyMJKm0tNR9/MwJyY15n40bN3rs27BhQ73nnL4TzG63n/P6DamzMddrafQIAQACR/JQKTLRNTG61nlCJtfx5KHN/tbPPfechg0bpoEDB2revHnq3bu3goKC9Nlnn2nXrl3nHEL69a9/rZtvvln9+vXTyJEjtWbNGr355pv64IMPJLl6lYYMGaIFCxYoJSVFFRUVeuCBBxpd54wZM5SZmamBAwdq2LBheu2117R9+3Z371VtkpOTZTKZ9Pbbb+uaa65R+/btFR4eXmvbhtTZmOu1NHqEAACBI8gsZZyekGz6wcHvtjMWtMh6Ql26dNHnn3+ukSNHKjs7W3369NHAgQP19NNP6/7779fDDz9c7/njx4/XU089pSeeeEI/+tGP9MILL2jp0qVKT093t3n55Zf17bffasCAAZo5c6YeeeSRRtd5yy236Le//a1mz56tAQMGaP/+/Zo6dWq953Tq1Em5ubmaO3eu4uLiNH369Hrbn6vOxl6vJZmcZw7i4Sw2m00Wi0VWq1WRkZG+LgcAAlp1dbVKSkqUkpKikJCQpl9ox2rX3WNnTpyO7OQKQam1L2oI/1Pf35eG/n4zNAYACDyp17lukffiytLwTwQhAEBgCjJLKVf4ugq0cswRAgAAhkUQAgAAhkUQAgC0OtzHg4Zojr8nBCEAQKtxelXhEydO+LgS+IPTf09+uBp1YzBZGgDQapjNZkVFRbmfLRUaGnrWU9sBp9OpEydOqKKiQlFRUTKbm343IEEIANCqxMfHS1KLPmgTgSEqKsr996WpCEIAgFbFZDIpISFBsbGxjXpYJ4ylbdu259UTdBpBCADQKpnN5mb5oQPqw2RpAABgWAQhAABgWAQhAABgWH4XhJ599lldfPHFCgkJ0eDBg1VYWFhn22XLlslkMnm8zutpxgAAIKD4VRBasWKFsrKylJOToy1btqhPnz4aPXp0vbdYRkZGqrS01P3av3+/FysGAACtmV8Fod///veaMmWKJk2apNTUVD3//PMKDQ3Vyy+/XOc5JpNJ8fHx7ldcXJwXKwYAAK2Z3wShkydPavPmzRo5cqR7X1BQkEaOHKmCgoI6z6usrFRycrKSkpI0btw4bd++vd73qampkc1m83gBAIDA5DdB6KuvvpLdbj+rRycuLk5lZWW1ntOtWze9/PLL+vvf/65XX31VDodDQ4cO1Zdfflnn+8yfP18Wi8X9SkpKatbPAQAAWg+/CUJNkZaWpgkTJqhv37666qqr9OabbyomJkYvvPBCnedkZ2fLarW6XwcPHvRixQAAwJv8ZmXpjh07ymw2q7y83GN/eXl5g58z0rZtW/Xr10979uyps01wcLCCg4PPq1YAAOAf/KZHqF27dhowYIDy8/Pd+xwOh/Lz85WWltaga9jtdm3dulUJCQktVSYAAPAjftMjJElZWVmaOHGiBg4cqEGDBmnx4sWqqqrSpEmTJEkTJkxQp06dNH/+fEnSQw89pCFDhqhr1646duyYHn/8ce3fv18///nPffkxAABAK+FXQeiWW27RkSNH9OCDD6qsrEx9+/ZVXl6eewL1gQMHFBT0fSfXN998oylTpqisrEwXXHCBBgwYoPXr1ys1NdVXHwEAALQiJqfT6fR1Ea2ZzWaTxWKR1WpVZGSkr8sBAAAN0NDfb7+ZIwQAANDcCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCw2vi6AAAAWhO7w6nCkqOqOF6t2IgQDUqJljnI5Ouy0EIIQgAAfCdvW6ly1+xQqbXavS/BEqKcsanK6Jngw8rQUhgaAwBArhA09dUtHiFIksqs1Zr66hblbSv1UWVoSQQhAIDh2R1O5a7ZIWctx07vy12zQ3ZHbS3gzwhCAADDKyw5elZP0Jmckkqt1SosOeq9ogKdwy6V/Eva+n+ufzrsPimDOUIAAMOrOF53CGpKO5zDjtVS3hzJdvj7fZGJUsZCKfU6r5ZCjxAAwPBiI0KatR3qsWO1tHKCZwiSJFupa/+O1V4thyAEADC8QSnRSrCEqK6b5E1y3T02KCXam2UFHofd1RNU32ysvLleHSYjCAEADM8cZFLO2FRJOisMnd7OGZvKekLna//6s3uCPDgl2yFXOy8hCAEAICmjZ4KW3Nlf8RbP4a94S4iW3NmfdYSaQ2V587ZrBkyWBgDgOxk9E3R1ajwrS7eU8LjmbdcMCEIAAJzBHGRSWpcOvi4jMCUPdd0dZitV7fOETK7jyUO9VpLfDY09++yzuvjiixUSEqLBgwersLCw3vZ//etf1b17d4WEhKhXr1569913vVQpAADwEGR23SIvqc7ZWBkLXO28VZLX3qkZrFixQllZWcrJydGWLVvUp08fjR49WhUVFbW2X79+vW677TZNnjxZn3/+ucaPH6/x48dr27ZtXq4cAABIcq0TdPMrUuQP5lxFJrr2e3kdIZPT6fSb9cIHDx6syy67TM8884wkyeFwKCkpSffee6/mzp17VvtbbrlFVVVVevvtt937hgwZor59++r555+v9T1qampUU1Pj3rbZbEpKSpLValVkZGQzfyIAAAzKYXfdHVZZ7poTlDy0WXuCbDabLBbLOX+//aZH6OTJk9q8ebNGjhzp3hcUFKSRI0eqoKCg1nMKCgo82kvS6NGj62wvSfPnz5fFYnG/kpKSmucDAACA7wWZpZQrpF43uv7pxeEwjzJ88q5N8NVXX8lutysuznMmeVxcnMrKymo9p6ysrFHtJSk7O1tWq9X9Onjw4PkXDwAAWiXuGvuB4OBgBQcH+7oMAADgBX7TI9SxY0eZzWaVl3suslReXq74+Phaz4mPj29UewAAYCx+E4TatWunAQMGKD8/373P4XAoPz9faWlptZ6Tlpbm0V6S1q5dW2d7AABgLH41NJaVlaWJEydq4MCBGjRokBYvXqyqqipNmjRJkjRhwgR16tRJ8+fPlyTNmDFDV111lRYtWqRrr71Wb7zxhjZt2qQXX3zRlx8DAAC0En4VhG655RYdOXJEDz74oMrKytS3b1/l5eW5J0QfOHBAQUHfd3INHTpUr7/+uh544AH95je/0SWXXKK33npLPXv29NVHAAAArYhfrSPkCw1dhwAAALQeAbeOEAAAQHMjCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMMiCAEAAMPyq6fPA2ilHHZp/3qpslwKj5OSh0pBZl9XBQDnRBACcH52rJby5ki2w9/vi0yUMhZKqdf5ri4AaACGxgA03Y7V0soJniFIkmylrv07VvumLgBoIIIQgKZx2F09QXLWcvC7fXlzXe0AoJUiCAFomv3rz+4J8uCUbIdc7QCglSIIAWiayvLmbQcAPkAQAtA04XHN2w4AfIAgBKBpkoe67g6TqY4GJimyk6sdALRSBCEATRNkdt0iL+nsMPTddsYC1hMC0KoRhAA0Xep10s2vSJEJnvsjE137WUcIQCvHgooAzk/qdVL3a1lZGoBfIggBOH9BZinlCl9XAcCP2B1OFZYcVcXxasVGhGhQSrTMQXXNOWw5BCEAAOBVedtKlbtmh0qt1e59CZYQ5YxNVUbPhHrObH7MEQIAAF6Tt61UU1/d4hGCJKnMWq2pr25R3rZSr9ZDEAIAAF5hdziVu2ZHfQ/mUe6aHbI7amvRMghCAADAKwpLjp7VE3Qmp6RSa7UKS456rSaCEAAA8IqK43WHoKa0aw4EIQAA4BWxESHN2q45EIQAAIBXDEqJVoIlpL4H8yjB4rqV3lsIQgAAwCvMQSbljE2VVOeDeZQzNtWr6wkRhAAAgNdk9EzQkjv7K97iOfwVbwnRkjv7e30dIRZUBAAAXpXRM0FXp8azsjQAADAmc5BJaV06+LoMhsYAAIBxEYQAAIBhEYQAAIBhEYQAAIBh+U0QOnr0qO644w5FRkYqKipKkydPVmVlZb3npKeny2Qyebx++ctfeqliAADQ2vnNXWN33HGHSktLtXbtWp06dUqTJk3S3Xffrddff73e86ZMmaKHHnrIvR0aGtrSpQIAAD/hF0Fo586dysvL02effaaBAwdKkp5++mldc801euKJJ5SYmFjnuaGhoYqPj/dWqQAAwI/4xdBYQUGBoqKi3CFIkkaOHKmgoCBt3Lix3nNfe+01dezYUT179lR2drZOnDhRb/uamhrZbDaPFwAACEx+0SNUVlam2NhYj31t2rRRdHS0ysrK6jzv9ttvV3JyshITE/XFF19ozpw5Ki4u1ptvvlnnOfPnz1dubm6z1Q4AAFovnwahuXPnauHChfW22blzZ5Ovf/fdd7v/3KtXLyUkJGjEiBHau3evunTpUus52dnZysrKcm/bbDYlJSU1uQYAANB6+TQIzZo1S5mZmfW26dy5s+Lj41VRUeGx/9tvv9XRo0cbNf9n8ODBkqQ9e/bUGYSCg4MVHBzc4GsCAAD/5dMgFBMTo5iYmHO2S0tL07Fjx7R582YNGDBAkvTPf/5TDofDHW4aoqioSJKUkODdJ9sCAIDWyS8mS/fo0UMZGRmaMmWKCgsL9emnn2r69Om69dZb3XeMHTp0SN27d1dhYaEkae/evXr44Ye1efNm7du3T6tXr9aECRN05ZVXqnfv3r78OAAAoJXwiyAkue7+6t69u0aMGKFrrrlGl19+uV588UX38VOnTqm4uNh9V1i7du30wQcfaNSoUerevbtmzZqlG264QWvWrPHVRwAAAK2Myel0On1dRGtms9lksVhktVoVGRnp63IAAEADNPT32296hAAAAJobQQgAABgWQQgAABgWQQgAABgWQQgAABgWQQgAABgWQQgAABjWeT1io7q6WitWrFBVVZWuvvpqXXLJJc1VFwAAQItrcBDKysrSqVOn9PTTT0uSTp48qbS0NG3fvl2hoaGaPXu21q5dq7S0tBYrFgAAoDk1eGjs/fff19VXX+3efu2117R//37t3r1b33zzjW666SY98sgjLVIkAABAS2hwEDpw4IBSU1Pd2++//75uvPFGJScny2QyacaMGfr8889bpEgAAICW0OAgFBQUpDMfS7ZhwwYNGTLEvR0VFaVvvvmmeasDAABoQQ0OQj169HA/uX379u06cOCAhg8f7j6+f/9+xcXFNX+FAAAALaTBk6Vnz56tW2+9Ve+88462b9+ua665RikpKe7j7777rgYNGtQiRQIAALSEBvcIXX/99Xr33XfVu3dv3XfffVqxYoXH8dDQUN1zzz3NXiAAAEBLMTnPnPhTj4ceekj333+/QkNDW7qmVsVms8lischqtSoyMtLX5QAAgAZo6O93g3uEcnNzVVlZ2SzFAQAAtAYNDkIN7DgCAADwG4161pjJZGqpOgAAALyuUc8au/TSS88Zho4ePXpeBQEAAHhLo4JQbm6uLBZLS9UCAADgVY0KQrfeeqtiY2NbqhYAAACvavAcIeYHAQCAQMNdYwAAwLAaPDTmcDhasg4AAACva9Tt8wAAAIGEIAQAAAyLIAQAAAyrUbfPo3nYHU4VlhxVxfFqxUaEaFBKtMxB3JUHAIC3EYS8LG9bqXLX7FCptdq9L8ESopyxqcromeDDygAAMB6Gxrwob1uppr66xSMESVKZtVpTX92ivG2lPqoMAABjIgh5id3hVO6aHaptNabT+3LX7JDdwXpNAAB4C0HISwpLjp7VE3Qmp6RSa7UKS3hoLQAA3kIQ8pKK43WHoKa0AwAA548g5CWxESHN2g4AAJw/gpCXDEqJVoIlRHXdJG+S6+6xQSnR3iwLAABDIwh5iTnIpJyxqZJ0Vhg6vZ0zNpX1hAAA8CKCkBdl9EzQkjv7K97iOfwVbwnRkjv7s44QAABexoKKXpbRM0FXp8azsjQAAK2A3/QIPfrooxo6dKhCQ0MVFRXVoHOcTqcefPBBJSQkqH379ho5cqR2797dsoU2gDnIpLQuHTSubyeldelACAIAwEf8JgidPHlSN910k6ZOndrgcx577DH94Q9/0PPPP6+NGzcqLCxMo0ePVnU1t6gDAADJ5HQ6/Wop42XLlmnmzJk6duxYve2cTqcSExM1a9Ys3X///ZIkq9WquLg4LVu2TLfeemuD3s9ms8lischqtSoyMvJ8ywcAAF7Q0N9vv+kRaqySkhKVlZVp5MiR7n0Wi0WDBw9WQUFBnefV1NTIZrN5vACgNbA7nCrY+7X+XnRIBXu/5pE8QDMI2MnSZWVlkqS4uDiP/XFxce5jtZk/f75yc3NbtDYAaKy8baXKXbPD41E9CZYQ5YxN5Y5T4Dz4tEdo7ty5MplM9b527drl1Zqys7NltVrdr4MHD3r1/QHgh/K2lWrqq1vOel5hmbVaU1/dorxtpT6qDPB/Pu0RmjVrljIzM+tt07lz5yZdOz4+XpJUXl6uhITv/2upvLxcffv2rfO84OBgBQcHN+k9AaC52R1O5a7ZodoGwZxyLciau2aHrk6N5w5UoAl8GoRiYmIUExPTItdOSUlRfHy88vPz3cHHZrNp48aNjbrzDAB8qbDk6Fk9QWdySiq1Vquw5KjSunTwXmFAgPCbydIHDhxQUVGRDhw4ILvdrqKiIhUVFamystLdpnv37lq1apUkyWQyaebMmXrkkUe0evVqbd26VRMmTFBiYqLGjx/vo08BAI1Tcbxhy300tB0AT34zWfrBBx/U8uXL3dv9+vWTJH344YdKT0+XJBUXF8tqtbrbzJ49W1VVVbr77rt17NgxXX755crLy1NICE94B+AfYiMa9u+rhrYD4Mnv1hHyNtYRAuBLdodTly/8p8qs1bXOEzLJ9bzCT+b8mDlCwBkMv44QAAQCc5BJOWNTJblCz5lOb+eMTSUEAU1EEAKAVi6jZ4KW3Nlf8RbP4a94S4iW3NmfdYSA8+A3c4QAwMgyeibo6tR4FZYcVcXxasVGhGhQSjQ9QcB5IggBgJ8wB5m4RR5oZgyNAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAwyIIAQAAw+Lp8whododThSVHVXG8WrERIRqUEi1zkMnXZQEAWgmCEAJW3rZS5a7ZoVJrtXtfgiVEOWNTldEzwYeVAQBaC4bGEJDytpVq6qtbPEKQJJVZqzX11S3K21bqo8oAAK0JQQgBx+5wKnfNDjlrOXZ6X+6aHbI7amsBADASghACTmHJ0bN6gs7klFRqrVZhyVHvFQUAaJUIQgg4FcfrDkFNaQcACFwEIQSc2IiQZm0HAAhcBCEEnEEp0UqwhKium+RNct09Nigl2ptlAQBaIYIQAo45yKScsamSdFYYOr2dMzaV9YQAAAQhBKaMnglacmd/xVs8h7/iLSFacmd/1hECAEhiQUUEsIyeCbo6NZ6VpQEAdSIIIaCZg0xK69LB12UAAFophsYAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBhEYQAAIBh+U0QevTRRzV06FCFhoYqKiqqQedkZmbKZDJ5vDIyMlq2UAAA4Df85qGrJ0+e1E033aS0tDT96U9/avB5GRkZWrp0qXs7ODi4JcoDAAB+yG+CUG5uriRp2bJljTovODhY8fHxDW5fU1Ojmpoa97bNZmvU+wEAAP/hN0NjTbVu3TrFxsaqW7dumjp1qr7++ut628+fP18Wi8X9SkpK8lKlAADA2wI6CGVkZOiVV15Rfn6+Fi5cqI8++khjxoyR3W6v85zs7GxZrVb36+DBg16sGAAAeJNPh8bmzp2rhQsX1ttm586d6t69e5Ouf+utt7r/3KtXL/Xu3VtdunTRunXrNGLEiFrPCQ4OZh4RAAAG4dMgNGvWLGVmZtbbpnPnzs32fp07d1bHjh21Z8+eOoMQAAAwDp8GoZiYGMXExHjt/b788kt9/fXXSkhI8Np7AgCA1stv5ggdOHBARUVFOnDggOx2u4qKilRUVKTKykp3m+7du2vVqlWSpMrKSv3617/Whg0btG/fPuXn52vcuHHq2rWrRo8e7auPAQAAWhG/uX3+wQcf1PLly93b/fr1kyR9+OGHSk9PlyQVFxfLarVKksxms7744gstX75cx44dU2JiokaNGqWHH36YOUBG4rBL+9dLleVSeJyUPFQKMvu6KgBAK2FyOp1OXxfRmtlsNlksFlmtVkVGRvq6HDTGjtVS3hzJdvj7fZGJUsZCKfU639UFAGhxDf399puhMaBRdqyWVk7wDEGSZCt17d+x2jd1AQBaFYIQAo/D7uoJUm2dnd/ty5vragcAMDSCEALP/vVn9wR5cEq2Q652AABDIwgh8FSWN287AEDAIggh8ITHNW87AEDAIggh8CQPdd0dJlMdDUxSZCdXOwCAoRGEEHiCzK5b5CWdHYa+285YwHpCAACCEAJU6nXSza9IkT94nEpkoms/6wgBAORHK0sDjZZ6ndT9WlaWBgDUiSCEwBZkllKu8HUVAIBWiqExAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWAQhAABgWH4RhPbt26fJkycrJSVF7du3V5cuXZSTk6OTJ0/We151dbWmTZumDh06KDw8XDfccIPKy8u9VDUAAGjt/CII7dq1Sw6HQy+88IK2b9+uJ598Us8//7x+85vf1HvefffdpzVr1uivf/2rPvroIx0+fFg//elPvVQ1AABo7UxOp9Pp6yKa4vHHH9eSJUv03//+t9bjVqtVMTExev3113XjjTdKcgWqHj16qKCgQEOGDGnQ+9hsNlksFlmtVkVGRjZb/QAAoOU09PfbL3qEamO1WhUdHV3n8c2bN+vUqVMaOXKke1/37t110UUXqaCgoM7zampqZLPZPF4AACAw+WUQ2rNnj55++mn94he/qLNNWVmZ2rVrp6ioKI/9cXFxKisrq/O8+fPny2KxuF9JSUnNVTYAAGhlfBqE5s6dK5PJVO9r165dHuccOnRIGRkZuummmzRlypRmryk7O1tWq9X9OnjwYLO/BwAAaB3a+PLNZ82apczMzHrbdO7c2f3nw4cPa/jw4Ro6dKhefPHFes+Lj4/XyZMndezYMY9eofLycsXHx9d5XnBwsIKDgxtUPwAA8G8+DUIxMTGKiYlpUNtDhw5p+PDhGjBggJYuXaqgoPo7swYMGKC2bdsqPz9fN9xwgySpuLhYBw4cUFpa2nnXDgAIUA67tH+9VFkuhcdJyUOlILOvq0IL8WkQaqhDhw4pPT1dycnJeuKJJ3TkyBH3sdO9O4cOHdKIESP0yiuvaNCgQbJYLJo8ebKysrIUHR2tyMhI3XvvvUpLS2vwHWMAAIPZsVrKmyPZDn+/LzJRylgopV7nu7rQYvwiCK1du1Z79uzRnj17dOGFF3ocO333/6lTp1RcXKwTJ064jz355JMKCgrSDTfcoJqaGo0ePVrPPfecV2sHAPiJHaullRMk/WBVGVupa//NrxCGApDfriPkLawjBAAG4LBLi3t69gR5MLl6hmZuZZjMTwT8OkIAADSb/evrCUGS5JRsh1ztEFAIQgAAVDbwOZQNbQe/QRACACA8rnnbwW8QhAAASB7qmgMkUx0NTFJkJ1c7BBSCEAAAQWbXLfKSzg5D321nLGCidAAiCAEAILlujb/5FSkywXN/ZCK3zgcwv1hHCAAAr0i9Tup+LStLGwhBCACAMwWZpZQrfF0FvIShMQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFhtfF0AAP9ndzhVWHJUFcerFRsRokEp0TIHmXxdFgCcE0HIFxx2af96qbJcCo+TkodKQWZfVwU0Sd62UuWu2aFSa7V7X4IlRDljU5XRM8GHlQHAuRGEvG3HailvjmQ7/P2+yEQpY6GUep3v6gKaIG9bqaa+ukXOH+wvs1Zr6qtbtOTO/oQhAK0ac4S8acdqaeUEzxAkSbZS1/4dq31TF9AEdodTuWt2nBWCJLn35a7ZIbujthYA0DoQhLzFYXf1BNX3s5E319UO8AOFJUc9hsN+yCmp1FqtwpKj3isKABqJIOQt+9ef3RPkwSnZDrnaAX6g4njdIagp7QDAFwhC3lJZ3rztAB+LjQhp1nYA4AsEIW8Jj2vedoCPDUqJVoIlRHXdJG+S6+6xQSnR3iwLABqFIOQtyUNdd4fV97MR2cnVDvAD5iCTcsamSjr7b/Xp7ZyxqawnBKBVIwh5S5DZdYu8pDp/NjIWsJ4Q/EpGzwQtubO/4i2ew1/xlhBunQfgF0xOp5N7W+ths9lksVhktVoVGRl5/hesdR2hTq4QxDpC8FOsLA2gtWno7zcLKnpb6nVS92tZWRoBxRxkUlqXDr4uAwAajSDkC0FmKeUKX1cBAIDhMUcIAAAYll8EoX379mny5MlKSUlR+/bt1aVLF+Xk5OjkyZP1npeeni6TyeTx+uUvf+mlqgEAQGvnF0Nju3btksPh0AsvvKCuXbtq27ZtmjJliqqqqvTEE0/Ue+6UKVP00EMPubdDQ0NbulwAAOAn/CIIZWRkKCMjw73duXNnFRcXa8mSJecMQqGhoYqPj2/pEgEAgB/yi6Gx2litVkVHn3vF2tdee00dO3ZUz549lZ2drRMnTtTbvqamRjabzeMFAAACk1/0CP3Qnj179PTTT5+zN+j2229XcnKyEhMT9cUXX2jOnDkqLi7Wm2++Wec58+fPV25ubnOXDAAAWiGfLqg4d+5cLVy4sN42O3fuVPfu3d3bhw4d0lVXXaX09HS99NJLjXq/f/7znxoxYoT27NmjLl261NqmpqZGNTU17m2bzaakpKTmW1ARAAC0uIYuqOjTIHTkyBF9/fXX9bbp3Lmz2rVrJ0k6fPiw0tPTNWTIEC1btkxBQY0b2auqqlJ4eLjy8vI0evToBp3T7CtLAwCAFucXK0vHxMQoJiamQW0PHTqk4cOHa8CAAVq6dGmjQ5AkFRUVSZISEnj+EQAA8JM5QocOHVJ6erqSk5P1xBNP6MiRI+5jp+8IO3TokEaMGKFXXnlFgwYN0t69e/X666/rmmuuUYcOHfTFF1/ovvvu05VXXqnevXs3+L1Pd5gxaRoAAP9x+nf7XANffhGE1q5dqz179mjPnj268MILPY6d/oCnTp1ScXGx+66wdu3a6YMPPtDixYtVVVWlpKQk3XDDDXrggQca9d7Hjx+XJCUlJTXDJwEAAN50/PhxWSyWOo/z9PlzcDgcOnz4sCIiImQyNd/TtE9Pwj548CBzj1oY37V38D17B9+zd/A9e0dLfs9Op1PHjx9XYmJivdNp/KJHyJeCgoLO6oVqTpGRkfyfzEv4rr2D79k7+J69g+/ZO1rqe66vJ+g0v11QEQAA4HwRhAAAgGERhHwkODhYOTk5Cg4O9nUpAY/v2jv4nr2D79k7+J69ozV8z0yWBgAAhkWPEAAAMCyCEAAAMCyCEAAAMCyCEAAAMCyCkI88++yzuvjiixUSEqLBgwersLDQ1yUFnI8//lhjx45VYmKiTCaT3nrrLV+XFHDmz5+vyy67TBEREYqNjdX48eNVXFzs67IC0pIlS9S7d2/3wnNpaWn6xz/+4euyAtqCBQtkMpk0c+ZMX5cScObNmyeTyeTx6t69u09qIQj5wIoVK5SVlaWcnBxt2bJFffr00ejRo1VRUeHr0gJKVVWV+vTpo2effdbXpQSsjz76SNOmTdOGDRu0du1anTp1SqNGjVJVVZWvSws4F154oRYsWKDNmzdr06ZN+vGPf6xx48Zp+/btvi4tIH322Wd64YUXGvWQbjTOj370I5WWlrpfn3zyiU/q4PZ5Hxg8eLAuu+wyPfPMM5JczzNLSkrSvffeq7lz5/q4usBkMpm0atUqjR8/3telBLQjR44oNjZWH330ka688kpflxPwoqOj9fjjj2vy5Mm+LiWgVFZWqn///nruuef0yCOPqG/fvlq8eLGvywoo8+bN01tvvaWioiJfl0KPkLedPHlSmzdv1siRI937goKCNHLkSBUUFPiwMuD8Wa1WSa4faLQcu92uN954Q1VVVUpLS/N1OQFn2rRpuvbaaz3+PY3mt3v3biUmJqpz58664447dODAAZ/UwUNXveyrr76S3W5XXFycx/64uDjt2rXLR1UB58/hcGjmzJkaNmyYevbs6etyAtLWrVuVlpam6upqhYeHa9WqVUpNTfV1WQHljTfe0JYtW/TZZ5/5upSANnjwYC1btkzdunVTaWmpcnNzdcUVV2jbtm2KiIjwai0EIQDNYtq0adq2bZvPxvmNoFu3bioqKpLVatX//d//aeLEifroo48IQ83k4MGDmjFjhtauXauQkBBflxPQxowZ4/5z7969NXjwYCUnJ2vlypVeH+olCHlZx44dZTabVV5e7rG/vLxc8fHxPqoKOD/Tp0/X22+/rY8//lgXXnihr8sJWO3atVPXrl0lSQMGDNBnn32mp556Si+88IKPKwsMmzdvVkVFhfr37+/eZ7fb9fHHH+uZZ55RTU2NzGazDysMXFFRUbr00ku1Z88er783c4S8rF27dhowYIDy8/Pd+xwOh/Lz8xnrh99xOp2aPn26Vq1apX/+859KSUnxdUmG4nA4VFNT4+syAsaIESO0detWFRUVuV8DBw7UHXfcoaKiIkJQC6qsrNTevXuVkJDg9femR8gHsrKyNHHiRA0cOFCDBg3S4sWLVVVVpUmTJvm6tIBSWVnp8V8XJSUlKioqUnR0tC666CIfVhY4pk2bptdff11///vfFRERobKyMkmSxWJR+/btfVxdYMnOztaYMWN00UUX6fjx43r99de1bt06vffee74uLWBEREScNb8tLCxMHTp0YN5bM7v//vs1duxYJScn6/Dhw8rJyZHZbNZtt93m9VoIQj5wyy236MiRI3rwwQdVVlamvn37Ki8v76wJ1Dg/mzZt0vDhw93bWVlZkqSJEydq2bJlPqoqsCxZskSSlJ6e7rF/6dKlyszM9H5BAayiokITJkxQaWmpLBaLevfurffee09XX321r0sDGu3LL7/Ubbfdpq+//loxMTG6/PLLtWHDBsXExHi9FtYRAgAAhsUcIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQCGlpmZqfHjx/u6DAA+QhAC0OIyMzNlMpnOemVkZPi6ND311FOt5pErJpNJb731lq/LAAyFZ40B8IqMjAwtXbrUY19wcLCPqpHsdrtMJpMsFovPagDge/QIAfCK4OBgxcfHe7wuuOACrVu3Tu3atdO//vUvd9vHHntMsbGxKi8vl+R6qOv06dM1ffp0WSwWdezYUb/97W915qMSa2pqdP/996tTp04KCwvT4MGDtW7dOvfxZcuWKSoqSqtXr1ZqaqqCg4N14MCBs4bG0tPTde+992rmzJm64IILFBcXpz/+8Y+qqqrSpEmTFBERoa5du+of//iHx+fbtm2bxowZo/DwcMXFxemuu+7SV1995XHdX/3qV5o9e7aio6MVHx+vefPmuY9ffPHFkqTrr79eJpPJvQ2gZRGEAPhUenq6Zs6cqbvuuktWq1Wff/65fvvb3+qll15SXFycu93y5cvVpk0bFRYW6qmnntLvf/97vfTSS+7j06dPV0FBgd544w198cUXuummm5SRkaHdu3e725w4cUILFy7USy+9pO3btys2NrbWmpYvX66OHTuqsLBQ9957r6ZOnaqbbrpJQ4cO1ZYtWzRq1CjdddddOnHihCTp2LFj+vGPf6x+/fpp06ZNysvLU3l5uW6++eazrhsWFqaNGzfqscce00MPPaS1a9dKkj777DNJ0tKlS1VaWureBtDCnADQwiZOnOg0m83OsLAwj9ejjz7qdDqdzpqaGmffvn2dN998szM1NdU5ZcoUj/OvuuoqZ48ePZwOh8O9b86cOc4ePXo4nU6nc//+/U6z2ew8dOiQx3kjRoxwZmdnO51Op3Pp0qVOSc6ioqKzahs3bpzHe11++eXu7W+//dYZFhbmvOuuu9z7SktLnZKcBQUFTqfT6Xz44Yedo0aN8rjuwYMHnZKcxcXFtV7X6XQ6L7vsMuecOXPc25Kcq1atquNbBNASmCMEwCuGDx+uJUuWeOyLjo6WJLVr106vvfaaevfureTkZD355JNnnT9kyBCZTCb3dlpamhYtWiS73a6tW7fKbrfr0ksv9TinpqZGHTp0cG+3a9dOvXv3PmetZ7Yxm83q0KGDevXq5d53uqeqoqJCkvTvf/9bH374ocLDw8+61t69e911/fC9ExIS3NcA4BsEIQBeERYWpq5du9Z5fP369ZKko0eP6ujRowoLC2vwtSsrK2U2m7V582aZzWaPY2eGk/bt23uEqbq0bdvWY9tkMnnsO30Nh8Phfv+xY8dq4cKFZ10rISGh3uuevgYA3yAIAfC5vXv36r777tMf//hHrVixQhMnTtQHH3ygoKDvpzFu3LjR45wNGzbokksukdlsVr9+/WS321VRUaErrrjC2+Wrf//++tvf/qaLL75Ybdo0/V+rbdu2ld1ub8bKAJwLk6UBeEVNTY3Kyso8Xl999ZXsdrvuvPNOjR49WpMmTdLSpUv1xRdfaNGiRR7nHzhwQFlZWSouLtZf/vIXPf3005oxY4Yk6dJLL9Udd9yhCRMm6M0331RJSYkKCws1f/58vfPOOy3+2aZNm6ajR4/qtttu02effaa9e/fqvffe06RJkxoVbC6++GLl5+errKxM33zzTQtWDOA0eoQAeEVeXp7HMJEkdevWTbfffrv279+vt99+W5JrKOnFF1/UbbfdplGjRqlPnz6SpAkTJuh///ufBg0aJLPZrBkzZujuu+92X2vp0qV65JFHNGvWLB06dEgdO3bUkCFD9JOf/KTFP1tiYqI+/fRTzZkzR6NGjVJNTY2Sk5OVkZHh0at1LosWLVJWVpb++Mc/qlOnTtq3b1/LFQ1AkmRyOs9YiAMAWqH09HT17dtXixcv9nUpAAIMQ2MAAMCwCEIAAMCwGBoDAACGRY8QAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwLIIQAAAwrP8PlFTatpj1uEsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA66UlEQVR4nO3deXxU1f3/8fdkIAnZJgayYggBZEkB2QQSXEKNJKgsbrigEKTYIlgwWCH9VVnUghYq1AWw1IBVK/RboYA2ilFcIOymgkgKlE3IgiATE0rAyfz+iIyMWUggmcnMfT0fj/vAe+fcez8zTTPvnHPuvSa73W4XAACAAfm4uwAAAAB3IQgBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDaubuApq6iooKHTt2TMHBwTKZTO4uBwAA1IHdbtd3332nmJgY+fjU3O9DELqIY8eOKTY21t1lAACAS3DkyBFdeeWVNb5OELqI4OBgSZUfZEhIiJurAQAAdVFSUqLY2FjH93hNCEIXcX44LCQkhCAEAICHudi0FiZLAwAAwyIIAQAAwyIIAQAAw2KOUAOx2Ww6d+6cu8tAE9W8eXOZzWZ3lwEA+AmC0GWy2+0qLCzUqVOn3F0KmrjQ0FBFRUVxPyoAaEIIQpfpfAiKiIhQQEAAX3Kowm636/Tp0youLpYkRUdHu7kiAMB5BKHLYLPZHCGoZcuW7i4HTViLFi0kScXFxYqIiGCYDACaCCZLX4bzc4ICAgLcXAk8wfmfE+aSAUDTQRBqAAyHoS74OQGApoehMQAALmCrsGvLgZMq/u6MIoL91Tc+TGYf/pDxVgQhAAB+kL2rQDPX7FaB9YxjW7TFX9OHJCitKxc6eCOGxtCo0tPTNXz4cMd6cnKyJk+efFnHbIhjAMBPZe8q0PjXdziFIEkqtJ7R+Nd3KHtXgZsqQ2MiCDUBtgq7cvef0D/zjip3/wnZKuyNfs709HSZTCaZTCb5+vqqQ4cOmjVrlr7//vtGPe/bb7+tp556qk5t169fL5PJVOUeTfU5BgDUha3Crplrdqu6377nt81cs9slv5/hWgyNuZk7u2HT0tKUlZWl8vJyvfvuu5owYYKaN2+uzMxMp3Znz56Vr69vg5wzLCysSRwDAC605cDJKj1BF7JLKrCe0ZYDJ5XYntuleBN6hNzI3d2wfn5+ioqKUlxcnMaPH6+UlBStXr3aMZz1zDPPKCYmRp06dZIkHTlyRCNGjFBoaKjCwsI0bNgwHTx40HE8m82mjIwMhYaGqmXLlnr88cdltzv/9fTTYa3y8nJNnTpVsbGx8vPzU4cOHfSXv/xFBw8e1MCBAyVJV1xxhUwmk9LT06s9xrfffqtRo0bpiiuuUEBAgAYPHqy9e/c6Xl+6dKlCQ0P13nvvqUuXLgoKClJaWpoKCn78fNevX6++ffsqMDBQoaGhGjBggA4dOtRAnzSApq74u5pD0KW0g+cgCLlJU+yGbdGihc6ePStJysnJUX5+vtatW6e1a9fq3LlzSk1NVXBwsD799FNt2LDBESjO7zNv3jwtXbpUr776qj777DOdPHlSK1eurPWco0aN0t/+9jf96U9/0ldffaXFixcrKChIsbGx+sc//iFJys/PV0FBgRYsWFDtMdLT07Vt2zatXr1aubm5stvtuvnmm53u13P69GnNnTtXf/3rX/XJJ5/o8OHDeuyxxyRJ33//vYYPH64bbrhBX3zxhXJzc/XQQw9xuTtgIBHB/g3aDp6DoTE3aUrdsHa7XTk5OXrvvff0yCOP6Pjx4woMDNSSJUscQ2Kvv/66KioqtGTJEkdAyMrKUmhoqNavX69BgwZp/vz5yszM1O233y5JWrRokd57770az/uf//xHK1as0Lp165SSkiJJateuneP180NgERERCg0NrfYYe/fu1erVq7VhwwYlJSVJkt544w3FxsZq1apVuuuuuyRV3sRw0aJFat++vSRp4sSJmjVrliSppKREVqtVt956q+P1Ll261P+DBOCx+saHKdrir0LrmWr/QDVJirJUXkoP70KPkJs0hW7YtWvXKigoSP7+/ho8eLDuvvtuzZgxQ5LUrVs3p3lB//73v7Vv3z4FBwcrKChIQUFBCgsL05kzZ7R//35ZrVYVFBSoX79+jn2aNWumPn361Hj+vLw8mc1m3XDDDZf8Hr766is1a9bM6bwtW7ZUp06d9NVXXzm2BQQEOEKOVPm8r/PP/goLC1N6erpSU1M1ZMgQLViwwGnYDID3M/uYNH1IgqTK0HOh8+vThyRwPyEvRBByk6bQDTtw4EDl5eVp7969+t///qdly5YpMDBQkhz/nldaWqrevXsrLy/PafnPf/6j++6775LOf/75W67QvHlzp3WTyeQ0fykrK0u5ublKSkrS8uXL1bFjR23atMll9QFwv7Su0Vp4fy9FWZx/70ZZ/LXw/l7cR8hLMTTmJk2hGzYwMFAdOnSoU9tevXpp+fLlioiIUEhISLVtoqOjtXnzZl1//fWSKufebN++Xb169aq2fbdu3VRRUaGPP/7YMTR2ofM9Ujabrca6unTpou+//16bN292DI2dOHFC+fn5SkhIqNN7O69nz57q2bOnMjMzlZiYqDfffFP9+/ev1zEAeLa0rtG6KSGKO0sbCD1CbuJp3bAjR45Uq1atNGzYMH366ac6cOCA1q9fr1//+tf6+uuvJUmTJk3SnDlztGrVKu3Zs0cPP/xwlXsAXaht27YaPXq0HnzwQa1atcpxzBUrVkiS4uLiZDKZtHbtWh0/flylpaVVjnHVVVdp2LBhGjdunD777DP9+9//1v3336/WrVtr2LBhdXpvBw4cUGZmpnJzc3Xo0CG9//772rt3L/OEAIMy+5iU2L6lhvVorcT2LZvM72E0DoKQG3lSN2xAQIA++eQTtWnTRrfffru6dOmisWPH6syZM44eoilTpuiBBx7Q6NGjlZiYqODgYN122221HnfhwoW688479fDDD6tz584aN26cysrKJEmtW7fWzJkzNW3aNEVGRmrixInVHiMrK0u9e/fWrbfeqsTERNntdr377rtVhsNqe2979uzRHXfcoY4dO+qhhx7ShAkT9Mtf/rIenxAAwBOZ7D+90QuclJSUyGKxyGq1VhkSOnPmjA4cOKD4+Hj5+1/6XB4e8GcMDfXzAgC4uNq+vy/EHKEm4Hw3LAAAcC2CEAB4CHqPgYZHEAIAD+DO5xIC3ozJ0gDQxLn7uYSANyMIAUAT1hSfSwh4E4IQADRh9XkuIYD6IwgBQBPWFJ5LCHgzghAANGFN4bmEgDcjCMGjzJgxQz169HB3GUpOTtbkyZPdXQYM4PxzCWu6SN6kyqvHGvO5hIA3IwgZVGFhoSZNmqQOHTrI399fkZGRGjBggBYuXKjTp0+7u7xLtn79eplMplqfcebO4wH15WnPJQQ8DfcRagoqbNKhjVJpkRQUKcUlST7mRjvdf//7Xw0YMEChoaH6/e9/r27dusnPz087d+7UK6+8otatW2vo0KHV7nvu3Lk6P8OrKTt79qzj6fZAU3f+uYQ/vY9QFPcRAi4bPULutnu1NL+rtOxW6R9jK/+d37VyeyN5+OGH1axZM23btk0jRoxQly5d1K5dOw0bNkzvvPOOhgwZ4mhrMpm0cOFCDR06VIGBgXrmmWckVT4stX379vL19VWnTp3017/+1bHPwYMHZTKZlJeX59h26tQpmUwmrV+/XtKPPS05OTnq06ePAgIClJSUpPz8fKda58yZo8jISAUHBzse8lqTgwcPauDAgZKkK664QiaTSenp6ZIqh7ImTpyoyZMnq1WrVkpNTb1onbUdT5IqKir0+OOPKywsTFFRUZoxY0Zd/ycA6i2ta7Q+m/pz/W1cfy24p4f+Nq6/Ppv6c0IQcJk8Kgh98sknGjJkiGJiYmQymbRq1aqL7rN+/Xr16tVLfn5+6tChg5YuXdroddbZ7tXSilFSyTHn7SUFldsbIQydOHFC77//viZMmKDAwMBq25hMzl3sM2bM0G233aadO3fqwQcf1MqVKzVp0iRNmTJFu3bt0i9/+UuNGTNGH330Ub3r+X//7/9p3rx52rZtm5o1a6YHH3zQ8dqKFSs0Y8YM/f73v9e2bdsUHR2tl19+ucZjxcbG6h//+IckKT8/XwUFBVqwYIHj9WXLlsnX11cbNmzQokWLLlpbXY4XGBiozZs367nnntOsWbO0bt26en8GQF2dfy7hsB6tldi+JcNhQAPwqCBUVlamq6++Wi+99FKd2h84cEC33HKLBg4cqLy8PE2ePFm/+MUv9N577zVypXVQYZOyp0q13SYte1pluwa0b98+2e12derUyWl7q1atFBQUpKCgIE2dOtXptfvuu09jxoxRu3bt1KZNG82dO1fp6el6+OGH1bFjR2VkZOj222/X3Llz613PM888oxtuuEEJCQmaNm2aNm7c6Oj1mT9/vsaOHauxY8eqU6dOevrpp5WQkFDjscxms8LCKieMRkREKCoqShaLxfH6VVddpeeee06dOnWq8v4v5Xjdu3fX9OnTddVVV2nUqFHq06ePcnJy6v0ZAADcx6OC0ODBg/X000/rtttuq1P7RYsWKT4+XvPmzVOXLl00ceJE3XnnnXr++edr3Ke8vFwlJSVOS6M4tLFqT5ATu1RytLKdC2zZskV5eXn62c9+pvLycqfX+vTp47T+1VdfacCAAU7bBgwYoK+++qre5+3evbvjv6OjK7v4i4uLHefp16+fU/vExMR6n+O83r17X/K+1bmwdqmy/vO1A42iwiYd+FTa+X+V/zbwH0qAEXn1ZOnc3FylpKQ4bUtNTa31sufZs2dr5syZjVyZKidGN2S7OurQoYNMJlOVuTjt2rWTJLVo0aLKPjUNodXEx6cyX9vtP/Z2nTt3rtq2F068Pj8kV1FRUa/z1dVP30d96qzOTyeNm0ymRqsd0O7Vlb3IF/4BFRIjpT0rJVR/cQOAi/OoHqH6KiwsVGRkpNO2yMhIlZSU6H//+1+1+2RmZspqtTqWI0eONE5xQZEXb1OfdnXUsmVL3XTTTXrxxRdVVlZ2Scfo0qWLNmzY4LRtw4YNjmGr8PBwSVJBwY8PgrxwQnJ9zrN582anbZs2bap1n/NXgtlsF/9LuS511ud4QKNxw3xCwCi8ukfoUvj5+cnPz6/xTxSXVPnXXEmBqp8nZKp8PS6pwU/98ssva8CAAerTp49mzJih7t27y8fHR1u3btWePXsuOoT0m9/8RiNGjFDPnj2VkpKiNWvW6O2339YHH3wgqbJXqX///pozZ47i4+NVXFys3/3ud/Wuc9KkSUpPT1efPn00YMAAvfHGG/ryyy8dvVfViYuLk8lk0tq1a3XzzTerRYsWCgoKqrZtXeqsz/GARnHR+YSmyvmEnW9p1NtuAN7Kq3uEoqKiVFTkPLRUVFSkkJCQaoeAXMrHXNmlLanG26SlzWmUX2zt27fX559/rpSUFGVmZurqq69Wnz599MILL+ixxx7TU089Vev+w4cP14IFCzR37lz97Gc/0+LFi5WVlaXk5GRHm1dffVXff/+9evfurcmTJ+vpp5+ud5133323nnjiCT3++OPq3bu3Dh06pPHjx9e6T+vWrTVz5kxNmzZNkZGRmjhxYq3tL1ZnfY8HNLgmNp8Q8DYm+4UTJDyIyWTSypUrNXz48BrbTJ06Ve+++6527tzp2Hbffffp5MmTys7OrtN5SkpKZLFYZLVaFRIS4vTamTNndODAAcXHx8vf/xKf81PtuH/ryhDEuL9XaZCfFxjPzv+rvMfYxdzxF6nbnY1fD+Ahavv+vpBHDY2VlpZq3759jvUDBw4oLy9PYWFhatOmjTIzM3X06FG99tprkqRf/epXevHFF/X444/rwQcf1IcffqgVK1bonXfecddbqCphaGWXtgvvLA3Ag7hpPiFgFB4VhLZt2+a4068kZWRkSJJGjx6tpUuXqqCgQIcPH3a8Hh8fr3feeUePPvqoFixYoCuvvFJLlixRamqqy2uvlY9Zir/O3VUAaIrcOJ8QMAKPCkLJycmqbSSvurtGJycn6/PPP2/EqgCgEZ2fT7hilCrnD174O7Bx5xMCRuDVk6UBwCskDJVGvCaF/OS5YiExlduZTwhcMo/qEWqqPHS+OVyMnxNcFuYTAo2CIHQZzt9Z+PTp0+6/HB9N3unTpyVVvSM1UGfMJwQaHEHoMpjNZoWGhjqeLxUQEFDlye2A3W7X6dOnVVxcrNDQUJnN/AUPAE0FQegyRUVFSRIP28RFhYaGOn5eAABNA0HoMplMJkVHRysiIqJeD+yEsTRv3pyeIABogghCDcRsNvNFBwCAh+HyeQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgeF4ReeukltW3bVv7+/urXr5+2bNlSY9ulS5fKZDI5Lf7+/i6sFgAANGUeFYSWL1+ujIwMTZ8+XTt27NDVV1+t1NRUFRcX17hPSEiICgoKHMuhQ4dcWDEAAGjKPCoI/fGPf9S4ceM0ZswYJSQkaNGiRQoICNCrr75a4z4mk0lRUVGOJTIystZzlJeXq6SkxGkBAADeyWOC0NmzZ7V9+3alpKQ4tvn4+CglJUW5ubk17ldaWqq4uDjFxsZq2LBh+vLLL2s9z+zZs2WxWBxLbGxsg70HAADQtHhMEPrmm29ks9mq9OhERkaqsLCw2n06deqkV199Vf/85z/1+uuvq6KiQklJSfr6669rPE9mZqasVqtjOXLkSIO+DwAA0HQ0c3cBjSkxMVGJiYmO9aSkJHXp0kWLFy/WU089Ve0+fn5+8vPzc1WJAADAjTymR6hVq1Yym80qKipy2l5UVKSoqKg6HaN58+bq2bOn9u3b1xglAgAAD+MxQcjX11e9e/dWTk6OY1tFRYVycnKcen1qY7PZtHPnTkVHRzdWmQAAwIN41NBYRkaGRo8erT59+qhv376aP3++ysrKNGbMGEnSqFGj1Lp1a82ePVuSNGvWLPXv318dOnTQqVOn9Ic//EGHDh3SL37xC3e+DQAA0ER4VBC6++67dfz4cT355JMqLCxUjx49lJ2d7ZhAffjwYfn4/NjJ9e2332rcuHEqLCzUFVdcod69e2vjxo1KSEhw11sAAABNiMlut9vdXURTVlJSIovFIqvVqpCQEHeXAwAA6qCu398eM0cIAACgoRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYTVzdwEAAMCAKmzSoY1SaZEUFCnFJUk+ZpeXQRACAACutXu1lD1VKjn247aQGCntWSlhqEtLYWgMAAC4zu7V0opRziFIkkoKKrfvXu3ScghCAADANSpslT1Bslfz4g/bsqdVtnMRghAAAHCNQxur9gQ5sUslRyvbuQhBCAAAuEZpUcO2awAEIQAA4BpBkQ3brgEQhAAAgGvEJVVeHSZTDQ1MUkjrynYu4nFB6KWXXlLbtm3l7++vfv36acuWLbW2//vf/67OnTvL399f3bp107vvvuuiSgEAgBMfc+Ul8pKqhqEf1tPmuPR+Qh4VhJYvX66MjAxNnz5dO3bs0NVXX63U1FQVFxdX237jxo269957NXbsWH3++ecaPny4hg8frl27drm4cgAAIKnyPkEjXpNCop23h8RUbnfxfYRMdru9umvYmqR+/frpmmuu0YsvvihJqqioUGxsrB555BFNmzatSvu7775bZWVlWrt2rWNb//791aNHDy1atKjac5SXl6u8vNyxXlJSotjYWFmtVoWEhDTwOwIAwKAa+c7SJSUlslgsF/3+9pgeobNnz2r79u1KSUlxbPPx8VFKSopyc3Or3Sc3N9epvSSlpqbW2F6SZs+eLYvF4lhiY2Mb5g0AAIAf+Zil+OukbndW/uuGx2tIHhSEvvnmG9lsNkVGOs8kj4yMVGFhYbX7FBYW1qu9JGVmZspqtTqWI0eOXH7xAACgSeJZYz/h5+cnPz8/d5cBAABcwGN6hFq1aiWz2ayiIuebLBUVFSkqKqrafaKiourVHgAAGIvHBCFfX1/17t1bOTk5jm0VFRXKyclRYmJitfskJiY6tZekdevW1dgeAAAYi0cNjWVkZGj06NHq06eP+vbtq/nz56usrExjxoyRJI0aNUqtW7fW7NmzJUmTJk3SDTfcoHnz5umWW27RW2+9pW3btumVV15x59sAAABNhEcFobvvvlvHjx/Xk08+qcLCQvXo0UPZ2dmOCdGHDx+Wj8+PnVxJSUl688039bvf/U6//e1vddVVV2nVqlXq2rWru94CAABoQjzqPkLuUNf7EAAAgKbD6+4jBAAA0NAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLA86lljAJqoCpt0aKNUWiQFRUpxSZKP2d1VAcBFEYQAXJ7dq6XsqVLJsR+3hcRIac9KCUPdVxcA1AFDYwAu3e7V0opRziFIkkoKKrfvXu2eugCgjghCAC5Nha2yJ0j2al78YVv2tMp2ANBEEYQAXJpDG6v2BDmxSyVHK9sBQBNFEAJwaUqLGrYdALgBQQjApQmKbNh2AOAGBCEAlyYuqfLqMJlqaGCSQlpXtgOAJoogBODS+JgrL5GXVDUM/bCeNof7CQFo0ghCAC5dwlBpxGtSSLTz9pCYyu3cRwhAE8cNFQFcnoShUudbuLM0AI9EEAJw+XzMUvx17q4CAOqNoTEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYHhOETp48qZEjRyokJEShoaEaO3asSktLa90nOTlZJpPJafnVr37loooBAEBT18zdBdTVyJEjVVBQoHXr1uncuXMaM2aMHnroIb355pu17jdu3DjNmjXLsR4QENDYpQIAAA9xWUHozJkzWr58ucrKynTTTTfpqquuaqi6nHz11VfKzs7W1q1b1adPH0nSCy+8oJtvvllz585VTExMjfsGBAQoKiqqUeoCAACerc5DYxkZGXrkkUcc62fPnlViYqLGjRun3/72t+rZs6dyc3Mbpcjc3FyFhoY6QpAkpaSkyMfHR5s3b6513zfeeEOtWrVS165dlZmZqdOnT9favry8XCUlJU4LAADwTnUOQu+//75uuukmx/obb7yhQ4cOae/evfr2229111136emnn26UIgsLCxUREeG0rVmzZgoLC1NhYWGN+9133316/fXX9dFHHykzM1N//etfdf/999d6rtmzZ8tisTiW2NjYBnkPAACg6alzEDp8+LASEhIc6++//77uvPNOxcXFyWQyadKkSfr888/rdfJp06ZVmcz802XPnj31OuaFHnroIaWmpqpbt24aOXKkXnvtNa1cuVL79++vcZ/MzExZrVbHcuTIkUs+PwAAaNrqPEfIx8dHdrvdsb5p0yY98cQTjvXQ0FB9++239Tr5lClTlJ6eXmubdu3aKSoqSsXFxU7bv//+e508ebJe83/69esnSdq3b5/at29fbRs/Pz/5+fnV+ZgAAMBz1TkIdenSRWvWrFFGRoa+/PJLHT58WAMHDnS8fujQIUVGRtbr5OHh4QoPD79ou8TERJ06dUrbt29X7969JUkffvihKioqHOGmLvLy8iRJ0dHR9aoTAAB4pzoPjT3++OPKzMzUjTfeqBtvvFE333yz4uPjHa+/++676tu3b6MU2aVLF6WlpWncuHHasmWLNmzYoIkTJ+qee+5xXDF29OhRde7cWVu2bJEk7d+/X0899ZS2b9+ugwcPavXq1Ro1apSuv/56de/evVHqBAAAnqXOQei2227Tu+++q+7du+vRRx/V8uXLnV4PCAjQww8/3OAFnvfGG2+oc+fOjhB27bXX6pVXXnG8fu7cOeXn5zuuCvP19dUHH3ygQYMGqXPnzpoyZYruuOMOrVmzptFqBAAAnsVkv3DiTy1mzZqlxx57zHA3JCwpKZHFYpHValVISIi7ywEAAHVQ1+/vOvcIzZw586KPtAAAAPAkdQ5Cdew4AgAA8Bj1euiqyWRqrDoAAABcrl7PGuvYseNFw9DJkycvqyAAAABXqVcQmjlzpiwWS2PVAgAADMJWYdeWAydV/N0ZRQT7q298mMw+rh95qlcQuueee6o88wsAAKA+sncVaOaa3SqwnnFsi7b4a/qQBKV1de1Nj+s8R4j5QQAA4HJl7yrQ+Nd3OIUgSSq0ntH413coe1eBS+vhqjEAAOAStgq7Zq7ZreoSxfltM9fslq3CdZmjzkGooqKCYTEAAHDJthw4WaUn6EJ2SQXWM9pywHUXXtXr8nkAAIBLVfxdzSHoUto1BIIQAABwiYhg/wZt1xAIQgAAwCX6xocp2uKvmi6/Mqny6rG+8WEuq4kgBAAAXMLsY9L0IQmSVCUMnV+fPiTBpfcTIggBAACXSesarYX391KUxXn4K8rir4X393L5fYTqdUNFAACAy5XWNVo3JUR53p2lAQAAGoLZx6TE9i3dXQZDYwAAwLgIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLA8Jgg988wzSkpKUkBAgEJDQ+u0j91u15NPPqno6Gi1aNFCKSkp2rt3b+MWCgAAPIbHBKGzZ8/qrrvu0vjx4+u8z3PPPac//elPWrRokTZv3qzAwEClpqbqzJkzjVgpAADwFCa73W53dxH1sXTpUk2ePFmnTp2qtZ3dbldMTIymTJmixx57TJJktVoVGRmppUuX6p577qnT+UpKSmSxWGS1WhUSEnK55QMAABeo6/e3x/QI1deBAwdUWFiolJQUxzaLxaJ+/fopNze3xv3Ky8tVUlLitAAAAO/ktUGosLBQkhQZGem0PTIy0vFadWbPni2LxeJYYmNjG7VOAADgPm4NQtOmTZPJZKp12bNnj0tryszMlNVqdSxHjhxx6fkBAIDrNHPnyadMmaL09PRa27Rr1+6Sjh0VFSVJKioqUnR0tGN7UVGRevToUeN+fn5+8vPzu6RzAgAAz+LWIBQeHq7w8PBGOXZ8fLyioqKUk5PjCD4lJSXavHlzva48AwAA3stj5ggdPnxYeXl5Onz4sGw2m/Ly8pSXl6fS0lJHm86dO2vlypWSJJPJpMmTJ+vpp5/W6tWrtXPnTo0aNUoxMTEaPny4m95FJVuFXbn7T+ifeUeVu/+EbBUedeEeAABew609QvXx5JNPatmyZY71nj17SpI++ugjJScnS5Ly8/NltVodbR5//HGVlZXpoYce0qlTp3TttdcqOztb/v7+Lq39Qtm7CjRzzW4VWH+8l1G0xV/ThyQorWt0LXsCAICG5nH3EXK1hryPUPauAo1/fYd++oGbfvh34f29CEMAADQAw99HqKmxVdg1c83uKiFIkmPbzDW7GSYDAMCFCEIusuXASafhsJ+ySyqwntGWAyddVxQAAAZHEHKR4u/q9nyzurYDAACXjyDkIhHBdZugXdd2AADg8hGEXKRvfJiiLf6OidE/ZVLl1WN948NcWRYAAIZGEHIRs49J04ckSFKVMHR+ffqQBJl9aopKAACgoRGEXCita7QW3t9LURbn4a8oiz+XzgMA4AYec0NFb5HWNVo3JURpy4GTKv7ujCKCK4fD6AkCAMD1CEJuYPYxKbF9S3eXAQCA4TE0BgAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADMtjgtAzzzyjpKQkBQQEKDQ0tE77pKeny2QyOS1paWmNWygAAPAYzdxdQF2dPXtWd911lxITE/WXv/ylzvulpaUpKyvLse7n59cY5QEAAA/kMUFo5syZkqSlS5fWaz8/Pz9FRUU1QkUAAMDTeczQ2KVav369IiIi1KlTJ40fP14nTpyotX15eblKSkqcFgAA4J28OgilpaXptddeU05Ojp599ll9/PHHGjx4sGw2W437zJ49WxaLxbHExsa6sGIAAOBKbg1C06ZNqzKZ+afLnj17Lvn499xzj4YOHapu3bpp+PDhWrt2rbZu3ar169fXuE9mZqasVqtjOXLkyCWfHwAANG1unSM0ZcoUpaen19qmXbt2DXa+du3aqVWrVtq3b59uvPHGatv4+fkxoRoAAINwaxAKDw9XeHi4y8739ddf68SJE4qOjnbZOQEAQNPlMXOEDh8+rLy8PB0+fFg2m015eXnKy8tTaWmpo03nzp21cuVKSVJpaal+85vfaNOmTTp48KBycnI0bNgwdejQQampqe56GwAAoAnxmMvnn3zySS1btsyx3rNnT0nSRx99pOTkZElSfn6+rFarJMlsNuuLL77QsmXLdOrUKcXExGjQoEF66qmnGPoykgqbdGijVFokBUVKcUmSj9ndVQEAmgiT3W63u7uIpqykpEQWi0VWq1UhISHuLgf1sXu1lD1VKjn247aQGCntWSlhqPvqAgA0urp+f3vM0BhQL7tXSytGOYcgSSopqNy+e7V76gIANCkEIXifCltlT5Cq6+z8YVv2tMp2AABDIwjB+xzaWLUnyIldKjla2Q4AYGgEIXif0qKGbQcA8FoEIXifoMiGbQcA8FoEIXifuKTKq8NkqqGBSQppXdkOAGBoBCF4Hx9z5SXykqqGoR/W0+ZwPyEAAEEIXiphqDTiNSnkJ49TCYmp3M59hAAA8qA7SwP1ljBU6nwLd5YGANSIIATv5mOW4q9zdxUAgCaKoTEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYHhGEDh48qLFjxyo+Pl4tWrRQ+/btNX36dJ09e7bW/c6cOaMJEyaoZcuWCgoK0h133KGioiIXVQ0AAJo6jwhCe/bsUUVFhRYvXqwvv/xSzz//vBYtWqTf/va3te736KOPas2aNfr73/+ujz/+WMeOHdPtt9/uoqoBAEBTZ7Lb7XZ3F3Ep/vCHP2jhwoX673//W+3rVqtV4eHhevPNN3XnnXdKqgxUXbp0UW5urvr371+n85SUlMhischqtSokJKTB6gcAAI2nrt/fHtEjVB2r1aqwsLAaX9++fbvOnTunlJQUx7bOnTurTZs2ys3NrXG/8vJylZSUOC0AAMA7eWQQ2rdvn1544QX98pe/rLFNYWGhfH19FRoa6rQ9MjJShYWFNe43e/ZsWSwWxxIbG9tQZQMAgCbGrUFo2rRpMplMtS579uxx2ufo0aNKS0vTXXfdpXHjxjV4TZmZmbJarY7lyJEjDX4OAADQNDRz58mnTJmi9PT0Wtu0a9fO8d/Hjh3TwIEDlZSUpFdeeaXW/aKionT27FmdOnXKqVeoqKhIUVFRNe7n5+cnPz+/OtUPAPBCFTbp0EaptEgKipTikiQfs7urQiNxaxAKDw9XeHh4ndoePXpUAwcOVO/evZWVlSUfn9o7s3r37q3mzZsrJydHd9xxhyQpPz9fhw8fVmJi4mXXDgDwQrtXS9lTpZJjP24LiZHSnpUShrqvLjQaj5gjdPToUSUnJ6tNmzaaO3eujh8/rsLCQqe5PkePHlXnzp21ZcsWSZLFYtHYsWOVkZGhjz76SNu3b9eYMWOUmJhY5yvGAAAGsnu1tGKUcwiSpJKCyu27V7unLjQqt/YI1dW6deu0b98+7du3T1deeaXTa+ev/j937pzy8/N1+vRpx2vPP/+8fHx8dMcdd6i8vFypqal6+eWXXVo7AMADVNgqe4JU3R1l7JJMUvY0qfMtDJN5GY+9j5CrcB8h4OJsFXZtOXBSxd+dUUSwv/rGh8nsY3J3WUDdHfhUWnbrxduNXivFX9f49eCy1fX72yN6hAA0Xdm7CjRzzW4VWM84tkVb/DV9SILSuka7sTKgHkrr+PiluraDx/CIOUIAmqbsXQUa//oOpxAkSYXWMxr/+g5l7ypwU2VAPQVFNmw7eAyCEIBLYquwa+aa3TXOqJCkmWt2y1bB6Ds8QFxS5dVhqmlI1ySFtK5sB69CEIJXs1XYlbv/hP6Zd1S5+0/wpdyAthw4WaUn6EJ2SQXWM9py4KTrigIulY+58hJ5SVXD0A/raXOYKO2FmCMEr8XclcZV/F3NIehS2gFulzBUGvFaDfcRmsN9hLwUQQhe6fzclZ/2/5yfu7Lw/l6EocsUEezfoO2AJiFhaOUl8txZ2jAIQvA6F5u7YlLl3JWbEqK4xPsy9I0PU7TFX4XWM9V+1iZJUZbKS+kBj+Jj5hJ5A2GOELwOc1dcw+xj0vQhCZJqnFGh6UMSCJsAmjSCELwOc1dcJ61rtBbe30tRFufhryiLP8OPADwCQ2PwOsxdca20rtG6KSGKO0sD8EgEIXgd5q64ntnHpMT2Ld1dBgDUG0Nj8DrMXQEA1BVBCF6JuSsAgLpgaAxei7krAICLIQjBqzF3BQBQG4bGAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYXFDRXeosEmHNkqlRVJQpBSXJPmY3V0VAACGQxBytd2rpeypUsmxH7eFxEhpz0oJQ91XFwAABsTQmCvtXi2tGOUcgiSppKBy++7V7qkLAACDIgi5SoWtsidI9mpe/GFb9rTKdgAAwCUIQq5yaGPVniAndqnkaGU7AADgEgQhVyktath2AADgshGEXCUosmHbAQCAy0YQcpW4pMqrw2SqoYFJCmld2Q4AALgEQchVfMyVl8hLqhqGflhPm8P9hAAAcCGCkCslDJVGvCaFRDtvD4mp3M59hAAAcCluqOhqCUOlzrdwZ2kAAJoAgpA7+Jil+OvcXQUAAIbnEUNjBw8e1NixYxUfH68WLVqoffv2mj59us6ePVvrfsnJyTKZTE7Lr371KxdVDQAAmjqP6BHas2ePKioqtHjxYnXo0EG7du3SuHHjVFZWprlz59a677hx4zRr1izHekBAQGOXCwAAPIRHBKG0tDSlpaU51tu1a6f8/HwtXLjwokEoICBAUVFRjV0iAADwQB4xNFYdq9WqsLCwi7Z744031KpVK3Xt2lWZmZk6ffp0re3Ly8tVUlLitAAAAO/kET1CP7Vv3z698MILF+0Nuu+++xQXF6eYmBh98cUXmjp1qvLz8/X222/XuM/s2bM1c+bMhi4ZAAA0QSa73V7d49BdYtq0aXr22WdrbfPVV1+pc+fOjvWjR4/qhhtuUHJyspYsWVKv83344Ye68cYbtW/fPrVv377aNuXl5SovL3esl5SUKDY2VlarVSEhIfU6HwAAcI+SkhJZLJaLfn+7NQgdP35cJ06cqLVNu3bt5OvrK0k6duyYkpOT1b9/fy1dulQ+PvUb2SsrK1NQUJCys7OVmppap33q+kECAICmo67f324dGgsPD1d4eHid2h49elQDBw5U7969lZWVVe8QJEl5eXmSpOjo6NobAgAAQ/CIydJHjx5VcnKy2rRpo7lz5+r48eMqLCxUYWGhU5vOnTtry5YtkqT9+/frqaee0vbt23Xw4EGtXr1ao0aN0vXXX6/u3bu7660AAIAmxCMmS69bt0779u3Tvn37dOWVVzq9dn5k79y5c8rPz3dcFebr66sPPvhA8+fPV1lZmWJjY3XHHXfod7/7Xb3Off74XD0GAIDnOP+9fbEZQG6dI+QJvv76a8XGxrq7DAAAcAmOHDlSpRPlQgShi6ioqNCxY8cUHBwsk8nUYMc9fzXakSNHmITdyPisXYPP2TX4nF2Dz9k1GvNzttvt+u677xQTE1PrvGKPGBpzJx8fn1qT5OUKCQnh/2QuwmftGnzOrsHn7Bp8zq7RWJ+zxWK5aBuPmCwNAADQGAhCAADAsAhCbuLn56fp06fLz8/P3aV4PT5r1+Bzdg0+Z9fgc3aNpvA5M1kaAAAYFj1CAADAsAhCAADAsAhCAADAsAhCAADAsAhCbvLSSy+pbdu28vf3V79+/RwPi0XD+eSTTzRkyBDFxMTIZDJp1apV7i7J68yePVvXXHONgoODFRERoeHDhys/P9/dZXmlhQsXqnv37o4bzyUmJupf//qXu8vyanPmzJHJZNLkyZPdXYrXmTFjhkwmk9PSuXNnt9RCEHKD5cuXKyMjQ9OnT9eOHTt09dVXKzU1VcXFxe4uzauUlZXp6quv1ksvveTuUrzWxx9/rAkTJmjTpk1at26dzp07p0GDBqmsrMzdpXmdK6+8UnPmzNH27du1bds2/fznP9ewYcP05Zdfurs0r7R161YtXrxY3bt3d3cpXutnP/uZCgoKHMtnn33mljq4fN4N+vXrp2uuuUYvvviipMrnmcXGxuqRRx7RtGnT3FyddzKZTFq5cqWGDx/u7lK82vHjxxUREaGPP/5Y119/vbvL8XphYWH6wx/+oLFjx7q7FK9SWlqqXr166eWXX9bTTz+tHj16aP78+e4uy6vMmDFDq1atUl5enrtLoUfI1c6ePavt27crJSXFsc3Hx0cpKSnKzc11Y2XA5bNarZIqv6DReGw2m9566y2VlZUpMTHR3eV4nQkTJuiWW25x+j2Nhrd3717FxMSoXbt2GjlypA4fPuyWOnjoqot98803stlsioyMdNoeGRmpPXv2uKkq4PJVVFRo8uTJGjBggLp27erucrzSzp07lZiYqDNnzigoKEgrV65UQkKCu8vyKm+99ZZ27NihrVu3ursUr9avXz8tXbpUnTp1UkFBgWbOnKnrrrtOu3btUnBwsEtrIQgBaBATJkzQrl273DbObwSdOnVSXl6erFar/u///k+jR4/Wxx9/TBhqIEeOHNGkSZO0bt06+fv7u7scrzZ48GDHf3fv3l39+vVTXFycVqxY4fKhXoKQi7Vq1Upms1lFRUVO24uKihQVFeWmqoDLM3HiRK1du1affPKJrrzySneX47V8fX3VoUMHSVLv3r21detWLViwQIsXL3ZzZd5h+/btKi4uVq9evRzbbDabPvnkE7344osqLy+X2Wx2Y4XeKzQ0VB07dtS+fftcfm7mCLmYr6+vevfurZycHMe2iooK5eTkMNYPj2O32zVx4kStXLlSH374oeLj491dkqFUVFSovLzc3WV4jRtvvFE7d+5UXl6eY+nTp49GjhypvLw8QlAjKi0t1f79+xUdHe3yc9Mj5AYZGRkaPXq0+vTpo759+2r+/PkqKyvTmDFj3F2aVyktLXX66+LAgQPKy8tTWFiY2rRp48bKvMeECRP05ptv6p///KeCg4NVWFgoSbJYLGrRooWbq/MumZmZGjx4sNq0aaPvvvtOb775ptavX6/33nvP3aV5jeDg4Crz2wIDA9WyZUvmvTWwxx57TEOGDFFcXJyOHTum6dOny2w2695773V5LQQhN7j77rt1/PhxPfnkkyosLFSPHj2UnZ1dZQI1Ls+2bds0cOBAx3pGRoYkafTo0Vq6dKmbqvIuCxculCQlJyc7bc/KylJ6errrC/JixcXFGjVqlAoKCmSxWNS9e3e99957uummm9xdGlBvX3/9te69916dOHFC4eHhuvbaa7Vp0yaFh4e7vBbuIwQAAAyLOUIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIADC09PV3Dhw93dxkA3IQgBKDRpaeny2QyVVnS0tLcXZoWLFjQZB65YjKZtGrVKneXARgKzxoD4BJpaWnKyspy2ubn5+emaiSbzSaTySSLxeK2GgC4Hz1CAFzCz89PUVFRTssVV1yh9evXy9fXV59++qmj7XPPPaeIiAgVFRVJqnyo68SJEzVx4kRZLBa1atVKTzzxhC58VGJ5ebkee+wxtW7dWoGBgerXr5/Wr1/veH3p0qUKDQ3V6tWrlZCQID8/Px0+fLjK0FhycrIeeeQRTZ48WVdccYUiIyP15z//WWVlZRozZoyCg4PVoUMH/etf/3J6f7t27dLgwYMVFBSkyMhIPfDAA/rmm2+cjvvrX/9ajz/+uMLCwhQVFaUZM2Y4Xm/btq0k6bbbbpPJZHKsA2hcBCEAbpWcnKzJkyfrgQcekNVq1eeff64nnnhCS5YsUWRkpKPdsmXL1KxZM23ZskULFizQH//4Ry1ZssTx+sSJE5Wbm6u33npLX3zxhe666y6lpaVp7969jjanT5/Ws88+qyVLlujLL79UREREtTUtW7ZMrVq10pYtW/TII49o/Pjxuuuuu5SUlKQdO3Zo0KBBeuCBB3T69GlJ0qlTp/Tzn/9cPXv21LZt25Sdna2ioiKNGDGiynEDAwO1efNmPffcc5o1a5bWrVsnSdq6daskKSsrSwUFBY51AI3MDgCNbPTo0Xaz2WwPDAx0Wp555hm73W63l5eX23v06GEfMWKEPSEhwT5u3Din/W+44QZ7ly5d7BUVFY5tU6dOtXfp0sVut9vthw4dspvNZvvRo0ed9rvxxhvtmZmZdrvdbs/KyrJLsufl5VWpbdiwYU7nuvbaax3r33//vT0wMND+wAMPOLYVFBTYJdlzc3Ptdrvd/tRTT9kHDRrkdNwjR47YJdnz8/OrPa7dbrdfc8019qlTpzrWJdlXrlxZw6cIoDEwRwiASwwcOFALFy502hYWFiZJ8vX11RtvvKHu3bsrLi5Ozz//fJX9+/fvL5PJ5FhPTEzUvHnzZLPZtHPnTtlsNnXs2NFpn/LycrVs2dKx7uvrq+7du1+01gvbmM1mtWzZUt26dXNsO99TVVxcLEn697//rY8++khBQUFVjrV//35HXT89d3R0tOMYANyDIATAJQIDA9WhQ4caX9+4caMk6eTJkzp58qQCAwPrfOzS0lKZzWZt375dZrPZ6bULw0mLFi2cwlRNmjdv7rRuMpmctp0/RkVFheP8Q4YM0bPPPlvlWNHR0bUe9/wxALgHQQiA2+3fv1+PPvqo/vznP2v58uUaPXq0PvjgA/n4/DiNcfPmzU77bNq0SVdddZXMZrN69uwpm82m4uJiXXfdda4uX7169dI//vEPtW3bVs2aXfqv1ebNm8tmszVgZQAuhsnSAFyivLxchYWFTss333wjm82m+++/X6mpqRozZoyysrL0xRdfaN68eU77Hz58WBkZGcrPz9ff/vY3vfDCC5o0aZIkqWPHjho5cqRGjRqlt99+WwcOHNCWLVs0e/ZsvfPOO43+3iZMmKCTJ0/q3nvv1datW7V//3699957GjNmTL2CTdu2bZWTk6PCwkJ9++23jVgxgPPoEQLgEtnZ2U7DRJLUqVMn3XfffTp06JDWrl0rqXIo6ZVXXtG9996rQYMG6eqrr5YkjRo1Sv/73//Ut29fmc1mTZo0SQ899JDjWFlZWXr66ac1ZcoUHT16VK1atVL//v116623Nvp7i4mJ0YYNGzR16lQNGjRI5eXliouLU1pamlOv1sXMmzdPGRkZ+vOf/6zWrVvr4MGDjVc0AEmSyW6/4EYcANAEJScnq0ePHpo/f767SwHgZRgaAwAAhkUQAgAAhsXQGAAAMCx6hAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGH9f83F2tH4x2d2AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1952,15 +1049,15 @@ " clusters_test = rgdr.transform(x_test)\n", " # train model\n", " ridge = Ridge(alpha=1.0)\n", - " model = ridge.fit(clusters_train.isel(i_interval=0), y_train.isel(i_interval=1))\n", + " model = ridge.fit(clusters_train.isel(i_interval=0), y_train.sel(i_interval=1))\n", " # save model\n", " models.append(model)\n", " # predict and save results\n", " prediction = model.predict(clusters_test.isel(i_interval=0))\n", " # calculate and save rmse\n", - " rmse_train.append(mean_squared_error(y_train.isel(i_interval=1),\n", + " rmse_train.append(mean_squared_error(y_train.sel(i_interval=1),\n", " model.predict(clusters_train.isel(i_interval=0))))\n", - " rmse_test.append(mean_squared_error(y_test.isel(i_interval=1),\n", + " rmse_test.append(mean_squared_error(y_test.sel(i_interval=1),\n", " prediction))" ] }, @@ -1971,7 +1068,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSVklEQVR4nO3dd1yV5f/H8dcBBRUExY3iHmluLWeOxFWZmmmZmVo2NVeW2jdNyzJtqFlZaWnDyjJX5jZ35sadE0fuCYKKAvfvj+vHcoKM+5zD+/l4nIec+9wcPsj3G2+v8bkclmVZiIiIiLgoD7sLEBEREUkNhRkRERFxaQozIiIi4tIUZkRERMSlKcyIiIiIS1OYEREREZemMCMiIiIuLYvdBaS32NhYjh07Rs6cOXE4HHaXIyIiIslgWRYXL14kMDAQD4/bj724fZg5duwYQUFBdpchIiIid+HIkSMUKVLktve4fZjJmTMnYP4y/Pz8bK5GREREkiM8PJygoKD43+O34/ZhJm5qyc/PT2FGRETExSRniYgWAIuIiIhLU5gRERERl6YwIyIiIi7N7dfMiIiIe4uNjeXq1at2lyEplDVrVjw9PdPkvRRmRETEZV29epXQ0FBiY2PtLkXuQq5cuShYsGCq+8ApzIiIiEuyLIvjx4/j6elJUFDQHRurifOwLItLly5x6tQpAAoVKpSq91OYERERlxQdHc2lS5cIDAwkR44cdpcjKZQ9e3YATp06Rf78+VM15aQYKyIiLikmJgYALy8vmyuRuxUXQq9du5aq91GYERERl6Zz91xXWv3sFGZERETEpSnMiIiIiEtTmBEREXFhxYsXZ8yYMba/h520m+luRUZCSAjUrQuarxURkWRq1KgRVatWTbPwsH79enx8fNLkvVyVRmbu1tSpUL8+VKwIo0fD2bN2VyQiIm7Csiyio6OTdW++fPky/dZ0hZm7dfo05MgBO3dCv34QGAgdO8Jff4E6UYqI2CYy8taPK1eSf+/ly8m7NyW6du3K8uXLGTt2LA6HA4fDwcGDB1m2bBkOh4N58+ZRo0YNvL29WbVqFfv376d169YUKFAAX19f7rvvPhYvXpzkPa+fInI4HEycOJG2bduSI0cOypQpw+zZs1NU5+HDh2ndujW+vr74+fnRoUMHTp48Gf/6li1baNy4MTlz5sTPz48aNWqwYcMGAA4dOkSrVq3InTs3Pj4+3HvvvcydOzdlf1EppDBztwYMgGPHYPx4qF4drl6FX36BJk2gbFkYORIS/eBFRCRj+Pre+tGuXdJ78+e/9b0tWya9t3jxm9+XEmPHjqVOnTo8//zzHD9+nOPHjxMUFBT/+sCBA/nggw/YtWsXlStXJiIigoceeoglS5awefNmWrRoQatWrTh8+PBtv86wYcPo0KEDW7du5aGHHqJTp06cO3cuWTXGxsbSunVrzp07x/Lly1m0aBEHDhzgiSeeiL+nU6dOFClShPXr17Nx40YGDhxI1qxZAejRowdRUVGsWLGCbdu2MXLkSHxT+heVUpabCwsLswArLCwsfb/Qhg2W9eKLlpUzp2WBeWTJYlmPPWZZ8+ZZVnR0+n59EZFM5vLly9bOnTuty5cvJ7ke95/gmz0eeijpe+TIcet7GzZMem/evDe/L6UaNmxo9e7dO8m1pUuXWoA1c+bMO37+vffea40bNy7+ebFixazRo0fHPwest956K/55RESEBVjz5s275Xsmfo+FCxdanp6e1uHDh+Nf37FjhwVY69atsyzLsnLmzGlNnjz5pu9VqVIla+jQoXf8Pizr1j9Dy0rZ72+NzKSVGjXgyy/NaM0330Dt2hAdDdOnm3hfsiS88w7895/dlYqIuLWIiFs/fv896b2nTt363nnzkt578ODN70tLNWvWvO57iaB///6UL1+eXLly4evry65du+44MlO5cuX4j318fPDz84s/B+lOdu3aRVBQUJIRowoVKpArVy527doFQL9+/ejevTvBwcF88MEH7N+/P/7eXr16MXz4cOrVq8fbb7/N1q1bk/V1U0NhJq35+sKzz8KaNbBtG/TqBblzw+HD8PbbUKwYPPIIzJplwo6IiKQpH59bP7JlS/69/3900B3vTdvak75h//79mTFjBu+//z4rV64kJCSESpUqcfXq1du+T9yUTxyHw5GmJ4sPHTqUHTt28PDDD/PXX39RoUIFZsyYAUD37t05cOAAnTt3Ztu2bdSsWZNx48al2de+GYWZ9FSxIowdC0ePwo8/QsOGZnHwn39CmzZQtCj8738QGmp3pSIikkG8vLziz5W6k9WrV9O1a1fatm1LpUqVKFiwIAcPHkzX+sqXL8+RI0c4cuRI/LWdO3dy4cIFKlSoEH+tbNmy9O3bl4ULF/LYY48xadKk+NeCgoJ46aWXmD59Oq+99hoTJkxI15oVZjJC9uzQqRMsWwa7d8Prr0O+fHD8OLz/vpmCatoUfvvNLCQWERG3Vbx4cdauXcvBgwc5c+bMbUdMypQpw/Tp0wkJCWHLli089dRTaTrCcjPBwcFUqlSJTp06sWnTJtatW8czzzxDw4YNqVmzJpcvX6Znz54sW7aMQ4cOsXr1atavX0/58uUB6NOnDwsWLCA0NJRNmzaxdOnS+NfSi8JMRitbFkaNMmtnfvvNhBiAxYuhQwcoUsSEnd277a1TRETSRf/+/fH09KRChQrky5fvtutfPvnkE3Lnzk3dunVp1aoVzZs3p3r16ulan8PhYNasWeTOnZsGDRoQHBxMyZIlmTp1KgCenp6cPXuWZ555hrJly9KhQwdatmzJsGHDAHOaeY8ePShfvjwtWrSgbNmyfPHFF+lbs2VZVrp+BZuFh4fj7+9PWFgYfn5+dpdzc6GhZtHwt9+a0Zo4DRrA88+bvYTXT96KiGRyV65cITQ0lBIlSpDt+sUw4hJu9zNMye9vjcw4gxIlYPhws0h41iyzQNjDA1asgM6dTUO+Xr3MgmIRERFJQmHGmWTJAo8+Cn/8AYcOma3cxYrBhQswbhxUrmy2fH/zTdrvBxQREXFRCjPOqkgRGDwY9u+H+fPhscdM2Fm7Frp3N6M1L74IGzfaXamIiIitFGacnacnNG9uOj399x988AGULg0XL8LXX0PNmuY4hfHjISzM7mpFREQynMKMKylQwJwJtWePOdCyY0fw8oLNm+GVV8xoTbdu8Pffpsu2iIhIJqAw44ocDmjcGH76yRyfMHo0VKgAly7B5MlQr55p2DdmDJw9a3e1IiIi6UphxtXlyQN9+sD27bB6NXTtarZx79wJfftC4cLw1FOwdKlGa0RExC0pzLgLhwPq1oVJk0yvmi++gKpVISoKfv4ZHnzQNOwbORJOnrS7WhERkTRja5hZsWIFrVq1IjAwEIfDwcyZM5O8PnToUO655x58fHzInTs3wcHBrF271p5iXYm/P7z8MmzaBOvXwwsvmAMw9+2DgQPNTqnHH4cFC8xZUSIikik0atSIPn362F1GmrM1zERGRlKlShU+//zzm75etmxZPvvsM7Zt28aqVasoXrw4zZo14/Tp0xlcqYtyOMxup6++MqM1EydCrVrmtO7ff4cWLcy5UO++a3ZKiYhIukuPQNG1a1fatGmTpu/pSmwNMy1btmT48OG0bdv2pq8/9dRT8WdC3HvvvXzyySeEh4ezdevWDK7UDfj6wnPPwT//wNat8OqrkCuXac43ZIhpzteqFcyebcKOiIiIi3CZNTNXr17l66+/xt/fnypVqtzyvqioKMLDw5M85DqVKsGnn5qdUD/8YM6Aio2FOXOgdWsTbN56y5wZJSIiaaZr164sX76csWPH4nA4cDgcHDx4EIDt27fTsmVLfH19KVCgAJ07d+bMmTPxnztt2jQqVapE9uzZyZMnD8HBwURGRjJ06FC+++47Zs2aFf+ey5YtS1Y958+f55lnniF37tzkyJGDli1bsnfv3vjXDx06RKtWrcidOzc+Pj7ce++9zJ07N/5zO3XqRL58+ciePTtlypRh0qRJafZ3lRJZbPmqKTBnzhyefPJJLl26RKFChVi0aBF58+a95f0jRoyIP7lT7iB7dnj6afPYvdtMQ02ebELOe+/B++9DcLA57LJ1a9PTRkTEWVmWaVFhhxw5zNT+HYwdO5Y9e/ZQsWJF3nnnHQDy5cvHhQsXePDBB+nevTujR4/m8uXLDBgwgA4dOvDXX39x/PhxOnbsyKhRo2jbti0XL15k5cqVWJZF//792bVrF+Hh4fFhIiAgIFlld+3alb179zJ79mz8/PwYMGAADz30EDt37iRr1qz06NGDq1evsmLFCnx8fNi5cye+vr4ADB48mJ07dzJv3jzy5s3Lvn37uHz58l3+BaaO04eZxo0bExISwpkzZ5gwYQIdOnRg7dq15M+f/6b3Dxo0iH79+sU/Dw8PJygoKKPKdV3lysGHH5oDL2fNggkTYPFiWLTIPPLlM9u+u3c3u6JERJzNpUtmSt0OERHg43PH2/z9/fHy8iJHjhwULFgw/vpnn31GtWrVeP/99+OvffvttwQFBbFnzx4iIiKIjo7mscceo1ixYgBUqlQp/t7s2bMTFRWV5D3vJC7ErF69mrp16wIwZcoUgoKCmDlzJu3bt+fw4cO0a9cu/muVLFky/vMPHz5MtWrVqFmzJgDFixdP9tdOa04/zeTj40Pp0qWpXbs233zzDVmyZOGbb7655f3e3t74+fkleUgKeHtDhw4mwOzfD2++CYUKwenTJuyUKweNGsGUKXDlit3Vioi4hS1btrB06VJ8fX3jH/fccw8A+/fvp0qVKjRp0oRKlSrRvn17JkyYwPnz51P1NXft2kWWLFmoVatW/LU8efJQrlw5du3aBUCvXr0YPnw49erV4+23306yZvXll1/ml19+oWrVqrzxxhv8/fffqaonNZw+zFwvNjaWqKgou8vIHEqWNNNNhw/DzJnw8MPg4QHLl5upqcBA6N3bNOwTEbFbjhxmhMSOR44cqSo9IiKCVq1aERISkuSxd+9eGjRogKenJ4sWLWLevHlUqFCBcePGUa5cOULTeW1j9+7dOXDgAJ07d2bbtm3UrFmTcePGAWYTz6FDh+jbty/Hjh2jSZMm9O/fP13ruRVbw0xERET8DwwgNDSUkJAQDh8+TGRkJG+++Sb//PMPhw4dYuPGjTz77LMcPXqU9u3b21l25pMli1kzM2cOHDwIw4ZB0aJw/rxZSFypEtSpA99+C5GRdlcrIpmVw2Gmeux4JGO9TBwvLy9iYmKSXKtevTo7duygePHilC5dOsnD5/+nrxwOB/Xq1WPYsGFs3rwZLy8vZsyYccv3vJPy5csTHR2dpH/b2bNn2b17NxUqVIi/FhQUxEsvvcT06dN57bXXmDBhQvxr+fLlo0uXLvz444+MGTOGr7/+OkU1pBVbw8yGDRuoVq0a1apVA6Bfv35Uq1aNIUOG4Onpyb///ku7du0oW7YsrVq14uzZs6xcuZJ7773XzrIzt6Ags5X7wAGYOxfatjVh559/zNbvQoXgpZdg40a7KxURcUrFixdn7dq1HDx4kDNnzhAbG0uPHj04d+4cHTt2ZP369ezfv58FCxbQrVs3YmJiWLt2Le+//z4bNmzg8OHDTJ8+ndOnT1O+fPn499y6dSu7d+/mzJkzXLt27Y51lClThtatW/P888+zatUqtmzZwtNPP03hwoVp3bo1AH369GHBggWEhoayadMmli5dGv81hwwZwqxZs9i3bx87duxgzpw58a9lOMvNhYWFWYAVFhZmdynu6/hxyxoxwrJKlbIss5/APKpVs6zx4y1Lf/cikg4uX75s7dy507p8+bLdpaTI7t27rdq1a1vZs2e3ACs0NNSyLMvas2eP1bZtWytXrlxW9uzZrXvuucfq06ePFRsba+3cudNq3ry5lS9fPsvb29sqW7asNW7cuPj3PHXqlNW0aVPL19fXAqylS5fe9Gs3bNjQ6t27d/zzc+fOWZ07d7b8/f2t7NmzW82bN7f27NkT/3rPnj2tUqVKWd7e3la+fPmszp07W2fOnLEsy7Leffddq3z58lb27NmtgIAAq3Xr1taBAwdS9Hdxu59hSn5/OyzLvU8fDA8Px9/fn7CwMC0GTm+xsbBsmdkJNX06XL1qrufIAU88YbZ4166douFYEZFbuXLlCqGhoZQoUYJs2bLZXY7chdv9DFPy+9vlFgCLE/PwMAda/vwzHD0Kn3wC5cub7ZKTJpmDMCtVgrFj4dw5u6sVERE3oTAj6SNvXujbF3bsgFWroEsX06Rvxw7o08fshOrUyYzkuPfgoIiIpDOFGUlfDgfUq5fQWfizz6BKFYiKgp9+gsaNTe+aUaPg1Cm7qxURERekMCMZJ1cu6NEDNm+GdevMGhpfX9i7FwYMgMKF4fHHYeFCs/5GREQkGRRmJOM5HHDfffD113D8uFkwfP/95rTu33+H5s2hVClztMLRo3ZXKyJOzs33sbi1tPrZKcyIvXx9zXlPa9fCli3Qsyf4+5vmfIMHm+Z8jz4Kf/xhwo6IyP/z9PQE4GrczklxOZf+/2DQrFmzpup9tDVbnM/lyzBtmhmxWbky4XpgIDz7rGnOZ+OBZiLiHCzL4vDhw1y7do3AwEA8PPTvc1dhWRaXLl3i1KlT5MqVi0KFCt1wT0p+fyvMiHPbtQsmToTvvoOzZ801hwOaNoUXXoBWrcDLy94aRcQ2V69eJTQ0lFits3NJuXLlomDBgjhu0n9MYSYRhRk3ERVlDrucMAGWLEm4nj8/dO1qpqrKlLGrOhGxUWxsrKaaXFDWrFnjpwpvRmEmEYUZN7R/P3zzjWnEd+JEwvVGjcwOqcceA3UDFRFxaeoALO6tVCl4/304fBhmzICHHjJTT8uWmUZ8hQubxnw7dthdqYiIZACNzIh7OHIEvv3WjNgcOZJwvU4dM1rToQP4+NhXn4iIpIhGZiTzCQqCt9+G0FCYOxfatAFPT1izxuyACgyEl1+GTZvsrlRERNKYwoy4F09PaNnSTD8dOWKmo0qWhPBw+PJLqFHDPL780lwTERGXpzAj7qtQIRg0yByXsHgxPPGE2ca9aZMZpSlUyGzvDguzu1IREUkFhRlxfx4e0KQJ/PKLOR7h44/hnnvg0iWz1fvRR02jPhERcUkKM5K55M0L/frBzp3mQEs/P1ixwozaXLtmd3UiInIXFGYkc4rrIjx7tulJ88cf5pgEdREVEXE5CjOSuTVsCL/+ahYO//CDGbVx724FIiJuR2FGpFUr000YYOxYGD7c3npERCRFFGZEADp3hjFjzMdDhsAXX9hajoiIJJ/CjEic3r1h8GDzcc+e8PPP9tYjIiLJojAjktiwYdCjh1k388wzMG+e3RWJiMgdKMyIJOZwwKefQseOEB0N7drB6tV2VyUiIrehMCNyPQ8PmDwZWrQwzfQeeQS2brW7KhERuQWFGZGb8fKC33+HunXhwgVo1gz277e7KhERuQmFGZFbyZED5syBSpXg5EnTZO/YMburEhGR6yjMiNxO7tywYIE5eTs0FJo3h/Pn7a5KREQSUZgRuZNChWDRIvPn9u3w8MMQGWl3VSIi8v8UZkSSo2RJM0KTKxesWWN2OV29andVIiKCwoxI8lWqBHPnmrU0CxaYPjQxMXZXJSKS6SnMiKREnTowfTpkzQpTp5pOwTqYUkTEVgozIinVvLk5YdvhgC+/TDgCQUREbKEwI3I3nngi4TDK996D0aPtrUdEJBNTmBG5Wy+9BMOHm4/79YPvvrO3HhGRTEphRiQ13nwT+vY1Hz/3HMyebW89IiKZkMKMSGo4HPDRR9Cli9nZ1KEDLFtmd1UiIpmKwoxIanl4wMSJ0Lo1REXBo4/Cxo12VyUikmkozIikhSxZ4JdfoGFDuHjRnLi9e7fdVYmIZAoKMyJpJVs2s2amenU4c8YcTHnkiN1ViYi4PYUZkbTk5wfz5kHZsibINGtmgo2IiKQbhRmRtJY/vzmYskgR+PdfaNnSTD2JiEi6UJgRSQ9Fi8LChZAnD2zYAG3awJUrdlclIuKWFGZE0kv58jB/Pvj6wl9/wVNPQXS03VWJiLgdhRmR9FSzJsyaBV5eMGMGvPiiDqYUEUljCjMi6e3BB80J2x4e8O238MYbCjQiImlIYUYkI7RpYxrrgekYPHKkreWIiLgThRmRjNKtG3z4ofl40CD4+mt76xERcRMKMyIZqX9/GDjQfPzSS/Dbb/bWIyLiBhRmRDLa++/DCy+YdTOdOpmeNCIictcUZkQymsMBX3wB7dvDtWvQti2sXWt3VSIiLkthRsQOnp7www/m/KbISNMleMcOu6sSEXFJCjMidvH2hunToXZtOH/enON08KDdVYmIuByFGRE7+frCn3/CvffCsWNmpObkSburEhFxKQozInYLCIAFC6B4cdi3D5o3hwsX7K5KRMRlKMyIOIPChc3BlPnzw5Yt0KoVXLpkd1UiIi5BYUbEWZQpY0Zo/Pxg1Sro0MHsdhIRkdtSmBFxJlWrwpw5kC2bWUvTrRvExtpdlYiIU1OYEXE2DzwA06ZBliwwZQr06aODKUVEbkNhRsQZPfwwTJ5sPh43Dt55x9ZyREScmcKMiLPq1MkEGYChQxM+FhGRJBRmRJxZz54myAD06mWmnUREJAmFGRFnN2SICTUAXbqYhcEiIhJPYUbE2TkcMHasmXaKiYHHH4eVK+2uSkTEaSjMiLgCDw+YNMksDL5yBR55BEJC7K5KRMQpKMyIuIqsWeHXX6F+fQgPhxYtzPEHIiKZnK1hZsWKFbRq1YrAwEAcDgczZ86Mf+3atWsMGDCASpUq4ePjQ2BgIM888wzHjh2zr2ARu+XIAX/8AVWqmAMpmzaFo0ftrkpExFa2hpnIyEiqVKnC559/fsNrly5dYtOmTQwePJhNmzYxffp0du/ezaOPPmpDpSJOJFcuc+xB6dJw8KA5mPLcOburEhGxjcOynKO1qMPhYMaMGbRp0+aW96xfv57777+fQ4cOUbRo0WS9b3h4OP7+/oSFheHn55dG1Yo4gYMHoV49OHYMatWCxYvB19fuqkRE0kRKfn+71JqZsLAwHA4HuXLluuU9UVFRhIeHJ3mIuKXixc1J27lzw9q18NhjEBVld1UiIhnOZcLMlStXGDBgAB07drxtQhsxYgT+/v7xj6CgoAysUiSD3XsvzJ0LPj6waBF07my2b4uIZCIuEWauXbtGhw4dsCyL8ePH3/beQYMGERYWFv84cuRIBlUpYpPatWHGDLPb6bff4JVXdDCliGQqTh9m4oLMoUOHWLRo0R3nzby9vfHz80vyEHF7TZuaow4cDvj6a/jf/+yuSEQkwzh1mIkLMnv37mXx4sXkyZPH7pJEnFf79vDVV+bjESPg44/trUdEJINksfOLR0REsC9R06/Q0FBCQkIICAigUKFCPP7442zatIk5c+YQExPDiRMnAAgICMDLy8uuskWc1/PPw9mzMGgQ9O8PAQHQrZvdVYmIpCtbt2YvW7aMxo0b33C9S5cuDB06lBIlStz085YuXUqjRo2S9TW0NVsyHcuCN96Ajz4yxyBMmwZt29pdlYhIiqTk97fT9JlJLwozkilZFnTvDt9+C15eMG8ePPig3VWJiCSb2/aZEZFkcjjM+pk2beDqVWjdGtavt7sqEZF0oTAj4q6yZIGffzYjMhER0LIl/Puv3VWJiKQ5hRkRd5YtG8ycCTVrmoXBTZvC4cN2VyUikqYUZkTcXc6cZs3MPffAf/9Bs2Zw+rTdVYmIpBmFGZHMIG9ec45TUBDs3g0tWoDOLRMRN6EwI5JZBAWZ85vy5YNNm8yi4CtX7K5KRCTVFGZEMpNy5WD+fDP1tGwZPPEEREfbXZWISKoozIhkNtWrw+zZ4O1t/uzeHWJj7a5KROSuKcyIZEaNGsHUqeDpCd99Z44+cO/+mSLixhRmRDKr1q3hm2/Mx6NHm8MpRURckMKMSGbWpQt88on5+H//gy+/tLceEZG7oDAjktn17WuCDMArr5jpJxERF6IwIyLw7rvw0ktm3UznzrBggd0ViYgkm8KMiJiDKT/7zGzVvnYNHnsM/v7b7qpERJJFYUZEDE9P+P570x340iV4+GHYts3uqkRE7khhRkQSeHnBtGlQpw5cuGDOcTpwwO6qRERuS2FGRJLy8YE5c6BiRThxwpy0feKE3VWJiNySwoyI3CggwBxMWaKEGZlp3tyM1IiIOCGFGRG5uUKFzMGUBQvC1q3wyCNmLY2IiJNRmBGRWytVymzTzpULVq+Gxx+Hq1ftrkpEJAmFGRG5vcqVzRqa7Nlh3jzo2lUHU4qIU1GYEZE7q1cPpk+HLFng55/h1Vd1MKWIOA2FGRFJnhYtTB8ahwO++ALeftvuikREAIUZEUmJjh1Np2AwRyCMHWtvPSIiKMyISEq98gq88475uE8f+OEHW8sREVGYEZGUe+st6N3bfNytG/zxh731iEimpjAjIinncMAnn5gTtmNioEMHWLHC7qpEJJNSmBGRu+PhAd98A61awZUr5s/Nm+2uSkQyIYUZEbl7WbPC1KnQoAGEh5tjD/bssbsqEclkFGZEJHWyZ4fZs6FaNTh92hxM+d9/dlclIpmIwoyIpJ6/P8yfD2XKwOHD0KwZnD1rd1UikkkozIhI2sif3xxMWbgw7NoFDz0EFy/aXZWIZAIKMyKSdooVg4ULISAA1q2Dtm0hKsruqkTEzSnMiEjaqlDBHEjp4wNLlkCnTmb7tohIOlGYEZG0d//9MGsWeHnB77/Diy/qYEoRSTcKMyKSPpo0MSdsx/WjGTjQ7opExE0pzIhI+nnsMfj6a/PxqFHmISKSxhRmRCR9PfdcQogZMAAmTrS3HhFxOwozIpL+Xn/dBBkw62d+/93eekTErSjMiEjGGDECuneH2Fh46ilYvNjuikTETSjMiEjGcDjgyy+hXTu4ehXatDG9aEREUklhRkQyjqcnTJkCwcEQGQktW8LOnXZXJSIuTmFGRDKWtzfMmGF60Zw7Z85xOnTI7qpExIUpzIhIxvP1hblzTbfgo0fNSdsnT9pdlYi4KIUZEbFHnjzmHKdixWDvXmjRAsLC7K5KRFyQwoyI2KdwYXPSdr58EBICjz4Kly/bXZWIuJgUhZlTp07d9vXo6GjWaXeCiKREmTKwYAH4+cGKFfDEE3Dtmt1ViYgLSVGYKVSoUJJAU6lSJY4cORL//OzZs9SpUyftqhORzKFaNfjjD8iWzfz53HOmH42ISDKkKMxY1516e/DgQa5d9y+o6+8REUmWBg3g11/N9u0ffoB+/XTStogkS5qvmXE4HGn9liKSWbRqBZMnm4/HjoXhw20tR0RcgxYAi4hzefppE2QAhgyBL76wtx4RcXpZUnKzw+Hg4sWLZMuWDcuycDgcREREEB4eDhD/p4hIqvTqBWfPwjvvQM+ekDs3dOxod1Ui4qQcVgoWuXh4eCSZRooLNNc/j4mJSdsqUyE8PBx/f3/CwsLw8/OzuxwRSS7LMqHms88gSxaYPdscfyAimUJKfn+naGRm6dKlqSpMRCTZHA4z3XT2LPz8szmgctEiqFfP7spExMmkaGTGFWlkRsTFXbsGrVvDvHmQKxcsXw6VK9tdlYiks5T8/k7RAuDo6GiioqKSXDt58iTDhg3jjTfeYNWqVSmvVkTkdrJmhWnTzIjMhQvmYMr9++2uSkScSIrCzPPPP0+vXr3in1+8eJH77ruPzz//nAULFtC4cWPmzp2b5kWKSCaXIwfMmWNGZE6eNAdTHjtmd1Ui4iRSFGZWr15Nu3bt4p9///33xMTEsHfvXrZs2UK/fv348MMP07xIERFy5TLHHpQqBaGh0Lw5nDtnd1Ui4gRSFGaOHj1KmTJl4p8vWbKEdu3a4e/vD0CXLl3YsWNH2lYoIhKnYEGzCLhQIdi+HR55BCIj7a5KRGyWojCTLVs2Lic60faff/6hVq1aSV6PiIhIu+pERK5XogQsXGh6z6xZA489ppO2RTK5FIWZqlWr8sMPPwCwcuVKTp48yYMPPhj/+v79+wkMDEzbCkVErlexIvz5p1lLs3Ch6T+jpp0imVaKwsyQIUMYO3YspUqVonnz5nTt2pVChQrFvz5jxgzqqQeEiGSEOnVg/nzImdNs1w4ONj1pRCTTSVHTvIYNG7Jx40YWLlxIwYIFad++fZLXq1atyv3335+mBYqI3NIDD8Bff0GLFrB+PTRqZEZqEv0jS0Tcn5rmiYjr27nTjMwcP252Oy1eDMWL212ViKRCuh1nsGLFimTd16BBg5S8rYhI6lSoAKtWmUCzfz/Ur28CzT332F2ZiGSAuz5o8lafpoMmRcQ2R4+ahnq7dkG+fKYvTbVqdlclInch3Y4zyJ07N0FBQQwePJi9e/dy/vz5Gx7n1MRKROxSuDCsWAE1asDp09C4MaxebXdVIpLOUhRmjh8/zsiRI1mzZg2VKlXiueee4++//8bPzw9/f//4R3KtWLGCVq1aERgYiMPhYObMmUlenz59Os2aNSNPnjw4HA5CQkJSUq6IZEZ588KSJWaqKSzMnOW0aJHdVYlIOkpRmPHy8uKJJ55gwYIF/Pvvv1SuXJmePXsSFBTE//73P6Kjo1P0xSMjI6lSpQqff/75LV+vX78+I0eOTNH7ikgm5+9vpphatIBLl0yn4Bkz7K5KRNJJqnczhYaG8txzz7F8+XJOnz5NQEDA3RXicDBjxgzatGlzw2sHDx6kRIkSbN68mapVq6bofbVmRiQTu3oVOnUyp257esK338Izz9hdlYgkQ7qtmYkTFRXFTz/9RHBwMBUrViRv3rz8+eefdx1k0lJUVBTh4eFJHiKSSXl5wc8/Q9euEBMDXbrALUaCRcR1pWhr9rp165g0aRK//PILxYsXp1u3bvz6669OEWLijBgxgmHDhtldhog4iyxZ4JtvwM8PPv0UevY0Rx8MGmR3ZSKSRlIUZmrXrk3RokXp1asXNWrUAGDVqlU33Pfoo4+mTXV3YdCgQfTr1y/+eXh4OEFBQbbVIyJOwMMDxowxa2nefRfefNMsDh4xAv6/3YSIuK4UhRmAw4cP8+67797ydbv7zHh7e+Pt7W3b1xcRJ+VwwDvvmBGa11+HkSNNoPn8cxN2RMRlpej/wbGxsXd8XLx4Mb1qFRFJvf794auvTLj58kuzIPjaNburEpFUSLN/jkRFRfHJJ59QsmTJZH9OREQEISEh8f1jQkNDCQkJ4fDhwwCcO3eOkJAQdu7cCcDu3bsJCQnhxIkTaVW2iGRGL7wAU6aY9TRTpkD79nDlit1VichdSlGYiYqKYtCgQdSsWZO6devGN7n79ttvKVGiBKNHj6Zv377Jfr8NGzZQrVo1qv1/u/F+/fpRrVo1hgwZAsDs2bOpVq0aDz/8MABPPvkk1apV48svv0xJ2SIiN+rY0fSe8faGWbNML5qICLurEpG7kKI+MwMGDOCrr74iODiYv//+m9OnT9OtWzf++ecf3nzzTdq3b4+np2d61pti6jMjIre1dCk8+qgJMnXqwJ9/Qu7cdlclkumlW5+Z3377je+//55p06axcOFCYmJiiI6OZsuWLTz55JNOF2RERO6ocWNzwnbu3LBmjXl+8qTdVYlICqQozPz333/xW7IrVqyIt7c3ffv2jT9JW0TEJdWqBcuXQ4ECsGULNGgA/792T0ScX4rCTExMDF5eXvHPs2TJgq+vb5oXJSKS4SpVgpUroWhR2LPHHFS5d6/dVYlIMqSoz4xlWXTt2jW+j8uVK1d46aWX8PHxSXLf9OnT065CEZGMUqYMrFoFwcEm0DzwACxcCJUr212ZiNxGisJMly5dkjx/+umn07QYERHbBQWZEZpmzcyUU8OGMG8e1K5td2UicgupPjXb2Wk3k4jclfPn4eGHzaJgHx+YPRsefNDuqkQyjXQ/NVtExO3lzm2mmIKDITISHnoI/vjD7qpE5CYUZkREbsXX1wSYNm0gKgratoWffrK7KhG5jsKMiMjtZMsGv/0GTz8NMTHmz6+/trsqEUlEYUZE5E6yZIHvvoOXXwbLghdfhA8/tLsqEfl/CjMiIsnh4QGffw4DB5rnb7wBb71lwo2I2EphRkQkuRwOGDHCPADeew9694bYWHvrEsnkFGZERFJq4EAzSgMwbhw89xxER9tbk0gmpjAjInI3XnkFfvgBPD1h8mR48kmz40lEMpzCjIjI3Xr6aZg2Dby84PffoXVruHTJ7qpEMh2FGRGR1GjTBubMgRw5YMECaN4cwsLsrkokU1GYERFJraZNYdEi8Pc3B1U++CCcPm13VSKZhsKMiEhaqFsXli2DfPlg0yZo0ACOHrW7KpFMQWFGRCStVK0KK1ZAkSLw77/wwANw4IDdVYm4PYUZEZG0dM89ZqqpdGkIDYX69WHHDrurEnFrCjMiImmtWDFYuRIqVoTjx82U04YNdlcl4rYUZkRE0kPBgrB8Odx/P5w7ZxYFr1hhd1UibklhRkQkvQQEwOLF0KgRXLxotm3PnWt3VSJuR2FGRCQ95cxpAszDD8OVK6ax3q+/2l2ViFtRmBERSW/Zs8OMGebIg+ho6NgRvv3W7qpE3IbCjIhIRsiaFX78EZ5/3pyy/dxzMGaM3VWJuAWFGRGRjOLpCV99Ba+9Zp737QvDhoFl2VuXiItTmBERyUgOB3z4Ibzzjnk+dCj0769AI5IKCjMiIhnN4YDBgxOmmT75BF54AWJibC1LxFUpzIiI2KV3b7MQ2MMDJk6ETp3g6lW7qxJxOQozIiJ26tYNpk41C4SnToW2beHyZburEnEpCjMiInZ7/HGYPdts4Z47F1q2hPBwu6sScRkKMyIizqBFC1iwwDTZW74cgoPh7Fm7qxJxCQozIiLO4oEHYOlSyJMH1q+Hhg3NQZUiclsKMyIizqRGDXMgZaFCsGOHCTgHD9pdlYhTU5gREXE2FSrAqlVQogTs3w/168O//9pdlYjTUpgREXFGJUvCypVQvjwcPWpGaDZvtrsqEaekMCMi4qwKFzZTTjVqwJkz0LgxrF5td1UiTkdhRkTEmeXNC0uWmJGZsDBo1gwWLrS7KhGnojAjIuLs/P1h/nyzffvSJWjVCmbMsLsqEaehMCMi4gpy5IBZs0yDvatXoX17+P57u6sScQoKMyIirsLLC37+2RyBEBMDXbrA55/bXZWI7RRmRERcSZYs5lDKXr3M8549YcQIe2sSsZnCjIiIq/HwgDFjYPBg8/zNN2HgQLAsW8sSsYvCjIiIK3I44J134KOPzPORI+GVVyA21t66RGygMCMi4speew2++sqEmy+/hM6d4do1u6sSyVAKMyIiru6FF2DKFLOe5qefzI6nK1fsrkokwyjMiIi4g44dTe8Zb2+YPRseeQQiIuyuSiRDKMyIiLiLRx6BefPA19d0DW7aFM6ft7sqkXSnMCMi4k4aN4bFiyF3bvjnH2jUCE6etLsqkXSlMCMi4m5q1YLly6FAAdi6FRo0gMOH7a5KJN0ozIiIuKNKlWDlSihaFPbsgfr1zZ8ibkhhRkTEXZUpA6tWQdmycOSIOXl761a7qxJJcwozIiLuLCjIjNBUrQqnTkHDhmYtjYgbUZgREXF3+fPD0qVQty5cuADBwfDXX3ZXJZJmFGZERDKDXLlg4UITZCIj4aGH4I8/7K5KJE0ozIiIZBY+PibAtGkDUVHQtq3pGCzi4hRmREQyk2zZ4LffzBlOMTHw9NPmbCcRF6YwIyKS2WTJApMnm1O2LQteegk+/NDuqkTumsKMiEhm5OEBn30GAwea52+8AW+9ZcKNiItRmBERyawcDhgxwjwA3nsPeveG2Fh76xJJIYUZEZHMbuBA+Pxz8/G4cfDssxAdbW9N4hIsC65ds7sKyGJ3ASIi4gReeQX8/KBrV/juO4iIgClTwNvb7srEZrGxsHs3HDgA+/ebPxM/PvwQevSwt0aFGRERMZ5+Gnx94Ykn4Pff4eJFmD7dbOkWt2VZ5mD1xAGlQAF48UXzemwsVK5868G6/fszrtZbcViWe6/2Cg8Px9/fn7CwMPz8/OwuR0TE+S1eDK1bw6VLUK8e/Pkn+PvbXZWkwpUrcP48FCpknlsWPP64OXv0wAHzo06sdm1YsybheY0a5nNKlrzxUbQoeHmlfc0p+f2tkRkREUkqOBgWLTJdglevhgcfhPnzIV8+uyuTO1i7Fvbtu3E66OhRqFMH/v7b3OdwwObNEBpqnnt4mGO84gJK1apJ33fjxgz9NlJMYUZERG5Uty4sWwbNmsGmTdCggRmxKVzY7soyrStX4ODBpCHFyws++CDhniefNPfczOnTSZ+PHm16KJYsCcWKpc/oSkaxdZppxYoVfPjhh2zcuJHjx48zY8YM2rRpE/+6ZVm8/fbbTJgwgQsXLlCvXj3Gjx9PmTJlkv01NM0kIpIKu3ebkZr//oPixU2gKVXK7qrckmWZwHH6NNx7b8L1J580A2RHj97YBqhgQTh+POF5p05w7JgJKKVKJZ0OypPHjMi4CpeZZoqMjKRKlSo8++yzPPbYYze8PmrUKD799FO+++47SpQoweDBg2nevDk7d+4kW7ZsNlQsIpLJlCsHq1aZQLNvHzzwgJmCSvzbVlJs2TLYvv3GnUGRkRAYaIJLnFOnTJYEsz77+qBiWQkhZcqUDP9WnILTLAB2OBxJRmYsyyIwMJDXXnuN/v37AxAWFkaBAgWYPHkyTz75ZLLeVyMzIiJp4MQJaNrU/AYOCDBraO67z+6qnI5lwZkzN65ZCQ+HadMS7mvUCJYvv/HzHQ6zdmXfPsia1Vxbu9b8WbIk5M3rWqMrqeEyIzO3ExoayokTJwgODo6/5u/vT61atVizZs0tw0xUVBRRUVHxz8PDw9O9VhERt1ewoPnt27IlrFsHTZqYE7gbNrS7sgx39apZl/Lff2ZtdJxu3UxgiYi48XMcDrPmJW5SoVEjyJ07YXQlbqSlWLEbW/vUqpVe34n7cNowc+LECQAKFCiQ5HqBAgXiX7uZESNGMGzYsHStTUQkUwoIMGtmHn3UzJO0aGH60Tz0kN2VpZslS+Cff5KOshw5kjC1c/lyQviwLBNkHA4oUuTGLcyJDR2a4d+KW3PaMHO3Bg0aRL9+/eKfh4eHExQUZGNFIiJuJGdOmDsXOnSAOXNMP5opU8xzF3L1Khw6lBBQ4qaFQkPNtE7czp7vvzeP6/n4mIBy9qxZ4wIweDAMGmRGV7SsM2M5bZgpWLAgACdPnqRQXJef/39e9foN8Il4e3vjrfbbIiLpJ3t20xn4mWfgl1+gY0fTLfi55+yuLJ5lmaARF1batUtYg9K7tzkw/FbnaR4+DKVLm48bNzYjLYkX3JYqZVruXL92RZu87OO0YaZEiRIULFiQJUuWxIeX8PBw1q5dy8svv2xvcSIimV3WrPDjj2akZsIE6N7dBJo+fWwpZ8kSsyb5+kW3cfbtSwgbuXKZIJMjx41rVkqWNMuD4nTtah7i3GwNMxEREezbty/+eWhoKCEhIQQEBFC0aFH69OnD8OHDKVOmTPzW7MDAwCS9aERExCaenvDVV+aog48+gr59ISwMhgxJky03lgXnzt36gMOlS6FECXPv8uWmhOsFBpqAcvlywrWePeHll835Q5llZ5C7szXMbNiwgcaNG8c/j1vr0qVLFyZPnswbb7xBZGQkL7zwAhcuXKB+/frMnz9fPWZERJyFwwGjRplAM3iwWdkaFgYff5yspHDtWtK1K48/brYfA7zzzu0Xyh44kBBmGjY0IzGJR1iKFzczYtfTqQzux2n6zKQX9ZkREckgn35qFqSAmXb68kszepNIbKw5E2jxYvNYuRISddNgyZKE7c7ffmuW4cSNrlz/qFzZzHKJe3KLPjMiIuJievUy6aJ7d5g40ayh+f57YrN44eFhbhk/3kzzJBZ3PlDJkklHUjp2NI+bja6IJKYwIyIiaadbNy46cuLT/Sk8pk5l6R8XOfTRNLq+bBJJ48Ym7zRqZBoKN2kC5cvffEZKIUaSS9NMIiKSKteumemiRYvM1NHGjdDMms90HiMHl9mZryEV9s0GPz8sC6KjE7ZJi9xKSn5/e2RQTSIi4iZiY83JznEuXjTnUH7wAWzYYHYh/XdvCyY+voBr2XNS4fRyc8PZszgcCjKS9jTNJCIid3TwYMKi3SVLzNTQihXmtYAAeOQR078lburIdMV9ADYuhebNYf16s+Vo0SJI1AhVJC1omklERG5q7lxzluTixabpXGIBAXDs2I2HIt7Uzp0m5Rw7ZvZOL15s9k2L3IammUREJEWiomDVqqTXvv7a7K7et8/ssK5XD95+29x34kQygwxAhQpmUU2JEqb7Xf368O+/af49SOalaSYRkUwoNha2bjWDJIsWmaxx+bLJGnEnPHfsaA5NDA42M0SpGtwuWdJ8kWbNzEjNAw/AggVQvXqafD+SuWmaSUQkE/n7bxg3zqx7SbyIF0x7/ylTzJqXdHPmDLRoYbY8+fnBn3+akRqR62iaSUREuHABZs6EPXsSrp06ZQ66Pn0afHzgoYfgk09g2zY4fjydgwyYswqWLDEjM+HhZqRm+nSzBUrkLinMiIi4iagoc+Di4MFQuzbkyQNt25rRljiNGpnXly83hzj++ac5H7JixQw8dNHf3xxx3aKFmdtq186Emq1bM6gAcTcKMyIiLu70aTPCEhBgwsrw4bB2rVkXU64c5M6dcG+uXOYAxwYNwMvLroqBHDlg1iwYMMAUsngxVK0Kzz9vVheLpIDWzIiIuJAjR8zv/ZgYcwQSmI/z5jXTSvnzmwW7cf1egoJsLTd5QkNh0CCYOtU89/Exz/v105kGmVhKfn8rzIiIOLGwMFi2LOGogN27zfWiRU0ju7ipodmzzc7nDJ0uSmt//23mvNatM8+DgmDECLOtykMTCZmNwkwiCjMi4qo6d4affjLTRXE8POD++83oy+DBNk8VpYfYWDNCM3AgHD5srt1/v1mlXK+evbVJhtJuJhERF2FZZifR6NHQpo1ZxBsnIMD8bi9bFnr0gBkz4OxZWLMG3n3XDYMMmLTWsaNpqvf+++Dra0Zq6teHDh3gwAG7KxQnpJEZEZEM9t9/CeccLV4MJ08mvLZ0qVnECwkDE0WLZniJzuPkSRgyBCZONMnOywt694Y33zSrmcVtaZopEYUZEXEmX30FL72U9Fr27GZ3UXAwPPkkFCliT21Obds2eO01s3gIzIrnYcPghRcgi5rZuyNNM4mI2OjaNXN+0dChZnbkl18SXrvvvoR1L2++CX/9BefPm7Yr/fsryNxSpUrm+IO5c82R3WfOmLm3ypXNNff+d7ncgUZmRERSybLMcUNx00bLlkFERMLrXbvCpEnm49hYs0Mpce8XSaHoaJgwwUw/nTljrjVtCh9/bEKPuAVNMyWiMCMi6SEqKuHU6BMnoFChpK/nzWv6vDRtah6Zet1LegkLM4uEx4yBq1fNkNdzz5mugAUL2l2dpJLCTCIKMyKSFi5eNEcAxPV7KVwYFi5MeL1WLbMeNTjYPKpUUWuUDBMaarZy//qree7ra5ru9e2rpnsuTGEmEYUZEblba9eatSyLFpmPo6MTXvPxMWcbxW2PtiwXblbnLlavNl2DEzfd++ADs6paydLlaAGwiEgKWRbs3Zv02ttvm0W8q1ebIFOqlNmJNG2a2TaduM+LgowTqFfPNOGZMsUEmSNHoFMnqFPH/BDFbWlkRkQyrePHYcmShKmjY8dMD5jChc3rEyaY63FTRyVK2FuvpMDly6YT4YgRCaux27eHkSP1g3QRmmZKRGFGRBLbsgUmTzYhZfv2pK95e5uDnJs3t6U0SQ8nTphdT998k9B0r08fsy/e39/u6uQ2NM0kIoKZGlqzxsw2xNm502x+2b7dTA3VqAEDBpjRmfPnFWTcTsGC8PXXsHmzGV67ehVGjYLSpWH8+KQLocRlKcyIiNuwLHOkz2efmXOO8uSBunXhxx8T7mnSBJ5/3mx8OXUKNmwwa0SDg7Xxxa1Vrmy2n/35J9xzj+lP88or5vq8eWq65+LUA1pEXN6ZM/D662bq6L//kr6WO3fSf3znz2/+oS6ZkMMBDz1kGv/ENd3btctca9YMPvpITfdclNbMiIhLuXQJVq40f7Zta65dvWpOmI6MNOte6tc3Iy1Nm0LVquDpaWvJ4qwuXDBN98aOTWi61727abpXoIDd1WV6WgCciMKMiGuLjYWQELOmZeFCc+bR1atQrpyZUorz7bdmN279+poukhTav9803Zs2zTz39TULhPv00f+YbKQwk4jCjIjreu01+P77hON34gQFmVGX8eOT9noRSZVVq0zTvfXrzfOiRROa7qmRUIbTbiYRcSkXL8Iff5jwknh9y8WLJsj4+kKrVvDpp2Y05tAhs9NWQUbSVP368M8/ZsV4kSKmM+JTT5mme3//bXd1chsamRGRDBcdbXYRLVpkHmvWJISYNWugdm3z8fbtZrt07dqQNat99UomdOlSQtO9yEhzrUMHM1KjpnsZQtNMiSjMiDiXqVPhxRfNgceJlSplNpS8+iqUL29PbSI3OH48oemeZanpXgbSNJOI2O78efj9d3OW0aJFCdeLFDFBJlcuaNcOvvoKDhyAffvgiy8UZMTJFCpktnFv3myaFKnpnlPSyIyIpImrV81yg7ipo/XrzU4kMIFm/HjzcXQ0bNwINWtqy7S4GMuCuXPN4q7du821ChXg44+hRQt7a3NDmmZKRGFGJP2dPg0lSyac5xenfHmz66htW2jUyJbSRNLetWtmSHHoUDh71lxr3tw03atY0dbS3InCTCIKMyJp5/Rp02V34UKzIDdxJ90yZcz0UXCwWfsSHGymlETc1vnz8N57ZpvdtWum6d7zz8OwYWq6lwYUZhJRmBG5e1eumNYbcQ3rQkISXsuZ0/yjNG6X0bFj5kw/D63Ek8xm/35zWunvv5vnOXMmNN3Lls3W0lyZwkwiCjMiyWdZSXuDNW1qRmISq1LFXG/WDBo3hiw64U3EWLnSNN3bsME8L1bMbOV+4gk13bsL2s0kIsl27Bh89x08/TQULpywBACgYUMIDIQuXUwfsRMnzOjMhx+aQKMgI5LIAw/A2rXwww9mjvXQIejY0RzdvmaN3dW5NY3MiGQykZGwfHnC1NHOnUlfnzrV9AYDiIoybTX0j0qRFLp0CT75xIzMxDXde+IJ87x4cVtLcxWaZkpEYUYyu5gYszYxbup+0iR49tmE1x0Os026aVPzqFPHnDwtImng+HEYPNichGpZ5v9ccU339DvptjTNJJLJHTxo+nx16AD58yf0eAETWIoXN5sufv3V7FBat85symjUSEFGJE0VKgQTJ8KmTfDgg2a4c+RI03Tvq6/UdC+NaGRGxA1ERcH8+WbaaNEi2Ls36ett28L06fbUJiL/z7Jgzhzo3x/27DHX7r3XNN1r3tze2pyQppkSUZgRdxQdbUavg4LM80uXIHdu04UXTGfd2rUTdh3dd58W64o4jWvX4MsvTdO9c+fMtRYtTNO9e++1tTRnojCTiMKMuAPLMqMtcUcFLF1qDu5N3Pele3ezLqZZMzNdpP+5izi58+dh+HAYNy6h6d4LL5ime/nz212d7RRmElGYEVc2dy7MmGECzKFDSV/LmxdCQ8HX157aRCSN7Ntnmu7FzQXnzAn/+x/07p2pm+5pAbCIC4qKMlum4w5nBPj5Z7N28NAhs0W6cWN4/33Tk+vkSQUZEbdQurTpHrx8OdSoARcvwsCBcM89pleCe485pAmNzIjYxLJgx46EqaPly83al5AQ02UX4M8/YckSs/alQQPw8bG1ZBFJb7GxMGUKDBoER4+aa3XqmJ41tWvbW1sG0zRTIgoz4mw2b4YxY0yAOX486WsFCpiRmEcesaU0EXEWkZFml9PIkeZfOWC6CY8YYY5JyAQ0zSTiJC5dggULknbZPXcOvv/eBJns2c2OzI8+gi1bzDUFGRHBxweGDDEr/7t1M90tf/4ZypUzDffCw+2u0KloZEYkDcXGmmmiuKmjVavMWpg+fWD0aHPPlStms0JwMNSrl6nX94lIcm3eDK+9ZrYygtnt9O67pp23m/Zd0DRTIgozkhEiIkxH3cWL4cyZpK8FBcFzz8Hbb9tTm4i4CcuCP/4wTffiOmNWrGimo5o1s7e2dKBpJpF0dPGi+e/JpEkJ13x8YOVKE2R8faFVK/j0U9i1y+xEUpARkVRzOODRR2H7dhg71nTK3L7dzFU/9NCNp8ZmIhqZEbmD6GizFTpu6mjNGnMtIABOnTLddsH0g8mb12w4yJrV3ppFJBM4d8403fvsM9N0z9PTNN0bOtQtmu5pmikRhRlJjf/9D774Ai5cSHq9ZEmzXXrUKHXaFRGb7d1rmu7NmGGe+/mZ/3j16uXSi/I0zSSSQufPm55VL72UdJOAw2GCTK5c8Nhj5jiV/fvN48svFWRExAmUKWO6By9bBtWrm/+IDRgA5cvDr79miqZ7GpmRTMGyTDABMzW0bp0JMHv2mKmj9esTOu/OmmWmpcEcF3DqFNSsmTCdJCLitGJj4ccfTdO9Y8fMtTp1zHbKWrXsrS2FNM2UiMKM+7As00fq/HkzVVykCOTJY17bsQN++MFcP3cu4Z64x/jx8PTT5t4//kgIK4ndc4/ZENC9O1SqlHHfl4hImouMNA2sRo1KaLr31FOm6V7RovbWlkwp+f3tnpvTxanFxEBYWNKwERdAmjaFsmXNfX/9ZXpGJb7n2rWE9/n+e+jc2XwcGmoaZd7KuXMJHwcGmpGWgAAoWNCcMB0cbLZQi4i4BR8fs42ye3d46y347jv46SczHdWvnzn7KWdOu6tMMwozkmpnzpgtyDcbETl3Dvr2TRjd/Pln6NTp1lO433+fEGYuXYLVq2+8J2tWE0QSv0fZsqYxXUBAwiN37oSPCxVKuLdGDTOtJCLi9goXNn0kXn3VNN1btsycVjtxotkJ9eyzbjGHrjCTyVmW6Zty7pzZVhx3CvO2bTBnzq2nbSZOhBYtzL1z50KXLrf+Gg8/nBBmcuZMCCG+vknDR0CAGTWJU7MmTJt24z05ciSsf4lTtmxCh10REblO9epmuHv2bHj9dbMD6oUXYNw403SvaVO7K0wVhRk3ER1981GRJk0SAsLChabP0vVTOzEx5vU//kg4F2jLFnP8x62cPp3wcaFCZjH9zUZEAgJMKInTpAmcPGl2B3l53f57KlgQ2rVL8V+FiIjcjMMBrVtDy5ZmIeGwYeZfrs2amaZ7H34IFSrYXeVdUZhxQhcuwOHDt5+2uecec++kSdC7txlduZk//kgIM6dOmVGUm8mWDS5fTnh+zz3mbLPrR0XigkqpUgn3Nm1qdgUlR/bs5iEiIjbx8jK/ODp3Nuc7ffaZ+eWwYAG8+KJpupcvn91Vpoh2M6WD2FizwNXHJ2H0Yft2WLHixlGRuI8nT4b77jP3fvqp+d/Zrcyebdrlg9mBF7cIFsDfP2n4eOstaNDAvHbgACxffuPISe7cChgiIpnWnj2mL83Mmea5n5/55dGrF3h721aWW+1munjxIoMHD2bGjBmcOnWKatWqMXbsWO6L+81vo7lzTZi4fuTkwgWzLmTlSqhf39z711+3DygnTiR8nC+f6UR9q8WspUsn3PvII+Z/hwEBJsjc7vDUkiXNQ0REJF7ZsqZ78LJlZqfT5s3wxhtmKmrkSHj88RsXKjoZpw8z3bt3Z/v27fzwww8EBgby448/EhwczM6dOylcuLCtte3fb3bn3EriFvgVKpgOsreatqlSJeHejh3NIzly5TIPERGRVGnUyBxE98MPZtFkaCh06AB165odFvffb3eFt+TU00yXL18mZ86czJo1i4cffjj+eo0aNWjZsiXDhw+/43uk5zTTli2wdOmN0zZxIeVOC1xFREScUmSkWRA8alTCgsoMbrrnNtNM0dHRxMTEkO26g7KyZ8/OqlWrbvo5UVFRREVFxT8PT3zQThqrUiXpiIqIiIhb8PExC4Gff94cWunkTfec+qDJnDlzUqdOHd59912OHTtGTEwMP/74I2vWrOH48eM3/ZwRI0bg7+8f/whSW1cREZG7U7iw2aGyYQM0bAhXrpime2XKmIZjcb09bObU00wA+/fv59lnn2XFihV4enpSvXp1ypYty8aNG9m1a9cN999sZCYoKEhnM4mIiKSGZZmTeF9/HfbtM9cqVYJPPjFnwqSxlEwzOfXIDECpUqVYvnw5ERERHDlyhHXr1nHt2jVK3mJbjre3N35+fkkeIiIikkoOB7RpY072HT3a7D7Zts00G3vxRVtLc/owE8fHx4dChQpx/vx5FixYQOvWre0uSUREJPPx8jKH4e3bZ3qOZMlipqBs5PTTTAsWLMCyLMqVK8e+fft4/fXXyZYtGytXriRr1qx3/Hw7muaJiIhkGgcOQPHi4JG24yNus5sJICwsjEGDBvHff/8REBBAu3bteO+995IVZERERCSdOUE3VqcfmUktjcyIiIi4HrdaACwiIiJyOwozIiIi4tIUZkRERMSlKcyIiIiIS1OYEREREZemMCMiIiIuTWFGREREXJrCjIiIiLg0hRkRERFxaQozIiIi4tIUZkRERMSlKcyIiIiIS3P6U7NTK+4czfDwcJsrERERkeSK+72dnPOw3T7MXLx4EYCgoCCbKxEREZGUunjxIv7+/re9x2ElJ/K4sNjYWI4dO0bOnDlxOBxp+t7h4eEEBQVx5MiROx5PLs5HPz/Xp5+h69PP0LWl58/PsiwuXrxIYGAgHh63XxXj9iMzHh4eFClSJF2/hp+fn/5P6ML083N9+hm6Pv0MXVt6/fzuNCITRwuARURExKUpzIiIiIhLU5hJBW9vb95++228vb3tLkXugn5+rk8/Q9enn6Frc5afn9svABYRERH3ppEZERERcWkKMyIiIuLSFGZERETEpSnMiIiIiEtTmLlLn3/+OcWLFydbtmzUqlWLdevW2V2SJNOKFSto1aoVgYGBOBwOZs6caXdJkkIjRozgvvvuI2fOnOTPn582bdqwe/duu8uSZBo/fjyVK1eOb7RWp04d5s2bZ3dZkgoffPABDoeDPn362PL1FWbuwtSpU+nXrx9vv/02mzZtokqVKjRv3pxTp07ZXZokQ2RkJFWqVOHzzz+3uxS5S8uXL6dHjx78888/LFq0iGvXrtGsWTMiIyPtLk2SoUiRInzwwQds3LiRDRs28OCDD9K6dWt27Nhhd2lyF9avX89XX31F5cqVbatBW7PvQq1atbjvvvv47LPPAHP+U1BQEK+++ioDBw60uTpJCYfDwYwZM2jTpo3dpUgqnD59mvz587N8+XIaNGhgdzlyFwICAvjwww957rnn7C5FUiAiIoLq1avzxRdfMHz4cKpWrcqYMWMyvA6NzKTQ1atX2bhxI8HBwfHXPDw8CA4OZs2aNTZWJpJ5hYWFAeYXoriWmJgYfvnlFyIjI6lTp47d5UgK9ejRg4cffjjJ70Q7uP1Bk2ntzJkzxMTEUKBAgSTXCxQowL///mtTVSKZV2xsLH369KFevXpUrFjR7nIkmbZt20adOnW4cuUKvr6+zJgxgwoVKthdlqTAL7/8wqZNm1i/fr3dpSjMiIhr69GjB9u3b2fVqlV2lyIpUK5cOUJCQggLC2PatGl06dKF5cuXK9C4iCNHjtC7d28WLVpEtmzZ7C5HYSal8ubNi6enJydPnkxy/eTJkxQsWNCmqkQyp549ezJnzhxWrFhBkSJF7C5HUsDLy4vSpUsDUKNGDdavX8/YsWP56quvbK5MkmPjxo2cOnWK6tWrx1+LiYlhxYoVfPbZZ0RFReHp6Zlh9WjNTAp5eXlRo0YNlixZEn8tNjaWJUuWaL5XJINYlkXPnj2ZMWMGf/31FyVKlLC7JEml2NhYoqKi7C5DkqlJkyZs27aNkJCQ+EfNmjXp1KkTISEhGRpkQCMzd6Vfv3506dKFmjVrcv/99zNmzBgiIyPp1q2b3aVJMkRERLBv377456GhoYSEhBAQEEDRokVtrEySq0ePHvz000/MmjWLnDlzcuLECQD8/f3Jnj27zdXJnQwaNIiWLVtStGhRLl68yE8//cSyZctYsGCB3aVJMuXMmfOGNWo+Pj7kyZPHlrVrCjN34YknnuD06dMMGTKEEydOULVqVebPn3/DomBxThs2bKBx48bxz/v16wdAly5dmDx5sk1VSUqMHz8egEaNGiW5PmnSJLp27ZrxBUmKnDp1imeeeYbjx4/j7+9P5cqVWbBgAU2bNrW7NHFR6jMjIiIiLk1rZkRERMSlKcyIiIiIS1OYEREREZemMCMiIiIuTWFGREREXJrCjIiIiLg0hRkRERFxaQozIiIi4tIUZkTEpXXt2pU2bdrYXYaI2EhhRkTuqGvXrjgcjhseLVq0sLs0xo4d6zTHUDgcDmbOnGl3GSKZjs5mEpFkadGiBZMmTUpyzdvb26ZqICYmBofDgb+/v201iIhz0MiMiCSLt7c3BQsWTPLInTs3y5Ytw8vLi5UrV8bfO2rUKPLnz8/JkycBcyBkz5496dmzJ/7+/uTNm5fBgweT+Gi4qKgo+vfvT+HChfHx8aFWrVosW7Ys/vXJkyeTK1cuZs+eTYUKFfD29ubw4cM3TDM1atSIV199lT59+pA7d24KFCjAhAkT4k+2z5kzJ6VLl2bevHlJvr/t27fTsmVLfH19KVCgAJ07d+bMmTNJ3rdXr1688cYbBAQEULBgQYYOHRr/evHixQFo27YtDocj/rmIpD+FGRFJlUaNGtGnTx86d+5MWFgYmzdvZvDgwUycODHJSfLfffcdWbJkYd26dYwdO5ZPPvmEiRMnxr/es2dP1qxZwy+//MLWrVtp3749LVq0YO/evfH3XLp0iZEjRzJx4kR27NhB/vz5b1rTd999R968eVm3bh2vvvoqL7/8Mu3bt6du3bps2rSJZs2a0blzZy5dugTAhQsXePDBB6lWrRobNmxg/vz5nDx5kg4dOtzwvj4+Pqxdu5ZRo0bxzjvvsGjRIgDWr18PmJO7jx8/Hv9cRDKAJSJyB126dLE8PT0tHx+fJI/33nvPsizLioqKsqpWrWp16NDBqlChgvX8888n+fyGDRta5cuXt2JjY+OvDRgwwCpfvrxlWZZ16NAhy9PT0zp69GiSz2vSpIk1aNAgy7Isa9KkSRZghYSE3FBb69atk3yt+vXrxz+Pjo62fHx8rM6dO8dfO378uAVYa9assSzLst59912rWbNmSd73yJEjFmDt3r37pu9rWZZ13333WQMGDIh/DlgzZsy4xd+iiKQXrZkRkWRp3Lgx48ePT3ItICAAAC8vL6ZMmULlypUpVqwYo0ePvuHza9eujcPhiH9ep04dPv74Y2JiYti2bRsxMTGULVs2yedERUWRJ0+e+OdeXl5Urlz5jrUmvsfT05M8efJQqVKl+GtxI0anTp0CYMuWLSxduhRfX98b3mv//v3xdV3/tQsVKhT/HiJiH4UZEUkWHx8fSpcufcvX//77bwDOnTvHuXPn8PHxSfZ7R0RE4OnpycaNG/H09EzyWuKAkT179iSB6FayZs2a5LnD4UhyLe49YmNj479+q1atGDly5A3vVahQodu+b9x7iIh9FGZEJNX2799P3759mTBhAlOnTqVLly4sXrwYD4+EZXlr165N8jn//PMPZcqUwdPTk2rVqhETE8OpU6d44IEHMrp8qlevzu+//07x4sXJkuXu/7OYNWtWYmJi0rAyEUkOLQAWkWSJiorixIkTSR5nzpwhJiaGp59+mubNm9OtWzcmTZrE1q1b+fjjj5N8/uHDh+nXrx+7d+/m559/Zty4cfTu3RuAsmXL0qlTJ5555hmmT59OaGgo69atY8SIEfz555/p/r316NGDc+fO0bFjR9avX8/+/ftZsGAB3bp1S1E4KV68OEuWLOHEiROcP38+HSsWkcQ0MiMiyTJ//vwkUy4A5cqV46mnnuLQoUPMmTMHMNMyX3/9NR07dqRZs2ZUqVIFgGeeeYbLly9z//334+npSe/evXnhhRfi32vSpEkMHz6c1157jaNHj5I3b15q167NI488ku7fW2BgIKtXr2bAgAE0a9aMqKgoihUrRosWLZKMLt3Jxx9/TL9+/ZgwYQKFCxfm4MGD6Ve0iMRzWFaiRg8iIumgUaNGVK1alTFjxthdioi4IU0ziYiIiEtTmBERERGXpmkmERERcWkamRERERGXpjAjIiIiLk1hRkRERFyawoyIiIi4NIUZERERcWkKMyIiIuLSFGZERETEpSnMiIiIiEv7P4LfEgBsaWaXAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeZklEQVR4nO3deZzN5fvH8dcxzAzDjH0fS4XIGpKUkCyVkkL2LX31HWVJmMoWZYsIKUL5lhQZ+kkka0n2sSc7MfbMhmFmzu+Pu5ljYpjhzHzO8n4+Hp+Hzznnc865mJpznfu+7uu22e12OyIiIiIeIovVAYiIiIg4k5IbERER8ShKbkRERMSjKLkRERERj6LkRkRERDyKkhsRERHxKEpuRERExKNktTqAzJaYmMjJkyfJlSsXNpvN6nBEREQkDex2O9HR0RQtWpQsWW49NuN1yc3JkycJDg62OgwRERG5A8ePH6d48eK3vMbrkptcuXIB5h8nMDDQ4mhEREQkLaKioggODk7+HL8Vr0tukqaiAgMDldyIiIi4mbSUlKigWERERDyKkhsRERHxKEpuRERExKN4Xc2NiIh4voSEBK5du2Z1GJJOvr6+t13mnRZKbkRExGPY7XZOnTrFxYsXrQ5F7kCWLFkoXbo0vr6+d/U6Sm5ERMRjJCU2BQsWJEeOHGrW6kaSmuxGRERQokSJu/rZKbkRERGPkJCQkJzY5MuXz+pw5A4UKFCAkydPEh8fT7Zs2e74dVRQLCIiHiGpxiZHjhwWRyJ3Kmk6KiEh4a5eR8mNiIh4FE1FuS9n/eyU3IiIiIhHUXIjIiIiHkXJjYiIiAcpVaoUEyZMsPw1rKTVUiLXi4mBHDnACU2kRETSol69elStWtVpycSmTZsICAhwymu5K/0GF0kSFgZ588Jrr1kdiYhICna7nfj4+DRdW6BAAa9fMabkRgTgjz+gY0e4dg2mToUdO6yOSEScKDY29ePKlbRfe/ny7a9Nj86dO7NmzRomTpyIzWbDZrNx5MgRVq9ejc1m48cff6R69er4+fnx66+/cvDgQZ577jkKFSpEzpw5qVmzJj///HOK1/z3lJLNZuOzzz7j+eefJ0eOHJQpU4bvv/8+XXEeO3aM5557jpw5cxIYGEirVq04ffp08uPbt2+nfv365MqVi8DAQKpXr87mzZsBOHr0KM2aNSNPnjwEBATwwAMPsGTJkvT9Q6WTkhuR6Gh4/nkzJZU1K9jt8NZbVkclIk6UM2fqxwsvpLy2YMHUr23aNOW1pUrdeE16TJw4kdq1a9O9e3ciIiKIiIggODg4+fGBAwcyatQo9u7dS+XKlYmJieGpp55ixYoVbNu2jSZNmtCsWTOOHTt2y/cZNmwYrVq1YseOHTz11FO0a9eOCxcupCnGxMREnnvuOS5cuMCaNWtYvnw5hw4donXr1snXtGvXjuLFi7Np0ya2bNnCwIEDk5vwhYSEEBcXx9q1a9m5cyejR48mZ3r/odJJNTfi3ex26NrVjNwUKwZz50K9evDDD7B2LdSta3WEIuLBgoKC8PX1JUeOHBQuXPiGx999912efPLJ5Nt58+alSpUqybeHDx9OWFgY33//PT179kz1fTp37kybNm0AeP/99/noo4/YuHEjTZo0uW2MK1asYOfOnRw+fDg58Zo9ezYPPPAAmzZtombNmhw7dow333yT+++/H4AyZcokP//YsWO88MILVKpUCYB77rnntu95tzRyI95t3DiYPx+yZTN/PvoodO9uHhswwCQ/IuL2YmJSP777LuW1Z86kfu2PP6a89siRG69xpho1avzr7xFDv379KF++PLlz5yZnzpzs3bv3tiM3lStXTj4PCAggMDCQM2fOpCmGvXv3EhwcnGJEqUKFCuTOnZu9e/cC0LdvX15++WUaNmzIqFGjOHjwYPK1r7/+OiNGjKBOnToMGTKEHZkw7W9pcjNy5Ehq1qxJrly5KFiwIM2bN2ffvn1pfv7cuXOx2Ww0b94844IUz7VqlUlgACZOhIcfNueDB5sVU7//DosWWRefiDhNQEDqh79/2q/Nnv321zo37pQv2K9fP8LCwnj//ff55ZdfCA8Pp1KlSly9evWWr/PvfZpsNhuJiYlOi3Po0KHs3r2bp59+mpUrV1KhQgXCwsIAePnllzl06BAdOnRg586d1KhRg0mTJjntvW/G0uRmzZo1hISE8Pvvv7N8+XKuXbtGo0aNiE1DRdaRI0fo168fjz32WCZEKh7nr7+gdWtITDSFxD16OB4rUgR69zbnb70FaVyhICJyJ3x9fdO8l9K6devo3Lkzzz//PJUqVaJw4cIcOXIkQ+MrX748x48f5/jx48n37dmzh4sXL1KhQoXk+8qWLUufPn346aefaNGiBbNmzUp+LDg4mB49erBgwQLeeOMNpk+fnqExW5rcLF26lM6dO/PAAw9QpUoVPv/8c44dO8aWLVtu+byEhATatWvHsGHDMmXuTjxMXBy8+CKcPQtVq8Inn8C/9zPp398sC9+7F774wpIwRcQ7lCpVig0bNnDkyBHOnTt3yxGVMmXKsGDBAsLDw9m+fTtt27Z16gjMzTRs2JBKlSrRrl07tm7dysaNG+nYsSOPP/44NWrU4PLly/Ts2ZPVq1dz9OhR1q1bx6ZNmyhfvjwAvXv3ZtmyZRw+fJitW7eyatWq5McyikvV3ERGRgKmYOpW3n33XQoWLEi3bt1u+5pxcXFERUWlOMTL9ekDGzZAnjxmsv3f48wAQUHw9tvmfMiQG9d/iog4Sb9+/fDx8aFChQoUKFDglvUz48ePJ0+ePDzyyCM0a9aMxo0b8+CDD2ZofDabjUWLFpEnTx7q1q1Lw4YNueeee/jmm28A8PHx4fz583Ts2JGyZcvSqlUrmjZtyrBhwwAzIBESEkL58uVp0qQJZcuW5eOPP87YmO1216iYTExM5Nlnn+XixYv8+uuvqV7366+/8tJLLxEeHk7+/Pnp3LkzFy9eZOHChTe9fujQocn/wNeLjIwkMDDQWeGLu/jiC+jc2YzU/PDDjes6r3flCpQtC8ePw5gx8OabmRamiKTflStXOHz4MKVLl8b/34U04hZu9TOMiooiKCgoTZ/fLjNyExISwq5du5g7d26q10RHR9OhQwemT59O/vz50/S6oaGhREZGJh/XzxmKl9m2zVFbM3TorRMbMFWGw4eb8/ffh7//ztDwRETEOVyiz03Pnj1ZvHgxa9eupXjx4qled/DgQY4cOUKzZs2S70uaa8yaNSv79u3j3nvvTfEcPz8//Pz8MiZwcR8XLkCLFmY05umn4Z130va89u3hgw9g1y4YPRpGjcrYOEVE5K5ZOnJjt9vp2bMnYWFhrFy5ktKlS9/y+vvvv5+dO3cSHh6efDz77LPUr1+f8PDwFGvwRZIlJEC7dqYhxT33wP/+l/aNMX18zKgNmOXiJ05kWJgiIuIclo7chISEMGfOHBYtWkSuXLk4deoUYDo2Zv+nyLNjx44UK1aMkSNH4u/vT8WKFVO8Ru7cuQFuuF8k2bvvwtKlpnB4wQJTSJwezzwDderAunUwbBhMm5YxcYqIiFNYOnIzdepUIiMjqVevHkWKFEk+kiqwwbRtjoiIsDBKcWuLF5vkBkxScl3b8jSz2cyUFMCMGWarBhERcVmWjtykZaHW6tWrb/n4559/7pxgxPMcOGBqZgB69nSc34k6deDZZ+H7780S8X/3axcREZfhMqulRJzq0iVTQBwZCY88YvaQulvvv29qdRYsMFsziIiIS1JyI57HbodXXoGdO6FQIZg3D3x97/51H3gAOnUy5wMHalNNEREXpeRGPM+UKfDVV2al07ffQtGiznvtYcPAzw/WrDFFyiIibqxevXr0TtpLz4MouRHPsm6d2V4BYOxYqFvXua8fHGzqd8CM3mTwni4i4vkyIsHo3LkzzZs3d+pruhMlN+I5Tp2Cli3NLt6tWzt29na20FCz99SOHTBnTsa8h4iI3DElN+IZrl2DVq0gIsLUxnz22Y07fTtLvnwwYIA5HzTI7DIuInIHOnfuzJo1a5g4cSI2mw2bzcaRI0cA2LVrF02bNiVnzpwUKlSIDh06cO7cueTnzp8/n0qVKpE9e3by5ctHw4YNiY2NZejQoXzxxRcsWrQo+TVvt/I4yd9//03Hjh3JkycPOXLkoGnTpuzfvz/58aNHj9KsWTPy5MlDQEAADzzwAEuWLEl+brt27ShQoADZs2enTJkyzJo1y2n/VunhEtsviNy1/v3hl18gMNCsZsqZM2Pfr1cvmDTJdD3+9FN4/fWMfT8RuTN2u1k9mdly5EjTF6yJEyfy559/UrFiRd79pydXgQIFuHjxIg0aNODll1/mww8/5PLlywwYMIBWrVqxcuVKIiIiaNOmDWPGjOH5558nOjqaX375BbvdTr9+/di7dy9RUVHJyUXevHnTFHbnzp3Zv38/33//PYGBgQwYMICnnnqKPXv2kC1bNkJCQrh69Spr164lICCAPXv2kPOf37eDBg1iz549/Pjjj+TPn58DBw5w+fLlO/wHvDtKbsT9zZ0LEyaY89mzzU7eGS1HDrP55n/+YzbX7NzZJFYi4louXcr4Lzs3ExMDAQG3vSwoKAhfX19y5MhB4cKFk++fPHky1apV4/2k7V+AmTNnEhwczJ9//klMTAzx8fG0aNGCkiVLAlCpUqXka7Nnz05cXFyK17ydpKRm3bp1PPLIIwB89dVXBAcHs3DhQlq2bMmxY8d44YUXkt/rnnvuSX7+sWPHqFatGjVq1ACgVKlSaX5vZ9O0lLi3XbugWzdzHhoKzz2Xee/dtatJpM6dc04fHRGRf2zfvp1Vq1aRM2fO5OP+++8HzCbSVapU4YknnqBSpUq0bNmS6dOn8/fff9/Ve+7du5esWbNSq1at5Pvy5ctHuXLl2Lt3LwCvv/46I0aMoE6dOgwZMoQdO3YkX/vqq68yd+5cqlatSv/+/fntt9/uKp67oeRG3FdkpGnUd+kSNGxoRlAyU9as8N575nzcODh9OnPfX0RuL0cOM4qS2UeOHHcVdkxMDM2aNUuxUXR4eDj79++nbt26+Pj4sHz5cn788UcqVKjApEmTKFeuHIcPH3bSP9zNvfzyyxw6dIgOHTqwc+dOatSowaRJkwBo2rQpR48epU+fPpw8eZInnniCfv36ZWg8qVFyI+4pMdE01Nu/H0qUgK+/Nn1tMtsLL0DNmhAbCyNGZP77i8it2Wxmeiizj3QsaPD19SUhISHFfQ8++CC7d++mVKlS3HfffSmOgH+mu2w2G3Xq1GHYsGFs27YNX19fwsLCUn3N2ylfvjzx8fFs2LAh+b7z58+zb98+KlSokHxfcHAwPXr0YMGCBbzxxhtMnz49+bECBQrQqVMnvvzySyZMmMA0izYaVnIj7mnUKFi0yDTU++47yJ/fmjiu31Tzk0/g4EFr4hARt1WqVCk2bNjAkSNHOHfuHImJiYSEhHDhwgXatGnDpk2bOHjwIMuWLaNLly4kJCSwYcMG3n//fTZv3syxY8dYsGABZ8+epXz58smvuWPHDvbt28e5c+e4du3abeMoU6YMzz33HN27d+fXX39l+/bttG/fnmLFivHcP1P+vXv3ZtmyZRw+fJitW7eyatWq5PccPHgwixYt4sCBA+zevZvFixcnP5bZlNyI+/npJ3jnHXM+ZQr8U7xmmfr1oXFj019n0CBrYxERt9OvXz98fHyoUKECBQoU4NixYxQtWpR169aRkJBAo0aNqFSpEr179yZ37txkyZKFwMBA1q5dy1NPPUXZsmV55513GDduHE2bNgWge/fulCtXjho1alCgQAHWrVuXplhmzZpF9erVeeaZZ6hduzZ2u50lS5aQLVs2ABISEggJCaF8+fI0adKEsmXL8vHHHwNmtCg0NJTKlSsnT53NnTs3Y/7RbsNmT8vW3B4kKiqKoKAgIiMjCdTqFvdz9ChUrw7nz8PLL8N1w6GW2rYNHnzQnG/dCtWqWRuPiBe6cuUKhw8fpnTp0vj7+1sdjtyBW/0M0/P5rZEbcR9Xrpgal/PnzWjNP0VsLqFaNWjb1pwPHGhtLCIiXk7JjbiPnj1hyxbTIXj+fHC1b2bDh0O2bGbabOVKq6MREfFaSm7EPUyfDjNmQJYspmnfP02rXMo995imfmC2Z/CuGV8REZeh5EZc36ZNjp2433vP9LRxVYMGmW6omzeb0SUREcl0Sm7EtZ09a+psrl6F5s0dG1a6qoIF4Y03zPnbb5sNPUUkU3nZOhmP4qyfnZIbcV3x8dCmDRw/brY5+PzzjNvp25neeAMKFDANBmfOtDoaEa+RtFz5khUbZYpTXL16FQCfu2zKqo0zxXUNGgQrVphunwsWQFCQ1RGlTa5cpg9Pr14wbBi0b5+mDfRE5O74+PiQO3duzpw5A0COHDmwucMXIgEgMTGRs2fPkiNHDrJmvbv0RMmNuKawMNOFGEwh8QMPWBtPev3nP2an8sOHYeJEeOstqyMS8QpJu2AnJTjiXrJkyUKJEiXuOilVEz9xPfv2mf2aoqOhTx8YP97qiO7MV1+ZUZvAQDh0yCxhF5FMkZCQkKYtB8S1+Pr6kiXLzStm0vP5reRGXEtMDNSqBXv2QN268PPPpneMO0pMNF2Lt283dTgffGB1RCKu78MPYflyKFoUgoNvPDTF67WU3NyCkhsXZrdD69Ywb575xbZ1KxQqZHVUd2fpUmjaFHx9HTuYi8jN/fwzPPnkra/Jk+fmSU/SUby42VBXPE56Pr9VcyOu48MPTWKTLZv5090TGzAbatarB6tXw5AhMGuW1RGJuKboaLNfHECLFlClilkpef0RHQ1//22OHTtSf62CBW+dABUtCndZsCquTSM34hpWrzbN+RISYPJkCAmxOiLn2bABHn7YdFfevh0qVrQ6IhHXExICH38MpUrBzp2mGea/RUbemPD8+7hy5fbvlSULFCly6wSoUCFznbgMTUvdgpIbF3TihKlNOXPGFODOnu0e/WzS48UX4bvvoFkz+P57q6MRcS1r1pgRTjBTU088cWevY7ebjXVvlvT89Zfjz7QUGmfLBsWK3ToBypfP835XuTAlN7eg5MbFXL0Kjz8Ov/9uhqF/+w1y5LA6Kufbt88sZ09IgF9+gUcftToiEddw6RJUrgwHD8Irr8Cnn2bs+yUmmi9Stxr9OXnSXHc7/v63Tn6Cg92nP5cbUHJzC0puXEzSUHTu3GY/pnvvtTqijPPKK2YD0Dp1TIKjb3wipt3DhAkmEdi1y7ROsFp8PERE3DoBOn06ba+VK5cpcr5VAqQVYGmi5OYWlNy4kNmzoVMnc754MTz9tLXxZLQTJ+C++0xNwPffmykqEW+2bh089piZTlq61BTgu4u4OPP/9K0SoAsX0vZaWgGWJkpubkHJjYsID4fatc0H/ZAhMHSo1RFljtBQ03n5gQdMcfFd7p8i4rYuX4aqVeHPP6FLF8/chy021lHrk9oRHZ2219IKMCU3t6LkxgX8/TdUr262Jmja1IzaeMuqhIsX4Z57zL/BrFnQubPVEYlYo39/GDvWrFravduMXngjrQBLMyU3t6DkxmKJiWY6ZskSKF3a1NnkzWt1VJlr7Fjziz042Hxr9fe3OiKRzLVhAzzyiPl9oCnaW7vVCrCk48QJr1gBpuTmFpTcWGzYMDMF5e8P69ebYWlvc/kylC1rhqs/+MBszSDiLeLiTOuHPXugXTv48kurI3J/iYmmwPlWCVBEhNuvAFNycwtKbiy0ZAk884z5JvLFF9Cxo9URWWfmTOjWzYxaHTqk5aLiPd5+G95/30yR7N6tDWUzS3y8WeJ+s94/brICTMnNLSi5scjBg1Cjhqk5+e9/YcoUqyOyVny86e2xdy+89Ra8957VEYlkvC1bzMa4CQmmqWWLFlZHJNdz5gqwYsXM9U6c4lJycwtKbixw6ZKZX9++3WxDsGaN2UjS2y1aBM2bQ/bscOCAWe0g4qmuXjVfcHbuhFat4JtvrI5I7kRaV4CVKWNqCp1IG2eK67DboUcPk9gULAjz5yuxSfLssybp++03ePdd+OQTqyMSyTjvv28Sm/z5zf5x4p4CAqBcOXOkJjLSrAi1kPuuCRP3MHUq/O9/pp/LN9+YoUoxbDbT8wbgs8+c/i1HxGVs3+6Yep08GQoUsDYeyVhBQWYDVAspuZGMs3499O5tzkePdmyMJw6PPWY6MyckwDvvWB2NiPNdu2aa9MXHw/PPmykpkQym5EYyxqlTZifsa9egZUvo29fqiFzXyJFmFGfePNi0yepoRJxrzBjYts2sDPz4Y5ftoSKeRcmNON+1a9C6tVl2WL48zJihX2i3UqkSdOhgzgcONHVKIp5g925TTwYwcSIULmxtPOI1LE1uRo4cSc2aNcmVKxcFCxakefPm7Nu375bPmT59Oo899hh58uQhT548NGzYkI0bN2ZSxJImAwfC2rWmF0JYmPlTbu3dd02h9cqVsHy51dGI3L34eDMddfWq6W/Vrp3VEYkXsTS5WbNmDSEhIfz+++8sX76ca9eu0ahRI2JjY1N9zurVq2nTpg2rVq1i/fr1BAcH06hRI06cOJGJkUuqvv0Wxo835198ceuKenEoWRJCQsz5gAFp6yQq4srGjzfTrEFBZiWgRm8lE7lUn5uzZ89SsGBB1qxZQ926ddP0nISEBPLkycPkyZPpmIaOt+pzk4F27zYNumJjzQd00kogSZtz5+DeeyEqCubMgTZtrI5I5M7s2wdVqpimcDNnmhEckbuUns9vl6q5iYyMBCBvOjZSvHTpEteuXUv1OXFxcURFRaU4JANERppuo7Gx8MQTMGKE1RG5n/z54c03zfk775jhfBF3k5AAXbuaxKZxY+18L5ZwmeQmMTGR3r17U6dOHSpWrJjm5w0YMICiRYvSsGHDmz4+cuRIgoKCko/g4GBnhSxJ7HbzC+zPP82eIl9/DVnVH/KO9Olj9tw5dAimTbM6GpH0mzTJNKbMlQumT9d0lFjCZZKbkJAQdu3axdy5c9P8nFGjRjF37lzCwsLw9/e/6TWhoaFERkYmH8ePH3dWyJJk9GhYuNAUxH73nRp03Y2AABgyxJwPHw4xMdbGI5IeBw6YvdLA7HivL5NiEZdIbnr27MnixYtZtWoVxYsXT9NzPvjgA0aNGsVPP/1E5cqVU73Oz8+PwMDAFIc40c8/m11+wXQerVnT2ng8wcsvw333wZkzjuJsEVeXmGh2ur982UxNd+9udUTixSxNbux2Oz179iQsLIyVK1dSunTpND1vzJgxDB8+nKVLl1KjRo0MjlJSdeyYKXpNTDRz7C+/bHVEniFbNkfN0tixJskRcXVTp5oWEAEBmo4Sy1ma3ISEhPDll18yZ84ccuXKxalTpzh16hSXL19OvqZjx46EhoYm3x49ejSDBg1i5syZlCpVKvk5MRq+z1xXrsALL5gVPtWrw5Qp+mXmTC1bmn/XmBjHnjwirurwYbNCEswqyTR+URXJKJYmN1OnTiUyMpJ69epRpEiR5OObb75JvubYsWNERESkeM7Vq1d58cUXUzzngw8+sOKv4L1efx02bzYt1efPh1RqnuQOZcniWEo/dar58BBxRXa7mYKKjYW6deG//7U6IhHX6nOTGdTnxglmzDBTUDYbLF0KjRpZHZHnevJJU9fUvr3ZXV3E1UybBv/5D2TPDjt2mHoxkQzgtn1uxA1s3uzopDtihBKbjJY0evPVV7B9u7WxiPzbsWPQr585f+89JTbiMpTcSNqdO2fqbOLi4NlnzR5SkrGqVzebkNrtcF3tmYjl7HZ45RWIjobatc1UtYiLUHIjaZOQYFZGHTtmvp3Nnm3qQiTjjRhhmiL++COsXm11NCLG55/DsmXg52e2WPDxsToikWT6dJK0GTzY1H7kyGF2+g4Ksjoi73HffeYbMpgVKd5VJieu6MQJ000bzI72999vbTwi/6LkRm5v0SJ4/31zPmMGpGN7DHGSQYNMYrlxo0kuRaxit0OPHmY/uZo1oW9fqyMSuYGSG7m1P/+EpN3We/eGl16yNByvVbiw40PkrbcgPt7aeMR7ffUVLF5stluZNUv7yIlLUnIjqYuJMTt9R0XBY4/BmDFWR+Td3nwT8uWDffvMh4pIZjt1ylE4PHgwPPCAtfGIpELJjdyc3W562ezeDUWKwLffmm0BxDqBgfDOO+Z86FC4dMnScMTL2O2mQd/ff0O1atC/v9URiaRKyY3c3MSJ8M03Zsh53jwzLSLWe/VVKFkSTp6ESZOsjka8ybffmnqvrFnNyKG+7IgLU3IjN1q71tGYa/x4qFPH2njEwc/PrE4B0+DvwgVr4xHvcPYs9Oxpzt9+G6pUsTYekdtQciMpnTwJrVqZvjbt2jl+oYnraNcOKlWCixcdHYxFMtJrr5kmnpUrm4J2ERen5EYcrl41u1GfPm0+PD/9VDt9uyIfHxg50pxPmgR//WVtPOLZwsLMFLWPj5mO8vW1OiKR21JyIw5vvAG//WYa9C1YAAEBVkckqXnqKbOC7coVU1wskhHOnzd1XmAaSD74oLXxiKSRkhsxvvwSJk92nGsDPNdms8Ho0eZ81izYs8faeMQz9e5tRnLLlzeNJEXchJIbMbtNJ7X3HzQInnnG2ngkbWrXhubNITHRFHmKONPixeaLTpYsJoH297c6IpE0U3Lj7f7+2zTqu3wZmjSBIUOsjkjS4/33zYfPwoWwfr3V0YinuHgR/vMfc963L9SqZWk4Iuml5MabJSaarRUOHYJSpUxbde3s617Kl4cuXcy5NtUUZ+nb16ycLFvW0XpAxI0oufFmI0aYoWd/f1NAnDev1RHJnRg61PwMf/kFliyxOhpxd0uXmmkomw1mzoTs2a2OSCTdlNx4qx9/dKyymTrVtFMX91S8uOlDAhAaanoUidyJqCjo3t2cv/66GniK21Jy440OHTKN4Ox26NEDOne2OiK5WwMHQu7csHMnzJljdTTirt580/RNuuceeO89q6MRuWNKbrzN5cvwwgumkLhWLZgwweqIxBny5jUJDpgVb3Fx1sYj7mfFCpg2zZzPmKE+V+LWlNx4E7vdNOQKD4cCBWD+fLNXkXiG116DokXh6FEz1SiSVjEx8PLL5vy//4V69SwNR+RuKbnxJp98Al98YZYOf/ONqdUQz5Ejh6OOasQIiIy0NBxxIwMHwpEjZsf5pOaQIm5MyY23+P136NXLnI8aBfXrWxuPZIwuXaBcOdM2/4MPrI5G3MGaNTBlijn/7DPImdPaeEScQMmNNzh9Gl58Ea5dM3/262d1RJJRsmY1jf0Axo+HU6esjUdc26VL0K2bOe/eHRo2tDYeESdRcuPp4uPhpZfgxAm4/37Tt0I7fXu25583xeKXLsHw4VZHI67s7bfh4EEzRT12rNXRiDiNkhtPFxoKq1eboeawMMiVy+qIJKNdv6nmtGlw4IC18YhrWrcOJk4059OnQ1CQtfGIOJGSG082b56j7uLzz83IjXiHxx+Hpk3NyN0771gdjbiay5eha1ezgrJzZ7OvnIgHUXLjqfbudew59OabpreNeJeRI80ozjffwJYtVkcjrmTIEPjzTyhSxNRmiXgYJTeeKCrK1F3ExppVUUkFpuJdqlSBtm3NeVKDP5GNG2HcOHP+6aeQJ4+18YhkACU3nsZuNyM2+/aZIsG5c80KGvFOw4dDtmzw88/mEO8WF2d+PyQmmi1YmjWzOiKRDKHkxtOMHWt2+Pb1NR2ICxa0OiKxUunSpis1mNGbxERr4xFrDR8Oe/aY3wtJxcQiHkjJjSdZscKsjgL46COzHFjk7bfNarktW0zCK95p61bTwBPg448hXz5r4xHJQEpuPMXx46afTWKiWf3wyitWRySuomBBU1QOJtG5ds3aeCTzXb1qpqMSEqBlSy0wEI+n5MYTxMWZzsPnzsGDD5pvZWrUJ9fr29ckOQcOmBb74l1GjoQdOyB/fpg82epoRDKckhtP0KuXWQGRNy989x1kz251ROJqcuaEQYPM+bBhZhdo8Q47dpiNVAEmTVIdnngFJTfubtYss5zTZoM5c6BUKasjElf1yitwzz1mr7EJE6yORjLDtWtmOio+Hpo3h9atrY5IJFMouXFnW7c6VsK8+y40bmxtPOLafH0d3+DHjDHTmOLZxo41vyfy5IGpUzVdLV5DyY27On8eWrQw9TbNmsFbb1kdkbiD1q2hWjWIjlZzR0+3e7eZggSz7LtwYWvjEclESm7cUUKC6Tx79Cjcdx/Mng1Z9KOUNMiSxRSXAkyZYv4bEs8TH2/2jrp6FZ5+Gtq3tzoikUylT0R3NHQo/PSTKRxesABy57Y6InEnjRpBgwbmg2/wYKujkYzw4YdmkUFQkKMmT8SLKLlxN99/76ib+OwzqFTJ2njE/dhsjmZu//sf7NxpbTziXPv2OVbGjR8PxYpZG4+IBZTcuJP9+6FDB3P++uuOTRFF0qtmTdMbyW5XvZYnSUgw01FxcWaBQZcuVkckYglLk5uRI0dSs2ZNcuXKRcGCBWnevDn79u277fPmzZvH/fffj7+/P5UqVWLJkiWZEK3FYmNNAXFUFNSpY1ZBiNyN994DHx9YvBh++cXqaMQZJk2C336DXLlg2jRNR4nXsjS5WbNmDSEhIfz+++8sX76ca9eu0ahRI2JjY1N9zm+//UabNm3o1q0b27Zto3nz5jRv3pxdu3ZlYuSZzG6H7t1h1y6z4mHePLOsV+RulC0LL79szgcMMP+difs6cMAxCjd2LJQoYW08Ihay2e2u8xvt7NmzFCxYkDVr1lC3bt2bXtO6dWtiY2NZvHhx8n0PP/wwVatW5ZNPPrnte0RFRREUFERkZCSBgYFOiz1DffSR6UKcNSusWgWPPmp1ROIpTp40K+4uX4aFC+G556yOSO5EYiLUrw9r15pi8Z9/1qiNeJz0fH67VM1NZGQkAHnz5k31mvXr19OwYcMU9zVu3Jj169ff9Pq4uDiioqJSHG7l11/hjTfM+QcfKLER5ypaFPr0MeehoWYJsbifqVNNYhMQYBYaKLERL+cyyU1iYiK9e/emTp06VKxYMdXrTp06RaFChVLcV6hQIU6dOnXT60eOHElQUFDyERwc7NS4M1REhNnBNz4e2rQxRcQizta/v9mXbO9e0zNJ3MuRI2ZaEcwquNKlLQ1HxBW4THITEhLCrl27mDt3rlNfNzQ0lMjIyOTj+PHjTn39DHPtGrRqBadOQcWKMH26vo1JxggKctRqDBlipqjEPSTV48XGwmOPwX//a3VEIi7BJZKbnj17snjxYlatWkXx4sVveW3hwoU5ffp0ivtOnz5N4VRai/v5+REYGJjicAv9+pkpqcBA06gvIMDqiMSThYRAcDD89RdMnmx1NJJWn31m6mv8/WHGDHUqF/mHpf8n2O12evbsSVhYGCtXrqR0GoZTa9euzYoVK1Lct3z5cmrXrp1RYWa+OXNMETGYJmtlylgbj3g+f3+z+SqY7RkuXrQ0HEmD48cd9XjvvaffEyLXsTS5CQkJ4csvv2TOnDnkypWLU6dOcerUKS5fNyzesWNHQkNDk2/36tWLpUuXMm7cOP744w+GDh3K5s2b6dmzpxV/BefbudMMMwO8/TY8+6y18Yj36NABHngA/v4bRo+2Ohq5FbsdXnnFbIBau7ZZTSkiySxNbqZOnUpkZCT16tWjSJEiycc333yTfM2xY8eIiIhIvv3II48wZ84cpk2bRpUqVZg/fz4LFy68ZRGy27h40TTqu3TJ7P+TtKOvSGbw8XHsFD5xIpw4YW08krovvoClS8HPD2bOND87EUnmUn1uMoPL9rlJTITmzeH//g9KloQtWyBfPqujEm9jt5vC1HXrzAjitGlWRyT/dvKkGWG7eNGsjkpaKSXi4dy2z41Xe/99k9j4+ZkCYiU2YgWbzTElNXOm2YRRXIfdDj16mMSmZk1HzY2IpKDkxhUsWwaDB5vzqVPhwQetjUe8W5060KyZ2YTx7betjkauN2eO+RKULZtJPrNmtToiEZek5MZqR46Y3b2TCgS1i6+4gvffN8uKv/sONmywOhoB0/MqqZHn4MGm/5WI3JSSGytdvgwvvAAXLpgh5qTl3yJWq1gROnY05wMHalNNq9ntphfRhQtQrZrqbERuQ8mNVZJ+WW3dCvnzm2/Ifn5WRyXiMGyY+W9y9WozdSrWmTfP1OJlzQqzZplpKRFJlZIbq0ybZn5JZckC33xjusOKuJISJSCpf9TAgWZFn2S+s2fNFyEw22RUqWJtPCJuQMmNFTZsgNdeM+cjR0KDBtbGI5Ka0FCzBcj27fD111ZH451eew3OnYNKlVTgLZJGSm4y25kz8OKLZmPMFi3gzTetjkgkdfnyOeo73nkH4uKsjcfbhIWZkV0fHzPS6+trdUQibkHJTWaKj4eXXjKbE5YrZ35ZaadvcXW9ekHhwmZl36efWh2N9zh/Hl591Zz37w/Vq1sbj4gbUXKTmd5+G1atMjt8L1hghvtFXF1AAAwdas5HjDD7GUnG690bTp+G8uUdfbBEJE2U3GSW776DMWPM+axZUKGCtfGIpEfXrmbX6bNnYdw4q6PxfIsXw5dfmgUHs2aZXdtFJM2U3GSGP/6Azp3Neb9+0LKlpeGIpFu2bPDee+Z83DgzoiAZ4+JF+M9/zHnfvlCrlqXhiLgjJTcZLToann8eYmKgXj2zOkrEHb34omk2GRNjpqckY7zxhtkcs0wZePddq6MRcUtKbjKS3W6G8//4A4oVg7lztReMuC+bzexCDaaw+NAha+PxRMuWmT2jbDbzZ/bsVkck4paU3GSkceNg/nwzpD9/PhQqZHVEInenQQNo1Mi0Mhg0yOpoPEtUFHTvbs5few0efdTaeETcmJKbjLJqlaM/yMSJ8PDD1sYj4ixJozdz5sC2bdbG4kn694fjx+Gee8zGpSJyx5TcZIS//oLWrU27+k6doEcPqyMScZ5q1aBNG3MeGmptLJ5i5UpHD6EZM8zyexG5Y0punC0uzhRenj0LVavC1Klq1CeeZ/hwUz+2bJn5YJY7FxMD3bqZ81dfNQsPROSuKLlxtj59zN5RefKY3jYqCBRPdO+9juXKAwea4nm5M6GhpvtzyZIwerTV0Yh4BCU3zvTFF46Rmq++MnPnIp5q0CAzfbJpk0nkJf3WroXJk8359OmQK5e18Yh4CCU3zrJtm6O2ZuhQaNrU0nBEMlyhQqYnC5itReLjrY3H3Vy6ZFpFALz8Mjz5pLXxiHgQJTfOUrSoWRH19NNm92QRb/DGG5A/P/z5p+nLImn3zjtw8CAULw4ffGB1NCIeRcmNsxQqBMuXw9dfm/1gRLxBYKCj383QoWY0Qm7vt99gwgRzPm0aBAVZGo6Ip9GnsDNlzao5c/E+//kPlCoFERGmp5Pc2uXLZjrKbjetIjSFLeJ0Sm5E5O74+Zml4WBW+5w/b208rm7oUNi3D4oUgQ8/tDoaEY+k5EZE7l7btlClCkRGanPYW9m40VFf88knpmWEiDidkhsRuXtZsjiSmsmT4dgxa+NxRXFx0KWL6Vzeti08+6zVEYl4LCU3IuIcTZrA44+bD/GhQ62OxvUMHw579kDBgvDRR1ZHI+LRlNyIiHPYbI5NNb/4AnbvtjYeV7J1q+Pf5uOPIV8+a+MR8XDpSm7OnDlzy8fj4+PZuHHjXQUkIm7s4YehRQsz9fLWW1ZH4xquXjXTUQkJ0LIlvPCC1RGJeLx0JTdFihRJkeBUqlSJ48ePJ98+f/48tWvXdl50IuJ+3nvP1OB8/z2sW2d1NNYbORJ27DCjNUlbLYhIhkpXcmP/1+Z4R44c4dq1a7e8RkS8zP33O7YV8PZNNXfsgBEjzPmkSabeRkQynNNrbmw2m7NfUkTczdCh4O8Pv/4KixdbHY014uNNkhcfD889By+9ZHVEIl5DBcUi4nzFikGvXuY8NNTUm3ibsWNhyxbTy2bqVFNwLSKZIl3Jjc1mIzo6mqioKCIjI7HZbMTExBAVFZV8iIgAMGAA5M5tVk19+aXV0WSuPXscy+EnTDDdiEUk09js6SiSyZIlS4ppJ7vdftPbCS78LS0qKoqgoCAiIyMJDAy0OhwRzzZ2LPTvD8HBZudwf3+rI8p4CQlQpw5s2ABPPWWm5TRqI3LX0vP5nTU9L7xq1aq7CkxEvEzPnqZh3fHjpr9L375WR5TxPvzQJDaBgfDpp0psRCyQrpEbT6CRG5FMNmMGvPwy5M0Lhw5BUJDVEWWcP/80e2xduQKffQbdulkdkYjHSM/nd7pqbuLj44mLi0tx3+nTpxk2bBj9+/fn119/TX+0IuLZOnUyy8MvXIAxY6yOJuMkJJjVUVeuQKNGjuXwIpLp0pXcdO/enddffz35dnR0NDVr1mTKlCksW7aM+vXrs2TJEqcHKSJuLGtWx6aaH34IERHWxpNRJk82TQtz5oTp0zUdJWKhdCU369at44XrWofPnj2bhIQE9u/fz/bt2+nbty9jx451epAi4uaeew5q14bLl+Hdd62OxvkOHjRL3sEUUZcoYW08Il4uXcnNiRMnKFOmTPLtFStW8MILLxD0zxx6p06d2K3N8kTk367fVHP6dFOb4ikSE01tzeXLUL8+vPKK1RGJeL10JTf+/v5cvnw5+fbvv/9OrVq1UjweExPjvOhExHPUrQtPP21qU955x+ponOeTT2DNGsiRwxQRZ1FvVBGrpev/wqpVq/K///0PgF9++YXTp0/ToEGD5McPHjxI0aJFnRuhiHiOkSPNKM68ebB5s9XR3L0jR0wfHzAjU/fcY2k4ImKkK7kZPHgwEydO5N5776Vx48Z07tyZItd13gwLC6NOnTppfr21a9fSrFkzihYtis1mY+HChbd9zldffUWVKlXIkSMHRYoUoWvXrpw/fz49fw0RsUqlStC+vTkfMMC9N9W026F7d4iNhcceg5AQqyMSkX+kK7l5/PHH2bJlC6+//jqzZs1i+vTpKR6vWrUqffr0SfPrxcbGUqVKFaZMmZKm69etW0fHjh3p1q0bu3fvZt68eWzcuJHu3bun568hIlZ6913w9YWVK2H5cqujuXOffQY//2y6Ls+YoekoERfiMk38bDYbYWFhNG/ePNVrPvjgA6ZOncrBgweT75s0aRKjR4/mr7/+uulz4uLiUvTmiYqKIjg4WE38RKzUp4/Zc6laNTM95W6JwfHj8MADEB0N48Z5R+dlEYtl2PYLa9euTdN1devWTc/Lplnt2rV56623WLJkCU2bNuXMmTPMnz+fp556KtXnjBw5kmHDhmVIPCJyh95+24x2bNsG334LL71kdURpZ7ebFVHR0WZ5e9Lu5yLiMu5448zUnnanG2emZeQGYN68eXTt2pUrV64QHx9Ps2bN+O6778iWLdtNr9fIjYiLGjECBg0yRbh795qpKnfw+efQpQv4+UF4uOm+LCIZLsO2X8iTJw/BwcEMGjSI/fv38/fff99wXLhw4a6Cv5U9e/bQq1cvBg8ezJYtW1i6dClHjhyhR48eqT7Hz8+PwMDAFIeIuIA+faBQIbPf1L/q91zWyZMmboChQ5XYiLiodCU3ERERjB49mvXr11OpUiW6devGb7/9RmBgIEFBQclHRhk5ciR16tThzTffpHLlyjRu3JiPP/6YmTNnEuGpLd1FPFVAAAwebM7ffRdcvUeW3Q6vvgoXL0KNGtCvn9URiUgq0pXc+Pr60rp1a5YtW8Yff/xB5cqV6dmzJ8HBwbz99tvEx8dnVJwAXLp0iSz/Kjz08fEBUp8mExEX1r073HsvnDkD48dbHc2tff01fP89ZMsGs2aZPbNExCXd8RKFEiVKMHjwYH7++WfKli3LqFGjiIqKStdrxMTEEB4eTnh4OACHDx8mPDycY8eOARAaGkrHjh2Tr2/WrBkLFixg6tSpHDp0iHXr1vH666/z0EMPqXmgiDvKlg3ee8+cjx0LZ89aG09qTp+G114z54MGQcWK1sYjIrd0R8lNXFwcc+bMoWHDhlSsWJH8+fPzww8/kDdv3nS9zubNm6lWrRrVqlUDoG/fvlSrVo3B/wxVR0REJCc6AJ07d2b8+PFMnjyZihUr0rJlS8qVK8eCBQvu5K8hIq6gZUt48EEzLZWU6LiakBC4cAGqVoWBA62ORkRuI12rpTZu3MisWbOYO3cupUqVokuXLrRv3z7dSY2V0lNtLSKZZPlyaNTIjOTs2welS1sdkcO8edCqlZmG2rTJJDgikunS8/md7qXgJUqUoFOnTlSvXj3V65599tm0R5vJlNyIuKgnnzQdf9u3h3/2sLPc2bOmWd/Zs2Y66t13rY5IxGtlaHJzO3fa5yazKLkRcVFbtphVSDab6R9TubLVEUGbNjB3rqmx2bLFfXrxiHigDOtzk5iYeNsjOjr6roIXES9VvbqZ/rHbITTU6mhg4UKT2Pj4mNVRSmxE3IbTNnSJi4tj/Pjx3HPPPc56SRHxNiNGmNqWJUtgzRrr4rhwAZKag775phlREhG3ka7kJi4ujtDQUGrUqMEjjzzCwoULAZg5cyalS5fmww8/TNeu4CIiKZQpY3rfAAwYYEZxrNC7t1n+Xb48DBliTQwicsfSVXMzYMAAPv30Uxo2bMhvv/3G2bNn6dKlC7///jtvvfUWLVu2TG6q56pUcyPi4k6dMo39Ll2CBQvg+ecz9/1/+AGeecbsVL5uHTz8cOa+v4jcVIbV3MybN4/Zs2czf/58fvrpJxISEoiPj2f79u289NJLLp/YiIgbKFzYsX9TaChkcOfzFC5eNDt+g4lBiY2IW0pXcvPXX38lLwGvWLEifn5+9OnTJ3mncBERp3jzTciXz/S8+fzzzHvfN94wm2OWKQPDh2fe+4qIU6UruUlISMD3uhUDWbNmJWfOnE4PSkS8XFAQvP22OR86FC5fzvj3XLYMZs40S9FnzoTs2TP+PUUkQ6Rr5ze73U7nzp3x8/MD4MqVK/To0YOAgIAU12k7BBG5a6++ChMmwLFjMGkS9O+fce8VFeUoZH7tNXj00Yx7LxHJcOkqKO7SpUuarps1a9YdB5TRVFAs4kZmz4ZOnSB3bjh0CPLkyZj36dEDPv0U7rkHduyAf31hExHrZViHYk+g5EbEjSQkmL2cdu0yIzejRzv/PVauhCeecJzXr+/89xCRu5Zhq6VERDKVjw+MHGnOP/oI/vrLua8fEwPdupnzHj2U2Ih4CCU3IuLann4aHnsMrlwxxcXO9NZbcOQIlCgBY8Y497VFxDJKbkTEtdlsjumoWbNg717nvO4vv5hCZYDp0yFXLue8rohYTsmNiLi+2rXhuecgMdGxRPxuXLoEXbua827doFGju39NEXEZSm5ExD28/77ZEiEsDNavv7vXGjQIDhyAYsVg3DjnxCciLkPJjYi4hwoVoHNncz5w4J1vqrl+PXz4oTmfNs00DBQRj6LkRkTcx9Ch4OcHa9fCjz+m//lXrpjpKLsdOnaEp55yeogiYj0lNyLiPoKDTQdhMKM3CQnpe/7QofDHH2ZzzqTRGxHxOEpuRMS9hIaaqaSdO2HOnLQ/b9MmGDvWnH/yCeTNmzHxiYjllNyIiHvJm9eM2oApDI6Lu/1z4uKgSxez2qpNG7PySkQ8lpIbEXE/r78ORYvC0aNmFOZ2RoyA3buhYEHT6VhEPJqSGxFxPzlyOLoVjxhhdvVOzbZtji0cpkyB/PkzPDwRsZaSGxFxT126QLlycO4cfPDBza+5etVcl5AAL75oDhHxeEpuRMQ9Zc0K771nzsePh1Onbrxm1CjYvh3y5TOjNiLiFZTciIj7atECHnoIYmNh+PCUj+3caaaswOwhVbBg5scnIpZQciMi7uv6TTWnTTNbKgDEx5vpqGvXzMqol16yLkYRyXRKbkTEvdWrB02amIRm0CBz39ixsGUL5M4NU6eaJEhEvIaSGxFxf0mroebOhS+/dKykmjABihSxKioRsYiSGxFxf1WrQrt25rxDB7NKqmlTs3+UiHgdJTfi9c6dM6UZSc6ehb17rYtH7tDw4ZAtmzkPDDQ1OJqOEvFKSm7EK8XHww8/wAsvmEa3S5ea++126NYNqlc3jW/tdmvjlHQoXRrefNMkNJMnQ/HiVkckIhZRciNe5Y8/YMAAKFECnnkGFiwwozZr1pjHY2PNNkSXL8Orr8Lzz5uRHXETI0bA+fNmakpEvJaSG/EKUVFQuzaULw9jxkBEhOnC37u36fGW1OA2Z0748UfTE87XFxYtgkqVYPlyS8OXtLLZIE8eq6MQEYspuRGPlJiYsm4mMBCuXAEfH2jWzIzYnDgBH34IlSunfG6WLNCnD2zYYJKhU6egUSN44420bUAtIiLWUnIjHuXIEbMK+N57oUYNiI52PDZjBvz1F3z/vZlu8vW99WtVrQqbN5vpKTAJ0ZUrGRS4iIg4TVarAxC5W5cumcRj5kxYtcpxf2CgmXJ69FFz+8EH0//aOXLAxx+bVcX580NQkLk/qdBYi3FERFyPkhtxa0uWQJs2pqYGTLLRoIHpvP/88yY5cYZmzVLe/uQTU5szYwYUKOCc9xAREedQciNuJSICLl40tTBgin2jo80q4M6doVMnKFkyY2OIioK33jJxVK4MX3xhanJERMQ1qOZGXN7Vq/Ddd2bpdnAw9O3reCw4GLZuNfslDh6c8YkNmOmu1auhQgVTbNy4sYlJxcYiIq5ByY24rPBw6NXLNNl78UXTdC8hwfSiub6jcNWqZoVTZqpSxRQbh4SY2x9+CLVqwZ49mRuHiIjcSMmNuKRu3aBaNfjoI9OTrUgRGDjQNOFbu9bRZd9K2bObRrj/93+m2Hj7dpPgnD9vdWQiIt7N0uRm7dq1NGvWjKJFi2Kz2Vi4cOFtnxMXF8fbb79NyZIl8fPzo1SpUsycOTPjg5UMEx9vCoMvXHDcV7u2SWCSRmyOHTMbP5crZ12cqXnmGdi500xP9esH+fJZHZGIiHeztKA4NjaWKlWq0LVrV1q0aJGm57Rq1YrTp08zY8YM7rvvPiIiIkhMTMzgSCUj/PknzJoFs2fDyZNmlOa118xjbdua1U7ukigULmwStOv3otqzxyRlTZpYF5eIiDeyNLlp2rQpTZs2TfP1S5cuZc2aNRw6dIi8efMCUKpUqVs+Jy4ujrjrKj2jktYMiyWiouDbb01S89tvjvvz5TP1NEly5HDeMu7Mcn3dT1ycSdC2bzd1Q6NGgb+/dbGJiHgTt6q5+f7776lRowZjxoyhWLFilC1bln79+nH58uVUnzNy5EiCgoKSj+Dg4EyMWK536ZLZsLJ7d5PYZMkCTz9tVkKdPGn2efIUdjs89pg5nzjR1OLs3m1tTCIi3sKtkptDhw7x66+/smvXLsLCwpgwYQLz58/nv//9b6rPCQ0NJTIyMvk4fvx4Jkbs3Y4eNV2Dk+TIAfXrw/33w+jRZiuExYuhRYvbb4Xgbvz9YdIk8/crUAB27DDbQUyZknLqSkREnM9mt7vGr1qbzUZYWBjNmzdP9ZpGjRrxyy+/cOrUKYL+6YO/YMECXnzxRWJjY8mePftt3ycqKoqgoCAiIyMJDAx0Vvjyj8uXzVYIs2bBypXmg/zAAbPXE5hpqVy5vGvbgtOnTcfkH380t59+Gr76yrGVg4iI3F56Pr/dauSmSJEiFCtWLDmxAShfvjx2u52//vrLwsi8m91udtDu0cMU1rZvDytWmPsbNEi5eWVgoHclNgCFCpkVXxMngp+f6WwcEGB1VCIinsuttl+oU6cO8+bNIyYmhpw5cwLw559/kiVLFooXL25xdN5r4UIztZSkVCnHVgi3qff2GjYbvP66mZbLlQuy/vN/XlycSQJVbCwi4jyWjtzExMQQHh5OeHg4AIcPHyY8PJxjx44Bpl6mY8eOyde3bduWfPny0aVLF/bs2cPatWt588036dq1a5qmpOTuXb0KYWHmSNK4sWmy16GDmYo6eBCGDFFiczOVKqX8dxk4EB56CHbtsiwkERGPY+nIzebNm6lfv37y7b7/bBrUqVMnPv/8cyIiIpITHYCcOXOyfPlyXnvtNWrUqEG+fPlo1aoVI0aMyPTYvc2OHaaO5ssv4dw5UxTcvLkZkciRwxQPu0LXYHdy8SJ8/bWpyalRAz74wGzn4G3TdiIizuYyBcWZRQXFaXfhAsyZY5KarVsd9xcpAh07wtChmk65W6dPQ9eupgEgwFNPmRVmhQpZG5eIiKvx2IJiyVy9epmOwVu33rgVgprSOUehQma5+EcfmWLjJUugcmVHsiMiIumn5EYAsxVCaCjs3eu4r2NHs+P2xImmyd68eWZkIatblaG7PpvNJJGbN0PFinDmjOlufPGi1ZGJiLgnfUx5sehox1YI69aZ+65dM7UfAA0bwrZt1sXnbSpWhE2bYMAAePhhyJ3b6ohERNyTkhsvY7fD2rUmoZk3z2yJAGYrhCZNTF+aJCpszXz+/mak7HrLlsG+fWZ0Rz8TEZHbU3LjZa5dM7Uz586Z2+XKme65HTpA0aLWxiY3unDB9As6fdp0OP78cxUbi4jcjmpuPNjly2a1U/v2kJho7vP1NZ2Ekzav3LvXTIMosXFNefLAoEFmRGfpUtMn54cfrI5KRMS1aSm4h7HbYeNGM+00dy5ERpr7V6xIOeUk7mX3bmjTBnbuNLdDQmDsWFDvShHxFloK7oXOnjUfdhUrmmLUTz81iU3JkjB4sJl+Evf1wAMmae3Vy9yeMsU0/ktKXkVExEE1Nx7izz+hf39z7u8PL7xgamnq1zfFwuL+/P1hwgRT+N25M1Svrp3FRURuRsmNG9q500w7BQTA8OHmvkcegdatzdRT69b60PNkTZqY7TCub6J49iwkJJhd2UVEvJ1qbtzEhQtmH6JZs2DLFnNf7twQEaFOwd7ObodnnjE9cmbONOciIp5GNTceZM0aMxJTpAj07GkSm2zZoEUL+N//1C1Y4Px5+OsvM3rTrJn57+TyZaujEhGxjpIbF7dsmekifPWq2XNowgQ4cQK++858Q1dyI/nzw4YN0KePuZ1UbLxjh7VxiYhYRcmNi4iONlMKjz2Wso9Jly6OEZvwcLNapkABy8IUF+XvD+PHm144hQvDnj1Qs6ZJhpN6HImIeAvV3FjIbodffnFshRAba+5/4QWYP9/S0MSNnT0L3brB//0f3HMPbN8OOXNaHZWIyN1Jz+e3JjUsEB8Po0aZVvoHDzruL1PGjNR07GhZaOIBChSARYtMr6OqVZXYiIj3UXKTSRITHf1mfHzMSM3Bg+aDp3Vrk9Q88og2RhTnsNnMNhvXmzLFdDr+4APIkcOauEREMoOSmwxkt8PmzWba6f/+z+zjlDOn+eAZMgRiYswUVECA1ZGKpztzBt5806yiWr3atBWoUsXqqEREMoYKijPA6dMwbpzZ5PChh2DqVLNUd+FCxzUtWpjpJyU2khkKFjT//RUubJLshx6CDz9UsbGIeCYlN070xx/QvDkULw79+pkpAH9/aNsWli83f4pYpVEj09362WdNa4G+faFpU9MIUkTEkyi5caIcOeD7703B8EMPwSefmA+Or76Chg21x5NYL39+M4LzySdmR/GffjJ7VMXEWB2ZiIjzqObGiUqUMFNQjz0GFSpYHY3Izdls8J//QN26ZjTxxRe1okpEPIv63Ih4sbg40+Xax8fc3rPH3FetmrVxiYj8m/aWEpE08fNzJDZXrpi2BLVqmYJ4FRuLiLtSciMigElu7r0Xrl0zBfFNmsDJk1ZHJSKSfkpuRASA3LkhLMx0Ns6e3azwq1zZdDsWEXEnSm5EJJnNBq+8Alu3mrqb8+dNe4MePczIjoiIO1ByIyI3uP9+WL/eTE+BafyXLZu1MYmIpJWWgovITfn5wdix0LgxlC3rKDy+etWssFLfJhFxVfr1JCK31LCh6eGUpF8/k/Co2FhEXJWSGxFJs5MnYcYM+Plns3fa9fuliYi4CiU3IpJmRYvCli3w4INw4QI8/7zpdhwba3VkIiIOSm5EJF2Sio379zerq6ZNM/tTbd1qdWQiIoaSGxFJN19fGD3aTE8VLQr79pkdxi9ftjoyERGtlhKRu9CgAezYAd27w0svmeZ/IiJWU3IjInclXz747jszRZVk2TK4dMnU5IiIZDZNS4nIXbs+sTlzBjp2hBYtTLdjFRuLSGZTciMiTpU7N3TubBKe6dPNyqotW6yOSkS8iZIbEXGq64uNixWDP/+E2rVhzBhITLQ6OhHxBkpuRCRDNGgA27eb6alr12DAAHjySW3AKSIZT8mNiGSYfPlg/nz47DPIkQNKlgR/f6ujEhFPp9VSIpKhbDbo1g3q1oUiRRz3nz9vNufMmdO62ETEM2nkRkQyRZkyjkTGbocOHUyx8ebN1sYlIp7H0uRm7dq1NGvWjKJFi2Kz2ViYjl341q1bR9asWalatWqGxSciGeOvv0zzv/37TbHx6NGQkGB1VCLiKSxNbmJjY6lSpQpTpkxJ1/MuXrxIx44deeKJJzIoMhHJSMHBJrl58UWIj4eBA6FhQ5P0iIjcLUuTm6ZNmzJixAieT2cb0x49etC2bVtq166dQZGJSEbLmxe+/RZmzICAAFi9GipXNt2ORUTuhtvV3MyaNYtDhw4xZMiQNF0fFxdHVFRUikNEXIPNBl27wrZtUKMG/P23GcWJi7M6MhFxZ26V3Ozfv5+BAwfy5ZdfkjVr2hZ6jRw5kqCgoOQjODg4g6MUkfQqUwZ++w3eegvmzDGrqERE7pTbJDcJCQm0bduWYcOGUbZs2TQ/LzQ0lMjIyOTj+PHjGRiliNypbNngvfegZk3HfVOmwKhRKjYWkfRxmz430dHRbN68mW3bttGzZ08AEhMTsdvtZM2alZ9++okGDRrc8Dw/Pz/89DVQxO0cOQJvvGGmqJYtg9mzTSGyiMjtuM3ITWBgIDt37iQ8PDz56NGjB+XKlSM8PJxatWpZHaKIOFHJkjB1qqPYuEoV0+1YROR2LB25iYmJ4cCBA8m3Dx8+THh4OHnz5qVEiRKEhoZy4sQJZs+eTZYsWahYsWKK5xcsWBB/f/8b7hcR92ezQZcu8Nhj0LYtbNoELVua+z76SJ2NRSR1lo7cbN68mWrVqlGtWjUA+vbtS7Vq1Rg8eDAAERERHDt2zMoQRcRi990H69bB22+bhGfWLHjoIbh61erIRMRV2ex2u93qIDJTVFQUQUFBREZGEhgYaHU4IpIOa9dC+/bw6qsQGmp1NCKSmdLz+e02BcUiInXrms7GuXI57vvjD1OXo2JjEUniNgXFIiIAuXODj485v3wZXnjBdDaeN8/SsETEhSi5ERG39fffprD44kVo1coUG0dHWx2ViFhNNTci4tauXYNhw+D998FuhxIloGpVM3U1Y4aj2/GyZaZ3Ts6cNz+CgyGLvu6JuKz0fH4ruRERj7B2LXToANcvsIyPd0xhtW5tNupMTWQkJP1K6NPHbOCZWiI0ZoyZHgOzkuvgwZSP58rlOM+XT0mTiDOooFhEvE7durBzJyxdaqapLl92JDZglo9fuwYxMSmP6GjzZ0CA49pTp+BWO7WMHu04nz0bpk1L/dqjR81oEsCIEfC//6WeNL31FhQqZK7dvh3270+ZKF1/5MhhlsaLyI00ciMi8i/Hj8Pp0zcmQknHgAFmLyyACRNMQpWUJF1/XLoE589D3rzm2ldfhU8+Sf19Dx+GUqXMef/+MHZs6tfu2AGVKpnzqVNNgvXvBCgpMXr1Vcdqsv37zXGzhCkgIGVCKOJKNHIjInIXgoPTvrS8d29z3ExCQsopqQEDTLflmyVM0dFmCitJyZKmO/O/R5hiYszj13doPnoUwsNTj7FVK8ffZ9480xAxNb/8Ao8+as7nzoVJk26caks62rWD0qXNtX/9BQcO3DxpyqpPGslk+k9ORCSD/HsUpFQpx8jM7YSEmOPfEhPNlFv27I77uneH+vVvTIKSjiJFHNcWKADVq9+YWCUmmsevn547cgR++y31GB97zJHcLFoE/+xpfAN/f1i4EBo3NreXLoVx41Kfnnv4YahT53b/QiKpU3IjIuJGsmRJmYAA3HuvOdKie3dzXM9uN7uvR0c7CqUBXnwRypVLfXru+tGtnDmhfPmUCVZ8vHnsyhXHqjUw028//5x6jP/7nyO5uXzZTAFq9EfSQzU3IiLidHa72f8rKREqWNAx2rR/P2zcmPr03CefOKbdxoyB8eOhTRszDVa9ugqpvZWWgt+CkhsREfdRvz6sXu24Xa6cSXLatYN77rEsLLFAej6/1X1BRERc1k8/wf/9H7z0khn52bcPBg8203ANG5oRIpF/U3IjIiIuK1s2eOYZ+Pprszz/iy/gySdN7VGBAimnqH74wSy/F9G0lIiIuJ2ICJPIJBVS794NFSuaWp0WLcy0VYMGKkT2JJqWEhERj1akSMoVYidPmmXpMTGma3TjxmY1V58+sGWLpq+8jZIbERFxe08+afb4WrcO/vtf0xDx1CnTQbpGDbNxqngPTUuJiIjHuXrVFCN/+aVjc1NfX/PYzJmm906rVpA/v7VxStppKfgtKLkREfEu8fGO2hu73UxnHT5s7mvSBNq3h2bNzGak4rpUcyMiIvKP64uKr10z20RUq2aSnsWLzTLzQoWgc2dYs8ayMMWJlNyIiIjX8PWFvn1h61azwuqtt8x+XzExZpn5V185rrXbVYjsrpTciIiIV6pQAd57Dw4dgl9/hR49zOhNkg0b4IEHzDWHD1sWptwB1dyIiIjcRK9e8NFHjtt16pj+Oa1amdVYkrlUcyMiInKXhg+HWbPgiSdMJ+SkZeaFC8Ozz8K5c1ZHKKlRciMiInITgYFmmurnn+H4cfjgA0ch8tatkCeP49r9+yEhwbJQ5V80LSUiIpIOe/bAsWNmGTmYZKdYMfDxgbZtzdRV1aop972Su6dpKRERkQxSoYIjsQEzanPtmtnvatw4ePBBs8/V++/DkSOWhenVlNyIiIjchfLlTWKzcCG8+CL4+ZnRnbffNvtdXV+ULJlDyY2IiMhd8vOD556DefPg9GmYMcPsSm6zwaOPOq7bts1cc/mydbF6AyU3IiIiThQUBF27wooV8Ndfpgg5ycSJZil54cLmmpUrVYicEZTciIiIZJCiRVMWFpcpAyVKQFSUY5l5iRLw5psQHq6OyM6i1VIiIiKZKDHRdET+6iv49lu4eNHcX7Ys/PGHVlmlRqulREREXFSWLFC3Lnz6KZw6BWFhphC5WzdHYnPlCjRtaq65cMHaeN2RRm5ERERczPz50LKlOc+WDZ56Ctq3h2eeAX9/a2OzikZuRERE3FidOjBmDFSpYnroLFpkkp1ChcwIz4EDVkfo2pTciIiIuJgiRRxFxjt2wIABEBxsCpFnzjR1O0kuXbIsTJel5EZERMSFVaoEo0aZbserV5sNPcuWdTzeoYO5ZvRosy2EqObG6nBERETu2JUrZqoqKspx3+OPm/2tXnwx5eae7k41NyIiIl7A39+M6EyfDvXqmfvWrIFXXjGNAkNDrYzOOkpuRERE3FiePPDyy7BqlZmWGj3aTFNdvQoFCzqui4oy01rX1+t4KiU3IiIiHiI4GPr3N0XIO3ZAx46Ox777DurXh5IlTYHyjh3WxZnRlNyIiIh4oEqVIF8+x+3ISLPv1V9/OZaZV65sRnqOH7cuzoyggmIREREvceUKLFkCX34JP/xgpq4AfHxMt+T8+a2N71bcpqB47dq1NGvWjKJFi2Kz2Vi4cOEtr1+wYAFPPvkkBQoUIDAwkNq1a7Ns2bLMCVZERMTN+ftDixawYIFJZqZNM6ur6tdPmdgMH262hYiLsy7Wu2FpchMbG0uVKlWYMmVKmq5fu3YtTz75JEuWLGHLli3Ur1+fZs2asW3btgyOVERExLPkyQPdu5si4x9+cNwfEQFDh5okqHBhs/JqzRr3KkR2mWkpm81GWFgYzZs3T9fzHnjgAVq3bs3gwYPTdL2mpURERFJ36hSMHw9z5sCJE477g4OhbVvo2jVlE8HM4jbTUncrMTGR6Oho8ubNm+o1cXFxREVFpThERETk5goXNgXHR4/CypUmmQkMNEXHo0fD2rWOa11jeORGbp3cfPDBB8TExNCqVatUrxk5ciRBQUHJR3BwcCZGKCIi4p58fEwtzowZcPo0zJsHL7xgOh8nmTIFGjQw11y8aFmoN3Dbaak5c+bQvXt3Fi1aRMOGDVO9Li4ujrjrKqKioqIIDg7WtJSIiMhdevhh2LDBnPv5wTPPQPv28PTTkC2bc98rPdNSWZ371plj7ty5vPzyy8ybN++WiQ2An58ffn5+mRSZiIiI9/jmG/j6a7O0fPdu0yhwyRIz0uPs5CY93C65+frrr+natStz587l6aeftjocERERr1WyJAwc6Oh4/OWXEB8PuXJZG5elyU1MTAwHDhxIvn348GHCw8PJmzcvJUqUIDQ0lBMnTjB79mzATEV16tSJiRMnUqtWLU6dOgVA9uzZCQoKsuTvICIi4u1sNtPxuEoVqyMxLC0o3rx5M9WqVaNatWoA9O3bl2rVqiUv646IiODYsWPJ10+bNo34+HhCQkIoUqRI8tGrVy9L4hcRERHX4zIFxZlFfW5ERETcj9f0uRERERH5NyU3IiIi4lGU3IiIiIhHUXIjIiIiHkXJjYiIiHgUJTciIiLiUZTciIiIiEdRciMiIiIeRcmNiIiIeBQlNyIiIuJRlNyIiIiIR1FyIyIiIh4lq9UBZLakfUKjoqIsjkRERETSKulzOy37fXtdchMdHQ1AcHCwxZGIiIhIekVHRxMUFHTLa2z2tKRAHiQxMZGTJ0+SK1cubDabU187KiqK4OBgjh8/ftvt2MU16Wfo3vTzc3/6Gbq/jPoZ2u12oqOjKVq0KFmy3LqqxutGbrJkyULx4sUz9D0CAwP1P6Wb08/Qvenn5/70M3R/GfEzvN2ITRIVFIuIiIhHUXIjIiIiHkXJjRP5+fkxZMgQ/Pz8rA5F7pB+hu5NPz/3p5+h+3OFn6HXFRSLiIiIZ9PIjYiIiHgUJTciIiLiUZTciIiIiEdRciMiIiIeRcmNk0yZMoVSpUrh7+9PrVq12Lhxo9UhSTqsXbuWZs2aUbRoUWw2GwsXLrQ6JEmHkSNHUrNmTXLlykXBggVp3rw5+/btszosSYepU6dSuXLl5MZvtWvX5scff7Q6LLlDo0aNwmaz0bt3b0veX8mNE3zzzTf07duXIUOGsHXrVqpUqULjxo05c+aM1aFJGsXGxlKlShWmTJlidShyB9asWUNISAi///47y5cv59q1azRq1IjY2FirQ5M0Kl68OKNGjWLLli1s3ryZBg0a8Nxzz7F7926rQ5N02rRpE59++imVK1e2LAYtBXeCWrVqUbNmTSZPngyY/auCg4N57bXXGDhwoMXRSXrZbDbCwsJo3ry51aHIHTp79iwFCxZkzZo11K1b1+pw5A7lzZuXsWPH0q1bN6tDkTSKiYnhwQcf5OOPP2bEiBFUrVqVCRMmZHocGrm5S1evXmXLli00bNgw+b4sWbLQsGFD1q9fb2FkIt4rMjISMB+O4n4SEhKYO3cusbGx1K5d2+pwJB1CQkJ4+umnU3wmWsHrNs50tnPnzpGQkEChQoVS3F+oUCH++OMPi6IS8V6JiYn07t2bOnXqULFiRavDkXTYuXMntWvX5sqVK+TMmZOwsDAqVKhgdViSRnPnzmXr1q1s2rTJ6lCU3IiIZwkJCWHXrl38+uuvVoci6VSuXDnCw8OJjIxk/vz5dOrUiTVr1ijBcQPHjx+nV69eLF++HH9/f6vDUXJzt/Lnz4+Pjw+nT59Ocf/p06cpXLiwRVGJeKeePXuyePFi1q5dS/Hixa0OR9LJ19eX++67D4Dq1auzadMmJk6cyKeffmpxZHI7W7Zs4cyZMzz44IPJ9yUkJLB27VomT55MXFwcPj4+mRaPam7ukq+vL9WrV2fFihXJ9yUmJrJixQrNFYtkErvdTs+ePQkLC2PlypWULl3a6pDECRITE4mLi7M6DEmDJ554gp07dxIeHp581KhRg3bt2hEeHp6piQ1o5MYp+vbtS6dOnahRowYPPfQQEyZMIDY2li5dulgdmqRRTEwMBw4cSL59+PBhwsPDyZs3LyVKlLAwMkmLkJAQ5syZw6JFi8iVKxenTp0CICgoiOzZs1scnaRFaGgoTZs2pUSJEkRHRzNnzhxWr17NsmXLrA5N0iBXrlw31LgFBASQL18+S2rflNw4QevWrTl79iyDBw/m1KlTVK1alaVLl95QZCyua/PmzdSvXz/5dt++fQHo1KkTn3/+uUVRSVpNnToVgHr16qW4f9asWXTu3DnzA5J0O3PmDB07diQiIoKgoCAqV67MsmXLePLJJ60OTdyQ+tyIiIiIR1HNjYiIiHgUJTciIiLiUZTciIiIiEdRciMiIiIeRcmNiIiIeBQlNyIiIuJRlNyIiIiIR1FyIyIiIh5FyY2IeJzOnTvTvHlzq8MQEYsouRGRO9K5c2dsNtsNR5MmTawOjYkTJ7rMthk2m42FCxdaHYaIV9HeUiJyx5o0acKsWbNS3Ofn52dRNJCQkIDNZiMoKMiyGETEehq5EZE75ufnR+HChVMcefLkYfXq1fj6+vLLL78kXztmzBgKFizI6dOnAbPJZc+ePenZsydBQUHkz5+fQYMGcf12d3FxcfTr149ixYoREBBArVq1WL16dfLjn3/+Oblz5+b777+nQoUK+Pn5cezYsRumperVq8drr71G7969yZMnD4UKFWL69OnExsbSpUsXcuXKxX333cePP/6Y4u+3a9cumjZtSs6cOSlUqBAdOnTg3LlzKV739ddfp3///uTNm5fChQszdOjQ5MdLlSoFwPPPP4/NZku+LSIZS8mNiDhdvXr16N27Nx06dCAyMpJt27YxaNAgPvvsMwoVKpR83RdffEHWrFnZuHEjEydOZPz48Xz22WfJj/fs2ZP169czd+5cduzYQcuWLWnSpAn79+9PvubSpUuMHj2azz77jN27d1OwYMGbxvTFF1+QP39+Nm7cyGuvvcarr75Ky5YteeSRR9i6dSuNGjWiQ4cOXLp0CYCLFy/SoEEDqlWrxubNm1m6dCmnT5+mVatWN7xuQEAAGzZsYMyYMbz77rssX74cgE2bNgFmd/KIiIjk2yKSwewiInegU6dOdh8fH3tAQECK47333rPb7XZ7XFycvWrVqvZWrVrZK1SoYO/evXuK5z/++OP28uXL2xMTE5PvGzBggL18+fJ2u91uP3r0qN3Hx8d+4sSJFM974okn7KGhoXa73W6fNWuWHbCHh4ffENtzzz2X4r0effTR5Nvx8fH2gIAAe4cOHZLvi4iIsAP29evX2+12u3348OH2Ro0apXjd48eP2wH7vn37bvq6drvdXrNmTfuAAQOSbwP2sLCwVP4VRSQjqOZGRO5Y/fr1mTp1aor78ubNC4Cvry9fffUVlStXpmTJknz44Yc3PP/hhx/GZrMl365duzbjxo0jISGBnTt3kpCQQNmyZVM8Jy4ujnz58iXf9vX1pXLlyreN9fprfHx8yJcvH5UqVUq+L2lE6cyZMwBs376dVatWkTNnzhte6+DBg8lx/fu9ixQpkvwaImINJTcicscCAgK47777Un38t99+A+DChQtcuHCBgICANL92TEwMPj4+bNmyBR8fnxSPXZ9wZM+ePUWClJps2bKluG2z2VLcl/QaiYmJye/frFkzRo8efcNrFSlS5Javm/QaImINJTcikiEOHjxInz59mD59Ot988w2dOnXi559/JksWR6nfhg0bUjzn999/p0yZMvj4+FCtWjUSEhI4c+YMjz32WGaHz4MPPsh3331HqVKlyJr1zn9VZsuWjYSEBCdGJiK3o4JiEbljcXFxnDp1KsVx7tw5EhISaN++PY0bN6ZLly7MmjWLHTt2MG7cuBTPP3bsGH379mXfvn18/fXXTJo0iV69egFQtmxZ2rVrR8eOHVmwYAGHDx9m48aNjBw5kh9++CHD/24hISFcuHCBNm3asGnTJg4ePMiyZcvo0qVLupKVUqVKsWLFCk6dOsXff/+dgRGLSBKN3IjIHVu6dGmKKRqAcuXK0bZtW44ePcrixYsBM40zbdo02rRpQ6NGjahSpQoAHTt25PLlyzz00EP4+PjQq1cvXnnlleTXmjVrFiNGjOCNN97gxIkT5M+fn4cffphnnnkmw/9uRYsWZd26dQwYMIBGjRoRFxdHyZIladKkSYrRp9sZN24cffv2Zfr06RQrVowjR45kXNAiAoDNbr+uqYSISCapV68eVatWZcKECVaHIiIeRtNSIiIi4lGU3IiIiIhH0bSUiIiIeBSN3IiIiIhHUXIjIiIiHkXJjYiIiHgUJTciIiLiUZTciIiIiEdRciMiIiIeRcmNiIiIeBQlNyIiIuJR/h/Lx2/D+skS7QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2031,13 +1128,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "The MSE of LSTM forecasts is 2.626\n", - "The MSE of baseline ridge forecasts is 3.039\n" + "The MSE of LSTM forecasts is 2.875\n", + "The MSE of baseline ridge forecasts is 2.603\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNAElEQVR4nO3de1xUZf4H8M+ZUS7DZRCFGVBEFFPwCiiK1oqJgZWpa2mlKeqqa1oa9hPYTMQ0sdS0G1omWummlbrqthiQaCmKSqSmkhqCKbckB4VAnTm/P4jJiYuAMMPM+bxfr3m558xzzvnOyMbH53nOcwRRFEUQERERSZDM1AUQERERmQqDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSVYrUxfQ0ul0Oly9ehUODg4QBMHU5RAREVE9iKKIGzduwN3dHTJZ7f0+DEL3cPXqVXh4eJi6DCIiImqEy5cvo0OHDrW+zyB0Dw4ODgAqv0hHR0cTV0NERET1UVJSAg8PD/3v8dowCN1D1XCYo6MjgxAREZGZude0Fk6WJiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyTKrIHTw4EGMHDkS7u7uEAQBu3btuucxqamp8Pf3h7W1Nby9vbFp06Zmr5OIiIjMg1kFodLSUvTp0wfvvfdevdpnZ2fjsccew9ChQ5GZmYl58+bhH//4B/bt29fMlRIREZE5MKsFFUeMGIERI0bUu/26devg5eWFVatWAQB8fHzw3Xff4a233kJoaGhzlUlERERmwqyCUEOlpaUhJCTEYF9oaCjmzZtX6zEVFRWoqKjQb5eUlDRXeUREDaLVaZFRmIGisiK4KFzg7+oPuUxu6rKIzJpFB6H8/HyoVCqDfSqVCiUlJfj9999ha2tb7Zjly5cjNjbWWCUSEdVLck4y4tLjUFBWoN+nUqgQFRiFEM+QOo4korqY1RwhY4iOjoZGo9G/Ll++bOqSiEjiknOSEZEaYRCCAKCwrBARqRFIzkk2UWVE5s+ig5BarUZBgeF/OAoKCuDo6FhjbxAAWFtb6x+wygetEpGpaXVaxKXHQYRY7b2qfSvSV0Cr0xq7NCKLYNFBKCgoCCkpKQb7kpKSEBQUZKKKiIgaJqMwo1pP0N1EiMgvy0dGYYYRqyKyHGYVhG7evInMzExkZmYCqLw9PjMzE7m5uQAqh7UmTZqkb//Pf/4TP//8MxYsWIBz587h/fffx/bt2/HSSy+ZonwiogYrKitq0nZEZMisgtDx48fh5+cHPz8/AEBERAT8/PywaNEiAEBeXp4+FAGAl5cX/vvf/yIpKQl9+vTBqlWrsGHDBt46T0Rmw0Xh0qTtiMiQIIpi9YFn0ispKYFSqYRGo+F8ISIyOq1Oi9AvQ1FYVljjPCEBAlQKFRLHJvJWeqK71Pf3t1n1CBERSY1cJkdUYBSAytBzt6rtyMBIhiCiRmIQIiJq4UI8Q7A6eDVcFa4G+1UKFVYHr+Y6QkT3waIXVCQishQhniEY6jGUK0sTNTEGISIiMyGXydFf3d/UZRBZFA6NERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWTx6fNERERkfDotkHMYuFkA2KsAz0GATG70MhiEiIiIyLjO7AYSI4GSq3/uc3QHwlYAvk8YtRQOjREREZHxnNkNbJ9kGIIAoCSvcv+Z3UYth0GIiIiIjEOnrewJgljDm3/sS4yqbGckDEJERERkHDmHq/cEGRCBkiuV7YyEQYiIiIiM42ZB07ZrAgxCREREZBz2qqZt1wQYhIiIiMg4PAdV3h0GoZYGAuDYvrKdkTAIERERkXHI5JW3yAOoHob+2A6LM+p6QgxCREREZDy+TwDjPgYc3Qz3O7pX7jfyOkJcUJGIiIiMy/cJoPtjXFmaiIiIJEomB7weMnUVHBojIiIi6WIQIiIiIsliECIiIiLJ4hwhsmw6bYuYjEdERC0TgxBZrjO7Kx/ud/dzbRzdK9ewMPLtmURE1DJxaIws05ndwPZJ1R/uV5JXuf/MbtPURURELQqDEFkenbayJwhiDW/+sS8xqrIdERFJGoMQWZ6cw9V7ggyIQMmVynZERCRpDEJkeW4WNG07IiKyWAxCZHnsVU3bjoiILJbZBaH33nsPnTp1go2NDQYMGID09PRa227atAmCIBi8bGxsjFgtmYTnoMq7w6o92biKADi2r2xHRESSZlZBaNu2bYiIiEBMTAwyMjLQp08fhIaGorCwsNZjHB0dkZeXp3/l5OQYsWIyCZm88hZ5ANXD0B/bYXFcT4iIiMwrCK1evRrTp0/HlClT4Ovri3Xr1kGhUGDjxo21HiMIAtRqtf6lUnE4RBJ8nwDGfQw4uhnud3Sv3M91hIiICGa0oOKtW7dw4sQJREdH6/fJZDKEhIQgLS2t1uNu3rwJT09P6HQ6+Pv74/XXX0ePHj1qbV9RUYGKigr9dklJSdN8ADI+3yeA7o9xZWkiIqqV2fQI/frrr9BqtdV6dFQqFfLz82s8plu3bti4cSP+85//4NNPP4VOp8OgQYPwyy+/1Hqd5cuXQ6lU6l8eHh5N+jnIyGRywOshoNeTlX8yBBER0V3MJgg1RlBQECZNmoS+fftiyJAh2LFjB1xcXLB+/fpaj4mOjoZGo9G/Ll++bMSKiYjI5HRaIPtb4NQXlX9y8VWLZjZDY+3atYNcLkdBgeHaLwUFBVCr1fU6R+vWreHn54cLFy7U2sba2hrW1tb3VSsREZkpPqNQcsymR8jKygoBAQFISUnR79PpdEhJSUFQUFC9zqHVanHq1Cm4ubnduzEREUkLn1EoSWYThAAgIiICH374ITZv3oyzZ89i1qxZKC0txZQpUwAAkyZNMphMvWTJEnz99df4+eefkZGRgYkTJyInJwf/+Mc/TPURiIioJeIzCiXLbIbGAGD8+PEoKirCokWLkJ+fj759+yIxMVE/gTo3Nxcy2Z/Z7rfffsP06dORn5+PNm3aICAgAIcPH4avr6+pPgIREbVEDXlGoddDRiuLmp8gimJN8Zf+UFJSAqVSCY1GA0dHR1OXQ0REzeHUF8CX0+7dbuxHlXehUotX39/fZjU0RkRE1Cz4jELJYhAiIiLiMwoli0GIiIiIzyiULAYhIiIigM8olCizumuMiIioWfEZhZLDIERERHS3qmcUkiRwaIyIiIgki0GIiIiIJItBiIiIiCSLQYiIiIgki5OliYjMhU7Lu5mImhiDEBGROTizu/Lp6Hc/GNTRvXIRQK5vQ9RoHBojImrpzuwGtk+q/nT0krzK/Wd2m6YuIgvAIERE1JLptJU9QRBrePOPfYlRle2IqMEYhIjo/um0QPa3wKkvKv/kL+Wmk3O4ek+QAREouVLZjogajHOEiOj+cO5K87pZ0LTtiMgAe4SIqPE4d6X52auath0RGWAQIqLG4dwV4/AcVNnDBqGWBgLg2L6yHRE1GIMQETUO564Yh0xeOcwIoHoY+mM7LI7rCRE1EoMQETUO564Yj+8TwLiPAUc3w/2O7pX7OReLqNE4WZqIGodzV4zL9wmg+2NcWZqoiTEIEVHjVM1dKclDzfOEhMr3OXel6cjkgNdDpq6CyKJwaIyIGodzV4jIAjAIEVHjce4KEZk5Do0R0f3h3BUiMmMMQkR0/zh3hYjMFIfGiIiISLIYhIiIiEiyODRGRER0F61ORHp2MQpvlMPVwQaBXs6Qy2p7xAmZOwYhIiKiPySezkPsnjPI05Tr97kpbRAz0hdhPd3qOJLMFYfGTEGnBbK/BU59UfknH0pJRGRyiafzMOvTDIMQBAD5mnLM+jQDiafzTFQZNSf2CBnbmd2VT+y++2GVju6VC9NxzRUiIpPQ6kTE7jlT4xrpIiqXCI3dcwbDfdUcJrMw7BEypjO7ge2Tqj+xuySvcv+Z3aapi4hI4tKzi6v1BN1NBJCnKUd6drHxirJwWp0Wx/KP4aufv8Kx/GPQmmh0hD1CxqLTVvYE1fXvjcSoyoXpuBAdEZFRFd6oPQQ1ph3VLTknGXHpcSgoK9DvUylUiAqMQohniFFrYY+QseQcrt4TZEAESq5UtiMiIqNydbBp0nZUu+ScZESkRhiEIAAoLCtERGoEknOSjVoPg5Cx3Cy4d5uGtCMioiYT6OUMN6VNtccHVxFQefdYoJezMcuyOFqdFnHpcRBrGB2p2rcifYVRh8kYhIzFXtW07YiIqMnIZQJiRvoCQLUwVLUdM9KXE6XvU0ZhRrWeoLuJEJFflo+Mwgyj1cQgZCyegyrvDqvr3xuO7SvbERGR0YX1dEP8RH+olYbDX2qlDeIn+nMdoSZQVFbUpO2aAidLG4tMXnmL/PZJqAxDd3cL/hGOwuI4UZqIyITCerphuK+aK0s3ExeFS5O2awoMQsbk+wQw7uNa1hGK4zpCREQtgFwmIKhLW1OXYZH8Xf2hUqhQWFZY4zwhAQJUChX8Xf2NVpPZDY2999576NSpE2xsbDBgwACkp6fX2f7zzz9H9+7dYWNjg169euGrr74yUqW18H0CmHcamLwXGPtR5Z/zTjEEERGRxZPL5IgKjAJQGXruVrUdGRgJuRFHR8wqCG3btg0RERGIiYlBRkYG+vTpg9DQUBQWFtbY/vDhw3jmmWcwbdo0fP/99xg9ejRGjx6N06dPG7nyv5DJAa+HgF5PVv7J4TAiIpKIEM8QrA5eDVeFq8F+lUKF1cGrjb6OkCCKYk0r/LVIAwYMQP/+/fHuu+8CAHQ6HTw8PPDCCy8gKiqqWvvx48ejtLQUe/fu1e8bOHAg+vbti3Xr1tV4jYqKClRUVOi3S0pK4OHhAY1GA0dHxyb+RERERNKk1WmRUZiBorIiuChc4O/q36Q9QSUlJVAqlff8/W02PUK3bt3CiRMnEBLyZ1KUyWQICQlBWlpajcekpaUZtAeA0NDQWtsDwPLly6FUKvUvDw+PpvkAREREpCeXydFf3R+Pdn4U/dX9jTocdjezCUK//vortFotVCrDdXZUKhXy8/NrPCY/P79B7QEgOjoaGo1G/7p8+fL9F09EREQtEu8a+wtra2tYW1ubugwiIiIyArPpEWrXrh3kcjkKCgxXpCwoKIBara7xGLVa3aD2REREJC1mE4SsrKwQEBCAlJQU/T6dToeUlBQEBQXVeExQUJBBewBISkqqtT0RERFJi1kNjUVERGDy5Mno168fAgMDsWbNGpSWlmLKlCkAgEmTJqF9+/ZYvnw5AGDu3LkYMmQIVq1ahcceewyfffYZjh8/jg8++MCUH4OIiIhaCLMKQuPHj0dRUREWLVqE/Px89O3bF4mJifoJ0bm5uZDJ/uzkGjRoELZu3YqFCxfiX//6F7p27Ypdu3ahZ8+epvoIRERE1IKY1TpCplDfdQiIiIio5bC4dYSIiIiImhqDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJFoMQERERSRaDEBEREUkWgxARERFJllk9fZ6IWiatTouMwgwUlRXBReECf1d/yGVyU5dFRHRPDEJEdF+Sc5IRlx6HgrIC/T6VQoWowCiEeIaYsDIionvj0BgRNVpyTjIiUiMMQhAAFJYVIiI1Ask5ySaqjIiofhiEiKhRtDot4tLjIEKs9l7VvhXpK6DVaY1dGhFRvTEIEVGjZBRmVOsJupsIEfll+cgozDBiVUREDcMgRESNUlRW1KTtiIhMgUGIiBrFReHSpO2IiEyBQYiIGsXf1R8qhQoChBrfFyBArVDD39XfyJUREdUfgxARNYpcJkdUYBQAVAtDVduRgZFcT4iIWjQGISJqtBDPEKwOXg1XhavBfpVChdXBq7mOEBG1eFxQkYjuS4hnCIZ6DOXK0kRklhiEiOi+yWVy9Ff3N3UZRGRGtDoR6dnFKLxRDlcHGwR6OUMuq3nOYXNiECIiIiKjSjydh9g9Z5CnKdfvc1PaIGakL8J6uhm1Fs4RIiIiIqNJPJ2HWZ9mGIQgAMjXlGPWpxlIPJ1n1HoYhIiIiMgotDoRsXvO1PBgHuj3xe45A62uphbNg0GIiIiIjCI9u7haT9DdRAB5mnKkZxcbrSYGISIiIjKKwhu1h6DGtGsKnCxNRES10mq1uH37tqnLIAvhqpChvcO9l9ZwVchQXl53GGrdujXk8vtfpoNBiIiIqhFFEfn5+bh+/bqpSyELohSBpcNU0OrEGucJCQDkMgHKO9eRnX39nudzcnKCWq2GIDT+tnsGISIiqqYqBLm6ukKhUNzXLxqiu7mU38LV67X39rg72cDBxqrOc4iiiLKyMhQWFgIA3Nwaf8s9gxARERnQarX6ENS2bVtTl0MWxsbGBlbWNrh6vRy3tTr9/tZyGdydbKC0rTsEVbG1tQUAFBYWwtXVtdHDZAxCRERkoGpOkEKhMHElZKmUtlZwtGmN0got7uh0aCWTwc5a3uCex6qf0du3bzMIERFR0+JwGDUnQRBgb3N/MaQpfkZ5+zwRERFJFoMQERERSRaDEBERUQOFh4dj9OjR+u3g4GDMmzfvvs7ZFOeghmMQIiKiZqPViUi7eA3/ybyCtIvXmv0ZUuHh4RAEAYIgwMrKCt7e3liyZAnu3LnTrNfdsWMHXnvttXq1TU1NhSAI1dZoasg5msvixYvRt2/fWt/Pzs7Gs88+C3d3d9jY2KBDhw4YNWoUzp07h02bNum/+9pely5dwuLFiyEIAsLCwqqd/80334QgCAgODm6+D/kXZhOEiouLMWHCBDg6OsLJyQnTpk3DzZs36zwmODi42l/CP//5TyNVTEQkbYmn8/Dgim/wzIdHMPezTDzz4RE8uOKbZn+6eFhYGPLy8nD+/HnMnz8fixcvxptvvlmt3a1bt5rsms7OznBwcDD5OZrT7du3MXz4cGg0GuzYsQNZWVnYtm0bevXqhevXr2P8+PHIy8vTv4KCgjB9+nSDfR4eHgAq1/3Zv38/fvnlF4NrbNy4ER07djTq5zKbIDRhwgT8+OOPSEpKwt69e3Hw4EHMmDHjnsf99S/hjTfeMEK1RETSlng6D7M+zaj2gM18TTlmfZrRrGHI2toaarUanp6emDVrFkJCQrB79279cNayZcvg7u6Obt26AQAuX76McePGwcnJCc7Ozhg1ahQuXbqkP59Wq0VERAScnJzQtm1bLFiwAKJo2LP112GtiooKREZGwsPDA9bW1vD29sZHH32ES5cuYejQoQCANm3aQBAEhIeH13iO3377DZMmTUKbNm2gUCgwYsQInD9/Xv/+pk2b4OTkhH379sHHxwf29vb6EFglNTUVgYGBsLOzg5OTEwYPHoycnJxGfa8//vgjLl68iPfffx8DBw6Ep6cnBg8ejKVLl2LgwIGwtbWFWq3Wv6ysrKBQKAz2Vd3i7urqikceeQSbN2/Wn//w4cP49ddf8dhjjzWqvsYyiyB09uxZJCYmYsOGDRgwYAAefPBBvPPOO/jss89w9erVOo/961+Co6OjkaomIpImrU5E7J4zNT5CoWpf7J4zzT5MVsXW1lbf+5OSkoKsrCz9P6pv376N0NBQODg44Ntvv8WhQ4f0gaLqmFWrVmHTpk3YuHEjvvvuOxQXF2Pnzp11XnPSpEn497//jbfffhtnz57F+vXrYW9vDw8PD3z55ZcAgKysLOTl5WHt2rU1niM8PBzHjx/H7t27kZaWBlEU8eijjxo8+62srAwrV67EJ598goMHDyI3Nxcvv/wyAODOnTsYPXo0hgwZgpMnTyItLQ0zZsxo9C3nLi4ukMlk+OKLL6DVaht1jrtNnToVmzZt0m9v3LgREyZMgJVV/RZUbCpmEYTS0tLg5OSEfv366feFhIRAJpPh6NGjdR67ZcsWtGvXDj179kR0dDTKysrqbF9RUYGSkhKDFxER1V96dnG1nqC7iQDyNOVIzy5u1jpEUURycjL27duHhx9+GABgZ2eHDRs2oEePHujRowe2bdsGnU6HDRs2oFevXvDx8UFCQgJyc3ORmpoKAFizZg2io6Px97//HT4+Pli3bh2USmWt1/3pp5+wfft2bNy4EWPGjEHnzp0xbNgwjB8/HnK5HM7OzgAqe0XUanWN5zp//jx2796NDRs24KGHHkKfPn2wZcsWXLlyBbt27dK3u337NtatW4d+/frB398fc+bMQUpKCgCgpKQEGo0Gjz/+OLp06QIfHx9Mnjy50UNP7du3x9tvv41FixahTZs2ePjhh/Haa6/h559/btT5Hn/8cZSUlODgwYMoLS3F9u3bMXXq1Ead636YRRDKz8+Hq6urwb5WrVrB2dkZ+fn5tR737LPP4tNPP8X+/fsRHR2NTz75BBMnTqzzWsuXL4dSqdS/qsYziYiofgpv1P3U8Ia2a6i9e/fC3t4eNjY2GDFiBMaPH4/FixcDAHr16mXQ4/DDDz/gwoULcHBwgL29Pezt7eHs7Izy8nJcvHgRGo0GeXl5GDBggP6YVq1aGfzD/K8yMzMhl8sxZMiQRn+Gs2fPolWrVgbXbdu2Lbp164azZ8/q9ykUCnTp0kW/7ebmpn/+lrOzM8LDwxEaGoqRI0di7dq1+mGz3Nxc/ee1t7fH66+/Xq+6Zs+ejfz8fGzZsgVBQUH4/PPP0aNHDyQlJTX4M7Zu3RoTJ05EQkICPv/8czzwwAPo3bt3g89zv0y6snRUVBRWrFhRZ5u7/8Ib6u45RL169YKbmxuGDRuGixcvGvzg3C06OhoRERH67ZKSEoYhIqIGcHWwadJ2DTV06FDEx8fDysoK7u7uaNXqz191dnZ2Bm1v3ryJgIAAbNmypdp5XFxcGnX9qmdgGUPr1q0NtgVBMJi/lJCQgBdffBGJiYnYtm0bFi5ciKSkJPTr1w+ZmZn6dlW9VPXh4OCAkSNHYuTIkVi6dClCQ0OxdOlSDB8+vMH1T506FQMGDMDp06dN0hsEmDgIzZ8/Xz9JrDadO3eGWq3WJ9wqd+7cQXFxMdRqdb2vV5WsL1y4UGsQsra2hrW1db3PSUREhgK9nOGmtEG+przGeUICALXSBoFe9f/l2xB2dnbw9vauV1t/f39s27YNrq6utc4hdXNzw9GjR/G3v/0NQOXvnxMnTsDf37/G9r169YJOp8OBAwcQEhJS7f2qHqm65tn4+Pjgzp07OHr0KAYNGgQAuHbtGrKysuDr61uvz1bFz88Pfn5+iI6ORlBQELZu3YqBAwfW+zuqiyAI6N69Ow4fPtyo46uGKE+ePIlnn332vutpDJMGIRcXl3ol7qCgIFy/fh0nTpxAQEAAAOCbb76BTqcz6Da8l6r06+bm1qh6iYjo3uQyATEjfTHr0wwIgEEYqpqmGzPSF3KZ6Z9lNmHCBLz55psYNWoUlixZgg4dOiAnJwc7duzAggUL0KFDB8ydOxdxcXHo2rUrunfvjtWrV1dbA+hunTp1wuTJkzF16lS8/fbb6NOnD3JyclBYWIhx48bB09MTgiBg7969ePTRR2Frawt7e3uDc3Tt2hWjRo3C9OnTsX79ejg4OCAqKgrt27fHqFGj6vXZsrOz8cEHH+CJJ56Au7s7srKycP78eUyaNKnO437//XeD3iKgshfoxo0biImJwXPPPQdfX19YWVnhwIED2LhxIyIjI+tVU02++eYb3L59G05OTo0+x/0wizlCPj4+CAsLw/Tp05Geno5Dhw5hzpw5ePrpp+Hu7g4AuHLlCrp374709HQAwMWLF/Haa6/hxIkTuHTpEnbv3o1Jkybhb3/7m0nGIImIpCSspxviJ/pDrTQc/lIrbRA/0R9hPVvGP0gVCgUOHjyIjh076idDT5s2DeXl5foeovnz5+O5557D5MmTERQUBAcHB4wZM6bO88bHx+PJJ5/E888/j+7du2P69OkoLS0FUDnpODY2FlFRUVCpVJgzZ06N50hISEBAQAAef/xxBAUFQRRFfPXVV9WGw+r6bOfOncPYsWPxwAMPYMaMGZg9ezZmzpxZ53E//fSTvhep6jVz5kx06NABnTp1QmxsLAYMGAB/f3+sXbsWsbGxeOWVV+pVU02qbu03FUH862IILVRxcTHmzJmDPXv2QCaTYezYsXj77bf1KfrSpUvw8vLC/v37ERwcjMuXL2PixIk4ffo0SktL4eHhgTFjxmDhwoUNuoW+pKQESqUSGo2Gt94TkSSUl5cjOzsbXl5esLG5v3k8Wp2I9OxiFN4oh6tD5XBYS+gJIstQ189qfX9/m3RorCGcnZ2xdevWWt/v1KmTwQQxDw8PHDhwwBilERFRLeQyAUFd2pq6DKJamcXQGBEREVFzYBAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJuq91hMrLy7Ft2zaUlpZi+PDh6Nq1a1PVRURERNTs6t0jFBERgRdeeEG/fevWLQQFBWH69On417/+BT8/P6SlpTVLkURERC1JeHg4Ro8erd8ODg7GvHnz7uucTXEOYxEEAbt27ar1/UuXLkEQhGrPLGuJ6h2Evv76awwfPly/vWXLFuTk5OD8+fP47bff8NRTT2Hp0qXNUiQREZkpnRbI/hY49UXln7ran7jeFMLDwyEIAgRBgJWVFby9vbFkyRLcuXOnWa+7Y8cOvPbaa/Vqm5qaCkEQqj24tSHnaC6LFy/Wf39yuRweHh6YMWMGiouLDdrl5eVhxIgRJqqyadV7aCw3Nxe+vr767a+//hpPPvkkPD09AQBz587Fo48+2vQVEhGReTqzG0iMBEqu/rnP0R0IWwH4PtFslw0LC0NCQgIqKirw1VdfYfbs2WjdujWio6MN2t26dQtWVlZNck1nZ+cWcY6m0KNHDyQnJ0Or1eLs2bOYOnUqNBoNtm3bpm+jVqtNWGHTqnePkEwmM3iW15EjRzBw4ED9tpOTE3777bemrY6IiMzTmd3A9kmGIQgASvIq95/Z3WyXtra2hlqthqenJ2bNmoWQkBDs3r1bP5y1bNkyuLu7o1u3bgCAy5cvY9y4cXBycoKzszNGjRqFS5cu6c+n1WoREREBJycntG3bFgsWLMBfn1f+12GtiooKREZGwsPDA9bW1vD29sZHH32ES5cuYejQoQCANm3aQBAEhIeH13iO3377DZMmTUKbNm2gUCgwYsQInD9/Xv/+pk2b4OTkhH379sHHxwf29vYICwtDXl6evk1qaioCAwP1T3gfPHgwcnJy6vz+WrVqBbVajfbt2yMkJARPPfUUkpKSDNr8dWgsPT0dfn5+sLGxQb9+/fD9999XO+/u3bvRtWtX2NjYYOjQodi8eXO1nrHvvvsODz30EGxtbeHh4YEXX3wRpaWlddZ7v+odhHx8fLBnzx4AwI8//ojc3Fz9XyYA5OTkQKVSNX2FRERkXnTayp4giDW8+ce+xKhmHyarYmtri1u3bgEAUlJSkJWVhaSkJOzduxe3b99GaGgoHBwc8O233+LQoUP6QFF1zKpVq7Bp0yZs3LgR3333HYqLi7Fz5846rzlp0iT8+9//xttvv42zZ89i/fr1sLe3h4eHB7788ksAQFZWFvLy8rB27doazxEeHo7jx49j9+7dSEtLgyiKePTRR3H79m19m7KyMqxcuRKffPIJDh48iNzcXLz88ssAgDt37mD06NEYMmQITp48ibS0NMyYMQOCINT7u7t06RL27dtXZ8/ZzZs38fjjj8PX1xcnTpzA4sWL9TVUyc7OxpNPPonRo0fjhx9+wMyZM/HKK68YtLl48SLCwsIwduxYnDx5Etu2bcN3332HOXPm1LveRhHraceOHaKVlZX48MMPiyqVSnz88ccN3l+wYIH41FNP1fd0ZkOj0YgARI1GY+pSiIiM4vfffxfPnDkj/v777407wc8HRTHG8d6vnw82beGiKE6ePFkcNWqUKIqiqNPpxKSkJNHa2lp8+eWXxcmTJ4sqlUqsqKjQt//kk0/Ebt26iTqdTr+voqJCtLW1Ffft2yeKoii6ubmJb7zxhv7927dvix06dNBfRxRFcciQIeLcuXNFURTFrKwsEYCYlJRUY4379+8XAYi//fabwf67z/HTTz+JAMRDhw7p3//1119FW1tbcfv27aIoimJCQoIIQLxw4YK+zXvvvSeqVCpRFEXx2rVrIgAxNTW1Ht9cpZiYGFEmk4l2dnaijY2NiMrkKq5evdqgHQBx586doiiK4vr168W2bdsa/LzEx8eLAMTvv/9eFEVRjIyMFHv27GlwjldeecXge5g2bZo4Y8YMgzbffvutKJPJav1ZrOtntb6/v+vdIzRmzBh89dVX6N27N1566SWDsUIAUCgUeP7555sknBERkRm7WdC07Rpo7969sLe3h42NDUaMGIHx48dj8eLFAIBevXoZ9G788MMPuHDhAhwcHGBvbw97e3s4OzujvLwcFy9ehEajQV5eHgYMGKA/plWrVujXr1+t18/MzIRcLseQIUMa/RnOnj2LVq1aGVy3bdu26NatG86ePavfp1Ao0KVLF/22m5sbCgsLAVTOOQoPD0doaChGjhyJtWvX6ofNcnNz9Z/X3t4er7/+uv4c3bp1Q2ZmJo4dO4bIyEiEhoYa3DVeU629e/eGjY2Nfl9QUJBBm6ysLPTv399gX2BgoMH2Dz/8gE2bNhnUFRoaCp1Oh+zs7Ht+Z41V78nSS5Yswcsvv4xhw4bV+H5MTEyTFUVERGbMvp7TJOrbroGGDh2K+Ph4WFlZwd3dHa1a/fmrzs7OzqDtzZs3ERAQgC1btlQ7j4uLS6Oub2tr26jjGqN169YG24IgGMxfSkhIwIsvvojExERs27YNCxcuRFJSEvr162dwa/vdE7Wr7rYDgLi4ODz22GOIjY1t9jvabt68iZkzZ+LFF1+s9l7Hjh2b7br17hGKjY3FzZs3m60QIiKyEJ6DKu8OQ21zUQTAsX1lu2ZgZ2cHb29vdOzY0SAE1cTf3x/nz5+Hq6srvL29DV5KpRJKpRJubm44evSo/pg7d+7gxIkTtZ6zV69e0Ol0OHDgQI3vV/VIabW1z5Hy8fHBnTt3DK577do1ZGVlGdzBXR9+fn6Ijo7G4cOH0bNnT2zduhWtWrUy+Kx13bG2cOFCrFy5ElevXq3xfR8fH5w8eRLl5eX6fUeOHDFo061bNxw/ftxg37Fjxwy2/f39cebMmWp/D97e3k12d19N6h2ERLGmSW9ERER/IZNX3iIPoHoY+mM7LK6ynYlNmDAB7dq1w6hRo/Dtt98iOzsbqampePHFF/HLL78AqFweJi4uDrt27cK5c+fw/PPPV1sD6G6dOnXC5MmTMXXqVOzatUt/zu3btwMAPD09IQgC9u7di6Kioho7Gbp27YpRo0Zh+vTp+O677/DDDz9g4sSJaN++PUaNGlWvz5adnY3o6GikpaUhJycHX3/9Nc6fPw8fH58GfUdBQUHo3bu3wfDZ3Z599lkIgoDp06fjzJkz+Oqrr7By5UqDNjNnzsS5c+cQGRmJn376Cdu3b8emTZsAQD95OzIyEocPH8acOXOQmZmJ8+fP4z//+U+zT5Zu0LPGGjLTnIiIJMz3CWDcx4Cjm+F+R/fK/c24jlBDKBQKHDx4EB07dsTf//53+Pj4YNq0aSgvL4ejoyMAYP78+XjuuecwefJkBAUFwcHBAWPGjKnzvPHx8XjyySfx/PPPo3v37pg+fbr+NvD27dsjNjYWUVFRUKlUtf6iT0hIQEBAAB5//HEEBQVBFEV89dVX1YbD6vps586dw9ixY/HAAw9gxowZmD17NmbOnNmAb6jSSy+9hA0bNuDy5cvV3rO3t8eePXtw6tQp+Pn54ZVXXsGKFSsM2nh5eeGLL77Ajh070Lt3b8THx+vvGrO2tgYA9O7dGwcOHMBPP/2Ehx56CH5+fli0aBHc3d0bXG9DCGI9u3pkMhmUSuU9w9BfV580dyUlJVAqldBoNPr/UxARWbLy8nJkZ2fDy8vLYAJso+i0QM7hyonR9qrK4bAW0BNEprds2TKsW7euxnBVX3X9rNb393eDHroaGxsLpVLZuGqJiEh6ZHLA6yFTV0EtwPvvv4/+/fujbdu2OHToEN58883mXyOoHhoUhJ5++mm4uro2Vy1ERERkoc6fP4+lS5eiuLgYHTt2xPz586s99sQU6h2EOD+IiIiIGuutt97CW2+9ZeoyquFdY0RERCRZ9e4R0ul0zVkHERERkdE16PZ5IiIiIkvCIERERESSxSBEREREktWg2+epaWh1ItKzi1F4oxyuDjYI9HKGXMa78oiIiIyNQcjIEk/nIXbPGeRp/nw4nZvSBjEjfRHW062OI4mIyJItXrwYu3btMngqvCkEBwejb9++WLNmjUnrMBYOjRlR4uk8zPo0wyAEAUC+phyzPs1A4uk8E1VGRNQ8tDotjuUfw1c/f4Vj+ceg1dX+xPWmkp+fj7lz58Lb2xs2NjZQqVQYPHgw4uPjUVZW1uzXby6pqakQBKHOB76a8nzmij1CRqLViYjdcwY1rcYkovJ5zLF7zmC4r5rDZERkEZJzkhGXHoeCsgL9PpVChajAKIR4hjTLNX/++WcMHjwYTk5OeP3119GrVy9YW1vj1KlT+OCDD9C+fXs88UTND3y9fft2vR9o2pLdunULVlZWpi7DbLBHyEjSs4ur9QTdTQSQpylHerZlPbSWiKQpOScZEakRBiEIAArLChGRGoHknORmue7zzz+PVq1a4fjx4xg3bhx8fHzQuXNnjBo1Cv/9738xcuRIfVtBEBAfH48nnngCdnZ2WLZsGYDKJ8d36dIFVlZW6NatGz755BP9MZcuXYIgCAbDV9evX4cgCEhNTQXwZ09LSkoK+vXrB4VCgUGDBiErK8ug1ri4OKhUKjg4OOifeF+bS5cuYejQoQCANm3aQBAEhIeHA6gcypozZw7mzZuHdu3aITQ09J511nU+oHLtwAULFsDZ2RlqtRqLFy+u71+B2WEQMpLCG7X/gDemHRFRS6XVaRGXHgexhj7wqn0r0lc0+TDZtWvX8PXXX2P27Nmws7Orsc1fHxe1ePFijBkzBqdOncLUqVOxc+dOzJ07F/Pnz8fp06cxc+ZMTJkyBfv3729wPa+88gpWrVqF48ePo1WrVpg6dar+ve3bt2Px4sV4/fXXcfz4cbi5ueH999+v9VweHh748ssvAQBZWVnIy8vD2rVr9e9v3rwZVlZWOHToENatW3fP2upzPjs7Oxw9ehRvvPEGlixZgqSkpAZ/B+aAQ2NG4upg06TtiIhaqozCjGo9QXcTISK/LB8ZhRnor+7fZNe9cOECRFFEt27dDPa3a9dO39sye/ZsrFixQv/es88+iylTpui3n3nmGYSHh+P5558HAERERODIkSNYuXKlvgelvpYtW4YhQ4YAAKKiovDYY4+hvLwcNjY2WLNmDaZNm4Zp06YBAJYuXYrk5ORae4XkcjmcnZ0BAK6urnBycjJ4v2vXrnjjjTf025cuXaqztnudr3fv3oiJidGf+91330VKSgqGDx9er89uTtgjZCSBXs5wU9qgttk/AirvHgv0cjZmWURETa6orKhJ292v9PR0ZGZmokePHqioqDB4r1+/fgbbZ8+exeDBgw32DR48GGfPnm3wdXv37q3/325ulXcFFxYW6q8zYMAAg/ZBQUENvkaVgICARh9bk7trByrrr6rd0jAIGYlcJiBmpC8AVAtDVdsxI305UZqIzJ6LwqVJ29WXt7c3BEGoNhenc+fO8Pb2hq2tbbVjahtCq41MVvlr8+4Hkd++fbvGtndPvK4akmuu53b+9XM0pM6a/HXSuCAIFvvMUQYhIwrr6Yb4if5QKw2Hv9RKG8RP9Oc6QkRkEfxd/aFSqCDU0gcuQIBaoYa/q3+TXrdt27YYPnw43n33XZSWljbqHD4+Pjh06JDBvkOHDsHXt/Ifsi4uleEtL+/P5U4as+6Pj48Pjh49arDvyJEjdR5TdSeYVnvvuVX1qbMh57NknCNkZGE93TDcV82VpYnIYsllckQFRiEiNQICBINJ01XhKDIwEnKZvMmv/f7772Pw4MHo168fFi9ejN69e0Mmk+HYsWM4d+7cPYeQ/u///g/jxo2Dn58fQkJCsGfPHuzYsQPJyZV3udna2mLgwIGIi4uDl5cXCgsLsXDhwgbXOXfuXISHh6Nfv34YPHgwtmzZgh9//BGdO3eu9RhPT08IgoC9e/fi0Ucfha2tLezt7WtsW586G3I+S2Y2PULLli3DoEGDoFAoqk3qqo0oili0aBHc3Nxga2uLkJAQnD9/vnkLrQe5TEBQl7YY1bc9grq0ZQgiIosT4hmC1cGr4apwNdivUqiwOnh1s60j1KVLF3z//fcICQlBdHQ0+vTpg379+uGdd97Byy+/jNdee63O40ePHo21a9di5cqV6NGjB9avX4+EhAQEBwfr22zcuBF37txBQEAA5s2bh6VLlza4zvHjx+PVV1/FggULEBAQgJycHMyaNavOY9q3b4/Y2FhERUVBpVJhzpw5dba/V50NPZ+lEsS7BxBbsJiYGDg5OeGXX37BRx99VK+VMFesWIHly5dj8+bN8PLywquvvopTp07hzJkzsLGp391ZJSUlUCqV0Gg0cHR0vM9PQUTU8pWXlyM7OxteXl71/m9lbbQ6LTIKM1BUVgQXhQv8Xf2bpSeIpKmun9X6/v42m6Gx2NhYAMCmTZvq1V4URaxZswYLFy7EqFGjAAAff/wxVCoVdu3ahaeffrq5SiUioj/IZfImvUWeqKmZzdBYQ2VnZyM/Px8hIX92vyqVSgwYMABpaWm1HldRUYGSkhKDFxFRS6DViUi7eA3/ybyCtIvXoNWZRYc+UYtmNj1CDZWfnw8AUKlUBvtVKpX+vZosX75c3/tERNRSJJ7OQ+yeMwaP6nFT2iBmpC/vOCW6DybtEYqKioIgCHW+zp07Z9SaoqOjodFo9K/Lly8b9fpERH+VeDoPsz7NqPa8wnxNOWZ9moHE03m1HElE92LSHqH58+cbPOStJnXdSlgXtVoNACgoKNCv6Fm13bdv31qPs7a2hrW1daOuSUTU1LQ6EbF7ztTw1K7KhzULAGL3nMFwX3WT34FqqQvokeVoip9RkwYhFxcX/aJPTc3LywtqtRopKSn64FNSUoKjR4/e8xZFIqKWIj27uFpP0N1EAHmacqRnFyOoS9smuaaVlRVkMhmuXr0KFxcXWFlZVXtYKZEpiaKIW7duoaioCDKZTL84ZGOYzRyh3NxcFBcXIzc3F1qtVr9Cpre3t34BqO7du2P58uUYM2YMBEHQr5vQtWtX/e3z7u7uGD16tOk+CBFRAxTeqD0ENaZdfchkMnh5eSEvLw9Xr15tsvMSNTWFQoGOHTvqHynSGGYThBYtWoTNmzfrt/38/AAA+/fv1y90lZWVBY1Go2+zYMEClJaWYsaMGbh+/ToefPBBJCYm3ve6GERExuLqUL//XtW3XX1ZWVmhY8eOuHPnjuQfwUAtk1wuR6tWre67t9JsFlQ0FS6oSESmpNWJeHDFN8jXlNc4T0hA5fMKv4t8mKvUE92lvr+/LXYdISIiSyCXCYgZWfnAz7/GnKrtmJG+DEFEjcQgRETUwoX1dEP8RH+olYbDX2qlDeIn+nMdIaL7YDZzhIiIpCyspxuG+6qRnl2MwhvlcHWwQaCXM3uCiO4TgxARkZmQy4Qmu0WeiCpxaIyIiIgki0GIiIiIJItBiIiIiCSLQYiIiIgki0GIiIiIJItBiIiIiCSLQYiIiIgki0GIiIiIJItBiIiIiCSLQYiIiIgki0GIiIiIJItBiIiIiCSLQYiIiIgki0+fJ4um1YlIzy5G4Y1yuDrYINDLGXKZYOqyiIiohWAQIouVeDoPsXvOIE9Trt/nprRBzEhfhPV0M2FlRETUUnBojCxS4uk8zPo0wyAEAUC+phyzPs1A4uk8E1VGREQtCYMQWRytTkTsnjMQa3ival/snjPQ6mpqQUREUsIgRBYnPbu4Wk/Q3UQAeZpypGcXG68oIiJqkRiEyOIU3qg9BDWmHRERWS4GIbI4rg42TdqOiIgsF4MQWZxAL2e4KW1Q203yAirvHgv0cjZmWURE1AIxCJHFkcsExIz0BYBqYahqO2akL9cTIiIiBiGyTGE93RA/0R9qpeHwl1ppg/iJ/lxHiIiIAHBBRbJgYT3dMNxXzZWliYioVgxCZNHkMgFBXdqaugwiImqhODRGREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJJlNkFo2bJlGDRoEBQKBZycnOp1THh4OARBMHiFhYU1b6FERERkNszmoau3bt3CU089haCgIHz00Uf1Pi4sLAwJCQn6bWtr6+Yoj4iIiMyQ2QSh2NhYAMCmTZsadJy1tTXUanW921dUVKCiokK/XVJS0qDrERERkfkwm6GxxkpNTYWrqyu6deuGWbNm4dq1a3W2X758OZRKpf7l4eFhpEqJiIjI2Cw6CIWFheHjjz9GSkoKVqxYgQMHDmDEiBHQarW1HhMdHQ2NRqN/Xb582YgVExERkTGZdGgsKioKK1asqLPN2bNn0b1790ad/+mnn9b/7169eqF3797o0qULUlNTMWzYsBqPsba25jwiIiIiiTBpEJo/fz7Cw8PrbNO5c+cmu17nzp3Rrl07XLhwodYgRERERNJh0iDk4uICFxcXo13vl19+wbVr1+Dm5ma0axIREVHLZTZzhHJzc5GZmYnc3FxotVpkZmYiMzMTN2/e1Lfp3r07du7cCQC4efMm/u///g9HjhzBpUuXkJKSglGjRsHb2xuhoaGm+hhERETUgpjN7fOLFi3C5s2b9dt+fn4AgP379yM4OBgAkJWVBY1GAwCQy+U4efIkNm/ejOvXr8Pd3R2PPPIIXnvtNc4BkhCtTouMwgwUlRXBReECf1d/yGVyU5dFREQthCCKomjqIlqykpISKJVKaDQaODo6mrocaoDknGTEpcehoKxAv0+lUCEqMAohniEmrIyIiJpbfX9/m83QGFFDJOckIyI1wiAEAUBhWSEiUiOQnJNsosqIiKglYRAii6PVaRGXHgcR1Ts7q/atSF8Bra729aSIiEgaGITI4mQUZlTrCbqbCBH5ZfnIKMwwYlVERNQSMQiRxSkqK2rSdkREZLkYhMjiuCjqtzZVfdsREZHlYhAii+Pv6g+VQgUBQo3vCxCgVqjh7+pv5MqIiKilYRAiiyOXyREVGAUA1cJQ1XZkYCTXEyIiIgYhskwhniFYHbwargpXg/0qhQqrg1dzHSEiIgJgRitLEzVUiGcIhnoM5crSRERUKwYhsmhymRz91f1NXQYREbVQHBojIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIskyiyB06dIlTJs2DV5eXrC1tUWXLl0QExODW7du1XlceXk5Zs+ejbZt28Le3h5jx45FQUGBkaomIiKils4sgtC5c+eg0+mwfv16/Pjjj3jrrbewbt06/Otf/6rzuJdeegl79uzB559/jgMHDuDq1av4+9//bqSqiYiIqKUTRFEUTV1EY7z55puIj4/Hzz//XOP7Go0GLi4u2Lp1K5588kkAlYHKx8cHaWlpGDhwYL2uU1JSAqVSCY1GA0dHxyarn4iIiJpPfX9/m0WPUE00Gg2cnZ1rff/EiRO4ffs2QkJC9Pu6d++Ojh07Ii0trdbjKioqUFJSYvAiIiIiy2SWQejChQt45513MHPmzFrb5Ofnw8rKCk5OTgb7VSoV8vPzaz1u+fLlUCqV+peHh0dTlU1EREQtjEmDUFRUFARBqPN17tw5g2OuXLmCsLAwPPXUU5g+fXqT1xQdHQ2NRqN/Xb58ucmvQURERC1DK1NefP78+QgPD6+zTefOnfX/++rVqxg6dCgGDRqEDz74oM7j1Go1bt26hevXrxv0ChUUFECtVtd6nLW1NaytretVPxEREZk3kwYhFxcXuLi41KvtlStXMHToUAQEBCAhIQEyWd2dWQEBAWjdujVSUlIwduxYAEBWVhZyc3MRFBR037UTEZFl0uq0yCjMQFFZEVwULvB39YdcJjd1WdRMTBqE6uvKlSsIDg6Gp6cnVq5ciaKiIv17Vb07V65cwbBhw/Dxxx8jMDAQSqUS06ZNQ0REBJydneHo6IgXXngBQUFB9b5jjIiIpCU5Jxlx6XEoKPtzzTmVQoWowCiEeIbUcSSZK7MIQklJSbhw4QIuXLiADh06GLxXdff/7du3kZWVhbKyMv17b731FmQyGcaOHYuKigqEhobi/fffN2rtRERkHpJzkhGRGgERhqvKFJYVIiI1AquDVzMMWSCzXUfIWLiOEBGR5dPqtAj9MtSgJ+huAgSoFCokjk3kMJmZsPh1hIiIiJpKRmFGrSEIAESIyC/LR0ZhhhGrImNgECIiIskrKiu6d6MGtCPzwSBERESS56Ko3x3M9W1H5oNBiIiIJM/f1R8qhQoChBrfFyBArVDD39XfyJVRc2MQIiIiyZPL5IgKjAKAamGoajsyMJITpS0QgxARERGAEM8QrA5eDVeFq8F+lULFW+ctmFmsI0RERGQMIZ4hGOoxlCtLSwiDEBER0V3kMjn6q/ubugwyEg6NERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFktTJ1AURk/rQ6EenZxSi8UQ5XBxsEejlDLhNMXRYR0T0xCJmAVqdFRmEGisqK4KJwgb+rP+QyuanLImqUxNN5iN1zBnmacv0+N6UNYkb6IqynmwkrIyK6NwYhI0vOSUZcehwKygr0+1QKFaICoxDiGWLCyogaLvF0HmZ9mgHxL/vzNeWY9WkG4if6MwwRUYvGOUJGlJyTjIjUCIMQBACFZYWISI1Ack6yiSojajitTkTsnjPVQhAA/b7YPWeg1dXUgoioZWAQMhKtTou49DiINfzaqNq3In0FtDqtsUsjapT07GKD4bC/EgHkacqRnl1svKKIiBqIQchIMgozqvUE3U2EiPyyfGQUZhixKqLGK7xRewhqTDsiIlNgEDKSorKiJm1HZGquDjZN2o6IyBQYhIzEReHSpO2ITC3QyxluShvUdpO8gMq7xwK9nI1ZFhFRgzAIGYm/qz9UChWEWn5tCBCgVqjh7+pv5MqIGkcuExAz0hcAqv1UV23HjPTlekJE1KIxCBmJXCZHVGAUAFQLQ1XbkYGRXE+IzEpYTzfET/SHWmk4/KVW2vDWeSIyC4Ioiry3tQ4lJSVQKpXQaDRwdHS87/PVtI6QWqFGZGAk1xEis8WVpYmopanv728GoXto6iAEcGVpIiKi5lbf399cWdoE5DI5+qv7m7oMIiIiyeMcISIiIpIsswhCly5dwrRp0+Dl5QVbW1t06dIFMTExuHXrVp3HBQcHQxAEg9c///lPI1VNRERELZ1ZDI2dO3cOOp0O69evh7e3N06fPo3p06ejtLQUK1eurPPY6dOnY8mSJfpthULR3OUSERGRmTCLIBQWFoawsDD9dufOnZGVlYX4+Ph7BiGFQgG1Wt3cJRIREZEZMouhsZpoNBo4O997xdotW7agXbt26NmzJ6Kjo1FWVlZn+4qKCpSUlBi8iIiIyDKZRY/QX124cAHvvPPOPXuDnn32WXh6esLd3R0nT55EZGQksrKysGPHjlqPWb58OWJjY5u6ZCIiImqBTLqOUFRUFFasWFFnm7Nnz6J79+767StXrmDIkCEIDg7Ghg0bGnS9b775BsOGDcOFCxfQpUuXGttUVFSgoqJCv11SUgIPD48mXUeIiIiImpdZLKhYVFSEa9eu1dmmc+fOsLKyAgBcvXoVwcHBGDhwIDZt2gSZrGEje6WlpbC3t0diYiJCQ0PrdUxzLKhIREREzcssFlR0cXGBi0v9nrZ+5coVDB06FAEBAUhISGhwCAKAzMxMAICbG59/RERERGYyR+jKlSsIDg6Gp6cnVq5ciaKiIv17VXeEXblyBcOGDcPHH3+MwMBAXLx4EVu3bsWjjz6Ktm3b4uTJk3jppZfwt7/9Db179673tas6zDhpmoiIyHxU/d6+18CXWQShpKQkXLhwARcuXECHDh0M3qv6gLdv30ZWVpb+rjArKyskJydjzZo1KC0thYeHB8aOHYuFCxc26No3btwAAHh4eDTBJyEiIiJjunHjBpRKZa3v86Gr96DT6XD16lU4ODhAEJruadpVk7AvX77MuUfNjN+1cfB7Ng5+z8bB79k4mvN7FkURN27cgLu7e53TacyiR8iUZDJZtV6opuTo6Mj/kxkJv2vj4PdsHPyejYPfs3E01/dcV09QFbNdUJGIiIjofjEIERERkWQxCJmItbU1YmJiYG1tbepSLB6/a+Pg92wc/J6Ng9+zcbSE75mTpYmIiEiy2CNEREREksUgRERERJLFIERERESSxSBEREREksUgZCLvvfceOnXqBBsbGwwYMADp6emmLsniHDx4ECNHjoS7uzsEQcCuXbtMXZLFWb58Ofr37w8HBwe4urpi9OjRyMrKMnVZFik+Ph69e/fWLzwXFBSE//3vf6Yuy6LFxcVBEATMmzfP1KVYnMWLF0MQBINX9+7dTVILg5AJbNu2DREREYiJiUFGRgb69OmD0NBQFBYWmro0i1JaWoo+ffrgvffeM3UpFuvAgQOYPXs2jhw5gqSkJNy+fRuPPPIISktLTV2axenQoQPi4uJw4sQJHD9+HA8//DBGjRqFH3/80dSlWaRjx45h/fr1DXpINzVMjx49kJeXp3999913JqmDt8+bwIABA9C/f3+8++67ACqfZ+bh4YEXXngBUVFRJq7OMgmCgJ07d2L06NGmLsWiFRUVwdXVFQcOHMDf/vY3U5dj8ZydnfHmm29i2rRppi7Foty8eRP+/v54//33sXTpUvTt2xdr1qwxdVkWZfHixdi1axcyMzNNXQp7hIzt1q1bOHHiBEJCQvT7ZDIZQkJCkJaWZsLKiO6fRqMBUPkLmpqPVqvFZ599htLSUgQFBZm6HIsze/ZsPPbYYwb/naamd/78ebi7u6Nz586YMGECcnNzTVIHH7pqZL/++iu0Wi1UKpXBfpVKhXPnzpmoKqL7p9PpMG/ePAwePBg9e/Y0dTkW6dSpUwgKCkJ5eTns7e2xc+dO+Pr6mrosi/LZZ58hIyMDx44dM3UpFm3AgAHYtGkTunXrhry8PMTGxuKhhx7C6dOn4eDgYNRaGISIqEnMnj0bp0+fNtk4vxR069YNmZmZ0Gg0+OKLLzB58mQcOHCAYaiJXL58GXPnzkVSUhJsbGxMXY5FGzFihP5/9+7dGwMGDICnpye2b99u9KFeBiEja9euHeRyOQoKCgz2FxQUQK1Wm6gqovszZ84c7N27FwcPHkSHDh1MXY7FsrKygre3NwAgICAAx44dw9q1a7F+/XoTV2YZTpw4gcLCQvj7++v3abVaHDx4EO+++y4qKiogl8tNWKHlcnJywgMPPIALFy4Y/dqcI2RkVlZWCAgIQEpKin6fTqdDSkoKx/rJ7IiiiDlz5mDnzp345ptv4OXlZeqSJEWn06GiosLUZViMYcOG4dSpU8jMzNS/+vXrhwkTJiAzM5MhqBndvHkTFy9ehJubm9GvzR4hE4iIiMDkyZPRr18/BAYGYs2aNSgtLcWUKVNMXZpFuXnzpsG/LrKzs5GZmQlnZ2d07NjRhJVZjtmzZ2Pr1q34z3/+AwcHB+Tn5wMAlEolbG1tTVydZYmOjsaIESPQsWNH3LhxA1u3bkVqair27dtn6tIshoODQ7X5bXZ2dmjbti3nvTWxl19+GSNHjoSnpyeuXr2KmJgYyOVyPPPMM0avhUHIBMaPH4+ioiIsWrQI+fn56Nu3LxITE6tNoKb7c/z4cQwdOlS/HRERAQCYPHkyNm3aZKKqLEt8fDwAIDg42GB/QkICwsPDjV+QBSssLMSkSZOQl5cHpVKJ3r17Y9++fRg+fLipSyNqsF9++QXPPPMMrl27BhcXFzz44IM4cuQIXFxcjF4L1xEiIiIiyeIcISIiIpIsBiEiIiKSLAYhIiIikiwGISIiIpIsBiEiIiKSLAYhIiIikiwGISIiIpIsBiEiIiKSLAYhIpK08PBwjB492tRlEJGJMAgRUbMLDw+HIAjVXmFhYaYuDWvXrm0xj1wRBAG7du0ydRlEksJnjRGRUYSFhSEhIcFgn7W1tYmqAbRaLQRBgFKpNFkNRGR67BEiIqOwtraGWq02eLVp0wapqamwsrLCt99+q2/7xhtvwNXVFQUFBQAqH+o6Z84czJkzB0qlEu3atcOrr76Kux+VWFFRgZdffhnt27eHnZ0dBgwYgNTUVP37mzZtgpOTE3bv3g1fX19YW1sjNze32tBYcHAwXnjhBcybNw9t2rSBSqXChx9+iNLSUkyZMgUODg7w9vbG//73P4PPd/r0aYwYMQL29vZQqVR47rnn8Ouvvxqc98UXX8SCBQvg7OwMtVqNxYsX69/v1KkTAGDMmDEQBEG/TUTNi0GIiEwqODgY8+bNw3PPPQeNRoPvv/8er776KjZs2ACVSqVvt3nzZrRq1Qrp6elYu3YtVq9ejQ0bNujfnzNnDtLS0vDZZ5/h5MmTeOqppxAWFobz58/r25SVlWHFihXYsGEDfvzxR7i6utZY0+bNm9GuXTukp6fjhRdewKxZs/DUU09h0KBByMjIwCOPPILnnnsOZWVlAIDr16/j4Ycfhp+fH44fP47ExEQUFBRg3Lhx1c5rZ2eHo0eP4o033sCSJUuQlJQEADh27BgAICEhAXl5efptImpmIhFRM5s8ebIol8tFOzs7g9eyZctEURTFiooKsW/fvuK4ceNEX19fcfr06QbHDxkyRPTx8RF1Op1+X2RkpOjj4yOKoijm5OSIcrlcvHLlisFxw4YNE6Ojo0VRFMWEhAQRgJiZmVmttlGjRhlc68EHH9Rv37lzR7SzsxOfe+45/b68vDwRgJiWliaKoii+9tpr4iOPPGJw3suXL4sAxKysrBrPK4qi2L9/fzEyMlK/DUDcuXNnLd8iETUHzhEiIqMYOnQo4uPjDfY5OzsDAKysrLBlyxb07t0bnp6eeOutt6odP3DgQAiCoN8OCgrCqlWroNVqcerUKWi1WjzwwAMGx1RUVKBt27b6bSsrK/Tu3fuetd7dRi6Xo23btujVq5d+X1VPVWFhIQDghx9+wP79+2Fvb1/tXBcvXtTX9ddru7m56c9BRKbBIERERmFnZwdvb+9a3z98+DAAoLi4GMXFxbCzs6v3uW/evAm5XI4TJ05ALpcbvHd3OLG1tTUIU7Vp3bq1wbYgCAb7qs6h0+n01x85ciRWrFhR7Vxubm51nrfqHERkGgxCRGRyFy9exEsvvYQPP/wQ27Ztw+TJk5GcnAyZ7M9pjEePHjU45siRI+jatSvkcjn8/Pyg1WpRWFiIhx56yNjlw9/fH19++SU6deqEVq0a/5/V1q1bQ6vVNmFlRHQvnCxNREZRUVGB/Px8g9evv/4KrVaLiRMnIjQ0FFOmTEFCQgJOnjyJVatWGRyfm5uLiIgIZGVl4d///jfeeecdzJ07FwDwwAMPYMKECZg0aRJ27NiB7OxspKenY/ny5fjvf//b7J9t9uzZKC4uxjPPPINjx47h4sWL2LdvH6ZMmdKgYNOpUyekpKQgPz8fv/32WzNWTERV2CNEREaRmJhoMEwEAN26dcOzzz6LnJwc7N27F0DlUNIHH3yAZ555Bo888gj69OkDAJg0aRJ+//13BAYGQi6XY+7cuZgxY4b+XAkJCVi6dCnmz5+PK1euoF27dhg4cCAef/zxZv9s7u7uOHToECIjI/HII4+goqICnp6eCAsLM+jVupdVq1YhIiICH374Idq3b49Lly41X9FEBAAQRPGuhTiIiFqg4OBg9O3bF2vWrDF1KURkYTg0RkRERJLFIERERESSxaExIiIikiz2CBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZDEIERERkWQxCBEREZFkMQgRERGRZP0/qE8BjwIVpQ8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLAElEQVR4nO3de1hU1f4/8PdmlMtwGURhBhQRpRRSUkAUrYQTClaGZVqpKepPzbQ09CvQTfGSWGraTe14BCsrrdTUPBiQaCqKSqSmkni4eOGW5hASqDP79wcxOXIRFGYzM+/X88zj2XvW3vszc0jerrX22oIoiiKIiIiIzJCF1AUQERERSYVBiIiIiMwWgxARERGZLQYhIiIiMlsMQkRERGS2GISIiIjIbDEIERERkdlqI3UBrZ1Wq8WlS5dgb28PQRCkLoeIiIgaQRRF/Pnnn3Bzc4OFRf39PgxCd3Dp0iW4u7tLXQYRERHdhfPnz6NTp071vs8gdAf29vYAqr9IBwcHiashIiKixigrK4O7u7vu93h9GITuoGY4zMHBgUGIiIjIyNxpWgsnSxMREZHZYhAiIiIis8UgRERERGaLc4SaiUajwY0bN6Qug6iWtm3bQiaTSV0GEVGrxCB0j0RRRFFREa5evSp1KUT1cnR0hEql4lpYRES3YRC6RzUhyMXFBXK5nL9oqFURRREVFRUoKSkBALi6ukpcERFR68IgdA80Go0uBLVv317qcojqZGNjAwAoKSmBi4sLh8mIiG7BydL3oGZOkFwul7gSoobV/IxyHhsRkT4GoWbA4TBq7fgzSkRUNw6NERER3UKjFZGRewUlf1bCxd4agZ5OkFnwHxOmikGIiIjob0knCxG34xQK1ZW6fa4Ka8wb5oPwnrzZwBRxaIxaVGRkJIYPH67bDg4OxqxZs+7pnM1xDiKi2yWdLMS0zzP1QhAAFKkrMe3zTCSdLJSoMmpJDEKtgEYrIv3cZXyXdRHp5y5DoxVb/JqRkZEQBAGCIMDS0hJeXl5YsGABbt682aLX3bJlCxYuXNiotmlpaRAEodYaTU05R0uZP38+evfuXe/7ubm5GD16NNzc3GBtbY1OnTohIiICZ86cQWJiou67r++Vl5eH+fPnQxAEhIeH1zr/u+++C0EQEBwc3HIfksiMaLQi4nacQl1/+9bsi9txyiB/P5NhcWhMYlJ2w4aHhyMhIQFVVVXYtWsXpk+fjrZt2yI2Nlav3fXr12Fpadks13RycmoV52hJN27cwODBg9G9e3ds2bIFrq6uuHDhAv773//i6tWrePbZZ/XCzdNPP42ePXtiwYIFun3Ozs4Aqtf92bNnDy5cuIBOnTrp3l+/fj06d+5suA9FZOIycq/U6gm6lQigUF2JjNwrCOrG5VJMCXuEJCR1N6yVlRVUKhU8PDwwbdo0hIaGYvv27brhrMWLF8PNzQ3du3cHAJw/fx6jRo2Co6MjnJycEBERgby8PN35NBoNoqKi4OjoiPbt22Pu3LkQRf1/Pd0+rFVVVYXo6Gi4u7vDysoKXl5e+M9//oO8vDyEhIQAANq1awdBEBAZGVnnOf744w+MGzcO7dq1g1wux9ChQ3H27Fnd+4mJiXB0dMTu3bvh7e0NOzs7hIeHo7Dwn+83LS0NgYGBsLW1haOjIwYOHIj8/Py7+l5//fVXnDt3Dh9//DH69+8PDw8PDBw4EIsWLUL//v1hY2MDlUqle1laWkIul+vtq1nrx8XFBUOGDMGGDRt05z948CB+//13PP7443dVHxHVVvJn/SHobtqR8WAQkkhr7Ia1sbHB9evXAQCpqanIzs5GcnIydu7ciRs3biAsLAz29vb46aefcODAAV2gqDlm+fLlSExMxPr167F//35cuXIFW7dubfCa48aNw5dffon3338fp0+fxtq1a2FnZwd3d3d8++23AIDs7GwUFhZi1apVdZ4jMjISR48exfbt25Geng5RFPHYY4/prZlTUVGBZcuW4bPPPsO+fftQUFCAOXPmAABu3ryJ4cOHY9CgQTh+/DjS09MxZcqUu77l3NnZGRYWFvjmm2+g0Wju6hy3mjhxIhITE3Xb69evx5gxY5qtl46IABd762ZtR8aDQ2MSaU3dsKIoIjU1Fbt378bLL7+M0tJS2NraYt26dbpftp9//jm0Wi3WrVunCwgJCQlwdHREWloahgwZgpUrVyI2NhZPP/00AGDNmjXYvXt3vdf97bffsHnzZiQnJyM0NBQA0LVrV937NUNgLi4ucHR0rPMcZ8+exfbt23HgwAEMGDAAALBx40a4u7tj27ZtGDlyJIDq4ao1a9agW7duAIAZM2bohqLKysqgVqvxxBNP6N739vZu+hf5t44dO+L999/H3LlzERcXh4CAAISEhGDMmDF6n6+xnnjiCbz44ovYt28f/P39sXnzZuzfvx/r16+/6xqJSF+gpxNcFdYoUlfW+Q9UAYBKUX0rPZkW9ghJpDV0w+7cuRN2dnawtrbG0KFD8eyzz2L+/PkAgF69eun1OPzyyy/IycmBvb097OzsYGdnBycnJ1RWVuLcuXNQq9UoLCxEv379dMe0adMGAQEB9V4/KysLMpkMgwYNuuvPcPr0abRp00bvuu3bt0f37t1x+vRp3T65XK4LOUD13Jua5285OTkhMjISYWFhGDZsGFatWqUbNisoKNB9Xjs7O7z99tuNqmv69OkoKirCxo0bERQUhK+//hoPPPAAkpOTm/wZ27Zti7FjxyIhIQFff/017r//fvj6+jb5PERUP5mFgHnDfABUh55b1WzPG+bD9YRMEHuEJNIaumFDQkKwevVqWFpaws3NDW3a/PPjYGtrq9e2vLwc/v7+2LhxY63z1EzsbaqaZ2AZQtu2bfW2BUHQm7+UkJCAV155BUlJSdi0aRPeeOMNJCcnIyAgAFlZWbp2TZmobW9vj2HDhmHYsGFYtGgRwsLCsGjRIgwePLjJ9U+cOBH9+vXDyZMnMXHixCYfT0R3Ft7TFavH+tW6gUXFdYRMGoOQRFpDN6ytrS28vLwa1dbPzw+bNm2Ci4sLHBwc6mzj6uqKw4cP45FHHgFQPffm2LFj8PPzq7N9r169oNVqsXfvXt3Q2K1qeqQammfj7e2Nmzdv4vDhw7qhscuXLyM7Oxs+Pj6N+mw1+vTpgz59+iA2NhZBQUH44osv0L9//0Z/Rw0RBAE9evTAwYMH7+r4Bx54AA888ACOHz+O0aNH33M9RFS38J6uGOyj4srSZoRDYxIxtm7YMWPGoEOHDoiIiMBPP/2E3NxcpKWl4ZVXXsGFCxcAADNnzkR8fDy2bduGM2fO4KWXXqq1BtCtunTpgvHjx2PixInYtm2b7pybN28GAHh4eEAQBOzcuROlpaUoLy+vdY777rsPERERmDx5Mvbv349ffvkFY8eORceOHREREdGoz5abm4vY2Fikp6cjPz8fP/zwA86ePXvHeUJ//fUXsrKy9F7nzp1DVlYWIiIi8M033+DUqVPIycnBf/7zH6xfv77RNdXlxx9/RGFhYb3zpYioecgsBAR1a4+I3h0R1K19q/l7mFoGg5CEarphVQr94S+Vwhqrx/q1qm5YuVyOffv2oXPnznj66afh7e2NSZMmobKyUtdDNHv2bLzwwgsYP348goKCYG9vj6eeeqrB865evRrPPPMMXnrpJfTo0QOTJ0/GtWvXAFRPOo6Li0NMTAyUSiVmzJhR5zkSEhLg7++PJ554AkFBQRBFEbt27ao1HNbQZztz5gxGjBiB+++/H1OmTMH06dMxderUBo/77bffdL1INa+pU6eiU6dO6NKlC+Li4tCvXz/4+flh1apViIuLw+uvv96omupSc2s/ERE1H0G8faEX0lNWVgaFQgG1Wl1rSKiyshK5ubnw9PSEtfXdz+XhA/6opTXXzyoRkbFo6Pf3rThHqBWo6YYlIiIiw2IQIiIyEuw9Jmp+DEJEREZAyucSEpkyTpYmImrlpH4uIZEpYxAiImrFWuNzCYlMCYMQEVEr1pTnEhJR0zEIERG1Yq3huYREpoxBiIioFWsNzyUkMmUMQtSiIiMjMXz4cN12cHAwZs2adU/nbI5zGIogCNi2bVu97+fl5UEQBL0HuxLdqua5hPXdJC+g+u6xlnwuIZEpYxAyU5GRkRAEAYIgwNLSEl5eXliwYAFu3rzZotfdsmULFi5c2Ki2aWlpEASh1vPKmnKOljJ//nzd9yeTyeDu7o4pU6bgyhX9eRqFhYUYOnSoRFWSKTC25xISGRsGodZAqwFyfwJOfFP9p7b+p603p/DwcBQWFuLs2bOYPXs25s+fj3fffbdWu+vXrzfbNZ2cnGBvby/5OZrDAw88gMLCQhQUFCAhIQFJSUmYNm2aXhuVSgUrKyuJKiRTYUzPJSQyNgxCUju1HVjZE9jwBPDtpOo/V/as3t/CrKysoFKp4OHhgWnTpiE0NBTbt2/XDWctXrwYbm5u6N69OwDg/PnzGDVqFBwdHeHk5ISIiAjk5eXpzqfRaBAVFQVHR0e0b98ec+fOxe2Psrt9WKuqqgrR0dFwd3eHlZUVvLy88J///Ad5eXkICQkBALRr1w6CICAyMrLOc/zxxx8YN24c2rVrB7lcjqFDh+Ls2bO69xMTE+Ho6Ijdu3fD29sbdnZ2uhBYIy0tDYGBgboHmw4cOBD5+fkNfn9t2rSBSqVCx44dERoaipEjRyI5OVmvze1DYxkZGejTpw+sra0REBCAn3/+udZ5t2/fjvvuuw/W1tYICQnBhg0bavWM7d+/Hw8//DBsbGzg7u6OV155RfewWjJN4T1dsT/6X/hycn+seq43vpzcH/uj/8UQRHSPjCoI7du3D8OGDYObm9sd517USEtLg5+fn+6XbGJiYovX2WintgObxwFll/T3lxVW7zdAGLqVjY2NrvcnNTUV2dnZSE5Oxs6dO3Hjxg2EhYXB3t4eP/30Ew4cOKALFDXHLF++HImJiVi/fj3279+PK1euYOvWrQ1ec9y4cfjyyy/x/vvv4/Tp01i7di3s7Ozg7u6Ob7/9FgCQnZ2NwsJCrFq1qs5zREZG4ujRo9i+fTvS09MhiiIee+wx3LhxQ9emoqICy5Ytw2effYZ9+/ahoKAAc+bMAQDcvHkTw4cPx6BBg3D8+HGkp6djypQpEITGDzXk5eVh9+7dsLS0rLdNeXk5nnjiCfj4+ODYsWOYP3++roYaubm5eOaZZzB8+HD88ssvmDp1aq0n1p87dw7h4eEYMWIEjh8/jk2bNmH//v2YMWNGo+sl41TzXMKI3h0R1K09h8OImoNoRHbt2iW+/vrr4pYtW0QA4tatWxts/7///U+Uy+ViVFSUeOrUKfGDDz4QZTKZmJSU1OhrqtVqEYCoVqtrvffXX3+Jp06dEv/666+mfhRR1NwUxeU9RHGeQz0vhSgu965u1wLGjx8vRkREiKIoilqtVkxOThatrKzEOXPmiOPHjxeVSqVYVVWla//ZZ5+J3bt3F7VarW5fVVWVaGNjI+7evVsURVF0dXUV33nnHd37N27cEDt16qS7jiiK4qBBg8SZM2eKoiiK2dnZIgAxOTm5zhr37NkjAhD/+OMPvf23nuO3334TAYgHDhzQvf/777+LNjY24ubNm0VRFMWEhAQRgJiTk6Nr89FHH4lKpVIURVG8fPmyCEBMS0trxDdXbd68eaKFhYVoa2srWltbi6hezkVcsWKFXrtbf07Xrl0rtm/fXu/nZfXq1SIA8eeffxZFURSjo6PFnj176p3j9ddf1/seJk2aJE6ZMkWvzU8//SRaWFjU+7N4Tz+rRERGqKHf37cyqmeNDR06tEkTT9esWQNPT08sX74cAODt7Y39+/fjvffeQ1hYWJ3HVFVVoaqqSrddVlZ2b0XXJ/9g7Z4gPSJQdrG6nefDLVLCzp07YWdnhxs3bkCr1WL06NGYP38+pk+fjl69eun1bvzyyy/IycmpNTensrIS586dg1qtRmFhIfr166d7r02bNggICKg1PFYjKysLMpkMgwYNuuvPcPr0abRp00bvuu3bt0f37t1x+vRp3T65XI5u3brptl1dXVFSUgKges5RZGQkwsLCMHjwYISGhmLUqFFwdXVFQUEBfHx8dMe99tpreO211wAA3bt3x/bt21FZWYnPP/8cWVlZePnllxus1dfXF9bW/8zzCAoK0muTnZ2Nvn376u0LDAzU2/7ll19w/PhxbNy4UbdPFEVotVrk5ubC29u7/i+MjJpGq0FmSSZKK0rhLHeGn4sfZBYyqcsiMmpGFYSaKj09HaGhoXr7wsLCGrz1esmSJYiLi2vhygCUFzdvu7sQEhKC1atXw9LSEm5ubmjT5p8fB1tbW/0yysvh7++v98u3hrOz811d38bG5q6Ouxtt27bV2xYEQS+gJSQk4JVXXkFSUhI2bdqEN954A8nJyQgICNC7td3J6Z9blGvutgOA+Ph4PP7444iLi2vxO9rKy8sxdepUvPLKK7Xe69y5c4tem6STkp+C+Ix4FFf883eCUq5ETGAMQj1CGziSiBpiVHOEmqqoqAhKpVJvn1KpRFlZGf766686j4mNjYVarda9zp8/3zLF2Snv3KYp7e6Cra0tvLy80LlzZ70QVBc/Pz+cPXsWLi4u8PLy0nspFAooFAq4urri8OHDumNu3ryJY8eO1XvOXr16QavVYu/evXW+X9MjpdHUfxedt7c3bt68qXfdy5cvIzs7W68npzH69OmD2NhYHDx4ED179sQXX3yBNm3a6H3WW4PQ7d544w0sW7YMly7V3dPn7e2N48ePo7LynxWADx06pNeme/fuOHr0qN6+I0eO6G37+fnh1KlTtf5/8PLyanCOEhmvlPwURKVF6YUgACipKEFUWhRS8lMkqozI+Jl0ELobVlZWcHBw0Hu1CI8BgIMbaq8MUkMAHDpWt2sFxowZgw4dOiAiIgI//fQTcnNzkZaWhldeeQUXLlwAAMycORPx8fHYtm0bzpw5g5deeqnWGkC36tKlC8aPH4+JEydi27ZtunNu3rwZAODh4QFBELBz506UlpaivLy81jnuu+8+REREYPLkydi/fz9++eUXjB07Fh07dkRERESjPltubi5iY2ORnp6O/Px8/PDDDzh79myTh5iCgoLg6+uLt99+u873R48eDUEQMHnyZJw6dQq7du3CsmXL9NpMnToVZ86cQXR0NH777Tds3rxZN8G/ZvJ2dHQ0Dh48iBkzZiArKwtnz57Fd999x8nSJkqj1SA+Ix5iHY9drdm3NGMpNAZadoPI1Jh0EFKpVCgu1v8XVHFxMRwcHAw6LFMnCxkQvvTvjXqWSQuPr27XCsjlcuzbtw+dO3fG008/DW9vb0yaNAmVlZW6sDh79my88MILGD9+PIKCgmBvb4+nnnqqwfOuXr0azzzzDF566SX06NEDkydP1t0G3rFjR8TFxSEmJgZKpbLeX/QJCQnw9/fHE088gaCgIIiiiF27dtUaDmvos505cwYjRozA/fffjylTpmD69OmYOnVqE76haq+++irWrVtXZ0+inZ0dduzYgRMnTqBPnz54/fXXsXTpUr02np6e+Oabb7Blyxb4+vpi9erVurvGatYj8vX1xd69e/Hbb7/h4YcfRp8+ffDWW2/Bzc2tyfVS65dZklmrJ+hWIkQUVRQhsyTTgFURmQ5BrG8maysnCAK2bt2q9/iG20VHR2PXrl04ceKEbt/o0aNx5coVJCUlNeo6ZWVlUCgUUKvVtXqHKisrkZubC09PT70JsE1yajuQFK0/cdqhY3UI8nny7s5JJmXx4sVYs2bNPQ3TNsvPKkli1/92Ifqn6Du2W/rwUjzW9TEDVERkHBr6/X0ro5osXV5ejpycHN12bm4usrKy4OTkhM6dOyM2NhYXL17Ep59+CgB48cUX8eGHH2Lu3LmYOHEifvzxR2zevBnff/+9VB+hNp8ngR6PV98dVl5cPSfIY0Cr6Qkiw/v444/Rt29ftG/fHgcOHMC7777LYS8z5ixv3M0IjW1HRPqMKggdPXpUt9owAERFRQEAxo8fj8TERN3jDmp4enri+++/x6uvvopVq1ahU6dOWLduXb23zkvGQtZit8iT8Tl79iwWLVqEK1euoHPnzpg9ezZiY2OlLosk4ufiB6VciZKKkjrnCQkQoJQr4efiJ0F1RMbPaIfGDKXFh8aIDIA/q8at5q4xAHphSPh7PuGK4BW8hZ7oNo0dGjPpydJERKYg1CMUK4JXwEXuordfKVcyBBHdI6MaGiMiMlehHqEIcQ/hytJEzYxBiIjISMgsZOir6nvnhkTUaBwaIyIiIrPFIERERERmi0GIiIiIzBaDEBmV+fPno3fv3lKXgeDgYMyaNUvqMoiI6B4xCJmpoqIizJw5E15eXrC2toZSqcTAgQOxevVqVFRUSF3eXUtLS4MgCA0+7FXK8xERUevCu8ZaAY1WY9BbYv/3v/9h4MCBcHR0xNtvv41evXrBysoKJ06cwCeffIKOHTviySfrfs7ZjRs3Gv0w09bs+vXrsLS0lLoMIiKSGHuEJJaSn4Kwb8MwcfdERP8UjYm7JyLs2zCk5Ke02DVfeukltGnTBkePHsWoUaPg7e2Nrl27IiIiAt9//z2GDRumaysIAlavXo0nn3wStra2WLx4MYDqp8Z369YNlpaW6N69Oz777DPdMXl5eRAEAVlZWbp9V69ehSAISEtLA/BPT0tqaioCAgIgl8sxYMAAZGdn69UaHx8PpVIJe3t73dPu65OXl6d7BEu7du0gCAIiIyMBVA9lzZgxA7NmzUKHDh0QFhZ2xzobOh8AaLVazJ07F05OTlCpVJg/f35j/y8gIqJWgkFIQjXL5hdXFOvtL6koQVRaVIuEocuXL+OHH37A9OnTYWtrW2cbQRD0tufPn4+nnnoKJ06cwMSJE7F161bMnDkTs2fPxsmTJzF16lRMmDABe/bsaXI9r7/+OpYvX46jR4+iTZs2mDhxou69zZs3Y/78+Xj77bdx9OhRuLq64uOPP673XO7u7vj2228BANnZ2SgsLMSqVat072/YsAGWlpY4cOAA1qxZc8faGnM+W1tbHD58GO+88w4WLFiA5OTkJn8HREQkHQ6NSUSj1SA+I77OhyiKECFAwNKMpQhxD2nWYbKcnByIooju3bvr7e/QoYOut2X69OlYunSp7r3Ro0djwoQJuu3nn38ekZGReOmllwBUP/z20KFDWLZsmd5DcRtj8eLFGDRoEAAgJiYGjz/+OCorK2FtbY2VK1di0qRJmDRpEgBg0aJFSElJqbdXSCaTwcnJCQDg4uICR0dHvffvu+8+vPPOO7rtvLy8Bmu70/l8fX0xb9483bk//PBDpKamYvDgwY367EREJD32CEkksySzVk/QrUSIKKooQmZJpkHqycjIQFZWFh544AFUVVXpvRcQEKC3ffr0aQwcOFBv38CBA3H69OkmX9fX11f3v11dXQEAJSUluuv069dPr31QUFCTr1HD39//ro+ty621A9X119RORETGgT1CEimtKG3Wdo3l5eUFQRBqzcXp2rUrAMDGxqbWMfUNodXHwqI6X4viP71dN27cqLPtrROva4bktFptk67XWLd/jqbUWZfbJ40LgtBitRMRUctgj5BEnOXOzdqusdq3b4/Bgwfjww8/xLVr1+7qHN7e3jhw4IDevgMHDsDHxwcA4OxcXXNhYaHu/VsnJDflOocPH9bbd+jQoQaPqbkTTKPR3PH8jamzKecjIiLjwx4hifi5+EEpV6KkoqTOeUICBCjlSvi5+DX7tT/++GMMHDgQAQEBmD9/Pnx9fWFhYYEjR47gzJkzdxxC+r//+z+MGjUKffr0QWhoKHbs2IEtW7YgJaV6creNjQ369++P+Ph4eHp6oqSkBG+88UaT65w5cyYiIyMREBCAgQMHYuPGjfj11191vVd18fDwgCAI2LlzJx577DHY2NjAzs6uzraNqbMp5yMiIuPDHiGJyCxkiAmMAVAdem5Vsx0dGN0i6wl169YNP//8M0JDQxEbG4sHH3wQAQEB+OCDDzBnzhwsXLiwweOHDx+OVatWYdmyZXjggQewdu1aJCQkIDg4WNdm/fr1uHnzJvz9/TFr1iwsWrSoyXU+++yzePPNNzF37lz4+/sjPz8f06ZNa/CYjh07Ii4uDjExMVAqlZgxY0aD7e9UZ1PPR0RExkUQb50gQbWUlZVBoVBArVbDwcFB773Kykrk5ubC09MT1tbWd3X+lPwUxGfE602cVslViA6MRqhH6D3VTlSjOX5WiYiMSUO/v2/FoTGJhXqEIsQ9xKArSxMREVE1BqFWQGYhQ19VX6nLICIiMjucI0RERERmi0GIiIiIzBaDUDPgfHNq7fgzSkRUNwahe1CzsnBFRYXElRA1rOZn9PbVsImIzB0nS98DmUwGR0dH3fOl5HJ5rSe3E0lJFEVUVFSgpKQEjo6OkMl4NyIR0a0YhO6RSqUCAD5sk1o1R0dH3c8qERH9g0HoHgmCAFdXV7i4uDTpgZ1EhtK2bVv2BBER1YNBqJnIZDL+siEiIjIynCxNREREZotBiIiIiMwWgxARERGZLQYhIiIiMlsMQkRERGS2GISIiIjIbDEIERERkdkyuiD00UcfoUuXLrC2tka/fv2QkZFRb9vExEQIgqD3sra2NmC1RERE1JoZVRDatGkToqKiMG/ePGRmZuLBBx9EWFhYg4+3cHBwQGFhoe6Vn59vwIqJiIioNTOqILRixQpMnjwZEyZMgI+PD9asWQO5XI7169fXe4wgCFCpVLqXUqls8BpVVVUoKyvTexEREZFpMpogdP36dRw7dgyhoaG6fRYWFggNDUV6enq9x5WXl8PDwwPu7u6IiIjAr7/+2uB1lixZAoVCoXu5u7s322cgIiKi1sVogtDvv/8OjUZTq0dHqVSiqKiozmO6d++O9evX47vvvsPnn38OrVaLAQMG4MKFC/VeJzY2Fmq1Wvc6f/58s34OIiIiaj1M+qGrQUFBCAoK0m0PGDAA3t7eWLt2LRYuXFjnMVZWVrCysjJUiURERCQho+kR6tChA2QyGYqLi/X2FxcXQ6VSNeocbdu2RZ8+fZCTk9MSJRIREZGRMZogZGlpCX9/f6Smpur2abVapKam6vX6NESj0eDEiRNwdXVtqTKJiIjIiBjV0FhUVBTGjx+PgIAABAYGYuXKlbh27RomTJgAABg3bhw6duyIJUuWAAAWLFiA/v37w8vLC1evXsW7776L/Px8/L//9/+k/BhERETUShhVEHr22WdRWlqKt956C0VFRejduzeSkpJ0E6gLCgpgYfFPJ9cff/yByZMno6ioCO3atYO/vz8OHjwIHx8fqT4CERERtSKCKIqi1EW0ZmVlZVAoFFCr1XBwcJC6HCIiImqExv7+Npo5QkRERETNjUGIiIiIzBaDEBEREZktBiEiIiIyWwxCREREZLYYhIiIiMhsMQgRERGR2WIQIiIiIrPFIERERERmi0GIiIiIzBaDEBEREZktBiEiIiIyWwxCREREZLYYhIiIiMhsMQgRERGR2WIQIiIiIrPFIERERERmi0GIiIiIzFYbqQsgIiJqVbQaIP8gUF4M2CkBjwGAhUzqqqiFMAgRERHVOLUdSIoGyi79s8/BDQhfCvg8KV1d1GI4NEZERARUh6DN4/RDEACUFVbvP7VdmrqoRTEIERERaTXVPUEQ63jz731JMdXtyKQwCBEREeUfrN0TpEcEyi5WtyOTwiBERERUXty87choMAgRERHZKZu3HRkNBiEiIiKPAdV3h0Gop4EAOHSsbkcmhUFICloNkPsTcOKb6j85+Y6ISFoWsupb5AHUDkN/b4fHcz0hE8R1hAyNa1QQEbVOPk8Coz6t5+/oeP4d3cw0Wg0ySzJRWlEKZ7kz/Fz8IJMgaAqiKNZ1ryD9raysDAqFAmq1Gg4ODvd2spo1Kmrdnvn3vzZGfcr/0IiIpMaVpVtcSn4K4jPiUVzxz+RzpVyJmMAYhHqENss1Gvv7m0HoDpotCGk1wMqeDdyeKVT/q2PWCf4HR0REJislPwVRaVEQb+sUEP7uFFgRvKJZwlBjf39zjpChcI0KIiIycxqtBvEZ8bVCEADdvqUZS6Ex4NxZBiFD4RoVRERk5jJLMvWGw24nQkRRRREySzINVhODkKFwjQoiIjJzpRWlzdquOTAIGQrXqCAiIjPnLHdu1nbNgUHIULhGBRERmTk/Fz8o5UrdxOjbCRCgkqvg5+JnsJqMLgh99NFH6NKlC6ytrdGvXz9kZGQ02P7rr79Gjx49YG1tjV69emHXrl0GqrQONWtUOLjq73dw463zRERk8mQWMsQExgBArTBUsx0dGG3Q9YSMKght2rQJUVFRmDdvHjIzM/Hggw8iLCwMJSUldbY/ePAgnn/+eUyaNAk///wzhg8fjuHDh+PkyZMGrvwWPk8Cs04C43cCI/5T/eesEwxBRERkFkI9QrEieAVc5C56+5VyZbPdOt8URrWOUL9+/dC3b198+OGHAACtVgt3d3e8/PLLiImJqdX+2WefxbVr17Bz507dvv79+6N3795Ys2ZNndeoqqpCVVWVbrusrAzu7u7Ns6AiERERAWj5laVNbh2h69ev49ixYwgN/ScpWlhYIDQ0FOnp6XUek56ertceAMLCwuptDwBLliyBQqHQvdzd3ZvnAxAREZGODEDfvyrx2LUK9P2rElLNkDWaZ439/vvv0Gg0UCr1by9XKpU4c+ZMnccUFRXV2b6oqKje68TGxiIqKkq3XdMjRERERM2kFT1302iCkKFYWVnByspK6jKIiIhMU33P3SwrrN5v4JuHjGZorEOHDpDJZCgu1l+Rsri4GCqVqs5jVCpVk9oTERFRC9JqqnuC6njEhm5fUkx1OwMxmiBkaWkJf39/pKam6vZptVqkpqYiKCiozmOCgoL02gNAcnJyve2JiIioBbXC524a1dBYVFQUxo8fj4CAAAQGBmLlypW4du0aJkyYAAAYN24cOnbsiCVLlgAAZs6ciUGDBmH58uV4/PHH8dVXX+Ho0aP45JNPpPwYRERE5qkVPnfTqILQs88+i9LSUrz11lsoKipC7969kZSUpJsQXVBQAAuLfzq5BgwYgC+++AJvvPEGXnvtNdx3333Ytm0bevbsKdVHICIiMl+t8LmbRrWOkBQauw4BERER3YFWA6zsWT0xus55QkL13WOzTtzzI6dMbh0hIiIiMnKt8LmbDEJERERkOK3suZtGNUeIiIiITIDPk0CPx6vvDisvrp4T5DHAoD1BNRiEiIiIyPAsZIDnw1JXwaExIiIiMl8MQkRERGS2GISIiIjIbDEIERERkdliECIiIiKzxSBEREREZou3zxPRPdNoNcgsyURpRSmc5c7wc/GDTIL1QIiImopBiIjuSUp+CuIz4lFc8c/TopVyJWICYxDqESphZUREd8ahMSK6ayn5KYhKi9ILQQBQUlGCqLQopOSnSFQZEVHjMAgR0V3RaDWIz4iHWMcTpGv2Lc1YCo1WY+jSiIgajUGIiO5KZklmrZ6gW4kQUVRRhMySTANWRUTUNAxCRHRXSitKm7UdEZEUGISI6K44y52btR0RkRQYhIjorvi5+EEpV0KAUOf7AgSo5Cr4ufgZuDIiosZjECKiuyKzkCEmMAYAaoWhmu3owGiuJ0RErRqDEBHdtVCPUKwIXgEXuYvefqVciRXBK7iOEBG1elxQkYjuSahHKELcQ7iyNBEZJQYhIrpnMgsZ+qr6Sl0GEVGTcWiMiIiIzBaDEBEREZktBiEiIiIyWwxCREREZLYYhIiIiMhsMQgRERGR2WIQIiIiIrPFIERERERmi0GIiIiIzBaDEBEREZktBiEiIiIyWwxCREREZLYYhIiIiMhsGU0QunLlCsaMGQMHBwc4Ojpi0qRJKC8vb/CY4OBgCIKg93rxxRcNVDERERG1dm2kLqCxxowZg8LCQiQnJ+PGjRuYMGECpkyZgi+++KLB4yZPnowFCxbotuVyeUuXSkREREbinoJQZWUlNm3ahGvXrmHw4MG47777mqsuPadPn0ZSUhKOHDmCgIAAAMAHH3yAxx57DMuWLYObm1u9x8rlcqhUqhapi4iIiIxbo4fGoqKi8PLLL+u2r1+/jqCgIEyePBmvvfYa+vTpg/T09BYpMj09HY6OjroQBAChoaGwsLDA4cOHGzx248aN6NChA3r27InY2FhUVFQ02L6qqgplZWV6LyIiIjJNjQ5CP/zwAwYPHqzb3rhxI/Lz83H27Fn88ccfGDlyJBYtWtQiRRYVFcHFxUVvX5s2beDk5ISioqJ6jxs9ejQ+//xz7NmzB7Gxsfjss88wduzYBq+1ZMkSKBQK3cvd3b1ZPgMRERG1Po0OQgUFBfDx8dFt//DDD3jmmWfg4eEBQRAwc+ZM/Pzzz026eExMTK3JzLe/zpw506Rz3mrKlCkICwtDr169MGbMGHz66afYunUrzp07V+8xsbGxUKvVutf58+fv+vpERETUujV6jpCFhQVEUdRtHzp0CG+++aZu29HREX/88UeTLj579mxERkY22KZr165QqVQoKSnR23/z5k1cuXKlSfN/+vXrBwDIyclBt27d6mxjZWUFKyurRp+TiIiIjFejg5C3tzd27NiBqKgo/PrrrygoKEBISIju/fz8fCiVyiZd3NnZGc7OzndsFxQUhKtXr+LYsWPw9/cHAPz444/QarW6cNMYWVlZAABXV9cm1UlERESmqdFDY3PnzkVsbCweffRRPProo3jsscfg6empe3/Xrl0IDAxskSK9vb0RHh6OyZMnIyMjAwcOHMCMGTPw3HPP6e4Yu3jxInr06IGMjAwAwLlz57Bw4UIcO3YMeXl52L59O8aNG4dHHnkEvr6+LVInERERGZdGB6GnnnoKu3btgq+vL1599VVs2rRJ7325XI6XXnqp2QussXHjRvTo0UMXwh566CF88sknuvdv3LiB7Oxs3V1hlpaWSElJwZAhQ9CjRw/Mnj0bI0aMwI4dO1qsRiIiIjIugnjrxJ8GLFiwAHPmzDG7BQnLysqgUCigVqvh4OAgdTlERETUCI39/d3oHqG4uLg7PtKCiIiIyJg0Ogg1suOIiIiIyGg06aGrgiC0VB1EREREBtekZ43df//9dwxDV65cuaeCiIiIiAylSUEoLi4OCoWipWohIiIiM6HRisjIvYKSPyvhYm+NQE8nyCwMP/LUpCD03HPP1XrmFxEREVFTJJ0sRNyOUyhUV+r2uSqsMW+YD8J7GnbR40bPEeL8ICIiIrpXSScLMe3zTL0QBABF6kpM+zwTSScLDVoP7xojIiIig9BoRcTtOIW6EkXNvrgdp6DRGi5zNDoIabVaDosRERHRXcvIvVKrJ+hWIoBCdSUycg1341WT5ggREZGEtBog/yBQXgzYKQGPAYCFTOqqiBqt5M/6Q9DdtGsODEJERMbg1HYgKRoou/TPPgc3IHwp4POkdHURNYGLvXWztmsOTVpQkYiIJHBqO7B5nH4IAoCywur9p7ZLUxdREwV6OsFVYY36br8SUH33WKCnk8FqYhAiImrNtJrqnqCGppcmxVS3I2rlZBYC5g3zAYBaYahme94wH4OuJ8QgRETUmuUfrN0TpEcEyi5WtyMyAuE9XbF6rB9UCv3hL5XCGqvH+hl8HSHOESIias3Ki5u3HVErEN7TFYN9VMa3sjQRERmYnbJ52xG1EjILAUHd2ktdBofGiIhaNY8B1XeHNTS91KFjdTsiajIGISKi1sxCVn2LPIB6p5eGx3M9IaK7xCBERNTa+TwJjPoUcLhtEqmDW/V+riNEdNc4R4iIyBj4PAn0eJwrSxM1MwYhIiJjYSEDPB+Wugoik8KhMSIiIjJbDEJERERkthiEiIiIyGwxCBEREZHZYhAiIiIis8UgRERERGaLQYiIiIjMFoMQERERmS0GISIiIjJbDEJERERkthiEiIiIyGwxCBEREZHZYhAiIiIis8UgRERERGbLaILQ4sWLMWDAAMjlcjg6OjbqGFEU8dZbb8HV1RU2NjYIDQ3F2bNnW7ZQIiIiMhpGE4SuX7+OkSNHYtq0aY0+5p133sH777+PNWvW4PDhw7C1tUVYWBgqKytbsFIiIiIyFoIoiqLURTRFYmIiZs2ahatXrzbYThRFuLm5Yfbs2ZgzZw4AQK1WQ6lUIjExEc8991yjrldWVgaFQgG1Wg0HB4d7LZ+IiIgMoLG/v42mR6ipcnNzUVRUhNDQUN0+hUKBfv36IT09vd7jqqqqUFZWpvciIiIi02SyQaioqAgAoFQq9fYrlUrde3VZsmQJFAqF7uXu7t6idRIREZF0JA1CMTExEAShwdeZM2cMWlNsbCzUarXudf78eYNen4iIiAynjZQXnz17NiIjIxts07Vr17s6t0qlAgAUFxfD1dVVt7+4uBi9e/eu9zgrKytYWVnd1TWJiIjIuEgahJydneHs7Nwi5/b09IRKpUJqaqou+JSVleHw4cNNuvOMiIiITJfRzBEqKChAVlYWCgoKoNFokJWVhaysLJSXl+va9OjRA1u3bgUACIKAWbNmYdGiRdi+fTtOnDiBcePGwc3NDcOHD5foU1TTaEWkn7uM77IuIv3cZWi0RnXjHhERkcmQtEeoKd566y1s2LBBt92nTx8AwJ49exAcHAwAyM7Ohlqt1rWZO3curl27hilTpuDq1at46KGHkJSUBGtra4PWfqukk4WI23EKhep/1jJyVVhj3jAfhPd0beBIIiIiam5Gt46QoTXnOkJJJwsx7fNM3P6FC3//uXqsH8MQERFRMzD7dYRaG41WRNyOU7VCEADdvrgdpzhMRkREZEAMQgaSkXtFbzjsdiKAQnUlMnKvGK4oIiIiM8cgZCAlfzbu+WaNbUdERET3jkHIQFzsGzdBu7HtiIiI6N4xCBlIoKcTXBXWuonRtxNQffdYoKeTIcsiIiIyawxCBiKzEDBvmA8A1ApDNdvzhvlAZlFfVCIiIqLmxiBkQOE9XbF6rB9UCv3hL5XCmrfOExERScBoFlQ0FeE9XTHYR4WM3Cso+bMSLvbVw2HsCSIiIjI8BiEJyCwEBHVrL3UZREREZo9DY0RERGS2GISIiIjIbDEIERERkdliECIiIiKzxSBEREREZotBiIiIiMwWgxARERGZLQYhIiIiMlsMQkRERGS2GISIiIjIbDEIERERkdnis8bItGk1QP5BoLwYsFMCHgMAC5nUVRERUSvBIESm69R2ICkaKLv0zz4HNyB8KeDzpHR1ERFRq8GhMTJNp7YDm8fphyAAKCus3n9quzR1ERFRq8IgRKZHq6nuCYJYx5t/70uKqW5HRERmjUGITE/+wdo9QXpEoOxidTsiIjJrDEJkesqLm7cdERGZLAYhMj12yuZtR0REJotBiEyPx4Dqu8Mg1NNAABw6VrcjIiKzxiBEpsdCVn2LPIDaYejv7fB4ridEREQMQmSifJ4ERn0KOLjq73dwq97PdYSIiAhcUJFMmc+TQI/HubI0ERHVi0GITJuFDPB8WOoqiIiolWIQIqJ7x2e6EZGRYhAionvDZ7oRkRHjZGkiunt8phsRGTmjCUKLFy/GgAEDIJfL4ejo2KhjIiMjIQiC3is8PLxlCyUyF3ymGxGZAKMJQtevX8fIkSMxbdq0Jh0XHh6OwsJC3evLL79soQqJzAyf6UZEJsBo5gjFxcUBABITE5t0nJWVFVQqVQtURGTm+Ew3IjIBRtMjdLfS0tLg4uKC7t27Y9q0abh8+XKD7auqqlBWVqb3IqI68JluRGQCTDoIhYeH49NPP0VqaiqWLl2KvXv3YujQodBo6p+zsGTJEigUCt3L3d3dgBUTGRE+042ITICkQSgmJqbWZObbX2fOnLnr8z/33HN48skn0atXLwwfPhw7d+7EkSNHkJaWVu8xsbGxUKvVutf58+fv+vpEJo3PdCMiEyDpHKHZs2cjMjKywTZdu3Zttut17doVHTp0QE5ODh599NE621hZWcHKyqrZrklk0mqe6VbnOkLxXEeIiFo9SYOQs7MznJ2dDXa9Cxcu4PLly3B1db1zYyJqHD7TjYiMmNHMESooKEBWVhYKCgqg0WiQlZWFrKwslJeX69r06NEDW7duBQCUl5fj//7v/3Do0CHk5eUhNTUVERER8PLyQlhYmFQfg8g01TzTrdcz1X8yBBGRkTCa2+ffeustbNiwQbfdp08fAMCePXsQHBwMAMjOzoZarQYAyGQyHD9+HBs2bMDVq1fh5uaGIUOGYOHChRz6MiMarQaZJZkorSiFs9wZfi5+kPGXNBER/U0QRbGuZWHpb2VlZVAoFFCr1XBwcJC6HGqClPwUxGfEo7jin3VslHIlYgJjEOoRKmFlRETU0hr7+9tohsaImiIlPwVRaVF6IQgASipKEJUWhZT8FIkqIyKi1oRBiEyORqtBfEY8xDqegVWzb2nGUmj4DCwiIrPHIEQmJ7Mks1ZP0K1EiCiqKEJmSaYBqyIiotaIQYhMTmlFabO2IyIi08UgRCbHWd64taka246IiEwXgxCZHD8XPyjlSgj1PANLgACVXAU/Fz8DV0ZERK0NgxCZHJmFDDGBMQBQKwzVbEcHRnM9ISIiYhAi0xTqEYoVwSvgInfR26+UK7EieAXXESIiIgBGtLI0UVOFeoQixD2EK0sTEVG9GITIpMksZOir6it1GURE1EpxaIyIiIjMFoMQERERmS0GISIiIjJbDEJERERkthiEiIiIyGwxCBEREZHZYhAiIiIis8UgRERERGaLQYiIiIjMFoMQERERmS0GISIiIjJbDEJERERkthiEiIiIyGwxCBEREZHZYhAiIiIis8UgRERERGaLQYiIiIjMFoMQERERmS0GISIiIjJbDEJERERkthiEiIiIyGwxCBEREZHZYhAiIiIis8UgRERERGaLQYiIiIjMllEEoby8PEyaNAmenp6wsbFBt27dMG/ePFy/fr3B4yorKzF9+nS0b98ednZ2GDFiBIqLiw1UNREREbV2RhGEzpw5A61Wi7Vr1+LXX3/Fe++9hzVr1uC1115r8LhXX30VO3bswNdff429e/fi0qVLePrppw1UNREREbV2giiKotRF3I13330Xq1evxv/+978631er1XB2dsYXX3yBZ555BkB1oPL29kZ6ejr69+/fqOuUlZVBoVBArVbDwcGh2eonIiKiltPY399G0SNUF7VaDScnp3rfP3bsGG7cuIHQ0FDdvh49eqBz585IT0+v97iqqiqUlZXpvYiIiMg0GWUQysnJwQcffICpU6fW26aoqAiWlpZwdHTU269UKlFUVFTvcUuWLIFCodC93N3dm6tsIiIiamUkDUIxMTEQBKHB15kzZ/SOuXjxIsLDwzFy5EhMnjy52WuKjY2FWq3Wvc6fP9/s1yAiIqLWoY2UF589ezYiIyMbbNO1a1fd/7506RJCQkIwYMAAfPLJJw0ep1KpcP36dVy9elWvV6i4uBgqlare46ysrGBlZdWo+omIyPRotBpklmSitKIUznJn+Ln4QWYhk7osaiGSBiFnZ2c4Ozs3qu3FixcREhICf39/JCQkwMKi4c4sf39/tG3bFqmpqRgxYgQAIDs7GwUFBQgKCrrn2omIyPSk5KcgPiMexRX/LLWilCsRExiDUI/QBo4kY2UUc4QuXryI4OBgdO7cGcuWLUNpaSmKior05vpcvHgRPXr0QEZGBgBAoVBg0qRJiIqKwp49e3Ds2DFMmDABQUFBjb5jjIiIzEdKfgqi0qL0QhAAlFSUICotCin5KRJVRi1J0h6hxkpOTkZOTg5ycnLQqVMnvfdq7v6/ceMGsrOzUVFRoXvvvffeg4WFBUaMGIGqqiqEhYXh448/NmjtRETU+mm0GsRnxENE7RVlRIgQIGBpxlKEuIdwmMzEGO06QobCdYSI7kyjFZGRewUlf1bCxd4agZ5OkFkIUpdF1GhHio5g4u6Jd2y3Pmw9+qr6GqAiuleN/f1tFD1CRNR6JZ0sRNyOUyhUV+r2uSqsMW+YD8J7ukpYGVHjlVaUNms7Mh5GMUeIiFqnpJOFmPZ5pl4IAoAidSWmfZ6JpJOFElVG1DTO8sbduNPYdmQ8GISI6K5otCLidpyqY0YFdPvidpyCRsvRd2r9/Fz8oJQrIaDuIV0BAlRyFfxc/AxcGbU0BiEyaRqtiPRzl/Fd1kWkn7vMX8rNKCP3Sq2eoFuJAArVlcjIvWK4oojuksxChpjAGACoFYZqtqMDozlR2gRxjhCZLM5daVklf9Yfgu6mHZHUQj1CsSJ4RZ3rCEUHRnMdIRPFIEQmqWbuyu39PzVzV1aP9WMYukcu9tbN2o6oNQj1CEWIewhXljYjDEJkcu40d0VA9dyVwT4q3uJ9DwI9neCqsEaRurLO71oAoFJU30pPZExkFjLeIm9GOEeITA7nrhiGzELAvGE+AFBremnN9rxhPgybRNSqMQiRyeHcFcMJ7+mK1WP9oFLoD3+pFNYcfiQio8ChMTI5nLtiWOE9XTHYR8WVpYnIKDEIkcnh3BXDk1kICOrWXuoyiIiajENjZHI4d4WIiBqLQYhMEueuEBFRY3BojEwW564QEdGdMAiRSePcFSIiagiHxoiIiMhsMQgRERGR2WIQIiIiIrPFIERERERmi0GIiIiIzBaDEBEREZktBiEiIiIyWwxCREREZLa4oKIENFoNMksyUVpRCme5M/xc/CCzkEldFhERkdlhEDKwlPwUxGfEo7iiWLdPKVciJjAGoR6hElZGRERkfjg0ZkAp+SmISovSC0EAUFJRgqi0KKTkp0hUGRERkXliEDIQjVaD+Ix4iBBrvVezb2nGUmi0GkOXRkREZLYYhAwksySzVk/QrUSIKKooQmZJpgGrIiIiMm8MQgZSWlHarO2IiIjo3jEIGYiz3LlZ2xEREdG9YxAyED8XPyjlSggQ6nxfgACVXAU/Fz8DV0ZERGS+GIQMRGYhQ0xgDADUCkM129GB0VxPiIiIyIAYhAwo1CMUK4JXwEXuordfKVdiRfAKriNERERkYFxQ0cBCPUIR4h7ClaWJiIhaAQYhCcgsZOir6it1GURERGbPKIbG8vLyMGnSJHh6esLGxgbdunXDvHnzcP369QaPCw4OhiAIeq8XX3zRQFUTERFRa2cUPUJnzpyBVqvF2rVr4eXlhZMnT2Ly5Mm4du0ali1b1uCxkydPxoIFC3Tbcrm8pcslIiIiI2EUQSg8PBzh4eG67a5duyI7OxurV6++YxCSy+VQqVQtXSIREREZIaMYGquLWq2Gk5PTHdtt3LgRHTp0QM+ePREbG4uKiooG21dVVaGsrEzvRURERKbJKHqEbpeTk4MPPvjgjr1Bo0ePhoeHB9zc3HD8+HFER0cjOzsbW7ZsqfeYJUuWIC4urrlLJiIiolZIEEWx9uPQDSQmJgZLly5tsM3p06fRo0cP3fbFixcxaNAgBAcHY926dU263o8//ohHH30UOTk56NatW51tqqqqUFVVpdsuKyuDu7s71Go1HBwcmnQ9IiIikkZZWRkUCsUdf39LGoRKS0tx+fLlBtt07doVlpaWAIBLly4hODgY/fv3R2JiIiwsmjayd+3aNdjZ2SEpKQlhYWGNOqaxXyQRERG1Ho39/S3p0JizszOcnRv3kNGLFy8iJCQE/v7+SEhIaHIIAoCsrCwAgKura5OPJSIiItNjFJOlL168iODgYHTu3BnLli1DaWkpioqKUFRUpNemR48eyMjIAACcO3cOCxcuxLFjx5CXl4ft27dj3LhxeOSRR+Dr6yvVRyEiIqJWxCgmSycnJyMnJwc5OTno1KmT3ns1I3s3btxAdna27q4wS0tLpKSkYOXKlbh27Rrc3d0xYsQIvPHGG026ds35efcYERGR8aj5vX2nGUCSzhEyBhcuXIC7u7vUZRAREdFdOH/+fK1OlFsxCN2BVqvFpUuXYG9vD0EQmu28NXejnT9/npOwWxi/a8Pg92wY/J4Ng9+zYbTk9yyKIv7880+4ubk1OK/YKIbGpGRhYdFgkrxXDg4O/I/MQPhdGwa/Z8Pg92wY/J4No6W+Z4VCccc2RjFZmoiIiKglMAgRERGR2WIQkoiVlRXmzZsHKysrqUsxefyuDYPfs2HwezYMfs+G0Rq+Z06WJiIiIrPFHiEiIiIyWwxCREREZLYYhIiIiMhsMQgRERGR2WIQkshHH32ELl26wNraGv369dM9LJaaz759+zBs2DC4ublBEARs27ZN6pJMzpIlS9C3b1/Y29vDxcUFw4cPR3Z2ttRlmaTVq1fD19dXt/BcUFAQ/vvf/0pdlkmLj4+HIAiYNWuW1KWYnPnz50MQBL1Xjx49JKmFQUgCmzZtQlRUFObNm4fMzEw8+OCDCAsLQ0lJidSlmZRr167hwQcfxEcffSR1KSZr7969mD59Og4dOoTk5GTcuHEDQ4YMwbVr16QuzeR06tQJ8fHxOHbsGI4ePYp//etfiIiIwK+//ip1aSbpyJEjWLt2LXx9faUuxWQ98MADKCws1L32798vSR28fV4C/fr1Q9++ffHhhx8CqH6embu7O15++WXExMRIXJ1pEgQBW7duxfDhw6UuxaSVlpbCxcUFe/fuxSOPPCJ1OSbPyckJ7777LiZNmiR1KSalvLwcfn5++Pjjj7Fo0SL07t0bK1eulLoskzJ//nxs27YNWVlZUpfCHiFDu379Oo4dO4bQ0FDdPgsLC4SGhiI9PV3CyojunVqtBlD9C5pajkajwVdffYVr164hKChI6nJMzvTp0/H444/r/T1Nze/s2bNwc3ND165dMWbMGBQUFEhSBx+6amC///47NBoNlEql3n6lUokzZ85IVBXRvdNqtZg1axYGDhyInj17Sl2OSTpx4gSCgoJQWVkJOzs7bN26FT4+PlKXZVK++uorZGZm4siRI1KXYtL69euHxMREdO/eHYWFhYiLi8PDDz+MkydPwt7e3qC1MAgRUbOYPn06Tp48Kdk4vzno3r07srKyoFar8c0332D8+PHYu3cvw1AzOX/+PGbOnInk5GRYW1tLXY5JGzp0qO5/+/r6ol+/fvDw8MDmzZsNPtTLIGRgHTp0gEwmQ3Fxsd7+4uJiqFQqiaoiujczZszAzp07sW/fPnTq1EnqckyWpaUlvLy8AAD+/v44cuQIVq1ahbVr10pcmWk4duwYSkpK4Ofnp9un0Wiwb98+fPjhh6iqqoJMJpOwQtPl6OiI+++/Hzk5OQa/NucIGZilpSX8/f2Rmpqq26fVapGamsqxfjI6oihixowZ2Lp1K3788Ud4enpKXZJZ0Wq1qKqqkroMk/Hoo4/ixIkTyMrK0r0CAgIwZswYZGVlMQS1oPLycpw7dw6urq4GvzZ7hCQQFRWF8ePHIyAgAIGBgVi5ciWuXbuGCRMmSF2aSSkvL9f710Vubi6ysrLg5OSEzp07S1iZ6Zg+fTq++OILfPfdd7C3t0dRUREAQKFQwMbGRuLqTEtsbCyGDh2Kzp07488//8QXX3yBtLQ07N69W+rSTIa9vX2t+W22trZo37495701szlz5mDYsGHw8PDApUuXMG/ePMhkMjz//PMGr4VBSALPPvssSktL8dZbb6GoqAi9e/dGUlJSrQnUdG+OHj2KkJAQ3XZUVBQAYPz48UhMTJSoKtOyevVqAEBwcLDe/oSEBERGRhq+IBNWUlKCcePGobCwEAqFAr6+vti9ezcGDx4sdWlETXbhwgU8//zzuHz5MpydnfHQQw/h0KFDcHZ2NngtXEeIiIiIzBbnCBEREZHZYhAiIiIis8UgRERERGaLQYiIiIjMFoMQERERmS0GISIiIjJbDEJERERkthiEiIiIyGwxCBGRWYuMjMTw4cOlLoOIJMIgREQtLjIyEoIg1HqFh4dLXRpWrVrVah65IggCtm3bJnUZRGaFzxojIoMIDw9HQkKC3j4rKyuJqgE0Gg0EQYBCoZCsBiKSHnuEiMggrKysoFKp9F7t2rVDWloaLC0t8dNPP+navvPOO3BxcUFxcTGA6oe6zpgxAzNmzIBCoUCHDh3w5ptv4tZHJVZVVWHOnDno2LEjbG1t0a9fP6SlpeneT0xMhKOjI7Zv3w4fHx9YWVmhoKCg1tBYcHAwXn75ZcyaNQvt2rWDUqnEv//9b1y7dg0TJkyAvb09vLy88N///lfv8508eRJDhw6FnZ0dlEolXnjhBfz+++96533llVcwd+5cODk5QaVSYf78+br3u3TpAgB46qmnIAiCbpuIWhaDEBFJKjg4GLNmzcILL7wAtVqNn3/+GW+++SbWrVsHpVKpa7dhwwa0adMGGRkZWLVqFVasWIF169bp3p8xYwbS09Px1Vdf4fjx4xg5ciTCw8Nx9uxZXZuKigosXboU69atw6+//goXF5c6a9qwYQM6dOiAjIwMvPzyy5g2bRpGjhyJAQMGIDMzE0OGDMELL7yAiooKAMDVq1fxr3/9C3369MHRo0eRlJSE4uJijBo1qtZ5bW1tcfjwYbzzzjtYsGABkpOTAQBHjhwBACQkJKCwsFC3TUQtTCQiamHjx48XZTKZaGtrq/davHixKIqiWFVVJfbu3VscNWqU6OPjI06ePFnv+EGDBone3t6iVqvV7YuOjha9vb1FURTF/Px8USaTiRcvXtQ77tFHHxVjY2NFURTFhIQEEYCYlZVVq7aIiAi9az300EO67Zs3b4q2trbiCy+8oNtXWFgoAhDT09NFURTFhQsXikOGDNE77/nz50UAYnZ2dp3nFUVR7Nu3rxgdHa3bBiBu3bq1nm+RiFoC5wgRkUGEhIRg9erVevucnJwAAJaWlti4cSN8fX3h4eGB9957r9bx/fv3hyAIuu2goCAsX74cGo0GJ06cgEajwf333693TFVVFdq3b6/btrS0hK+v7x1rvbWNTCZD+/bt0atXL92+mp6qkpISAMAvv/yCPXv2wM7Orta5zp07p6vr9mu7urrqzkFE0mAQIiKDsLW1hZeXV73vHzx4EABw5coVXLlyBba2to0+d3l5OWQyGY4dOwaZTKb33q3hxMbGRi9M1adt27Z624Ig6O2rOYdWq9Vdf9iwYVi6dGmtc7m6ujZ43ppzEJE0GISISHLnzp3Dq6++in//+9/YtGkTxo8fj5SUFFhY/DON8fDhw3rHHDp0CPfddx9kMhn69OkDjUaDkpISPPzww4YuH35+fvj222/RpUsXtGlz93+ttm3bFhqNphkrI6I74WRpIjKIqqoqFBUV6b1+//13aDQajB07FmFhYZgwYQISEhJw/PhxLF++XO/4goICREVFITs7G19++SU++OADzJw5EwBw//33Y8yYMRg3bhy2bNmC3NxcZGRkYMmSJfj+++9b/LNNnz4dV65cwfPPP48jR47g3Llz2L17NyZMmNCkYNOlSxekpqaiqKgIf/zxRwtWTEQ12CNERAaRlJSkN0wEAN27d8fo0aORn5+PnTt3AqgeSvrkk0/w/PPPY8iQIXjwwQcBAOPGjcNff/2FwMBAyGQyzJw5E1OmTNGdKyEhAYsWLcLs2bNx8eJFdOjQAf3798cTTzzR4p/Nzc0NBw4cQHR0NIYMGYKqqip4eHggPDxcr1frTpYvX46oqCj8+9//RseOHZGXl9dyRRMRAEAQxVsW4iAiaoWCg4PRu3dvrFy5UupSiMjEcGiMiIiIzBaDEBEREZktDo0RERGR2WKPEBEREZktBiEiIiIyWwxCREREZLYYhIiIiMhsMQgRERGR2WIQIiIiIrPFIERERERmi0GIiIiIzNb/BwRYHZqC65JaAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/workflow/pred_temperature_ridge.ipynb b/workflow/pred_temperature_ridge.ipynb index 680db00..81bc952 100644 --- a/workflow/pred_temperature_ridge.ipynb +++ b/workflow/pred_temperature_ridge.ipynb @@ -21,7 +21,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -46,7 +46,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -62,7 +62,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -86,7 +86,7 @@ ")" ] }, - "execution_count": 9, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -107,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -119,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -140,12 +140,12 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqC0lEQVR4nO3dd1gUV9sG8HuWshQpYgFUsGIv2EsMWIIaNRo1lthCNLFGY8lriUYlFoJGY4vdqCn22GMsUcEeFWIvwd4gKCq97e75/uBjdQWUXdjdAe7fdXmFnZ2Z8zyHk2WfmTMzkhBCgIiIiIiIyMwU5g6AiIiIiIgIYHFCREREREQyweKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFizNHUB+odFo8PjxYzg4OECSJHOHQ0RERAWYEAJxcXEoVaoUFAoeS6bCg8VJDj1+/BgeHh7mDoOIiIgKkQcPHqBMmTLmDoPIZFic5JCDgwOA9A8JR0dHM0dDREREBVlsbCw8PDy03z+ICgsWJzmUMZXL0dGRxQkRERGZBKeSU2HDSYxERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZ4AXxRESkQwiBlJQUg7dXKpU5vojXVG3lth1TtlXQciqI48EU7SQnJxu0HVF+x+KEiIh0pKSkoHv37gZvv2XLFtjY2Miqrdy2Y8q2ClpOBXE8mKKdtLQ0g7Yjyu9YnBARUZbCHsXpvU290oY9k+HCE/2/iNUpYaX3NobkBBiWF3MyLB/AdGPPVL8jPDij/zZudfXfhqgAYHFCRETZajosEBaW1m9dT61KxaklE3PVlu/45VBYKd+6niYtBSFBgw1uJ6c5AbnPq7DmlNt8ANONPVP9jn4dVBdKq7df6puSpkHfFf8Y3A5RfsfihIiIsmVhaQ0L67d/ccsLCislLK3fPlVGlct2mFPu5CSn3OYDmC4nU/2OlFYK2FhZ5HIvRAUf79ZFRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkC5bmDoCIiOTtSOAgJMU8hSQpYGVrj/r9J6JouapIjonGqWWTEP/fAygsLWFl5wjAweB2Dn7TE8nadoqgyfDZKFaxFpJePMHR2UMRF3EHCitrNB76ndFyurJzJe4c24W4yHvwGbMIbjWb5Kqd7HK6sGEuwv/aiNhHt/DetPUoVa9FvshJaNQ4MsMfMQ9vwlJpC9uirmg2ch4c3Dzx9N9/cGrJeKhTk6FOSQIkBVCissFthXw/HMmxz9447iysrFGv3wSD2wBMO+7afH8akTEpUEgSHGwssahvDXh7OiEqNgX9V57HragEWFsq4GxrmYv/k4jyN7MWJ4GBgdi2bRuuX78OW1tbNGvWDEFBQahSpYp2HSEEAgICsGLFCjx//hyNGzfGjz/+iBo1amjXWbFiBdavX4+wsDDExcXh+fPncHZ21mnr33//xf/+9z+cOHECqampqFWrFmbMmIGWLVuaKl0ionzpnZHfw9reEQDw8Nwh/L1yCtrN3Izzm+ajeKXaaDl+GZ5cD8OR7wZB41XK4HZ8x6+AnYsrAODeyT9wfN4X6PxjCM6tDkCJag3QdtZWPLkRhsPT+6No+epGycm1RmN4NmmHMyun5Gr/GbLLyb2uL8r7dsXxH0bkSTuA6XLyatcPZZu2hyRJuLpzBU4sGIV2gdtwfP6XqNdvAjybtkdCdAS29PdGXAV3g9tpOuw72DoXz5TPq+Mu+tZlHF8wGk4ehhdBphx3m4fVh7OdFQBgR1gkBqy+gLAAH0zYch1NKjpj39jGOB4ejTZz/kbzCppctUWUX5l1WldISAiGDx+O06dP4+DBg1CpVGjTpg0SEhK068yePRvz5s3D4sWLcfbsWbi5ucHPzw9xcXHadRITE9GuXTt8/fXX2bbVoUMHqFQqHD58GKGhofD29kbHjh0RGRlp1ByJiPK7jC+8AJCaGA9JkgAAD07vh5dfLwCAS4UaUFhZ49mzZ4a3U8TpZTsJselH3gHcOboD1T74DABQoko92DiXQErcC4PbAbLPqXil2nBw9cjVvnXaySanklUbwLFU+TxrBzBNTpLCAmUatNbuu2S1hoiLuKt9PyU+FgCgSk6EJEmwsrIyuC1ru5fnDrIbd8Uq1oSNowtS42MMb8eE4y6jMAGAmMQ0KBTpOW0++xjDW5UDADQo5wxrSwVevMhdW0T5lVnPnOzbt0/n9Zo1a1CyZEmEhobCx8cHQgjMnz8fkyZNQteuXQEA69atg6urK9avX4/BgwcDAEaNGgUACA4OzrKdp0+f4ubNm/jpp59Qu3ZtAMB3332HJUuW4MqVK3BzczNOgkREBcSppV8j6uoZAECL8cuQEvcCQgjYOLpo17GwtkFycnKu2gmZPQSRF44BANrM3Irk2GcQQqM9gg4ARUp6IC7iTq7aATLnZCyv52RMpsopw5Udy+HZpB0A4N2xP+Kvab0Rtm4GkmOi4eRRGTY2Nrnaf07GnV3xUoj/70Gu2jHluOu/8h8cuRYNANg3tjGi41OhEQIlHJXadeysLZCUlJTrtojyI1ldEB8Tk37kw8Ul/UPnzp07iIyMRJs2bbTrKJVK+Pr64uTJkzneb7FixVCtWjX8/PPPSEhIgEqlwvLly+Hq6or69etnuU1KSgpiY2N1/hERFVZNh85C50V/oVb3Efhn/dz0hf9/JPslket2fMctQ8/frqCe/2ScXZU+DUlC3rcDZJOTEWSVk7GYKicAuLBhLmIf30Z9/8kAgEtbFqLhZ9+i56+X0enHYMQ8DEd8fHyu2sjRuBP5a9z9/HldPJj3HmZ0rYL/bbqaTVtEhZdsihMhBMaMGYPmzZujZs2aAKCdcuXq6qqzrqurq17TsSRJwsGDB/HPP//AwcEBNjY2+OGHH7Bv375M16ZkCAwMhJOTk/afh0feneYnIsqvKvh0RtTVs9rXybEvp3GpU1NyfaQ8g5ffx4i4cFz7OunFU+3P8VEPYaG0zZN2gJc55XbKzttk5PRqnxmLsXO6tGUR7p7YgzYztsDSxg7JMdG4d/IPVPDtAgBwcCsL6yJOeP78eZ6096ZxlxgdAQvr/DfuPmnugSPXo7Wvn8SmaH9OTFXD1jbv2iLKT2RTnHzxxRe4ePEiNmzYkOk96bWjJEKITMveRAiBYcOGoWTJkjh27BjOnDmDzp07o2PHjoiIiMhym4kTJyImJkb778GD3J0yJiLKj9KS4pH4PEr7+sHZQ7Au4gTrIk7wbOSH8IMbAQDPbl+BJi1Ve+ZbXxqVConRLw863T2xB0pHFygdiqKcT2dc270KAPDkRhiSnkdB6eBslJzy0ptyymumygkAru5YhtvBv6Nd4HYo/3//1kWcYWGlRMTFEwCA5JhopMbHwMHBsHtOadQqJD1/on2d3biLvnUZyTHRBudpynEXm5SGx89fTnvcHhqBYkWs4WJvhe4N3fHj4bsAgHN3XyBFpcn24ClRQSeLWwmPGDECu3btwtGjR1GmTBnt8oxrQSIjI+Hu/vKOH1FRUZnOprzJ4cOHsWfPHjx//hyOjukXDC5ZsgQHDx7EunXrMGFC5tsQKpVKKJXKTMuJiAqTtMR4nFwyAerUZEgKBZQOReH71Y+QJAl1Ph6N00u+xu4xHaCwsIRz2apQKAw75qVRp+HIzE+hSUsBJAVsnIrD79uNkCQJDQdOQ8jsIdj6aX0oLK3RfMwiXNu5wig5Xdm5CuEHNyAl7jlOL58MCytrOJaumOc5Xdg4D9d2r0ZyzFMcmzscFlZKOJetCsCwC8hNlZMqJRnnVgfAwb0c/hz3AQBAYaVEp4V/oeWkNTizfBI0ahU0qlQ4uJcz+Au2UKtwYtFYqNNS3zzuLK3Q6PNv8e+B9Qa1Y8pxF5OkQp/l/yApVQOFAijhoMSeUQ0hSRKCuldDv5X/wGv8YVhZKFDX09Hg/5eI8juzFidCCIwYMQLbt29HcHAwypfXvXNJ+fLl4ebmhoMHD6Ju3boAgNTUVISEhCAoKCjH7SQmJgJApv/RFQoFNBreqo+IKDt2xdzQdnrmM9oAYOtUHC0npn9ZU6em4PjCsQa3Y6m0hd/0TbDMYnqObdGSaBe4TftalZqcqy+Jb8qpRufPUKPzZ9rXucnrTTnV6TUGdXqN0b5WpSbjyAx/g9oBTJmTDfrvjsgyp9L1WqB0vWAAuc/HwtoGvl/9CAvrzAcJXx13QHo+hhYnphx3Hi62ODPl3Szfc3VS4sBX6c+fSU5To/uPoUgzuCWi/M2sxcnw4cOxfv167Ny5Ew4ODtrrSJycnGBrawtJkjBq1CjMmjULXl5e8PLywqxZs2BnZ4fevXtr9xMZGYnIyEjcvHkTAHDp0iU4ODjA09MTLi4uaNq0KYoWLYpPPvkEU6ZMga2tLVauXIk7d+6gQ4cOZsmdiIiIiIh0mbU4Wbp0KQCgRYsWOsvXrFkDf39/AMC4ceOQlJSEYcOGaR/CeODAAZ15rMuWLUNAQID2tY+Pj85+ihcvjn379mHSpElo1aoV0tLSUKNGDezcuRN16tQxbpJERERERJQjZp/W9TaSJGHatGmYNm1atuu87X0AaNCgAfbv369nhEREREREZCq82oqIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFS3MHQERE8qVWpebpem+iSUuBKofr5YY+seY2r8KaU27zAUw39kz1O0pJ0+TpekQFFYsTIiLK1qklE03WVkjQYJO0w5xyp6DlZKp8+q74xyTtEOV3LE6IiChL9Uo7mKytOiWsTNIOc8qdgpaTqfKBRyP9t0lLy/s4iPIBSQghzB1EfhAbGwsnJyfExMTA0dHR3OEQERmNEAIpKYZPYVEqlZAkSVZt5bYdU7ZV0HIqiOPBFO3ExsbC1dWV3zuo0OGZEyIi0iFJEmxsbApUW8wpf7TFdl5KTc39dVxE+RHv1kVERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkQa/iRKVSYd26dYiMjDRWPEREREREVEjpVZxYWlpi6NChSElJMVY8RERERERUSOk9ratx48Y4f/68EUIhIiIiIqLCzFLfDYYNG4YxY8bgwYMHqF+/Puzt7XXer127dp4FR1TYCSFydaZSqVRCkiRZtZXbdkzZltzayW1bBS0ffdoyZU5ERGQ4SQgh9NlAoch8skWSJAghIEkS1Gp1ngUnJ7GxsXByckJMTAwcHR3NHQ4VEsnJyejevbvB22/ZsgU2Njayaiu37ZiyLbm1k9u2Clo++rRlypyI8gK/d1BhpfeZkzt37hgjDiJ6g7BHcXpvU6+0g0FtXXiSpvc2dUpY6b2NITkBhuUl55xM9XsqaPkAhuWEB2f038ajkf7bEBGRQfQuTsqWLWuMOIjoLZoOC4SFpfVb11OrUnFqycRcteU7fjkUVsq3rqdJS0FI0GCD28lpTkDu85JbTqb6PRW0fIDc5/TroLpQWr39ksuUNA36rvjH4HaIiEh/ehcnGa5evYr79+8jNTVVZ3mnTp1yHRQRZWZhaQ0L67d/ccsLCislLK3fPoVFlct2mFPu5CSngpYPkPuclFYK2FhZ5HIvRERkDHoXJ7dv30aXLl1w6dIl7bUmALQXChbUa06IiIiIiMi49L6V8Jdffony5cvjv//+g52dHa5cuYKjR4+iQYMGCA4ONkKIRERERERUGOh95uTUqVM4fPgwSpQoAYVCAYVCgebNmyMwMBAjR47EP/9wfi4REREREelP7zMnarUaRYoUAQAUL14cjx8/BpB+ofyNGzfyNjoiIiIiIio09D5zUrNmTVy8eBEVKlRA48aNMXv2bFhbW2PFihWoUKGCMWIkIiIiIqJCQO/iZPLkyUhISAAAzJgxAx07dsS7776LYsWKYdOmTXkeIBERERERFQ56Fydt27bV/lyhQgVcvXoVz549Q9GiRbV37CIiIiIiItKX3tecZLh58yb279+PpKQkuLi45GVMRERERERUCOldnERHR6N169aoXLky2rdvj4iICADAZ599hrFjx+Z5gEREREREVDjoPa1r9OjRsLKywv3791GtWjXt8p49e2L06NGYO3dungZIRERERFlTq9VIS0szdxhEb2RtbQ2FImfnRPQuTg4cOID9+/ejTJkyOsu9vLxw7949fXdHRERERHoSQiAyMhIvXrwwdyhEb6VQKFC+fHlYW1u/dV29i5OEhATY2dllWv706VMolUp9d0dEREREesooTEqWLAk7OzvelIhkS6PR4PHjx4iIiICnp+dbx6rexYmPjw9+/vlnTJ8+HQAgSRI0Gg3mzJmDli1bGhY1EREREeWIWq3WFibFihUzdzhEb1WiRAk8fvwYKpUKVlZWb1xX7+Jkzpw5aNGiBc6dO4fU1FSMGzcOV65cwbNnz3DixAmDgyYiIiKit8u4xiSrmSxEcpQxnUutVr+1ONH7bl3Vq1fHxYsX0ahRI/j5+SEhIQFdu3bFP//8g4oVKxoWMRERERHphVO5KL/QZ6zqfeYEANzc3BAQEGDIpkRERERERFnS+8xJuXLl8O233+LBgwfGiIeIiIiIiAopvc+cjB07FmvXrsW3336Lli1bYuDAgejSpQvv1EVERERkbnNNPNVrrDBte2YmSRK2b9+ODz/80NyhGKxFixbw9vbG/PnzzR1KlvQ+czJixAiEhoYiNDQU1atXx8iRI+Hu7o4vvvgCYWFhxoiRiIiIiPI5SZLe+M/f399ssZUrVy5HX9YjIiLw/vvv53i/a9euhbOzs+GBFUJ6FycZ6tSpgwULFuDRo0eYOnUqVq1ahYYNG6JOnTr46aefIEThqqSJiIiIKHsRERHaf/Pnz4ejo6POsgULFui1v9TUVCNFmj03NzezzBZSq9XQaDQmb9ccDC5O0tLSsHnzZnTq1Aljx45FgwYNsGrVKvTo0QOTJk1Cnz598jJOIiIiIsrH3NzctP+cnJwgSZL2tZWVFYYMGYIyZcrAzs4OtWrVwoYNG3S2b9GiBb744guMGTMGxYsXh5+fHwBg165d8PLygq2tLVq2bIl169ZBkiS8ePFCu+3Jkyfh4+MDW1tbeHh4YOTIkUhISNDu9969exg9erT2LE52JEnCjh07AAB3796FJEnYtm0bWrZsCTs7O9SpUwenTp0CAAQHB+PTTz9FTEyMdr/Tpk0DAO3jOEqXLg17e3s0btwYwcHB2nYyzrjs2bMH1atXh1KpxMqVK2FjY6OTFwCMHDkSvr6+AIDo6Gh8/PHHb+xHudO7OAkLC8OIESPg7u6OESNGoEaNGrh8+TKOHz+OTz/9FJMmTcKuXbuwfft2Y8RLRERERAVMcnIy6tevjz179uDy5csYNGgQ+vXrh7///ltnvXXr1sHS0hInTpzA8uXLcffuXXz00Uf48MMPcf78eQwePBiTJk3S2ebSpUto27YtunbtiosXL2LTpk04fvw4vvjiCwDAtm3bUKZMGXz77bfaszj6mDRpEr766iucP38elStXxscffwyVSoVmzZplOkP01VdfAQA+/fRTnDhxAhs3bsTFixfRvXt3tGvXDuHh4dr9JiYmIjAwEKtWrcKVK1fQt29fODs74/fff9euo1arsXnzZu1JgZz2o5zpfUF8w4YN4efnh6VLl+LDDz/M8kEq1atXR69evfIkQCIiIiIq2EqXLq394g6kX+O8b98+bNmyBY0bN9Yur1SpEmbPnq19PWHCBFSpUgVz5swBAFSpUgWXL1/GzJkztevMmTMHvXv3xqhRowAAXl5eWLhwIXx9fbF06VK4uLjAwsICDg4OcHNz0zv2r776Ch06dAAABAQEoEaNGrh58yaqVq2qc4Yow61bt7BhwwY8fPgQpUqV0u5j3759WLNmDWbNmgUgfZbSkiVLUKdOHe22PXv2xPr16zFw4EAAwKFDh/D8+XN0795dr36UM72Lk9u3b6Ns2bJvXMfe3h5r1qwxOCgiIiIiKjzUajW+++47bNq0CY8ePUJKSgpSUlJgb2+vs16DBg10Xt+4cQMNGzbUWdaoUSOd16Ghobh58yZ+++037TIhBDQaDe7cuYNq1arlKvbatWtrf3Z3dwcAREVFoWrVqlmuHxYWBiEEKleurLM8JSUFxYoV0762trbW2TcA9OnTB02bNsXjx49RqlQp/Pbbb2jfvj2KFi0KIOf9KGd6FydvK0yIiIiIiPQxd+5c/PDDD5g/fz5q1aoFe3t7jBo1KtNF769/yRZCZLpG5PWbMmk0GgwePBgjR47M1K6np2euY391FlFGLG+6eF2j0cDCwgKhoaGwsLDQea9IkSLan21tbTPl1qhRI1SsWBEbN27E0KFDsX37dp0TAjntRzkz6AnxRERERER55dixY+jcuTP69u0LIP0LfHh4+FvPalStWhV79+7VWXbu3Dmd1/Xq1cOVK1dQqVKlbPdjbW0NtVptYPTZy2q/devWhVqtRlRUFN59912999m7d2/89ttvKFOmDBQKhXZKGWB4P8qJwXfrIiIiIiLKC5UqVcLBgwdx8uRJXLt2DYMHD0ZkZORbtxs8eDCuX7+O8ePH499//8XmzZuxdu1aAC/PYowfPx6nTp3C8OHDcf78eYSHh2PXrl0YMWKEdj/lypXD0aNH8ejRIzx9+jTP8ipXrhzi4+Nx6NAhPH36FImJiahcuTL69OmD/v37Y9u2bbhz5w7Onj2LoKCgTIVWVvr06YOwsDDMnDkTH330EWxsbLTvGdqPcsIzJ0REREQFRT59Yvs333yDO3fuoG3btrCzs8OgQYPw4YcfIiYm5o3blS9fHlu3bsXYsWOxYMECNG3aFJMmTcLQoUO1zyOpXbs2QkJCMGnSJLz77rsQQqBixYro2bOndj/ffvstBg8ejIoVKyIlJSXPntfXrFkzDBkyBD179kR0dDSmTp2KadOmYc2aNZgxYwbGjh2LR48eoVixYmjatCnat2//1n16eXmhYcOGOHv2bKYHRxraj3KiV3GSlpaGKlWqaO+5TERERESkL39/f50nwru4uGifH5KdV58D8qpOnTqhU6dO2tczZ85EmTJldM4oNGzYEAcOHMh2302aNMGFCxfeGverRUu5cuUyFTHOzs6Zli1duhRLly7VWWZlZYWAgAAEBARk2c7r/fO6M2fOZLk8N/0oF3oVJ1ZWVkhJSXnjw2n0ERgYiG3btuH69euwtbVFs2bNEBQUhCpVqmjXEUIgICAAK1aswPPnz9G4cWP8+OOPqFGjhnadFStWYP369QgLC0NcXByeP38OZ2dn7fvBwcFo2bJlljGcOXMm010eiOQo5PvhSI59BklSwMrWHvX7T0TRclWRHBONU8smIf6/B7Cwska9fhNy3dbBb3oiOebp/7dVBE2Gz0axirWQ9OIJjs4eiriIO1BYWaPx0O9y3daRwEFI0rb1Mq8rO1fizrFdiIu8B58xi+BWs4lRcrqwYS7C/9qI2Ee38N609ShVr0Wu2snu95TX+QiNGkdm+CPm4U1YKm1hW9QVzUbOg4ObJ57++w9OLRkPdWoy1ClJgKQASlR++06zkd3v6NWxp7C0hJWdIwAHg9sx1bjr+MMZRMWlQiFJcLCxxKK+NeDt6YSo2BT0X3ket6ISoLSywILePAhHlB8sWbIEDRs2RLFixXDixAnMmTNH+wwTyn/0ntY1YsQIBAUFYdWqVbC0zN2ssJCQEAwfPhwNGzaESqXCpEmT0KZNG1y9elV7N4bZs2dj3rx5WLt2LSpXrowZM2bAz88PN27cgIND+h/BxMREtGvXDu3atcPEiRMztdOsWbNMD9T55ptv8Ndff2W6JR2RXDUd9h1snYsDAB6eO4S/V05Bu5mbcX7TfBSvVBstxy9D9K3LOL5gNJw8DP8iCgC+41fAzsUVAHDv5B84Pu8LdP4xBOdWB6BEtQZoO2srntwIw+Hp/VG0fO6+wL0z8ntY2ztmysu1RmN4NmmHMyun5Gr/GbLLyb2uL8r7dsXxH0a8ZQ85k93vKa/zAQCvdv1Qtml7SJKEqztX4MSCUWgXuA3H53+Jev0mwLNpeyRER2BLf2/EVXA3uJ3sfkevjr0n18Nw5LtB0HiVMrgdU427XwfXhZtT+hHVHWGRGLD6AsICfDBhy3U0qeiMfWMb4+ztF+j24znUKuPAizOJZC48PBwzZszAs2fP4OnpibFjx2b5fZDyB72ri7///huHDh3CgQMHtLcoe9W2bdtyvK99+/bpvF6zZg1KliyJ0NBQ+Pj4QAiB+fPnY9KkSejatSuA9CeDurq6Yv369Rg8eDAAaB+qk91pKmtra52H36SlpWHXrl344osv8uwsEJGxWdu9PCKdmhivHbsPTu/HB/PT/18qVrEmbBxdkBofA8DR8LaKOL1sKyE2/cg7gDtHd6D7uvMAgBJV6sHGuQRS4l4AJV0Nb8v+ZZyv5lW8Uu3sNjGsnWxyKlk1bw9QZPd7yut8JIUFyjRord1/yWoNcWX7Mu37KfGxAABVciIkScrygbk5ld3v6NWx51KhBhRW1nj27Jnh7Zho3DnbveyLmMQ0KBTp+Ww++xh3ZrcCADSs4IySjko8S0hDcYNaISJT+eGHH/DDDz+YOwzKI3oXJ87OzujWrZsxYtFerOPi4gIAuHPnDiIjI9GmTRvtOkqlEr6+vjh58qS2ONHXrl278PTp0zfO5ct4aE2G2NhYg9oiykunln6NqKvp80xbjF+GlLgXEELAxtFFu45d8VKI/+9BrtsKmT0EkReOAQDazNyK5NhnEEKjPSsAAEVKeiAu4k6u23o9L2N5PSdjMVU+r7qyYzk8m7QDALw79kf8Na03wtbNQHJMNJw8KuvMvTZETsaehbUNkpOTc9WOqcZd/5X/4Mi1aADAvrGNER2fCo0QKOGo1K5Ttpgtbkcl5KodIiLSj97FibGe/C6EwJgxY9C8eXPUrFkTALS3PnN11T065urqinv37hnc1urVq9G2bVt4eHhku05gYGC2FykRmUvTobMAALeP7sQ/6+ei6dBA4PWzf3l0hxHfcelfqsMPbsDZVVPgM245JLx+pjFv2no9rxbjlr5lC8O8nlObGVuM0o6p8slwYcNcxD6+jXdGzgMAXNqyEA0/+xYVfLvg+f0b2DW8BeI9i71lL2+Wo7GXB+PBVOPu58/rAgDWHX+A/226il8G1c3UTh79r0RERHoweCrtkydPcPz4cZw4cQJPnjzJdSBffPEFLl68iA0bNmR6L6snfxo6Hevhw4fYv38/Bg4c+Mb1Jk6ciJiYGO2/Bw9yfySaKK9U8OmMqKtnta+TY19OpUmMjoCFde6Okr/Ky+9jRFw4rn2d9OLl/d/jox7CQmmbZ21l5JUS9yLP9pmVjJxe7TdjMEU+l7Yswt0Te9BmxhZY2tghOSYa907+gQq+XQAADm5lYV3ECc+fP8+T9t409tSpKbk+Q5PBVOPuk+YeOHI9Wvv6SezLM+b3nyXBxtoiq82IiMhI9C5OEhISMGDAALi7u8PHxwfvvvsuSpUqhYEDByIxMdGgIEaMGIFdu3bhyJEjKFOmjHZ5xnUirz88JioqKtPZlJxas2YNihUrpnPLuawolUo4Ojrq/CMyF41ahaTnLw8CPDh7CNZFnGBdxAmejfwQfnAjACD61mUkx0TrzN3Xuy2VConRL/+fu3tiD5SOLlA6FEU5n864tnsVAODJjTAkPY+C0sHZ4LbSkuKR+DxK+/rVvPLSm3LK03be8Hsyhqs7luF28O9oF7gdyv9vw7qIMyyslIi4eAIAkBwTjdT4GO0NRPT1pt/Rq2Pv2e0r0KSlaqfl6stU4y5NrcHjFy+nnm0PjUCxItZwsbdC94bu+PHwXQDA2dsv8F9MClzsDb9Wh4iI9Kf3tK4xY8YgJCQEu3fvxjvvvAMAOH78OEaOHImxY8dmuo/zmwghMGLECGzfvh3BwcEoX768zvvly5eHm5sbDh48iLp100/Bp6amIiQkBEFBQfqGDiEE1qxZg/79++fq4lAiUxNqFU4sGgt1WiokhQJKh6Lw/epHSJKEOh+PxuklX2P3mA5QWFqh0eff4t8D6w1uS6NOw5GZn0KTlgJICtg4FYfftxshSRIaDpyGkNlDsPXT+lBYWqP5mEW4tnOFwW2lJcbj5JIJUKcmZ8rrys5VCD+4ASlxz3F6+WRYWFnDsXTFPM/pwsZ5uLZ7NZJjnuLY3OGwsFLCuWxVAPp/Rrzp95SX+QCAKiUZ51YHwMG9HP4c9wEAQGGlRKeFf6HlpDU4s3wSNGoVNKpUOLiX07m9uj7e9DvSGXsWlnAuWxUKhWEn5E017lRqgR5LwpCSpoFCAZRwUGLPqIaQJAlB3auh38p/4DX+MKwtFfhpQG0s/OuuQe0QEZFh9C5Ofv/9d2zduhUtWrTQLmvfvj1sbW3Ro0cPvYqT4cOHY/369di5cyccHBy0Z0icnJxga2sLSZIwatQozJo1C15eXvDy8sKsWbNgZ2eH3r17a/cTGRmJyMhI3Lx5EwBw6dIlODg4wNPTU+co3uHDh3Hnzp23TukikhsLaxv4fvUjLKyVmd6zdSqOlhNfflFTp6bkqjixVNrCb/omWGYxNcy2aEm0C3x5Rz5VanKuihO7Ym5oOz3zVE4AqNH5M9To/Jn2tTo1BccXjjWonTflVKfXGNTpNUb7WpWajCMz/A1q502/p7zMBwAslTbovzsiy5xK12uB0vWCAeQuH+DNv6NXx17u8zHNuLO1tsCe0Y1gY5V5uparkxIHvnr5/JnkNDWLEyIyCX9/f7x48eKtD1CUs7Vr12LUqFF48eJFrvajd3GSmJiY5ZSqkiVL6j2tK6OQebXQAdKnXmXcSWvcuHFISkrCsGHDtA9hPHDggM4UhWXLlulcvO7j45NpP0D6hfDNmjVDtWrV9IqTiIiIKD8oPu2oSdt7Os1Hr/X9/f2xbt06AIClpSU8PDzQtWtXBAQEZHo8RWGyYMGCTE+WfxtJkrB9+3Z8+OGHxgnKTPQuTpo2bYqpU6fi559/1l74mJSUhICAADRt2lSvfeXklyBJEqZNm4Zp06Zlu87b3s+wfr3hR5OJiIiIKPfatWuHNWvWIC0tDceOHcNnn32GhISELGffpKWlmW0qvjHaTk1NhbW1dablTk7GuTYxJ8zZx1nRe3LwggULcPLkSZQpUwatW7fGe++9Bw8PD5w8eRILFiwwRoxEREREVEAolUq4ubnBw8MDvXv3Rp8+fbTTmaZNmwZvb2/89NNPqFChApRKJYQQiImJwaBBg1CyZEk4OjqiVatWuHDhgs5+d+3ahQYNGsDGxgbFixfXPsAbSD/Y/fqUKWdnZ6xduxYAcPfuXUiShM2bN6NFixawsbHBr7/+inv37uGDDz5A0aJFYW9vjxo1amDv3r3afYSEhKBRo0ZQKpVwd3fHhAkToFKptO+3aNECX3zxBcaMGYPixYvDz88vyz7x9/fXOQPSokULjBw5EuPGjYOLiwvc3Nx0DsSXK1cOANClSxdIkqR9DQC7d+9G/fr1YWNjgwoVKiAgIEAnJkmSsGzZMnTu3Bn29vb49ttvUaZMGSxbpvtcrrCwMEiShNu3bwMA5s2bp30Au4eHB4YNG4b4+Pgs88kNvYuTmjVrIjw8HIGBgfD29kbt2rXx3XffITw8HDVq1MjzAImIiIio4LK1tUVaWpr29c2bN7F582b8/vvvOH/+PACgQ4cOiIyMxN69exEaGop69eqhdevWePYs/Xbmf/zxB7p27YoOHTrgn3/+waFDh9CgQQO9Yxk/fjxGjhyJa9euoW3bthg+fDhSUlJw9OhRXLp0CUFBQShSpAgA4NGjR2jfvj0aNmyICxcuYOnSpVi9ejVmzJihs89169bB0tISJ06cwPLly3Mcy7p162Bvb4+///4bs2fPxrfffouDBw8CAM6eTb+l+5o1axAREaF9vX//fvTt2xcjR47E1atXsXz5cqxduxYzZ87U2ffUqVPRuXNnXLp0CZ999hl69eqF3377TWed9evXo2nTpqhQoQIAQKFQYOHChbh8+TLWrVuHw4cPY9y4cXr0bs7oPa0LSB9En3/+eV7HQkRERESFyJkzZ7B+/Xq0bt1auyw1NRW//PILSpQoASD9hkaXLl1CVFQUlMr0G458//332LFjB7Zu3YpBgwZh5syZ6NWrl841yHXq1NE7nlGjRumccbl//z66deuGWrVqAYD2izoALFmyBB4eHli8eDEkSULVqlXx+PFjjB8/HlOmTNHevbBSpUqYPXu23rHUrl0bU6dOBQB4eXlh8eLFOHToEPz8/LR94+zsrH30BgDMnDkTEyZMwCeffKKNd/r06Rg3bpx2XwDQu3dvDBgwQPu6T58+mDdvHu7du4eyZctCo9Fg48aN+Prrr3X6JkP58uUxffp0DB06FEuWLNE7tzcxqDj5999/ERwcjKioKGg0Gp33pkyZkieBEREREVHBs2fPHhQpUgQqlQppaWno3LkzFi1apH2/bNmy2i/fABAaGor4+HgUK1ZMZz9JSUm4desWAOD8+fN5cuD89bMtI0eOxNChQ3HgwAG899576NatG2rXrg0AuHbtGpo2barzYPB33nkH8fHxePjwITw9PbPcZ05ltJPB3d0dUVFR2aydLjQ0FGfPntU5U6JWq5GcnIzExETY2dllGVPdunVRtWpVbNiwARMmTEBISAiioqLQo0cP7TpHjhzBrFmzcPXqVcTGxkKlUiE5ORkJCQl5ejMDvYuTlStXYujQoShevDjc3Nx0fiGSJLE4ISIiIqJstWzZEkuXLoWVlRVKlSqV6WLs17/oajQauLu7Izg4ONO+Mp7hZGtr+8Y2JUnKdCOmV6eSZdf2Z599hrZt2+KPP/7AgQMHEBgYiLlz52LEiBEQQuh8DwZe3uzp1eWGfnF/vV8kScp0UuB1Go0GAQEBOmd/MmTcyCq7mPr06YP169djwoQJWL9+Pdq2bYvixYsDAO7du4f27dtjyJAhmD59OlxcXHD8+HEMHDgwy37MDb2LkxkzZmDmzJkYP358ngZCRERERAWfvb09KlWqlOP169Wrh8jISFhaWupc+P2q2rVr49ChQ/j000+zfL9EiRKIiIjQvg4PD8/xIzA8PDwwZMgQDBkyBBMnTsTKlSsxYsQIVK9eHb///rtOkXLy5Ek4ODigdOnSOc7PUFZWVlCr1TrL6tWrhxs3bujVvxl69+6NyZMnIzQ0FFu3btW5e9q5c+egUqkwd+5c7XS1zZs35y6BbOh9Qfzz58/RvXt3Y8RCRERERKTjvffeQ9OmTfHhhx9i//79uHv3Lk6ePInJkyfj3LlzANIv8N6wYQOmTp2Ka9eu4dKlSzrXebRq1QqLFy9GWFgYzp07hyFDhuTo9rmjRo3C/v37cefOHYSFheHw4cPa5+UNGzYMDx48wIgRI3D9+nXs3LkTU6dOxZgxY7Rf4I2pXLlyOHToECIjI/H8+XMA6ZdX/Pzzz5g2bRquXLmCa9euYdOmTZg8efJb91e+fHk0a9YMAwcOhEqlQufOnbXvVaxYESqVCosWLcLt27fxyy+/ZLq7V17Ru+e6d++OAwcOGCMWIiIiIiIdkiRh79698PHxwYABA1C5cmX06tULd+/e1T4YvEWLFtiyZQt27doFb29vtGrVCn///bd2H3PnzoWHhwd8fHzQu3dvfPXVV9rrL95ErVZj+PDhqFatGtq1a4cqVapoLwAvXbo09u7dizNnzqBOnToYMmQIBg4cmKNCIC/MnTsXBw8ehIeHB+rWrQsAaNu2Lfbs2YODBw+iYcOGaNKkCebNm4eyZcvmaJ99+vTBhQsX0LVrV52pct7e3pg3bx6CgoJQs2ZN/PbbbwgMDDRKXjma1rVw4ULtz5UqVcI333yD06dPo1atWpmqzpEjR+ZthERERESUI/o+sd3UMp4rkp3sHqzt4OCAhQsX6nwnfV3Xrl2zvNYCAEqVKoX9+/frLHvx4oX253LlymX5cPBXL9TPiq+vL86cOZPt+1ldJ5OV1/slq+1ef07LBx98gA8++CDTem3btkXbtm2zbetND0EfNmwYhg0bluV7o0ePxujRo3WW9evXT/uzv78//P39s913TuWoOPnhhx90XhcpUgQhISEICQnRWS5JEosTIiIiIiIySI6Kkzt37hg7DiIiIiIiKuSMf7UOERERERFRDuhdnHz00Uf47rvvMi2fM2cO7+JFREREREQG07s4CQkJQYcOHTItb9euHY4ePZonQRERERHRm73pwmYiOdFnrOpdnMTHx8Pa2jrTcisrK8TGxuq7OyIiIiLSQ8adUnP6EEEic0tNTQUAWFhYvHVdvZ8QX7NmTWzatAlTpkzRWb5x40ZUr15d390RERERkR4sLCzg7OyMqKgoAICdnZ32CeVEcqPRaPDkyRPY2dnB0vLtpYfexck333yDbt264datW2jVqhUA4NChQ9iwYQO2bNmif8REREREpBc3NzcA0BYoRHKmUCjg6emZoyJa7+KkU6dO2LFjB2bNmoWtW7fC1tYWtWvXxl9//QVfX1+DAiYiIiKinJMkCe7u7ihZsiTS0tLMHQ7RG1lbW0OhyNnVJHoXJwDQoUOHLC+KJyIiIiLTsbCwyNE8fqL8wqDiBEi/sCUqKgoajUZnuaenZ66DIiIiIiKiwkfv4iQ8PBwDBgzAyZMndZYLISBJEtRqdZ4FR0REREREhYfexYm/vz8sLS2xZ88euLu78+4QRERERESUJ/QuTs6fP4/Q0FBUrVrVGPEQEREREVEhpfdDGKtXr46nT58aIxYiIiIiIirE9C5OgoKCMG7cOAQHByM6OhqxsbE6/4iIiIiIiAyh97Su9957DwDQunVrneW8IJ6IiIiIiHJD7+LkyJEjxoiDiIiIiIgKOb2Lkzc9Bf78+fO5iYWI3kCtSs3T9d5Ek5YCVQ7Xyw19Ys1tXnLLyVS/p4KWT8Z6uZGSpnn7SnqsR0REecfghzBmiImJwW+//YZVq1bhwoULnNZFZCSnlkw0WVshQYNN0g5zyh1T5FTQ8gGAviv+MUk7RESkP4OLk8OHD+Onn37Ctm3bULZsWXTr1g2rV6/Oy9iI6P/VK+1gsrbqlLAySTvMKXdMkVNBywcA4NHINO0QEZFBJCGEyOnKDx8+xNq1a/HTTz8hISEBPXr0wLJly3DhwgVUr17dmHGaXWxsLJycnBATEwNHR0dzh0OFhBACKSmGT2FRKpU5flCqqdrKbTumbEtu7eS2rYKWjz5tmTInorzA7x1UWOX4zEn79u1x/PhxdOzYEYsWLUK7du1gYWGBZcuWGTM+okJNkiTY2NgUqLaYk/zbKmj5mLIdIiLKnRwXJwcOHMDIkSMxdOhQeHl5GTMmIiIiIiIqhHL8EMZjx44hLi4ODRo0QOPGjbF48WI8efLEmLEREREREVEhkuPipGnTpli5ciUiIiIwePBgbNy4EaVLl4ZGo8HBgwcRFxdnzDiJiIiIiKiA0+uC+NfduHEDq1evxi+//IIXL17Az88Pu3btysv4ZIMXphEREZGp8HsHFVY5PnOSlSpVqmD27Nl4+PAhNmzYkFcxERERERFRIZSrMyeFCY9gEBERkanwewcVVrk6c0JERERERJRXWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkC5bmDiC/SU5OhrW1td7bKZVKSJL01vWEEEhJSTEkNL3aMWVb+aUdU7Ylt3ZM2ZYpcyIiIqL8hcWJnvr37w8rKyu9t9uyZQtsbGzeul5KSgq6d+9uSGh6tWPKtvJLO6ZsS27tmLItU+ZERERE+QuLEz1diIiHwkK/bqtX2kH/dp6k6b1NnRL6F00AEPYoTu9t5JyTIfkABS8nQ/IBTDj2HpzRfxuPRvpvQ0RERPkGixMDNB0WCAvLt0/tUqtScWrJRIPb8R2/HAor5VvX06SlICRosMHtAAUvp5zmAxS8nHKbD2C6nH4dVBdKq7df+paSpkHfFf8Y3A4RERHlDyxODGBhaQ0L67d/ccsthZUSltZvn76iyoO2ClpOpsoHYE65obRSwMbKIpd7ISIiooKCd+siIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBUtzNh4YGIht27bh+vXrsLW1RbNmzRAUFIQqVapo1xFCICAgACtWrMDz58/RuHFj/Pjjj6hRo4Z2nRUrVmD9+vUICwtDXFwcnj9/Dmdn50zt/fHHH/j2229x8eJF2Nvbw8fHB9u2bdM77pDvhyM59hkkSQErW3vU7z8RRctVRXJMNE4tm4T4/x7Awsoa9fpNMKhfMhz8pieSY57+fztF0GT4bBSrWAtJL57g6OyhiIu4A4WVNRoP/S5X7bwppys7V+LOsV2Ii7wHnzGL4FaziVFyurBhLsL/2ojYR7fw3rT1KFWvRa5zOhI4CEnatoyTk9CocWSGP2Ie3oSl0ha2RV3RbOQ8OLh54smNMPy9bCLSkuIhSQrUHzA1V/mYatwBpht7HX84g6i4VCgkCQ42lljUtwa8PZ0QFZuC/ivP41ZUApRWFljQu3qucyIiIiL5M2txEhISguHDh6Nhw4ZQqVSYNGkS2rRpg6tXr8Le3h4AMHv2bMybNw9r165F5cqVMWPGDPj5+eHGjRtwcHAAACQmJqJdu3Zo164dJk6cmGVbv//+Oz7//HPMmjULrVq1ghACly5dMijupsO+g61zcQDAw3OH8PfKKWg3czPOb5qP4pVqo+X4ZYi+dRnHF4yGk0dlg9oAAN/xK2Dn4goAuHfyDxyf9wU6/xiCc6sDUKJaA7SdtRVPboTh8PT+KFo+d1/essvJtUZjeDZphzMrp+Rq/xmyy8m9ri/K+3bF8R9G5Ek7APDOyO9hbe8IwLg5ebXrh7JN20OSJFzduQInFoxC21m/49C3/eD7v2Vw934XL+7/i30Tu/z/78nKoHZMNe4A0429XwfXhZuTDQBgR1gkBqy+gLAAH0zYch1NKjpj39jGOHv7Bbr9eA61yjjwVC8REVEBZ9biZN++fTqv16xZg5IlSyI0NBQ+Pj4QQmD+/PmYNGkSunbtCgBYt24dXF1dsX79egwePBgAMGrUKABAcHBwlu2oVCp8+eWXmDNnDgYOHKhd/uoZGn1Y2zlof05NjIckSQCAB6f344P56TkVq1gTNo4uSI2PAeBoWDtFnF62kxALSOlfze4c3YHu684DAEpUqQcb5xJIiXsBlHQ1qB0g+5yKV6pt8D6zbCebnEpWbZCn7QDQFiaA8XKSFBYo06C1dt8lqzXEle3LkBL7DClxz+Hu/S4AwNmzMqztHZH84ingWsagtkw17gDTjT1nu5eFWkxiGhSK9Jw2n32MO7NbAQAaVnBGSUclniWkobhBrRAREVF+Ydbi5HUxMTEAABcXFwDAnTt3EBkZiTZt2mjXUSqV8PX1xcmTJ7XFyduEhYXh0aNHUCgUqFu3LiIjI+Ht7Y3vv/9eZ3rYq1JSUpCSkqJ9HRsbq/P+qaVfI+rqGQBAi/HLkBL3AkII2Di6aNexK14K8f89yFGM2QmZPQSRF44BANrM3Irk2GcQQqM9gg4ARUp6IC7iTq7aATLnZCyv52RMpsopw5Udy+HZpB1snIrB1rkE7h7bhXLvdkLU9XOIfXQbjqXK52r/php3gOnGXv+V/+DItWgAwL6xjREdnwqNECjhqNSuU7aYLW5HJeSqHSIiIpI/2cySEEJgzJgxaN68OWrWrAkAiIyMBAC4uuoelXV1ddW+lxO3b98GAEybNg2TJ0/Gnj17ULRoUfj6+uLZs2dZbhMYGAgnJyftPw8PD533mw6dhc6L/kKt7iPwz/q56Qv//0j2K0nlOMbs+I5bhp6/XUE9/8k4uyp9GpKE19pB7tsBssnJCLLKyVhMlRMAXNgwF7GPb6O+/2QAwHvTfsONfT9j53BfXN+9GiWrN8o8RvRkqnEHmG7s/fx5XTyY9x5mdK2C/226mmU7eZQSERERyZxsipMvvvgCFy9exIYNGzK9J0mvf1ERmZa9iUajAQBMmjQJ3bp1Q/369bFmzRpIkoQtW7Zkuc3EiRMRExOj/ffgQdZHoiv4dEbU1bPa18mxL4udxOgIWFjb5DjON/Hy+xgRF45rXye9eKr9OT7qISyUtnnSDvAyp5S4F3m2z6xk5PRqnxmLsXO6tGUR7p7YgzYztsDSxg4A4FKhJtrO3IrOP4bA539LkfQsEla2RfKkPVONO8B0Y++T5h44cj1a+/pJ7Mszl/efJcHG2iJP2iEiIiL5kkVxMmLECOzatQtHjhxBmTIv5+O7ubkBQKazJFFRUZnOpryJu7s7AKB69ZcX7iqVSlSoUAH379/PchulUglHR0edfwCgUauQ9PyJdr0HZw/BuogTrIs4wbORH8IPbgQARN+6jOSYaJ25+/rQqFRIjH6Z990Te6B0dIHSoSjK+XTGtd2rAABPboQh6XkUlA7OBrXztpzy0ptyymtpSfFIfB6lfW2snADg6o5luB38O9oFbofylf0nPvtP+/ONvetgaWMH5SvTr/RhqnEHmG7spak1ePwiWft6e2gEihWxhou9Fbo3dMePh+8CAM7efoH/YlLgYm/YjQSIiIgo/zDrNSdCCIwYMQLbt29HcHAwypfXnY9fvnx5uLm54eDBg6hbty4AIDU1FSEhIQgKCspxO/Xr14dSqcSNGzfQvHlzAEBaWhru3r2LsmXL6hezWo0Ti8ZCnZYKSaGA0qEofL/6EZIkoc7Ho3F6ydfYPaYDFJZWaPT5t/j3wHq99p9Bo07DkZmfQpOWAkgK2DgVh9+3GyFJEhoOnIaQ2UOw9dP6UFhao/mYRbi2c4VB7aTnpMo2pys7VyH84AakxD3H6eWTYWFlDcfSFfM8pwsb5+Ha7tVIjnmKY3OHw8JKCeeyVWHona3SEuNxcskEqFOTjZqTKiUZ51YHwMG9HP4c9wEAQGGlRKeFf+HG3rW4dXgLIAScPCujxdc/4czySQa186bfUV6OO8B0Y0+lFuixJAwpaRooFEAJByX2jGoISZIQ1L0a+q38B17jD8PaUoGfBtTGwr/uGpwTERER5Q9mLU6GDx+O9evXY+fOnXBwcNCeIXFycoKtrS0kScKoUaMwa9YseHl5wcvLC7NmzYKdnR169+6t3U9kZCQiIyNx8+ZNAMClS5fg4OAAT09PuLi4wNHREUOGDMHUqVPh4eGBsmXLYs6cOQCA7t276xWzhbUSLccvg4W1MtN7tk7F0XLiyy9q6tQUg78kWipt4Td9EyyzmJ5jW7Qk2gW+fD6LKjU5V8WJhbUNfL/6McucanT+DDU6f6Z9rU5NwfGFYw1q50051ek1BnV6jdG+VqUm48gMf4PaAQC7Ym5oOz3zFEEgr3OyQf/dEVnmVLfveNTtO177WpWanGmdnHrT7ygvxx1gurFna22BPaMbwcYq83QtVyclDnz18vkzyWlqFidERESFgFmLk6VLlwIAWrRoobN8zZo18Pf3BwCMGzcOSUlJGDZsmPYhjAcOHNA+4wQAli1bhoCAAO1rHx+fTPuZM2cOLC0t0a9fPyQlJaFx48Y4fPgwihbN+ylFRERERESkP7NP63obSZIwbdo0TJs2Ldt13vY+AFhZWeH777/H999/r2eURERERERkCrK4IJ6IiIiIiIjFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgVLcweQH6lVqXm6XnY0aSlQ5XC93CpoOekTZ0HLKbf5AKbLKSVNk6frERERUf7G4sQAp5ZMNEk7IUGDTdIOUPByMlU+AHPKjb4r/jFJO0RERJQ/sDjRUx33IrCysjJ+OyWM30aGeqUdTNKOqXIyVT4Ac8oVj0amaYeIiIjyDUkIIcwdRH4QGxsLJycn/Pfff3B0dNR7e6VSCUmS3rqeEAIpKYZPlclpO6ZsK7+0Y8q25NaOKdsyZU5ERPlVxveOmJgYg753EOVXPHOiJxsbG9jY2Bht/5IkGXX/5miroLVjyraYExERERUmvFsXERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLPBuXTmUccfl2NhYM0dCREREBV3G9w0+8YEKGxYnORQXFwcA8PDwMHMkREREVFjExcXBycnJ3GEQmQwfwphDGo0Gjx8/hoODg9keABcbGwsPDw88ePCAD2TKQ+xX42HfGg/71jjYr8bDvtWPEAJxcXEoVaoUFArOwqfCg2dOckihUKBMmTLmDgMA4OjoyA92I2C/Gg/71njYt8bBfjUe9m3O8YwJFUYsxYmIiIiISBZYnBARERERkSywOMlHlEolpk6dCqVSae5QChT2q/Gwb42HfWsc7FfjYd8SUU7wgngiIiIiIpIFnjkhIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOZCIqKgpqtdrcYRDpJT4+3twhEBERUQFiae4ACjMhBNLS0vDFF1/g7NmzWLRoEZo3b27usAqM//77D+fOnUP79u0hSZK5wylQIiIi8NVXXyE2NhYlS5bE8OHDUa9ePXOHle9FREQgMDAQtra2KF26NEaOHGnukAqMyMhIrFixAsWLF0e5cuXQvn17c4dUYERERGD69OkoVqwYKlasCH9/f3OHRET5GM+cmJEkSYiKisKuXbvw5MkTHD58GDExMQDSCxcy3OLFi1GqVCl88MEHuHLlirnDKVB+/fVX1KxZE6mpqXj//fdx+PBhBAUFITIy0tyh5WvTpk2Dl5cX7t27h6ioKIwaNQrTp08HwM+D3Jo+fToqVaqEM2fOYO3atejSpQvWr18PgH2bW9u3b0fVqlVx9+5dXL9+HQMGDMCQIUNw48YNc4dGRPkUixMzS0tLQ8eOHdGvXz/8+uuvOH36NADwSL+BhBDYu3cvduzYgdmzZ6Nu3boICAiARqMxd2gFglqtxs8//4wxY8Zgy5YtGDZsGIKCghASEgJbW1tzh5cvqVQqBAUFITg4GFu3bsXOnTuxZs0aTJ48GWvXrgXAzwNDqdVqBAUFYe/evdi8eTP27NmDQ4cOYcyYMZg4cSIA9m1urVu3Dp9++in27t2LLVu2YM+ePQgNDcX333/Pwo+IDMLixMwePnyIixcvIjAwEPb29tiwYYP27AnpT5IkuLq6ol+/fhg8eDB++OEH/P7779i/f7+5QysQLl26hNu3b6NUqVLaZYmJiejWrRvHrYEsLS3RpEkTTJ06FW3atNEuT0tLw5AhQ5CUlGTG6PI3CwsLpKamolWrVmjXrh0AwMHBAb6+vrC0tMStW7fMHGH+FhERgVu3bsHDw0O7rH379ujVqxfCwsK0xTURkT5YnJhAampqtl8wHj58iOrVqwMAJkyYgKNHj2LDhg0YNGgQIiIiTBlmvhQXF4ejR4/i5s2b2mX169fHJ598giJFisDHxwfdu3fHpEmTEBcXZ8ZI859Xx23Gmafq1aujWLFiWL16NVasWIEePXpgwIAB+Oeff1C7dm2MGjUKUVFR5gxb9mJjY3H69Gk8evRIu8zX1xctW7aEQqFAbGwsPvzwQwQFBWHjxo2oU6cOtm7disTERDNGnT8kJCQgPDwcsbGx2mVfffUVZs6cCYVCoT2S/+zZM9jY2KBixYrmCjXfefXzIKMfS5YsiZiYGO3ng0qlAgD06tULlSpVwq5du/DixQuzxEtE+ReLEyMLCgpCrVq1cPToUZ3lGR/msbGx2g/vnj17wtLSEiNHjsS5c+cgSRJPi7/B9OnTUbFiRYwZMwa1a9fGvHnzdL6UZPRxYGAgrl+/zqN4enh93CoUCqhUKlhbW2PBggXo0aMHdu7ciVu3buHMmTPYt28f5s+fjzNnzmDJkiVmjl6+AgMD4eHhgc8//xzVq1fHggULtEWKRqNBWloatm7dirS0NBw7dgxr166Fn58fpk6diuDgYPMGL3PTp09HrVq10KNHD3h7e2Pv3r0AoJ1uqNFotFO4Tp06hbp16wJIP0NFb/b654EkSVCpVLCwsED37t2xfPlyqNVqWFpaQgiB0qVLw8fHB3fu3EF4eLiZoyeifEeQUURHR4shQ4aI2rVrC0dHR9G1a1fx5MmTTOt9/fXXYsmSJeLgwYOidOnSokyZMsLFxUV8//33Ii0tzQyRy9+tW7eEn5+fqFWrlti3b5949OiRCAgIECVKlBAPHz7McpvJkycLV1dX8eDBAyGEEAkJCSI+Pt6UYecLbxq3Go1GZ93WrVuLxYsX6yxr06aNGDJkiEhNTTVZzPnF3r17RbVq1cT27dvF7du3xcyZM0WNGjXEgAEDdNZLSEjItG3RokXF+vXrTRVqvnL37l3RqVMnUaNGDfHHH3+IQ4cOiU8++US4u7uLyMhInXUzxmXDhg3FvHnzdN57fXxTzv6OXbt2TTg6Ooq5c+cKIYRQq9VCCCFiY2OFQqEQp0+fNnncRJS/8cyJkcTExMDR0RGBgYH4448/sH37dvz111/ao/kZ/7WwsMDw4cPRtWtXDBo0CA8ePEDfvn2xbt06HD9+3JwpyNajR4/QrFkzbN++HW3btkWpUqXw2WefwdHRMdttJkyYABsbG8yZMwe//PIL2rZtqz2ySi+9ady+euHwvXv3cPPmTTRu3Fi7LDExEbGxsfD09ISVlZU5wpe1ffv2wcbGBh9++CHKly+Pr7/+GkOGDMGJEyewcuVKAOkXcL9+Y4Fz587BwcEBRYsWNUfYsnf69Gm8ePECW7duRfv27dGqVSusXbsWCQkJOHPmjM66VlZWePDgAe7evYuuXbsCSP+99O7dG/fu3TNH+LL2tr9jAFC5cmWMGzcOU6dORWhoKBSK9K8VN27cgIeHB284QET6M3d1VFCpVCpx79497esePXqI2rVrizt37uist2vXLhEUFCT+/fdf7bKoqChRrVo1ERISYqpw85XU1FTtGZCM1126dBHNmzcX06dPF//++6/26F3Gf4UQYurUqUKSJGFtbS0mTpxo8rjzg5yOWyGEqFu3rvD19RW//PKLCAsLEx07dhQ1atQQFy5cMGHE+YNarRZDhw4VvXr1EsnJydrljx8/FoMHDxZ16tQRcXFx2uUZR/Fv3LghOnbsKLp166bzPr3so2fPnoktW7bovBcZGSmqVKkiDhw4kGm7X3/9VbRu3Vo8ePBAvP/++8LS0lKMHTvWJDHnNzn9PNBoNKJly5bC29tbjBs3Tpw4cUK0atVKtG7dOsszgUREb8LixMgy/oBGR0cLKysrERgYqPPlRKVS6ayf8TolJcV0QeZj165dE3Z2dqJhw4ZiypQpwtvbWzRt2lSsXr1au058fLwYPny4kCRJDBw4UDx//tx8AecTbxq3GWP0xo0bon79+qJKlSqiQoUKokePHuLZs2dmi1muMvoyMDBQeHh4ZHmAokGDBmLlypVCiPTxGhgYKD777DNRpEgR8fHHH4uYmBhTh50vvD4VK+NgxNWrV0WxYsV0DvpkrNu/f38hSZKwsrISHTp0EE+fPjVdwPnUmz4PMvr86dOn4uuvvxbe3t6icuXKomvXrvysJSKDcFpXLkRFRWV5wfqryzIuHHRxccGkSZMwb948XLt2Tft+xinwjG0sLCwAANbW1sYMPd96vb89PDywf/9+nD59GgEBAfj777/h7OyMM2fOIDU1FQDw9OlTODg44NixY1i1ahWcnZ3NELl8nDt3DsnJyQB0+zOn49bCwgIqlQqVK1fGX3/9hT/++AOHDh3Cpk2bOPUoCxlTYEaNGoWYmBj89ttvOu+3aNECCoUCT58+BQDY29ujRIkSSE5ORnBwMNavX//GKYuFTVafua87evQoypcvDy8vr0zrW1paombNmjhz5gz27NmDYsWKGSvUfC2nnwcKhQJqtRrFihXDzJkzERISguDgYPz++++F/rOWiAwjiZx80pOOO3fu4Msvv0SxYsXw1VdfoUaNGtr3VCoVLC0tAaTPH7ewsND+FwDKlCmDDh064LvvvsO5c+cQGRmJfv36mSUPOYqIiMDdu3fh7u6OcuXK6bz3at9m/CyE0M5p1mg0UCgU8PHxgYuLC3bs2GHi6OXt9u3bGD16NHbv3o21a9eif//+2vf0HbcRERE62xdmOR2zADB37lwEBATg8OHDaNCggXZ53bp10bRpU+2dzl4d14XZvXv3sG7dOpQtWxZVq1ZF48aNtf+fZzVmM/qtb9++cHV1xdy5cwGkP58HAGrVqoX4+HgUKVLEbDnJxcOHD7VFXLVq1eDs7KztP/4dIyJz4pmTHMqo4X7++WfUr18ftra2GD58OIoXL67zfsYX5vHjx2Pjxo3QaDTaD3YAWLRoEVavXg1fX1+0bduWz954xahRo1CrVi18+eWXqFGjBpYsWaLzYL9X+3bTpk2ZLtJWKBQ4c+YMJEnC559/bo4UZEkIgWHDhsHLywsA4OTkpP1ylnFUX99xGx8fb55kZEafMfvrr79i7NixqFy5MiZMmKC9IUNYWBiEEOjSpYt2OxYm6TexqF69Ok6fPo3vvvsOH330Ea5evap9XklWYxZIv4g7NDQUbdu2RUREBHr06IE6derg/v37AFDoCxMhBL788ktUr14dK1asgJ+fH8aMGYOIiAjtuOPfMSIyJxYnOSRJEjQaDTZs2IBvvvkGmzZtQoMGDeDg4KB9HwDWrl2L4sWL48CBA6hdu7Z22paFhQUePXqE06dPQ6PRoEaNGrh//z6GDRtmtpzk4v79++jUqRPOnDmDXbt2YfPmzRg2bBiWLl2qc7eddevWZdm3165dw6VLlzBlyhS0b98e1atXR8uWLc2Vjqzs2LED9vb2CA0NxcmTJ7Fz505Uq1YNf/75J4CX4za7vuW4zZohYzbjDOsvv/wCR0dHdOnSBW3btsW7776LatWq4Z133jFXOrKzbds2/PXXX9izZw/27t2LDRs2wMPDA7t37waQPm6zGrOSJCE8PBwvXrzA9u3bUbFiRcTExODu3bvo0KGDmbMyv7t376JVq1YIDQ3FgQMHsH//fvzwww84e/Ysrl69ql2PnwdEZFYmurYlX3r9YstDhw4JLy8vkZaWJk6cOCE6deok2rZtK4YPHy5OnTolhBBi2rRpYsmSJZkudE9JSRGjRo0SLi4u4siRI6ZKIV/4448/RM+ePcW5c+d0lru5uYlNmzYJIYSIi4sT06dPF0uXLs3Ut6tWrRJ169YVDRs2FIcOHTJZ3HL16rhdsWKF+P3337WvExMTRd++fUXXrl21d9GJj4/Ptm85bl96tV/37Nlj0JjN2EdMTIw4cOCAWLx4sTh+/LiJMpCv1z9r+/fvL5o3b66zzNfXV3snOI1GI6ZNm5blmF20aJGQJEk0atQoy7t1FTav9m14eLiYP3++uH79unZZVFSUqFOnjvauXElJSSIgIICfB0RkNrzmJBtJSUlQKBRQKpXaZX///Tc6dOiAVatWYebMmXjvvfdgY2ODw4cP49KlS7h69Src3Nyy3ed///0HV1dXU4Qva+K1ec2PHz/G3bt30axZMwDpU43UajWaNm2KMWPGoHfv3trlGUfwXt1Pamoqzp8/j0aNGpklHzl5fdy+2mcZc8ZHjx6Nw4cP48KFC9o+fL1vX8Vxm7lfHz58iPv37+s9Zimz1/tWpVJh9uzZWL58OTZs2AB3d3d8+eWXOH78OBo2bIjKlSsjKCgIdnZ2OvvJGMtxcXH4/fff4e/vb4Zs5OX1vk1OTkZycrL2QvX//vsPffv2xePHj9GkSRN07twZnTp1euM++XlARMbGv5pZmDhxIpo3b46OHTti4cKFiI2NBZD+x8/b2xuzZs2Ct7c3Zs6cialTp2LPnj0oXbo0vv76awDQzst9HT/QgXnz5mHWrFkAXs5rLlWqlM6XPIVCgYiICNy4cQM1a9bUbvv6l7yMKUnW1tYsTJB53MbFxUGhUGjn4mf0l5+fH+7evYv79+9rl73pC3RhH7ev92tMTAzKlClj0JglXVn1raWlJT788EM0bdoUgYGBqFSpElQqFbZs2YK2bdvizz//xKBBgwBA52GAkiRBCAEHBwcWJsj675iNjY22MAkPD0e5cuVgZWWFcePG4cWLF/jf//6n/Xx+tW9fVdg/D4jIBMx2zkaGUlJSxEcffSSqV68uNm7cKPr37y+qV68u3n//fSGEEAkJCaJLly5CkiSxYsUKIcTLZz6sXr1alC5dmg9Ky8aZM2dEixYthCRJol69euLkyZNCCN2HJL5qw4YNolatWlm+//oUkMIuu3HboUOHLNffuXOnKF++PKcTvUVO+zVjPHLM5tzbPmuFSO+z3377TbRv317ExsZql+/cuVPY2dmJJ0+emCN02dPn8+D8+fPan1UqlRg7dqxo1qyZSExMNGXIREQ6eFjvFbdu3cKFCxcwf/589OzZE+vWrcOKFSsQHByM7777DnZ2dvj888/h4uKCLVu2AHj5XJLw8HB4eXlp7yRDuvbv34/ixYvjp59+0v4XQLb9FRoaiqZNm2qPPB85ckTnYlh6Kbtxe/jwYcyZM0fbvxlHQps3b45Hjx7hxYsXOstJV077NQPHbM696bN2zpw5UKvVkCQJly9fhlKp1N54BEi/lXuZMmWQmJhoxgzkS59xW6dOHe3PFhYWuHnzJpydnbVntYmIzIHFySuSkpJw8+ZN1K9fH0D6NK533nkHU6ZMwXfffYfbt2/j/fffx4gRIxAWFoYpU6YgPDwcN27cwKlTp9CqVSvY2dnxi8grMv7A9e/fH2PGjIG/vz9atmyJS5cuaQu81/8IqtVqHDp0CK1bt8adO3fQunVrtGvXDklJSSaPPz9407gNDAzEzZs3AUDnjjtNmjTBkSNHdJaTrpz2qyRJHLN6elvf3r59G0D6NRKxsbHYu3cv1Go1rl27hm3btsHPzw+enp7mTEG2cjpuX3f69Gk8f/4cffv2hZWVFf+OEZHZ8FvJKxQKBapXr47169frLB87dixcXFywaNEiAMCQIUMQGBiIRYsWoWvXrmjYsCEqVKiAcePGmSNsWcv4A+fp6YmmTZsCAHr06AF3d3esX78ez58/17kuAgCuXLmCmzdvYu3atahcuTJKlCiBp0+fokePHmbJQe7eNG6dnZ2xfPlyAOkXGgPpz3mIiIhAQkIC0tLSTB5vfpHTfgU4ZvX1tr7NeBhlr169UKRIEXTp0gXt27dHo0aNUKlSJXz//ffmCDtfyOm41Wg0uHr1KkJCQjB06FC0adMG9erVw0cffWSOsImItFicvKJs2bLw8vLC8ePHtQ+kUqlUsLKywhdffKF98J+rqys+//xzXLlyBatWrUJYWBh++uknnTt7UdaEEKhQoQI++OADREREYO3atQB0j96Hh4cjPj4eKSkpOHv2LDZu3KgzrYN0vW3cbtiwARqNBpaWlto7dn3zzTcYPXo0rKyszB2+Wb3pYZI57VcAuHnzJsfsa3LTt5s2bYJarUajRo2wdOlSbNq0SftcmdWrV8PGxsaEmeQvOR23CoUCFy9exJw5c3D79m0cP34cP/zwQ6H/TCAi8ys0xcmVK1cwbtw4/Pvvv5neyziiXLRoUXzwwQe4fv06Nm/eDCD9jlJA+lO1XVxc8ODBA+00pFKlSqFx48aoVKmSibKQp5z0bYaMO5l99NFHqF69Ovbs2YPw8HAAwLlz5wAAjRs3xqFDh3Do0CF4e3sbN3iZ+/fffzFkyBAcO3Ys03s5HbdFixbFgwcPALy8Rqpfv36oXLmyKVKQpX///RctWrRAQEAAAN077OnTr/fu3QMANGvWjGP2/+VF32Z81gKAu7s7PvzwQwwfPhzVqlUzZSqy8+DBA4SGhuLx48eZ3jNk3Hbu3BmLFy/G/v37Ubt2bRNlQUT0ZgW+OElNTcWnn36KWrVqITk5GeXKldO+l1FkWFpaIjk5GRs3bsSAAQPg7e2NTZs2aefkA+nPNShRogTKli3Lubj/L6d9m5aWhnXr1mlfazQaODo6onv37tBoNAgICEDr1q3RqFEjREdHo0yZMoX+Ce8ajQajR4+Gt7c3EhISEBcXp/MeoP+4pfQx+8knn6BGjRo4d+4cgoODAaQXbYb0a/ny5QEAbm5uhX7M5nXfvvp5UtilpaVh8ODBqFevHgYMGIA6dergxIkTAAz7PMgYt7a2tuxnIpIfk98fzIRWr14tHBwcRLNmzcTFixd13nv11p4LFiwQLi4uonPnzkIIIS5cuCD69OkjrK2txdChQ8WgQYOEg4ODWLp0aaZtCyt9+7Zbt27i2bNnOuvdu3dPVKxYUUiSJHr16iUiIyNNEnt+sGfPHvHOO++I4ODgbNfhuNXP9OnThb29vfDx8RHXr18Xs2fPFo0bN850S1r2q/7Yt8YTFxcnOnXqJFq2bCnCwsLE9evXRZs2bYSvr6/OeuxbIiooCnRx0qxZM1GtWjXx/PlzIYQQoaGhYu/eveLGjRsiKSlJCCHEokWLRLly5cRvv/2m83wCjUYjZs2aJT7//HPRvn17ceLECXOkIFv69u3rfwgPHTokihQpIry9vcW5c+dMHb7sffjhh2L48OFCCCGCg4PF5MmTxZo1a8S9e/eEEEKsXLlSeHp6ctzm0OXLl8U777wjNm7cqF22e/duYWlpKaKjo7XLlixZIsqXL89+1QP71rj+/vtv4eXlJQ4fPqxdtnLlStGpUyft5+rixYv5d4yICgxJiIJ3M3OVSgVLS0ucOnUKffv2xSeffILQ0FBcvnwZtra2ePr0KXx8fLB582aoVCqkpKTA3t5eu70QglO3spHbvs0QHR2NAwcO4OOPPzZDFvIWFxeH9u3bY8yYMbh69SoWL16Mxo0bIywsDBYWFlixYgX8/PyQmJgIOzs77XYct5ll9EnGjQBedebMGfTs2RNz585F165dAYCfB3pg35rGiRMn8O677+L48eNo1qwZnj59Cj8/PzRp0gTe3t4YPHgwNBoNkpOT+XlARAVCgbnmZO/evQDSP5AzHiDVtGlTtGjRAoGBgXBxccG2bduwYcMGrFq1Crt370ZAQAAsLS0zfXnmB7quvOzbjP0UK1aMhQl0+zaDg4MDVCoVVq1ahRs3bmDbtm3YunUr7t27h8qVK+PHH3/EtWvXdL6IABy3r3q9X1//8gwAxYsXR1JSkvZ2yhl3NOPnwZuxb40nq8+Dd955By1btsSnn36K999/H66urnBzc4O1tTUmT56M7t274/Lly7Czs9PZjn1LRPmWic/U5Lk9e/aI0qVLC0mStKesNRqNUKlUQgghnjx5IiZPniwePXqks93cuXNFsWLFRGpqqsljzi/Yt8aTXd9mTNP46aefhCRJonLlyiIqKkq73bFjx4S7u7s4efKkWeKWu+z69XUZy7y9vcXIkSOzXY9eYt8aT1Z9q1artVO04uPjRXh4uGjWrJn4/vvvtdudP39eVKhQQWzevNkscRMRGUO+PnNy/PhxLF68GF26dEG7du3w5ZdfAkg/YmRhYQEhBIoXL46JEyeiVKlSOtuWKlUKGo0GN27cMEfosse+NZ439W3G0c4mTZrA19dX+2ySDPXr10dsbCwePXpkltjl7E39+jpJkpCUlISqVavi0aNHSE5O5pHmN2DfGk92fatQKLTPf7K3t0dcXByio6PRv39/7RmSGjVq4NmzZ7h//77Z4iciymv5sjjJ+GB2dXVFmzZtMGbMGEyfPh1Xr17F6tWrAaRPI8j4g/j69BcAOHr0KFq2bImaNWuaLvB8gH1rPDnp24xCpHLlyhg1ahRu3bqFZcuWaYuR3bt3o3bt2vDx8TFPEjKU0zH7OltbWzg7OyMiIgI2NjZZrlPYsW+NR9++tbOzQ3h4OB48eKD9/N2zZw8qVKiAVq1amT4BIiJjMds5GwOEhoaKFy9e6CzLmGKUlpYmxo4dK0qUKCGSk5Oz3P7OnTvi5s2bYuDAgcLT01Ps2LFDCMEpB0Kwb41J37599W47CxcuFKVKlRJVqlQRXbp0Efb29mLmzJmmC17GcjNmM/p4y5YtwtraWjx+/Nj4Aecj7Fvj0bdvMz5Do6Ojxccffyzs7OzEkCFDRP/+/YWDg4OYMmUKP2eJqEDJF8XJ1q1bRZkyZUTFihWFp6enmDJlioiIiBBC6M7Tv337tvDw8BBjx47Vvpfh+vXrYvjw4aJkyZKiRYsW4saNG6ZPRIbYt8ZjaN++WpwIIcTp06fFkiVLxMSJE9m3Im/GbIaff/5ZDBkyRMTExPALnmDfGlNefB4kJiaK//3vf8Lf31/079+fnwdEVCDJvjg5e/asqFq1qpg/f764cOGCWLJkiShRooQYOnSo9h76GUedNBqNWLJkibC0tBS3b98WQgiRnJwsUlJShEqlEvv37xdHjx41Wy5yw741ntz2bUpKioiNjTVb/HKVF/2akJCg3d/rhWBhxr41nrz4rH318yAtLc30SRARmYhsi5OMo0hLly4VZcqUETExMdr3Fi9eLJo0aSKmT5+eabvo6GjRrFkz0blzZxEaGir8/PzEL7/8wiN3r2DfGk9e9W2bNm3Yt69gvxoP+9Z42LdERPqT7QXxGRf83blzB5UrV4alpaX2PX9/f9SvXx9//vknrly5AuDlhcQuLi74/PPPsWvXLjRs2BBKpRJdu3bl3WJewb41nrzqW2tra3Tr1o19+//Yr8bDvjUe9i0Rkf5kU5wcPHgQI0eOxIIFC3DmzBnt8nfeeQcnT55EZGQkgPQPb3t7e3Tu3BmSJOHAgQMA0h8ElpqaiiVLlmDgwIHw8fHBxYsXsXv37izvKFWYsG+Nx5h9a2tra5ac5ID9ajzsW+Nh3xIR5Z7Zi5OIiAh88MEH6Nu3L549e4bVq1ejTZs22g/2Nm3aoFy5cggKCgLw8kiUn58fFAoFbt68qd3X8+fP8e+//2LNmjUIDg5GjRo1TJ+QjLBvjYd9axzsV+Nh3xoP+5aIKA+Zc05ZQkKC+OSTT0TPnj21F/4JIUTDhg2Fv7+/ECL9IsGff/5ZKBQK7ZNzM/Tp00e0bNnSpDHnF+xb42HfGgf71XjYt8bDviUiyltmPXNiZ2cHpVIJf39/lC9fHiqVCgDQsWNHXLt2DUD6ae4ePXqgc+fO+OyzzxASEgIhBCIjIxEeHo4+ffqYMwXZYt8aD/vWONivxsO+NR72LRFR3pKE+P/H1JpJWloarKysAKQ/MVeSJPTr1w+2trZYsWKFdllycjLef/99XL16Fd7e3rh8+TI8PT2xefNmeHh4mDMF2WLfGg/71jjYr8bDvjUe9i0RUd4xe3GSFR8fHwwYMAD+/v4QQkCj0cDCwgL//fcfLl68iLNnz6JcuXLo3bu3uUPNd9i3xsO+NQ72q/Gwb42HfUtEZBjZFSe3b99Gs2bN8Mcff6B+/foAgNTUVFhbW5s5svyPfWs87FvjYL8aD/vWeNi3RESGM/vdujJk1EjHjx9HkSJFtB/oAQEB+PLLLxEVFWXO8PI19q3xsG+Ng/1qPOxb42HfEhHlnuXbVzGNjFsrnjlzBt26dcPBgwcxaNAgJCYm4pdffkHJkiXNHGH+xb41HvatcbBfjYd9azzsWyKi3JPVtK7k5GTUqlULt27dgrW1NQICAjB+/Hhzh1UgsG+Nh31rHOxX42HfGg/7logod2RVnADpD6Xy8vLCvHnzYGNjY+5wChT2rfGwb42D/Wo87FvjYd8SERlOdsWJWq2GhYWFucMokNi3xsO+NQ72q/Gwb42HfUtEZDjZFSdERERERFQ4yeZuXUREREREVLixOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiHLA398fkiRBkiRYWVnB1dUVfn5++Omnn6DRaHK8n7Vr18LZ2dl4gRIREeVjLE6IiHKoXbt2iIiIwN27d/Hnn3+iZcuW+PLLL9GxY0eoVCpzh0dERJTvsTghIsohpVIJNzc3lC5dGvXq1cPXX3+NnTt34s8//8TatWsBAPPmzUOtWrVgb28PDw8PDBs2DPHx8QCA4OBgfPrpp4iJidGehZk2bRoAIDU1FePGjUPp0qVhb2+Pxo0bIzg42DyJEhERmQmLEyKiXGjVqhXq1KmDbdu2AQAUCgUWLlyIy5cvY926dTh8+DDGjRsHAGjWrBnmz58PR0dHREREICIiAl999RUA4NNPP8WJEyewceNGXLx4Ed27d0e7du0QHh5uttyIiIhMTRJCCHMHQUQkd/7+/njx4gV27NiR6b1evXrh4sWLuHr1aqb3tmzZgqFDh+Lp06cA0q85GTVqFF68eKFd59atW/Dy8sLDhw9RqlQp7fL33nsPjRo1wqxZs/I8HyIiIjmyNHcARET5nRACkiQBAI4cOYJZs2bh6tWriI2NhUqlQnJyMhISEmBvb5/l9mFhYRBCoHLlyjrLU1JSUKxYMaPHT0REJBcsToiIcunatWsoX7487t27h/bt22PIkCGYPn06XFxccPz4cQwcOBBpaWnZbq/RaGBhYYHQ0FBYWFjovFekSBFjh09ERCQbLE6IiHLh8OHDuHTpEkaPHo1z585BpVJh7ty5UCjSL+nbvHmzzvrW1tZQq9U6y+rWrQu1Wo2oqCi8++67JoudiIhIblicEBHlUEpKCiIjI6FWq/Hff/9h3759CAwMRMeOHdG/f39cunQJKpUKixYtwgcffIATJ05g2bJlOvsoV64c4uPjcejQIdSpUwd2dnaoXLky+vTpg/79+2Pu3LmoW7cunj59isOHD6NWrVpo3769mTImIiIyLd6ti4goh/bt2wd3d3eUK1cO7dq1w5EjR7Bw4ULs3LkTFhYW8Pb2xrx58xAUFISaNWvit99+Q2BgoM4+mjVrhiFDhqBnz54oUaIEZs+eDQBYs2YN+vfvj7Fjx6JKlSro1KkT/v77b3h4eJgjVSIiIrPg3bqIiIiIiEgWeOaEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikoX/A+Hw+4DJvOPbAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsvklEQVR4nO3dd1gU1xoG8HcXll1AitgQG9ixiyVBjd3YNWrsN4otxd5uEk2sMRqNWKNGY01i70ZjRUEFKwr2LmIURCV0WGA59w8uqyug7MLuDvj+nofncXdn5jvfYRzm2zlnRiaEECAiIiIiIjIzubkbQEREREREBLA4ISIiIiIiiWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAmW5m5AfpGWloanT5/Czs4OMpnM3M0hIiKiAkwIgdjYWLi4uEAu53fJ9P5gcZJDT58+RZkyZczdDCIiInqPPH78GKVLlzZ3M4hMhsVJDtnZ2QFIP0jY29ubuTVERERUkMXExKBMmTLa8w+i9wWLkxzKGMplb2/P4oSIiIhMgkPJ6X3DQYxERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwLt1ERGRDiEE1Gq1wesrlcoc32HIVLHySxxTxjLV76mg5aNPrNzESUpKMmg9ovyOxQkREelQq9Xo2bOnwetv374dKpVKUrHySxxTxjLV76mg5aNPrNzESUlJMWg9ovyOxQkREWXp0pNYvdfxKGXYA+OCn+t/Ila7mELvdUyVkyH5ANLOCdA/r4KWD2BYTnh8Xv91nOvqvw5RAcDihIiIsuU5fA4sLK3euZwmNRlnlk/KVaxm36yEXKF853JpKWr4zf3C4Dimyimn+QD5JycgZ3kVtHyA3Of05+d1oVS8e6qvOiUN/1l12eA4RPkdixMiIsqWhaUVLKxydoKdW3KFEpZW7x4qk5rLOKbKKaf5APknJyBneRW0fIDc56RUyKFSWORyK0QFH+/WRUREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgRLczeAiIiky2/+CCTFREImk0NhbQuPAd/CydUdseGPcPbX76COjYLCphAaDJ6a61hHp/RGUvSL/8cqhA+Hz0WRirUQ/eQ+Tv38FZJiImFla49GoxfmOtaJOZ8jURvrVV6BG+bgySVfxL94ijYzNuY6zqFJ3ZH477NMOZ1d/g1Czx5E3LPH6Lr8JBzKVMpVnOx+T6/n0+7H7bB3cctVHJGmwYlZXoj+5x4srFSwdiyGRqO8YV+qPJ7fCsTZFd9Ck6KGRp0IyORAscoGx8rud/T6vmepsoWlygaAncFxTLXfdVp4HhGxyZDLZLBTWWJJ/+qoW84Bd8PjMHB1MF7EJcPB2hIrvWrmKg5RfmfW4mTOnDnYtWsXbt26BWtrazRq1Ahz585FlSpVtMskJSVhwoQJ2LJlC9RqNdq2bYvly5ejRIkS2mVGjx4Nf39/XLt2De7u7ggKCsoU6/Dhw5g2bRquX78OlUqFpk2bwtvbG66uribIlIgof/Ic/hOsHYsCAB5f8MG5ld+j/ZydOL9mJiq0+BTlm32C0HNHcH71DFgXLparWM2+WQUbp/Rje4j/fpycPxzdfj2NgMXjUKWDFyp93A8PT+2F/6IxsCninKtYjUfPh5Wtfaa8yjRsA/dOg3Bs5sBcbT9Di+/WQVnIAYBuTq4fdUHNnqNxYEL7PImT3e8pr/MBgErtPkM5zw6QyWS4sXcVTi8ajQ4/74f/4rHwGDAJZT07IP5lGLYPqIPY8iUNjpPd7+j1fS/E/wAurv8RqGj4/mCq/e7PL+rC2UEFANgdGAavNUEIntkMX2y4is+bl4VXkzLYceEphq27ChdHpcFxiPI7sw7r8vPzw4gRI3D27FkcPXoUKSkp+PjjjxEfH69dZty4cfjrr7+wfft2+Pn54enTp+jevXumbQ0ePBi9e/fOMs7Dhw/RtWtXtGzZEkFBQTh8+DBevHiR5XaIiOgVK5tX30inJMQCkCEp+iUiH1yHa5NOAIAyDdsgMfIZUtWJuYv1/5N4AEiJj4FMJkNi1HO8uBuECq16AQBcm3RB/IunSEmKz24zOYv1/5Ne4FVeAFDcvX6uC5/XKbPICQCcazaGbbFSeRYnq98TkPf5yOQWKF2/lTaP4u4NEPcs9P8fyqCOiwEApCYlQCaTQaFQGBwrq9/Rm/te6fqtoElO0jlv0DuOifY7R5tXfRGdmAoZZIiIUeNiSDT+45m+L/SoXxJP/k1EvDrV4DhE+Z1Zr5wcOnRI5/X69etRvHhxBAYGomnTpoiOjsaaNWuwadMmtGzZEgCwbt06uLu74+zZs/jwww8BAEuWLAEAPH/+HFeuXMkUJzAwEBqNBrNmzYJcnl6PTZw4EV27dkVKSkquDp5ERAXdmRWTEXHjPACg2X+XIyEyHNaFi0Fukf4nRCaTwaZICWiSk3Idy2/elwgPPgUAaDNrG+KfP4G1UwmdWLbFSkGjzn2sN/MyljdzMhZT5fO663t+RVnPDgCAjyYsw7Hp/XBpwywkRb+EQ5lKUKlUudp+TvY9CysVEhNzVxibar8b8NtlnLj5EgDw97iGeByZiJKOSlhayLVxSjtZIzE5DVa5ikSUf0lqQnx0dDQAwMnJCUB6UZGSkoLWrVtrl6latSrKli2LM2fO5Hi79erVg1wux7p166DRaBAdHY0//vgDrVu3zrYwUavViImJ0fkhInofeX41G12XHkPNnqMQtCX38z3eptnXv6L3xuvw8PoeF9dMN2osU+VlqpxM+XsCgODN3oh5+hD1B6XPN7qydSHqD5qK3n9eQ5dlvoj+5x5iY2NzFaOg/Y5+H1YXjxe0xqzuVfDN9ptGi0OUn0mmOElLS8PYsWPRuHFj1KhRAwAQHh4OKysrODo66ixbokQJhIeH53jbbm5uOHLkCCZPngylUglHR0f8888/2LYt+2+w5syZAwcHB+1PmTJlDMqLiKigKN+0KyJuXIC1Uwkk/vscaZr0oSdCCCS8fAYLq9x9S/66Sm36Iiz4NGyLuiAx8plOrPjnT2ChzLtYGXmpY6PybJtZycgpKSbSqHFMkc/V7UsR4r8fH8/aDkuVDZKiX+JRwAFUaNkTAGDnXA5WhRwQGZk3ub5t39MkJ8Ha2jpP4phqvxvYpAxO3HqJ0oWtERalRqomTRvnn8hEWFtJ5vSMyOQks/ePGDEC165dw5YtW/J82+Hh4Rg2bBgGDhyICxcuwM/PD1ZWVvj0008hhMhynUmTJiE6Olr78/jx4zxvFxGRlKWlpiLx3+fa1/9c9IFVIQeo7IvAyc0dIaf3AwAenz8Ka6fisFQafoKYlpqChJevvnR6FHAASnsnqByLoUjFWrjvk/5lUsjpfbAtWhIKla3BsZITYpHwb4T2dUZer889yAvJcdFIeBmmfZ2Rk9KucJ7Gye73lNf5ZLix51c88N2JdnN2a+fUWBVyhKXSBk+DTgIAkqJfIjkuGvb29m/bVLay+x29ue/9c9EHFgolbG0N2x9Mtd+laNLwNOrVkLA9l8JRpJAVittbwaOcPf488wQAsPNiGEoVVsFWyZup0vtLEnv/yJEjsX//fpw8eRKlS5fWvu/s7Izk5GRERUXpXD159uwZnJ1zPsFv2bJlcHBwwLx587Tv/fnnnyhTpgzOnTunnbvyOqVSCaWSd8sgovdXWloq/JdOgCYlGTK5HEq7wmg2cRlkMhkaDJ6Ksyu/x419q6GwtkWDwdNwbfcKw2NpUnHix0FIS1EDMjlUDkXRZuYWyGQyNB69ECe9RyB4ywIobOzQaMwiBP051+BYKQlxOLNiEjTJSZnyOr9mBp5ePomk6Jc46T0KqUkJQKnW795oFpITYnBy7pfQJCdmysl/8Vg8Pn8UiZHPcHhyDyisbeFYtsq7N5qFt/2eXs/nxNwvoFDZwL5UBYPiAECqOgkX18yAXUlXHPy6MwBArlCiy5JjaPHdOlz4bSrSNKlIS02GnXM5FC5sWCH2tt/R6/uepcoGjuUM6zfAdPtdikag1/JLUKekQS4HitkpsX9sA8hkMqwcWAtea4Iwe/892FtbYuXAWpix947BORHld2YtToQQGDVqFHbv3g1fX1+4uenef71evXpQKBTw8fFBjx49AAC3b99GaGgoPD09cxwnISFBOxE+g4WFBYD04WRERJSZpZUKzScug4VV5i9q7F3c8PFrzwHRJKtzF0tpjTY/bIVlFkPDHMpUQudFR7SvU3M58d62aEm0/WFzlp81HDJN+29Nshqnl0wwOE6h4mXQZalPlp81HrNI53VqchJOzPIyKM7bfk+v5wPkPidLpQoD/grL8vdUyqM5Snn4AshdPsDbf0ev73u5z8c0+52NlQUOjGsIlcIi02dVShbCme+baF8npWgMjkNUEJi1OBkxYgQ2bdqEvXv3ws7OTjuPxMHBAdbW1nBwcMCQIUMwfvx4ODk5wd7eHqNGjYKnp6fO1Y579+4hLi4O4eHhSExM1D7npFq1arCyskLHjh2xcOFCzJw5E3379kVsbCwmT56McuXKoW7duuZInYiIiIiI3mDW4mTFivQhAM2bN9d5f926dfDy8gIALFy4EHK5HD169NB5COPrhg4dCj8/P+3rjILj4cOHcHV1RcuWLbFp0ybMmzcP8+bNg42NDTw9PXHo0KE8m0RHRERERES5Y/ZhXe+iUqmwbNkyLFu2LNtlfH1937mdPn36oE+fPvo0j4iIiIiITEgyd+siIiIiIqL3G4sTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCZbmbgAREUmXJjU5T5d7m7QUNVJzuFxumCqnnOaTsWxuSO33VNDyyVguN9QpaXm6HFFBxeKEiIiydWb5JJPF8pv7hUnimConU+UDFLzfU0HLBwD+s+qySeIQ5XcsToiIKEsepexMFqt2MYVJ4pgqJ1PlAxS831NBywcAUKah/uukpOR9O4jyAZkQQpi7EflBTEwMHBwcEB0dDXt7e3M3h4jIaIQQUKsNH8KiVCohk8kkFSu/xDFlLFP9ngpaPvrEyk2cmJgYlChRgucd9N7hlRMiItIhk8mgUqkKVKyCFqcgxipo+eQ2TnJy7ufTEOVHvFsXERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgS9ipPU1FT8/vvvePbsmbHaQ0RERERE7ym9ihNLS0t8+eWXSEpKMlZ7iIiIiIjoPaX3sK6GDRsiKCjICE0hIiIiIqL3maW+KwwfPhzjx4/H48ePUa9ePdja2up8XqtWrTxrHNH7TggBtVpt8PpKpRIymUwycUwZK7dxTBnLVP1X0PLRJ5YpcyIiIsPJhBBCnxXk8swXW2QyGYQQkMlk0Gg0edY4KYmJiYGDgwOio6Nhb29v7ubQeyIpKQk9e/Y0eP3t27dDpVJJJo4pY+U2jiljmar/Clo++sQyZU5EeYHnHfS+0vvKycOHD43RDiJ6i0tPYvVex6OUnd7rBD9P0Xud2sUUeq8DSDsnwLC8TJUToH9eBS0fwMB97/F5/dcp01D/dYiIyCB6FyflypUzRjuI6B08h8+BhaXVO5fTpCbjzPJJBsdp9s1KyBXKdy6XlqKG39wvDI4DSC8nIPd5mSonIGd5FbR8gNzn9OfndaFUvHvKpTolDf9ZddngOEREpD+9i5MMN27cQGhoKJKTk3Xe79KlS64bRUSZWVhawcIqZyfYuSFXKGFp9e7hK6l5EEtqOQG5z8tUOQE5y6ug5QPkPielQg6VwiKXWyEiImPQuzh58OABunXrhqtXr2rnmgDQThQsqHNOiIiIiIjIuPS+lfCYMWPg5uaGiIgI2NjY4Pr16zh58iTq168PX19fIzSRiIiIiIjeB3pfOTlz5gyOHz+OokWLQi6XQy6Xo0mTJpgzZw5Gjx6Ny5c5PpeIiIiIiPSn95UTjUYDO7v0u7EULVoUT58+BZA+Uf727dt52zoiIiIiInpv6H3lpEaNGggODoabmxs++OADzJs3D1ZWVli1ahXKly9vjDYSEREREdF7QO/i5Pvvv0d8fDwAYObMmejUqRM++ugjFClSBFu3bs3zBhIRERER0ftB7+Kkbdu22n9XrFgRt27dQmRkJAoXLqy9YxcREREREZG+9J5zkuHevXs4fPgwEhMT4eTklJdtIiIiIiKi95DexcnLly/RqlUrVK5cGR06dEBYWBgAYMiQIZgwYUKeN5CIiIiIiN4Peg/rGjduHBQKBUJDQ+Hu7q59v3fv3hg/fjy8vb3ztIFERERElDWNRoOUlBRzN4MoWwqFAhYWFjleXu/i5MiRIzh8+DBKly6t836lSpXw6NEjfTdHRERERHoSQiA8PBxRUVHmbgrROzk6OsLZ2TlH89P1Lk7i4+NhY2OT6f3IyEgolUp9N0dEREREesooTIoXLw4bGxvelIgkSQiBhIQEREREAABKliz5znX0Lk4++ugj/P777/jhhx8AADKZDGlpaZg3bx5atGih7+aIiIiISA8ajUZbmBQpUsTczSF6K2trawBAREQEihcv/s4hXnoXJ/PmzUOrVq1w8eJFJCcn4+uvv8b169cRGRkJf39/w1pNRERERDmSMcckq5EsRFKUsa+mpKS8szjR+25dNWrUwJ07d9CkSRN07doV8fHx6N69Oy5fvowKFSoY1mIiIiIi0guHclF+oc++qveVEwBwcHDAd999Z8iqREREREREWdL7yomrqytmzpyJx48fG6M9RERERET0ntL7ysnYsWOxfv16zJw5Ey1atMCQIUPQrVs33qmLiIiIyNy8TTjUa4IwXSwzCwkJgZubGy5fvow6deqYuzkGc3V1xdixYzF27FhzNyVbel85GTt2LIKCgnD+/Hm4u7tj1KhRKFmyJEaOHIlLly4Zo41ERERElI/JZLK3/kyfPt2sbduzZ89blylTpgzCwsJQo0aNHG93+vTp+bqQMRe9i5MMHh4eWLJkCZ4+fYpp06Zh9erVaNCgAerUqYO1a9dCiPenmiYiIiKi7IWFhWl/Fi1aBHt7e533Jk6cqNf2kpOTjdTSrFlYWMDZ2RmWlgZN184VU+dqbgYXJykpKdi2bRu6dOmCCRMmoH79+li9ejV69OiByZMno3///nnZTiIiIiLKp5ydnbU/Dg4OkMlk2tfx8fHo378/SpQogUKFCqFBgwY4duyYzvqurq744YcfMGDAANjb2+Pzzz8HAPz2228oU6YMbGxs0K1bNyxYsACOjo466+7duxceHh5QqVQoX748ZsyYgdTUVO12AaBbt26QyWTa128KCQmBTCZDUFAQAMDX1xcymQw+Pj6oX78+bGxs0KhRI9y+fRsAsH79esyYMQPBwcHaq0Pr168HAERFRWHo0KEoVqwY7O3t0bJlSwQHB2tjZVxxWb16Ndzc3KBSqbBq1Sq4uLggLS1Np11du3bF4MGDAQD3799H165d39qP+YHexcmlS5d0hnJVr14d165dw+nTpzFo0CBMmTIFx44dw+7du43RXiIiIiIqQOLi4tChQwf4+Pjg8uXLaNeuHTp37ozQ0FCd5ebPn4/atWvj8uXLmDJlCvz9/fHll19izJgxCAoKQps2bfDjjz/qrHPq1CkMGDAAY8aMwY0bN7By5UqsX79eu9yFCxcAAOvWrUNYWJj2dU5999138Pb2xsWLF2FpaaktFHr37o0JEyagevXq2qtDvXv3BgD07NkTEREROHjwIAIDA+Hh4YFWrVohMjJSu9179+5h586d2LVrF4KCgtCzZ0+8fPkSJ06c0C4TGRmJQ4cOaS8I5LQfpU7va1MNGjRAmzZtsGLFCnzyySdQKBSZlnFzc0OfPn3ypIFEREREVHDVrl0btWvX1r7+4YcfsHv3buzbtw8jR47Uvt+yZUtMmDBB+/q7775D+/bttUPCKleujICAAOzfv1+7zIwZM/Dtt99i4MCBAIDy5cvjhx9+wNdff41p06ahWLFiAABHR0c4Ozvr3fYff/wRzZo1AwB8++236NixI5KSkmBtbY1ChQrB0tJSZ7unT5/G+fPnERERob2Z1Pz587Fnzx7s2LFDe0UoOTkZv//+u7Z9ANC+fXts2rQJrVq1AgDs2LEDRYsWRYsWLfTqR6nT+8rJgwcPcOjQIfTs2TPLwgQAbG1tsW7dulw3joiIiIgKtri4OEycOBHu7u5wdHREoUKFcPPmzUzf+NevX1/n9e3bt9GwYUOd9958HRwcjJkzZ6JQoULan2HDhiEsLAwJCQm5bnutWrW0/y5ZsiQAICIiItvlg4ODERcXhyJFiui06eHDh7h//752uXLlyukUJgDQv39/7Ny5E2q1GgCwceNG9OnTB3J5+ul8TvtR6vS+clKuXDljtIOIiIiI3kMTJ07E0aNHMX/+fFSsWBHW1tb49NNPM00Et7W11XvbcXFxmDFjBrp3757pM5VKZXCbM7z+RX3GU9DfnBfyZntKliwJX1/fTJ+9Plcmq1w7d+4MIQQOHDiABg0a4NSpU1i4cKH285z2o9SZ/pYDRERERET/5+/vDy8vL3Tr1g1A+gl8SEjIO9erUqVKpjkib7728PDA7du3UbFixWy3o1AooNFo9G/4O1hZWWXaroeHB8LDw2FpaZnt5PvsqFQqdO/eHRs3bsS9e/dQpUoVeHh4aD83tB+lhsUJEREREZlNpUqVsGvXLnTu3BkymQxTpkx569WHDKNGjULTpk2xYMECdO7cGcePH8fBgwe1VzAAYOrUqejUqRPKli2LTz/9FHK5HMHBwbh27RpmzZoFIP2OXT4+PmjcuDGUSiUKFy6cJ3m5urri4cOHCAoKQunSpWFnZ4fWrVvD09MTn3zyCebNm4fKlSvj6dOnOHDgALp165Zp6Nqb+vfvj06dOuH69ev4z3/+o/OZof0oNSxOiIiIiAqKfPjU9gULFmDw4MFo1KgRihYtim+++QYxMTHvXK9x48b49ddfMWPGDHz//fdo27Ytxo0bh19++UW7TNu2bbF//37MnDkTc+fOhUKhQNWqVTF06FDtMt7e3hg/fjx+++03lCpVKs+uNvTo0QO7du1CixYtEBUVhXXr1sHLywt///03vvvuOwwaNAjPnz+Hs7MzmjZtihIlSrxzmy1btoSTkxNu376Nfv366XxmaD9KjV7FSUpKCqpWrYr9+/fD3d3dWG0iIiIiogLKy8sLXl5e2teurq44fvy4zjIjRozQeZ1dwTBs2DAMGzZM5/WbQ7jatm2Ltm3bZtuezp07o3Pnzm9ts6urq84Dxps3b57pgeN16tTReU+pVGLHjh2ZtmVnZ4clS5ZgyZIlWcaaPn06pk+fnuVncrkcT58+zbaNhvajlOhVnCgUCiQlJeVZ8Dlz5mDXrl24desWrK2t0ahRI8ydOxdVqlTRLpOUlIQJEyZgy5YtUKvVaNu2LZYvX65TXY4ePRr+/v64du0a3N3dtQ/IyTB9+nTMmDEjU3wbGxvEx8fnWT5ExuQ3fwSSYiIhk8mhsLaFx4Bv4eTqjtjwRzj763dQx0ZBYVMIDQZPzXWsQ5O6I/HfZ/+PVQgfDp+LIhVrIfrJfZz6+SskxURCYV0ICutCAAy//J1dToEb5uDJJV/Ev3iKdj9uh72Lm9FyOrv8G4SePYi4Z4/RdflJOJSplKs4pshJo9HgxZ3L2P1FY1gqrWHtWAyNRnnDvlR5PL8ViLMrvoUmRQ1NshoVWvUySj7G2O+OTumNpOgXb93vrGzt0Wj0wndv7C06LTyPiNhkyGUy2KkssaR/ddQt54C74XEYuDoYL+KS4WBtiZVeNXOdExEZ1/z589GmTRvY2tri4MGD2LBhA5YvX27uZlEu6D2sa8SIEZg7dy5Wr14NS8vcjQrz8/PDiBEj0KBBA6SmpmLy5Mn4+OOPcePGDe1dCsaNG4cDBw5g+/btcHBwwMiRI9G9e3f4+/vrbGvw4ME4d+4crly5kinOxIkT8eWXX+q816pVKzRo0CBX7ScyJc/hP8HasSgA4PEFH5xb+T3az9mJ82tmokKLT1G+2ScIPXcE51fPgHXhYu/Y2tu1+G4dlIUcAAAh/vtxcv5wdPv1NAIWj0OVDl6o9HE/3D+xAwFLJwDlmuZ5TmUatoF7p0E4NnNgrvJ4XXY5uX7UBTV7jsaBCe3zJI6pcrItXhrtf94PhdIaN/auwulFo9Hh5/3wXzwWHgMmoaxnB6hj/sXOoQ3gWLYqDC0iTbnfNftmFWyc0r94ym6/e3hqL/wXjYFNEf2fR5Dhzy/qwtkh/S49uwPD4LUmCMEzm+GLDVfxefOy8GpSBjsuPMWwdVfh4qjMVU5EZFznz5/HvHnzEBsbi/Lly2PJkiU6Q7Yo/9G7urhw4QJ8fHxw5MgR1KxZM9Otznbt2pXjbR06dEjn9fr161G8eHEEBgaiadOmiI6Oxpo1a7Bp0ya0bNkSQPoTPN3d3XH27Fl8+OGHAKC9LPb8+fMsi5OMe0hnCA4Oxo0bN/Drr7/muK1E5mZlY6f9d0pCLAAZkqJfIvLBdbT4diUAoEzDNghcPxsKm0IA7LLeUA5knMQDQEp8DGQyGRKjnuPF3SC0nZP+f7xso4445T0iV1cfs8oJAIq7v31CoCGyygkAnGs2ztM4psjJwsIC1o7FtDkUd2+Aazv/P8ZaJoM6Ln2McUpSPOSWVpBbZv1Mqpww5X5nlYP9zrVJF5z55b9Q2NoBcDQojqPNq/6ITkyFDDJExKhxMSQaRyZ+AADoUb8kRv55DQ7WFtD/5qVEZCrbtm0zdxMoj+ldnDg6OqJHjx7GaAuio6MBAE5OTgCAwMBApKSkoHXr1tplqlatirJly+LMmTPa4kRfq1evRuXKlfHRRx9lu4xardY+5AZAvpxQRAXPmRWTEXHjPACg2X+XIyEyHNaFi0Fukf5fWSaTwaZICWiScz/80m/elwgPPgUAaDNrG+KfP4G1UwmdWJZWKiQmJuYqzps5GdObORmLKXMCgOt7fkVZzw4AgI8mLMOx6f1wacMsJEW/xIcj5iI04O9cbV9q+51tsVLQqHMXa8Bvl3Hi5ksAwN/jGuJxZCJKOiphaSHXxintZI3E5DQWJ0REJqR3cWKsJ7+npaVh7NixaNy4MWrUqAEACA8Ph5WVlc5DaQCgRIkSCA8PNyhOUlISNm7ciG+//faty82ZMyfLeSpE5uT51WwAwIOTexG0ZSFq9RxptFjNvk6/snj36GZcXDMdHgO/M0qcN3Nq/vUKo8QBMuf08aztRoljypyCN3sj5ulDtP8pfR7Gla0LUX/QVFRo2RMxYSH4e2JH2Jd0Q27mBhXE/e73YXUBABtOP8Y322/ih+5V3rEGERGZgtzQFZ8/f47Tp0/j9OnTeP78ea4bMmLECFy7dg1btmzJ9bbeZvfu3YiNjcXAgW8f9z1p0iRER0drfx4/fmzUdhHpo3zTroi4cQHWTiWQ+O9zpGlSAQBCCCS8fAYLq9w/9TZDpTZ9ERZ8GrZFXZAY+UwnVmpyEqytrfMkTkZO6tioPNne22TklBQTadQ4xs7p+q4VCPHfj49nbYelygZJ0S/xKOAAKrTsCQCwL+mKYlU8oI77N0/iSWW/i3/+BBbKvIk1sEkZnLj1EqULWyMsSo1UTZo2zj+RibC2MvjPJBERGUDvo258fDwGDx6MkiVLomnTpmjatClcXFwwZMgQJCQkGNSIkSNHYv/+/Thx4gRKly6tfd/Z2RnJycmIiorSWf7Zs2dwdjZsMuTq1avRqVOnd95LWqlUwt7eXueHyFzSUlOR+O+rLwH+uegDq0IOUNkXgZObO0JO7wcAPD5/FNZOxWGpNLxgSI6LRsLLMO3rRwEHoLR3gsqxGIpUrIX7PunDoUIDDsDCSpVp3lluc3p93kFeyS4npV3ePGgrgylzig0LwcOTu9Fuzm7tfBqrQo6wVNrgadBJAEBS9Es8v30JCmvD5oGYcr9LS01BwstXV8Sz2+9CTu+DbdGSUKgM2+9SNGl4GvVqSNieS+EoUsgKxe2t4FHOHn+eeQIA2HkxDKUKq2Cr5OPAiIhMSe+j7vjx4+Hn54e//voLjRunTyQ9ffo0Ro8ejQkTJmDFipwPXxBCYNSoUdi9ezd8fX3h5qZ7a8169epBoVDAx8dHO8/l9u3bCA0Nhaenp75Nx8OHD3HixAns27dP73WJzCktLRX+SydAk5IMmVwOpV1hNJu4DDKZDA0GT8XZld/jxr7VUFjbosHgabi22/BhRMkJMTg590tokhMBmRwqh6JoM3MLZDIZGo9eiJPeIxC8ZQEU1rZwKl/DKDmdXzMDTy+fRFL0S5yY+wUUKhvYl6pglJz8F4/F4/NHkRj5DIcn94DC2haOZQ0b4mOqnBITExEVehuFnMvh4Nfp9+aXK5TosuQYWny3Dhd+m4o0TSqEJhXVug7Ds2tn8zyfvN7v0jSpOPHjIKSlqN++39nYodGYRQj6c65BcVI0Ar2WX4I6JQ1yOVDMTon9YxtAJpNh5cBa8FoThNn778He2hIrB9bCjL13DM6JiIj0p3dxsnPnTuzYsQPNmzfXvtehQwdYW1ujV69eehUnI0aMwKZNm7B3717Y2dlp55E4ODjA2toaDg4OGDJkCMaPHw8nJyfY29tj1KhR8PT01JkMf+/ePcTFxSE8PByJiYna55xUq1YNVlZW2uXWrl2LkiVLon37vLllKJGpWFqp0HziMlhYZb6tqb2LGz6esVH7WpOszrSMPgoVL4MuS32y/MyhTCV0XnQEAJCanIQTs7wMjvO2nBoOmabzWpOsxuklEwyO9bacGo9ZpPM6N3mZKidra2uU+aAtWny/HpZvDKUq5dEcpTx8ta9Tk5MMLk5Mud9ZKq3R5oetmfIBdPc7ID0nQ9lYWeDAuIZQKSwyfValZCGc+b6J9nVSisbgOEREOdW8eXPUqVMHixYtMndTDDZ9+nTs2bMn07MGDaF3cZKQkJDlkKjixYvrPawro5B5vdAB0ifdZzw5dOHChZDL5ejRo4fOQxhfN3ToUPj5+Wlf162bPtHx4cOHcHV1BZA+4X79+vXw8vKChUXmP0pERERE+V3R6SdNFuvFdP2ec+Xl5YUNGzYASH+wd9myZTFgwABMnjw518/Oy8927doFhSLnt3wPCQmBm5sbLl++jDp16hivYWai957g6emJadOm4ffff4dKlf4NV2JiImbMmKH3UCshxDuXUalUWLZsGZYtW5btMr6+vu/cjlwu56R2IiIiIjNq164d1q1bB7Vajb///hsjRoyAQqHApEmTMi2bnJysMwLGVIQQ0Gg0eV4wZZdPxiM0zCElJUWvwsgU9J4Qv3jxYvj7+6N06dJo1aoVWrVqhTJlyiAgIACLFy82RhuJiIiIqABQKpVwdnZGuXLl8NVXX6F169baucBeXl745JNP8OOPP8LFxQVVqqTP/3v8+DF69eoFR0dHODk5oWvXrggJCdHZ7tq1a1G9enUolUqULFkSI0em3/I8JCQEMplMZ7hRVFQUZDKZ9sttX19fyGQyHDx4EPXq1YNSqcTp06cRHByMFi1awM7ODvb29qhXrx4uXryo3c7OnTu1MV1dXeHt7a3TJldXV/zwww8YMGAA7O3t8fnnn2fZJ82bN8fYsWN11ps9ezYGDx4MOzs7lC1bFqtWrdJ+njFHu27dupDJZDojkFavXg13d3eoVCpUrVpVZ7RRRl9s3boVzZo1g0qlwooVK2BtbY2DBw/qtGn37t2ws7PTjor65ptvULlyZdjY2KB8+fKYMmUKUlJSsswnt/QuCWvUqIG7d+9i48aNuHXrFgCgb9++6N+/f57dUpSIiIiICj5ra2u8fPlS+9rHxwf29vY4evQogPRv9tu2bQtPT0+cOnUKlpaWmDVrFtq1a4crV67AysoKK1aswPjx4/HTTz+hffv2iI6Ohr+/v95t+fbbbzF//nyUL18ehQsXRtOmTVG3bl2sWLECFhYWCAoK0l5lCAwMRK9evTB9+nT07t0bAQEBGD58OIoUKaKdmgAA8+fPx9SpUzFt2rRsombN29sbP/zwAyZPnowdO3bgq6++QrNmzVClShWcP38eDRs2xLFjx1C9enXt1ZiNGzdi6tSp+OWXX1C3bl1cvnwZw4YNg62trc4jNL799lt4e3ujbt26UKlUOHXqFDZt2qQzJ3vjxo345JNPYGNjAwCws7PD+vXr4eLigqtXr2LYsGGws7PD119/rXc/v4tB16tsbGwwbNiwvG4LEREREb0HhBDw8fHB4cOHMWrUKO37tra2WL16tfaE+88//0RaWhpWr14NmUwGIH1usqOjI3x9ffHxxx9j1qxZmDBhAsaMGaPdToMGDfRu08yZM9GmTRvt69DQUPz3v/9F1apVAQCVKlXSfrZgwQK0atUKU6ZMAQBUrlwZN27cwM8//6xTnLRs2RITJuh/85MOHTpg+PDhANKvWixcuBAnTpxAlSpVUKxYMQBAkSJFdB6tMW3aNHh7e6N79+4A0q+w3LhxAytXrtQpTsaOHatdBgD69++Pzz77DAkJCbCxsUFMTAwOHDiA3bt3a5f5/vvvtf92dXXFxIkTsWXLFukUJ3fv3sWJEycQERGBtLQ0nc+mTp2aJw0jIiIiooJl//79KFSoEFJSUpCWloZ+/fph+vTp2s9r1qypMy8jODgY9+7dg52d7vOakpKScP/+fURERODp06do1apVrttWv359ndfjx4/H0KFD8ccff6B169bo2bMnKlRIvwX8zZs30bVrV53lGzdujEWLFkGj0WhvvvTmNnOqVq1a2n/LZDI4OzsjIiIi2+Xj4+Nx//59DBkyROcCQmpqKhwcdJ+19WabOnToAIVCgX379qFPnz7YuXMn7O3t0bp1a+0yW7duxZIlS3D//n3ExcUhNTXVaM8A1Ls4+e233/DVV1+haNGicHZ21laxQHrnsTghIiIioqy0aNECK1asgJWVFVxcXDJNOn/zwb5xcXGoV68eNm7ciDcVK1YMcvnbp09nfP76TZiymyvxZuzp06ejX79+OHDgAA4ePIhp06Zhy5Yt6Nat21tjvm2bOfXmJHWZTJbpgsDr4uLiAKSfp3/wwQc6n715l9o322RlZYVPP/0UmzZtQp8+fbBp0yb07t1b+7s5c+YM+vfvjxkzZqBt27ZwcHDAli1bMs2xySt6FyezZs3Cjz/+iG+++cYY7SEiIiKiAsrW1hYVK1bM8fIeHh7YunUrihcvnu039a6urvDx8UGLFi0yfZYxBCosLEz7qAl9nsVRuXJlVK5cGePGjUPfvn2xbt06dOvWDe7u7pnmtfj7+6Ny5cpGf2RFxpUljebVs5hKlCgBFxcXPHjwAP3799d7m/3790ebNm1w/fp1HD9+HLNmzdJ+FhAQgHLlyuG7777Tvvfo0aNcZPB2et+t699//0XPnj2N0RYiIiIiIq3+/fujaNGi6Nq1K06dOoWHDx/C19cXo0ePxj///AMg/QqHt7c3lixZgrt37+LSpUtYunQpgPQJ9x9++CF++ukn3Lx5E35+fjrzJ7KTmJiIkSNHwtfXF48ePYK/vz8uXLgAd3d3AMCECRPg4+ODH374AXfu3MGGDRvwyy+/YOLEicbrjP8rXrw4rK2tcejQITx79gzR0dEAgBkzZmDOnDlYsmQJ7ty5g6tXr2LdunVYsGDBO7fZtGlTODs7o3///nBzc9O5+lKpUiWEhoZiy5YtuH//PpYsWaIzHyWv6V2c9OzZE0eOHHn3gkREREREuWBjY4OTJ0+ibNmy6N69O9zd3TFkyBAkJSVpr6QMHDgQixYtwvLly1G9enV06tQJd+/e1W5j7dq1SE1NRb169TB27FidqwLZsbCwwMuXLzFgwABUrlwZvXr1Qvv27TFjxgwA6Vd0tm3bhi1btqBGjRqYOnUqZs6cqTMZ3lgsLS2xZMkSrFy5Ei4uLtq5L0OHDsXq1auxbt061KxZE82aNcP69eu1tx5+G5lMhr59+yI4ODjTlZcuXbpg3LhxGDlyJOrUqYOAgADtjQCMIUfDupYsWaL9d8WKFTFlyhScPXsWNWvWzDQmbvTo0XnbQiIiIiLKEX2f2m5K69evN+hzZ2dn7ZPls/PFF1/giy++yPIzd3d3BAQE6Lz3+hyU5s2bZ3owuJWVFTZv3vzWmD169ECPHj2y/fzNZ7Fk582HiWe13ptD0YYOHYqhQ4dmWq5fv37o169flnFcXV3f+gD0uXPnYu7cuVl+Nm/ePMybN0/nvdefzTJ9+nSdGxvkRo6Kk4ULF+q8LlSoEPz8/ODn56fzvkwmY3FCREREREQGyVFx8vDhQ2O3g4iIiIiI3nN6zzkhIiIiIiIyBr2Lkx49emQ5Hm3evHm8ixcRERERERlM7+Lk5MmT6NChQ6b327dvj5MnT+ZJo4iIiIiI6P2jd3ESFxenffjL6xQKBWJiYvKkUURERET0dm+78xKRlOizr+pdnNSsWRNbt27N9P6WLVtQrVo1fTdHRERERHrIeIxDQkKCmVtClDMZ++qbjyDJSo7u1vW6KVOmoHv37rh//z5atmwJAPDx8cHmzZuxfft2fTdHRERERHqwsLCAo6MjIiIiAKQ/qFAmk5m5VUSZCSGQkJCAiIgIODo6wsLC4p3r6F2cdO7cGXv27MHs2bOxY8cOWFtbo1atWjh27BiaNWtmUMOJiIiIKOecnZ0BQFugEEmZo6Ojdp99F72LEwDo2LEjOnbsaMiqRERERJRLMpkMJUuWRPHixZGSkmLu5hBlS6FQ5OiKSQaDihMASE5ORkREBNLS0nTeL1u2rKGbJCIiIiI9WFhY6HXiRyR1ehcnd+/exeDBgxEQEKDzvhACMpkMGo0mzxpHRERERETvD72LEy8vL1haWmL//v0oWbIkJ2AREREREVGe0Ls4CQoKQmBgIKpWrWqM9hARERER0XtK7+ecVKtWDS9evDBGW4iIiIiI6D2md3Eyd+5cfP311/D19cXLly8RExOj80NERERERGQIvYd1tW7dGgDQqlUrnfc5IZ6IiIiIiHJD7+LkxIkTxmgHERERERG95/QuTt72FPhr167lqjFERERERPT+MvghjBliY2OxefNmrF69GoGBgRzWRWQkmtTkPF0uO2kpaqTmcLncklpOGcvmhqlyAnKWV0HLJ2O53FCnpL17IT2WIyKivGNwcXLy5EmsWbMGO3fuhIuLC7p3745ly5blZduI6DVnlk8ySRy/uV+YJA7AnHLLFHkVtHwA4D+rLpskDhER6U+v4iQ8PBzr16/HmjVrEBMTg169ekGtVmPPnj2oVq2asdpI9N7zKGVnkji1iylMEgdgTrllirwKWj4AgDINTROHiIgMIhNCiJws2LlzZ5w8eRIdO3ZE//790a5dO1hYWEChUCA4OLjAFycxMTFwcHBAdHQ07O3tzd0cek8IIaBWGz6ERalUQiaTSSaOKWPlNo4pY5mq/wpaPvrEMmVORHmB5x30vsrxlZODBw9i9OjR+Oqrr1CpUiVjtomI/k8mk0GlUhWYOKaMVRBzMlWsgpaPKeMQEVHu5PghjKdPn0ZsbCzq1auHDz74AL/88gufFE9ERERERHkmx8XJhx9+iN9++w1hYWH44osvsGXLFri4uCAtLQ1Hjx5FbGysMdtJREREREQFXI7nnGTl9u3bWLNmDf744w9ERUWhTZs22LdvX162TzI49pOIiIhMhecd9L7K8ZWTrFSpUgXz5s3DP//8g82bN+dVm4iIiIiI6D2Uqysn7xN+g0FERESmwvMOel/l6soJERERERFRXmFxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSRYmrsB+U1SUhKsrKz0WkepVEImk+VoWSEE1Gq1IU3TK1Zu45gyFnMqOHFMHYuIiIjyFxYnehowYAAUCoVe62zfvh0qlSpHy6rVavTs2dOQpukVK7dxTBmLORWcOKaORURERPkLixM9BYfFQW6R827zKGVnWJznKXqvU7uYfkUTAFx6Eqv3OoBheTGndKbKScr5AAAen9d/nTINDYtFRERE+QKLEz01HDodKrvC71xOk5qMM8sn5SpWs29WQq5QvnO5tBQ1/OZ+YXAcz+FzYGGZs6Fquc2LORk/p/ySDwD8+XldKBXvnvqmTknDf1ZdzlUsIiIikj4WJ3qysFTAwurdJ255Qa5QwtLq3cNXUnMZx8LSijnlQkHLyVT5AIBSIYdKYZEHWyIiIqKCgHfrIiIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgRLcwafM2cOdu3ahVu3bsHa2hqNGjXC3LlzUaVKFe0ySUlJmDBhArZs2QK1Wo22bdti+fLlKFGihHaZ0aNHw9/fH9euXYO7uzuCgoIyxRJCwNvbG6tWrcKjR49QtGhRDB8+HN99953e7T4x53MkRr+ATCaHwtoWHgO+hZOrO2LDH+Hsr99BHRsFS5UtLFU2AOwM6RoAwNEpvZGkjVMIHw6fiyIVayH6yX2c+vkrJMVEwsrWHo1GLzQ4xrtyCtwwB08u+SL+xVO0+3E77F3cchUnu5zOLv8GoWcPIu7ZY3RdfhIOZSrli5xEmgYnZnkh+p97sLBSwdqxGBqN8oZ9qfJ4fvsSzv06CSmJ8ZDJZKg3eFqu8vGbPwJJMZFv3e8UNoXQYPDUXMUBgEOTuiPx32dv3fcU1oWgsC4EoLDBcTotPI+I2GTIZTLYqSyxpH911C3ngLvhcRi4Ohgv4pLhYG2JlV41c50TERERSZ9ZixM/Pz+MGDECDRo0QGpqKiZPnoyPP/4YN27cgK2tLQBg3LhxOHDgALZv3w4HBweMHDkS3bt3h7+/v862Bg8ejHPnzuHKlStZxhozZgyOHDmC+fPno2bNmoiMjERkZKRB7W48ej6sbO0BAI8v+ODcyu/Rfs5OnF8zExVafIryzT5BiP8BXFz/I1DR2aAYANDsm1WwcUovwkL89+Pk/OHo9utpBCwehyodvFDp4354eGov/BeNgU0Rw+O8LacyDdvAvdMgHJs5MFfbz5BdTq4fdUHNnqNxYEL7PIkDmC6nSu0+QznPDpDJZLixdxVOLxqN9vP+gs/Mz/DRhGUo5dEc0f/cw8FvuqKwWzUACoPieA7/CdaORTPl8/p+F3ruCM6vngHrwsVylVOL79ZBWcgBQPb73v0TOxCwdAJQrqnBcf78oi6cHVQAgN2BYfBaE4Tgmc3wxYar+Lx5WXg1KYMdF55i2LqrcHFU5ionIiIikj6zDus6dOgQvLy8UL16ddSuXRvr169HaGgoAgMDAQDR0dFYs2YNFixYgJYtW6JevXpYt24dAgICcPbsWe12lixZghEjRqB8+fJZxrl58yZWrFiBvXv3okuXLnBzc0O9evXQpk0bg9qdccILACkJsQBkSIp+icgH1+HapBMAoHT9VtAkJyE+Pt6gGABg9f+TQwBIiY+BTCZDYtRzvLgbhAqtegEAXJt0QfyLp0hJMjwOkHVOAFDcvX6uCx+dOFnkBADONRvDtlipPIsDmCYnmdwCpeu30uZR3L0B4p6FQh0TiaToFyjl0RwA4FC6IqwKOSAp6oXBsaxsXl2Fy26/K9OwDRIjnyFVnWhwHADawgTIft8r26hjrvdxR5tXhVp0YipkkCEiRo2LIdH4j2f6/tCjfkk8+TcR8epUg+MQERFR/mDWKydvio6OBgA4OTkBAAIDA5GSkoLWrVtrl6latSrKli2LM2fO4MMPP8zRdv/66y+UL18e+/fvR7t27SCEQOvWrTFv3jxtrDep1Wqo1Wrt65iYGJ3Pz6yYjIgb5wEAzf67HAmR4bAuXAxyi/QulclksLBSITExdyeJfvO+RHjwKQBAm1nbEP/8CaydSujEsS1WChp1Uq7iAJlzMpY3czImU+WU4fqeX1HWswNUDkVg41QCD/x2o3yzbnh++xJi/rmf62FxOdnvbIqUgCY59/tDTvY9yzzYxwf8dhknbr4EAPw9riEeRyaipKMSlhZybZzSTtZITE6Dba4iERERkdRJpjhJS0vD2LFj0bhxY9SoUQMAEB4eDisrKzg6OuosW6JECYSHh+d42w8ePMCjR4+wfft2/P7779BoNBg3bhw+/fRTHD9+PMt15syZgxkzZmS7Tc+vZqdv++ReBG1ZiFo9R+a4Pfpo9vWvAIC7Rzfj4prp8Bio/xyZnHozp+ZfrzBKnDdz+njWdqPEAUyXEwAEb/ZGzNOHaP9T+hygVtM24uKaGbiydSEKl6uK4tUaIina8CsngOn2O8B0+97vw+oCADacfoxvtt/ED92rvGMNIiIiKqgkc7euESNG4Nq1a9iyZUuebzstLQ1qtRq///47PvroIzRv3hxr1qzBiRMncPv27SzXmTRpEqKjo7U/jx8/znK58k27IuLGBVg7lUDiv8+RpkkfeiKEgCY5CdbW1nmSQ6U2fREWfBq2RV2QGPlMJ0788yewUKryJA7wKid1bFSebTMrGTklxRg290cfxs7p6valCPHfj49nbf//jRCAIhVqou3sHfhk+Uk0+2YVEiPD/z+BPPfett8lvHwGC6u82x/etu+l5uE+PrBJGZy49RKlC1sjLEqNVE2aNs4/kYmwtpLM4YqIiIiMRBJ/7UeOHIn9+/fjxIkTKF26tPZ9Z2dnJCcnIyoqSmf5Z8+ewdk553MGSpYsCUtLS1SuXFn7nru7OwAgNDQ0y3WUSiXs7e11fgAgOSEWCf9GaJf756IPrAo5QGVfBE5u7gg5vV/7voVCqZ3Yr6+01BQkvHx1dehRwAEo7Z2gciyGIhVr4b5P+nCokNP7YFu0JBQqwwe8ZJfT6/ND8kJ2OSntDL/bU3ZMlRMA3NjzKx747kS7Obt15mq8nuvtvzfAUmUDpX3WwwjfJS01FYn/Pte+zm6/e3z+KKydisNSaXjBkBwXjYSXYdrX2e17oQEHYGGlMngfT9Gk4WnUq+Fney6Fo0ghKxS3t4JHOXv8eeYJAGDnxTCUKqyCrVIyF3qJiIjISMz6114IgVGjRmH37t3w9fWFm5vuePx69epBoVDAx8cHPXr0AADcvn0boaGh8PT0zHGcxo0bIzU1Fffv30eFChUAAHfu3AEAlCtXTq82pybG48zySdAkJ0Eml0NpVxjNJi6DTCZDg8FTcXbl97ixbzUsVTZwLGf48JQ0TSpO/DgIaSlqQCaHyqEo2szcAplMhsajF+Kk9wgEb1kAhY0dGo1ZhKA/5xocKyUhDmdWZJ3T+TUz8PTySSRFv8SJuV9AobKBfakKeZ6T/+KxeHz+KBIjn+Hw5B5QWNvCsazh/WeqnFLVSbi4ZgbsSrri4NedAQByhRJdlhzD7YMbcP/4dkAIOJStjOaT1+L8SsOGRqWlpcJ/6QRoUpLfut8prG3RYPA0XNtt+PC15IQYnJz7JTTJiW/f96xt4VS+hsFxUjQCvZZfgjolDXI5UMxOif1jG0Amk2HlwFrwWhOE2fvvwd7aEisH1sKMvXcMjkVERET5g1mLkxEjRmDTpk3Yu3cv7OzstPNIHBwcYG1tDQcHBwwZMgTjx4+Hk5MT7O3tMWrUKHh6eupMhr937x7i4uIQHh6OxMRE7XNOqlWrBisrK7Ru3RoeHh4YPHgwFi1ahLS0NIwYMQJt2rTRuZqSEzZFnNH2h81Zfmbv4oaPZ2wEAGiS1Ti9ZIIBvZLOUmmNNj9shWUWw3McylRC50VHtK9Tczn52bZoyWxzajhE99kcucnrbTk1HrNI53VqchJOzPIyKA5gypxUGPBXWJY51f3PN6j7n2+0r3Pze7K0UqH5xGWwsMp8O93X9zsgPZ/cKFS8DLos9cnys9f3vdz+jmysLHBgXEOoFBaZPqtSshDOfN9E+zopRWNwHCIiIso/zFqcrFiR/u1u8+bNdd5ft24dvLy8AAALFy6EXC5Hjx49dB7C+LqhQ4fCz89P+7pu3fQJtg8fPoSrqyvkcjn++usvjBo1Ck2bNoWtrS3at28Pb29v4yVHRERERER6MfuwrndRqVRYtmwZli1blu0yvr6+79yOi4sLdu7cqU/ziIiIiIjIhCQxIZ6IiIiIiIjFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgRLczcgv9GkpkCTrM7Bcsm5jpWWokZqDpfLDX3amtu8mJPhctrO/JIPAKhT0vJ0OSIiIsrfWJzo6fzq6ZBbmKbb/OZ+YZI4Z5ZPMkkcgDnlhqlyMlU+APCfVZdNFouIiIikj8WJnmqXLASFQmH8OMWMHwMAPErZmSQOwJxyw1Q5mSofAECZhqaLRURERPmCTAghzN2I/CAmJgYODg549uwZ7O3t9VpXqVRCJpPlaFkhBNRqw4fL5DRWbuOYMhZzKjhxTB2LiCi/yjjviI6O1vu8gyg/45UTPalUKqhUKqNtXyaTGXX7po5jyljMSfpxTB2LiIiI8hferYuIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSeLeuHMq443JMTIyZW0JEREQFXcb5Bp/4QO8bFic5FBsbCwAoU6aMmVtCRERE74vY2Fg4ODiYuxlEJsOHMOZQWloanj59Cjs7O7M8AC4mJgZlypTB48eP+TCmPMa+NR72rXGwX42HfWs87Fv9CCEQGxsLFxcXyOUchU/vD145ySG5XI7SpUubuxmwt7fnQd1I2LfGw741Dvar8bBvjYd9m3O8YkLvI5biREREREQkCSxOiIiIiIhIElic5BNKpRLTpk2DUqk0d1MKHPat8bBvjYP9ajzsW+Nh3xJRTnBCPBERERERSQKvnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMJ4g3UiIiIiOh9xOJEAqKiotCxY0f8/PPPAIC0tDQzt6hgiImJwbNnzwCwT/NaeHg4Jk+ejAULFuCvv/4CwKI6rzx//hwHDhxAcHAwUlNTzd2cAuPFixcICAjAgwcPzN2UAic8PBwbNmzAqVOnEBMTA4DHAyIyHIsTCThy5AgOHjyIn376CREREbCwsODJdC7NmjULFStWxC+//AIAkMu5q+eVOXPmoFKlSggODsbu3bvRtWtXHD9+HDKZjCckufTtt9+icuXK+PHHH9GwYUNMnz4dz58/N3ez8r1JkybB3d0dY8eORY0aNbBw4UK8fPnS3M0qEH766Se4urpi1apVaNeuHfr164fg4GAeD4jIYDxjkwA/Pz/0798fHh4eGD16tLmbk6/FxcVh+PDh2LNnD1xdXXHx4kX4+/sD4Dd5eeH8+fPYtm0b/vzzTxw4cAC7du1Cx44dsXbtWgCATCYzcwvzpwcPHqBly5Y4fvw49u7di4MHD2LWrFnYunWr9uof6e/p06fo2bMnjh07hh07dmDHjh2YOHEiVq9ejYCAAHM3L9979OgRNm7ciDVr1sDf3x/bt2+HTCZDr169oFareTwgIoOwODGjjCEbjo6O8PDwwIABA3DgwAGcPHmS3/Tr4fWiQ6lUomzZspg4cSKWLl2KFy9eYPfu3UhMTOQ3eXng0KFDiIqKQteuXQEAxYoVg0KhQL9+/bTLsI9z5vV++vfff9GuXTts2rQJTZs2hYODA/7zn//AwsICjo6O5mtkPvR6v968eRMymQxLlixBs2bNULZsWcycORPx8fHaoo/7q+GOHDmCZ8+eoWfPngCADh06YNGiRYiJicHkyZPN3Doiyq94BmwiGX8ANRqN9j1LS0sAgL+/PypWrIiOHTuidevWmDp1KoQQ8PHxQXJyslnam18kJibqDM+wsLDA8OHD0adPH3zwwQdo3749/P39cejQIQD8Zl8fWe2ztWrVwqNHj7Bp0ybcvn0bffv2xd9//43Zs2ejQ4cOuH//Pvs4B5KTk3X+b1evXh1eXl6oWLEiACA6OhpDhw6Fvb09Fi5ciHPnzpmrqflKcnKyzv5as2ZNjBw5Ep6engDS554JIVCqVCnt0Fnurznz+vEg49+lS5eGRqPRDj1MS0tDhQoV8OOPP2LZsmV49OiR2dpLRPkXixMT8Pb2xtChQwGknzxnSEtLQ2pqKqytrVGuXDk4OTlh+PDhCAwMhIWFBXx8fKBWq83VbMmbOXMmPvjgA3Tt2hX9+/dHaGgo5HI5ChUqpP3jOXLkSCiVSuzduxdPnz4FwG9Kc+LNfTajz1q3bo3x48djx44daNCgAcLDw3H06FGMHz8esbGx+Oyzz7QTYilr06dPR5MmTdC1a1esWrUKkZGRUKlUKF68OADgzp07KFy4MBISEjBgwAAEBgZixIgRWLx4sZlbLm2zZs1Cu3bt0LVrVyxduhQvX75E8eLF0bRpUwDpx1u5XI6IiAhcu3YNNWvWNHOL84/s/obZ2NigcuXK2LZtG4BXc/t69eqFChUqwNvbGwBvSEJEehJkNNevXxedO3cWtra2okSJEmL79u1CCCFSU1N1lmvUqJEICQkRhw8fFs7OzqJw4cKiSJEiIikpSQghhEajMXnbpez06dOiTp06onr16mL79u1i7ty54sMPPxR9+/bVWS6j33777Tfh4eEhVqxYof0sLS3NpG3OL7LbZ1NSUnSW8/f3F02aNBGPHj3Svvfo0SMhk8nElStXTNrm/CIlJUV89tlnomLFimLDhg2ib9++onr16qJjx46Zlj137px2H01MTBQDBw4U3bt3F4mJiaZutuQFBgaK+vXri+rVq4s1a9aI3r17i7p164px48Zlufxff/0lKlWqpD2+UvayOx4kJycLIdL36U8//VR07txZXLt2TQjx6tg6efJk0apVK5GQkGCexhNRvsUrJ0YUEBAAmUyGtWvXom3btli8eDGSk5N1vom+desWIiMj0apVK/To0QMjR47Etm3bUKJECUyaNMnMGUjT0aNH8eGHH+Ls2bP49NNP8fXXX6NWrVooVKiQdhkhhHa4xtChQ1GuXDkcPnwYly9fxs6dOzF16lRzNV/SsttnLS0tda443bp1C/Hx8Shbtqz2vatXr6JUqVIcipiNx48f48KFC1iwYAEGDBiATZs2YeHChTh+/DgWLlyos2zDhg21c6RUKhVCQ0Oh0WhgZWVlptZLU1xcHDZv3oyqVavC398fgwcPxpYtW9CxY0fcu3cPUVFRmda5dOkSGjRoAKVSCSB9WO2uXbtM3PL8IbvjgUKhQEpKCiwtLeHl5YXw8HCsX78ewKthcvfu3YO1tTWsra15tZqI9MLixAgyDsS9e/fGxIkT0atXL3Tr1g2xsbFYsGABgFeXuatWrQoXFxe0aNECly9fxnfffYfGjRujR48e2LRpE2JiYjg5/g1ffvkl/vvf/2qLEbVajXv37qF8+fK4ffs2gPQ/kDKZTDv+fPjw4bh27RratGmDvn378iTvDTnZZ18/wRBCQKPRYOXKlYiNjcX9+/exdOlSfPjhh6hevbpZcpC6lJQU3L59G7Vr19a+16ZNG0yZMgUzZ85EaGhopnVkMhnOnDkDjUYDLy8vHgveIISAm5sbvvrqKzg4OGhvMuLg4IDbt2/D3t4+0zqHDx9Gq1at8OTJE3To0AHNmjVDbGysqZsuaTk5HmTsix07dkSXLl2wd+9efP/99wgNDcXNmzfx6NEjtGrVCgDn9RCRnsx0xea98+LFCzF+/HhRo0YNERISIoQQ2iEaMTExmYYZhYWFibi4OJO3M7/ZuHGjsLe3F9WqVRP16tUTbm5uYuLEiTrLhISEiM8//1zIZDIxaNAg8fLlSzO1Nn/Jap/NGM7x6NEjMW7cOCGTyUSTJk2Eo6Oj6NOnj4iOjjZnkyXtxo0bok6dOmLevHk670dHR4vy5cuL8ePHCyHSh8Vcu3ZNnD9/XowbN044OjqKkSNHchhSNl4fJpsxlPP7778XvXr1yrTs7du3ReHChUX79u2FlZWV6Nq1q3jx4oXJ2pqfZXU8UKvVQgghIiMjxdq1a4WdnZ2oWbOmKFSokOjdu7eIj483Z5OJKJ/i13AmIIRAkSJF0KVLFzg6OmLOnDkAAJVKBQCws7PTfrMk/v+NlbOzM2xtbc3T4HwkJiYGa9euxeXLl3H06FEsXLgQ3t7e2isoAPDHH39g9+7dOHfuHNauXQsnJyczttj8Hj9+rHNHo6xkt88qFAoAQNmyZTFnzhycOHECX331Ffz8/LB58+Ysv6l+X4h3DF0pW7YsqlSpgnPnziEkJARA+hVUe3t7fPXVV9ixY4f2ltfnz5/HxIkTcfHiRRw6dAhLly7VDkOiV4QQOhO0M46jly5dgoeHh3aZDA8ePEBUVBRiYmLg5+eHPXv2oEiRIqZtdD6U3fEg4wp04cKFMWjQIFy7dg0rVqzA2bNnsWXLFtjY2Jiz2USUX5mxMMrXHj58KD777DOxdevWTJ+9OXk443VycrL46aefRJUqVcSpU6eEEEKcOXPG+I3NR16+fCmePXum/Ubu9W9F3+xXITJPbL9z545wdHQUv//+u3Ebmg89ePBAdOrUSTRu3Fi8fPlSp+/02WcDAgJ4Q4E3REVF6VwBff0mFq/37ebNm0WtWrXE3LlzddZftWqVqFGjhnj48KEQQoiEhARx/fp14zdc4p48eSJ8fHzE7du3M3325j6b0edRUVGiSJEiws/PT/tZxjf9ERER4siRI0Zscf4RHh4url69Kp49e5bpM33/hvF4QER5iVdODDBt2jS4u7sjPj4eCoVCO85Z/P8buozJwxmTXDNeKxQKdOzYEdWrV8ekSZPQoUMHNGrUCDdv3jRbLlIhhMCYMWPQqFEjdOjQAa1atcLjx49hYWGhnZ/zZr8Cmccynzx5ElWrVkX79u1N2n4pE0Lgyy+/RKVKlXDv3j1cvHgRAHTm5OizzzZu3Bi3bt0yWz5SIoTA2LFj0axZM7Rr1w4DBgxAbGws5HI5UlJSAKT3pUajwcaNG9GnTx80atQIu3fvxv79+7XbefHiBRwdHVGmTBkAgLW1NapVq2aWnKRizJgxqFatGr755hvUqlULa9asQVJSkvbzN/fZjDkQPj4+cHR0RNOmTfHkyRP06tULDRo0wLNnz1CsWDG0adPGLPlIhRACo0ePRt26dTFgwADUqFEDJ06c0FlG379hPB4QUV5icaKnoKAg+Pj4YOvWrdi5cye6deumfZhixony6tWrUbJkSWzbtk37bI2Mz4oVK4Znz57B398f1tbWCAkJgbu7u3mSkYjAwEB88MEHOH/+PJYtW4avvvoKarUaAwcOBPDqpCOrfgXST+yePn2K6dOnY+rUqfj000/h5OTEO8QA+Pnnn+Ho6IigoCCcP38eW7duhaurK/z9/QG8emYB91n9nT17FnXr1sW5c+cwe/ZstG3bFhcvXsSwYcMAvBoC99tvv8HFxQW///47UlJStCfd3bp1w/DhwzFq1CjMnTsXvXv31rmT3/sqNTUVn3/+OS5cuICjR4/i4MGDGDRoELy9vXW+jMjueHDr1i3UrVsXs2fPRqVKlRAVFYXAwECUKFHCHOlIypkzZ1C3bl1cvHgR27dvx/r169G4cWOMHz9eZzkeD4jIrMxwtSZfGzFihGjfvr0QIv1ZD2PGjBE///yzOHfunBBCiGPHjolatWqJ1atXZ3qeSXBwsKhUqZKoWLGiOH36tMnbLlXTp08XnTt31pmYeu7cOWFrayvu378vhBBi3759om7dupn69ebNm2LmzJmiYsWKokaNGuL48eMmb7+Ude3aVaxZs0b7+v79+8LOzk7s2bNH+95ff/2VZd8KwX02O6mpqeLrr78Wffv2FbGxsdr3t27dKtzc3ER4eLgQQojff/9dlClTRqxZsybTUJn58+eLzz//XLRt21b4+PiYtP1SFhoaKmrXri1+++037XsBAQGiXr162gnW+/btE7Vr185yn23YsKGQyWTC3d1dHD582KRtl7p169aJadOm6dwUZNu2baJx48baGy7s3btX1KlTh8cDIjIbmRDv+dd0b5HxRGEA2uEvw4YNQ4UKFeDo6IhZs2ahZcuWuHHjBsLDw/Htt99izJgxSEpK0k52f11iYiKOHj2KLl26mDQPqcro30uXLuHFixf4+OOPtZ8dPXpUO9G6VKlSAID4+PhMNwlITExEQEAAEhMT0alTJ5O2X4pSU1O1V/IA3ee9aDQaWFhYoF69evjoo4+waNEi7XJZ9S3AffZ1bx4Pjh49ChsbG+0TyAFgw4YNmDdvHs6ePQs7OzsAQGxsrPbfgO7vhHT7FQDu3r0LDw8PLFy4EEOHDkVMTAzat2+PIkWKoEGDBhg8eDBKlSqV5XE2Pj4es2fPRrVq1dC/f39TpyI5bx4PoqKiEB8frz2mvnjxAp07d0blypXRpEkTDBo0CJaWlkhMTIS1tXWm7fF4QESmwOIkGzNnzsTDhw9Rvnx5DB8+HE5OTpDJZOjXrx/u3buHihUrok+fPujcuTNkMhnGjh2LwMBATJkyBR9//HGmExCekKTbvHkzateune14+ow/phs3bsQPP/yAoKCgLAs9ymzq1Km4du0aSpUqheHDh6Ny5cqwsLDQFiUAkJCQgH79+sHBwQGrVq166x2guM++8ubx4M07PGX08YIFC7Br1y6cOnUKAJ/v8C5v9mvhwoUhl8sxdOhQnDx5Em5ubjh27Bhat26NFi1aYO3atShVqhQmTpyIjh07ch99izePB5UqVdIpVA4ePIiOHTuiadOmcHd3x759++Dh4YEpU6agYcOG/BtGRGbDOSdvePz4MerVq4cdO3bA1tYWy5cvR7t27bBt2zYA6ZM0g4KCsG/fPlSpUkV7sB4xYgTi4uIQFhYGIPNJyft+UD958iRq1qyJ/v37Y+PGjUhMTMxyuYxvUI8fP47GjRtDpVJpJ8RT1p4/f44mTZpgz549qF27No4cOYK+fftiyZIlAF71qRACNjY2KFGiBO7cuQOlUvnW+Q3v+z4LZH882LFjB4BXD1PN6KuTJ0+iSZMm7Lt3eNdx9pdffsHp06dhY2OD8ePH4/Dhw/j222/h6+sLIH2eWlpaGvs5C9kdD5YuXQrg1Y1bypYti1OnTsHX1xcrVqzAyZMnceXKFVy/fh0A/4YRkfmwOHnD8ePHkZaWhlOnTuGXX37BvXv34OLigqVLl+LKlSv44IMP0Lt3b1haWuLFixfa9SpVqoTnz59rixN65Z9//sGGDRvQunVrTJo0CStWrEBwcHCWy8rlcgghcOHCBbRt21b7XnBwMKKiokzY6vzj7NmziIyMxIEDBzBt2jRcuXIFLVq0wNKlSxEQEKBzVy4AaNq0KUJCQvDkyROecLxDdseDxYsXIzg4GHK5XDssKTExEZcvX9beDUomk/FOfNnIrl+XLVuG4OBgqFQqJCUlITQ0FN26dQOQflLt4uKCiIgIhIWF6QwFo1dycjxIS0tD9erV0bhxY+16bm5uiI2NRXh4uBlbT0TE4iSTkJAQKBQK7fh7W1tbTJgwAUqlEnPnzgUATJkyBZaWlli+fDmCgoIAAH5+fihdujQ6duxorqZLlr29PTp06IAhQ4bgxx9/RLFixbB48eJsi43Lly8jKioKTZs2xc2bN9GyZUt4enryj2Y2IiIiEBcXp70bkVKpxJdffokaNWpg4sSJAKDzoDpLS0vY2NggIiLCLO3NT3JyPMg4ST516hTkcjkaNWqEGzduoEWLFqhXrx732yy8rV9/+uknAECRIkVw69Yt3L9/H0B6sZdxNaVDhw5ma7vU5eR4kFVht2PHDlStWhU9evQwaXuJiN7E4uQNSUlJsLS01Dlxa9q0KTp06IDr16/j2LFjqFy5MtasWYPr16+jdevW6NKli/b5D+/7swmyYm9vjx49eqBGjRoAgGXLlmHr1q3w8/PTGVaU8e8rV67AxsYGc+bMQc2aNVGyZEk8e/YMVatWNUv7pS45ORklSpTQuRpVpUoVDBo0CE+ePNEOlcm4etK6dWs8fPiQV6JyILvjQfv27XHz5k0cO3ZM+/7Vq1fh7OyMqVOnolatWnBxccGzZ8/g7OxsjqZL2tv69datWzh69Ki2YBk8eDC6du0KLy8vtG/fHo0aNeJzjN4ip8cDIP1Ye+vWLYwcORIjRoxAp06dULFiRXM0m4hIi8XJ/2WMHR84cCDOnj2L8+fP63zeunVrqFQq7QPsunbtir1792L58uVo1KgRzp07B29vb51vqCmztLQ0tG7dGu3atcOcOXPw5MkT7WcZQ4wOHz6MO3fu4MqVKzh//jw2btyoc7cjSpdRzHXs2BEPHjxAQECA9sF/AFCvXj3UqVMHPj4+EEJoJ8PGxcVh9OjRqFix4nv/TI3s5OR4oFQqERgYqH3v77//xrlz53Du3Dnut9nIab9eunQJQPqE+Xnz5qF8+fKwtLREQEAAFi9erDOxm9LpezwA0q+WdOrUCVevXsWxY8cwefJkDpcjIvMz3V2Lze/q1atix44dme7dLoTQeQZBz549Rd26dcXz5891lvnggw/EqFGjhBBCpKWlGbex+UhO+/X1148ePRJyuVwsWbJEaDQaIUT68w2EEOLEiRNi9+7dxm10PnHnzh3x888/i1u3bmX67PW+HTFihChXrpy4fPmyzjLdu3cXffr0EUIIbT9Turt374qPPvpI/P7770II3f/T+h4PNBqN2Lx5s9i7d68JWi5tedGvI0eONE1j85mwsDDx5MkTkZCQIIQQOsdcfY8HQgjx5MkT7TO6iIik4r34iiQ5ORlDhgxBrVq1cPnyZZ1vhjKGulhaWiI5ORn37t3D/PnzcevWLSxcuBDR0dEA0m9xq1QqUbhwYQC8cwmQ835NTU3VTgy2tLSERqNB2bJlMXbsWCxcuBBbt27Fxx9/jMmTJyMxMRHNmzfHJ598Yo6UJEOj0WDEiBGoWbMmbt68iefPn2s/y/j22dLSEklJSbh8+TIWL14MjUaDX375BY8ePdLZlqOjI4Csx5m/j5KTkzFgwABUrVoVp0+f1rk7kaHHA7lcjj59+rzXz3/Iy351cnIyWx5SlJKSgi+++AKenp7o3Lkz2rdvD7VaDQsLC+3VEX2PBwDg4uKChg0bmjIVIqJ3KvBnK0uXLtVOrLx8+TJmzZqlU1hkDMNasmQJChcujF27dqFs2bJYvHgxtm3bht69e2Pfvn34+uuvcffuXT7o7//06VcHBwf8/fff2j+iGSfJY8eORUhICPr37w8rKyssXrw4ywd/vY8WLFiA4OBg+Pn5Yc2aNWjSpAmA9KEbGf23ZMkSFC9eHJs2bYKFhQUWLVqEq1evolOnTlizZg3Gjh2LkydP4tNPPzVnKpLy008/oXDhwnj06BHu3buHzp07ayesv/48GB4P9MN+NZ4nT56gadOmuHv3LjZt2oQxY8bg8ePH+O9//wsAUCgUAHg8IKICxNyXbowpOjpaFC5cWLRs2VL73s2bN8W9e/dETEyMECJ9yMGwYcNE8eLFxR9//KEz9OWvv/4SHTp0EJ6enqJ+/fri7NmzJs9Bigzp1zeHwW3cuFFYWlqKBg0aZBp68D5LS0sTcXFxwtPTU/z2229CCCECAgLEypUrxalTp0RsbKwQQoj//ve/onDhwuLPP//U2WeDg4NF//79Rdu2bYWnp6c4c+aMWfKQotWrV4tatWqJbdu2ad+bMWOGqFChgvZ1UlKS+PLLL3k80AP71bg2b94sateuLcLCwrTvDRgwQHz//ffa1xMmTBBOTk48HhBRgVAgi5PXT4TXrl0rnJycxJEjR0TPnj1FhQoVRMWKFUXDhg3FunXrhBBC3Lp1S0RHR2vXeXNsfnh4uEnaLXW57dcMGo1G7Ny5U6xcudJUTc9X7ty5I0qUKCEeP34sxo8fL0qWLCkaNWokihcvLlq2bCni4+PF8+fPtYWgEJnnQGXV7++rjP/PL1++zNRP8+fPFzVq1BD37t0TQqT34507d3g8yAH2q2msWLFC2NjYaF8/ffpU1KlTRyxYsECcPHlSCCFEREQEjwdEVGAUqOIkY2Lf63/00tLSRMOGDYVMJhNDhgwRfn5+4sCBA2LIkCGiZMmSwsfHRwghspzMTenYr8aTVd8mJCSI6tWri4EDB4oePXqIGzduiJcvX4qrV68KR0dHMWHCBN6QIQcy+jarfTCj/06dOiXkcrn4559/TNq2/Iz9ajxZHQ+CgoKEi4uLaNiwoejRo4ewtLQUzZs3F61atRJ2dnZi+vTpIjk52VxNJiLKcwWiONm9e7dwcXERTk5O4uHDh0II3T+cFy9eFN9++6148eKF9r2HDx+Kbt26iQ4dOpi6ufkG+9V43ta3kZGRYujQocLOzk50795daDQa7cnK2rVrhYODg/ZuPZRZVn2b3Z3K7t27J8qVK6e92kfZY78aT1Z9+/rdtx4+fCgOHTokqlWrpr0LmhBCbNq0SdjY2IjHjx+buslEREaT7yfEb9y4EbNnz0bTpk1RrVo17dOFX3/eiIeHB7777jsUKVJE+56rqytsbW0hhEB8fLzJ2y117FfjeVffFi5cGC1btoSVlRU0Gg3kcrn2uQTVqlWDlZWV9u5npCu7vs3uTmUqlQpWVlZITEw0ZTPzHfar8WTXt68/y8XV1RWRkZGwsLDAZ599pr1jn6enJ1JSUnDlyhWztJ2IyBjybXGScWvKihUrolWrVpg7dy66dOkCX19f+Pr66iwjk8lQqFAhnfUTExMRFhaG6tWrw9bW1qRtlzL2q/HkpG+Tk5MBAF26dMFnn32Gffv24dixY9rC5fTp06hTpw7q1KljjhQkS5/9NoMQAqVKlUKJEiVw9uxZAK9u00zp2K/Go2/fiv/fqe/Zs2faovDvv/+Gh4cHbwdMRAWLOS/bGOLOnTuZxttnXP6+du2a6NKli86QojeXjYqKEqGhoWLw4MHC3d1dBAYGGr/R+QD71Xj07duM4V0PHjwQAwYMELa2tqJ79+6ib9++wsnJSXsjAc47yf1+m5aWJsaMGSMaNWok4uLijN/gfIL9ajz69m3G0LmjR4+KZs2aiRo1aohff/1VDBo0SDg5OYmFCxearO1ERKaQb66cbNu2DW5ubujcuTM+/PBDrF27VvtZxrfK1atXxyeffIKQkBCsW7cOALTDYQDg0KFDmDRpEurWrYsHDx5g37598PDwMG0iEsN+NZ7c9q2bmxs2bNgAb29vVKhQASqVCgEBAfj8888BvN8PAs2L/RZI70O1Wo3atWtrnxfxPmO/Go+hfZtx1al169aYPXs23NzcsHv3bkRGRiIgIABjx441eS5EREZl1tIoh44cOSJcXV3FsmXLxKFDh8T48eOFQqEQq1at0k4Mzvjm6Z9//hFDhgwRDRo00D4TQq1WCyGECAkJEcuWLRPHjh0zTyISw341ntz2Le++k7286tuMK1Ts63TsV+PJbd8mJSVpt6XRaERUVJTpkyAiMhFJFycZl75nzJgh6tWrp/PHbvjw4aJ+/fpi165dmdbbv3+/qF+/vpg2bZoIDg4WHTt2FKGhoSZrt9SxX40nr/q2U6dO7Ns3sG+Ng/1qPOxbIiL9SXpYV8awlRs3bqBChQpQKBRISUkBAMyaNQsqlQp79+5FeHg4gFeTB1u0aIGGDRti5syZqFevHlJTU1G8eHHzJCFB7Ffjyau+TUlJYd++gX1rHOxX42HfEhEZwNzV0euOHDkiRo0aJRYuXKh9GJUQQqxatUrY2dllGi6watUqUblyZeHr66tdNi4uTixcuFBYWFiI5s2biytXrpg2CQlivxoP+9Z42LfGwX41HvYtEVHuSaI4efr0qejUqZMoXry46N+/v6hZs6ZwcHDQHtxv374tSpUqJaZMmSKEeDXXQQghnJ2dde5Wcv36dfHBBx/oPKjqfcV+NR72rfGwb42D/Wo87Fsiorxj9uIkPj5eDBw4UPTu3Vs8ePBA+37Dhg2Fl5eXEEKImJgYMWvWLGFtba0dd5sxlrdZs2Zi6NChpm+4xLFfjYd9azzsW+NgvxoP+5aIKG+Zfc6JjY0NlEolvLy84ObmhtTUVABAhw4dcPPmTQghYGdnh379+sHDwwO9evXCo0ePIJPJEBoaioiICHzyySfmTUKC2K/Gw741HvatcbBfjYd9S0SUt2RCvHGDejNISUnR3gs/LS0Ncrkc/fv3h62tLVatWqVd7smTJ2jevDlSU1NRv359BAQEoGrVqti0aRNKlChhruZLFvvVeNi3xsO+NQ72q/Gwb4mI8o4kipOsNGnSBMOGDcPAgQO1D6GSy+W4d+8eAgMDce7cOdSuXRsDBw40c0vzF/ar8bBvjYd9axzsV+Nh3xIRGUaSxcmDBw/QqFEjHDhwAPXq1QMAJCcnw8rKyswty9/Yr8bDvjUe9q1xsF+Nh31LRGQ4s885eV1GnXT69GkUKlRIe1CfMWMGxowZg4iICHM2L99ivxoP+9Z42LfGwX41HvYtEVHuWZq7Aa/LeGDV+fPn0aNHDxw9ehSff/45EhIS8Mcff/AhVAZivxoP+9Z42LfGwX41HvYtEVHuSW5YV1JSEmrWrIn79+/DysoKM2bMwDfffGPuZuV77FfjYd8aD/vWONivxsO+JSLKHckVJwDQpk0bVKpUCQsWLIBKpTJ3cwoM9qvxsG+Nh31rHOxX42HfEhEZTpLFiUajgYWFhbmbUeCwX42HfWs87FvjYL8aD/uWiMhwkixOiIiIiIjo/SOpu3UREREREdH7i8UJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIjoHby8vCCTySCTyaBQKFCiRAm0adMGa9euRVpaWo63s379ejg6OhqvoURERPkcixMiohxo164dwsLCEBISgoMHD6JFixYYM2YMOnXqhNTUVHM3j4iIqEBgcUJElANKpRLOzs4oVaoUPDw8MHnyZOzduxcHDx7E+vXrAQALFixAzZo1YWtrizJlymD48OGIi4sDAPj6+mLQoEGIjo7WXoWZPn06AECtVmPixIkoVaoUbG1t8cEHH8DX19c8iRIREZkRixMiIgO1bNkStWvXxq5duwAAcrkcS5YswfXr17FhwwYcP34cX3/9NQCgUaNGWLRoEezt7REWFoawsDBMnDgRADBy5EicOXMGW7ZswZUrV9CzZ0+0a9cOd+/eNVtuRERE5iATQghzN4KISMq8vLwQFRWFPXv2ZPqsT58+uHLlCm7cuJHpsx07duDLL7/EixcvAKTPORk7diyioqK0y4SGhqJ8+fIIDQ2Fi4uL9v3WrVujYcOGmD17dp7nQ0REJFWW5m4AEVF+JoSATCYDABw7dgxz5szBrVu3EBMTg9TUVCQlJSEhIQE2NjZZrn/16lVoNBpUrlxZ5321Wo0iRYoYvf1ERERSwuKEiCgXbt68CTc3N4SEhKBTp0746quv8OOPP8LJyQmnT5/GkCFDkJycnG1xEhcXBwsLCwQGBsLCwkLns0KFCpkiBSIiIslgcUJEZKDjx4/j6tWrGDduHAIDA5GWlgZvb2/I5enT+bZt26azvJWVFTQajc57devWhUajQUREBD766COTtZ2IiEiKWJwQEeWAWq1GeHg4NBoNnj17hkOHDmHOnDno1KkTBgwYgGvXriElJQVLly5F586d4e/vj19//VVnG66uroiLi4OPjw9q164NGxsbVK5cGf3798eAAQPg7e2NunXr4vnz5/Dx8UGtWrXQsWNHM2VMRERkerxbFxFRDhw6dAglS5aEq6sr2rVrhxMnTmDJkiXYu3cvLCwsULt2bSxYsABz585FjRo1sHHjRsyZM0dnG40aNcKXX36J3r17o1ixYpg3bx4AYN26dRgwYAAmTJiAKlWq4JNPPsGFCxdQtmxZc6RKRERkNrxbFxERERERSQKvnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESS8D9WXqmMvtF5DgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -172,7 +172,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -326,7 +326,7 @@ "2014 [2014-08-01, 2014-08-31) " ] }, - "execution_count": 12, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -347,7 +347,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -370,7 +370,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -388,7 +388,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -406,7 +406,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -416,7 +416,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -440,7 +440,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -481,16 +481,16 @@ " clusters_test = rgdr.transform(x_test)\n", " # train model\n", " ridge = Ridge(alpha=1.0)\n", - " model = ridge.fit(clusters_train.isel(i_interval=0), y_train.isel(i_interval=1))\n", + " model = ridge.fit(clusters_train.isel(i_interval=0), y_train.sel(i_interval=1))\n", " # save model\n", " models.append(model)\n", " # predict and save results\n", " prediction = model.predict(clusters_test.isel(i_interval=0))\n", " predictions.append(prediction)\n", " # calculate and save rmse\n", - " rmse_train.append(mean_squared_error(y_train.isel(i_interval=1),\n", + " rmse_train.append(mean_squared_error(y_train.sel(i_interval=1),\n", " model.predict(clusters_train.isel(i_interval=0))))\n", - " rmse_test.append(mean_squared_error(y_test.isel(i_interval=1),\n", + " rmse_test.append(mean_squared_error(y_test.sel(i_interval=1),\n", " prediction))" ] }, @@ -504,12 +504,12 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpqElEQVR4nO3dd1zU9R8H8NcBgoqAC3HhypG4FQeVK7elONKGucp+WZqaWqa2HGmalqY5S8usbDhzWyruLWruDSnkBnEwP78/3h0HKcjB3X1uvJ6Pxz343nH3/b7h4L7v7+f9GQallAIRERGRk3DTHQARERGRJTG5ISIiIqfC5IaIiIicCpMbIiIicipMboiIiMipMLkhIiIip8LkhoiIiJyKh+4AbC0lJQWXL1+Gj48PDAaD7nCIiIgoC5RSuH37NooXLw43t8zbZlwuubl8+TICAwN1h0FERETZEBkZiZIlS2b6HJdLbnx8fADIL8fX11dzNERERJQVsbGxCAwMTD2PZ8blkhtjKcrX15fJDRERkYPJSpcSdigmIiIip8LkhoiIiJwKkxsiIiJyKi7X54aIiJxfcnIyEhMTdYdBZvL09HzkMO+sYHJDREROQymF6Oho3Lp1S3colA1ubm4oW7YsPD09c7QfJjdEROQ0jIlNkSJFkDdvXk7W6kCMk+xGRUWhVKlSOXrvmNwQEZFTSE5OTk1sChUqpDscygZ/f39cvnwZSUlJyJUrV7b3ww7FRETkFIx9bPLmzas5EsouYzkqOTk5R/thckNERE6FpSjHZan3jskNERERORUmN0RERORUmNwQERE5kTJlymDKlCna96ETR0sRpXXvHpA7N8CaPRHZSJMmTVCzZk2LJRN79+6Ft7e3RfblqNhyQ2S0ZQuQPz/w7ru6IyEiSkcphaSkpCw919/f3+VHjDG5IQIApYBhw4CEBGDOHOD+fd0REZEF3bmT8e2//+6ZPffevUc/1xy9evVCWFgYpk6dCoPBAIPBgAsXLmDz5s0wGAxYt24dgoOD4eXlha1bt+Ls2bMIDQ1FQEAA8uXLh7p16+KPP/5It8//lpQMBgO+/vprdOzYEXnz5kWFChWwYsUKs+KMiIhAaGgo8uXLB19fX3Tt2hX//PNP6vcPHTqEpk2bwsfHB76+vqhTpw727dsHALh48SLatWuHAgUKwNvbG1WqVMHq1avN+0WZickNEQBs2ADs2iXbsbHA+vV64yEii8qXL+Nb587pn1ukSMbPbdMm/XPLlHnwOeaYOnUqQkJC8NprryEqKgpRUVEIDAxM/f67776L8ePH4/jx46hevTri4uLQtm1b/PHHHzh48CBatWqFdu3aISIiItPjjBo1Cl27dsXhw4fRtm1bdOvWDTdu3MhSjEopdOjQATdu3EBYWBg2bNiAs2fP4vnnn099Trdu3VCyZEns3bsX+/fvx3vvvZc6CV+/fv0QHx+PLVu24MiRI5gwYQLymfuLMhP73BApBYwaJdv58gFxccAvvwDt2+uNi4icnp+fHzw9PZE3b14ULVr0ge+PHj0aLVq0SL1fqFAh1KhRI/X+2LFjsXTpUqxYsQL9+/fP8Di9evXCiy++CAAYN24cpk2bhj179qB169aPjPGPP/7A4cOHcf78+dTE6/vvv0eVKlWwd+9e1K1bFxEREXjnnXfw+OOPAwAqVKiQ+vqIiAh07twZ1apVAwCUK1fukcfMKSY3RH/+CezYIR2Jv/0WeO45YMUKaavOnVt3dERkAXFxGX/P3T39/StXMn7ufxesvnAh2yFlSXBwcLr7d+7cwahRo7By5crUZQru3bv3yJab6tWrp257e3vDx8cHVzL7QdM4fvw4AgMD07UoBQUFIX/+/Dh+/Djq1q2LwYMHo0+fPvj+++/RvHlzdOnSBY899hgAYMCAAXjjjTewfv16NG/eHJ07d04XjzWwLEWuLW2rzf/+B3TsCJQsCdy+Daxbpzc2IrIYb++Mb/+9hsnsuXnyPPq5lo07/Q7feecdLF68GJ988gm2bt2K8PBwVKtWDQkJCZnu57/rNBkMBqSkpGQpBqXUQ2cOTvv4xx9/jKNHj+KZZ57Bxo0bERQUhKVLlwIA+vTpg3PnzqF79+44cuQIgoODMW3atCwdO7uY3JBr27QJ2LYN8PKSDsVubkCXLvK9X37RGxsRuQRPT88sr6W0detW9OrVCx07dkS1atVQtGhRXLBy81FQUBAiIiIQGRmZ+tixY8cQExODypUrpz5WsWJFvP3221i/fj06deqE+fPnp34vMDAQffv2xZIlSzBkyBDMnTvXqjEzuSHXZmy1ee01oHhx2e7aVb6uWPHg0AgiIgsrU6YMdu/ejQsXLuDatWuZtqiUL18eS5YsQXh4OA4dOoSXXnopyy0w2dW8eXNUr14d3bp1w4EDB7Bnzx706NEDjRs3RnBwMO7du4f+/ftj8+bNuHjxIrZv3469e/emJj6DBg3CunXrcP78eRw4cAAbN25MlxRZA5Mbcl2bN8vcNp6e0mpjVL8+UKqUFOnXrtUWHhG5hqFDh8Ld3R1BQUHw9/fPtP/MF198gQIFCuCJJ55Au3bt0KpVK9SuXduq8RkMBixbtgwFChRAo0aN0Lx5c5QrVw4///wzAMDd3R3Xr19Hjx49ULFiRXTt2hVt2rTBqH8vHpOTk9GvXz9UrlwZrVu3RqVKlTBjxgzrxqyUUlY9gp2JjY2Fn58fYmJi4Ovrqzsc0qlpU0lw3nwT+Oqr9N8bOhSYPBl44QXgp5+0hEdE5rl//z7Onz+PsmXLIjcHAzikzN5Dc87fbLkh17RliyQ2uXIB77334PeNpanffwfu3rVpaERElDNMbsg1GfvavPoqkGZ4Y6q6dYHSpWW60TVrbBsbERHlCJMbcj3btgEbN0qrzfDhD3+OwWAaNfXrr7aLjYiIcozJDbkeY6tN797ScTgjLE0RETkkJjfkWnbsAP74A/DwyLjVxig4WBaOuXsXsPIib0REZDlMbsi1GFttevWSxCUzBoOp9YYT+hEROQwmN+Q6du2S1b49PIARI7L2GmNys3KldC4mIiK7x+SGXIex1aZHD6Bs2ay9pnZtoFw5mal41SrrxUZERBbD5IZcw549MtuwuzswcmTWX8fSFBE5sSZNmmDQoEG6w7A4JjfkGoytNt27S0uMOYzJzapVsiQDEZEFWSPB6NWrFzp06GDRfToSJjfk/PbuldFO5rbaGNWsCTz2GHD/vvS9ISIiu8bkhpzf6NHytVs3oHx581+ftjTFCf2IyIJ69eqFsLAwTJ06FQaDAQaDARcuXAAAHDt2DG3btkW+fPkQEBCA7t2749q1a6mv/e2331CtWjXkyZMHhQoVQvPmzXHnzh18/PHH+O6777B8+fLUfW7evDlL8dy8eRM9evRAgQIFkDdvXrRp0wanT59O/f7FixfRrl07FChQAN7e3qhSpQpW/ztVxs2bN9GtWzf4+/sjT548qFChAubPn2+x35U5PLQclchW9u+X1hY3N+D997O/n65dgfHjpQXo9m3Ax8dyMRKR9SilZxLOvHnlwugRpk6dilOnTqFq1aoY/e+FmL+/P6KiotC4cWO89tpr+Pzzz3Hv3j0MGzYMXbt2xcaNGxEVFYUXX3wREydORMeOHXH79m1s3boVSikMHToUx48fR2xsbGpyUbBgwSyF3atXL5w+fRorVqyAr68vhg0bhrZt2+LYsWPIlSsX+vXrh4SEBGzZsgXe3t44duwY8uXLBwD44IMPcOzYMaxZswaFCxfGmTNncO/evWz+AnOGyQ05t7StNhUqZH8/NWrI60+flmTpxRctEx8RWdfdu8C/J1+biosDvL0f+TQ/Pz94enoib968KFq0aOrjM2fORO3atTFu3LjUx+bNm4fAwECcOnUKcXFxSEpKQqdOnVC6dGkAQLVq1VKfmydPHsTHx6fb56MYk5rt27fjiSeeAAD88MMPCAwMxLJly9ClSxdERESgc+fOqccql6YPY0REBGrVqoXg4GAAQJlHzSVmRSxLkfM6eBBYsSLnrTYAR00RkU3t378fmzZtQr58+VJvjz/+OADg7NmzqFGjBpo1a4Zq1aqhS5cumDt3Lm7evJmjYx4/fhweHh6oX79+6mOFChVCpUqVcPz4cQDAgAEDMHbsWDz55JP46KOPcPjw4dTnvvHGG1i0aBFq1qyJd999Fzt27MhRPDnB5Iacl3GE1IsvAhUr5nx/xuRmzRogNjbn+yMi68ubV1pRbH3LmzdHYaekpKBdu3YIDw9Pdzt9+jQaNWoEd3d3bNiwAWvWrEFQUBCmTZuGSpUq4fz589k+plIqw8cN/5bY+vTpg3PnzqF79+44cuQIgoODMW3aNABAmzZtcPHiRQwaNAiXL19Gs2bNMHTo0GzHkxNMbsg5hYcDy5dLi0tOW22MqlUDKlUC4uNlMU0isn8Gg5SHbH3LQn8bI09PTyQnJ6d7rHbt2jh69CjKlCmD8uXLp7t5/1vuMhgMePLJJzFq1CgcPHgQnp6eWLp0aYb7fJSgoCAkJSVh9+7dqY9dv34dp06dQuXKlVMfCwwMRN++fbFkyRIMGTIEc+fOTf2ev78/evXqhYULF2LKlCmYM2eOWTFYCpMbck7GvjYvvAD825SbYyxNEZEVlClTBrt378aFCxdw7do1pKSkoF+/frhx4wZefPFF7NmzB+fOncP69evxyiuvIDk5Gbt378a4ceOwb98+REREYMmSJbh69WpqElKmTBkcPnwYJ0+exLVr15CYmPjIOCpUqIDQ0FC89tpr2LZtGw4dOoSXX34ZJUqUQGhoKABg0KBBWLduHc6fP48DBw5g48aNqcf88MMPsXz5cpw5cwZHjx7FypUr0yVFtsTkhpzP4cPA0qWSjHzwgWX3bUxu1q4FYmIsu28icklDhw6Fu7s7goKC4O/vj4iICBQvXhzbt29HcnIyWrVqhapVq2LgwIHw8/ODm5sbfH19sWXLFrRt2xYVK1bE+++/j8mTJ6NNmzYAgNdeew2VKlVCcHAw/P39sX379izFMn/+fNSpUwfPPvssQkJCoJTC6tWrkStXLgBAcnIy+vXrh8qVK6N169aoVKkSZsyYAUBai4YPH47q1aunls4WLVpknV/aIxhURkU2JxUbGws/Pz/ExMTA19dXdzhkDc89ByxeDDz/PGDpfyylgKAg4MQJYMECmfGYiOzC/fv3cf78eZQtWxa5c+fWHQ5lQ2bvoTnnb7bckHM5ckQSG2u02gCc0I+IyAEwuSHnMmaMfH3uOaBKFescw5jcrFsH3LplnWMQEVG2Mbkh53H0KPDbb7JtjVYboypVpDSVkCDz6BARkV3RmtzMnDkT1atXh6+vL3x9fRESEoI1a9Zk+pqwsDDUqVMHuXPnRrly5TBr1iwbRUt2b8wY6RPTubMM27YmjpoiIrJbWpObkiVL4tNPP8W+ffuwb98+PP300wgNDcXRo0cf+vzz58+jbdu2aNiwIQ4ePIgRI0ZgwIABWLx4sY0jJ7tz7Jgp0fjwQ+sfr0sX+bp+PZDDWUGJyLJcbJyMU7HUe6d1bal27dqlu//JJ59g5syZ2LVrF6o8pL/ErFmzUKpUKUyZMgUAULlyZezbtw+TJk1C586dH3qM+Ph4xMfHp96P5cyyzmnsWGm16dgRqF7d+scLCgKqVgX++ksmC+zVy/rHJKJMGYcr3717F3ny5NEcDWVHQkICAMDd3T1H+7GbhTOTk5Px66+/4s6dOwgJCXnoc3bu3ImWLVume6xVq1b45ptvkJiYmPqHndb48eMxyjgNPzmnEydMQ75t0Wpj1LWrJDe//MLkhsgOuLu7I3/+/Lhy5QoAIG/evKnLBpD9S0lJwdWrV5E3b154eOQsPdGe3Bw5cgQhISG4f/8+8uXLh6VLlyIoKOihz42OjkZAQEC6xwICApCUlIRr166hWLFiD7xm+PDhGDx4cOr92NhYBAYGWvaHIL2MrTahoUDNmrY7bpcukkxt2ADcuAEULGi7YxPRQxlXwTYmOORY3NzcUKpUqRwnpdqTm0qVKiE8PBy3bt3C4sWL0bNnT4SFhWWY4Pz3BzbW5zL6RXh5ecHLy8uyQZP9OHUK+Okn2bZlqw0gyzpUqyZz6yxbBrzyim2PT0QPMBgMKFasGIoUKZKlJQfIvnh6esLNLefdgbUnN56enihfvjwAIDg4GHv37sXUqVMxe/bsB55btGhRREdHp3vsypUr8PDwQKFChWwSL9mZsWOBlBSgXTugdm3bH79rV0lufv2VyQ2RHXF3d89xvw1yXHY3z41SKl0H4LRCQkKwYcOGdI+tX78ewcHBD+1vQ07u9Gnghx9k+6OP9MRgHDX1xx/A9et6YiAionS0JjcjRozA1q1bceHCBRw5cgQjR47E5s2b0a1bNwDSX6ZHjx6pz+/bty8uXryIwYMH4/jx45g3bx6++eYbDB06VNePQDp98om02jzzDFCnjp4YKlUCatQAkpKkNEVERNppTW7++ecfdO/eHZUqVUKzZs2we/durF27Fi1atAAAREVFISIiIvX5ZcuWxerVq7F582bUrFkTY8aMwZdffpnhMHByYmfPAgsXyrauVhsjTuhHRGRXuCo4OaZXXgHmzwfatAFWr9Yby+nTQMWKgLs7EB0NFC6sNx4iIifEVcHJuZ07ByxYINu6W20AoEIFoFYtIDkZWLpUdzRERC6PyQ05nnHjJJFo1QqoX193NIKlKSIiu8HkhhzLhQvAd9/Jtj202hgZR01t3Ahcvao3FiIiF8fkhhzLuHEyMqlFCyCDZTq0eOwxmWcnJQVYskR3NERELo3JDTmOixelEzFgX602RsbS1K+/6o2DiMjFMbkhxzF+vLTaNGsGPPmk7mgeZCxNbdoEcF0bIiJtmNyQY4iIAObNk217bLUBgHLlgOBglqaIiDRjckOO4dNPgcREoGlToGFD3dFkjKOmiIi0Y3JD9u/vv4FvvpFte221MTKWpsLCZEI/IiKyOSY3ZP8+/RRISAAaN5abPStTBqhXj6UpIiKNmNyQfbt0CZg7V7btvdXGiKUpIiKtmNyQfZswQVptGjYEmjTRHU3WPPecfN2yBYiK0hsLEZELYnJD9uvyZWDOHNn+6CPAYNAbT1aVLi3LQigFLF6sOxoiIpfD5Ibs18SJQHy8zGnz9NO6ozEPJ/QjItKGyQ3Zp6goYPZs2XakVhsjY2lq61ZpgSIiIpthckP26bPPgPv3Zf2o5s11R2O+UqUkdpamiIhsjskN2Z9//gFmzZJtR2y1MeKoKSIiLZjckP357DPg3j3plNuype5oss9Ymtq2TYa0ExGRTTC5Ifty5QowY4ZsO3KrDQCULGla4PO33/TGQkTkQpjckH2ZNElaberWBVq31h1NzrE0RURkc0xuyH5cvQp89ZVsO3qrjVHnzvJ1xw4gMlJvLERELoLJDdmPyZOBu3eB4GCgbVvd0VhGiRLAU0/JNktTREQ2weSG7MO1a8D06bL94YfO0WpjxAn9iIhsiskN2YfPPwfu3AFq1waefVZ3NJbVubMkazt3AhERuqMhInJ6TG5Iv+vXgWnTZNvZWm0AoHhxWfgTYGmKiMgGmNyQfp9/DsTFATVrAu3b647GOjhqiojIZpjckF43bjh3q42RsTS1ezdw4YLuaIiInBqTG9Lriy+A27eB6tWB0FDd0VhP0aJA48ayzdIUEZFVMbkhfW7eBL78UrY//BBwc/I/R5amiIhswsnPJmTXpkwBYmOBatWAjh11R2N9nTpJArd3L3D+vO5oiIicFpMb0uPWLWDqVNl2hVYbAAgIYGmKiMgGXOCMQnZp6lQgJgaoWlVaNFwFS1NERFbH5IZsLyZGSlIA8MEHrtFqY2QsTe3bB5w7pzsaIiKn5EJnFbIbX34pZamgIOC553RHY1tFigBNm8o2l2MgIrIKJjdkW7GxMvwbcL1WGyOWpoiIrMoFzyyk1bRpMgT88ceBLl10R6NHx46Auztw4ABw5ozuaIiInA6TG7Kd27dlqQVAWm3c3fXGo4u/P/D007LN0hQRkcUxuSHbmT5dlluoVAl4/nnd0ejF0hQRkdUwuSHbiIsDJk+W7fffd91WG6MOHeR3EB4OnD6tOxoiIqfC5IZs46uvgOvXgQoVgBde0B2NfoULA82ayTZLU0REFsXkhqwvLg6YNEm2338f8PDQG4+9YGmKiMgqmNyQ9c2cCVy7BpQvD7z0ku5o7EeHDpLoHToEnDypOxoiIqfB5Ias684d4LPPZHvkSLbapFWoENC8uWyzNEVEZDFMbsi6Zs0Crl4FypUDXn5ZdzT2h6UpIiKLY3JD1nP3LjBxomyz1ebhOnQAcuUCjhwBjh/XHQ0RkVNgckPWM3s2cOUKULYs0L277mjsU4ECQIsWss3SFBGRRTC5Ieu4d8/UajNihLRO0MOxNEVEZFFMbsg65swBoqOB0qWBHj10R2PfQkMl+Tt6FDh2THc0REQOj8kNWd79+8CECbI9YgTg6ak3HnuXPz/QsqVsszRFRJRjTG7I8ubOBaKigFKlgF69dEfjGFiaIiKyGCY3ZFn37wOffirbw4ez1Sar2reX39WxY1KeIiKibGNyQ5b1zTfA5ctAyZJA7966o3Ec+fMDrVrJNltviIhyRGtyM378eNStWxc+Pj4oUqQIOnTogJOPmIZ+8+bNMBgMD9xOnDhho6gpQ/Hx6VttvLz0xuNo0pamlNIbCxGRA9Oa3ISFhaFfv37YtWsXNmzYgKSkJLRs2RJ37tx55GtPnjyJqKio1FuFChVsEDFlat484O+/gRIlgFdf1R2N42nfXhLCEyeAv/7SHQ0RkcPSOmXs2rVr092fP38+ihQpgv3796NRo0aZvrZIkSLInz//I48RHx+P+Pj41PuxsbHZipUeIT4eGD9ett97j6022eHrC7RuDSxfLq031arpjoiIyCHZVZ+bmJgYAEDBggUf+dxatWqhWLFiaNasGTZt2pTh88aPHw8/P7/UW2BgoMXipTS+/RaIjASKFwf69NEdjeNiaYqIKMcMStnHJ6hSCqGhobh58ya2bt2a4fNOnjyJLVu2oE6dOoiPj8f333+PWbNmYfPmzQ9t7XlYy01gYCBiYmLg6+trlZ/F5SQkABUqABERwNSpwIABuiNyXLdvA/7+0hIWHg7UqKE7IiIiuxAbGws/P78snb/tZiXD/v374/Dhw9i2bVumz6tUqRIqVaqUej8kJASRkZGYNGnSQ5MbLy8veLFEYl3ffSeJTdGiwGuv6Y7Gsfn4AG3aAMuWyYR+TG6IiMxmF2Wpt956CytWrMCmTZtQsmRJs1/foEEDnD592gqR0SMlJgLjxsn2sGFAnjx643EGLE0REeWI1uRGKYX+/ftjyZIl2LhxI8qWLZut/Rw8eBDFihWzcHSUJQsWABcuAAEBwOuv647GOTz7LJA7N3D6NHDokO5oiIgcjtayVL9+/fDjjz9i+fLl8PHxQXR0NADAz88Pef5tARg+fDguXbqEBQsWAACmTJmCMmXKoEqVKkhISMDChQuxePFiLF68WNvP4bISE4FPPpHtd99lq42l+PgAbdsCS5ZI603NmrojIiJyKFpbbmbOnImYmBg0adIExYoVS739/PPPqc+JiopCRERE6v2EhAQMHToU1atXR8OGDbFt2zasWrUKnTp10vEjuLaFC4Hz54EiRYC+fXVH41xYmiIiyja7GS1lK+b0tqZMJCUBjz8OnD0LfPYZMHSo7oicS1ycJI337gH79wO1a+uOiIhIK3PO33bRoZgc0A8/SGLj7w+88YbuaJxPvnzAM8/INteaIiIyC5MbMl9SEjB2rGwPHQp4e+uNx1l16SJfWZoiIjILkxsy308/AWfOAIULA2++qTsa5/XMM9JJ+/x5KU0REVGWMLkh8yQnm1pthgyR8glZh7e3DAsHZEI/IiLKEiY3ZJ5Fi4BTp4CCBYF+/XRH4/w4aoqIyGxMbijrkpOBMWNke8gQmY+FrKttWyBvXpkocd8+3dEQETkEJjeUdb/8Apw8CRQoAPTvrzsa15A3L9CunWxz1BQRUZYwuaGsSU4GRo+W7cGDAc4RZDssTRERmYXJDWXNr78CJ04A+fMDb72lOxrX0qaNdC6OiAD27NEdDRGR3WNyQ4+WkmLqa/P224Cfn954XE2ePED79rLN0hQR0SMxuaFH++034NgxSWoGDNAdjWsyTuj366+SbBIRUYaY3FDmUlJMfW0GDZKyFNle69Yyp1BkJLB7t+5oiIjsGpMbytySJcDRo9KBeOBA3dG4rrSlKU7oR0SUKSY3lLG0rTYDB8oQcNLHOGqKpSkiokwxuaGMLVsGHDkik/UNGqQ7GmrVSt6Lv/8Gdu3SHQ0Rkd1ickMPl7bVZsAAWW6B9MqdGwgNlW2OmiIiyhCTG3q4FSuAQ4ekE+vbb+uOhoxYmiIieiQmN/QgpUytNm+9BRQqpDceMmnZUjp3X74M7NihOxoiIrvE5IYe9PvvwMGD0mozeLDuaCgtLy+gQwfZZmmKiOihmNxQekoBo0bJdv/+QOHCeuOhBxkn9PvtN1nzi4iI0mFyQ+mtWgUcOCBrGQ0ZojsaepgWLWS26KgoYPt23dEQEdkdJjdkkrbVpl8/ttrYq7SlKU7oR0T0ACY3ZLJmDbBvH5A3LzB0qO5oKDPGUVMsTRERPYDJDYm0rTZvvgn4++uNhzLXvLms8xUdDWzbpjsaIiK7wuSGxLp1wJ49soYRW23sn6cn0LGjbHPUFBFROkxuKH2rzRtvAAEBeuOhrGFpiojooZjcELBhg6xVlDs38M47uqOhrGrWTBYzvXIF2LJFdzRERHaDyY2rS9tq07cvULSo3ngo63LlAjp1km2WpoiIUjG5cXV//inT+OfODbz7ru5oyFzGCf0WLwaSkvTGQkRkJ5jcuLK0rTb/+x9QrJjeeMh8Tz8tK7ZfvQqEhemOhojILjC5cWWbNskwYi8vYNgw3dFQdqQtTXFCPyIiAExuXJux1ea114DixfXGQtlnHDXF0hQREQAmN65r82YZYePpyVYbR9e0KVCoEHDtmryvREQujsmNqzK22vTpA5QsqTcWyhkPD6BzZ9nmqCkiIiY3LmnLFrnCz5ULeO893dGQJRhLU0uWAImJemMhItKMyY0rMrbavPoqEBioNxayjMaNZT2w69elozgRkQtjcuNqtm0DNm6UVpvhw3VHQ5bC0hQRUSomN67G2GrTuzdQqpTeWMiyjBP6LV3K0hQRuTQmN65kxw7gjz/kKp+tNs6nUSOgSBHgxg1pnSMiclFMblyJsdWmVy+gTBmdkZA1sDRFRASAyY3r2LULWL9eToAjRuiOhqzFOGpq6VIgIUFvLEREmjC5cRXGVpsePYCyZfXGQtbTsCEQEADcvCmLohIRuSAmN65gzx5g7VrA3R0YOVJ3NGRN7u7Ac8/JNktTROSimNy4AmOrTffuQLlyemMh62NpiohcHJMbZ7d3L7B6NVttXMmTTwLFigExMcCGDbqjISKyOSY3zm70aPnarRtQvrzeWMg2WJoiIhdnVnKzZ88eJCcnp95XSqX7fnx8PH7hh6n92L8fWLkScHMD3n9fdzRkS8YJ/ZYtA+LjtYZCRGRrZiU3ISEhuH79eup9Pz8/nDt3LvX+rVu38OKLL1ouOsoZY6vNSy8BFSrojYVsy1iaio1laYqIXI5Zyc1/W2r+ez+jx0iDgweBFSvYauOq3NxMrTdsTSUiF2PxPjcGg8HSu6TsMLbavPACUKmS3lhID+OoqeXLgfv39cZCRGRD7FDsjMLDpa+FwcBWG1cWEgKUKCGlqfXrdUdDRGQzHua+4NixY4iOjgYgJagTJ04gLi4OAHDt2jXLRkfZY2y1ef55oHJlvbGQPsbS1JQpUppq3153RERENmF2y02zZs1Qs2ZN1KxZE3fv3sWzzz6LmjVrolatWmjevLlZ+xo/fjzq1q0LHx8fFClSBB06dMDJkycf+bqwsDDUqVMHuXPnRrly5TBr1ixzfwzndfiwTN5mMAAffKA7GtItbWnq3j29sRAR2YhZLTfnz5+36MHDwsLQr18/1K1bF0lJSRg5ciRatmyJY8eOwdvbO8MY2rZti9deew0LFy7E9u3b8eabb8Lf3x+djSsiuzJjq02XLkBQkN5YSL/69YHAQCAyEli3DujQQXdERERWZ1B2NLzp6tWrKFKkCMLCwtCoUaOHPmfYsGFYsWIFjh8/nvpY3759cejQIezcufORx4iNjYWfnx9iYmLg6+trsdjtwpEjQPXqpu2qVfXGQ/Zh8GDgiy+AF18EfvxRdzRERNlizvnbrLLUjRs38Pfff6d77OjRo+jduze6du2KH3P4wRkTEwMAKFiwYIbP2blzJ1q2bJnusVatWmHfvn1ITEx84Pnx8fGIjY1Nd3NaY8bI1+eeY2JDJsbS1IoVLE0RkUswK7np168fPv/889T7V65cQcOGDbF3717Ex8ejV69e+P7777MViFIKgwcPxlNPPYWqmZyYo6OjERAQkO6xgIAAJCUlPbRD8/jx4+Hn55d6CwwMzFZ8du/oUeC332T7ww/1xkL2pX59oFQp4M4dWR2eiMjJmZXc7Nq1C+3TjLhYsGABChYsiPDwcCxfvhzjxo3DV199la1A+vfvj8OHD+Onn3565HP/O5eOsbL2sDl2hg8fjpiYmNRbZGRktuKze2PGAEoBnToB1arpjobsicHACf2IyKWYldxER0ejbNmyqfc3btyIjh07wsND+iW3b98ep0+fNjuIt956CytWrMCmTZtQsmTJTJ9btGjR1KHoRleuXIGHhwcKFSr0wPO9vLzg6+ub7uZ0jh0znbTYakMPYyxN/f47cPeu3liIiKzMrOTG19cXt27dSr2/Z88eNGjQIPW+wWBAvBmL9Cml0L9/fyxZsgQbN25MlzhlJCQkBBv+s1bO+vXrERwcjFy5cmX52E5l7FhptenQAahRQ3c0ZI/q1gVKl5bS1Jo1uqOxqr17gYkT5V+CiFyTWclNvXr18OWXXyIlJQW//fYbbt++jaeffjr1+6dOnTKrT0u/fv2wcOFC/Pjjj/Dx8UF0dDSio6NxL02nx+HDh6NHjx6p9/v27YuLFy9i8ODBOH78OObNm4dvvvkGQ4cONedHcR4nTgCLFsk2W20oIwaDqfXGiUtTt24BoaHAsGFA795cEJ3IZSkzHDx4UBUqVEh5enoqNzc39f7776f7/ssvv6xef/31LO8PwENv8+fPT31Oz549VePGjdO9bvPmzapWrVrK09NTlSlTRs2cOTPLx4yJiVEAVExMTJZfY9e6dVMKUKp9e92RkL3bu1f+VvLmVSouTnc0FpGSotTcuUrNmmV6bPp0pdzd5Udt2FCpq1f1xUdmSklR6s035Y07eFB3NGRnzDl/mz3PzdWrV7Fjxw4ULVoU9evXT/e9VatWISgoKEvlJV2cap6bU6dkeYWUFGDfPqBOHd0RkT1TCnjsMeD8eWm9MXYydlB37gBvvAF8/z2QKxdw6JBptZF166ShKjZWfuSVK4HHH9cbL2XB/PnAK6/ItpcX8Pnn8iZzQWaCFee5AQB/f3+EhoY+kNgAwDPPPGPXiY3TGTtWEptnn2ViQ4/mRKOmjh6VbkTffw+4u8tgwUqVTN9v1QrYsQMoUwY4exZo0AD44w9t4VJWREYCgwbJdoUKUlPs10+y1DR9PYmywqyWmwULFmTpeWn7yNgbp2m5OX1aLkVTUqQHZXCw7ojIEezfL38refIAV68CGSxzYs8WLJCL+bt3geLFpctZw4YPf+7Vq0DHjsD27fJ1yRLbxkpZpBTQurWsXt+gAbB1KzBtmnSeSkwEypYFfv5ZMlpyWeacv81Kbtzc3JAvXz54eHggo5cZDAbcuHHDvIhtyGmSm169gO++A9q2BVat0h0NOQqlgPLlgXPn5GRh7GTsAJSSpGb2bLnfogWwcCFQpEjmr4uPBz75BHj3XSBfPuvHSdkwdy7wv/8BuXMD4eGmZrg9e4AXXpBSaq5cwIQJ0rrDMpVLslpZqnLlyvD09ESPHj0QFhaGmzdvPnCz58TGaZw9K5/qAPDRR3pjIcfiwKOmDAa5gDcYZH3YNWsendgA0nVj9GhTYqMU8OWX0h+H7MDFi7L+GSBZaNr6Yr16wIEDsqRMYqI8LzQUuH5dT6zkMMxKbo4ePYpVq1bh3r17aNSoEYKDgzFz5kznXq/JHn3yCZCcLM249erpjoYcjTG5WbUKiIvTG0sW3L5t2n7nHek7/8EH0tcmOz77DBg4EHjySTmvkkYpKdKBOC5O3pCBAx98Tv78kojPmCGZ6u+/AzVrSq2RKANmdyiuX78+Zs+ejaioKAwYMAC//PILihUrhm7dupk1gR9l07lz0ukAYKsNZU/NmlKaun9fhhHZqfv3pQzVoIGMjAIANzegdu2c7bdpU6BoUeCvv+TaYNeunMdK2TR7NrBxo/QBmz8/44zVYJA/hl27pLPx338DjRsD48dLgkT0H2YnN0Z58uRBjx49MGrUKNSrVw+LFi3CXU7rbn3jxkmrTcuW8qlPZC4HKE2dPQs88QQwa5asLrJuneX2XbeudOWoUQO4cgVo0gTIwpJ2ZGnnzklTHAB8+qkkLY9Ss6Z0iu/WTT4HR4wA2rSRN5IojWwlN5cuXcK4ceNQoUIFvPDCC6hbty6OHj2KAgUKWDo+SuvCBelEDLDVhnLGmNysXp2+7mMHFi+W1pmDB4FChaRvTadOlj1GYCCwbRvQvr10OH7pJWDUKC7ZYDPGctSdO0CjRkD//ll/rY+PzAEwb560+KxfL5nqpk3Wi5ccjlnJzS+//II2bdqgQoUK2Lt3LyZPnozIyEhMnDgRj3OGLOsbNw5ISpJhIk88oTsacmTVqwMVK8qZ/fffdUcDAEhIkC4Xzz0nnX2ffFIGzrRubZ3j5csnQ8ONK7eMGQMcOWKdY9F/fPUVEBYmUxHMny/1RnMYDLK+xt69QFAQEB0NNGsGfPyxtOiQyzN7KHipUqXQrVs3BAQEZPi8AQMGWCQ4a3DYoeAXL0o/iaQkueR88kndEZGje/996ZweGgosW6Y7Grz1FjB9umy/+67MUWmrtXC//lpabV57zTbHc2lnzkhyfe+eJDlvvpmz/d29CwwYAHzzjdxv0gT44QeZBImcitXmuSlTpgwMj5hfwGAw4Ny5c1ndpc05bHLTt690vmvWjFOtkmUcPizN+V5e0mdB8//D5cvy5/3ZZzLptk4nT0pLUrVqeuNwOsnJ0hF4+3bg6aeBDRvMb7XJyA8/yOdkXBzg7y+lq1atLLNvsgtWS26y4tKlSyhRooQld2lRDpncRERIq01iIrBlS8bTsRKZQylZjOnkSZk3qVs3mx4+MVH607Rvb3osOTn7Q7wt5fp1oH59yfcWLZJ5MslCvvhC5qrJl09qgGXKWHb/p05Jf7JDh+T+sGFSb7RVEyBZlVXXlspIdHQ0BgwYgPLly1tql2T06adyJmjalIkNWY7GUVN//y3Vg9BQ6UBspDuxAeTXEhgo/azbtZMJ/9jR2AJOnpTRTQAwebLlExtA+pHt2mUqdU2YIH9oERGWPxbZNbOSm1u3bqFbt27w9/dH8eLF8eWXXyIlJQUffvghypUrh507d2LevHnWitU1/f23qZbMEVJkacbkZu1aICbGJodcu1ZG9O7YAfj5AR4eNjlslhUsKEPPX31VBvUMHCjrNyYm6o7MgSUny5Ix9+/LgAhrdm7KnVv68vz6q5Rad+yQP7gVK6x3TLI/ygxvvPGGKlmypBoyZIiqUqWKcnNzU23atFFNmzZVmzdvNmdX2sTExCgAKiYmRncoWdOvn1KAUo0b646EnFFKilKVK8vf2IIFVj1UYqJSI0bIoQClatdW6swZqx4yR1JSlJo0SSmDQeJt0UKpmzd1R+WgJk6UX6Kvr1IREbY77tmzStWta/qjGzRIqfh42x2fLMqc87dZyU2pUqXUhg0blFJKnT17VhkMBjVw4MBsBamLQyU3f/+tlKen/FNu3Kg7GnJWH30kf2PPPmu1Q1y6JPm58Rzz5ptK3btntcNZ1LJlSuXNK3H37q07Ggd09KhSXl7yC/zmG9sfPz5eqcGDTX98wcGS9JDDMef8bVZZ6vLlywgKCgIAlCtXDrlz50afPn0s3ppE/5owQYZsNGwodWMia+jSRb6uWwfcumWVQ+zZI9Oa5MsnnXS/+kqqB44gNFRmX2jcGJg4UXc0DiYpScpR8fEyk3Dv3raPwdNT+visWCE1x337gFq1pGxFTsus5CYlJQW50vQ6d3d3h7e3t8WDIsi42DlzZPujj6SXI5E1VKkit8REYPlyqxyiQwc5v+zfDzz/vFUOYVW1agGbNwOFC5se279fWziO47PPZKI9Pz9g7ly9n2Pt2smskE8+KbNEdu0qHY/v39cXE1mNWcmNUgq9evVCp06d0KlTJ9y/fx99+/ZNvW+8kQVMnChXO08+KfNBEFmTsfXGQqOmrlwBXnwRuHTJ9NjgwTKYxRl8/TUQHCyDf7huYwaOHDENgvjyS8AepggJDJQsdfhwuT9zpoz7P3lSa1hkeWYlNz179kSRIkXg5+cHPz8/vPzyyyhevHjqfeONcigqSibsA9hqQ7ZhTG42bABu3szRrrZskcEpixYBzlq1/vtv+Tp+vPzquGbwfyQmSjkqMVFaTLp31x2RiYeHLGWzdq1M9nf4MFCnjsz1RM7D+l2A7ItDdCh++23p+BYSIkM2iGyhalX5u5s/P1svT05Watw4pdzcZDdBQdKX1Fl9951SuXLJz1qnjnSapn+NHi2/mAIFlLp8WXc0Gbt8WammTU2djXv3ViouTndUlAGrdSgmG/jnH2DWLNlmqw3ZUg4m9Lt2TZZMMJZpevSQTsT/jj9wSj16AH/+KSuX798P1KsnK5m7vPBwYPRo2Z4+HShWTGs4mSpWTForR42SZSDmzwfq1gX++kt3ZJRDTG7szWefyYJy9esDLVvqjoZcSdrS1I0bWX7Z8ePS4XbNGhkB9c03wLffyoLPzq5hQ2D3buDxx6V/UaNGskC1y0pIkHJUUhLQsaN0vLJ37u7Ahx9KplqsmPxB161rWk2VHBKTG3ty5QowY4Zss9WGbO3xx2W15qQks1YJL1VKJoKtWFFO9K+84lp/uo89BuzcKRPvvvceULSo7og0+uQTWdepUCHprOtIfwhNmkirU+vWMoLqtdeAl1+WdTgoyxITTX3SdGJyY08mTZJWm7p15R+MyNayWJqKiTGNEvL2BlaulOlDqle3cnx2Kn9+YPVq09JJgFyrJCRoC8n2DhyQ5AaQi7SAAL3xZEeRIsCqVbKen7s78OOPQO3arDdm0ZYt8utq105W3NCJyY29uHpVZjYD2GpD+hhLU3/8IctjP8SePUCNGlJBNSpbFvDxsUF8dszDw/Rve+eOXJ+0bJnhr9G5xMcDPXvKGa1LF1OS7Ijc3GQ18S1bZOj4mTNAgwby+cwyVYbi44Fu3aS7UmSk/tH1TG7sxeTJMp40OBho21Z3NOSqKlaUcdzJycDSpem+pZRMV/LUU8DFi8C8eZz/LCNHj8o5MSxMzou6P+itbvRoOav5+5su0hzdE09Imap9e2mC698feO45q83i7YgSE00tuF5ewBdfAH37AqdO6R9MwOTGHly7JqMKAOnYxlYb0ukhE/rFxMjDAwfKB1rHjtK/xlGWULC1evVkMerSpU0X/hs36o7KSvbulTIOIP1s/P31xmNJBQtK/7MpU4BcuYAlS6T3/O7duiPTLixMfhXffWd67Lnn5E+gYEF9cRkxubEHn38u7di1a8t4WiKdjMnNxo3AtWs4eFDmOFu8WD7fp0yR7fz5dQZp/6pWlXNggwZysd+qlaxA4FTu35dyVEqKjIzq3Fl3RJZnMEhWv2MHUK4ccOGCNF9OnuySZarLl6X81KSJtFB+9pl9ztLN5Ea369eBadNkm602ZA8qVJBLsuRk3P1hKZo0Ac6elVaIbdvkc55/plkTEABs2iTn/aQk4H//k+TQaXz8sQydDggwfY45q+Bg6TTdpYu8mUOHSsnKJTpVSYvt558DlSpJP2uDAXjjDflMcLPDTMIOQ3JsX38NnD9vxgu++AKIi5N+Du3bWyssIvP82yE078pf8MknMvrhwAEpt5B5cucGfvhB5okrWhRwmuX3du0y9SqfPVuGfzs7Pz/g559lolUvLxkmWLOmnOGd2O7dcr0zZIicrurXl2rkjBn2UYJ6GINSrtWuFhsbCz8/P8TExMDX19ei+z59WrJag0FaZ4cMkT+CDN24AZQpI/MoLFkiHRmINDtyBPC4eBaV25UH3NygoqIBf3+21ljArVvpy3l37wJ58+qKJgfu3ZOz3cmTsm7UggW6I7K9Q4fkIuDUKRk2Pnq0THRkj80YObRrFxASAhQuLN2revfW82Oac/52vndBo/h4GfqZkgL8+qvU2hs2BJYvz6AmOWWKJDbVqwOhobYOl+gB8+dLQt5u0GNIqlkHSEmBYekSJjYWkjaxWbpUKoB79mgLJ/s++EASm2LFgKlTdUejR40asu7Gyy/L6MKRI2X8/z//6I4sxxITpYuRUYMGwPffy1v+6quOkb85QIiOo2pVWWj28GGZgTxXLmmt7NBBJn89ciTNk2/eNH0ofPihY/y1kNO6e1euxl55RS7Ky5cH4ttnf60pypxSUtG5fBlo3FguhhzG9u3S+QKQHtIFCuiNR6d8+aTVav58aYLbsEHKVH/+qTuybNu0SX6Ep5+WvnZGL79svyWoh+EZ1QqqVZO/9QsXgOHD5Wrt2jWZ6Mwo5fMpQGysZEQsR5FGx49LX5pvv5Uc+5NPZLZd717/jpravNkprkbticEArFsHPPOMDDjq2hUYO9YBBt/cvStXbkpJNvzMM7oj0s9gkN/J3r1AlSqyuFiLFnLRmpSkO7osu3RJOr4//TRw7JhMynnunO6ocsDqa5TbGXOWTLeU27eV2rHDdD/lxk0V6+6nFKAiP//FZnEQ/dfChUp5eysFKFW0qFKbNv3nCXXryjdnzNARntNLSlLq7bflVwwo9fLLSt2/rzuqTAwcKIGWLKnUzZu6o7E/d+4o1aeP6Q1t1Eipv//WHVWmEhKU+uwzpfLlk5Dd3JTq10+pGzd0R/Ygc87fbLmxgXz5pDOWUeTQqfBJjsFfqIJSgzvj2Wfl4tjur9rIqSgldfQ7d+RqLTxc5q5I5yET+pHluLtLhWfWLNleuBBo1sxOZ34OCzOV0r/+mhMdPUzevFKq++EH+eDfskVqPGvW6I7soZKT5dz0zjsyCiokRNaImz7d8auNTG5sLSYGgUumAADWBn8AGNywahXQtKlMo/Djj9KZi8jaDAZJbiZMANavz2CdQ2Nys2WLNLeTVbz+uvTX8/OTzwG7m/k5Lk46ZAGyWnarVnrjsXcvvSRzJ9SqJX0S2raV9ars7MPd3V1mIPH3l+VUtm2TkJ0Bh4Lb2pgxUoutXBk4cgSnz7njiy+kv8O9e/KUdetk1BWRpf3yi4yCMGsiufr1ZUjPV18Bb75prdAI0k8vMFBOOoCMsrSLsQb9+8v7X6qUjIzQ8dnpiO7fl2YR4/I6DRoAixbJjJgaJCRI49uTT8rSWcYQ791zjJYaDgW3V7GxMmkfIEMp3d1RoYJMhBQRIdMkPP209EUzWrtWVlglyon4eDk/Pf+8fLitXGnGi7ty1JStlCljSmwSEqSBRPs6lBs3moL45hsmNubInVtmbl68WJrldu2SppHly20eyp9/yuj1d9+VmYWNfZ1z53aMxMZsVu8BZGd0dChONXas9Nh6/HHpSfgIcXFKFSyolIeHUi+9pNT+/TaIkZzOuXNK1alj6uP43ntKJSaasYMLF+SFBoNSly9bLU5Kb/5803vWv7+Z75mlxMYqVbq0BNG3r4YAnMi5c0rVq2d6UwcOtEnv8chIpbp2NR3W31/+tpKTrX5oizPn/M3kxlZiYyVTAWSIShacP69U06amP0pA7q9a5Zh/mGR7S5cq5ecnfzsFC8rfTrY0aCA7mTbNgtFRZlJSlBo/3vS/36qVUrdu2TiI11+Xg5cpI59hlDPx8UoNGWJ6U2vXVur0aasdasIE02hINzdJkh15kBuTm0xoS27GjZO/sIoVs9Rqk9b+/dJy4+5u+p+oXFmprVutFCs5hVGjTH8vISFKXbyYg519/rnsqGFDi8VHWbN4sVJ58sivPyhIGgBsYt060x/Qxo02OqiL+P1308Wuj49SP/9s8UP8+qvp7XviCaUOHrT4IWyOQ8HtTVwcMHmybL//vqmonkW1a8vIwnPnZL0qHx/gxAmgSBErxEpOo25dGRE1ZIiM4i1VKgc7e+45+bptm8z2RTbTqROwdStQvLhMrlavnnTdsKqYGKBPH9nu31+Gc5LlPPusrE311FOyBM/zzwN9+5pGlWRT2jkDO3eW27ffyt9PzZo52rXDYXJjC199BVy/LnPav/hitndTqhQwaZJ0MF68GKhY0fS9V14B+vUDzpyxQLzksK5fN223aSMnw0mTZCmQHAkMlEkwlJI/PrKpOnVkwFqtWtLR2MfHygccMkQ+aMqVk5USyfJKlpS1DkaOlKuQ2bNlZOKJE2bvKiEBmDgRCAqScSuA7PK334CePe1kxJ2NueCPbGNxcXJ2AaTVxsMjx7v080u/YsPffwPffSejripWlCu97ds5KaArSUqSpT4qVADOnzc9/vjjFjwIR01pVaKEXIH/8YfM8m81a9bIqCiDQS77vb2teDAX5+Eh626sWydN8UeOSCZrxirrf/who6CGDQNOn5alf4jJjfXNnCmTOD32GNCtm1UOUaKE/IE/84wkNEuXSmtnSIhk7snJVjks2YlLl2QKgU8/lfVYrTbK1Fia2r6dpSlNvL2l3GgUFiYLGuawmmFy86apHDVwINCwoYV2TJlq0ULKVE8/Let39ewpa3fduZPhS/7+W643WrQwdVP49lvgrbdsF7Zds0EfILti0w7FcXEy7g5Qat486x9PKXXsmCxt4uVl6kzGZYGc1/r1pj8xHx+lfrH2UmVPPikHmzLFygeiR7l7V9YDA2SEcVSUBXbas6fssEIFWSeJbCspSanRo2Vok3HakMOH0z0lJeXBUVADBjj2KKisYodiezFrFnD1qiwH/vLLNjlk5cqytMnFizJPYLly6RuMwsOBqCibhEJWlJwMfPSRTPJ29ap0Fty/37RagtWwNGU38uSRyW4LFpT+OPXqycV/tv3+u9S3jeWovHktFSpllbu7fHBv3Cg9yE+ckDd27tzUfgYGg7zPd+5IC/2BAzIxJ5f6+g8bJFt2xWYtN3fuKFWkiKTWX39t3WNlIu18OCkpMq1CrlxK9er1wAUBOZCpU00tc6+/rtS9ezY68N9/y2R+gFIRETY6KGXm9GmlKlWSt8TbW6kVK7Kxk+vXTc1AQ4daPEbKhitXlGrTJvUf/U7oC0r9e966fFmpBQvkM92VsOXGHsyeDVy5IvOp9+ihLYy0veRv3ZKLscREuTCrXl2u/DdsYOdjR/P660DjxjJFwKxZNlxosUQJuVwEpEMXaVe+PLBzp6wmfucOEBoqK42b9T89YIAsjPr447IODOnn74+EJSuxsc1EJMIDeZcvknlBDhxAsWJA9+7SikMPx+TGGu7dk3F5ADBihAXG4VpGgQIy2mLXLilfuLnJatAtW0pZY9063RFSRlJSpGJg7Bzu5SWjSF96SUMwLE3ZnQIFZJDT//4nSc3+/Wa8eOlSyZLd3OSqJ08ea4VJZli/HqhWww3N1ryDRtiCaK9SwNmzMlJk2jRekT6C1uRmy5YtaNeuHYoXLw6DwYBly5Zl+vzNmzfDYDA8cDuRjXkBrGrOHLkKKlVKer3bmfr15bx05owMiPD2Bg4flsUVyf5cvQq0bQv06gWMGmV6XNtVW+fOcvBdu6RzF9mFXLmkFe+HH0wjuR/p2jWZPA6QFRXr17dqjPRoEREyMLFVK+DUKSAgAHhzQQgCLh0EOnSQSW0GDJD/w5s3dYdrt7QmN3fu3EGNGjUw3bgcfBadPHkSUVFRqbcKFSpYKcJsuH8fmDBBtkeMADw99caTibJlgSlTZK6u6dNl0kyjyZMl8Uk7ZwrZ3rZtMnHbunVyQV2unO6IABQrZhoizNKUXTEYpDXPWKZMSZH5+E6fzuAF/ftL+bxKFeDjj20VJmVgyxYZFLJ4sfQtHjgQOHny3xJUoYLAkiXAl1/KeWXpUvlwsPp01Q7KBn2AsgSAWrp0aabP2bRpkwKgbuZgzJvVOxR/+aV0AAsMlJXLHNC9e6a+0G5uSnXpotSuXbqjci3JyTLc07ieWKVKSh05ojuqNKZPN41BJrtlXHizYEGlNm/+zzd/+UW+6e6u1N69WuKj9OLilCpVSqmnnlLq0KFMnrhvn1Llysn75+Gh1GefucRqyk7fobhWrVooVqwYmjVrhk2bNmX63Pj4eMTGxqa7Wc39+6apyocPt+tWm8x4eQELF0pfnJQU4NdfgQYN5GJ92TJOCmhtN25Ip9Bhw+R3/dJLwL59QNWquiNLw1ia2rMHuHBBdzSUgV69pNJ044ZM9pY6e+2VK8Cbb8r28OFAcLCuEF1aRATw3numz1Rvb2mt3bJFBnxkqE4dGQPetatMT/7OO0C7dlJmJGGDZCtLkIWWmxMnTqg5c+ao/fv3qx07dqg33nhDGQwGFRYWluFrPvroIwXggZtVWm6MV7MlSyp1/77l96/BoUMyr1euXKahx+++qzsq53bkiKwC7eWl1KxZdjzcs0kT+YP47DPdkVAm7t5V6vnn0/z/vpOiUjp1ljvVqztsC7Mju39fqU8+Ma32Pnt2NneUkiIvzp1bdlSihFKZnA8dnTktNw6V3DzMs88+q9q1a5fh9+/fv69iYmJSb5GRkdZJbu7fl6QGkCTHyVy6pNR77ylVoIBSf/1lejwiQqnoaH1xOavfflPqwAHdUTzCjBny9163ru5I6BGSk5X68EN5u57HT0oBKsXDwwH+yJzP2rUyAbQx2WzY0AJzjh06ZJrsyM1NqTFjZLZjJ+P0Zam0GjRogNMZ9pYDvLy84Ovrm+5mFfv2SZNgiRLAq69a5xgaFS8OjB8PXL6cftG+kSOB0qVlCKq9DVpzFLduAc8/D+zYYXqsc2fpK2jXOnWS4cN797LnuZ1zc5ORdou/isZX6AcAiHrlfQf4I3MeERHyf926tXTwLlpUyv9hYUC1ajncefXqcg7q0UP6EnzwgQy3io62SOyOyOGTm4MHD6JYsWK6wwCefBI4dw746Scbzqhme2l/tORkOafFx8vs4JUrS9k3LIxTMGTVgQNSPv/lF/lcSkrSHZEZAgKAJk1k+9dftYZCWaAUOq3vi0K4gVtlaqL49BG6I3IpPXvKYCd3d+Dtt2UUVLduFpzSIV8+mQzLuHTGn3/KBGZ//GGhAzgWrclNXFwcwsPDER4eDgA4f/48wsPDERERAQAYPnw4eqSZ3XfKlClYtmwZTp8+jaNHj2L48OFYvHgx+vfvryP8B6UdIusC3N2l49vWrTL9gsEArFwp57u6dWWpGno4pYAZM2Q+rnPnZCLrn34CPDx0R2YmTujnOH74QZaMz5UL+Zd/lzq56MGDctIly0tJMW1PnAg0bSrr+33+OWCtIgJ69jSNQPjnHxkZ8sEHDnblZAE2KJNlyDi0+7+3nj17KqWU6tmzp2rcuHHq8ydMmKAee+wxlTt3blWgQAH11FNPqVWrVpl1TJuuCu5iTp5U6o03TH3bxo3THZF9iolJ38EzNFSpGzd0R5VNV66YVjA+c0Z3NJSRS5eUyp9f3qexY1Mf/ucfU1fBcePsuPO6g7lwQamOHZUaOVJjEHfvKvW//6Xv3BMZqTGgnHPIDsW2wuTG+q5elf5s16+bHluxQtbjc/W1Fv/5x9SZ0MNDqcmTneCE0qyZ/EDjx+uOhB4mJUWpZ56R96hOHaUSE1O/lZio1Ftvmc5/PXs6zUBPLe7fl9zROArK29sOLlx++kkpHx8JqFAhpcxsELAnTG4yweRGjwYNTCf0bt1cd5BGSopc0QUGKrVjh+5oLGT2bHlza9XSHQk9zPz58v54eqYf6pjG9OmmCSMbNpQLFDLPmjVKlS9vShQbN7ajiTdPn1aqdm1TcEOHKpWQoDsqszG5yQSTG9tLSVFq5UrTtCjG29NPK7V6tRO0XDxCXJxSsbGm+zdvKnXtmrZwLO/KFdOZ8fRp3dFQWpGRSvn6ynvz6aeZPnXtWtNTy5VT6tgxG8Xo4CIjlerQwfS5VqyYUj/8YIefa/fvp2+mq19fqfPndUdlFpcaCk72z2AAnnlGVrHetw948UXpjLxxoywI2b277git59gx6VxtXK0ZAPLnBwoV0hqWZfn7A08/LdscNWU/lAL69AFiY2Wa4iFDMn16q1bAzp2y5ty5c+kXaaWMpaTICt7u7sDgwTIlxksvaVzYNiNeXrIu1ZIl8iG0e7dMBbB0qe7IrILJDdlUnTrAjz/Kh+eQIYCPjyw1YHT7NnD9ur74LGnBAklsjh+X4fFRUbojsiKOmrI/33wjK656ecnw4CwMxQsKknPeK68As2dbP0RHdeiQabtUKflVh4fLgsNWGwVlKR07yhC5+vVlkq1OnWSV8fh43ZFZFJMb0qJUKWDSJFmRvGNH0+MzZgCBgUC/fsCZM/riy4l79+SCuWdP4O5doHlz+eArXlx3ZFbUsaNcuoaHA6dO6Y6GLl6UZgQA+OQT4PHHs/xSf385Wfv5yX2lJGflmnKyjFqHDjJ9TFiY6fEXXrCztd8epUwZmcPjnXfk/rRpwBNPOO6H7kMwuSGt/PzSX1Bu2ybJwYwZQMWKclGRduZee3fypFwQffONNEuPGgWsXQsUKaI7MisrVEiyOIClKd2UklnSb9+WE9agQTna3RdfyAzaoaGyS1d0/z4wZoxMVLp8uXxm/Ts9m+PKlUsm31m1Sv5/DxwAatcGFi3SHZlFMLkhu7JihakvjlJSDn7ySZnsbtky3dFlLjkZaN8eOHJEkpkNG4APP5QGDZfA0pR9mD1bZqfNk0eWAc/hH2CpUjIz+apV8r948aKF4nQQq1ZJq8yHH0qS07SplKUGDtQdmYW0bSuZWsOGkr2++CLw+utylenAmNyQXTEY5MNj1Srg6FEp73h6Art2Ab/9pju6zLm7A3PmAM2ayWdFs2a6I7KxDh3kkvbwYS40psv588DQobI9frw0f+bQc8/JTORFi0riXq+e/D+6gr59gWefBc6elbLyTz9J3hgUpDsyCytZUq4q339fPoTnzJE3+vhx3ZFlG5MbsltBQbJmVUSEzB5u/MwG5H9uxAj9nXTPngVWrzbdb9xYWmzsYbkzmytYkKUpnVJSpCfwnTtyFf7WWxbbdd26wJ490tfkyhVZYsVJqheZatRI8vWhQyVff+EFOxwFZSkeHlJ7W79e1o376y8gOFjWq3JABqVca4nD2NhY+Pn5ISYmxnorhJPV9ekj/Vpy5ZLF54YMsX2HvsWL5VySnCxD3M3os+m85s+XX0rVqnKZT7YzfbokNHnzSuvZY49Z/BBxcfL/tmKFtFSePGmVw2izahWQmCiNkICUxs+dc66fMUuio4GXX5ZmKkBW9f3qK1mcUyNzzt9suSGHFBoq9f/ERBnlWq0a0Lq1tJpYO11PSJA+ms89J1OI1Kih/X/efnToIBnnX385dJO2wzlzBhg2TLYnTrTa2ThfPpkmZehQ6WjsLCf98+elv9yzz0p3k1u35HGDwXl+RrMULSrTCIwdC7i5ybwWwcGSNDsIJjfkkNq1k5FVO3dKkuHmJv+LLVvKzVouXJAW/6lT5f477wCbN0vJmgAUKAC0aCHbLE3ZRkoK0Lu3zDvQtCnwxhtWPZy7O/DZZ+mrXufPywLUjubePRnRGBQE/P67VGZ69szSlEDOz90dGDlSPuBKlJBmunr1pMO6AxR8mNyQQ2vQQM6hp0/Lh623N/DUU6bvp6SYrsJyasUKmdBzzx45h69YIRfJuXJZZv9Og6OmbOvLLyXTz5cPmDdPMn0bunkTaNNGznuOVIlcuVKqpx9/LKOgnn5aGiYmTmRLbDoNG8oIibZtZaK/vn1lRFVsrO7IMsXkhpxCuXLyGR8ZmX5aj1WrZFLAQYOk1SUntm2TRKlePZngs127nO3PaYWGSsZ39KjcyHpOnQKGD5ftSZNkcjYbu3lTLiIiImRanbQd7O3VsWPy/3vunDRK/Pwz8McfMo8NPUThwtK0NWmSNGv9/LPMibN/v+7IMsTkhpxKgQKmmVUBmRsnLk7KSI89JpOR7dmTvX1/8on0M9i6FShd2iLhOqf8+WWhIoClKWtKTgZ69ZJmh+bNZQEzDcqVk6HhTZrI/1q7dnKhYW+Vi7TxBAUBr70GvPuujILq2tWJR0FZipubjNwwfgCePSsTkNnjmw0mN+Tkvv5a+uK0aCFXl7/8IjMIN2okM41m9j+5dq18UCckyP1cuaQFyNPTJqE7trSlKTv84HMKU6ZIpzMfH9OU2JoULCj/Z6++Kv9nAwfKEiqJidpCSmflShl0cP686bHZs4EJE1iCMluDBtJ03bGjvMEDB8r2jRu6I0vP6muU2xlzlkwn5xIerlSPHkrlyqUUoFStWkqlpDz4vMREpUaOlOcASn32me1jdXi3binl6Sm/wCNHdEfjfI4fV8rLS36/X3+tO5pUKSlKTZqklMEgoQ0Zojees2eVevZZ0//yK6/ojceppKQoNW2a6f+8VCmlduyw6iHNOX+z5YZcRo0aMh/V+fPAe++ZJuMEpG/c6NHSobB5cylBATLwpH9/fTE7LD8/U2mKHYstKylJhvTEx8v8B6+8ojuiVAaDVC6WLQOqVDGty2hr9+5JR+GgIGm18fCQEpRxlCNZgMEgH447d0rNPyJCOh9PnCjNd7rDU8q12ow5iR89zBdfmBZRBqSpeu5cmZGUsmnhQqB7d6BSJZnzhp0aLGPCBMnO/fxkPiE7nYcgOTn9slYXL9qmr9rq1XLONZagmjeXRa85yaYVxcbKBEHGaavbtJErSX9/Cx+Gk/gRmeXxx2UUFCC1+X37mNjkWPv2gJeXzI/x11+6o3EOR4/KCo6ANEPYaWIDpE9sFiyQZa5sMZP/7t2S2JQsKY2G69czsbE6X1/gxx/lijB3bmDNGlmr49IlbSExuSGCXGjs2iXz5ezfL40NlEO+vlI2AViasoTERClHJSTIVLo9euiOKMvWr5ewe/WSNeEsWbW4dy99R+H33pOy8vHjQJcubDC0GYNB1sXZs0eyySeekNVGNWFyQ/QvgwEoX56T8lkUR01ZzsSJknkXKCBDfRzorL1ggUx2C8hi5V26yITKOaGUjHgMCpJZypOT5fE8eSSB4igoTYxN35pH8DG5ISLraddOSlOnTjnUujR25/BhWScAkA4kGq+Is8PNTZYp+u47uXhYskSmY7h8OXv7O3NGGq86dJDJOa9cyfkknWRB3t7ScqsRkxsish4fH5m2HWBpKruM5SjjctUvvaQ7omzr0QPYuFEmvN2/X/q5xcRk/fV370qXoypVpONwrlxShjpxwkUXuKQMMbkhIutiaSpnxo2TtX0KFQJmzXKoctTDPPWUdPqtXFkm/Us7o3hmIiIkqRkzRvrvtGgha1mNHy8NBURpce1TIrKuZ5+VERRnzshJulYt3RE5joMHpZ4DAF99BQQE6I3HQsqVkwQnbVISFyf3M8rdSpYEihWTvjVffAF06uTweR5ZEVtuiMi68uVjaSo7EhKkHJWUJD1mjS1gTsLHx7SA+b17sip3nz6m5U7u3pVWmbg4ue/mJtOoHD8OdO7MxIYyx+SGiKyPpSnzjRkjdRd/f2DGDKc+m2/eLH1w5s0DWraUKVOCgmTU05gxpueVKsUSFGUNkxsisr5nnpExuufOSamFMrdvnzRbAMDMmRaf6dXetGkD/P67tOaEhQHdusmMxoGBsk4jkbmY3BCR9eXLJwkOwNLUo8THSzkqOVmmye7cWXdENtG2LbB9O1CmDODpKa02x4/LgtNE5mJyQ0S2wdJU1nz8MXDsmHQenj5ddzQ2Va2aDOuOjpZZhlmCouxickNEttG2LZA3r8yVv3+/7mjs0+7dMhMxILMQFyqkNx4NvLxkEmainGByQ0S24e0tw8IBlqYe5t49WXwpJQV4+WUgNFR3REQOi8kNEdkOS1MZ+/BDqckUKyYrfhNRtjG5ISLbadNGSlMXLwJ79+qOxn7s2AFMnizbc+YABQvqjYfIwTG5ISLbyZtXFtMEWJoyuntXylFKyVdj6Y6Iso3JDRHZlrE09euvLE0BwMiRwOnTQIkSsq4AEeUYkxsisq02baRzcUQEsGeP7mj02rLF1L/m66+B/Pm1hkPkLJjcEJFt5ckDtG8v265cmrpzB+jdW1qv+vQBWrfWHRGR02ByQ0S2l7Y0lZKiNxZd3ntPlqMIDDR1JiYii2ByQ0S217q1LMkQGSkT17maTZtMsw/Pmwf4+uqNh8jJMLkhItvLnds0SZ2rlaZu3wZeeUW2+/YFmjfXGw+RE2JyQ0R6uGpp6t13gQsXZIVI41ILRGRRTG6ISI+WLQEfH+DSJWDnTt3R2MaGDcCsWbI9b578/ERkcUxuiEgPVytNxcYCr74q2/37A02b6o2HyIkxuSEifYylqd9+c/7S1JAh0oG6XDng0091R0Pk1JjcEJE+LVvKSKHLl2V9JWe1dq1M0mcwAN9+K5MYEpHVMLkhIn28vIAOHWTbWUtTt27JJH0AMHAg0LCh1nCIXAGTGyLSK21pKjlZbyzW8Pbb0mm6QgXgk090R0PkEpjcEJFeLVoAfn5AVBSwfbvuaCxr5UopQxnLUXnz6o6IyCUwuSEivTw9gY4dZduZSlM3bgD/+59sDxkCPPGE3niIXAiTGyLSzxlLUwMHSmvU448Do0frjobIpWhNbrZs2YJ27dqhePHiMBgMWLZs2SNfExYWhjp16iB37twoV64cZhknxCIix9WsGZA/P/DPP8DWrbqjyblly4CFCwE3NylH5cmjOyIil6I1ublz5w5q1KiB6cYF5B7h/PnzaNu2LRo2bIiDBw9ixIgRGDBgABYvXmzlSInIqpypNHXtGvD667L9zjtA/fp64yFyQQallNIdBAAYDAYsXboUHYzDQh9i2LBhWLFiBY4fP576WN++fXHo0CHszOL07bGxsfDz80NMTAx8uRIvkf1YuxZo0wYoUkTmvXF31x1R9rz4IrBoERAUBOzfLzMxE1GOmXP+dqg+Nzt37kTLli3TPdaqVSvs27cPiYmJD31NfHw8YmNj092IyA41awYUKABcuQJs2aI7muz57TdJbNzdpRzFxIZIC4dKbqKjoxEQEJDusYCAACQlJeHatWsPfc348ePh5+eXegsMDLRFqERkrly5gE6dZNsRS1NXrgBvvCHb770H1K2rNx4iF+ZQyQ0g5au0jFW1/z5uNHz4cMTExKTeIiMjrR4jEWWTcdTU4sVAUpLeWMyhFPDmm9Lfplo14IMPdEdE5NI8dAdgjqJFiyI6OjrdY1euXIGHhwcKFSr00Nd4eXnBy8vLFuERUU41bQoUKgRcvQqEhUmpyhH88oskZB4eUo7iZw6RVg7VchMSEoINGzake2z9+vUIDg5Grly5NEVFRBbjiKWp6GhptQGAkSOB2rX1xkNEepObuLg4hIeHIzw8HIAM9Q4PD0dERAQAKSn16NEj9fl9+/bFxYsXMXjwYBw/fhzz5s3DN998g6FDh+oIn4iswZFKU0oBffvKbMQ1awIjRuiOiIigObnZt28fatWqhVq1agEABg8ejFq1auHDDz8EAERFRaUmOgBQtmxZrF69Gps3b0bNmjUxZswYfPnll+jcubOW+InICpo0AQoXBq5fBzZt0h1N5n78EVi+XFqcvv1W5ushIu3sZp4bW+E8N0QO4PXXgTlzgD59gLlzdUfzcJcvA1WrAjdvAmPGAO+/rzsiIqfmtPPcEJGLMJamli4FMpjDSiulJAG7eROoUwcYNkx3RESUBpMbIrI/jRsD/v72W5r6/ntg5UopQ337rZSliMhuMLkhIvvj4QEY+9LZ26ipS5eAAQNke9QoKU0RkV1hckNE9slYmlqyxH5KU0oBr70GxMQA9eoBHKlJZJeY3BCRfWrUSBbRvHkT+PNP3dGI+fOBNWtkkr5vv5UWJiKyO0xuiMg+ubsDzz0n2/ZQmoqIAN5+W7bHjgUqV9YbDxFliMkNEdmvtKOmEhL0xaGUDEuPjQVCQkxJDhHZJSY3RGS/nnoKCAgAbt0C/vhDXxxz5wIbNgC5c0s5yt1dXyxE9EhMbojIftlDaerCBWDIENkePx6oWFFPHESUZUxuiMi+GUtTy5bZvjSVkgK8+ioQFwc0bGgaAk5Edo3JDRHZtyefBIoVk+HXGzbY9tizZgEbNwJ58wLz5gFu/MgkcgT8TyUi+6arNHXuHPDOO7I9YQJQvrztjk1EOcLkhojsX9rSVHy89Y+XkgL07g3cvSurlL/5pvWPSUQWw+SGiOzfE08AxYvLUOz1661/vOnTgS1bAG9vlqOIHBD/Y4nI/rm5AV26yLa1S1OnTwPvvSfbkyYBZcta93hEZHFMbojIMRhLU8uXA/fvW+cYyclSjrp3D2jeHHj9desch4isiskNETmGBg2AEiWA27eBdeusc4ypU4Ht2wEfH+DrrwGDwTrHISKrYnJDRI7B2qWpEyeAkSNl+/PPgdKlLX8MIrIJJjdE5DiMpakVK6R0ZCnJyUCvXlLuatVKJu4jIofF5IaIHEf9+kBgoMwYbMnS1OTJwO7dgJ8fy1FEToDJDRE5DmuUpo4dAz74QLanTAFKlrTMfolIGyY3RORYLFmaSkoCevaUNaueeUa2icjhMbkhIsdSrx5QqhRw5w6wZk3O9jVxIrBvH5A/PzBnDstRRE6CyQ0RORaDwdR6k5PS1JEjwMcfy/a0aTIDMhE5BSY3ROR4jMnN77/L+k/mSkyUElRiIhAaCnTrZtn4iEgrJjdE5HiCg4EyZSSxWb3a/NePHw8cPAgULAjMmsVyFJGTYXJDRI7HYMj+qKnwcGDMGNn+6iugaFGLhkZE+jG5ISLHZCxNrVolnYuzIiFBylFJSUDnzsDzz1svPiLShskNETmmOnVkxW5zSlNjxwKHDwOFCwMzZrAcReSkmNwQkWMyd9TU/v3AuHGyPWMGUKSI9WIjIq2Y3BCR40pbmoqLy/h58fFSjkpOllKUsb8OETklJjdE5Lhq1QIee0xmKl61KuPnjRoFHD0qrTXTp9suPiLSgskNETmurJSm9uwBJkyQ7VmzpL8NETk1JjdE5NiMJabVq4Hbt9N/7/59KUelpMhEfR072j4+IrI5JjdE5Nhq1gTKl5dEZuXK9N/78EPgxAmZy+bLL7WER0S2x+SGiBxbRqWpHTuASZNke84cmY2YiFwCkxsicnzG5GbNGilN3b0L9OoFKCVlqXbttIZHRLbloTsAIqIcq14dqFgROHVKFtPctw84fVpW+p4yRXd0RGRjbLkhIseXtjQ1Zowpofn6ayB/fl1REZEmTG6IyDkYk5sTJ6Qc9eqrQJs2emMiIi2Y3BCRc6haFXj8cdkODAQmT9YbDxFpw+SGiJyDwQCMHAmUKwd8/z3g56c7IiLSxKCUUrqDsKXY2Fj4+fkhJiYGvr6+usMhIiKiLDDn/M2WGyIiInIqTG6IiIjIqTC5ISIiIqfC5IaIiIicCpMbIiIicipMboiIiMipMLkhIiIip8LkhoiIiJwKkxsiIiJyKtqTmxkzZqBs2bLInTs36tSpg61bt2b43M2bN8NgMDxwO3HihA0jJiIiInumNbn5+eefMWjQIIwcORIHDx5Ew4YN0aZNG0RERGT6upMnTyIqKir1VqFCBRtFTERERPZOa3Lz+eef49VXX0WfPn1QuXJlTJkyBYGBgZg5c2amrytSpAiKFi2aenN3d7dRxERERGTvtCU3CQkJ2L9/P1q2bJnu8ZYtW2LHjh2ZvrZWrVooVqwYmjVrhk2bNmX63Pj4eMTGxqa7ERERkfPSltxcu3YNycnJCAgISPd4QEAAoqOjH/qaYsWKYc6cOVi8eDGWLFmCSpUqoVmzZtiyZUuGxxk/fjz8/PxSb4GBgRb9OYiIiMi+eOgOwGAwpLuvlHrgMaNKlSqhUqVKqfdDQkIQGRmJSZMmoVGjRg99zfDhwzF48ODU+zExMShVqhRbcIiIiByI8bytlHrkc7UlN4ULF4a7u/sDrTRXrlx5oDUnMw0aNMDChQsz/L6Xlxe8vLxS7xt/OWzBISIicjy3b9+Gn59fps/Rltx4enqiTp062LBhAzp27Jj6+IYNGxAaGprl/Rw8eBDFihXL8vOLFy+OyMhI+Pj4ZNhClF2xsbEIDAxEZGQkfH19Lbpvsg2+h46N75/j43vo+Kz1HiqlcPv2bRQvXvyRz9Valho8eDC6d++O4OBghISEYM6cOYiIiEDfvn0BSEnp0qVLWLBgAQBgypQpKFOmDKpUqYKEhAQsXLgQixcvxuLFi7N8TDc3N5QsWdIqP4+Rr68v/ykdHN9Dx8b3z/HxPXR81ngPH9ViY6Q1uXn++edx/fp1jB49GlFRUahatSpWr16N0qVLAwCioqLSzXmTkJCAoUOH4tKlS8iTJw+qVKmCVatWoW3btrp+BCIiIrIzBpWVnjmUJbGxsfDz80NMTAyvOBwU30PHxvfP8fE9dHz28B5qX37BmXh5eeGjjz5K14GZHAvfQ8fG98/x8T10fPbwHrLlhoiIiJwKW26IiIjIqTC5ISIiIqfC5IaIiIicCpMbIiIicipMbixkxowZKFu2LHLnzo06depg69atukMiM2zZsgXt2rVD8eLFYTAYsGzZMt0hkRnGjx+PunXrwsfHB0WKFEGHDh1w8uRJ3WGRGWbOnInq1aunTvwWEhKCNWvW6A6Lsmn8+PEwGAwYNGiQluMzubGAn3/+GYMGDcLIkSNx8OBBNGzYEG3atEk3ASHZtzt37qBGjRqYPn267lAoG8LCwtCvXz/s2rULGzZsQFJSElq2bIk7d+7oDo2yqGTJkvj000+xb98+7Nu3D08//TRCQ0Nx9OhR3aGRmfbu3Ys5c+agevXq2mLgUHALqF+/PmrXro2ZM2emPla5cmV06NAB48eP1xgZZYfBYMDSpUvRoUMH3aFQNl29ehVFihRBWFgYGjVqpDscyqaCBQvis88+w6uvvqo7FMqiuLg41K5dGzNmzMDYsWNRs2ZNTJkyxeZxsOUmhxISErB//360bNky3eMtW7bEjh07NEVF5NpiYmIAyMmRHE9ycjIWLVqEO3fuICQkRHc4ZIZ+/frhmWeeQfPmzbXGoXVtKWdw7do1JCcnIyAgIN3jAQEBiI6O1hQVketSSmHw4MF46qmnULVqVd3hkBmOHDmCkJAQ3L9/H/ny5cPSpUsRFBSkOyzKokWLFuHAgQPYu3ev7lCY3FiKwWBId18p9cBjRGR9/fv3x+HDh7Ft2zbdoZCZKlWqhPDwcNy6dQuLFy9Gz549ERYWxgTHAURGRmLgwIFYv349cufOrTscJjc5VbhwYbi7uz/QSnPlypUHWnOIyLreeustrFixAlu2bEHJkiV1h0Nm8vT0RPny5QEAwcHB2Lt3L6ZOnYrZs2drjoweZf/+/bhy5Qrq1KmT+lhycjK2bNmC6dOnIz4+Hu7u7jaLh31ucsjT0xN16tTBhg0b0j2+YcMGPPHEE5qiInItSin0798fS5YswcaNG1G2bFndIZEFKKUQHx+vOwzKgmbNmuHIkSMIDw9PvQUHB6Nbt24IDw+3aWIDsOXGIgYPHozu3bsjODgYISEhmDNnDiIiItC3b1/doVEWxcXF4cyZM6n3z58/j/DwcBQsWBClSpXSGBllRb9+/fDjjz9i+fLl8PHxSW1J9fPzQ548eTRHR1kxYsQItGnTBoGBgbh9+zYWLVqEzZs3Y+3atbpDoyzw8fF5oI+bt7c3ChUqpKXvG5MbC3j++edx/fp1jB49GlFRUahatSpWr16N0qVL6w6Nsmjfvn1o2rRp6v3BgwcDAHr27Ilvv/1WU1SUVcZpGJo0aZLu8fnz56NXr162D4jM9s8//6B79+6IioqCn58fqlevjrVr16JFixa6QyMHxHluiIiIyKmwzw0RERE5FSY3RERE5FSY3BAREZFTYXJDREREToXJDRERETkVJjdERETkVJjcEBERkVNhckNEREROhckNETmdXr16oUOHDrrDICJNmNwQUbb06tULBoPhgVvr1q11h4apU6fazbIZBoMBy5Yt0x0GkUvh2lJElG2tW7fG/Pnz0z3m5eWlKRogOTkZBoMBfn5+2mIgIv3YckNE2ebl5YWiRYumuxUoUACbN2+Gp6cntm7dmvrcyZMno3DhwoiKigIgi1z2798f/fv3R/78+VGoUCG8//77SLvcXUJCAt59912UKFEC3t7eqF+/PjZv3pz6/W+//Rb58+fHypUrERQUBC8vL1y8ePGBslSTJk3w1ltvYdCgQShQoAACAgIwZ84c3LlzB71794aPjw8ee+wxrFmzJt3Pd+zYMbRt2xb58uVDQEAAunfvjmvXrqXb74ABA/Duu++iYMGCKFq0KD7++OPU75cpUwYA0LFjRxgMhtT7RGRdTG6IyOKaNGmCQYMGoXv37oiJicGhQ4cwcuRIzJ07F8WKFUt93nfffQcPDw/s3r0bX375Jb744gt8/fXXqd/v3bs3tm/fjkWLFuHw4cPo0qULWrdujdOnT6c+5+7duxg/fjy+/vprHD16FEWKFHloTN999x0KFy6MPXv24K233sIbb7yBLl264IknnsCBAwfQqlUrdO/eHXfv3gUAREVFoXHjxqhZsyb27duHtWvX4p9//kHXrl0f2K+3tzd2796NiRMnYvTo0diwYQMAYO/evQBkdfKoqKjU+0RkZYqIKBt69uyp3N3dlbe3d7rb6NGjlVJKxcfHq1q1aqmuXbuqKlWqqD59+qR7fePGjVXlypVVSkpK6mPDhg1TlStXVkopdebMGWUwGNSlS5fSva5Zs2Zq+PDhSiml5s+frwCo8PDwB2ILDQ1Nd6ynnnoq9X5SUpLy9vZW3bt3T30sKipKAVA7d+5USin1wQcfqJYtW6bbb2RkpAKgTp48+dD9KqVU3bp11bBhw1LvA1BLly7N4LdIRNbAPjdElG1NmzbFzJkz0z1WsGBBAICnpycWLlyI6tWro3Tp0pgyZcoDr2/QoAEMBkPq/ZCQEEyePBnJyck4cOAAlFKoWLFiutfEx8ejUKFCqfc9PT1RvXr1R8aa9jnu7u4oVKgQqlWrlvpYQEAAAODKlSsAgP3792PTpk3Ily/fA/s6e/Zsalz/PXaxYsVS90FEejC5IaJs8/b2Rvny5TP8/o4dOwAAN27cwI0bN+Dt7Z3lfaekpMDd3R379++Hu7t7uu+lTTjy5MmTLkHKSK5cudLdNxgM6R4z7iMlJSX1a7t27TBhwoQH9pW2tPaw/Rr3QUR6MLkhIqs4e/Ys3n77bcydOxe//PILevTogT///BNubqaufrt27Ur3ml27dqFChQpwd3dHrVq1kJycjCtXrqBhw4a2Dh+1a9fG4sWLUaZMGXh4ZP+jMleuXEhOTrZgZET0KOxQTETZFh8fj+jo6HS3a9euITk5Gd27d0fLli3Ru3dvzJ8/H3/99RcmT56c7vWRkZEYPHgwTp48iZ9++gnTpk3DwIEDAQAVK1ZEt27d0KNHDyxZsgTnz5/H3r17MWHCBKxevdrqP1u/fv1w48YNvPjii9izZw/OnTuH9evX45VXXjErWSlTpgz+/PNPREdH4+bNm1aMmIiM2HJDRNm2du3adCUaAKhUqRJeeuklXLhwAb///jsAoGjRovj666/RtWtXtGjRAjVr1gQA9OjRA/fu3UO9evXg7u6Ot956C//73/9S9zV//nyMHTsWQ4YMwaVLl1CoUCGEhISgbdu2Vv/Zihcvju3bt2PYsGFo1aoV4uPjUbp0abRu3Tpd69OjTJ48GYMHD8bcuXNRokQJXLhwwXpBExEAwKBUmkkliIhspEmTJqhZs+ZDOxoTEeUEy1JERETkVJjcEBERkVNhWYqIiIicCltuiIiIyKkwuSEiIiKnwuSGiIiInAqTGyIiInIqTG6IiIjIqTC5ISIiIqfC5IaIiIicCpMbIiIicir/Byl8Y1+gjlVbAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmKklEQVR4nO3deXzM5/YH8M8kJCGbNYklhNqCEMQSWvsaQlDUTktbl5aqS90Wrbp0ubYutOWHqrVKUGvtal9jp0UiliQoEgkiy/f3x+lkUUsmmZlnls/79ZqXyWQyc4hkzjznec7RaZqmgYiIiMhGOKgOgIiIiMiYmNwQERGRTWFyQ0RERDaFyQ0RERHZFCY3REREZFOY3BAREZFNYXJDRERENiWf6gDMLT09HTdu3IC7uzt0Op3qcIiIiCgHNE3D/fv3UbJkSTg4PH9txu6Smxs3bsDX11d1GERERJQLV69eRenSpZ97H7tLbtzd3QHIP46Hh4fiaIiIiCgnEhIS4Ovrm/E6/jx2l9zoS1EeHh5MboiIiKxMTraUcEMxERER2RQmN0RERGRTmNwQERGRTbG7PTdERGT70tLSkJKSojoMMpCTk9MLj3nnBJMbIiKyGZqmITY2Fvfu3VMdCuWCg4MDypUrBycnpzw9DpMbIiKyGfrExsvLCwULFmSzViuib7IbExODMmXK5Ol7x+SGiIhsQlpaWkZiU7RoUdXhUC4UL14cN27cQGpqKvLnz5/rx+GGYiIisgn6PTYFCxZUHAnllr4clZaWlqfHYXJDREQ2haUo62Ws7x2TGyIiIrIpTG6IiIjIpjC5ISIisiF+fn6YMWOG8sdQiaeliLJKSQHysEOfiMhQTZs2RWBgoNGSicOHD8PV1dUoj2WtuHJDBAA3bgA9egBOTsAPP6iOhogoG03TkJqamqP7Fi9e3O5PjDG5IfuWmgp89RVQpQrw889y27RpgKapjYuIjCYp6dmXR49yft+HD3N2X0MMGDAAu3btwsyZM6HT6aDT6RAVFYWdO3dCp9Nh48aNqFOnDpydnbFnzx5cunQJnTp1gre3N9zc3FC3bl1s3bo122M+WVLS6XSYO3cuOnfujIIFC6JixYpYu3atQXFGR0ejU6dOcHNzg4eHB7p37464uLiMz584cQLNmjWDu7s7PDw8UKdOHRw5cgQAcOXKFYSGhqJw4cJwdXVFtWrVsGHDBsP+oQzE5Ibs16FDQL16wPDhwP37ct3ZGbhwATh1SnV0RGQkbm7PvnTtmv2+Xl7Pvm+7dtnv6+f39PsZYubMmQgODsbgwYMRExODmJgY+Pr6Znz+gw8+wGeffYZz586hRo0aSExMREhICLZt24bjx4+jbdu2CA0NRXR09HOf55NPPkH37t1x8uRJhISEoHfv3rhz506OYkxPT0enTp1w584d7Nq1C1u2bMHly5fRo0ePjPv07t0bpUuXxuHDh3H06FF88MEHGU34hg4diuTkZOzevRunTp3C559/DjdD/6EMxD03ZH/u3QP+8x/gu+9khaZQIWDKFGDwYODVV4HVq2UVp0YNxYESka3z9PSEk5MTChYsCB8fn398fuLEiWjVqlXGx0WKFEHNmjUzPv70008RHh6OtWvXYtiwYc98ngEDBqBnz54AgMmTJ+Orr77CoUOH0LZt2xfGuG3bNpw6dQqRkZEZidfChQtRrVo1HD58GHXr1kV0dDT+/e9/o0qVKgCAihUrZnx9dHQ0unbtioCAAABA+fLlX/icecWVG7IfmgYsXiwlqNmz5eO+fYHz54G33wYcHYHu3eW+K1awNEVkIxITn31ZuTL7fW/efPZ9N27Mft+oqKffz5iCgoKe+LskYtSoUfD390ehQoXg5uaGc+fOvXDlpkaWN2uurq7w8PDAzZs3cxTDuXPn4Ovrm21FqWrVqihUqBDOnTsHABg5ciQGDRqEli1b4rPPPsOlS5cy7vvuu+9i0qRJaNSoESZMmICTJ0/m6HnzgskN2YcLF4CWLYE+fYC4OKByZWD7dmDhQsDbO/N+HTpIaeqPPwAz/AASkem5uj774uKS8/sWKJCz+xo39uwPOGrUKISHh2Py5Mn4/fffERERgYCAADx+/Pi5j/PknCadTof09HSjxfnxxx/jzJkzaN++PbZv346qVasiPDwcADBo0CBcvnwZffv2xalTpxAUFISvv/7aaM/9NExuyLY9fAiMGyclpu3b5TfZpEnAiRNAs2b/vL+7OxASItf1G4yJiEzIyckpx7OU9u7diwEDBqBz584ICAiAj48PoqKiTBqfv78/rl69iqtXr2bcdvbsWdy7dw9Vq1bNuK1SpUp477338Ntvv6FLly6YP39+xud8fX3x9ttvY9WqVXj//fcxZ84ck8bM5IZs16ZNQPXqksw8fiy7Ac+cAT78UFZnnkVfmvr5Z5amiMjk/Pz8cPDgQURFReH27dvPXVGpWLEiVq1ahYiICJw4cQK9evUy6grM07Rs2RIBAQHo3bs3jh07hkOHDqFfv35o0qQJgoKC8PDhQwwbNgw7d+7ElStXsHfvXhw+fBj+/v4AgBEjRmDz5s2IjIzEsWPHsGPHjozPmQqTG7I9168D3bpJMnP5MlCqFPDLL8D69UBONrJ16CArPBcvAhERJg+XiOzbqFGj4OjoiKpVq6J48eLP3T8zbdo0FC5cGA0bNkRoaCjatGmD2rVrmzQ+nU6HNWvWoHDhwmjcuDFatmyJ8uXLY/ny5QAAR0dH/PXXX+jXrx8qVaqE7t27o127dvjkk08AyITvoUOHwt/fH23btkWlSpUwa9Ys08asafb11jQhIQGenp6Ij4+Hh4eH6nDImFJTgW+/BT76SHb1OTrKMe+PP5ZykyFefVV2Gn7wgZykIiKL9+jRI0RGRqJcuXJweXIzDVmF530PDXn95soN2YaDB4G6dYERIySxadAAOHoUmDrV8MQGYGmKiMiKMbkh63b3LjBkCBAcLCWkwoWB778H9u4FsvSCMFj79nI04vJl4Ngxo4VLRESmx+SGrJOmAT/9JD1r9M34+veXnjVvvgk45PG/tqur7L0BpOcNERFZDSY3ZH3OnweaNwf69ZOOW/7+wM6dwIIF0jvdWFiaIiKySkxuyHo8fCibhWvUkGSmQAFg8mQpRzVpYvznCwkBChYEIiNl/w4REVkFJjdkHTZsAKpVA/77XyAlRfbEnDkDjB0LODmZ5jkLFswsTbGhHxGR1WByQ5bt2jU5lt2+vayglC4NrFoF/PorUK6c6Z+fpSkiIqvD5IYsU2oqMH267KdZuVJ61owaBZw7B3TuDOh05omjXTvZXHzlCnD4sHmek4iI8oTJDVme/fuBoCBg5EjpWRMcLMexv/wScHMzbywFCwKhoXKdpSkisjFNmzbFiBEjVIdhdExuyHLcuQO89RbQsKEMtixSBJgzB9izRzYRq8LSFBGZkCkSjAEDBiAsLMyoj2lNmNyQepoGLFwoPWt++EFuGzBAjnwPGpT3njV51batrBhdvSqdkImIyKIxuSG1zp4FmjWTBny3bgFVqwK7dgHz5wPFi6uOThQoAHTsKNfZ0I+IjGjAgAHYtWsXZs6cCZ1OB51Oh6ioKADA6dOn0a5dO7i5ucHb2xt9+/bF7du3M772l19+QUBAAAoUKICiRYuiZcuWSEpKwscff4wff/wRa9asyXjMnTt35iieu3fvol+/fihcuDAKFiyIdu3a4c8//8z4/JUrVxAaGorChQvD1dUV1apVw4YNGzK+tnfv3ihevDgKFCiAihUrYv78+Ub7tzJEPiXPSvTgATBpkuyjSU2VBGLCBOC990x3tDsvunUDliyR5ObLL9WvJhHRi2ma/K5RoWDBHB18mDlzJv744w9Ur14dEydOBAAUL14c9+7dQ/PmzTFo0CBMnz4dDx8+xJgxY9C9e3ds374dMTEx6NmzJ7744gt07twZ9+/fx++//w5N0zBq1CicO3cOCQkJGclFkSJFchT2gAED8Oeff2Lt2rXw8PDAmDFjEBISgrNnzyJ//vwYOnQoHj9+jN27d8PV1RVnz56F2997IceNG4ezZ89i48aNKFasGC5evIiHDx/m8h8wb5jckPmtXw8MGwb8/e4EoaHAV18Bfn4qo3q+J0tTwcGqIyKiF3nwwPyHEPQSE+Wk5Qt4enrCyckJBQsWhI+PT8bt33zzDWrVqoXJkydn3DZv3jz4+vrijz/+QGJiIlJTU9GlSxeULVsWABAQEJBx3wIFCiA5OTnbY76IPqnZu3cvGjZsCABYvHgxfH19sXr1anTr1g3R0dHo2rVrxnOVL18+4+ujo6NRq1YtBAUFAQD8FP5O59tPMp+rV4EuXaQxXlQU4OsLrF4NrF1r2YkNALi4AJ06yXWemiIiEztx4gR27NgBNze3jEuVKlUAAJcuXULNmjXRokULBAQEoFu3bpgzZw7u3r2bp+c8d+4c8uXLh/r162fcVrRoUVSuXBnnzp0DALz77ruYNGkSGjVqhAkTJuDkyZMZ9x0yZAiWLVuGwMBAjB49Gvv27ctTPHnB5IZMLyUFmDpVetaEhwP58gH//rfst9EnDNZAf2pqxQogPV1tLET0YgULygqKikvBgnkKPTExEaGhoYiIiMh2+fPPP9G4cWM4Ojpiy5Yt2LhxI6pWrYqvv/4alStXRmRkpJH+8Z5u0KBBuHz5Mvr27YtTp04hKCgIX3/9NQCgXbt2uHLlCt577z3cuHEDLVq0wKhRo0waz7MwuSHT2rcPqFNHGvAlJQGNGknPmi++ULdcnFutWwMeHsD169KLh4hMw1gtF3Q6KQ2puBjQaNTJyQlpaWnZbqtduzbOnDkDPz8/VKhQIdvF9e9yl06nQ6NGjfDJJ5/g+PHjcHJyQnh4+DMf80X8/f2RmpqKg1lOhf7111+4cOECqlatmnGbr68v3n77baxatQrvv/8+5syZk/G54sWLo3///li0aBFmzJiBH/QnYM2MyQ2Zxl9/AYMHSzJz6hRQtCjwf/8H7N4NZKkLWxWWpohMKzUVePllaeKZ5VSQrfPz88PBgwcRFRWF27dvIz09HUOHDsWdO3fQs2dPHD58GJcuXcLmzZsxcOBApKWl4eDBg5g8eTKOHDmC6OhorFq1Crdu3YK/v3/GY548eRIXLlzA7du3kZKS8sI4KlasiE6dOmHw4MHYs2cPTpw4gT59+qBUqVLo9PfvvhEjRmDz5s2IjIzEsWPHsGPHjoznHD9+PNasWYOLFy/izJkzWLduXcbnzI3JDRmXpgELFkjPmrlz5bbXX5eeNa+/bv2njFiaIjKdrVuBvXtldTcsDHj0SHVEZjFq1Cg4OjqiatWqKF68OKKjo1GyZEns3bsXaWlpaN26NQICAjBixAgUKlQIDg4O8PDwwO7duxESEoJKlSrho48+wtSpU9GuXTsAwODBg1G5cmUEBQWhePHi2Lt3b45imT9/PurUqYMOHTogODgYmqZhw4YNyJ8/PwAgLS0NQ4cOhb+/P9q2bYtKlSph1qxZAGS1aOzYsahRo0ZG6WzZsmWm+Ud7AZ2m2VfL1YSEBHh6eiI+Ph4eHh6qw7EtZ84AQ4YAv/8uH1evDsyeLe/EbEVyMuDtDcTHyyrUK6+ojojIdvTuLS0X9Hr0kI9z+Kbo0aNHiIyMRLly5eDi4mKiIMmUnvc9NOT128rfRpNFSEoCPvgACAyUxKZgQdlTc+yYbSU2AODsLO8oATb0IzKm+/flwAEAfP65HDxYvhz46CO1cZFVUprcTJkyBXXr1oW7uzu8vLwQFhaGCxcuPPdrFixYkNFxUX9hhq7Qr78C1arJL6PUVNmTcu6cnIb6exnT5nTrJn/+8gtg4IY9InqGlSuBhw+BypXl94e+rD1lSuZ1ohxSmtzs2rULQ4cOxYEDB7BlyxakpKSgdevWSEpKeu7XeXh4ICYmJuNy5coVM0VMGaKjZQWjY0fgyhWgbFnpV7N6NVCmjOroTKtVK8DTE4iJkf0BRJR3CxfKn/36yUmj/v2BcePktrffBrZsURcbWR2lHYo3bdqU7eMFCxbAy8sLR48eRePGjZ/5dTqdzqCui2REKSnAjBnAxx9L9898+YD335dfQjnoxmkTnJyAzp1l4/TPPwPP+b9KRDlw9Sqgn33Uu3fm7Z98AkRGAosWAa++Km8mqldXEiJZF4vacxMfHw/gxTMwEhMTUbZsWfj6+qJTp044c+bMM++bnJyMhISEbBfKpb17gdq1gdGjJbF55RUgIgL47DP7SWz09KemWJoiyrvFi+WkZdOmsgqsp9NJSapxYyAhAQgJAW7ceOHD2dk5GZtirO+dxSQ36enpGDFiBBo1aoTqz8nMK1eujHnz5mHNmjVYtGgR0tPT0bBhQ1y7du2p958yZQo8PT0zLr6+vqb6K9iu27eBN96QzcGnTwPFisnU7l27ZL+NPWrRAihcGIiLyzwdRkSG07TMklTfvv/8vLOzbDSuXFlWeEJDpQPwU+iPKz9QNSyT8uzx48cAAEdHxzw9jsUcBR8yZAg2btyIPXv2oHTp0jn+upSUFPj7+6Nnz5749NNP//H55ORkJCcnZ3yckJAAX19fHgXPifR0Kb2MHi1N+QBg0CBZqSlaVGloFuGNN4B58+T4+999HojIQEePStM+Fxd5s/Cs38uXLgENGsibrdBQSXie8gIYExODe/fuwcvLCwULFoTOgE7BpFZ6ejpu3LiB/Pnzo0yZMv/43hlyFNwipoIPGzYM69atw+7duw1KbADJ1GvVqoWLFy8+9fPOzs5wdnY2Rpj25dQpedHWb5gNCJCeNY0aqY3LknTvLsnNypUy1TyfRfw4EVkX/apNWNizExsAeOklObTQrJmc0nzvPfm5e4J+P+bNmzdNECyZmoODw1MTG0Mp/W2saRreeecdhIeHY+fOnShXrpzBj5GWloZTp04hJCTEBBHaoaQk2cQ3fboc7XZ1lY/ffdd2j3bnVvPmQJEiwM2b0tCveXPVERFZl5QUYOlSuf60ktSTgoOBn36SNxZffy0Jz/Dh2e6i0+lQokQJeHl55WjkAFkWJycnOBihk73S5Gbo0KFYsmQJ1qxZA3d3d8TGxgIAPD09UaBAAQBAv379UKpUKUyZMgUAMHHiRDRo0AAVKlTAvXv38OWXX+LKlSsYNGiQsr+HzVizRpKY6Gj5uHNnYOZMgPuUni5/fqBLF9nwuGIFkxsiQ23eDNy6BXh5yWDanOjWTZqEjh4tqzd+fpkz37JwdHTM874Nsl5KNxTPnj0b8fHxaNq0KUqUKJFxWb58ecZ9oqOjERMTk/Hx3bt3MXjwYPj7+yMkJAQJCQnYt29ftomlZKArV6RfTViYJDZ+frLsu2oVE5sX0Tf0W7lSVrqIKOd++kn+7NXLsLLuqFHAW2/JZuSePYHDh00TH1kti9lQbC6cLZVFSgowbRowcaIc7c6fX35pfPSRjFCgF0tJAUqUkA3XW7fKKSoierF79wAfH5nXduwYUKuWYV+fmiobizdtknlvBw7IGzOyWZwtRS/2++/yy+SDDySxadxYetZMnszExhD60hQgDf2IKGd++UUSm2rVZC6dofSzp2rUkFNW7dtLwkQEJjf259YtYOBASWbOnJGeNT/+KN1BWdrLHX1DP5amiHJOX5Lq21ea9eWGhwewfj1QsiRw9qx0Mf67TwrZNyY39iI9XTa+VqkivWsA4M03gQsXMme5UO40bSpJ4l9/ATt2qI6GyPJFRckJQ50u+7iF3ChdGli3Tk52btsmc6jsa7cFPQWTG3tw6pSMShg8GLhzB6hZE9i3D/j+eznKTHmTLx/QtatcZ2mK6MUWLZI/mzeX5CSvatWSnz0HB+mePnly3h+TrBqTG1uWmCgbhGvVkmTGzU02EB85Iv0iyHj0palVq2STMRE9naZllqT69TPe44aESO8bQA5F6PvnkF1icmOLNE1ak/v7A1OnymDHrl2Bc+ekLwQ76Rpf48bSq+POHWD7dtXREFmuQ4eAP/6Qgwv6zfjG8q9/Ae+/L9cHDODcNzvG5MbWREVJz5ouXYBr14By5WTD3S+/GGf5l54ua2lqxQq1sRBZMv2qTefOsppsbF98Ib//Hj+W3l1//GH85yCLx+TGVjx+DEyZIiee1q2TI8offihTvDmawjz0Df1YmiJ6usePM8tFxixJZeXgIAlUvXqykhoSIqdEya4wubEFu3ZJn4j//Ad4+FBO75w4AUyaxJ415qQvTd29K6c2iCi7jRsl4ShRwrQNLwsWlCGbfn4yTTwsDHj0yHTPRxaHyY01u3kT6N9fkplz54DixWXC7vbtst+GzMvRUfpsADw1RfQ0+gngvXvLz4speXsDGzYAhQrJgYr+/aUlBtkFJjfWKD0d+OEH6VmzcKH0inj7belZk5eGWJR3+lNT4eFsJkaU1d27UjIHcjYB3Bj8/aVMnD+/vOH48EPzPC8px+TG2pw4Abz8sgyNu3tXylH79wOzZwOFC6uOjl5+Webl3Lsns6aISPz8syT8NWvKyARzadZMGpgCwGefAXPmmO+5SRkmN9bi/n1g5EigTh1JZtzcgBkzZBpu/fqqoyM9lqaInk5fkjLXqk1W/foBEybI9SFDgM2bzR8DmRWTG0unaTKzyN8fmD5detZ06wacPw8MH86eNZZIX5pavVoGAxLZu0uXZN+LgwPQq5eaGCZMkMRK/zv05Ek1cZBZMLmxZJGRQIcOshJw/TpQvrycNvj5Z6BUKdXR0bM0aiSnQeLjgS1bVEdDpJ6+t02rVvKzoYJOJyWpJk1kJbx9e+DGDTWxkMkxubFEjx/LbJSqVWW3f/78wLhx0rOmbVvV0dGLODhk9rxhQz+yd1nHLagoSWXl7Cyb/StXlianHTrImBqyOUxuLM3OnbLh7sMPpS9D8+Yy+HLiRKBAAdXRUU7pkxuWpsje7dsHXL4s+wTDwlRHIwcvNmyQ1hnHjwM9e0qpimwKkxtLcfOmbHpr1kz203h5yeTcrVvlXQZZl4YNgZIlgYQE4LffVEdDpI5+1aZrV8DVVW0seuXLS5M/Fxc5nj58uKwwkc1gcqNaejrw/feSwPz0k9SF//Uv6VnTuzd71lirrKUpnpoie5WcDCxfLtdVl6Se1KCBvIHU6YBvv5XTp2QzmNyoFBEh7/Dfflv6otSuDRw4ID9ohQopDo7yTH9qas0atn4n+7RunfxuK11aOqlbmq5dZdAmINPEw8PVxkNGw+RGhfv3gffek541Bw8C7u7AV18Bhw7JsDeyDQ0ayC/1+/fZV4Psk74kZY5xC7n1/vvyBlPTJM5Dh1RHREbA5MacNA345RcZmzBjhpSkevSQPTbvvGO5P/yUOyxNkT27fRtYv16uW1pJKiudDvj6a6BdOxk8HBoKREWpjoryiMmNuVy6BISEyIvdjRvASy/Ju/lly2TjKdkmfWlq7Vr5xUlkL5YvB1JTpdxerZrqaJ4vXz6Jt2ZNOdwREiLlNLJaTG5MLTkZmDQJqF4d2LQJcHKSTpmnTwOtW6uOjkytfn2gTBnppbFpk+poiMxHX5Lq109tHDnl7i57hEqWBM6dk/04HH5rtZjcmNL27fJOYNw42VDasqX0rPn4YzmCSLZPp8ucNcWGfmQvLlyQ/YSOjtJHxlqULi2lNDc3+f391ls8Im6lmNyYQlwc0KcP0KKF/JD7+ABLlki/k0qVVEdH5sbSFNmbRYvkzzZtpGeXNQkMlD1yjo7AggWy8k5Wh8mNMaWlAbNnS8+axYvlXfuwYbJhuGdP9qyxV/XqSWkqKUlmgxHZsvR06ytJPaldO+Cbb+T6+PHy+5ysCpMbYzl5EggOlgZ88fFyzPvQIdmF7+mpOjpSSafLXL3hqSmydXv2AFeuAB4eQMeOqqPJvbffBkaNkuuvvw7s3q02HjIIkxtjuXcPOHxYfqC/+UbqzUFBqqMiS6FPbn79FXjwQG0sRKa0cKH82a2b9c/D+/zzzI3FYWGyzYCsApMbY2ncWMYonD8PDB3KnjWUXVAQ4Ocnic2GDaqjITKNhw8zN85bcm+bnHJwkBJb/frA3btyRPzWLdVRUQ4wuTGmN98ESpRQHQVZIpamyB78+qsMiy1bFnjlFdXRGEeBAnIYoFw5mW7eqRMPBlgBJjdE5qJPbtatk83FRLZGX5Lq00dWPWyFl5esuBYuDOzfLxul09NVR0XPYUP/+4gsXO3aQPny8q5P35aeyFbcvJnZqNIWSlJPqlJFBmvmzy9jdMaOVR0RPQeTGyJz0ekyZ02xoR/ZmqVLpR1GvXrSDsMWNWkCzJsn17/4AvjhB7Xx0DMxuSEyJ31pav16GclAZCv0vW1scdUmqz59pMs8IK0/OFbFIjG5ITKnWrVkaCpLU2RLzp4Fjh6VAZSvvaY6GtMbP1723aSlyRuWkydVR0RPYHJDZE48NUW2SL9qExICFCumNhZz0OmAOXOApk2B+/eB9u2B69dVR0VZMLkhMjd9crNhg/xiJLJm6emZs6RsvSSVlZMTsGqVbDS+dg3o0IE/zxaEyQ2RudWsCVSsKJPi161THQ1R3uzcKS/uhQrJC7w9KVxY3qR4eQEREVKSS01VHRWByQ2R+bE0RbZEX5Lq3h1wcVEbiwrlykmTPxcXSXSGDwc0TXVUdo/JDZEK+uRm40bp6EpkjR48kJ4vgPVOADeG+vVlcrhOB8yaBUyfrjoiu8fkhkiFgADpBZKcLC3riazR6tXS0qB8eaBhQ9XRqNWlC/Dll3J91Chp+EfKMLkhUoEN/cgW6Mct9O0r/6ft3ciRwJAhUpbq3Rs4dEh1RHaLyQ2RKixNkTWLiQG2bJHrffqojcVS6HTAV1/JkfiHD4HQUCAyUnVUdonJDZEq1avLMdLHj2VDIpE1WbpUjoEHBwMVKqiOxnLkywcsXw4EBsq8rZAQ4O5d1VHZHSY3RKrw1BRZM31Jyp43Ej+Lm5u0eShVCjh/HujaVd7EkNkwuSFSSZ/cbN4M3LunNBSiHDt5EjhxQhrZ6f8PU3alSsmIFTc3YMcOYPBgHhE3IyY3RCpVqwZUrcrSFFkXfW+bDh2AIkXUxmLJataUAwOOjrLS9emnqiOyG0xuiFRjaYqsSVoasGSJXLencQu51bYt8O23cn3ChMxRFWRSTG6IVNMfCf/tN5amyPJt3w7cuCErNiEhqqOxDm+9Bfz733L99deBXbvUxmMHmNwQqVa1qpycSkkB1qxRHQ3R8+k3Er/2muy5oZz57DPg1Vfl5zwsTDYak8kwuSGyBPrVG5amyJIlJsokbIAlKUM5OEhiGBwsK7QhIXJUnEyCyQ2RJchammJPDLJUq1bJPKmKFWWeEhmmQAFZnS1fXpr7deokzf7I6JjcEFkCf3+ZN5WaKvN6iCyR/pQUxy3kXvHiMj28cGHgwAH5t0xPVx2VzWFyQ2QpeGqKLNm1a8C2bXKd4xbypnJlGayZPz+wciXwwQeqI7I5TG6ILIW+NLV1K/DXX2pjIXrSkiXShO6VV4By5VRHY/2aNAHmzZPrX34JfPed2nhsDJMbIktRubI0/WJpiiyNpmWfAE7G0acPMHGiXB86VIboklEwuSGyJCxNkSWKiADOnAGcnTNXGMk4PvoIGDBA9t107y5jLSjPmNwQWRL9C8e2bcDt22pjIdLTbyTu2BEoVEhpKDZHpwO+/x5o3lyO2rdvL/ubKE+Y3BBZkooVgcBAaXHP0hRZgtTUzHELnABuGk5OsrHY3x+4fl1mdt2/rzoqq8bkhsjSsDRFlmTLFiAuTo4wt2mjOhrbVaiQHBH38pLSVI8eklhSrjC5IbI0+tLU9u3ArVtqYyHSbyTu2VOOLpPp+PkBv/4qzf42bgTefVc2c5PBmNwQWZoKFYDataU0FR6uOhqyZwkJmeVRnpIyj3r1gMWLZS/O7NnAtGmqI7JKTG6ILBFLU2QJVq4EHj0CqlQB6tRRHY396NwZmDpVro8aJd8HMojS5GbKlCmoW7cu3N3d4eXlhbCwMFy4cOGFX7dixQpUqVIFLi4uCAgIwIYNG8wQLZEZ6UtTO3ZwuB6poy9J9evHcQvmNmKE9L4BpB/OgQNKw7E2SpObXbt2YejQoThw4AC2bNmClJQUtG7dGklJSc/8mn379qFnz5544403cPz4cYSFhSEsLAynT582Y+REJla+PBAUJL0v9FOYiczpyhVg50653ru30lDskk4HzJghR8MfPZJj+Jcvq47Kaug0zXJ2K926dQteXl7YtWsXGjdu/NT79OjRA0lJSVi3bl3GbQ0aNEBgYCC+y0H76oSEBHh6eiI+Ph4eHh5Gi53I6L78Ehg9GmjWTDYXE5nT5MnAhx/y/59qiYlA48bA8eNSHty3T4Zu2iFDXr8tas9NfHw8AKBIkSLPvM/+/fvRsmXLbLe1adMG+/fvf+r9k5OTkZCQkO1CZBX0paldu+QoLpG5aFr2CeCkjpsbsG4dULo0cP480KUL8Pix6qgsnsUkN+np6RgxYgQaNWqE6tWrP/N+sbGx8Pb2znabt7c3YmNjn3r/KVOmwNPTM+Pi6+tr1LiJTMbPD6hbl6UpMr+jR+WF1MUF6NpVdTRUsiSwfj3g7i6lwkGDeET8BSwmuRk6dChOnz6NZcuWGfVxx44di/j4+IzL1atXjfr4RCbFU1Okgn4jcefOAMv3lqFGDWDFCsDRUVbVPvlEdUQWzSKSm2HDhmHdunXYsWMHSpcu/dz7+vj4IO6JJfq4uDj4+Pg89f7Ozs7w8PDIdiGyGllLU89YnSQyqpQUYOlSuc6SlGVp00Z63wCS3OiTUPoHpcmNpmkYNmwYwsPDsX37dpQrV+6FXxMcHIxt27Zlu23Lli0IDg42VZhE6pQtC9SvL0vQ7HVB5rBpkwxt9fYGWrVSHQ09afBgYMwYuT5oUOaJNspGaXIzdOhQLFq0CEuWLIG7uztiY2MRGxuLhw8fZtynX79+GDt2bMbHw4cPx6ZNmzB16lScP38eH3/8MY4cOYJhw4ap+CsQmR5LU2RO+o3EvXoB+fKpjYWebvJk+b2QkiKlw3PnVEdkcZQeBdc9oynU/PnzMWDAAABA06ZN4efnhwULFmR8fsWKFfjoo48QFRWFihUr4osvvkBISEiOnpNHwcnqREfLCo5OB1y7JpsLiUzh3j3AxwdITpajx4GBqiOiZ3n4EGjRAti/HyhXTpr8eXmpjsqkDHn9tqg+N+bA5IasUsOG8kvsq6+Ad95RHQ3ZqjlzgDffBKpXB06eZFdiS3frFtCggTT3q19f+hEVLKg6KpOx2j43RPQMLE2ROWTtbcPExvIVLw5s2CBN/Q4elO9berrqqCwCkxsia/Dqq/Lnnj3A9etqYyHbFBkJ/P67JDUct2A9KleWye1OTtIPa/Ro1RFZBCY3RNagdGkpTQE8NfUcFy7I4gMbuObCokXyZ4sWQKlSamMhwzRuDMyfL9enTs08Lm7HmNwQWQuWpp5ryRKgVi0ZYN2qFYepG0TTsk8AJ+vTqxfw6adyfdgwKVfZMSY3RNZCX5rau1dOTREAIDUVGDlSKikPH0pVZfdueQNLOXTwIHDxomxG7dxZdTSUWx9+CAwYIPtuevQAIiJUR6QMkxsia1GqFPDyy3L9l1/UxmIhbt6UVZrp0+Xj//wHOHVK9lVOnKg2NquiX7Xp0kUGNZJ10umA778HmjeXaeLt29vtGyEmN0TWhKWpbKKigH375PV45Urgv/8FqlWT12pnZ7lPWhqwYAEPkTzT48fA8uVynSUp6+fkJD8MVasCN25IgpOQoDoqs2NyQ2RNunaVd2f790tzPztXr55sID54UBYdnuY//wEGDgTCwuzyd/yLbdgA3LkjzSGbN1cdDRlDoUIyRdzbW/oV9egh9Vs7wuSGyJqULAm88opct8PS1OPHwPDh2bcSdO8ub1KfpUYNwMUF+PVX6Xf2558mD9O66EtSvXvLxGmyDX5+8p++QAGZFzZsmGwctxNMboisjZ2Wpm7cAJo2lSbNXbvKhICc6N1b2reUKiUjeOrVAzZvNmmo1uPOHWDdOrnOCeC2p25dmfCu34vzv/+pjshsmNwQWRt9aergQeDKFdXRmMXevUCdOlKN8/QEvv46c09NTgQFAUeOAMHBMj4pJEROU9nRG9mnW75chi8GBgIBAaqjIVPo1AmYNk2ujx5tNyu+TG6IrI2PjzTtAmz+F5WmAbNmyYpNbKyMPDpyRJITQ/n4ADt2AK+/LpuLx42TDcl2Leu4BbJdw4dLWQqQ7/WBA2rjMQMmN0TWyA5KU8nJkogMHSp7Ibt3l5WbChVy/5jOzsDcubLys2CBDFO2W3/+Kf+gDg5Az56qoyFT0umAGTOADh2AR4+Ajh2BS5dUR2VSTG6IrFGXLvKidOiQzS4/5MsHxMTIX/OLL4Bly4zTgkWnkzex+vwQkH/G/fvz/thWRT9uoXVroEQJtbGQ6Tk6yv6bWrVkmnj79rLnykYxuSGyRj4+QJMmcn3FCrWxmIijo4xU2LoV+Pe/TTek+sYNOSbetGnmeB6bp2ksSdkjNzfZQO7rK4PYOnfO+c58K8Pkhsha2VhpStOk0/CQIZm3FSkCNGtm2uf18JAj4o8fSxls+HA7aAmyd69MAXdzk8yO7EfJktIDx91d5pQMGmSTO+uZ3BBZK31p6sgR4PJl1dHkSVKSHNkeORL47jtg+3bzPbebm+zL/uQT+firr4A2bYC//jJfDGanX7V59VWZJ0X2JSBA/tM7Okp58uOPVUdkdExuiKyVl1fmsoYVl6YuXQIaNpTtAPnyyWZfU6/WPMnBARg/Hli1CnB1leSqXj3g9GnzxmEWjx5x3ALJXqvvvpPrEycCP/6oNh4jY3JDZM2svDS1aZP0oDl5UjrFb98um31Ntb/mRTp3lo3F5crJYthnn6mJw6TWrQPi42XfhX7fFtmnQYOADz7IvG7OJVMTY3JDZM06d5al5WPHrO5o54wZ0q/m3j2gfn3g6NHMyRIqBQQAhw/L3p/Zs1VHYwL6klTv3rJkRfbtv//NnD3VpQtw9qzqiIyC/7OJrFnx4lZbmqpSRf58801g1y4Zj2ApihaV5oHu7vKxpgHffAMkJqqNK89u3ZJBmQBPSZFwcJCmTw0byope+/ZAXJzqqPKMyQ2RtbOi0lRKSub1tm2B48dl5I0hoxRUmDoVeOcd+f1v1Xu3ly+Xd+h16jx/2ijZFxcXYM0a6ZAZFQWEhgIPHqiOKk+Y3BBZO31p6vhxix55vWYNULFi9uSgZk118RiiUSNpLXTqlMwitNqtCfoJ4NxITE8qVkxW9YoUkbpsnz5AWprqqHKNyQ2RtStWDGjRQq5bYGkqPV1OIoWFyZzPL75QHZHhgoPlxH3dutLUtXVrOdVlVe1Bzp+XFy1HR+C111RHQ5aoYkV5F+LkBISHy6BNK8XkhsgWWGhp6u5dWeH+9FP5+N13JSmwRqVKyd4g/Rvad9+VAyZW0+BVv5G4bVtpI0D0NC+/LHtwAJkmPmuW0nByi8kNkS0IC5MmMSdOSFt1C6Av4WzYICX9n34CZs4E8udXHVnuFSgglZ3//U/2YS5cKP/kFi89PXOWFEtS9CI9ewKTJsn1d96RjsZWhskNkS0oWhRo2VKuW0Bp6uBBGWlw6RJQtqx0++/TR3VUxqHTAe+/L0nbd99Jsz+L9/vvQHS0zJoIDVUdDVmD//xH5pGkp8tR8WPHVEdkECY3RLbCgkpTgYHSL6ZlS+lfU7u26oiMr00b4I03Mj8+d04GfVok/Ubi7t1l+YnoRXQ6yd5btpT5KB06AFevqo4qx5jcENmKTp2kNHXqlGweNbM7dzIPVzg7y0r2xo2yqGTrEhLkn793b5lgblGHTB4+zFzNY28bMkT+/DKDqlo1ICZGeuAkJKiOKkeY3BDZiiJFgFat5LqZS1PHjsnqzLhxmbcVLSq5lj1wcwO6dZPr//ufvMm9e1dtTBnWrAHu3wf8/GSzKJEhPD3lnYq+F0L37tkbVlkoJjdEtkRBaWrhQukDc+WKvMlLSjLbU1sMBwfpYr9smVR9Nm2SkRLnzqmODJmnpPr04bgFyp2yZYFff5UJ8ps3ywA4C++DwP/pRLakUydZSj592uQzYlJS5Dh0//4yaLp9e+DQIZmqba969AD27QPKlJF+ivXry5xKZeLi5MUIYEmK8iYoSDaV6XTADz8AX36pOqLnYnJDZEsKF5YOc4BJS1OxsdI3UN+zZsIEYO1aoFAhkz2l1QgMlIZ/jRtLNWjaNIVvcpculQ1A9esDlSopCoJsRqdOwPTpcn3MGIs4vPAsTG6IbI2JS1MpKTK9+/ff5WTx2rXAxx+z4pFV8eLAli3Ahx/KOCedTlEg+pIUV23IWIYPl943gPRM2rdPbTzPwF9HRLamY0dpn372LHDmjNEfPn9+SWaqVpVu/myb8nROTtIHrXjxzNumT5e9SWZx5ozs9M6fX+plRMYyfbr84Ccny2rOpUuqI/oHJjdEtqZQIWnCAhht9SY5Gfjjj8yPe/eWOZ2sdOTcTz8BI0dK1+bdu830hAAQEiLzx4iMxdFRSp516gC3b8v/sb/+Uh1VNgYlNzdv3nzu51NTU3Ho0KE8BURERpC1NJXHDR/Xrsn+kebNZX+qnpNTnh7W7jRpAtSqBdy6JfuVvvvOhE+WlpY5boElKTIFV1c5QVWmjLzz6dzZogatGZTclChRIluCExAQgKtZOhb+9ddfCA4ONl50RJQ7oaGSfZw/Lyencmn3bnlzdugQ8OCBRa4+W40yZYA9e6RClJoKDBkil8ePTfBkO3cC16/LKl6HDiZ4AiIAJUpIDxwPD9mE9/rrFnNE3KDkRnsi6KioKKQ80cznyfsQkQKenjL9GcjVqSlNA776SlYYbt4EataUE0ANGxo5TjtTsKCs5k+enL27/QsWxQ2nL0n16CHtoolMpXp1aXCVL58cFR8/XnVEAEyw50an7FgAEWWTy9LUgwdyCGL4cFlh6NVLDkSUL2+iOO2MTgeMHSunzNzd5Q2vUav5SUnyYgNwAjiZR6tWmXXWSZOA+fPVxgNuKCayXaGh8q79wgVpm55Dn3wi2zUcHeVQxKJFsuJAxtWhg0xPnzXLyJWj1aslwXnpJYDbBMhc3nhDJokDwJtvAtu2KQ3HoORGp9Ph/v37SEhIQHx8PHQ6HRITE5GQkJBxISIL4eEBtGsn1w04NfXhh9LHZutWYMQIhT1a7IC/v+y70YuOljEO6el5eFD9BPC+ffnNI/P69FPgtddkybdnT6WzWHSaAZtkHBwcspWdNE176sdpFjUSN7uEhAR4enoiPj4eHh4eqsMhMq2lS6WuVLGirOA85cVO0+TQQ2ho5qc1ja+L5paaKo2Ejx2T78WiRZKfGuTGDcDXV7Kjixdl9YbInB49kpL4yJFA06ZGfWhDXr8Nmtm7Y8eOPAVGRGbWoQPg4iKDjk6ckNkAWSQmAgMHyhaNadOA996T25nYmF++fPLvP2iQJJsNGshA74oVDXiQJUsksWnYkIkNqeHiIhvKFDMouWnSpImp4iAiU3B3lwZbq1ZJaSpLcvPnn9Ka4swZaWLLfTXq9ekDVKkChIXJRPF69WTSuL4n4wvpT0lxIzHZOYP23KSmpiL5iSY9cXFx+OSTTzB69Gjs2bPHqMERkRE85dTUunXSKffMGWlVsXMn8NZb6kKkTEFBcuw+OBi4d09y06lTc3Dg7cQJ4ORJ6W+k/54T2SmDkpvBgwfj3Xffzfj4/v37qFu3Lr799lts3rwZzZo1w4YNG4weJBHlQfv2slR86RLSjx7HxImypyM+XqoXR4+yf42l8fEBduyQAyjp6bL/5oXNX/WrNqGhMh2eyI4ZlNzs3bsXXbt2zfh44cKFSEtLw59//okTJ05g5MiR+PLLL40eJBHlgZubJDgAbs1egYkT5eZ//UteQEuUUBgbPZOzMzBnjrQPWb1a8tNnSk0FFi+W6xy3QAqlpQF376qOwsDk5vr166iYZXfbtm3b0LVrV3h6egIA+vfvjzMmmEJMRHn0d5nCe+fPmDlDw/z5wLffcj6UpdPppFxYtmzmbV99Bezf/8Qdt20DYmOBokUzj/8TmdHNm8Bnn8k+9uHDVUdjYHLj4uKChw8fZnx84MAB1K9fP9vnExMTjRcdEeXZypXA+ZfaAwUKAJcvY2jwMQwYoDoqyo3Nm+WFo2nTJ5rA6ktSr73GjJXMRtOAvXuB3r2B0qWl8/aVK5Jrm2RmmgEMSm4CAwPx098/RL///jvi4uLQvHnzjM9funQJJUuWNG6ERJQraWnABx8Ar74KhPV2RUqbv9vgGtDQjyxLo0Zywu3xY5lROGIEkHr3vpyGA1iSIrMJD5fDly+/LB0IUlKkT9OPP0qLJdU5tkHJzfjx4zFz5ky89NJLaNOmDQYMGIASWQr24eHhaNSokdGDJCLD/PWXnLL5/HP5uEMHwOG13M2aIsvh5iY9iT75RD6eOROY2mgV8PAhUKmSnB0nMpGsvzZu35bDeQUKyMb3I0eAAwekC0GBAupi1DO4z83Ro0fx22+/wcfHB926dcv2+cDAQNTjDxeRUhER8u4+Kkp+yfzf/0kndDwIkWY2UVHym6huXbWBUq44OMjg5YAAWaipc05W0+Na94U3uy+SkT1+LKs0s2ZJ1VM/LqRXr8whu5Z4OM+g8Qu2gOMXyJYtXgwMHixv5MuXl19KNWpkucNrrwHLlwOjRgE82Wj1zm25hsqty8ABGlZ8EYlu//ZTHRLZiOho4IcfgLlzgbg4uS0wEDh+XF1MJhu/sHv37hzdr3HjxoY8LBEZQXq6HB1++BBo21YSnSJFnrhT9+6S3Pz8M/DFF5yzYOX8jy0GoOFGxcZMbMgotm4FvvlGRoDoB7j6+Mig78GD1cZmiFwPznzWl3FwJpE6cXHAvHnA6NGAo+NT7vDwIVC8uEzrPXBAdgCSddI0oHp14OxZyWoHDQIgeyEmTJD9Vm5uimMkqxMWJjPNAKBZM+mH1amTjGhRzZDXb4M2FBcuXBi+vr4YN24c/vzzT9y9e/cflzt37uQpeCLKuUOHgEmTMj/29pbjmE9NbADZhBMaKtdXrDB5fGRCx49LYuPsDGTZ/9i3r+yPCA4GLl9WGB9ZvMOHZXBuZGTmbcOHA+++K/+1tm+X05aWkNgYyqDkJiYmBp9//jn279+PgIAAvPHGG9i3bx88PDzg6emZcSEi0/u//wNeeQUYN05O0OTYU2ZNkRVauFD+7NQJyPJ7d/x4KSOcPi17xrdvVxQfWaQHD2R1NyhIDtctWAB8/33m55s1k1N4/v7KQjQKg5IbJycn9OjRA5s3b8b58+dRo0YNDBs2DL6+vvjwww+RmppqqjiJ6G/JycDbb0sV4vFjeW1r3dqAB2jbVuoVV68CBw+aLE4yodRUYOlSuf7EBPDg4MzDcHfuyP+Nr79mHmvv/vgDGDkSKFVKjm4fPSq9aPr0Abp0UR2d8eX5tFRkZCTeeOMN7Nq1C7du3UKRf+xgtCzcc0PW7MYNoGtX2S6j0wETJwL/+Y8cDzZI797Seeu994Bp00wSK5nQhg0yL6x4ceD69afWDR49kk2g+ubFr78u5SpnZzPHSsolJ0vJOj5ePi5XTt4gDRwo/4Wshcn23OglJydjyZIlaNmyJapXr45ixYph/fr1Fp/YEFmzvXuBOnUksSlUCFi3Dvjoo1wkNkBmaWrFiswjEWQ99CWpXr2euSHCxUW6xf7vf/J/ZNcuKUmQ7YuJkRNP+qULZ2dgwABp5rl+PfDnn3LowJoSG0MZdBT80KFDmD9/PpYtWwY/Pz8MHDgQP//8M5MaIjO4eVNmI1avLv1rKlTIw4O1aQO4uwPXrkm21LCh0eIkE4uPzzzO8oJxCzod8P778n+mdGnLbLZGxqFpwO7dsjq3apVULmvWlH15ADB9un11fjAouWnQoAHKlCmDd999F3Xq1AEA7Nmz5x/369ixo3GiI6IMnTtLi5qQECMc8XVxkc06ixbJxmImN9bjl1+k5uTvD9SunaMvadMm+8dz5sjBuT59TBAfmVV8vJQeZ8+WE056DRtmT2bsKbEBctHn5oUPyD43REYRHS118e+/B3x9TfAEa9dKglOypGwuzlV9i8yuaVOpMU2ZIpNRDXTihJyUSU2VRtWfffac1gFk0c6dk43jSUnysaurJKxDhsiqja0x2Z6b9PT0F17u37+f48fbvXs3QkNDUbJkSeh0Oqxevfq599+5cyd0Ot0/LrGxsYb8NYgs3vbtsr9m40bgrbdM9CStWwMeHrJLef9+Ez0JGdWVK5LY6HSyKTwXAgKAMWPk+v/+J/uS7941YoxkMsnJkpzqVa4sx/79/eVE3PXrwHff2WZiYyijvVVLTk7GtGnTUL58+Rx/TVJSEmrWrIlvv/3WoOe6cOECYmJiMi5eXl6GhktkkTQNmDoVaNVKOs3Wri3LzSahL00BUpoiy7dokfzZrFmul/McHKTx4/LlUpravFkaVZ87Z8Q4yaiioqQ5p68v0LKlJDmAfC937wbOnAGGDcvW7sjuGZTcJCcnY+zYsQgKCkLDhg0zVlrmzZuHcuXKYfr06Xjvvfdy/Hjt2rXDpEmT0LlzZ4OC9vLygo+PT8YlJ+UyIkuXlCSHX0aNkgNM/fsDe/YAZcua8El5asp6aFrmue4XbCTOie7dgX37gDJl5PRM/fpyAo8sQ3q6rNyGhsoQ3M8+A27dkpNPf/6Zeb+SJe1vP01OGJQVjB8/HrNnz4afnx+ioqLQrVs3vPnmm5gxYwamTZuGqKgojNGvd5pQYGAgSpQogVatWmHv3r3PvW9ycjISEhKyXUwlLU026p04IfVsopy6dk2ary1bBuTLJ8c458+Xd9Ym1aqVvN2LiZGz5mS5Dh8GLlyQ/xRduxrlIQMDpeFf48bA/fuyAkDqbdsGVKwohwfWrZO8tlUrOQUVFSWn3+j5DDottWLFCixcuBAdO3bE6dOnUaNGDaSmpuLEiRMZAzVNqUSJEvjuu+8QFBSE5ORkzJ07F02bNsXBgwdR+xmnBqZMmYJPPvnE5LEBslP9zTfluqurbPSqXx9o0ED+LFHCLGGQFSpSRJaYvb1lEUV/fNPknJ1lUt6PP0ppymxPTAbTr9p07izH+I2keHFgyxaZIj9ggNEelgygaTLTtmBB+bhECZkLVqiQNNp7+22gUiWlIVodg05LOTk5ITIyEqVKlQIAFChQAIcOHUJAQEDeA9HpEB4ejrCwMIO+rkmTJihTpgx+0v/gPyE5ORnJ+gIlZLe1r6+vSU5LHTkihxcOHZJ3QU/68kspOUhcsuxo8nfmZLH0VSB9VTUqSvqx/f3jZT76brc+PrKExKMzlufxY6k//PWX1CratjXp0yUmygvq5MlStiLTSEqSKRqzZgFVqkjTcL1ffwVatMhMeMiEp6XS0tLg5OSU8XG+fPnglueGG3lTr149XLx48Zmfd3Z2hoeHR7aLqQQFAVu3ysmD06eBuXOBwYPldIJOJ3/qbdokB1Xq1gXeeUfeNV26xPkv9iIhQSoLU6Zk3ubnpyCxAWSHYqFC0iHwKX2ryAJs2iSJjY+PfL9MbMQI+Z0UFCQbVsm4zp+X6dulSslrxPHj0jlYf6QbkL02TGxyz6CylKZpGDBgAJz/Hk7y6NEjvP3223B1dc12v1WrVhkvwheIiIhACQur9zg6AtWqyeWNN+S2+/dlSJleRITsyzlyRC7ffCO3FysmJawpU7InQ2Q7zp+XysL58/Ka9frrikuWTk4S0Pz5Uppq0kRhMPRU+pXpXr1kU5aJjRsngxUjImT14OuvZSWH8ua334DPP88+qf2ll6QvzYABsp2BjMOgn5L+/ftn+7hPHttbJiYmZlt1iYyMREREBIoUKYIyZcpg7NixuH79Ohb+PUdlxowZKFeuHKpVq4ZHjx5h7ty52L59O3777bc8xWEOT5bIx4+X0zAHDsjl4EHg2DE5/rt+vbTK1vvpJ2DHjsy9O9WqmeX3G5nA6tUyxPn+fXnXtnKlhezF6tZNkpuVK4GvvmJpypLcvSsNF4F/TAA3lbJlZX/566/LkfEhQ+SgxMyZ2d+kkWFOnpTExsFBVmaGDJGNwjzwawKaQjt27NAA/OPSv39/TdM0rX///lqTJk0y7v/5559rL730kubi4qIVKVJEa9q0qbZ9+3aDnjM+Pl4DoMXHxxvxb2Icjx5p2oEDmvbNN5qWnp55e7dumiYFK7m4umpa06aaNmaMpoWHy9eRZUtN1bQPP8z8HjZurGmxsaqjyiI5WdMKF5bgduxQHQ1l9f338n0JCDD7U6ena9rkyZqm02X+v42LM3sYVic9XdO2btW0Ll00benSzNtv35bfA1euqIvNmhny+m3QhmJbYI3jF7Zvl8uBA//crJwvn+zf0G9M3r5drteqJT3aSD1NA7p0kVUbQGrtX375zGHO6rzxBjBvnrydnDVLdTSk9/LLsozyxRfAv/+tJIR166Qi5uoq5aqSJZWEYfHu3ZODh7Nny6l9QGY8scuCcRjy+s3kxsqkpcleDX0pKzEx+w77oCD55ZM/v/Sw0JeyGjSQRlBs9qTG3LmycXzOHAseVrh5s5zC8fKSPu6sfap36ZKMf3dwkPlfCrOKc+fkjVW9espCsFjHjsn7gSVL5Eg3IFsR+vWTvUrsS2McTG6ew9qTm+fRNNk68fvvwM2b//x87dqS+Og9esTVHVNKSJATcXrR0RZ+rDYlRU7j3LkjXcSaN1cdEX3yCfDxx7Ixw8L2Fq5YIRuOP/2Ue0aaNQN27pTrAQHAv/4lo7+M2I6IYMKj4GTZdDrgl1/kRG9kpPRPGD5cVm2cnKTjpZ6mAaVLZ57o+uEH2exmwQPdrUZqqlQPAgPl9K6eRSc2gCz3deki1zlrSr2s4xbMtJE4p2Ji5HTP5MnSA9KEjd8tzqVLwOjRQFxc5m3vvgv07ClvLE+ckNUaJjZqceXGTiQnA/HxUnEAMle7n+TmJr13+vSRkxJkmNu3gddek4UPQA4gWVXX1y1bZFp4sWLyCsbSlDr798uGDVdXeSW1sHPCixYBgwbJ7xZ/f2DNmuxvoGxJWpr0upw1S9o3AJLYjR2rNi57w5Ub+gdn58zEBpDeCnFxcsL0P/+RXhbu7rKHZ8cOIGtfxDt35AV7+nT5ffvokfnjtwbHjgF16khi4+oqy/ZWldgAsr5etKhkafp1dlLj7xYY6NrV4hIbQN4A7dkjLQ3OnZO9OJs3q47KuG7elJ5j5csDHTtmJjZt23LvkaXjyg1lSEuTX1IHDsiLdK1acvvGjTLATe/JzcrNm1tIrxaFFi4E3npLEr+KFYHwcCn5WaW33pI65eDB8ieZX3Ky/FDdvSuraWboSpxbsbFSzdy/X/befP555pgZa/bwoWxB05fcihSR1ey335Y3h2R+XLmhXHF0lF39gwZlJjaADGz773/lnYuXl+w7PXxYupb26SPLtXrXrskIivh488evyg8/SEPGR4+ADh3kuL7VJjaA7EoHZARxSoraWOzV+vWS2JQsKatpFszHR1Z7X39d5qVl3YtiTe7flz2LegUKyH6i+vXlePe1a9LCgYmNdeDKDRlE04ArV7J3Vv6//wOqVpXPf/ONHHnW6eQ2/TH0Bg3kY1tsfHvnjixR9+0rbeut/uRIaqqsGty+LSd0WrVSHZH96dxZGiONHi1LIVZA0yTkjh2t6+f8zBnpS7NwoSQ4ERFAzZryOZ4otSyGvH5ztyAZRKeTAY9+frIP50kODkC5cnJa68wZucybJ59zc5MhfPpVodRU692veulS5ju4IkXkhIQFbovInXz5ZJ/H99/LqSkmN+b111+ycgNIxmwldDrJyfSSk+U49PvvA8HB6uJ6msePpXQ8a1b2waCVKklOr8fExnpZ+3tMsjD/+hdw+bLU4deskc3KzZtLYvPgQfbTFP/+d2aSNGOGrAQlJ6uKPGc0TV7z/f2zb0exmcRGr3t3+ZOlKfNbvlz+zWvVsurub59/LqPKmjaVU4OW4swZacvw2muS2Dg6yp6hrVulQWqLFqojJGNgWYrMIi1NVjsqVcq8rVEjYN++7PfLn19+pzdoIN3m/x5AbxEePQKGDZMyHCB9LRYvttGuz6mpcgzm5k05ItKmjeqI7EdwsGT606YB772nOppcS0yU9jzh4fLx8OHA//5n/tXa9HRp7ly2rHz8+LEkNw4Osmd+8GDp+UWWjx2Kn4PJjeVISACOHMncv3PgAHDrlnyuRAmZAKBPHP77X/mzfn3pw+Ppad5Yr14FXn1VNgs7OEg8Y8bYaGKj969/yWaE11/PzOjItP74A6hcWf6TXb8uu3WtWHo6MGkSMGGCfNy8uVQ6ixY1/XPfuQMsWCD/hR8/lhVl/V6gs2dlFdni5rvRczG5eQ4mN5ZL04CoKElykpLk1Jb+dh+fzJEST25WbtjQtKeTdu2SA0S3bgGFCwPLlkmfO5u3c6ec1ClcWOqMTk6qI7J948fLPIN27bIfQ7Ryq1fL9qHERNmT9+uvpvuZPXxYEpqlSzN7cnl4yCqxVZ9iJCY3z8PkxvqkpMjGP/3prMjI7J9/+WVpe663bZtsVfD2zvtzX7smG4cfP5YTFOHh8svZLqSlSWkqLk5eaNu1Ux2RbUtPl/9sUVEygbFnT9URGdXp03KS6s4dWQHNWqI2ht27ZfPykSOZt9WsKQuQvXrJvj+ybjwtRTYlf36p1w8fLh/HxUmSc/CgJDyvvJJ534QEOdyjabJZOetU9Fq1DN/DU7q0LKmfPSsbiAsWNNpfy/I5Okot7ttvpZbA5Ma09u6VxMbdHejUSXU0Rle9uqyq/PGH8RKbtLTMUpOTkyQ2Tk6yH/5f/5Kfe5suHdMzceWGbMr58/J6fPasJDhZOTnJLJiPP5aP9Z9/8pdfZKR8rnz559/PLuzaJcddChWSrJKlKdN5801gzhxg4MDM/gk2butWedPwf/+X80GTqanAunWymvvSS1KCAuTndN48WR0qXtx0MZM6LEs9B5Mb+5CQIO8SszYbvHVLfiEOGSL3OXVKjn3qV3bq15eW6wMGSDVm/34bPOJtqLQ0Wb6KjZXeK1nncJDxPHokG8vi46Xdb9OmqiMyuYcPJTmJiZFVnTVrMt9QPE1MDDB3riRD167JbR4eknOzH419YFmK7J6HhyQu+p4VmiYrMllPWelPZ61bJ5esXnpJupXafXKjL019842UppjcmMavv0piU6YM0Lix6mjMokAB6YPTpYvsx6lbV/6LPdlnZv9+6YO1apWs2gAytH7QIBmDxsSGnoZN/Mgu6HTyrjDrEdS+fTN/cb72muzRyZ9f+l7s3m31p3CNR9/Qb/Vqy++yaK30E8B797aB+R05Fxws+2Tq1pWNxm3aAF99lb2kvHGjJD2pqdIba9EiWbmZMkV+ZomehmUpoiyyblCkv6WnS2kqJkZWGDp0UB2Rbbl5U+qgqamyWczfX3VEZvfokWw5+ukn+firr2RGHSCJzKefygZh/cwnsk+cCk6US0xsnsLBIXNS+M8/q43FFi1bJolNUJBdJjaAlJZ+/BGYOlX+u23cmPm50qVl5AkTGzIEkxsiejF9aWrNmszOaGQc+uWKfv3UxqGYTgeMHCllqnHjVEdD1o7JDRG9WHCwlE4SEoDfflMdje04d05ezfPlk41fhFq1LG+KOFkfJjdE9GIODnJqCmBpypj0qzZt27I5C5ERMbkhopzRl6bWrmVpyhjS0+XoD2D3JSkiY2NyQ0Q506CB7O68fx/YvFl1NNZv1y4ZN+/pCYSGqo6GyKYwuSGinOGpKePSl6S6d2cnOiIjY3JDRDmXtTT18KHaWKzZgwfAL7/I9b591cZCZIOY3BBRztWvLyMCEhOBTZtUR2O91qyR8l65ctJ2l4iMiskNEeWcTsfSlDHoS1J9+tjVuAUic+FPFREZRl+a+vVXKa+QYWJjMzdksyRFZBJMbojIMHXrAmXLAklJ2fvkU84sXSrHwBs0ACpWVB0NkU1ickNEhmFpKm/0E8C5akNkMkxuiMhw+tLUunUsTRni9GkgIgLInx/o0UN1NEQ2i8kNERkuKAjw85PEZsMG1dFYD/1G4vbtgaJF1cZCZMOY3BCR4XS6zNUblqZyJi2N4xaIzITJDRHlTtbSVFKS2liswY4dwI0bQOHCQEiI6miIbBqTGyLKndq1gfLlpVPx+vWqo7F8+o3EPXoAzs5qYyGycUxuiCh3WJrKucREYNUquc6SFJHJMbkhotzTJzfr18sLOD1deLiU7ipUkP42RGRSTG6IKPcCA+UF+9Ej2XtDT6c/JdW3r6x4EZFJMbkhotxjQ78Xu34d2LZNrvfpozYWIjvB5IaI8kZfmtqwQSZdU3ZLlsi4hUaNZAM2EZkckxsiypuaNWVGUnIyS1NP0rTMU1LcSExkNkxuiChveGrq2U6ckJELTk6Z5TsiMjkmN0SUd/rkZuNGICFBbSyWRL+RuGNHad5HRGbB5IaI8i4gAKhcWUpTv/6qOhrLkJoKLF4s1zkBnMismNwQUd6xNPVPW7cCcXFAsWJA27aqoyGyK0xuiMg49MnNpk1AfLzaWCyBviT12muy54aIzIbJDREZR7VqgL8/8PgxsHat6mjUun9fuhIDLEkRKcDkhoiMgw39Mq1cKQNFK1cG6tZVHQ2R3WFyQ0TGoy9Nbd4M3LunNBSl9L1tOG6BSAkmN0RkPNWqAVWrAikp9luaunoV2LlTrnPcApESTG6IyLjs/dTU4sXSmbhJE6BsWdXRENklJjdEZFz6fTe//Qbcvas2FnPLOm6BG4mJlGFyQ0TGVbUqUL26lKbWrFEdjXkdOwacOwe4uACvvqo6GiK7xeSGiIzPXktT+lWbTp0AT0+1sRDZMSY3RGR8+tLUli3AnTtqYzGXlBRg6VK5zgngREoxuSEi46tSReZNpaYCq1erjsY8Nm8Gbt0CvLyA1q1VR0Nk15jcEJFp2FtpSj9uoVcvIF8+tbEQ2TkmN0RkGvrS1NatwF9/qY3F1O7dy9w8zVNSRMoxuSEi06hcGahZE0hLs/3S1C+/AMnJclKsVi3V0RDZPSY3RGQ69lKa0pek+vXjuAUiC8DkhohMR1+a2rYNuH1bbSymEhUF7N4tSU3v3qqjISIoTm52796N0NBQlCxZEjqdDqtzsHS9c+dO1K5dG87OzqhQoQIWLFhg8jiJKJcqVpQyTVoaEB6uOhrTWLRI/mzeHChdWm0sRARAcXKTlJSEmjVr4ttvv83R/SMjI9G+fXs0a9YMERERGDFiBAYNGoTNmzebOFIiyjVbLk1x3AKRRdJpmqapDgIAdDodwsPDERYW9sz7jBkzBuvXr8fp06czbnvttddw7949bNq0KUfPk5CQAE9PT8THx8PDwyOvYRPRi1y6BFSoADg4ALGxQPHiqiMynoMHgQYNgIIF5e/m7q46IiKbZcjrt1Xtudm/fz9atmyZ7bY2bdpg//79z/ya5ORkJCQkZLsQkRm99BJQuzaQng6sWqU6GuPSbyTu3JmJDZEFsarkJjY2Ft7e3tlu8/b2RkJCAh4+fPjUr5kyZQo8PT0zLr6+vuYIlYiyssXS1OPHmeMWWJIisihWldzkxtixYxEfH59xuXr1quqQiOyP/tTUzp3AzZtKQzGajRtlblaJEkCLFqqjIaIsrCq58fHxQVxcXLbb4uLi4OHhgQIFCjz1a5ydneHh4ZHtQkRmVr48EBRkW6Up/UZijlsgsjhWldwEBwdj27Zt2W7bsmULgoODFUVERDlmS6Wpu3eBdevkOieAE1kcpclNYmIiIiIiEBERAUCOekdERCA6OhqAlJT6ZfnF8fbbb+Py5csYPXo0zp8/j1mzZuHnn3/Ge++9pyJ8IjKEvjS1a5ecLLJmP/8se25q1JALEVkUpcnNkSNHUKtWLdT6exbLyJEjUatWLYwfPx4AEBMTk5HoAEC5cuWwfv16bNmyBTVr1sTUqVMxd+5ctGnTRkn8RGQAPz+gXj3bKE2xtw2RRbOYPjfmwj43RApNnQqMGgU0aSKbi61R1r49V68CJUuqjojILthsnxsisnKvvip/7t4NxMSojSW39L1tWrZkYkNkoZjcEJH5lC0L1K8vYwtWrlQdjeE0LfsEcCKySExuiMi8rPnU1L59wOXLgKsr8JxRMUSkFpMbIjIvfWlqzx7gxg21sRhKv2rz6quS4BCRRWJyQ0TmVaYMEBxsfaWp5GRg+XK5zlNSRBaNyQ0RmZ81lqbWrQPu3QNKlQKaNlUdDRE9B5MbIjK/rKWp69fVxpJT+pJUnz6Ao6PaWIjouZjcEJH5lS4NNGok13/5RW0sOXH7NrB+vVxnSYrI4jG5ISI1rKk0tXw5kJoK1K4NVKumOhoiegEmN0SkRteugE4nx6uvXlUdzfNx3AKRVWFyQ0RqlCplHaWpCxeAQ4dkn03PnqqjIaIcYHJDROpYQ2lq0SL5s00bwNtbbSxElCNMbohIHX1p6sABIDpadTT/lJ6eeUqKJSkiq8HkhojUKVkSeOUVuW6Jpak9e4ArVwAPD6BTJ9XREFEOMbkhIrUsuTSl30j86qtAgQJqYyGiHGNyQ0Rq6UtTBw8CUVGqo8n08CGwYoVc5wRwIqvC5IaI1PLxAZo0keuWVJpauxZISJBZWPrSGRFZBSY3RKSeJZamso5bcOCvSiJrwp9YIlKvSxdJIA4fBiIjVUcD3LwJbNok13lKisjqMLkhIvW8vTNLU/p9LiotXQqkpQF16wJVqqiOhogMxOSGiCyDJZWm9CUpbiQmskpMbojIMuhLU0ePApcvq4vj7FmJIV8+4LXX1MVBRLnG5IaILIOXF9CsmVxXWZrSr9qEhADFiqmLg4hyjckNEVkO1aWp9PTMWVLcSExktZjcEJHl6NxZpm8fOwZcvGj+59+5E7h2DfD0BDp0MP/zE5FRMLkhIstRvDjQvLlcV1Ga0pekevQAXFzM//xEZBRMbojIsqgqTT14kNkhmSUpIqvG5IaILEtYmJSmIiKAP/4w3/OuXg0kJgLlygGNGpnveYnI6JjcEJFlKVYMaNFCrpuzNKWfAN63rwzyJCKrxeSGiCyPuUtTMTHAli1yvU8f8zwnEZkMkxsisjxhYdJE7+RJ4MIF0z/f0qVyDDw4GKhY0fTPR0QmxeSGiCxP0aJAy5Zy3RylqawlKSKyekxuiMgymas0dfIkcOIEkD+/HAEnIqvH5IaILFNYmCQcp04B586Z7nn0vW06dACKFDHd8xCR2TC5ISLLVLgw0KqVXDdVaSotDVi8WK5zAjiRzWByQ0SWy9SlqW3b5KRUkSIyKJOIbAKTGyKyXJ06SWnqzBm5GFvWcQtOTsZ/fCJSgskNEVmuQoWA1q3lurFLU4mJwKpVcp0lKSKbwuSGiCybqUpTq1bJPKmKFYH69Y372ESkFJMbIrJsHTtKyejcOeOWpvQlKY5bILI5TG6IyLIVKgS0aSPXjbV6c+2abCYGOG6ByAYxuSEiy5e1NKVpeX+8JUvkcV5+WaaAE5FNYXJDRJavY0fA2Rk4fx44fTpvj6VpmeMWuJGYyCYxuSEiy+fhAbRtK9fzWpqKiJC9O87OQLdueQ6NiCwPkxsisg7GKk3pNxJ37Cj7eYjI5jC5ISLrEBoqqy1//CHDLnMjNVX22wCcAE5kw5jcEJF1cHcH2rWT67ktTW3ZAsTFAcWKZZa5iMjmMLkhIuuR19KUfiNxz54y1oGIbBKTGyKyHh06AC4uwMWLwIkThn1tQgKwerVcZ0mKyKYxuSEi6+Hunjm929DS1MqVwKNHQJUqQFCQ8WMjIovB5IaIrEtuS1P6khTHLRDZPCY3RGRd2rcHChQALl0Cjh/P2ddcuQLs3CnXOW6ByOYxuSEi6+LmJgkOkPPS1OLF8mfTpkCZMiYJi4gsB5MbIrI+hpSmNC2zcR/HLRDZBSY3RGR9QkKkNBUZCRw9+vz7HjkiM6lcXICuXc0THxEpxeSGiKyPq6scCwdeXJrSr9qEhcmMKiKyeUxuiMg65aQ0lZICLF0q11mSIrIbTG6IyDqFhAAFC8pJqCNHnn6fTZuA27cBb2+gVSvzxkdEyjC5ISLrVLCgDNMEnl2a0pekevUC8uUzT1xEpByTGyKyXs8rTd27B6xdK9c5boHIrjC5ISLr1a6dbC6OjgYOHcr+uRUrgORkoFo1IDBQSXhEpAaTGyKyXgUKAB07yvUnS1NZe9tw3AKRXWFyQ0TWrVs3+XPFCiA9Xa5HRgK//y5JTa9e6mIjIiWY3BCRdWvbVkYyXL0KHDwoty1aJH+2aAGULq0uNiJSwiKSm2+//RZ+fn5wcXFB/fr1cejJ2nkWCxYsgE6ny3ZxcXExY7REZFGeLE1pWvYJ4ERkd5QnN8uXL8fIkSMxYcIEHDt2DDVr1kSbNm1w8+bNZ36Nh4cHYmJiMi5XrlwxY8REZHH0p6ZWrAD27wcuXpSj4l26qI2LiJRQntxMmzYNgwcPxsCBA1G1alV89913KFiwIObNm/fMr9HpdPDx8cm4eHt7mzFiIrI4bdoA7u7A9evA8OFyW5cuUq4iIrujNLl5/Pgxjh49ipYtW2bc5uDggJYtW2L//v3P/LrExESULVsWvr6+6NSpE86cOfPM+yYnJyMhISHbhYhsjIsL0KmTXNd3K2ZJishuKU1ubt++jbS0tH+svHh7eyM2NvapX1O5cmXMmzcPa9aswaJFi5Ceno6GDRvi2rVrT73/lClT4OnpmXHx9fU1+t+DiCyAvjQFACVKyGZiIrJLystShgoODka/fv0QGBiIJk2aYNWqVShevDi+//77p95/7NixiI+Pz7hcvXrVzBETkVm0bp059bt3b8DRUW08RKSM0mErxYoVg6OjI+Li4rLdHhcXBx8fnxw9Rv78+VGrVi1cvHjxqZ93dnaGs7NznmMlIgvn7Ax8+KGclBo6VHU0RKSQ0pUbJycn1KlTB9u2bcu4LT09Hdu2bUNwcHCOHiMtLQ2nTp1CiRIlTBUmEVmL0aOB06cBPz/VkRCRQsrH5I4cORL9+/dHUFAQ6tWrhxkzZiApKQkDBw4EAPTr1w+lSpXClClTAAATJ05EgwYNUKFCBdy7dw9ffvklrly5gkGDBqn8axAREZGFUJ7c9OjRA7du3cL48eMRGxuLwMBAbNq0KWOTcXR0NBwcMheY7t69i8GDByM2NhaFCxdGnTp1sG/fPlStWlXVX4GIiIgsiE7TNE11EOaUkJAAT09PxMfHw0O/+ZCIiIgsmiGv31Z3WoqIiIjoeZjcEBERkU1hckNEREQ2hckNERER2RQmN0RERGRTmNwQERGRTWFyQ0RERDaFyQ0RERHZFCY3REREZFOY3BAREZFNYXJDRERENkX54Exz04/SSkhIUBwJERER5ZT+dTsnIzHtLrm5f/8+AMDX11dxJERERGSo+/fvw9PT87n3sbup4Onp6bhx4wbc3d2h0+mM+tgJCQnw9fXF1atXOXHcSvF7aN34/bN+/B5aP1N9DzVNw/3791GyZEk4ODx/V43drdw4ODigdOnSJn0ODw8P/lBaOX4PrRu/f9aP30PrZ4rv4YtWbPS4oZiIiIhsCpMbIiIisilMbozI2dkZEyZMgLOzs+pQKJf4PbRu/P5ZP34PrZ8lfA/tbkMxERER2Tau3BAREZFNYXJDRERENoXJDREREdkUJjdERERkU5jcGMm3334LPz8/uLi4oH79+jh06JDqkMgAu3fvRmhoKEqWLAmdTofVq1erDokMMGXKFNStWxfu7u7w8vJCWFgYLly4oDosMsDs2bNRo0aNjMZvwcHB2Lhxo+qwKJc+++wz6HQ6jBgxQsnzM7kxguXLl2PkyJGYMGECjh07hpo1a6JNmza4efOm6tAoh5KSklCzZk18++23qkOhXNi1axeGDh2KAwcOYMuWLUhJSUHr1q2RlJSkOjTKodKlS+Ozzz7D0aNHceTIETRv3hydOnXCmTNnVIdGBjp8+DC+//571KhRQ1kMPApuBPXr10fdunXxzTffAJD5Vb6+vnjnnXfwwQcfKI6ODKXT6RAeHo6wsDDVoVAu3bp1C15eXti1axcaN26sOhzKpSJFiuDLL7/EG2+8oToUyqHExETUrl0bs2bNwqRJkxAYGIgZM2aYPQ6u3OTR48ePcfToUbRs2TLjNgcHB7Rs2RL79+9XGBmR/YqPjwcgL45kfdLS0rBs2TIkJSUhODhYdThkgKFDh6J9+/bZXhNVsLvBmcZ2+/ZtpKWlwdvbO9vt3t7eOH/+vKKoiOxXeno6RowYgUaNGqF69eqqwyEDnDp1CsHBwXj06BHc3NwQHh6OqlWrqg6LcmjZsmU4duwYDh8+rDoUJjdEZFuGDh2K06dPY8+ePapDIQNVrlwZERERiI+Pxy+//IL+/ftj165dTHCswNWrVzF8+HBs2bIFLi4uqsNhcpNXxYoVg6OjI+Li4rLdHhcXBx8fH0VREdmnYcOGYd26ddi9ezdKly6tOhwykJOTEypUqAAAqFOnDg4fPoyZM2fi+++/VxwZvcjRo0dx8+ZN1K5dO+O2tLQ07N69G9988w2Sk5Ph6Ohotni45yaPnJycUKdOHWzbti3jtvT0dGzbto21YiIz0TQNw4YNQ3h4OLZv345y5cqpDomMID09HcnJyarDoBxo0aIFTp06hYiIiIxLUFAQevfujYiICLMmNgBXboxi5MiR6N+/P4KCglCvXj3MmDEDSUlJGDhwoOrQKIcSExNx8eLFjI8jIyMRERGBIkWKoEyZMgojo5wYOnQolixZgjVr1sDd3R2xsbEAAE9PTxQoUEBxdJQTY8eORbt27VCmTBncv38fS5Yswc6dO7F582bVoVEOuLu7/2OPm6urK4oWLapk7xuTGyPo0aMHbt26hfHjxyM2NhaBgYHYtGnTPzYZk+U6cuQImjVrlvHxyJEjAQD9+/fHggULFEVFOTV79mwAQNOmTbPdPn/+fAwYMMD8AZHBbt68iX79+iEmJgaenp6oUaMGNm/ejFatWqkOjawQ+9wQERGRTeGeGyIiIrIpTG6IiIjIpjC5ISIiIpvC5IaIiIhsCpMbIiIisilMboiIiMimMLkhIiIim8LkhoiIiGwKkxsisjkDBgxAWFiY6jCISBEmN0SUKwMGDIBOp/vHpW3btqpDw8yZMy1mbIZOp8Pq1atVh0FkVzhbiohyrW3btpg/f36225ydnRVFA6SlpUGn08HT01NZDESkHlduiCjXnJ2d4ePjk+1SuHBh7Ny5E05OTvj9998z7vvFF1/Ay8sLcXFxAGTI5bBhwzBs2DB4enqiWLFiGDduHLKOu0tOTsaoUaNQqlQpuLq6on79+ti5c2fG5xcsWIBChQph7dq1qFq1KpydnREdHf2PslTTpk3xzjvvYMSIEShcuDC8vb0xZ84cJCUlYeDAgXB3d0eFChWwcePGbH+/06dPo127dnBzc4O3tzf69u2L27dvZ3vcd999F6NHj0aRIkXg4+ODjz/+OOPzfn5+AIDOnTtDp9NlfExEpsXkhoiMrmnTphgxYgT69u2L+Ph4HD9+HOPGjcPcuXPh7e2dcb8ff/wR+fLlw6FDhzBz5kxMmzYNc+fOzfj8sGHDsH//fixbtgwnT55Et27d0LZtW/z5558Z93nw4AE+//xzzJ07F2fOnIGXl9dTY/rxxx9RrFgxHDp0CO+88w6GDBmCbt26oWHDhjh27Bhat26Nvn374sGDBwCAe/fuoXnz5qhVqxaOHDmCTZs2IS4uDt27d//H47q6uuLgwYP44osvMHHiRGzZsgUAcPjwYQAynTwmJibjYyIyMY2IKBf69++vOTo6aq6urtku//3vfzVN07Tk5GQtMDBQ6969u1a1alVt8ODB2b6+SZMmmr+/v5aenp5x25gxYzR/f39N0zTtypUrmqOjo3b9+vVsX9eiRQtt7NixmqZp2vz58zUAWkRExD9i69SpU7bnevnllzM+Tk1N1VxdXbW+fftm3BYTE6MB0Pbv369pmqZ9+umnWuvWrbM97tWrVzUA2oULF576uJqmaXXr1tXGjBmT8TEALTw8/Bn/ikRkCtxzQ0S51qxZM8yePTvbbUWKFAEAODk5YfHixahRowbKli2L6dOn/+PrGzRoAJ1Ol/FxcHAwpk6dirS0NJw6dQppaWmoVKlStq9JTk5G0aJFMz52cnJCjRo1Xhhr1vs4OjqiaNGiCAgIyLhNv6J08+ZNAMCJEyewY8cOuLm5/eOxLl26lBHXk89dokSJjMcgIjWY3BBRrrm6uqJChQrP/Py+ffsAAHfu3MGdO3fg6uqa48dOTEyEo6Mjjh49CkdHx2yfy5pwFChQIFuC9Cz58+fP9rFOp8t2m/4x0tPTM54/NDQUn3/++T8eq0SJEs99XP1jEJEaTG6IyCQuXbqE9957D3PmzMHy5cvRv39/bN26FQ4OmVv9Dh48mO1rDhw4gIoVK8LR0RG1atVCWloabt68iVdeecXc4aN27dpYuXIl/Pz8kC9f7n9V5s+fH2lpaUaMjIhehBuKiSjXkpOTERsbm+1y+/ZtpKWloU+fPmjTpg0GDhyI+fPn4+TJk5g6dWq2r4+OjsbIkSNx4cIFLF26FF9//TWGDx8OAKhUqRJ69+6Nfv36YdWqVYiMjMShQ4cwZcoUrF+/3uR/t6FDh+LOnTvo2bMnDh8+jEuXLmHz5s0YOHCgQcmKn58ftm3bhtjYWNy9e9eEERORHlduiCjXNm3alK1EAwCVK1dGr169cOXKFaxbtw6AlHF++OEH9OzZE61bt0bNmjUBAP369cPDhw9Rr149ODo6Yvjw4XjzzTczHmv+/PmYNGkS3n//fVy/fh3FihVDgwYN0KFDB5P/3UqWLIm9e/dizJgxaN26NZKTk1G2bFm0bds22+rTi0ydOhUjR47EnDlzUKpUKURFRZkuaCICAOg0LUtTCSIiM2natCkCAwMxY8YM1aEQkY1hWYqIiIhsCpMbIiIisiksSxEREZFN4coNERER2RQmN0RERGRTmNwQERGRTWFyQ0RERDaFyQ0RERHZFCY3REREZFOY3BAREZFNYXJDRERENuX/AX41im+HXaFDAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -548,7 +548,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.9" + "version": "3.10.12" } }, "nbformat": 4, From 08519eb111b4bbece94eb12b031502e371af5b92 Mon Sep 17 00:00:00 2001 From: Yang Date: Sat, 17 Jun 2023 17:35:04 +0200 Subject: [PATCH 05/13] update explanations --- workflow/comp_pred_ridge_and_LSTM.ipynb | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index 62b9fc3..873cd6b 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -5,19 +5,24 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Predict 2 meter temperature with sea surface temperature using deep learning and evaluate the predictions with simple regression results\n", + "### Predict 2 meter temperature with sea surface temperature using deep learning and evaluate the predictions with linear regression results\n", "This notebook shows how to build a workflow of data driven forecasting using machine learning with `s2spy` & `lilio` packages. It highlights how these packages could facilitate (sub)seasonal forecasts with deep learning and creating baseline forecasts for evaluation.
\n", "\n", "We will predict temperature in US at seasonal time scales using ERA5 dataset with a LSTM network and evaluate the forecasts against those from linear regression (Ridge).
\n", "\n", "This recipe includes the following steps:\n", "- Define a calendar (`lilio`)\n", - "- Download/load input data (the data has been processed)\n", + "- Download/load input data (example data, accessible via `era5cli`)\n", "- Map the calendar to the data (`lilio`)\n", "- Train-test split (70%/30%)\n", "- Preprocessing based on the training set (`s2spy`)\n", "- Resample data to the calendar (`lilio`)\n", - "- Dimensionality reduction and model training, with cross-validation (`lilio` & `scikit-learn`)" + "- Create LSTM model (`torch`)\n", + "- Specify hyper-parameters (`wandb`)\n", + "- Train LSTM model (`torch`)\n", + "- Dimensionality reduction (`s2spy` & `scikit-learn`)\n", + "- Linear regression model training (incl. cross-validation) (`lilio` & `scikit-learn`)\n", + "- Evaludate forecasts with baseline" ] }, { From 009c2a13efafbcecdc361f20148bd019e8560881 Mon Sep 17 00:00:00 2001 From: Yang Date: Sun, 18 Jun 2023 11:53:20 +0200 Subject: [PATCH 06/13] fix typo --- workflow/comp_pred_ridge_and_LSTM.ipynb | 1 - 1 file changed, 1 deletion(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index 873cd6b..e4bdab6 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -1109,7 +1109,6 @@ "metadata": {}, "outputs": [], "source": [ - "#y_test = \n", "# dimensionality reduction with the RGDR operator used by the best model\n", "clusters_test = RGDRs[np.argmax(rmse_test)].transform(precursor_field_sel[-test_samples:])\n", "# predict with the best model\n", From d536e4fe58b03389b3f28df44810791b5d454a35 Mon Sep 17 00:00:00 2001 From: Yang Date: Thu, 29 Jun 2023 12:38:40 +0200 Subject: [PATCH 07/13] use new test data for comparison notebook --- workflow/comp_pred_ridge_and_LSTM.ipynb | 1436 +++++++++++++++++++---- 1 file changed, 1217 insertions(+), 219 deletions(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index e97cb88..c626007 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -32,7 +32,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -86,10 +86,10 @@ "# create custom calendar based on the time of interest\n", "calendar = lilio.Calendar(anchor=\"08-01\", allow_overlap=True)\n", "# add target periods\n", - "calendar.add_intervals(\"target\", length=\"20d\")\n", + "calendar.add_intervals(\"target\", length=\"30d\")\n", "# add precursor periods\n", - "periods_of_interest = 8\n", - "calendar.add_intervals(\"precursor\", \"20d\", gap=\"10d\", n=periods_of_interest)" + "periods_of_interest = 4\n", + "calendar.add_intervals(\"precursor\", \"1M\", gap=\"1M\", n=periods_of_interest)" ] }, { @@ -105,15 +105,11 @@ " allow_overlap=True,\n", " mapping=None,\n", " intervals=[\n", - " Interval(role='target', length='20d', gap='0d'),\n", - " Interval(role='precursor', length='20d', gap='10d'),\n", - " Interval(role='precursor', length='20d', gap='10d'),\n", - " Interval(role='precursor', length='20d', gap='10d'),\n", - " Interval(role='precursor', length='20d', gap='10d'),\n", - " Interval(role='precursor', length='20d', gap='10d'),\n", - " Interval(role='precursor', length='20d', gap='10d'),\n", - " Interval(role='precursor', length='20d', gap='10d'),\n", - " Interval(role='precursor', length='20d', gap='10d')\n", + " Interval(role='target', length='30d', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M')\n", " ]\n", ")" ] @@ -128,16 +124,37 @@ "calendar" ] }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Load test data SST and (clustered) T2M\n", + "For the sake of batch size, we use 61 years (1961-2021) of data." + ] + }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ - "# load example data\n", - "data_folder = '~/AI4S2S/data'\n", - "precursor_field = xr.open_dataset(Path(data_folder, 'sst_daily_1979-2018_5deg_Pacific_175_240E_25_50N.nc'))\n", - "target_field = xr.open_dataset(Path(data_folder,'tf5_nc5_dendo_80d77.nc'))" + "# load data\n", + "precursor_field = xr.open_dataset('../data/sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc')\n", + "precursor_field = precursor_field.sel(time=slice(\"19610101\",\"20211231\"))\n", + "target_field = xr.open_dataset('../data/t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc')\n", + "target_field = target_field.sel(time=slice(\"19610101\",\"20211231\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Convert Klevin to Celcius\n", + "precursor_field[\"sst\"] = precursor_field[\"sst\"] - 273.15\n", + "target_field[\"t2m\"] = target_field[\"t2m\"] - 273.15" ] }, { @@ -151,12 +168,12 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjBElEQVR4nO3dd1gUV/828HsbS5EiqGBDsGNDxN5r7Bq7xl8IliQqdn2SaGIsMSH6xEZiNDZIsfeSqLGBBStB7CgqYlTA8tD77nn/4GV1BZSl7SD357q4Lndmzsw9e2TY786cGZkQQoCIiIiIiMjI5MYOQEREREREBLA4ISIiIiIiiWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAlKYwcoKbRaLR4/fgxLS0vIZDJjxyEiIqJ3mBAC8fHxqFSpEuRyfpdMpQeLkzx6/PgxqlatauwYREREVIo8fPgQVapUMXYMomLD4iSPLC0tAWQeJKysrIychoiIiN5lcXFxqFq1qu7zB1FpweIkj7Iu5bKysmJxQkRERMWCl5JTacOLGImIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBd+siIiIqAkIIpKamGtxOrVZDJpMVuH1JzvAu7ENBM6SkpBi8PaJ3AYsTIiKiIpCamoohQ4YY3G779u0wNTUtcPuSnOFd2IeCZkhPTzd4e0TvAhYnREREReifR/F5XrZJ5ewP3At5mvcPqa7lVSU+Q07bL4wMBX0PCiMDHl7Ic3s4uOV9WaJ3CIsTIiKiItZqgjcUSpNc52sy0nD251m5zu/w+S+Qq9S5ztempyJg0aclOsPbtl8YGQr6HhRGhj8+cYNalfuQ39R0Lf5vTfAbMxC9y1icEBERFTGF0gQKk9w/0L6NXKWG0sQ01/kZzJCnDAXdfmFkUKvkMFUpCpSB6F3Gu3UREREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkQWnsAERERO8qjUaDF/eu4a8vBkKpNoXayhbNRs2BpYMjUmKf4+zqL5EQ9RBypRIqc0sAltnWIbQanFjoidh/w6AwMYWZTXm0nrQEVpWrIznmKU4uHo+4x/eQHPMUVRo3LPQMGo0Gz24HY/enbaBUm+W4/fgn9yFXqqCysALK2+cvQ2QEUuKe47mpa47tC5pBaLU47TMD8U/CoTBRF3sGjUaDf+7HoOFXATBXK1DBUo1VHg1R094C0XGp8Fh7GXejE2GilMPaTAmrbAmISgejnjnx9vZGs2bNYGlpiQoVKuD9999HaGio3jIpKSnw8vKCnZ0dypQpg0GDBiEqKkpvmcmTJ8Pd3R1qtRqNGzfOcVuHDx9Gy5YtYWlpifLly2PQoEEIDw8voj0jIiLKZG5XET29d6Kn905Uce+EC+vmAgAub12OcjUboe/SP9F89Fz8L/wmtFptjuuo1eNDDFp/EQNWn4Zjq544vXwyAODS+vko79IUA9YEwrZ6AwQHByM9Pb3QM1hUqIL3V5/OdfuDfYPQespyvAi7kus+vC1Dr0W7YeNYJ9d9KIwMNToMQO8f9hstg6OdGa580x4hCzqgv5s9xvqGAAC+2H4LLWvY4M6izvjFsyGCI+Jy3Qeid51Ri5OAgAB4eXnh3LlzOHLkCNLT0/Hee+8hMTFRt8y0adOwf/9+bN++HQEBAXj8+DEGDhyYbV2jR4/GsGHDctzO/fv30b9/f3Tu3BmXL1/G4cOH8ezZsxzXQ0REVFgUCgVMre0gk8kAAHY1XZH49DEA4OG5w6jZZSgAwLZ6fShUajx//jzbOmRyBao07aJbRwWXZkiIigAA3D+5B3V7jwIAqMtYQ61W49SpU4WaQaFQwMym/Fu3X652YyhMct6HvGYwsbDKdR8KmkEml6Oia1ujZVAoFLC3Uuvat6xRFuHPkgEA2y4+xrhO1QAATZ1soFbK8b///S/bPhCVBka9rOvQoUN6r/38/FChQgUEBQWhffv2iI2Nxfr167Fp0yZ07twZAODr6wsXFxecO3cOLVu2BAD4+PgAAJ4+fYorV65k205QUBA0Gg0WLlwIuTyzHps5cyb69++P9PR0qFSqotxNIiIiAMDtQ3+gsnsnpMbHQKvJgJlNOd08hYkpkpOT37qO63tWw7FVL6TEvYBWkw5zW3tkpKUAAMzNzfHw4cMizZDT9nXt1WZ52oecMmjSUvO8D+9ChhVH7qO/mz2eJ6QhXSPgYG2qm2duosjTPhC9iyQ1ID42NhYAYGtrCyCzqEhPT0fXrl11y9StWxeOjo44e/Zsntfr7u4OuVwOX19faDQaxMbG4vfff0fXrl1zLUxSU1MRFxen90NERJRf1/euRXxUBFyHTcn3OkI2L0Hc4/toOupro2Qo6PaZIdN3B+4gLDoR3oNd8tWe6F0mmeJEq9Vi6tSpaNOmDRo0aAAAiIyMhImJCWxsbPSWtbe3R2RkZJ7X7ezsjL///huzZ8+GWq2GjY0N/v33X2zbti3XNt7e3rC2ttb9VK1aNV/7RUREdOvg7/j34lF0/GwVlGozqC1tIFMokRzzTLeMJi0FZmZmua7j6vYfEX7mAN5buB1KU3OYWtlCLlci6cXLcZhJSUm5/r0qaIbru1a9dfua1OQ37kNeMrxpHwojw80//YyaYdnf97ArKBIHp7eAuVoBuzImUMpliIxNebn9NM0b94HoXSaZ4sTLywvXrl3Dli1bCn3dkZGR+Pjjj/HRRx/h4sWLCAgIgImJCQYPHgwhRI5tZs2ahdjYWN3P207vEhER5SQh+iEenj+MTrPWwMTi5T2YHJt3Q9ixzC/JXty7Dk16Kuzs7HJcx409q3HPfyd6eO+Guoy1brpT+/649acvACA1IRYpKSlo165doWeIfxKO+yd3v3H7z25fhiYt933IS4a0xLhc96EwMoQe/gMPAv8yWoZ7T5Ow/cITHJnZAjbmL6/cGNKsIlafeAAAuBQeg5R0LcqWLZvjPhC96yRxK+GJEyfiwIEDOHnyJKpUqaKb7uDggLS0NMTExOidPYmKioKDg0Oe179y5UpYW1tj8eLFuml//PEHqlativPnz+vGrrxKrVZDrVbnb4eIiIgAJCcnI+7RPViUr4xjC8cAABQqE7y3YBNcR0zDuZ9nY//03pArlChbra5uXOSrMlJTcGn9fFhWdMLBz/oCAOQqNfr5HEWzMfMQsHgcdn/SGskx0Wjq5pbtcuWCZkhOTkZMRCjKOFTLdfs7RrlDplDCtkbDHPchLxn++nwAUuKe57oPBc2gSUtFyJblKFOhilEyJCcn48bjBDiXM0OnRecAAGqVHOfntMWiIS74cG0wan1+HCqFHG7VrHLcB6LSwKjFiRACkyZNwu7du+Hv7w9nZ2e9+e7u7lCpVDh27BgGDRoEAAgNDUVERARatWqV5+0kJSVl+yVXKBQAwFv1ERFRkTEzM0Mltw5oO3kJFCb6X3iZWZdDp1lrAGR+cD7tMyPHdSjVpvDY/wRKE9Ns88zKVkAP713ISEvBiYWeKFcu+zjKgmYwMzND1Rbd0ekrv2wZsrYPQJchv+9D1vbLlcv+rJfCyKAwUWOo76Vs2y+uDGZmZujjWgHbvdxhqlLozbO3VuPvmZlflKakazBkZRCy38iYqHQwanHi5eWFTZs2Ye/evbC0tNSNI7G2toaZmRmsra0xZswYTJ8+Hba2trCyssKkSZPQqlUrvbMdYWFhSEhIQGRkJJKTk3H58mUAQL169WBiYoLevXtj2bJlWLBgAUaMGIH4+HjMnj0b1apVg5ubmzF2nYiIiIiIXmPU4mTVqlUAgI4dO+pN9/X1haenJwBg2bJlkMvlGDRoEFJTU9G9e3f8/PPPesuPHTsWAQEButdZBcf9+/fh5OSEzp07Y9OmTVi8eDEWL14Mc3NztGrVCocOHeKAMyIiIiIiiTD6ZV1vY2pqipUrV2LlypW5LuPv7//W9QwfPhzDhw83JB4RERERERUjjrYiIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkQWnsAERERO86TUZageZr01OR8Zb5JT3D27ZfGBkK+h4URobUdG2B5hO961icEBERFbGzP88qUPuARZ8yQyFkKOj2CyPD/60JLnAGoncZixMiIqIi1KSyZYHau5ZXMUMhZCjo9gsjA6o2z/uy6ekF2xZRCSUTQghjhygJ4uLiYG1tjdjYWFhZWRk7DhERSZwQAqmpb7/U6XVqtRoymazA7UtyhndhHwqaIS4uDvb29vzcQaUOz5wQEREVAZlMBlNTU6O1Z4bCaW+sDGlpbx//QvQu4t26iIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSQYVJxkZGTgt99+Q1RUVFHlISIiIiKiUsqg4kSpVGLcuHFISUkpqjxERERERFRKGXxZV/PmzXH58uUiiEJERERERKWZ0tAGEyZMwPTp0/Hw4UO4u7vDwsJCb36jRo0KLRwRSZ8QAqmpqQa3U6vVkMlkBW6f3wwFbf/qOoy1D4WZQQr7QEREJBNCCEMayOXZT7Zk/WGTyWTQaDSFFk5K4uLiYG1tjdjYWFhZWRk7DpFkpKSkYMiQIQa32759O0xNTQvcPr8ZCtr+1XUYax8KM4MU9oGIXuLnDiqtDD5zcv/+/aLIQUQl3D+P4vO8bJPKltmmhTxNz3N71/KqAmXIafuFkaGg74EUMhRGP+DhhTyvA1Wb531ZIiJ65xlcnFSrVq0ochDRO6DVBG8olCa5ztdkpOHsz7Nynd/h818gV6lzna9NT0XAok/zneFt2y+MDAV9D6SQoTD64Y9P3KBW5T6sMTVdi/9bE/zGdRARUeljcHGS5caNG4iIiEBaWpre9H79+hU4FBGVTAqlCRQmuX+ofRu5Sg2lSe6X92SUgAwF3b4UMhRGP6hVcpiqFPnOQEREpZPBxcm9e/cwYMAAXL16VTfWBIBuMOO7OuaEiIiIiIiKlsG3Ep4yZQqcnZ0RHR0Nc3NzXL9+HSdPnkTTpk3h7+9fBBGJiIiIiKg0MPjMydmzZ3H8+HGUK1cOcrkccrkcbdu2hbe3NyZPnozgYF5DTEREREREhjP4zIlGo4GlZeYdXsqVK4fHjx8DyBwoHxoaWrjpiIiIiIio1DD4zEmDBg0QEhICZ2dntGjRAosXL4aJiQnWrFmD6tWrF0VGIiIiIiIqBQwuTr766iskJiYCABYsWIA+ffqgXbt2sLOzw9atWws9IBERERERlQ4GFyfdu3fX/btmzZq4desWXrx4gbJly+ru2EVERERERGQog8ecZAkLC8Phw4eRnJwMW1vbwsxERERERESlkMHFyfPnz9GlSxfUrl0bvXr1wpMnTwAAY8aMwYwZMwo9IBERERERlQ4GX9Y1bdo0qFQqREREwMXFRTd92LBhmD59OpYsWVKoAYmIiIgoZxqNBunp6caOQZQrlUoFhUKR5+UNLk7+/vtvHD58GFWqVNGbXqtWLTx48MDQ1RERERGRgYQQiIyMRExMjLGjEL2VjY0NHBwc8jQ+3eDiJDExEebm5tmmv3jxAmq12tDVEREREZGBsgqTChUqwNzcnDclIkkSQiApKQnR0dEAgIoVK761jcHFSbt27fDbb7/hm2++AQDIZDJotVosXrwYnTp1MnR1RERERGQAjUajK0zs7OyMHYfojczMzAAA0dHRqFChwlsv8TK4OFm8eDG6dOmCS5cuIS0tDZ999hmuX7+OFy9e4MyZM/lLTURERER5kjXGJKcrWYikKOv/anp6+luLE4Pv1tWgQQPcvn0bbdu2Rf/+/ZGYmIiBAwciODgYNWrUyF9iIiIiIjIIL+WiksKQ/6sGnzkBAGtra3z55Zf5aUpERERERJQjg8+cODk5YcGCBXj48GFR5CEiIiIiolLK4DMnU6dOhZ+fHxYsWIBOnTphzJgxGDBgAO/URURERGRsS4rxUq8Zovi2ZWTh4eFwdnZGcHAwGjdubOw4+ebk5ISpU6di6tSpxo6SK4PPnEydOhWXL1/GhQsX4OLigkmTJqFixYqYOHEi/vnnn6LISEREREQlmEwme+PPvHnzjJptz549b1ymatWqePLkCRo0aJDn9c6bN69EFzLGYnBxkqVJkybw8fHB48ePMXfuXKxbtw7NmjVD48aNsWHDBghReqppIiIiIsrdkydPdD/Lly+HlZWV3rSZM2catL60tLQiSpozhUIBBwcHKJX5Gq5dIMW9r8aW7+IkPT0d27ZtQ79+/TBjxgw0bdoU69atw6BBgzB79myMHDmyMHMSERERUQnl4OCg+7G2toZMJtO9TkxMxMiRI2Fvb48yZcqgWbNmOHr0qF57JycnfPPNN/Dw8ICVlRU++eQTAMDatWtRtWpVmJubY8CAAVi6dClsbGz02u7duxdNmjSBqakpqlevjvnz5yMjI0O3XgAYMGAAZDKZ7vXrwsPDIZPJcPnyZQCAv78/ZDIZjh07hqZNm8Lc3BytW7dGaGgoAMDPzw/z589HSEiI7uyQn58fACAmJgZjx45F+fLlYWVlhc6dOyMkJES3rawzLuvWrYOzszNMTU2xZs0aVKpUCVqtVi9X//79MXr0aADA3bt30b9//ze+jyWBwcXJP//8o3cpV/369XHt2jWcPn0ao0aNwpw5c3D06FHs3r27KPISERER0TskISEBvXr1wrFjxxAcHIwePXqgb9++iIiI0Fvuhx9+gKurK4KDgzFnzhycOXMG48aNw5QpU3D58mV069YN3377rV6bU6dOwcPDA1OmTMGNGzfwyy+/wM/PT7fcxYsXAQC+vr548uSJ7nVeffnll1iyZAkuXboEpVKpKxSGDRuGGTNmoH79+rqzQ8OGDQMADBkyBNHR0Th48CCCgoLQpEkTdOnSBS9evNCtNywsDDt37sSuXbtw+fJlDBkyBM+fP8eJEyd0y7x48QKHDh3SnRDI6/sodQafm2rWrBm6deuGVatW4f3334dKpcq2jLOzM4YPH14oAYmIiIjo3eXq6gpXV1fd62+++Qa7d+/Gvn37MHHiRN30zp07Y8aMGbrXX375JXr27Km7JKx27doIDAzEgQMHdMvMnz8fX3zxBT766CMAQPXq1fHNN9/gs88+w9y5c1G+fHkAgI2NDRwcHAzO/u2336JDhw4AgC+++AK9e/dGSkoKzMzMUKZMGSiVSr31nj59GhcuXEB0dLTuZlI//PAD9uzZgx07dujOCKWlpeG3337T5QOAnj17YtOmTejSpQsAYMeOHShXrhw6depk0PsodQafObl37x4OHTqEIUOG5FiYAICFhQV8fX0LHI6IiIiI3m0JCQmYOXMmXFxcYGNjgzJlyuDmzZvZvvFv2rSp3uvQ0FA0b95cb9rrr0NCQrBgwQKUKVNG9/Pxxx/jyZMnSEpKKnD2Ro0a6f5dsWJFAEB0dHSuy4eEhCAhIQF2dnZ6me7fv4+7d+/qlqtWrZpeYQIAI0eOxM6dO5GamgoA2LhxI4YPHw65PPPjfF7fR6kz+MxJtWrViiIHEREREZVCM2fOxJEjR/DDDz+gZs2aMDMzw+DBg7MNBLewsDB43QkJCZg/fz4GDhyYbZ6pqWm+M2d59Yv6rKegvz4u5PU8FStWhL+/f7Z5r46VyWlf+/btCyEE/vzzTzRr1gynTp3CsmXLdPPz+j5KXfHfcoCIiIiI6P87c+YMPD09MWDAAACZH+DDw8Pf2q5OnTrZxoi8/rpJkyYIDQ1FzZo1c12PSqWCRqMxPPhbmJiYZFtvkyZNEBkZCaVSmevg+9yYmppi4MCB2LhxI8LCwlCnTh00adJENz+/76PUsDghIiIiIqOpVasWdu3ahb59+0Imk2HOnDlvPPuQZdKkSWjfvj2WLl2Kvn374vjx4zh48KDuDAYAfP311+jTpw8cHR0xePBgyOVyhISE4Nq1a1i4cCGAzDt2HTt2DG3atIFarUbZsmULZb+cnJxw//59XL58GVWqVIGlpSW6du2KVq1a4f3338fixYtRu3ZtPH78GH/++ScGDBiQ7dK1140cORJ9+vTB9evX8X//93968/L7PkoNixMiIiKid0UJfGr70qVLMXr0aLRu3RrlypXD559/jri4uLe2a9OmDVavXo358+fjq6++Qvfu3TFt2jT89NNPumW6d++OAwcOYMGCBVi0aBFUKhXq1q2LsWPH6pZZsmQJpk+fjrVr16Jy5cqFdrZh0KBB2LVrFzp16oSYmBj4+vrC09MTf/31F7788kuMGjUKT58+hYODA9q3bw97e/u3rrNz586wtbVFaGgoPvjgA715+X0fpcag4iQ9PR1169bFgQMH4OLiUlSZiIiIiOgd5enpCU9PT91rJycnHD9+XG8ZLy8vvde5FQwff/wxPv74Y73Xr1/C1b17d3Tv3j3XPH379kXfvn3fmNnJyUnvAeMdO3bM9sDxxo0b601Tq9XYsWNHtnVZWlrCx8cHPj4+OW5r3rx5mDdvXo7z5HI5Hj9+nGvG/L6PUmJQcaJSqZCSklJoG/f29sauXbtw69YtmJmZoXXr1li0aBHq1KmjWyYlJQUzZszAli1bkJqaiu7du+Pnn3/Wqy4nT56MM2fO4Nq1a3BxcdE9ICfLvHnzMH/+/GzbNzc3R2JiYqHtD1FppdFo8OLeNfz1xUAo1aZQW9mi2ag5sHRwRErsc5xd/SUSoh5CrlRCZW4JwDJb+2e3g7H70zZQqs1gZlMerSctgVXl6kiOeYqTi8cj/sl9yJUqqCysgPLZv13KU4bICKTEPcdzU9cc2xc0g9BqcdpnBuKfhENhoi72DAXth8x90ODEQk/E/hsGhYlpjhniHt9DcsxTVGncMMd9+Od+DBp+FQBztQIVLNVY5dEQNe0tEB2XCo+1l3E3OhEmSjmszZSwy7YGIqK8++GHH9CtWzdYWFjg4MGD+PXXX/Hzzz8bOxYVgMG3Evby8sKiRYt0T9YsiICAAHh5eeHcuXM4cuQI0tPT8d577+kVDNOmTcP+/fuxfft2BAQE4PHjxznecWH06NG6h9u8bubMmboH4GT91KtXD0OGDCnwPhBRJnO7iujpvRM9vXeiinsnXFg3FwBweetylKvZCH2X/onmo+fif+E3c7wG1qJCFby/+jQGrD4Nx1Y9cXr5ZADApfXzUd6lKQb7BqH1lOV4EXYl12to35ah16LdsHGsg+DgYKSnpxdJhhodBqD3D/uNlqGg/QAAtXp8iEHrL+aaYcCaQNhWb5DrPjjameHKN+0RsqAD+rvZY6xv5pOPv9h+Cy1r2ODOos74xbMhgiPiSuT10EQkHRcuXEC3bt3QsGFDrF69Gj4+PnqXbFHJY3BxcvHiRezatQuOjo7o3r07Bg4cqPdjiEOHDsHT0xP169eHq6sr/Pz8EBERgaCgIABAbGws1q9fj6VLl6Jz585wd3eHr68vAgMDce7cOd16fHx84OXlherVq+e4nTJlysDBwUH3ExUVhRs3bmDMmDGG7j4R5UChUMDU2k43CNGupisSn2aedn547jBqdhkKALCtXh8KlRrPnz/P1t7MpryufQWXZkiIyrwv+/2Te1C39ygAQLnajaEwyd7ekAwmFlZQq9U4depUoWeQyeWo6NrWaBkK2g+Z+6BAlaZd3ppBXcY6132wt1Lr2resURbhz5IBANsuPsa4Tpm3o2/qZAO1Up5jBiKivNq2bRuio6ORnJyM69evY9y4ccaORAVk8IB4GxsbDBo0qCiyIDY2FgBga2sLAAgKCkJ6ejq6du2qW6Zu3bpwdHTE2bNn0bJly3xtZ926dahduzbatWuX6zKpqam6h9wAKJEDioiM5fahP1DZvRNS42Og1WTAzKacbp7CxBTJyclvbH99z2o4tuqFlLgX0GrSYW778vIlhdrsre1zy6BJy/ydNjc3x8OHD9/5DAXth9wyZKSl5HkfVhy5j/5u9niekIZ0jYCD9cvnCpibKPKUgYiISg+Di5OievK7VqvF1KlT0aZNGzRo0AAAEBkZCRMTE72H0gCAvb09IiMj87WdlJQUbNy4EV988cUbl/P29s5xnAoRvdn1vWsRHxWBzmPW6T6IGyJk8xLEPb6Pnt8v030IZgbDMxR0+4WR4bsDdxAWnYhj/2mF5PTCf4YAERG9ewy+rCvL06dPcfr0aZw+fRpPnz4tcBAvLy9cu3YNW7ZsKfC63mT37t2Ij4/HRx999MblZs2ahdjYWN3P274dJCLg1sHf8e/Fo+j42Soo1WZQW9pAplAiOeaZbhlNWgrMzMxybH991yqEnzmA9xZuh9LUHKZWtpDLlUh6EfWyfWpyru3zmiEpKQlVq1Ytsgw3//QzaoaC9gMAXN3+41szvGkflv19D7uCInFweguYqxWwK2MCpVyGyNiXRU5SmuaNGYiIqPQxuDhJTEzE6NGjUbFiRbRv3x7t27dHpUqVMGbMGCQlJeUrxMSJE3HgwAGcOHECVapU0U13cHBAWloaYmJi9JaPioqCg4NDvra1bt069OnT5633klar1bCystL7IaLcJUQ/xMPzh9Fp1hqYWLz8fXFs3g1hx7YBAF7cuw5Neirs7LLfoyn+STjun9yNHt67oS5jrZvu1L4/bv2Zecb22e3L0KTl3D6vGdIS45CSkpLjZZ2FkSH08B94EPiX0TIUtB8A4Mae1bjnv/ONGVITYnPdh3tPk7D9whMcmdkCNuYq3fQhzSpi9YkHAIBL4TFISdfmmoGIiEongy/rmj59OgICArB//360adMGAHD69GlMnjwZM2bMwKpVq/K8LiEEJk2ahN27d8Pf3x/Ozs56893d3aFSqXDs2DHdOJfQ0FBERESgVatWhkbH/fv3ceLECezbt8/gtkSUu+TkZMQ9ugeL8pVxbGHmjSYUKhO8t2ATXEdMw7mfZ2P/9N6QK5QoW60u5HJ5tvYxEaEo41ANBz/LvNe8XKVGP5+jaDZmHgIWj8OOUe6QKZSwrdEwW/u8Zvjr8wFIiXuOpm5uUKlUhZ5Bk5aKkC3LUaZCFaNkKGg/AEBGagourZ8Py4pOuWbY/UlrJMdE57oPNx4nwLmcGTotyrxxiVolx/k5bbFoiAs+XBuMWp8fh0ohh1s1qxwzEBFR6WVwcbJz507s2LEDHTt21E3r1asXzMzMMHToUIOKEy8vL2zatAl79+6FpaWlbhyJtbU1zMzMYG1tjTFjxmD69OmwtbWFlZUVJk2ahFatWukNhg8LC0NCQgIiIyORnJyse85JvXr1YGJioltuw4YNqFixInr27GnobhPRG5iZmaGSWwe0nbwEChO1/jzrcug0aw2AzA/vp31m5Ni+aovu6PSVH5QmpvrzylZAD+9dAICMtBScWOiZ7wxZ2y9XLvvzPQojg8JEjaG+l7Jtv7gyFLQfAECpNoXH/ifZtv9qhqztlyunyr6MmRn6uFbAdi93mKoUevPsrdX4e2bmsTslXYMhK4NyzEBEVJp07NgRjRs3xvLly40dJd/mzZuHPXv2ZHvWYH4YXJwkJSXleElUhQoVDL6sK6uQebXQATIH3Wc9OXTZsmWQy+UYNGiQ3kMYXzV27FgEBAToXru5uQHIPFPi5OQEIHPAvZ+fHzw9PaFQ6P/BJCIiInoXlJt3sti29Wxee4OW9/T0xK+//gog88Hejo6O8PDwwOzZs6FUGvyR9J2xa9eubGeh3yQ8PBzOzs4IDg5G48aNiy6YkRj8P6FVq1aYO3cufvvtN5iaZn6zlpycjPnz5xt8qZUQ4q3LmJqaYuXKlVi5cmWuy/j7+791PXK5nIPaiYiIiIyoR48e8PX1RWpqKv766y94eXlBpVJh1qxZ2ZZNS0vTuwKmuAghoNFoCr1gym1/sh6hYQzp6ekGFUbFweCLfVesWIEzZ86gSpUq6NKlC7p06YKqVasiMDAQK1asKIqMRERERPQOUKvVcHBwQLVq1TB+/Hh07dpVNxbY09MT77//Pr799ltUqlQJderUAQA8fPgQQ4cOhY2NDWxtbdG/f3+Eh4frrXfDhg2oX78+1Go1KlasiIkTJwLIPMsgk8n0LjeKiYmBTCbTfbnt7+8PmUyGgwcPwt3dHWq1GqdPn0ZISAg6deoES0tLWFlZwd3dHZcuXdKtZ+fOnbptOjk5YcmSJXqZnJyc8M0338DDwwNWVlb45JNPcnxPOnbsiKlTp+q1++677zB69GhYWlrC0dERa9as0c3PGqPt5uYGmUymdwXSunXr4OLiAlNTU9StW1fvaqOs92Lr1q3o0KEDTE1NsWrVKpiZmeHgwYN6mXbv3g1LS0vdVVGff/45ateuDXNzc1SvXh1z5sxBenp6jvtTUAaXhA0aNMCdO3ewceNG3Lp1CwAwYsQIjBw5kreEJCIiIqI8MzMzw/Pnz3Wvjx07BisrKxw5cgRA5jf73bt3R6tWrXDq1CkolUosXLgQPXr0wJUrV2BiYoJVq1Zh+vTp+P7779GzZ0/ExsbizJkzBmf54osv8MMPP6B69eooW7Ys2rdvDzc3N6xatQoKhQKXL1/WnWUICgrC0KFDMW/ePAwbNgyBgYGYMGEC7OzsdEMTAOCHH37A119/jblz5xqUZcmSJfjmm28we/Zs7NixA+PHj0eHDh1Qp04dXLhwAc2bN8fRo0dRv3593dmYjRs34uuvv8ZPP/0ENzc3BAcH4+OPP4aFhYXeIzS++OILLFmyBG5ubjA1NcWpU6ewadMmvTHZGzduxPvvvw9zc3MAgKWlJfz8/FCpUiVcvXoVH3/8MSwtLfHZZ58Z/D6/Tb7OV5mbm+Pjjz8u7CxEREREVAoIIXDs2DEcPnwYkyZN0k23sLDAunXrdB+4//jjD2i1Wqxbtw4ymQxA5thkGxsb+Pv747333sPChQsxY8YMTJkyRbeeZs2aGZxpwYIF6Natm+51REQE/vOf/6Bu3boAgFq1aunmLV26FF26dMGcOXMAALVr18aNGzfw3//+V6846dy5M2bMyPkGJG/Sq1cvTJgwAUDmWYtly5bhxIkTqFOnDsqXLw8AsLOz03u0xty5c7FkyRIMHDgQQOYZlhs3buCXX37RK06mTp2qWwYARo4ciQ8//BBJSUkwNzdHXFwc/vzzT+zevVu3zFdffaX7t5OTE2bOnIktW7ZIpzi5c+cOTpw4gejoaGi1Wr15X3/9daEEIyIiIqJ3y4EDB1CmTBmkp6dDq9Xigw8+wLx583TzGzZsqDcuIyQkBGFhYbC01L/DYUpKCu7evYvo6Gg8fvwYXbp0KXC2pk2b6r2ePn06xo4di99//x1du3bFkCFDUKNGDQDAzZs30b9/f73l27Rpg+XLl0Oj0ehuvvT6OvOqUaNGun/LZDI4ODggOjo61+UTExNx9+5djBkzRu8EQkZGBqytrfWWfT1Tr169oFKpsG/fPgwfPhw7d+6ElZUVunbtqltm69at8PHxwd27d5GQkICMjIwiewagwcXJ2rVrMX78eJQrVw4ODg66KhbIfPNYnBARERFRTjp16oRVq1bBxMQElSpVyjbo3MLCQu91QkIC3N3dsXHjxmzrKl++/FuflZQ1/9WbMOU2VuL1bc+bNw8ffPAB/vzzTxw8eBBz587Fli1bMGDAgDdu803rzKvXB6nLZLJsJwRelZCQACDzc3qLFi305r1+l9rXM5mYmGDw4MHYtGkThg8fjk2bNmHYsGG6vjl79ixGjhyJ+fPno3v37rC2tsaWLVuyjbEpLAYXJwsXLsS3336Lzz//vCjyEBEREdE7ysLCAjVr1szz8k2aNMHWrVtRoUKFXL+pd3JywrFjx9CpU6ds87IugXry5InuUROGPIujdu3aqF27NqZNm4YRI0bA19cXAwYMgIuLS7ZxLWfOnEHt2rWL/JEVWWeWNBqNbpq9vT0qVaqEe/fuYeTIkQavc+TIkejWrRuuX7+O48ePY+HChbp5gYGBqFatGr788kvdtAcPHhRgD97M4Lt1/e9//8OQIUOKIgsRERERkc7IkSNRrlw59O/fH6dOncL9+/fh7++PyZMn499//wWQeYZjyZIl8PHxwZ07d/DPP//gxx9/BJA54L5ly5b4/vvvcfPmTQQEBOiNn8hNcnIyJk6cCH9/fzx48ABnzpzBxYsX4eLiAgCYMWMGjh07hm+++Qa3b9/Gr7/+ip9++gkzZ84sujfj/6tQoQLMzMxw6NAhREVFITY2FgAwf/58eHt7w8fHB7dv38bVq1fh6+uLpUuXvnWd7du3h4ODA0aOHAlnZ2e9sy+1atVCREQEtmzZgrt378LHx0dvPEphM7g4GTJkCP7++++iyEJEREREpGNubo6TJ0/C0dERAwcOhIuLC8aMGYOUlBTdmZSPPvoIy5cvx88//4z69eujT58+uHPnjm4dGzZsQEZGBtzd3TF16lS9swK5USgUeP78OTw8PFC7dm0MHToUPXv2xPz58wFkntHZtm0btmzZggYNGuDrr7/GggUL9AbDFxWlUgkfHx/88ssvqFSpkm7sy9ixY7Fu3Tr4+vqiYcOG6NChA/z8/HS3Hn4TmUyGESNGICQkJNuZl379+mHatGmYOHEiGjdujMDAQN2NAIpCni7r8vHx0f27Zs2amDNnDs6dO4eGDRtmuyZu8uTJhZuQiIiIiPLE0Ke2Fyc/P798zXdwcNA9WT43n376KT799NMc57m4uCAwMFBv2qtjUDp27JjtweAmJibYvHnzG7c5aNAgDBo0KNf5rz+LJTevP0w8p3avX4o2duxYjB07NttyH3zwAT744IMct+Pk5PTGB6AvWrQIixYtynHe4sWLsXjxYr1prz6bZd68eXo3NiiIPBUny5Yt03tdpkwZBAQEICAgQG+6TCZjcUJERERERPmSp+Lk/v37RZ2DiIiIiIhKOYPHnBARERERERUFg4uTQYMG5Xg92uLFi3kXLyIiIiIiyjeDi5OTJ0+iV69e2ab37NkTJ0+eLJRQRERERERU+hhcnCQkJOge/vIqlUqFuLi4QglFRERERG/2pjsvEUmJIf9XDS5OGjZsiK1bt2abvmXLFtSrV8/Q1RERERGRAbIe45CUlGTkJER5k/V/9fVHkOQkT3fretWcOXMwcOBA3L17F507dwYAHDt2DJs3b8b27dsNXR0RERERGUChUMDGxgbR0dEAMh9UKJPJjJyKKDshBJKSkhAdHQ0bGxsoFIq3tjG4OOnbty/27NmD7777Djt27ICZmRkaNWqEo0ePokOHDvkKTkRERER55+DgAAC6AoVIymxsbHT/Z9/G4OIEAHr37o3evXvnpykRERERFZBMJkPFihVRoUIFpKenGzsOUa5UKlWezphkyVdxAgBpaWmIjo6GVqvVm+7o6JjfVRIRERGRARQKhUEf/IikzuDi5M6dOxg9ejQCAwP1pgshIJPJoNFoCi0cERERERGVHgYXJ56enlAqlThw4AAqVqzIAVhERERERFQoDC5OLl++jKCgINStW7co8hARERERUSll8HNO6tWrh2fPnhVFFiIiIiIiKsUMLk4WLVqEzz77DP7+/nj+/Dni4uL0foiIiIiIiPLD4Mu6unbtCgDo0qWL3nQOiCciIiIiooIwuDg5ceJEUeQgIiIiIqJSzuDi5E1Pgb927VqBwhARERERUemV74cwZomPj8fmzZuxbt06BAUF8bIuolJMk5FWoPna9FRkvGV+QTK8bfuFkaGg74EUMhRGP6Smaws0n4iISqd8FycnT57E+vXrsXPnTlSqVAkDBw7EypUrCzMbEZUwZ3+eVaD2AYs+LfEZCrp9KWQojH74vzXBBV4HERGVPgYVJ5GRkfDz88P69esRFxeHoUOHIjU1FXv27EG9evWKKiMRlQBNKlsWqL1reVWJz1DQ7UshQ2H0A6o2L/g6iIioVJIJIUReFuzbty9OnjyJ3r17Y+TIkejRowcUCgVUKhVCQkLe+eIkLi4O1tbWiI2NhZWVlbHjEEmGEAKpqW+/zOd1arUaMpmswO3zm6Gg7V9dh7H2oTAzSGEfiOglfu6g0irPZ04OHjyIyZMnY/z48ahVq1ZRZiKiEkQmk8HU1NRo7aWQgftQeOsgIqLSLc8PYTx9+jTi4+Ph7u6OFi1a4KeffuKT4omIiIiIqNDkuThp2bIl1q5diydPnuDTTz/Fli1bUKlSJWi1Whw5cgTx8fFFmZOIiIiIiN5xeR5zkpPQ0FCsX78ev//+O2JiYtCtWzfs27evMPNJBq/9JCIiouLCzx1UWuX5zElO6tSpg8WLF+Pff//F5s2bCysTERERERGVQgU6c1Ka8BsMIiIiKi783EGlVYHOnBARERERERUWFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJgtLYAUqalJQUmJiY5Hl5tVoNmUwGIQRSU1MN3l5htQdg9Azvwj4URgYiIiIiyhmLEwN5eHhApVLlefnt27fD1NQUqampGDJkiMHbK6z2AIye4V3Yh8LIQEREREQ5Y3FioJAnCZAr8va2Nalsmb390/Q8b8u1fPYi6J9H8Xlun9P2pZChoNuXSgY8vJDndaBq87wvS0RERFRKsTjJh1YTvKFQ5n5plyYjDWd/npXr/A6f/wK5Sp3rfG16KgIWfVpk25dChoJuXyoZ/vjEDWpV7kO3UtO1+L81wW9cBxERERFlYnGSDwqlCRQmuX+ofRu5Sg2lSe6X92QU8falkKGg25dKBrVKDlOVIt8ZiIiIiOgl3q2LiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIEpTG3Li3tzd27dqFW7duwczMDK1bt8aiRYtQp04d3TIpKSmYMWMGtmzZgtTUVHTv3h0///wz7O3tdctMnjwZZ86cwbVr1+Di4oLLly9n25YQAkuWLMGaNWvw4MEDlCtXDhMmTMCXX35pUOb/hd/EX18MhFJtCrWVLZqNmgNLB0ekxD7H2dVfIiHqIeRKJVTmlgAs9dpqNBo8ux2M3Z+2gVJtBjOb8mg9aQmsKldHcsxTnFw8HvFP7kOuVEFlYQWUt8+2faHV4rTPDMQ/CYfCRJ1zhsgIpMQ9x3NT12ztC5pBo9Hgxb1r+X4PMvdBgxMLPRH7bxgUJqY5Zoh7fA/JMU9RpXHDHPdBChn+uR+Dhl8FwFytQAVLNVZ5NERNewtEx6XCY+1l3I1OhIlSDmszJeyyrYGIiIiIXmfUMycBAQHw8vLCuXPncOTIEaSnp+O9995DYmKibplp06Zh//792L59OwICAvD48WMMHDgw27pGjx6NYcOG5bqtKVOmYN26dfjhhx9w69Yt7Nu3D82bNzc4s7mtPXp670RP752o4t4JF9bNBQBc3roc5Wo2Qt+lf6L56Ln4X/hNaLXabO0tKlTB+6tPY8Dq03Bs1ROnl08GAFxaPx/lXZpisG8QWk9ZjhdhV3JsDwA1OgxA7x/255qh16LdsHGsg+DgYKSnpxd6BnO7igV6DwCgVo8PMWj9xVwzDFgTCNvqDXLdBylkcLQzw5Vv2iNkQQf0d7PHWN8QAMAX22+hZQ0b3FnUGb94NkRwRFyuGYiIiIjoJaMWJ4cOHYKnpyfq168PV1dX+Pn5ISIiAkFBQQCA2NhYrF+/HkuXLkXnzp3h7u4OX19fBAYG4ty5c7r1+Pj4wMvLC9WrV89xOzdv3sSqVauwd+9e9OvXD87OznB3d0e3bt0Mzqy2soVMJgMA2NV0ReLTxwCAh+cOo2aXoQAA2+r1oVCp8fz5c722CoUCZjblde0ruDRDQlQEAOD+yT2o23sUAKBc7cZQmGRvDwAyuRwVXdu+NYOJhRXUajVOnTpVqBkUCgVMre3y/R5k7oMCVZp2eWsGdRnrXPdBChnsrdS69i1rlEX4s2QAwLaLjzGuUzUAQFMnG6iV8hwzEBEREZE+SY05iY2NBQDY2toCAIKCgpCeno6uXbvqlqlbty4cHR1x9uzZPK93//79qF69Og4cOABnZ2c4OTlh7NixePHiRa5tUlNTERcXp/fzutuH/kBl905IjY+BVpMBM5tyunkKE1MkJye/Mdf1Pavh2KoXUuJeQKtJh7nty0uoFGqzt7Z/WwZzc3M8fPiwSDMU9D14W4a87IMUMqw4ch/93ezxPCEN6RoBB2vTl+1NFHnKQERERFTaSaY40Wq1mDp1Ktq0aYMGDRoAACIjI2FiYgIbGxu9Ze3t7REZGZnndd+7dw8PHjzA9u3b8dtvv8HPzw9BQUEYPHhwrm28vb1hbW2t+6latare/Ot71yI+KgKuw6bkfSdfEbJ5CeIe30fTUV/nq70UMhR0++9Khu8O3EFYdCK8B7vkOwMRERERSag48fLywrVr17Bly5ZCX7dWq0Vqaip+++03tGvXDh07dsT69etx4sQJhIaG5thm1qxZiI2N1f28+s35rYO/49+LR9Hxs1VQqs2gtrSBTKFEcswz3TKatBSYmZnluO7ru1Yh/MwBvLdwO5Sm5jC1soVcrkTSi6iX7VOTc20PADf/9HtrhqSkpGxFVWFlKOh7AABXt//41gxv2gcpZFj29z3sCorEwektYK5WwK6MCZRyGSJjU162T9O8MQMRERERZZJEcTJx4kQcOHAAJ06cQJUqVXTTHRwckJaWhpiYGL3lo6Ki4ODgkOf1V6xYEUqlErVr19ZNc3HJ/JY7IiIixzZqtRpWVlZ6PwCQ+PQRHp4/jE6z1sDEwkq3vGPzbgg7tg0A8OLedWjSU2Fnl/0eTfFPwnH/5G708N4NdRlr3XSn9v1x609fAMCz25ehScu5PQCEHv4DDwL/emOGtMQ4pKSkoF27doWeISH6YYHeAwC4sWc17vnvfGOG1ITYXPdBChnuPU3C9gtPcGRmC9iYq3TThzSriNUnHgAALoXHICVdm2sGIiIiInrJqLcSFkJg0qRJ2L17N/z9/eHs7Kw3393dHSqVCseOHcOgQYMAAKGhoYiIiECrVq3yvJ02bdogIyMDd+/eRY0aNQAAt2/fBgBUq1bNoMzxT8JhUb4yji0cAwBQqEzw3oJNcB0xDed+no3903tDrlCibLW6kMv1a7/k5GTERISijEM1HPysLwBArlKjn89RNBszDwGLx2HHKHfIFErY1miYrT0AaNJSEbJlOcpUqJJrhr8+H4CUuOdo6uYGlUpVqBmSk5MR9+hevt8DAMhITcGl9fNhWdEp1wy7P2mN5JjoXPdBChluPE6AczkzdFqUeXMGtUqO83PaYtEQF3y4Nhi1Pj8OlUIOt2pWOWYgIiIiIn1GLU68vLywadMm7N27F5aWlrpxJNbW1jAzM4O1tTXGjBmD6dOnw9bWFlZWVpg0aRJatWqFli1b6tYTFhaGhIQEREZGIjk5Wfeck3r16sHExARdu3ZFkyZNMHr0aCxfvhxarRZeXl7o1q2b3tmUvHBo1Abtp62AwkStN93Muhw6zVoDILOAOO0zI1tbMzMzVG3RHZ2+8oPSxFR/XtkK6OG9CwCQkZaCEws9c9y+wkSNob6Xsm3/1QxZ2y9XLvvzPQqawczMDJXcOqDt5CX5eg8AQKk2hcf+J9m2/2qGrO2XK6fKvoxEMvRxrYDtXu4wVSn05tlbq/H3zMz/nynpGgxZGZRjBiIiIiLSZ9TiZNWqVQCAjh076k339fWFp6cnAGDZsmWQy+UYNGiQ3kMYXzV27FgEBAToXru5uQEA7t+/DycnJ8jlcuzfvx+TJk1C+/btYWFhgZ49e2LJkiVFt3NERERERGQQo1/W9TampqZYuXIlVq5cmesy/v7+b11PpUqVsHPnTkPiERERERFRMeKF8EREREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJERERERFJAosTIiIiIiKSBBYnREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSQojR2gJNJkpBVovjY9FRlvmV+U25dChoJuXyoZUtO1BZpPRERERC+xOMmHsz/PKlD7gEWfGnX7UshQ0O1LJcP/rQku8DqIiIiIKBOLEwO5ViwDlUqV//bl898WAJpUtixQeylkKOj2pZIBVZsXfB1EREREpCMTQghjhygJ4uLiYG1tjaioKFhZWeW5nVqthkwmgxACqalvv0yoqNoDMHqGd2EfCiMDERHR22R97oiNjTXocwdRScczJwYyNTWFqampwe1kMlm+2hVWeylkeBf2obDWQURERETZ8W5dREREREQkCSxOiIiIiIhIElicEBERERGRJLA4ISIiIiIiSWBxQkREREREksC7deVR1h2X4+LijJyEiIiI3nVZnzf4xAcqbVic5FF8fDwAoGrVqkZOQkRERKVFfHw8rK2tjR2DqNjwIYx5pNVq8fjxY1haWhr8IL24uDhUrVoVDx8+5IOUSgj2WcnDPit52GclD/us+AghEB8fj0qVKkEu51X4VHrwzEkeyeVyVKlSpUDrsLKy4sG8hGGflTzss5KHfVbysM+KB8+YUGnEUpyIiIiIiCSBxQkREREREUkCi5NioFarMXfuXKjVamNHoTxin5U87LOSh31W8rDPiKiocUA8ERERERFJAs+cEBERERGRJLA4ISIiIiIiSWBxQkREREREksDihIiIiIiIJIHFCRERERERSQKLEyIiIiIikgSlsQOUZHFxcUhOToa9vT20Wi3kctZ6UhcZGQkfHx+UK1cOtWrVQt++fSGEgEwmM3Y0ysXTp09x4cIFVKlSBfXr14dSycOW1D179gy3b9+Gg4MDqlevbuw4lEeRkZE4fPgwqlevDldXV1hZWfH4SETFjp+m82nhwoWoWbMmfvrpJwBgYVICeHt7o1atWggJCcHu3bvRv39/HD9+HDKZDHzcjzR98cUXqF27Nr799ls0b94c8+bNw9OnT40di95g1qxZcHFxwdSpU9GgQQMsW7YMz58/N3Yseovvv/8eTk5OWLNmDXr06IEPPvgAISEhPD4SUbHjJ2oDJSQkYMKECdizZw+cnJxw6dIlnDlzBgB4AJewCxcuYNu2bfjjjz/w559/YteuXejduzc2bNgAAPxmUGLu3buHzp074/jx49i7dy8OHjyIhQsXYuvWrYiKijJ2PMrB48ePMWTIEBw9ehQ7duzAjh07MHPmTKxbtw6BgYHGjkdv8ODBA2zcuBHr16/HmTNnsH37dshkMgwdOhSpqak8PhJRsWJxkgevFh1qtRqOjo6YOXMmfvzxRzx79gy7d+9GcnIyv2GSsEOHDiEmJgb9+/cHAJQvXx4qlQoffPCBbhn2nXG9+v7/73//Q48ePbBp0ya0b98e1tbW+L//+z8oFArY2NgYLyTpebXPbt68CZlMBh8fH3To0AGOjo5YsGABEhMTdQUlf8ek6e+//0ZUVBSGDBkCAOjVqxeWL1+OuLg4zJ4928jpiKi0YXHyFsnJyXqXJCgUCkyYMAHDhw9HixYt0LNnT5w5cwaHDh0CwG/gpSDrA5BGo9FNa9SoER48eIBNmzYhNDQUI0aMwF9//YXvvvsOvXr1wt27d9l3RpSWloa0tDTd6/r168PT0xM1a9YEAMTGxmLs2LGwsrLCsmXLcP78eWNFpf8vLS1N73esYcOGmDhxIlq1agUA0Gq1EEKgcuXK0Gq1AHh8lIJXj49Z/65SpQo0Go3ukkmtVosaNWrg22+/xcqVK/HgwQOj5SWi0ofFyRssWLAALVq0QP/+/TFy5EhERERALpejTJkyuoP6xIkToVarsXfvXjx+/BgAvx00piVLlmDs2LEAMgvJrL7o2rUrpk+fjh07dqBZs2aIjIzEkSNHMH36dMTHx+PDDz9EXFycMaOXWvPmzUPbtm3Rv39/rFmzBi9evICpqSkqVKgAALh9+zbKli2LpKQkeHh4ICgoCF5eXlixYoWRk5deCxcuRI8ePdC/f3/8+OOPeP78OSpUqID27dsDgO4GIdHR0bh27RoaNmxo5MQEZD8+ZjE3N0ft2rWxbds2AC/HUA4dOhQ1atTAkiVLAEBXZBIRFSlB2Zw+fVo0btxY1K9fX2zfvl0sWrRItGzZUowYMUJvOY1GI4QQYu3ataJJkyZi1apVunlarbZYM5d2169fF3379hUWFhbC3t5ebN++XQghRHp6ut5yZ86cEW3bthUPHjzQTXvw4IGQyWTiypUrxZq5tEtPTxcffvihqFmzpvj111/FiBEjRP369UXv3r2zLXv+/Hnd71RycrL46KOPxMCBA0VycnJxxy7VgoKCRNOmTUX9+vXF+vXrxbBhw4Sbm5uYNm1ajsvv379f1KpVS6SkpBRzUnpVbsfHtLQ0IUTm7+LgwYNF3759xbVr14QQL/+GzZ49W3Tp0kUkJSUZJzwRlTo8c5KDI0eOoGXLljh37hwGDx6Mzz77DI0aNUKZMmV0y4hXbq84duxYVKtWDYcPH0ZwcDB27tyJr7/+2ljxS6XAwEDIZDJs2LAB3bt3x4oVK5CWlgalUql3JuvWrVtITEyEo6OjbtrVq1dRuXJlvcuKqOg9fPgQFy9exNKlS+Hh4YFNmzZh2bJlOH78OJYtW6a3bPPmzXVjukxNTREREQGNRgMTExMjpS99EhISsHnzZtStWxdnzpzB6NGjsWXLFvTu3RthYWGIiYnJ1uaff/5Bs2bNoFarAQBnzpzBrl27ijk55XZ8VKlUSE9Ph1KphKenJyIjI+Hn5wfg5SV4YWFhMDMzg5mZGa8KIKJiweIkB+PGjcN//vMfXTGSmpqKsLAwVK9eHaGhoQAyD9wymUx3zfWECRNw7do1dOvWDSNGjOCHpmKS9cdy2LBhmDlzJoYOHYoBAwYgPj4eS5cu1Vsm698ajQa//PIL4uPjcffuXfz4449o2bIl6tevb5R9KK3S09MRGhoKV1dX3bRu3bphzpw5WLBgASIiIrK1kclkOHv2LDQaDTw9PXkL72IkhICzszPGjx8Pa2trZGRkAACsra0RGhoKKyurbG0OHz6MLl264NGjR+jVqxc6dOiA+Pj44o5eauXl+Jj1O9S7d2/069cPe/fuxVdffYWIiAjcvHkTDx48QJcuXQBwzBARFROjnbMpITZu3CisrKxEvXr1hLu7u3B2dhYzZ87UWyY8PFx88sknQiaTiVGjRonnz58bKS0JIcSzZ8/E9OnTRYMGDUR4eLgQ4uXlCw8ePBDTpk0TMplMtG3bVtjY2Ijhw4eL2NhYY0YulW7cuCEaN24sFi9erDc9NjZWVK9eXUyfPl0IkXl5ybVr18SFCxfEtGnThI2NjZg4cSIvFTKCjIwM3b+zLmv96quvxNChQ7MtGxoaKsqWLSt69uwpTExMRP/+/cWzZ8+KLSvlLKfjY2pqqhBCiBcvXogNGzYIS0tL0bBhQ1GmTBkxbNgwkZiYaMzIRFTK8FHLbxEXF4cNGzagb9++SExMxMmTJzFgwACMHTsWderUAQD8/vvv2L17N86fP49mzZoZOfG76+HDh6hUqZLeQM7XCSFgZ2eHfv364cKFC/D29sbq1auhUqkAAI6OjvD29kb//v3x6NEjNGjQAI0aNSquXShVxFueLO3o6Ig6derg/PnzCA8Ph5OTE7RaLaysrDB+/Hj8+OOPWLhwIczMzHDhwgX4+flBCIFDhw6hRYsWxbgnBGT256u/e1l9+88//+gGwr/a5/fu3UNMTAzi4uIQEBCAli1bFn9o0pPb8THrTH/ZsmUxatQodOnSBQ8fPoSNjQ3PKBNR8TNmZWQMz58/F1FRUbpvil79JvD1wdNCZB/Yfvv2bWFjYyN+++23og1KOvfu3RN9+vQRbdq0Ec+fP9frk9f7LOt1Wlqa+P7770WdOnXEqVOnhBBCBAYG8kYFxSQmJkbExcXp3u+sb9mF0O+zzZs3i0aNGolFixbptV+zZo1o0KCBuH//vhBCiKSkJHH9+vWiD16KPXr0SBw7dkyEhoZmm/f671lWf8bExAg7OzsREBCgm5f1bXx0dLT4+++/izAxCSFEZGSkuHr1qoiKiso2z5Dj49mzZ3l8JCJJKDUXbAshMGXKFLRu3Rq9evXSfTOkUCh0t0fMGjz96mDc17/5PXnyJOrWrYuePXsWa/7SSAiBcePGoVatWggLC8OlS5cAQG+sz+t9lvVapVKhd+/eqF+/PmbNmoVevXqhTZs2uHXrltH2pzQQQmDq1Kno0KEDevToAQ8PD8THx0MulyM9PR1AZh9pNBps3LgRw4cPR+vWrbF7924cOHBAt55nz57BxsYGVatWBQCYmZmhXr16Rtmn0mDKlCmoV68ePv/8czRq1Ajr169HSkqKbv7rv2dZ4xSOHTsGGxsbtG/fHo8ePcLQoUPRrFkzREVFoXz58ujWrZtR9qc0EEJg8uTJcHNzg4eHBxo0aIATJ07oLWPI8bF169Y8PhKRJJSK4iQoKAgtWrTAhQsXsHLlSowfPx6pqan46KOPALz8Q7tu3TpUrFgR27Zt0z2zBMj8oPT48WPMmzcPX3/9NQYPHgxbW1veuaQI/fe//4WNjQ0uX76MCxcuYOvWrXBycsKZM2cAvLxHf059llVQli9fHlFRUThz5gzMzMwQHh4OFxcX4+xQKXDu3Dm4ubnh/Pnz+O6779C9e3dcunQJH3/8MQDoLq1bu3YtKlWqhN9++w3p6em6D8YDBgzAhAkTMGnSJCxatAjDhg3Te1YNFb6MjAx88sknuHjxIo4cOYKDBw9i1KhRWLJkid4XM7kdG2/dugU3Nzd89913qFWrFmJiYhAUFAR7e3tj7E6pcfbsWbi5ueHSpUvYvn07/Pz80KZNG0yfPl1vOR4fiahEMs4Jm+I1b9480bdvX73BmOfPnxcWFhbi7t27Qggh9u3bJ9zc3MS6dev0LvW6efOmWLBggahZs6Zo0KCBOH78eLHnL4369+8v1q9fr3t99+5dYWlpKfbs2aObtn///hz7TAghQkJCRK1atUTNmjXF6dOniy13aZWRkSE+++wzMWLECBEfH6+bvnXrVuHs7CwiIyOFEEL89ttvomrVqmL9+vXZLjn54YcfxCeffCK6d+8ujh07Vqz5S6uIiAjh6uoq1q5dq5sWGBgo3N3ddYOg9+3bJ1xdXXP8PWvevLmQyWTCxcVFHD58uFizl2a+vr5i7ty5ejdf2bZtm2jTpo3uRhF79+4VjRs35vGRiEocmRDv7teSWU8p/ueff/Ds2TO89957unlHjhzB+PHjERAQgMqVKwMAEhMTYWFhobeO5ORkBAYGIjk5GX369CnW/KVJRkYGlMqX92cQrwys1Wg0UCgUcHd3R7t27bB8+XLdcjn1GZDZb0eOHEG/fv2KPHtplfX7BWT20ZEjR2Bubq4bHA0Av/76KxYvXoxz587B0tISABAfH6/7N/D2gfNUeF7tMwC4c+cOmjRpgmXLlmHs2LGIi4tDz549YWdnh2bNmmH06NGoXLkyUlJSYGpqqreuxMREfPfdd6hXrx5GjhxZ3LtSqrx+fIyJiUFiYqLub9ezZ8/Qt29f1K5dG23btsWoUaOgVCqRnJwMMzOzbOvj8ZGIpOydK042b94MV1fXXK9PzzrIb9y4Ed988w0uX76c7Y8uFa+vv/4a165dQ+XKlTFhwgTUrl0bCoVCV5QAQFJSEj744ANYW1tjzZo1uoe65YQfdoveggULcP/+fVSvXh0TJkyAnZ2d3vysvlu6dCl27dqFU6dOAeBzEozp9T4rW7Ys5HI5xo4di5MnT8LZ2RlHjx5F165d0alTJ2zYsAGVK1fGzJkz0bt3b/5eGcnrx8datWrpFSoHDx5E79690b59e7i4uGDfvn1o0qQJ5syZg+bNm2frN/YjEUndOzPm5OTJk2jYsCFGjhyJjRs3Ijk5Ocflsr41PH78ONq0aQNTU1PdgHgqXk+fPkXbtm2xZ88euLq64u+//8aIESPg4+MD4GVfCSFgbm4Oe3t73L59G2q1+o3jEPiHt+g8fPgQ7u7u2LFjBywsLPDzzz+jR48e2LFjBwDofpey+uDkyZNo27Yt+8SIcuuzbdu2AQB++uknnD59Gubm5pg+fToOHz6ML774Av7+/gAyx+xptVr2YTHL7fj4448/Anj5gEVHR0ecOnUK/v7+WLVqFU6ePIkrV67g+vXrALIfD9mPRCR170Rx8u+//+LXX39F165dMWvWLKxatQohISE5LiuXyyGEwMWLF9G9e3fdtJCQEMTExBRjajp37hxevHiBP//8E3PnzsWVK1fQqVMn/PjjjwgMDNS7KxcAtG/fHuHh4Xj06BH/wBrJ8ePHodVqcerUKfz0008ICwtDpUqVsGLFCoSEhEAul+suHUpOTkZwcLDujk0ymQw3b9408h6UPrn12cqVKxESEgJTU1OkpKQgIiICAwYMAJD5wbdSpUqIjo7GkydP9C4Fo+KRl+OjVqtF/fr10aZNG107Z2dnxMfHIzIy0ojpiYjy7534i2NlZYVevXphzJgx+Pbbb1G+fHmsWLEi12IjODgYMTExaN++PW7evInOnTujVatWPJgXs+joaCQkJOju7KNWqzFu3Dg0aNAAM2fOBAC9h74plUqYm5sjOjraKHkJCA8Ph0ql0o3zsbCwwIwZM6BWq7Fo0SIAL894nTp1CnK5HK1bt8aNGzfQqVMnuLu78/esmL2pz77//nsAgJ2dHW7duoW7d+8CyCwks86m9OrVy2jZS7O8HB9zKhp37NiBunXrYtCgQcWal4iosLwzxcmgQYPQoEEDAMDKlSuxdetWBAQE6F3+k/XvK1euwNzcHN7e3mjYsCEqVqyIqKgo1K1b1yj5S6u0tDTY29vrneWqU6cORo0ahUePHukuO8k6e9K1a1fcv3+fZ7iMKCUlBUqlUq9AbN++PXr27ImbN2/i6NGjuulXr16Fg4MDvv76azRq1AiVKlVCVFQUHBwcjBG91HpTn926dQtHjhzRFSyjR49G//794enpiZ49e6J169Z8ppOR5PX4CGT+Tbt16xYmTpwILy8v9OnTBzVr1jRGbCKiAnsnipNXabVadO3aFT169IC3tzcePXqkm5d1KdDhw4dx+/ZtXLlyBRcuXMDGjRv17h5ERSurSOzduzfu3buHwMBA3QP6AMDd3R2NGzfGsWPHIITQDf5MSEjA5MmTUbNmTT77ophljSX56KOPcO7cOVy4cEFvfteuXaFWqxEUFKSb9tdff+H8+fM4f/48f8+MIK999s8//wDIHDC/ePFiVK9eHUqlEoGBgVixYoXe4GsqeoYeH4HMsyV9+vTB1atXcfToUcyePZuX4hFRyVWc9y3Or6tXr4odO3Zku1e7ECLbsxKyXj948EDI5XLh4+MjNBqNECLznv5CCHHixAmxe/fuog1dyt2+fVv897//Fbdu3co279U+8/LyEtWqVRPBwcF6ywwcOFAMHz5cCCF0/UdF686dO6Jdu3bit99+E0IIodVqdfNe7bMhQ4YINzc38fTpU732LVq0EJMmTRJCZPbZ5s2bxd69e4sheelVGH02ceLE4glLOk+ePBGPHj0SSUlJQgih97fN0OOjEEI8evRInD9/vmhDExEVE0l/tZKWloYxY8agUaNGCA4O1vsmKOtSH6VSiYyMDN1AW6VSCY1GA0dHR0ydOhXLli3D1q1b8d5772H27NlITk5Gx44d8f777xtjl955Go0GXl5eaNiwIW7evImnT5/q5mV9k6tUKpGSkoLg4GCsWLECGo0GP/30Ex48eKC3LhsbGwA5X1dNhSctLQ0eHh6oW7cuTp8+rXeXn1d/z9LS0hAWFoYffvgBt27dwrJlyxAbGwsg8xbdarUaZcuWBZDZZ8OHD+dzFIpIYfaZra2t0fajtElPT8enn36KVq1aoW/fvujZsydSU1OhUCh0Z0cMPT4CQKVKldC8efPi3BUioiIj2U99P/74o26QZnBwMBYuXKh3h6asgdI+Pj6wtrbGX3/9pTu4Z32YnTp1KsLDwzFy5EiYmJhgxYoVOT6QigrP0qVLERISgoCAAKxfvx5t27YFkHmpQla/+Pj4oEKFCti0aRMUCgWWL1+Oq1evok+fPli/fj2mTp2KkydPYvDgwcbclVLh+++/R9myZfHgwQOEhYWhb9++ugHrrz5nxsfHB2XLlsWuXbvg6OiIFStWYNu2bRg2bBj27duHzz77DHfu3OGDSosB+6xkevToEdq3b487d+5g06ZNmDJlCh4+fIj//Oc/AACVSgWAx0ciIkle1hUbGyvKli0rOnfurJt28+ZNERYWJuLi4oQQmZcvfPzxx6JChQri999/17ucQQghNm7cKJRKpWjWrFm2U+JU+LRarUhISBCtWrUSa9euFUIIERgYKH755Rdx6tQpER8fL4QQ4j//+Y8oW7as+OOPP/Qu1woJCREjR44U3bt3F61atRJnz541yn6UJuvWrRONGjUS27Zt002bP3++qFGjhu51SkqKGDdunO737NU+279/v+jVq5do1aqVaNq0qTh37lyx5i+N2Gcl1+bNm4Wrq6t48uSJbpqHh4f46quvdK9nzJghbG1teXwkolJNUk+IF688udbX1xczZ87Eli1bsHbtWvzzzz+QyWSwtbXF+PHj4enpidDQUFSsWBFWVlZ669FqtdizZw+ePXuGTz75xBi7UirduXMH7dq1w6VLl7Bs2TJs3rwZzs7OCAsLQ4MGDbB//34kJSVBrVbrBkaL155WHBcXl60/qXBlPYfkxYsXKFu2rN77v2TJEvj5+WHPnj2oUaMGhBAICwuDvb29rl+y2meJiorS3e6Uigb7rORbvXo1ZsyYgcTERADAkydP0KtXL3h4eKBp06Zo164dnj59ClNTUx4fiahUk0RxcuHCBTRv3lzvD6gQAi1btsTFixcxevRoeHh4ICEhAbt27cJff/2FP/74A507d9a7jIGKT059lpycjGbNmqFp06ZISEjAN998A3t7ezx+/Bjt2rXDmDFj8N///pcPUDSSrD7L6Xcm60PQ6dOn0aFDB0RERKBy5cpGSkpZ2GclU07Hx5CQEPTq1QtVqlRB1apVsXfvXrRt2xYKhQIXLlzAjBkzMHv2bN3lXUREpZZxTthk2r17t6hUqZKwtbUV9+/fF0Lo37Xk0qVL4osvvhDPnj3TTbt//74YMGCA6NWrV3HHJfHmPnvx4oUYO3assLS0FAMHDhQajUZ3acKGDRuEtbW17u40VHxy6rPc7oAWFhYmqlWrJnx9fYsvIGXDPiuZcuq3V+++df/+fXHo0CFRr1493R3WhBBi06ZNwtzcXDx8+LC4IxMRSY7RBsRv3LgR3333Hdq3b4969erpnlT86reDTZo0wZdffgk7OzvdNCcnJ1hYWEAIoTs9TsXjbX1WtmxZdO7cGSYmJtBoNJDL5br78NerVw8mJia6u6pR8citz3K7A5qpqSlMTEyQnJxcnDHpFeyzkim3fnv1OTFOTk548eIFFAoFPvzwQ90dDFu1aoX09HRcuXLFKNmJiKSk2IuTrNtc1qxZE126dMGiRYvQr18/+Pv7w9/fX28ZmUyGMmXK6LVPTk7GkydPUL9+fVhYWBRr9tIqL32WlpYGAOjXrx8+/PBD7Nu3D0ePHtUVLqdPn0bjxo3RuHFjY+xCqWPI71kWIQQqV64Me3t7nDt3DsDL2z9T0WOflUyG9pv4/3cujIqK0hWcf/31F5o0acLbARMRAcV3Wdft27ez3VEr63T3tWvXRL9+/fQu1Xp92ZiYGBERESFGjx4tXFxcRFBQUNGHLuUM7bOsy7vu3bsnPDw8hIWFhRg4cKAYMWKEsLW1Fb/88osQInvfUuEp6O+ZVqsVU6ZMEa1btxYJCQlFH5jYZyWUof2WdVnekSNHRIcOHUSDBg3E6tWrxahRo4Stra1YtmxZsWUnIpKyIj9zsm3bNjg7O6Nv375o2bIlNmzYoJuX9a16/fr18f777yM8PBy+vr5ZRZNuuUOHDmHWrFlwc3PDvXv3sG/fPjRp0qSoo5daBe0zZ2dn/Prrr1iyZAlq1KgBU1NTBAYG6u6cxgHxha8wfs+AzL5JTU2Fq6srB+YWMfZZyZTffss6o9W1a1d89913cHZ2xu7du/HixQsEBgZi6tSpxb4vRESSVJSVz99//y2cnJzEypUrxaFDh8T06dOFSqUSa9as0Q2Mzvqm6d9//xVjxowRzZo10z0TIzU1VQghRHh4uFi5cqU4evRoUcYlUfA+S0tLM1r20qqw+izrzBf7sOixz0qmgvZbSkqKbl0ajUbExMQU/04QEUlckRQnWae658+fL9zd3fX+cE6YMEE0bdpU7Nq1K1u7AwcOiKZNm4q5c+eKkJAQ0bt3bxEREVEUEek1hdVnffr0YZ8VE/ZZycM+K5nYb0RExadILuvKumznxo0bqFGjBlQqFdLT0wEACxcuhKmpKfbu3YvIyEgALwcLdurUCc2bN8eCBQvg7u6OjIwMVKhQoSgi0msKq8/S09PZZ8WEfVbysM9KJvYbEVExKowK5++//xaTJk0Sy5YtE+fPn9dNX7NmjbC0tMx26cGaNWtE7dq1hb+/v27ZhIQEsWzZMqFQKETHjh3FlStXCiMa5YJ9VvKwz0oe9lnJxH4jIjKeAhUnjx8/Fn369BEVKlQQI0eOFA0bNhTW1ta6g3loaKioXLmymDNnjhDi5RgSIYRwcHDQuzvJ9evXRYsWLfQeTEWFj31W8rDPSh72WcnEfiMiMr58FyeJiYnio48+EsOGDRP37t3TTW/evLnw9PQUQggRFxcnFi5cKMzMzHTX2WZdu9uhQwcxduzYgmQnA7HPSh72WcnDPiuZ2G9ERNKQ7zEn5ubmUKvV8PT0hLOzMzIyMgAAvXr1ws2bNyGEgKWlJT744AM0adIEQ4cOxYMHDyCTyRAREYHo6Gi8//77hXV1GuUB+6zkYZ+VPOyzkon9RkQkDTIhXrtpvgHS09N199XXarWQy+UYOXIkLCwssGbNGt1yjx49QseOHZGRkYGmTZsiMDAQdevWxaZNm2Bvb1/wvaA8Y5+VPOyzkod9VjKx34iIjK9AxUlO2rZti48//hgfffSR7qFTcrkcYWFhCAoKwvnz5+Hq6oqPPvqoMDdLBcA+K3nYZyUP+6xkYr8RERWvQi1O7t27h9atW+PPP/+Eu7s7ACAtLQ0mJiaFtQkqZOyzkod9VvKwz0om9hsRUfErlOecZNU3p0+fRpkyZXQH8fnz52PKlCmIjo4ujM1QIWKflTzss5KHfVYysd+IiIxHWRgryXpA1YULFzBo0CAcOXIEn3zyCZKSkvD777/zoVMSxD4redhnJQ/7rGRivxERGU+hXdaVkpKChg0b4u7duzAxMcH8+fPx+eefF8aqqYiwz0oe9lnJwz4rmdhvRETGUahjTrp164ZatWph6dKlMDU1LazVUhFin5U87LOSh31WMrHfiIiKX6EWJxqNBgqForBWR8WAfVbysM9KHvZZycR+IyIqfoV+K2EiIiIiIqL8KJS7dRERERERERUUixMiIiIiIpIEFidERERERCQJLE6IiIiIiEgSWJwQEREREZEksDghIiIiIiJJYHFCRERERESSwOKEiIiIiIgkgcUJEdFbeHp6QiaTQSaTQaVSwd7eHt26dcOGDRug1WrzvB4/Pz/Y2NgUXVAiIqISjsUJEVEe9OjRA0+ePEF4eDgOHjyITp06YcqUKejTpw8yMjKMHY+IiOidwOKEiCgP1Go1HBwcULlyZTRp0gSzZ8/G3r17cfDgQfj5+QEAli5dioYNG8LCwgJVq1bFhAkTkJCQAADw9/fHqFGjEBsbqzsLM2/ePABAamoqZs6cicqVK8PCwgItWrSAv7+/cXaUiIjIiFicEBHlU+fOneHq6opdu3YBAORyOXx8fHD9+nX8+uuvOH78OD777DMAQOvWrbF8+XJYWVnhyZMnePLkCWbOnAkAmDhxIs6ePYstW7bgypUrGDJkCHr06IE7d+4Ybd+IiIiMQSaEEMYOQUQkZZ6enoiJicGePXuyzRs+fDiuXLmCGzduZJu3Y8cOjBs3Ds+ePQOQOeZk6tSpiImJ0S0TERGB6tWrIyIiApUqVdJN79q1K5o3b47vvvuu0PeHiIhIqpTGDkBEVJIJISCTyQAAR48ehbe3N27duoW4uDhkZGQgJSUFSUlJMDc3z7H91atXodFoULt2bb3pqampsLOzK/L8REREUsLihIioAG7evAlnZ2eEh4ejT58+GD9+PL799lvY2tri9OnTGDNmDNLS0nItThISEqBQKBAUFASFQqE3r0yZMsWxC0RERJLB4oSIKJ+OHz+Oq1evYtq0aQgKCoJWq8WSJUsgl2cO59u2bZve8iYmJtBoNHrT3NzcoNFoEB0djXbt2hVbdiIiIilicUJElAepqamIjIyERqNBVFQUDh06BG9vb/Tp0wceHh64du0a0tPT8eOPP6Jv3744c+YMVq9erbcOJycnJCQk4NixY3B1dYW5uTlq166NkSNHwsPDA0uWLIGbmxuePn2KY8eOoVGjRujdu7eR9piIiKj48W5dRER5cOjQIVSsWBFOTk7o0aMHTpw4AR8fH+zduxcKhQKurq5YunQpFi1ahAYNGmDjxo3w9vbWW0fr1q0xbtw4DBs2DOXLl8fixYsBAL6+vvDw8MCMGTNQp04dvP/++7h48SIcHR2NsatERERGw7t1ERERERGRJPDMCRERERERSQKLEyIiIiIikgQWJ0REREREJAksToiIiIiISBJYnBARERERkSSwOCEiIiIiIklgcUJERERERJLA4oSIiIiIiCSBxQkREREREUkCixMiIiIiIpIEFidERERERCQJ/w/U8zLdU72hUwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnm0lEQVR4nO3dd1RU19oG8OfQOwhSRFGsiL33joq9Rk0kV41dses1MVZsRK8txB6Nmti7BqNRUSyIGlGwBlsQC0VReof9/cHHiSNYBgZmkOe3FiuZU/Z+z9kyzDtnF0kIIUBERERERKRmWuoOgIiIiIiICGByQkREREREGoLJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEHXUHUFRkZmbixYsXMDU1hSRJ6g6HiIiIPmNCCMTFxcHe3h5aWvwumYoPJief6MWLF3BwcFB3GERERFSMPH36FGXKlFF3GESFhsnJJzI1NQWQ9SZhZmam5miIiIjocxYbGwsHBwf58wdRccHk5BNld+UyMzNjckJERESFgl3JqbhhJ0YiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCJyti4iIKJ+EEEhJSVFZefr6+krP0qSqGPJStyrrZwxZkpOT810GUVHE5ISIiCifUlJS0K9fP5WVt2/fPhgYGKglhrzUrcr6GUOWtLS0fJdBVBQxOSEiIlKR68/j8l1GvdL5W3Qv6GXeP9TWttbNV91A/u9Bfq8fyN89AFRzH/D0av7Ot6ub/xiIiiAmJ0RERCrUdKwntHX0lD4vIz0V/mtnqCSG1t9ugJau/icfn5mWgnNLRqmkbiBv90CV1w8ofw8A1d+H7SPrQl9XueG9KWmZ+HrjDZXFQFTUMDkhIiJSIW0dPWjrKfehWNW0dPWho/fpXZLSVVx/UbwHgOrvg76uFgx0tVVcKtHnjbN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBF01B0AERHR5+is50gkxbyCJGlB19AY9QZ9B0tHZwRs88Tz675IePUCnRbtQwnHqgVSf3pqMnwXD0N0aDC09QxgaGGNZuOXw6x0Bbz8OwCX132HjLQUZKSmoKJL/wKJ4X33IC78CS6vn4mUuGjoGpmgyaiFMLFxKJAYTszog6Q3Ef8fgwmajF0Cq0q1EPP8ES78bwySY19Dz9gMLaeugal9+QKJoeOyywiPSYGWJMHUQAdebtVRt5w5HoTHY/CmILyKT4W5oQ62Dq+DijZGBRIDUVGh1icnnp6eaNiwIUxNTWFjY4NevXohODhY4Zjk5GS4u7vDysoKJiYm6Nu3LyIiIuT9QUFB+Oqrr+Dg4ABDQ0M4Ozvjxx9/VCgjLCwMAwcORJUqVaClpYVJkyYVxuUREVEx1nzCMnT54SA6e+6HU+dBuLJhFgDAoVEHtJ+zDcYl7Qs8Bqcug9F381/ovf4iyjbtjIurJgAA/H6chNpfTkavtefRbcUJ3D20DmmJ8Sqv/3334Orm+ajY9gt0W+4N525Dcfn/txeEtjO3oPd6P/RadwHV+7rj/LKxAIBLP06GU5ch+OKXa6jZfyIuLHcvsBj2jq2PmwtaI3B+K0xxLY8hmwMBAKO23cLINmVx/4e2+LZLRQzZFFhgMRAVFWpNTs6dOwd3d3dcvnwZp06dQlpaGjp27IiEhAT5mMmTJ+P333/Hvn37cO7cObx48QJ9+vSR9wcEBMDGxgbbt2/HnTt3MHPmTMyYMQOrV6+Wj0lJSYG1tTVmzZqF2rVrF+o1EhFR8aRnbCb/f1piHAAJAGDj3ABGVnYFXr+OngEcGnWEJGXX2xDxEaFZOyUJKfGxWbElJ0BLRw9aOroqjyG3e5AcE4XXj+/AsUU3AFnJWmJUOOIinqq8fgDQNzH/N4aEWEiShKTol3j1IFB+YuTYogcSXj5H7It/CiQGC6N/721MUjokSIiMTcG1kBh83bQ0AKBvg1J4+joZjyIT3lcMUbGg1m5dJ06cUHi9detW2NjYICAgAK1atUJMTAw2b96MnTt3ol27dgCALVu2wNnZGZcvX0aTJk0wdOhQhTIqVKgAf39/HDx4EOPGjQMAODo6yk9Tfvnll0K4MiIiIsB/3feIvHsVAND6v2vVGsudw+tRtmkXAEDLqWtwet5AXN+2EMkxUWjivgShl/4okHrfvQeJr8NhWMIaWtpZH0EkSYKRVSkkRoUXSP0AcG7paIQHXQAAdFi4Fwkvn8PQ0lYhBmPrMkh4+bzAYhj08w2cvRcFAPhjciM8fZ2EUhb60NHWkmMoa2WAp6+TCywGoqJAo8acxMTEAAAsLS0BZD0VSUtLQ/v27eVjqlatirJly8Lf3x9NmjR5bznZZeRVSkoKUlJS5NexsbH5Ko+IiIqfpmMWAwAenz+CwN0r0Wb6OrXEEbRrOWJf/IPOP6wEANzcsxINvpmDiu36ITYsBH9M6wqzUuUBlFB53e/eg1r9xqm8jo9pPX09AODBqV24tnke6g2eWegx/DqiLgBg28Wn+HbfPSzo41ToMRAVBRozW1dmZiYmTZqE5s2bo0aNGgCA8PBw6OnpwcLCQuFYW1tbhIfn/g3LpUuXsGfPHowcOTJf8Xh6esLc3Fz+cXAomIF6RET0+avQqici7/6FlLjoQq/71r6fEOLnjY4L90HHwAjJMVF4cukYKrbrBwAwK+UIa6d6SIl/U6BxZN8DQ0tbJL15icyMdACAEAKJUWGF0tWtcoevEBZ0EcYl7ZH0OkIhhoSXz2BsXbrAYxjcwgFn/45CmRKGCItOQXpGphxDaFQyHCwNCjwGIk2mMcmJu7s7bt++jd27d+e5jNu3b6Nnz56YO3cuOnbsmK94ZsyYgZiYGPnn6dOC6QtLRESfn9SEWCS+iZRfP7vmAz0Tc+i9Nf6hMNw+sAaPfQ+gk+cheeyFnokFdPSN8CLwPAAgOSYKL4OvQ9fQVKV1v+8eGJhZwbK8M0IuegMAnl49BSNLW5jaqv5LwJT4GCRGhcmvn1w6Bn0zSxhYWMOqUi088tkLAAi5eBRGJe1hVgCzdUUnpuHFm3+7ah2+Hg4rEz3YmOmhXjkzbPfP6kp24FoYylgaoKKNscpjICpKNKJb17hx4+Dt7Y3z58+jTJky8nY7OzukpqYiOjpa4elJREQE7OwUv2G5e/cuXFxcMHLkSMyalf9ZP/T19aGvr5/vcoiIqPhJS4zHRa+pyEhNhqSlBX3TEmg9bQ0kScLVzR54ceM8kmOicHbJKOgaGqP7CtWP90h4+RxXN86CaSlHHJ/eHQCgpauPHl6n0XbmFvz18xxkZqRDZKSjWs8RiLh9WaX1f+geNBw6B5c3zMLdo5uga2iMxiMXqLRuOYaEGJxZ+A0yUpMASQsG5iXRYf5uSJKE5hNW4vxydwTtXgFdI1O0nLr64wXmQUxiGvqtDUBSaia0tABrU314T2oISZKwYXAtDNkciMXeD2FmqIMtQzlpD5FakxMhBMaPH49Dhw7B19cX5csrfmNRv3596OrqwsfHB3379gUABAcHIzQ0FE2bNpWPu3PnDtq1a4fBgwdj0aJFhXoNRERE7zK2tofrgl257ms0bG4hxVAaQ//MvatW6XptULqer/w6PTVZ5cnJh+6BmX15dPTYobAtIzUl12Pzw8S2LHr85JPrPnOHyui+6qTCtvRU1Q9GL1fSCFfntMx1n1MpE/jPaqGwLTktQ+UxEBUlak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2lQfD3759G+3atYOrqyumTJkil6GtrQ1ra2u5rsDAQABAfHw8Xr58icDAQOjp6aFatWqFe9FERERERJQrtSYn69ZlzVrSpk0bhe1btmzBkCFDAAArV66ElpYW+vbti5SUFLi6umLt2n+nY9y/fz9evnyJ7du3Y/v27fL2cuXKISQkRH5dt25d+f8DAgKwc+fOHMcQEREREZH6qL1b18cYGBhgzZo1WLNmTa77582bh3nz5qmkLiIiIiIiUh+Nma2LiIiIiIiKNyYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRtBRdwBERESfk4z01EI9LzeZaSlIV/J4VcrLtajy+gHl70H2OaqUkpZZKOcQfU6YnBAREamQ/9oZ6g4B55aMUmv9vAdZvt54Q90hEBU5TE6IiIhUpF5pU3WHgNrWumqtn/fg/zk0yt/5aWmqiYOoiJGEEELdQRQFsbGxMDc3R0xMDMzMzNQdDhERaRAhBFJSVNclSF9fH5IkqSWGvNStyvoZQ5bY2FjY2trycwcVO3xyQkRElE+SJMHAwKBYx6Du+j+3GFJTVTsGh6io4GxdRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGUCo5SU9Px6+//oqIiIiCioeIiIiIiIoppZITHR0djB49GsnJyQUVDxERERERFVNKd+tq1KgRAgMDCyAUIiIiIiIqznSUPWHs2LGYMmUKnj59ivr168PY2Fhhf61atVQWHBFpJiEEUlJSVFaevr4+JElSWwx5qZ8xqL7+vMZARESfD0kIIZQ5QUsr58MWSZIghIAkScjIyFBZcJokNjYW5ubmiImJgZmZmbrDIVKr5ORk9OvXT2Xl7du3DwYGBmqLIS/1MwbV15/XGIg+R/zcQcWV0k9O/vnnn4KIg4iKoOvP4/JdRr3Spvk6P+hlWr7Or22tm6/zgfzfh/zeA0AD7sPTq/k7HwAcGuW/DCIiKtKUTk7KlStXEHEQURHVdKwntHX0lD4vIz0V/mtnqCSG1t9ugJauvlLnZKal4NySUSqpH8jbfVDlPQDUfx+2j6wLfV3lZ6hPScvE1xtvqCQGIiIq2pROTrLdvXsXoaGhSE1NVdjeo0ePfAdFREWHto4etPWU+0Csalq6+tDRU64rULqKY+B9APR1tWCgq63CEomIqLhROjl5/PgxevfujVu3bsljTQDIAxg/1zEnRERERERUsJR+/j5x4kSUL18ekZGRMDIywp07d3D+/Hk0aNAAvr6+BRAiEREREREVB0o/OfH398eZM2dQsmRJaGlpQUtLCy1atICnpycmTJiAGzfYb5iIiIiIiJSn9JOTjIwMmJpmzSxTsmRJvHjxAkDWQPng4GDVRkdERERERMWG0k9OatSogaCgIJQvXx6NGzfG0qVLoaenh40bN6JChQoFESMRERERERUDSicns2bNQkJCAgBg/vz56NatG1q2bAkrKyvs2bNH5QESEREREVHxoHRy4urqKv9/pUqV8Pfff+P169coUaKEPGMXERERERGRspRfLev/PXz4EH/++SeSkpJgaWmpypiIiIiIiKgYUjo5iYqKgouLC6pUqYIuXbogLCwMADBs2DBMnTpV5QESEREREVHxoHS3rsmTJ0NXVxehoaFwdnaWtw8YMABTpkzB8uXLVRogEREREeUuIyMDaWlp6g6D6L10dXWhra39yccrnZycPHkSf/75J8qUKaOwvXLlynjy5ImyxRERERGRkoQQCA8PR3R0tLpDIfooCwsL2NnZfdL4dKWTk4SEBBgZGeXY/vr1a+jr6ytbHBEREREpKTsxsbGxgZGRESclIo0khEBiYiIiIyMBAKVKlfroOUonJy1btsSvv/6KBQsWAAAkSUJmZiaWLl2Ktm3bKlscERERESkhIyNDTkysrKzUHQ7RBxkaGgIAIiMjYWNj89EuXkonJ0uXLoWLiwuuXbuG1NRUTJ8+HXfu3MHr16/h5+eXt6iJiIiI6JNkjzHJrScLkSbK/realpb20eRE6dm6atSogfv376NFixbo2bMnEhIS0KdPH9y4cQMVK1bMW8REREREpBR25aKiQpl/q0o/OQEAc3NzzJw5My+nEhERERER5UrpJyeOjo6YP38+nj59WhDxEBERERFRMaX0k5NJkyZh69atmD9/Ptq2bYthw4ahd+/enKmLiIiISN2WF2JXr6mi8OpSs5CQEJQvXx43btxAnTp11B1Onjk6OmLSpEmYNGmSukN5L6WfnEyaNAmBgYG4evUqnJ2dMX78eJQqVQrjxo3D9evXCyJGIiIiIirCJEn64M+8efPUGtvhw4c/eIyDgwPCwsJQo0aNTy533rx5RTqRURelk5Ns9erVg5eXF168eIG5c+di06ZNaNiwIerUqYNffvkFQhSfbJqIiIiI3i8sLEz+WbVqFczMzBS2TZs2TanyUlNTCyjS3Glra8POzg46Onkarp0vhX2t6pbn5CQtLQ179+5Fjx49MHXqVDRo0ACbNm1C37598f3338PNzU2VcRIRERFREWVnZyf/mJubQ5Ik+XVCQgLc3Nxga2sLExMTNGzYEKdPn1Y439HREQsWLMCgQYNgZmaGkSNHAgB+/vlnODg4wMjICL1798aKFStgYWGhcO6RI0dQr149GBgYoEKFCvDw8EB6erpcLgD07t0bkiTJr98VEhICSZIQGBgIAPD19YUkSfDx8UGDBg1gZGSEZs2aITg4GACwdetWeHh4ICgoSH46tHXrVgBAdHQ0hg8fDmtra5iZmaFdu3YICgqS68p+4rJp0yaUL18eBgYG2LhxI+zt7ZGZmakQV8+ePTF06FAAwKNHj9CzZ88P3seiQOnk5Pr16wpduapXr47bt2/j4sWL+OabbzB79mycPn0ahw4dKoh4iYiIiOgzEh8fjy5dusDHxwc3btxAp06d0L17d4SGhioct2zZMtSuXRs3btzA7Nmz4efnh9GjR2PixIkIDAxEhw4dsGjRIoVzLly4gEGDBmHixIm4e/cuNmzYgK1bt8rH/fXXXwCALVu2ICwsTH79qWbOnInly5fj2rVr0NHRkROFAQMGYOrUqahevbr8dGjAgAEAgH79+iEyMhLHjx9HQEAA6tWrBxcXF7x+/Vou9+HDhzhw4AAOHjyIwMBA9OvXD1FRUTh79qx8zOvXr3HixAn5gcCn3kdNp/SzqYYNG6JDhw5Yt24devXqBV1d3RzHlC9fHl9++aVKAiQiIiKiz1ft2rVRu3Zt+fWCBQtw6NAhHD16FOPGjZO3t2vXDlOnTpVfz5w5E507d5a7hFWpUgWXLl2Ct7e3fIyHhwe+++47DB48GABQoUIFLFiwANOnT8fcuXNhbW0NALCwsICdnZ3SsS9atAitW7cGAHz33Xfo2rUrkpOTYWhoCBMTE+jo6CiUe/HiRVy9ehWRkZHyZFLLli3D4cOHsX//fvmJUGpqKn799Vc5PgDo3Lkzdu7cCRcXFwDA/v37UbJkSbRt21ap+6jplH5y8vjxY5w4cQL9+vXLNTEBAGNjY2zZsiXfwRERERHR5y0+Ph7Tpk2Ds7MzLCwsYGJignv37uX4xr9BgwYKr4ODg9GoUSOFbe++DgoKwvz582FiYiL/jBgxAmFhYUhMTMx37LVq1ZL/v1SpUgCAyMjI9x4fFBSE+Ph4WFlZKcT0zz//4NGjR/Jx5cqVU0hMAMDNzQ0HDhxASkoKAGDHjh348ssvoaWV9XH+U++jplP6yUm5cuUKIg4iIiIiKoamTZuGU6dOYdmyZahUqRIMDQ3xxRdf5BgIbmxsrHTZ8fHx8PDwQJ8+fXLsMzAwyHPM2d7+oj57FfR3x4W8G0+pUqXg6+ubY9/bY2Vyu9bu3btDCIFjx46hYcOGuHDhAlauXCnv/9T7qOkKf8oBIiIiIqL/5+fnhyFDhqB3794Asj7Ah4SEfPQ8JyenHGNE3n1dr149BAcHo1KlSu8tR1dXFxkZGcoH/hF6eno5yq1Xrx7Cw8Oho6Pz3sH372NgYIA+ffpgx44dePjwIZycnFCvXj15f17vo6ZhckJEREREalO5cmUcPHgQ3bt3hyRJmD179gefPmQbP348WrVqhRUrVqB79+44c+YMjh8/Lj/BAIA5c+agW7duKFu2LL744gtoaWkhKCgIt2/fxsKFCwFkzdjl4+OD5s2bQ19fHyVKlFDJdTk6OuKff/5BYGAgypQpA1NTU7Rv3x5NmzZFr169sHTpUlSpUgUvXrzAsWPH0Lt37xxd197l5uaGbt264c6dO/j6668V9uX1PmoaJidEREREn4siuGr7ihUrMHToUDRr1gwlS5bEt99+i9jY2I+e17x5c6xfvx4eHh6YNWsWXF1dMXnyZKxevVo+xtXVFd7e3pg/fz6WLFkCXV1dVK1aFcOHD5ePWb58OaZMmYKff/4ZpUuXVtnThr59++LgwYNo27YtoqOjsWXLFgwZMgR//PEHZs6ciW+++QYvX76EnZ0dWrVqBVtb24+W2a5dO1haWiI4OBgDBw5U2JfX+6hplEpO0tLSULVqVXh7e8PZ2bmgYiIiIiKiz9SQIUMwZMgQ+bWjoyPOnDmjcIy7u7vC6/clDCNGjMCIESMUXr/bhcvV1RWurq7vjad79+7o3r37B2N2dHRUWGC8TZs2ORYcr1OnjsI2fX197N+/P0dZpqam8PLygpeXV651zZs3D/Pmzct1n5aWFl68ePHeGPN6HzWJUsmJrq4ukpOTVVa5p6cnDh48iL///huGhoZo1qwZlixZAicnJ/mY5ORkTJ06Fbt370ZKSgpcXV2xdu1aObsMCgrCDz/8gIsXL+LVq1dwdHSU57x+m6+vL6ZMmYI7d+7AwcEBs2bNUvjFIKL8Oes5EkkxryBJWtA1NEa9Qd/B0tEZAds88fy6LxJevUCnRftQwrFqgdSfnpoM38XDEB0aDG09AxhaWKPZ+OUwK10BL4Ov48r6GUhLSoAkSWg0ahFsqjX6eKF58L77EBf+BJfXz0RKXDR0jUzQZNRCmNg4qLz+EzP6IOlNxP/Xb4ImY5fAqlItxDx/hAv/G4Pk2NfQMzZDy6lrUMKxYL5k6rjsMsJjUqAlSTA10IGXW3XULWeOB+HxGLwpCK/iU2FuqIOtw+ugemnTAomBiIqHZcuWoUOHDjA2Nsbx48exbds2rF27Vt1hUT4o3a3L3d0dS5YswaZNm6Cjk79eYefOnYO7uzsaNmyI9PR0fP/99+jYsSPu3r0rz1IwefJkHDt2DPv27YO5uTnGjRuHPn36wM/PDwAQEBAAGxsbbN++HQ4ODrh06RJGjhwJbW1teU7nf/75B127dsXo0aOxY8cO+Pj4YPjw4ShVqtQHM2ki+nTNJyyDnrEZAODpXz64smEWOnsegEOjDnDu9g1Ozx9c4DE4dRmMMg07QJIk3D2yERdXTUDnpb/DZ/5/0HLqGpSu1wYxzx7ixHe90HPdhQKJ4X334erm+ajY9gtUaN0LoVdO4vKGWWg/e5vK6287cwv0TcwBACF+3ji/bCx6r7+ISz9OhlOXIajccSD+uXAEF5a7o8dPZz5SWt7sHVsfFkZZM9gcCgjDkM2BCJrfGqO23cLINmUxpIUD9v/1AkM2BeKvuS0LJAYiKh6uXr2KpUuXIi4uDhUqVICXl5dCly0qepTOLv766y/4+Pjg5MmTqFmzZo6pzg4ePPjJZZ04cULh9datW2FjY4OAgAC0atUKMTEx2Lx5M3bu3Il27doByFrB09nZGZcvX0aTJk3klTizVahQAf7+/jh48KCcnKxfvx7ly5fH8uXLAQDOzs64ePEiVq5cyeSESEWyP5ADQFpiHICsAYk2zh8e3KcqOnoGcGjUUX5t49wQtw+sRkrsayTHvELpem0AAOZlKkHPxBzPAwrmg3lu9yE5JgqvH99B2+82AAAcGnVAwLbFiIt4qvL6sxMTAEhLiIUkSUiKfolXDwLh6pn1/uzYogcur5mO2OePYWRtr/IYshMTAIhJSocECZGxKbgWEoOT0xoDAPo2KIVx2+/gYUQCyljmfzpPIiqe9u7dq+4QSMWUTk4sLCzQt2/fgogFMTExAABLS0sAWU9F0tLS0L59e/mYqlWromzZsvD390eTJk3eW052GQDg7++vUAaQ1f9w0qRJ740lJSVFXuQGQJEcUERU2PzXfY/Iu1cBAK3/q97H6ncOr0fZpl1gYG4FI0tbPD53CBVa98bL4OuIefYQCZGqTwyyvXsfEl+Hw7CENbS0s95yJUmCkVUpJEaFF0j955aORnhQ1pOhDgv3IuHlcxha2irUb2xdBvEvnxVIcgIAg36+gbP3ogAAf0xuhKevk1DKQh862lpyDGWtDBAalcTkhIiIZEonJwW18ntmZiYmTZqE5s2bo0aNGgCA8PBw6OnpKSxKAwC2trYID8/9j/qlS5ewZ88eHDt2TN4WHh6eYwYEW1tbxMbGIikpCYaGhjnK8fT0hIeHRz6viqh4aTpmMQDg8fkjCNy9Em2mr1NLHEG7liP2xT/o/EPW4lQuc3fg2mYP3NyzEiXKVYVt9SaQtApussJ370OtfuMKrK7ctJ6+HgDw4NQuXNs8D/UGzyzU+gHg1xF1AQDbLj7Ft/vuYUEfp4+cQUREBGjl9cSXL1/i4sWLuHjxIl6+fJnvQNzd3XH79m3s3r07z2Xcvn0bPXv2xNy5c9GxY8ePn/ABM2bMQExMjPzz9GnBfctK9Lmp0KonIu/+hZS46EKv+9a+nxDi542OC/dBx8AIAGBVsSZcF+9Hr7Xn0frbjUiMCodFuYL/sJx9HwwtbZH05iUyM9IBAEIIJEaFwcjKrkDrr9zhK4QFXYRxSXskvY5QqD/h5TOYWJcp0PoBYHALB5z9OwplShgiLDoF6RmZcgyhUckoa5XzyyEiIiq+lE5OEhISMHToUJQqVQqtWrVCq1atYG9vj2HDhiExMTFPQYwbNw7e3t44e/YsypT594+lnZ0dUlNTER0drXB8REQE7OwU/6jfvXsXLi4uGDlyJGbNmqWwz87ODhERETnKMDMzy/WpCZA1/ZuZmZnCDxHlLjUhFolvIuXXz675QM/EHHpvjX8oDLcPrMFj3wPo5HlIYezF292ngv/YBh0DI9jVaqHy+t93HwzMrGBZ3hkhF70BAE+vnoKRpS1MbVU7W1dqfAwSo8Lk108uHYO+mSUMLKxhVakWHvlk9c0OuXgURiXtYVa6gkrrB4DoxDS8ePPvrI6Hr4fDykQPNmZ6qFfODNv9nwMADlwLQxlLA1SyNX5fUUREVAwp3a9hypQpOHfuHH7//Xc0b94cAHDx4kVMmDABU6dOxbp1n96NQwiB8ePH49ChQ/D19UX58uUV9tevXx+6urrw8fGRx7kEBwcjNDQUTZs2lY+7c+cO2rVrh8GDB2PRokU56mnatCn++OMPhW2nTp1SKIOI8i4tMR4XvaYiIzUZkpYW9E1LoPW0NZAkCVc3e+DFjfNIjonC2SWjoGtojO4r/vh4oUpKePkcVzfOgmkpRxyfnjVfvZauPnp4nUbw8W14dGYfIATMy1aBy5zfFFYQVpUP3YeGQ+fg8oZZuHt0E3QNjdF45AKV15+aGIvzS0YjIzUJkLRgYF4SHebvhiRJaD5hJc4vd0fQ7hXQNTJFy6mrP15gHsQkpqHf2gAkpWZCSwuwNtWH96SGkCQJGwbXwpDNgVjs/RBmhjrYMrR2gcRARERFl9LJyYEDB7B//360adNG3talSxcYGhqif//+SiUn7u7u2LlzJ44cOQJTU1N5HIm5uTkMDQ1hbm6OYcOGYcqUKbC0tISZmRnGjx+Ppk2byoPhb9++jXbt2sHV1RVTpkyRy9DW1oa1tTUAYPTo0Vi9ejWmT5+OoUOH4syZM9i7d6/CuBQiyjtja3u4LtiV675Gw+YWUgylMfTPN7nuq/v1t6j79bcK29JTVbdm078xvP8+mNmXR0ePHQrbMlJTcj02r0xsHNDjJ59c95k7VEb3VSdVWl9uypU0wtU5uU8P7FTKBP6zVP/EioioKGvTpg3q1KmDVatWqTuUPJs3bx4OHz6MwMDAfJeldHKSmJiYY3A5ANjY2CjdrSs7kXk70QGyBt1nL5C4cuVKaGlpoW/fvgqLMGbbv38/Xr58ie3bt2P79u3y9nLlysmrYJYvXx7Hjh3D5MmT8eOPP6JMmTLYtGkTpxEmIiKiz0rJeecLra5X81opdfyQIUOwbVvW+k66urooW7YsBg0ahO+//z7fa+cVZQcPHoSuru7HD/x/ISEhKF++PG7cuIE6deoUXGBqovS/hKZNm2Lu3Ln49ddfYWCQNf1jUlISPDw8lO4mJYT46DEGBgZYs2YN1qxZk+v+efPmYd68eR8tp02bNrhx44ZS8RERERGR6nTq1AlbtmxBSkoK/vjjD7i7u0NXVxczZszIcWxqair09PQKPUYhBDIyMlSeML3vet5e/qKwpaWlKZUYFQalB8T/+OOP8PPzQ5kyZeDi4gIXFxd5ZfYff/yxIGIkIiIios+Avr4+7OzsUK5cOYwZMwbt27fH0aNHAWQ9WenVqxcWLVoEe3t7ODllzar49OlT9O/fHxYWFrC0tETPnj3l3jHZfvnlF1SvXh36+vooVaqUvBB3SEgIJElS6G4UHR0NSZLg6+sLAPD19YUkSTh+/Djq168PfX19XLx4EUFBQWjbti1MTU1hZmaG+vXr49q1a3I5Bw4ckOt0dHSUF/vO5ujoiAULFmDQoEEwMzPDyJEjc70nbdq0UVh7z9HREYsXL8bQoUNhamqKsmXLYuPGjfL+7DHadevWhSRJCj2QNm3aBGdnZxgYGKBq1aoKvY2y78WePXvQunVrGBgYYN26dTA0NMTx48cVYjp06BBMTU3lXlHffvstqlSpAiMjI1SoUAGzZ89GWlparteTX0qnhDVq1MCDBw+wY8cO/P333wCAr776Cm5ubu+d+YqIiIiI6F2GhoaIioqSX/v4+MDMzAynTp0CkPXNvqurK5o2bYoLFy5AR0cHCxcuRKdOnXDz5k3o6elh3bp1mDJlCn744Qd07twZMTEx8PPzUzqW7777DsuWLUOFChVQokQJtGrVCnXr1sW6deugra2NwMBA+SlDQEAA+vfvj3nz5mHAgAG4dOkSxo4dCysrK3loAgAsW7YMc+bMwdy5yo2/XL58ORYsWIDvv/8e+/fvx5gxY9C6dWs4OTnh6tWraNSoEU6fPo3q1avLT2N27NiBOXPmYPXq1ahbty5u3LiBESNGwNjYGIMHD1a4zuXLl6Nu3bowMDDAhQsXsHPnTnTu3Fk+ZseOHejVqxeMjLKm5Dc1NcXWrVthb2+PW7duYcSIETA1NcX06dOVvs8fk6fnVUZGRhgxYoSqYyEiIiKiYkAIAR8fH/z5558YP368vN3Y2BibNm2SP3Bv374dmZmZ2LRpkzzL4pYtW2BhYQFfX1907NgRCxcuxNSpUzFx4kS5nIYNGyod0/z589GhQwf5dWhoKP773/+iatWqAIDKlSvL+1asWAEXFxfMnj0bAFClShXcvXsX//vf/xSSk3bt2mHq1KlKx9KlSxeMHTsWQNZTi5UrV+Ls2bNwcnKSJ3yysrJSWFpj7ty5WL58Ofr06QMg6wnL3bt3sWHDBoXkZNKkSfIxAODm5ob//Oc/SExMhJGREWJjY3Hs2DEcOnRIPubtZTocHR0xbdo07N69W3OSkwcPHuDs2bOIjIxEZmamwr45c+aoJDAiIiIi+rx4e3vDxMQEaWlpyMzMxMCBAxXGDtesWVNhXEZQUBAePnwIU1NThXKSk5Px6NEjREZG4sWLF3Bxccl3bA0aNFB4PWXKFAwfPhy//fYb2rdvj379+qFixYoAgHv37qFnz54Kxzdv3hyrVq1CRkYGtLW1cy3zU9WqVUv+f0mSYGdnh8jIyPcen5CQgEePHmHYsGEKDxDS09Nhbq645ti7MXXp0gW6uro4evQovvzySxw4cABmZmZo3769fMyePXvg5eWFR48eIT4+Hunp6QW2BqDSycnPP/+MMWPGoGTJkrCzs1NYK0CSJCYnRERERJSrtm3bYt26ddDT04O9vX2OQefGxooLs8bHx6N+/frYsUNxKnYAsLa2hpbWh4dPZ+9/exKm942VeLfuefPmYeDAgTh27BiOHz+OuXPnYvfu3ejdu/cH6/xQmZ/q3UHqkiTleCDwtvj4eABZn9MbN26ssC87UXpfTHp6evjiiy+wc+dOfPnll9i5cycGDBggt42/vz/c3Nzg4eEBV1dXmJubY/fu3TnG2KiK0snJwoULsWjRInz77bcfP5iIiIiI6P8ZGxujUqVKn3x8vXr1sGfPHtjY2Lz3m3pHR0f4+Pigbdu2OfZld4EKCwtD3bp1AUCptTiqVKmCKlWqYPLkyfjqq6+wZcsW9O7dG87OzjnGtfj5+aFKlSo5kgFVy36ylJGRIW+ztbWFvb09Hj9+DDc3N6XLdHNzQ4cOHXDnzh2cOXMGCxculPddunQJ5cqVw8yZM+VtT548yccVfJjSs3W9efMG/fr1K4hYiIiIiIhkbm5uKFmyJHr27IkLFy7gn3/+ga+vLyZMmIBnz54ByHrCsXz5cnh5eeHBgwe4fv06fvrpJwBZA+6bNGmCH374Affu3cO5c+cUxk+8T1JSEsaNGwdfX188efIEfn5++Ouvv+Ds7AwAmDp1Knx8fLBgwQLcv38f27Ztw+rVqzFt2rSCuxn/z8bGBoaGhjhx4gQiIiIQExMDAPDw8ICnpye8vLxw//593Lp1C1u2bMGKFSs+WmarVq1gZ2cHNzc3lC9fXuHpS+XKlREaGordu3fj0aNH8PLyUhiPompKJyf9+vXDyZMFv8owERERERVvRkZGOH/+PMqWLYs+ffrA2dkZw4YNQ3JysvwkZfDgwVi1ahXWrl2L6tWro1u3bnjw4IFcxi+//IL09HTUr18fkyZNUngq8D7a2tqIiorCoEGDUKVKFfTv3x+dO3eGh4cHgKwnOnv37sXu3btRo0YNzJkzB/Pnz1cYDF9QdHR04OXlhQ0bNsDe3l4e+zJ8+HBs2rQJW7ZsQc2aNdG6dWts3bpVnnr4QyRJwldffYWgoKAcT1569OiByZMnY9y4cahTpw4uXbokTwRQED6pW5eXl5f8/5UqVcLs2bNx+fJl1KxZM0efuAkTJqg2QiIiIiL6JMqu2l6Ytm7dmqf9dnZ28sry7zNq1CiMGjUq133Ozs64dOmSwra3x6C0adMmx8Lgenp62LVr1wfr7Nu3L/r27fve/e+uxfI+2eutfOi8d7uiDR8+HMOHD89x3MCBAzFw4MBc63F0dPzgAuhLlizBkiVLct23dOlSLF26VGHb22uzfOqi6J/ik5KTlStXKrw2MTHBuXPncO7cOYXtkiQxOSEiIiIiojz5pOTkn3/+Keg4iIiIiIiomFN6zAkREREREVFBUDo56du3b6790ZYuXcpZvIiIiIiIKM+UTk7Onz+PLl265NjeuXNnnD9/XiVBERERERFR8aN0chIfHy8v/vI2XV1dxMbGqiQoIiIiIvqwD828RKRJlPm3qnRyUrNmTezZsyfH9t27d6NatWrKFkdERERESshexiExMVHNkRB9mux/q+8uQZKbT5qt622zZ89Gnz598OjRI7Rr1w4A4OPjg127dmHfvn3KFkdEREREStDW1oaFhQUiIyMBZC1UKEmSmqMiykkIgcTERERGRsLCwgLa2tofPUfp5KR79+44fPgwFi9ejP3798PQ0BC1atXC6dOn0bp16zwFTkRERESfzs7ODgDkBIVIk1lYWMj/Zj9G6eQEALp27YquXbvm5VQiIiIiyidJklCqVCnY2NggLS1N3eEQvZeuru4nPTHJlqfkBABSU1MRGRmJzMxMhe1ly5bNa5FEREREpARtbW2lPvgRaTqlk5MHDx5g6NChuHTpksJ2IQQkSUJGRobKgiMiIiIiouJD6eRkyJAh0NHRgbe3N0qVKsUBWEREREREpBJKJyeBgYEICAhA1apVCyIeIiIiIiIqppRe56RatWp49epVQcRCRERERETFmNLJyZIlSzB9+nT4+voiKioKsbGxCj9ERERERER5oXS3rvbt2wMAXFxcFLZzQDwREREREeWH0snJ2bNnCyIOIiIiIiIq5pROTj60Cvzt27fzFQwRERERERVfeV6EMVtcXBx27dqFTZs2ISAggN26iIqZjPTUQj0vN5lpKUjPwzmqlJfrUeU9ANR/H1LSMj9+kArPIyKiz0+ek5Pz589j8+bNOHDgAOzt7dGnTx+sWbNGlbERURHgv3aGukPAuSWj1B0C7wOArzfeUGv9RERU9CmVnISHh2Pr1q3YvHkzYmNj0b9/f6SkpODw4cOoVq1aQcVIRBqqXmlTdYeA2ta66g6B9wEAHBqpt34iIvosSEII8SkHdu/eHefPn0fXrl3h5uaGTp06QVtbG7q6uggKCvrsk5PY2FiYm5sjJiYGZmZm6g6HSK2EEEhJUV13IH19fUiSpLYY8lI/Y1B9/XmNgehzxM8dVFx98pOT48ePY8KECRgzZgwqV65ckDERkYaTJAkGBgaMgTGovX4iIvq8fPIijBcvXkRcXBzq16+Pxo0bY/Xq1VwpnoiIiIiIVOaTk5MmTZrg559/RlhYGEaNGoXdu3fD3t4emZmZOHXqFOLi4goyTiIiIiIi+sx98piT3AQHB2Pz5s347bffEB0djQ4dOuDo0aOqjE9jsO8nERERFRZ+7qDi6pOfnOTGyckJS5cuxbNnz7Br1y5VxURERERERMVQvp6cFCf8BoOIiIgKCz93UHGVrycnREREREREqsLkhIiIiIiINAKTEyIiIiIi0ghMToiIiIiISCMwOSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgj6Kg7gKImOTkZenp6+SpDX18fkiQpfZ4QAikpKfmqWxPqL8oxqLL+vMZARERE9LlicqKkQYMGQVdXN19l7Nu3DwYGBkqfl5KSgn79+uWrbk2ovyjHoMr68xoDERER0eeKyYmSgsLioaWd99tWr7Rp/mN4mZbnc2tb5y+xAoDrz+Pydb667wGggvvw9Gr+zgcAh0b5L4OIiIjoM8LkJA+ajvWEto5yXbsy0lPhv3aGymJo/e0GaOnqf/LxmWkpOLdklMrqL4r3AFDtfdg+si70dZUftpWSlomvN95QSQxEREREnxMmJ3mgraMHbT3lPhSrmpauPnT0Pr07ULqK6y+K9wBQ7X3Q19WCga62CkskIiIiKt44WxcREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBB11Vu7p6YmDBw/i77//hqGhIZo1a4YlS5bAyclJPiY5ORlTp07F7t27kZKSAldXV6xduxa2trbyMRMmTICfnx9u374NZ2dnBAYG5qhr7969WLx4Me7fvw9ra2uMGzcO//3vf/MV/1nPkUiKeQVJ0oKuoTHqDfoOlo7OCNjmiefXfZHw6gU6LdqHEo5V81VPbjJSk+G7eBiiQ4OhrWcAQwtrNBu/HGalK+Dl3wG4vO47ZKSlICM1BZU7DkS1XqNUHgPw/nsQF/4El9fPREpcNHSNTNBk1EKY2DiovP4TM/og6U3E/9dvgiZjl8CqUi3EPH+EC/8bg+TY19AzNkPLqWtQwtFZ5fUDQMdllxEekwItSYKpgQ683KqjbjlzPAiPx+BNQXgVnwpzQx1sHV4H1UubFkgMRERERJ8DtSYn586dg7u7Oxo2bIj09HR8//336NixI+7evQtjY2MAwOTJk3Hs2DHs27cP5ubmGDduHPr06QM/Pz+FsoYOHYorV67g5s2bOeo5fvw43Nzc8NNPP6Fjx464d+8eRowYAUNDQ4wbNy7P8TefsAx6xmYAgKd/+eDKhlno7HkADo06wLnbNzg9f3Cey/4UTl0Go0zDDpAkCXePbMTFVRPQ5X/e8PtxEuoNmoGyTbsgJfYNDgxvBPt6bQokhvfdg6ub56Ni2y9QoXUvhF45icsbZqH97G0qr7/tzC3QNzEHAIT4eeP8srHovf4iLv04GU5dhqByx4H458IRXFjujh4/nVF5/QCwd2x9WBjpAgAOBYRhyOZABM1vjVHbbmFkm7IY0sIB+/96gSGbAvHX3JYFEgMRERHR50Ct3bpOnDiBIUOGoHr16qhduza2bt2K0NBQBAQEAABiYmKwefNmrFixAu3atUP9+vWxZcsWXLp0CZcvX5bL8fLygru7OypUqJBrPb/99ht69eqF0aNHo0KFCujatStmzJiBJUuWQAiR5/izP5QDQFpiHAAJAGDj3ABGVnZ5LvdTaOsZwKFRR0hSdp0NER8RmrVTkpASH5sVV3ICtHT1oG9aokDiyO0eJMdE4fXjO3Bs0Q0A4NCoAxKjwhEX8VTl9WcnJgCQlhALSZKQFP0Srx4EoqJLfwCAY4seSHj5HLHPH6u8fgByYgIAMUnpkCAhMjYF10Ji8HXT0gCAvg1K4enrZDyMSCiQGIiIiIg+B2p9cvKumJgYAIClpSUAICAgAGlpaWjfvr18TNWqVVG2bFn4+/ujSZMmn1RuSkoKjIyMFLYZGhri2bNnePLkCRwdHXM9JyUlRX4dGxuba9n+675H5N2rAIDW/137SfEUhDuH16Ns0y4AgJZT1+D0vIG4vm0hkmOi0GzCShiWsCmwut+9B4mvw2FYwhpa2ln/vCRJgpFVKSRGhRdI/eeWjkZ40AUAQIeFe5Hw8jkMLW0V6je2LoP4l89gZG1fIDEM+vkGzt6LAgD8MbkRnr5OQikLfehoa8kxlLUyQGhUEspYGhRIDERERERFncYMiM/MzMSkSZPQvHlz1KhRAwAQHh4OPT09WFhYKBxra2uL8PBP/6Dr6uqKgwcPwsfHB5mZmbh//z6WL18OAAgLC8v1HE9PT5ibm8s/Dg65j5doOmYxev50GjX7jUfg7pWfHJMqBe1ajtgX/6DBN3MAADf3rESDb+ZgwPbb6L3RH9e3LkB0aHCB1a/ue9B6+noM2HEH9YbMwrXN8wq9fgD4dURdPF3RHgv7OOHbfffUEgMRERFRUacxyYm7uztu376N3bt3q7zsESNGYNy4cejWrRv09PTQpEkTfPnllwAALa3cb8GMGTMQExMj/zx9+uEuSRVa9UTk3b+QEhet6vA/6Na+nxDi542OC/dBx8AIyTFReHLpGCq26wcAMCvlCGvnhoi891eBx5J9DwwtbZH05iUyM9IBAEIIJEaFFXhXt8odvkJY0EUYl7RH0usIhfoTXj6DiXWZAq0fAAa3cMDZv6NQpoQhwqJTkJ6RKccQGpWMslaGBR4DERERUVGlEcnJuHHj4O3tjbNnz6JMmX8/QNrZ2SE1NRXR0dEKx0dERMDO7tM/6EqShCVLliA+Ph5PnjxBeHg4GjVqBADvHaeir68PMzMzhZ+3pSbEIvFNpPz62TUf6JmYQ++tMRAF7faBNXjsewCdPA/JYy/0TCygo2+EF4HnAQDJMVF4+fc1lCin+hnD3ncPDMysYFneGSEXvQEAT6+egpGlLUxtVTtbV2p8DBKj/n3y9eTSMeibWcLAwhpWlWrhkc9eAEDIxaMwKmkPs9K5t3V+RCem4cWbZPn14evhsDLRg42ZHuqVM8N2/+cAgAPXwlDG0gCVbI1VHgMRERHR50KtY06EEBg/fjwOHToEX19flC9fXmF//fr1oaurCx8fH/Tt2xcAEBwcjNDQUDRt2lTp+rS1tVG6dNYA5V27dqFp06awtrbOU+xpifG46DUVGanJkLS0oG9aAq2nrYEkSbi62QMvbpxHckwUzi4ZBV1DY3T54VCe6nmfhFcvcHXjLJiWcsTx6d0BAFq6+ujhdRptZ27BXz/PQWZGOkRGOqr3HgPrqg1UWj/w4XvQcOgcXN4wC3ePboKuoTEaj1yg8vpTE2NxfsloZKQmAZIWDMxLosP83ZAkCc0nrMT55e4I2r0CukamaDl1tcrrB4CYxDT0WxuApNRMaGkB1qb68J7UEJIkYcPgWhiyORCLvR/CzFAHW4bWLpAYiIiIiD4Xak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2VRgM//DhQ8THxyM8PBxJSUnyOifVqlWDnp4eXr16hf3796NNmzZITk7Gli1bsG/fPpw7dy7PsRtb28N1wa5c9zUaNjfHtozUlFyOzDvjkvYY+uebXPeVrtcGpev5KmxLT03O9dh8xfCBe2BmXx4dPXYobFP1PTCxcUCPn3xy3WfuUBndV51UaX25KVfSCFfn5D49sFMpE/jPalHgMRARERF9LtSanKxbtw4A0KZNG4XtW7ZswZAhQwAAK1euhJaWFvr27auwCOPbhg8frpBo1K1bFwDwzz//yDNxbdu2DdOmTYMQAk2bNoWvr6/ctYuIiIiIiNRP7d26PsbAwABr1qzBmjVr3nuMr6/vB8soWbIk/P39lQ2PiIiIiIgKkUYMiCciIiIiImJyQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQddQdQFGWkpxbKOR+SmZaCdCWPV6WieA+yz1GVlLTMQj2PiIiI6HPH5CQP/NfOUHcIOLdklFrr5z0Avt54Q631ExEREX1umJwoqXYpE+jq6qo3Bmv11l+vtKla6wfUfw/g0Ei99RMRERF9hiQhhFB3EEVBbGwszM3NERERATMzs3yVpa+vD0mSlD5PCIGUlPx3S1J3/UU5BlXWn9cYiIjo85f9uSMmJibfnzuIihI+OVGSgYEBDAwM1FK3JElqq1sT6teEGNRdPxEREdHnjLN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUbgbF2fKHvG5djYWDVHQkRERJ+77M8bXPGBihsmJ58oLi4OAODg4KDmSIiIiKi4iIuLg7m5ubrDICo0XITxE2VmZuLFixcwNTXlonnvERsbCwcHBzx9+pQLRmk4tlXRwvYqWtheRYcmt5UQAnFxcbC3t4eWFnvhU/HBJyefSEtLC2XKlFF3GEWCmZmZxr3JU+7YVkUL26toYXsVHZraVnxiQsURU3EiIiIiItIITE6IiIiIiEgjMDkhldHX18fcuXOhr6+v7lDoI9hWRQvbq2hhexUdbCsizcMB8UREREREpBH45ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTUhoneCMi4nshEVFBYHJCHxUdHY2uXbvif//7HwAgMzNTzRHR+7x58wZPnjwBAGRkZKg5GvqYiIgIrFq1CgcPHsT9+/cB8AOvJouKisLYsWNx9OhRAGwrTfbq1StcunQJjx8/VncoRKQkJif0USdPnsTx48fxww8/IDIyEtra2kxQNNAPP/yAsmXLYubMmQAAbW1tNUdEHzJnzhxUrFgR3t7eGDduHAYPHoy7d+9CkiR+6NVQS5Yswfr167Ft2zbExsZCS0uLbaWBZsyYAWdnZ0yaNAk1atTAypUrERUVpe6wiOgTMTmhjzp37hzc3NxQr149TJgwQd3h0DtSUlIwadIkHDx4EC1btsSTJ09w6NAhAHzKpal+++03HDt2DEeOHMHp06fx22+/ITMzE/7+/gAASZLUHCHlJigoCB06dEB0dDS2bt2q7nDoHS9evEC/fv1w+vRp7N+/H/v378e0adOwadMmXLp0Sd3hEdEnYnJC75Weng4AsLCwQL169TBo0CAcO3YM58+fh5YW/+loAiEE9PX1UbFiRYwYMQJLliyBlZUVtm/fzm92NdiJEydgbW0NFxcXAJD/26hRI/kYtpv6vHvvMzIykJKSAgsLC8ycORMODg44cuQI7t27B0mS2IVSjd5uq+z28PLyQuvWrVG2bFnMnz8fCQkJiIiIyHE8EWkmfsIkAP++Yb/9R1ZHRwcA4Ofnh0qVKqFr165o37495syZAyEEfHx8kJqaqpZ4i7PExEQ8ffoUqamp8jfso0aNwogRI1CzZk107doVz58/5ze7Gib7KVZqaiqsra0RFxeHGzduICoqCn379sXTp08xd+5cLFmyBBkZGXx6oiapqakK72tCCGhra0NfXx/379+Hg4MDvvzyS6SlpeHIkSNITU1FZGSkGiMuvlJTUxX+ZtWsWRPjxo1D06ZNAWT9zgkhULp0afn3j79XRJqPyQlh+fLlGD58OADFcQqZmZlIT0+HoaEhypUrB0tLS4wdOxYBAQHQ1taGj48PUlJS1BV2seTh4YG6deuib9++cHFxQXBwMAAoPCHp168fnJyc8Pvvv+PBgweQJIndu9Rk48aN+PnnnwFktVFmZib09PTQp08fWFpa4ttvv4WNjQ2io6OxYcMGVKhQARs2bMDo0aMBsFteYZs3bx5atGiBnj17YuPGjXjz5o38YTY4OBhaWlpwdHREp06d0KRJE2zYsAEGBgbYv38/26qQLVy4EJ06dULPnj3x008/ISoqCjY2NmjVqhWArN8dLS0tREZG4vbt26hZs6aaIyaiTyao2Lpz547o3r27MDY2Fra2tmLfvn1CCCHS09MVjmvWrJkICQkRf/75p7CzsxMlSpQQVlZWIjk5WQghREZGRqHHXtxcunRJNGjQQNSoUUMcPnxY/Pbbb6JVq1aiRYsWCsdlZmYKIYQ4evSoaN68ufjuu+/kfdntlH0MFZzr16+LNm3aCEmShIuLi7hx44YQQvF3KyMjQ2zYsEF07dpVJCYmytu3bNkibG1tRWRkZGGHXWylpaWJ//znP6JSpUpi27Zt4quvvhLVq1cX3bp1k48JCwsTHTp0EEII8ccffwhra2thYmIiWrVqJVJSUoQQ/N0qDAEBAaJBgwaievXqYvPmzWLAgAGibt26YvLkybke//vvv4vKlSvLf6+ISPPxyUkxdunSJUiShF9++QWurq748ccfkZqaCm1tbflb+L///huvX7+Gi4sL+vbti3HjxmHv3r2wtbXFjBkz1HwFxYefnx9q1aoFPz8/9OzZE19//TU6d+6MEiVKyGOD3v7mtnv37mjcuDH8/Pxw5swZ7N27F+7u7gDYraGgZWRkwNvbG7a2tli3bh1iY2Nx6NAhZGZmyr9bQghoaWkhODgYNjY2MDQ0lM9/+vQpbG1t+U18IXr69Cn++usvrFixAoMGDcLOnTuxcuVK+Pj4YOXKlQCAgIAA3Lx5E82aNcOAAQMwZcoUTJs2DZmZmdi7d6+ar6B4iI+Px65du1C1alX4+flh6NCh2L17N7p27YqHDx8iOjo6xznXr19Hw4YNoa+vDyDrvfTgwYOFHDkRKYPJSTGUnXgMGDAA06ZNQ//+/dG7d2/ExcVhxYoVAP79oFu1alXY29ujbdu2uHHjBmbOnInmzZujb9++2LlzpzzomgpGdluNHTsW06dPh5mZGYCsyQpOnz6NSpUq4fLlywCyug29PTh34MCBSEpKQrdu3fD111/D2NhYPRdRzGhra6NPnz6YMGECRo0ahebNm8PX1xenT5+Wj8lOECMiIvD69Wt5JqH79+/D19cX7dq1g62trVriL47S0tIQHByM2rVry9s6dOiA2bNnw8PDA8+ePUPjxo1haWmJypUr4/r16/juu+/wzTffQEdHB0eOHEFSUhIT/wImhED58uUxZswYmJuby1/MmJubIzg4WH5/fNuff/4JFxcXPH/+HF26dEHr1q0RFxdX2KETkTLU+diGNMerV6/ElClTRI0aNURISIgQQoikpCQhhBCxsbE5uiuEhYWJ+Pj4Qo+ThDhy5IgwNTUVNWvWFC4uLsLe3l64ubmJ6Oho+Zhnz56JUaNGCUmSxNChQ8Xr16/VGHHxdv/+fdGkSRMxZswY8ebNGyGEEKmpqUIIIS5fviwaN24sLC0tRc+ePYWpqalwc3MTcXFxaoy4+Ll7966oU6eOWLp0qcL2mJgYUb58eTF16lQhhBBPnz7N0Y310qVLbK9C9G7XSCGEmDVrlujfv3+OY4ODg0WJEiVE586dhZ6enujZs6d49epVocVKRHnDr7wJQghYWVmhR48esLCwgKenJwDAwMAAAGBqaip/Iyj+/5t8Ozs7fhNfSMQ7U1+mp6djx44duHHjBk6cOIHjx49j586duH79unzMkSNHcO7cOVy+fBmbN29GiRIlCjtsQtYTyMqVK6Nv3764du0avL29AQC6uroAgMaNG2PTpk1YtWoVGjVqBF9fX2zfvh0mJibqDPuz8+7v0LvKli0LJycnXLlyBSEhIQCy2s7MzAxjx47Fvn37kJycjDJlyshPirPLbNq0KdurkIj/nzktW/bfpevXr6NevXryMdkeP36M6OhoxMbG4ty5czh8+DCsrKwKN2giUhqTk8/Us2fPsGrVKjx+/BiA4ht29qPwbNndgJo1a4Zu3brB19cXFy9eBAC5y1A2dltQvbCwMNy8eROvXr3KsS89PT3HPe/Tpw+6d+8ObW1t6OjooGLFirC0tMSNGzfkY8aOHYt79+4prJtBqvHo0SPMmzcPDx8+zLHv3d+t7O6Ro0ePRokSJeDt7S1/+L116xYAoEaNGvjPf/6D77//Xv6ARaoTExOD+Ph4+T3w7bE82e1lbGyMXr164cGDB/L4kewkxNzcHGZmZnj58qVCuXwvVL2QkBAMGjQo1zE8774XZmZmQpIkxMTE4MqVK/L0wZIk4cmTJwCA+vXr488//8TFixfRpEmTwrkIIso3JiefoaioKHTr1g3ffvstTp8+La+ZkJ2E6OjoQAghD/TMfq2rq4uuXbuievXqmDFjBrp06YJmzZrh3r176rycz9qkSZPg5OQENzc31KhRAwcOHJD7Qwsh5LaZPXv2e8vw9vZGhQoV0Ldv38IKu1gSQmDMmDGoXLkywsLCUKZMGXlf9gfe7PY6evSo/DojIwMmJiYYNmwYHj9+DC8vL3Tp0gUuLi45PvCS6gghMGnSJLRu3RqdOnXCoEGDEBcXBy0tLaSlpQH4t3127NiBL7/8Es2aNcOhQ4fkJ1wA8OrVK1hYWMDe3l5dl1IszJ07F87OzkhISICurq6cOGYnle/+3cpOHn18fGBhYYFWrVrh+fPn6N+/Pxo2bIiIiAhYW1ujQ4cO6rkgIsozJiefIUNDQ1hYWMDZ2Rn79++Xv6HNfhy+adMmlCpVCnv37sWLFy8A/PstoLW1NSIiIuDn5wdDQ0OEhITA2dlZPRfymfvll19w9uxZ/P7779i9ezd69OiB2bNnw8vLC0BWm2zatAmlS5fG3r175W8DAeDFixcIDQ3FvHnzMGnSJHTr1g2lS5fm6scFZNeuXShZsiSuXr2Kq1evyutbAJBn3gKy1jWxsbHB/v375ZmDsn/v2rZtixcvXmDVqlXQ1tZGQEAArK2t1XI9n7vLly+jbt26uHLlChYvXgxXV1dcu3YNI0aMAPBvt7qff/4Z9vb2+PXXX5GWloaJEyeiWrVq6N27N8aOHYvx48djyZIlGDBggMIshqRagYGB8PHxwZ49e3DgwAH07t1bXgQ4+29Tbn+3gKwZJevWrYvFixejcuXKiI6ORkBAACeUICrKCnWECxWK69evi65du4rHjx+LMmXKCA8PD3mw9MGDB0WdOnXEpk2bcqxnEhQUJCpXriwqVaokLl68qI7Qi5VevXqJnj17Kmz773//K2rVqiXOnTsngoODRdu2bXO01bNnz8QPP/wgKleuLGrWrCnOnDlTyJEXP66ursLR0VG8ePFCCCHErVu3xJ9//ikePXokr1GyYsUKYWBgIH755Zccv1s+Pj5CkiRRs2ZN4efnV+jxFyfp6eli+vTp4quvvlIYqL5nzx5Rvnx5ER4eLoQQ4tdffxUODg5i8+bNIi0tTaGMZcuWiZEjRwpXV1fh4+NTqPEXR+7u7qJz585CCCH8/PzExIkTxf/+9z9x5coVIYQQp0+fFrVq1cr171ajRo2EJEnC2dlZ/Pnnn4UeOxGpniQEvwoqqtLT0+Vvl4Csb3AlScI///yDoUOH4uzZs5g+fTpOnjyJHTt2oHLlytDT00NKSoo85/vbkpKScOrUKfTo0aMwL6NYyW6jpKQkfP3113B0dMTy5cvl/Tdv3sT3338vrzqdlpYmf8ubLSMjA7du3UJERARcXV0L+xKKpZs3b6J3794YOHAg7t27h4CAAJiYmCAqKgqtW7fGrl27IIRATEwMLCwscpwfGxuL7du3Y+zYsYUffDH0559/wtDQUF4tHAC2bduGpUuX4vLlyzA1NQUAxMXFyf8P/Pv7SQUne+V24N/xjiNGjEDFihVhYWGBhQsXol27drh79y7Cw8Px3XffYeLEiUhOTpafVmZLSEjA4sWLUa1aNbi5uRX6tRBRwWC3riJqzpw56N+/P8aPH4979+7J40oA4MqVK3If+KVLlyI1NRWDBw+GgYEBTpw4kWtiIoSAoaEhE5MC8Msvv+DUqVMAsrooZN/rkiVLwtfXV2EgfK1atdCxY0eEhobizJkzORITIKubUJ06dZiYFBBPT09MnjwZGzZsQGpqKoCsdunatSuWLl0KPT097Nu3Dzt27MDKlStx9OhRzJ8/H5IkwdzcPEd5b8/6RKp38OBBxMbGKmxzdXWVE5PsD8BRUVEoUaIETExM5O5ZbycmAAe5F7T58+dj2LBhWLBgAaKioqClpQVtbW0kJyfjyJEj8PPzw4YNG7B9+3bcuHEDAwYMwP79+3Hy5EkYGBjk6FZnbGyMRYsWMTEh+swwOSliXr58iRYtWuDw4cOoXbs2Tp48ia+++koepwBk/TFu1qwZAODw4cN4/vw5bt++jalTp6JTp065lss/yqrn5+eH+vXrY/jw4di9ezfCwsIA/PthacaMGQgKCsLx48cVzuvcuTPCw8O5UFghCw4ORvXq1bFr1y6EhYVhxowZcHV1hZ+fHwBg4cKFmDZtGhYtWoQGDRqgVq1aGDBgADw8PLBy5UqFLwjexkVKC4avry+qVq2KL774Art3737vcdltcv78ebRo0YLvdWrw9OlT1K9fH/v374exsTHWrl2LTp06ybNyTZw4EYGBgTh69CicnJzkNnJ3d0d8fLz83sm2Iyoe+FeziLl8+TJev36NY8eOYe7cubh58ybatm2Ln376SZ7+Nzg4GN7e3mjVqhWGDh0KDw8PNG7cGE+fPsX9+/fVfAXFQ3R0NPbs2YMGDRpg0aJF8PX1ha+vL4CsWWcyMzPh6OiIESNGYM6cOQrtUrlyZSQkJOD58+dqir54OnbsGMzNzXH9+nXs3r0bd+/exZs3b+Dl5YX79+/DzMwM3377LcqXL69wXunSpaGnp4c7d+6oKfLi5969e1i/fj3at2+PESNGYNGiRfIH2HdpaWkhKSkJN27ckGdukiSJsxAWojNnziAzMxMXLlzA6tWr8fDhQ9jb2+Onn37CzZs30bhxYwwYMAA6OjoKT5IrV66Mly9fvrdtiejzxOSkiImMjER8fLw8E4m+vj5Gjx6NGjVq4L///S8AwMnJCa9fv4aTkxOuXbuGSZMmwcPDA/v27cO5c+cU5vmngmFkZIRevXph9OjRmDFjBipVqoRdu3YhODgYwL/fAK5atQrp6emYO3eunFz+8ccfKF26NNq2bau2+Iub9PR03LlzBzY2NvLsWnZ2dpg5cyZCQ0OxdetWAICZmVmOc/39/dGkSRPUqlWrMEMu1iwtLdGhQwe4u7tj2bJlyMjIUBi79a4LFy5AS0sLzZo1w927d9G2bVvUr18f4eHhhRh18RUSEgJdXV154V5jY2NMnToV+vr6WLJkCQBg9uzZ0NHRwdq1axEYGAgAOHfuHMqUKYOuXbuqK3QiUgMmJ0VMamoqbG1tERQUJG9zcnLCN998g2fPnuH3339Hv379cPbsWWzcuBEVKlQAALRp0wbbtm3DoEGD2M2kEOjp6aFdu3aoW7cuAGDevHkICAjAiRMnkJqaCkmSkJaWBn19fWzfvh0xMTFwdXVFp06d0Lt3b7Rv3x5OTk5qvoriQ0dHBykpKUhKSkJmZqbc9a5fv36oX78+rly5orDIZWhoKEJCQjBu3DgcPnwYgwYNAvDxlchJNWxtbfHNN9/A2dkZpqamWLBgAVavXq3wvgj82x63bt2CnZ0d5syZg1q1asHe3h4RERGws7NTR/jFTnJyMnR0dBAZGSlva9WqFbp06YI7d+7g9OnTqFKlCjZv3ow7d+6gffv26NGjB7p06YLmzZujWrVqaoyeiAqdeiYJo/fJzMz84PYnT54IS0tLsWrVKpGamirvf/LkiejevbsYNWpUjjIyMjIKLuBi7H1t9a7s+z98+HDRuHFj4e/vn+OYqKgocfToUbFq1Spx69YtlcZJH5Y9NenZs2eFlpaWuHHjhhBCyNPL+vr6ikqVKom9e/cKIYS4f/++mDp1qrCzsxNNmzYVN2/eVEvcpPg72LhxY9GjR48c0wILIUTbtm2FJEmiZcuWIiAgoDBDLNay3/vu3bsnJEkShw4dUtgfGBgoGjduLDw9PeVtISEhYs+ePcLT05PvhUTFFKcS1iBxcXEwMTGRu/yIt6a1fHva4HHjxsHb2xuHDx9GnTp15PP79u0LPT09eVpTDh4sOJ/aVm+/DgsLQ/PmzTFgwADMmDEDZmZmePjwISpVqqSWayhOkpKSYGhomOu+7PZJTk5Gp06doKuri1OnTim0aaVKlTBo0CDMmTMHSUlJ8ox47dq1K8zLKDY+pb2yZbfThQsX0KZNGxw+fBjdu3dHRkYGXr9+DWtra+zcuRMmJiacjbAA5fY35+226t+/Px4+fIiTJ0+iZMmS8jFNmjRBo0aN4OXlxb9bRASA3bo0QlpaGkaPHo0uXbrgiy++wK+//goga1xCeno6AMgfnm7cuIEff/wRGRkZWL16tcKq4QDkNRb4Bl8wPrWt0tLS5FmedHR0kJGRgVKlSmHUqFH4/fffsWnTJnTo0AFDhw5FQkKC2q7nc5eWloYxY8agT58+GDRoEC5fvix39cmeJji7fWJiYuDh4YFz585h/fr18nFv3ryBsbExrKysAACGhoZo06YNE5MC8KntlZ6ejoiICAD/vte1bNkSX331FTw8PODj44OuXbvCy8sL6enpGDhwIBMTFUtLS8OyZctw6NAhAIp/c7K7Rero6CA1NRUPHz7EsmXL8Pfff2PlypWIiYkBkJW86Ovro0SJEjnKIKLii8mJmj1+/BgNGzbE33//jenTp8Pc3Bw//PADRo0aBQDyt05eXl6wsbHBzp07oa2tjVWrVuHWrVvo1q0bNm/ejEmTJuH8+fP44osv1Hk5nzVl2srKygrHjh1DUlISgH+nkx04cCCCg4Mxbdo0mJiY4ODBg/IgUVKt8PBwNG7cGDdv3kT37t1x8+ZNjB49GkuXLgWQNS4IyGovIyMjnDhxAq1bt8bcuXMxd+5cjBo1ChcuXMCCBQsQFxcHFxcXdV7OZ0+Z9jIxMcHx48dzjPFxd3fH9evX5Vm5pkyZovCUhVTj+PHjqF27NqZPn44DBw7gxYsXAP4d45M9qYSXlxdKlCiBgwcPomzZsvjxxx+xd+9eDBgwAEePHsX06dPx4MEDdOvWTW3XQkQaSB19yehfq1evFm3atBEJCQlCiKw+1OvWrROSJIkDBw6IjIwM8d1334kSJUqI7du3K4wfCQoKEm5ubsLV1VU0bdo017EMpDrKttW7Y1L27dsnJEkSDRs2FNevX1fHJRQr+/fvF9WrVxfPnj0TQggRHR0t5s2bJwwMDMTt27eFEEIMGDBA2Nvbi23btim0l5eXl2jZsqWoWbOmqF27trhy5YparqE4Uaa9fv31V4X2Sk9PF9u2bRO6urqicePG/P0qQPHx8WL48OFiwoQJwtPTUzRo0ECsW7dO4ZiUlBQxevRoYWNjI3777TeFv1u///676NKli2jatKlo0KCBuHz5cmFfAhFpOI45UbPJkyfj2rVruHDhgtzfdt26dXB3d0edOnVw+vRpZGRkQF9fX57GVLzTLzc2NjbXKU5JtfLSVm+7du0arl+/jpEjR6oh+uIjMzMTWlpaWL9+PRYsWKCwXkx4eDi+/vprpKWl4dy5c7hy5QqcnZ3l9so+N/v/nzx5kmNdE1Kt/LRXtsTERPz8888wNDTk71cBE0LA398fVlZWcHJywhdffIHU1FQsXLhQnk5bCIGHDx/C1tY2198tAIiIiJCnxCciehu7dRWiq1evAoDCOiOmpqYwMDDAH3/8ISccfn5+8PDwwN27d/H777/D2tpaoevPu/1ymZionqra6m0NGjTgB6cCsn//fpw+fRphYWHyByBtbW3Y2dnhwoUL8nF2dnaYMWMG/P39cfLkSTRu3BgmJiby/rc/PGlpaTExKSCqaq9sRkZGmDhxIn+/CsDbbQVk/f1p1qyZPNX5qFGj8OzZMxw6dEju1iVJEipXrqzwt+ndKeyZmBDR+zA5KQSHDx9G6dKl0blzZ4SEhEBLS0se3PnVV1/B1NQUAwcOxJdffglTU1M8ePAAw4YNQ+/evbF//34A//bhpYLFtipafvvtN9ja2uJ///sfBg4ciH79+uHAgQMAspLB5ORkXLp0SW5DAKhRowY6d+6M7du3A8j5oYkKDtur6MitrbIHv2dmZsqJSIcOHdC0aVOcPXsWZ86cAcD1fogof/guX8B27NiBxYsXo1WrVqhWrRp++OEHAFmDO4UQcHZ2xo8//oiVK1eiZMmS2L59O65cuQJ7e3skJyfD0dFRvRdQjLCtio709HT8+OOP8PT0xOLFi3HhwgUcPnwYFStWxObNm5GUlIS6deuiRYsWOHjwIC5duiSfa2trC11dXSaRhYjtVXR8qK1+/vlnpKSkQEtLC5IkyU+Wx48fj+TkZBw5cgQJCQkQQuD+/fsA/p25i4joUzE5KSDZb8iVKlWCi4sLlixZgh49esDX1xe+vr4Kxzg4OOCbb77B6tWr0bNnTwBZfa2fPn2KihUrqiX+4oRtVfQkJCTg5cuXGDx4ML755hvo6emhWbNmqFatGmJjY+Vv3j08PJCWloaNGzcqjGVISkqSpy+lgsf2Kjo+1lbZU6YDWU+xhBCoWrUqevfujWvXrmHBggVo2LAh3NzckJGRwaSSiJSnjlH4n7P79+/nmKUpe8Xi27dvix49eoguXbrI+949NiQkRDx79ky4ubmJunXriidPnhR80MUU26poebe9bty4Ia/unj0b0I4dO0SdOnVESkqKfNy+fftEy5YtRbly5cTy5cvFf/7zH2FjYyMuXLhQuBdQzLC9io68ttXb+//66y+hq6srJEkSI0eOzHEcEdGn4pMTFdm7dy/Kly+P7t27o0mTJvjll1/kfdnfHFWvXh29evVCSEgItmzZAkCxb25SUhI2bdqEWrVqITQ0FPv27UPZsmUL90KKAbZV0fJue23evBkAUKdOHWhrayvMAnTs2DHUqVMHenp68rfxX3zxBXbt2gVXV1dcuHABUVFROH/+PFq0aKG2a/qcsb2Kjry21btPT9avX49GjRqhbdu2ePjwITZs2CCvS0NEpDR1Z0efg5MnTwpHR0exZs0aceLECTFlyhShq6srNm7cKBITE4UQ/34j/+zZMzFs2DDRsGFDERcXJ4QQIjU1VS4rMDBQnDt3rvAvophgWxUtH2qvpKQkIUTWE63MzEyRlJQkatWqJX777bf3lpd9DhUMtlfRocq2CgoKEnv27CnM8InoM8bkJB+yH4N7eHiI+vXrK3xwHTt2rGjQoIE4ePBgjvO8vb1FgwYNxNy5c0VQUJDo1q2bCA0NLbS4iyO2VdGSl/Z6/vy5cHR0FPfv3xdCZHVVmTx5cuEFXYyxvYoOthURaTp268qH7LUu7t69i4oVK0JXVxdpaWkAgIULF8LAwABHjhxBeHg4gH8HVbdt2xaNGjXC/PnzUb9+faSlpcHGxkY9F1FMsK2KFmXbCwBOnz4NBwcHlCpVChMnTkS1atXw5MkTpKWlcWrTAsb2KjrYVkSk6ZicKOHUqVOYMGECVq1aJS/SBwAuLi44fvw4MjIy5Df6EiVKYNCgQfD390dwcDCArPEMCQkJ2LhxIzZs2IDWrVvj+vXrOHHiBPT19dV1WZ8ltlXRktf2+vvvvwFkjQfy9vbG7du34ejoCB8fH/j7++PAgQPQ1dXNsXAp5Q/bq+hgWxFRkaPOxzZFxYsXL0S3bt2EjY2NcHNzEzVr1hTm5ubiypUrQgghgoODRenSpcXs2bOFEEJhlhI7OzuxcuVK+fWdO3dE48aNxa+//lqo11BcsK2KFlW1V0JCgujWrZsoU6aM2L17d6FfR3HB9io62FZEVFQxOfmIhIQEMXjwYDFgwADx+PFjeXujRo3EkCFDhBBCxMbGioULFwpDQ0N5PEJ2v97WrVuL4cOHF37gxRDbqmhRdXtdu3atEKMvftheRQfbioiKMnbr+ggjIyPo6+tjyJAhKF++vDyFYpcuXXDv3j0IIWBqaoqBAweiXr166N+/P548eQJJkhAaGorIyEj06tVLvRdRTLCtihZVt1f9+vXVdCXFA9ur6GBbEVFRJgnB0Wwfk5aWBl1dXQCQ5313c3ODsbExNm7cKB/3/PlztGnTBunp6WjQoAEuXbqEqlWrYufOnbC1tVVX+MUK26poYXsVLWyvooNtRURFFZOTPGrRogVGjBiBwYMHIzMzE0DWYlQPHz5EQEAArly5gtq1a2Pw4MFqjpTYVkUL26toYXsVHWwrIioKmJzkwePHj9GsWTMcO3ZMftydmprKFXE1ENuqaGF7FS1sr6KDbUVERQXHnCghO4+7ePEiTExM5Dd4Dw8PTJw4EZGRkeoMj97Ctipa2F5FC9ur6GBbEVFRo6PuAIqS7Pncr169ir59++LUqVMYOXIkEhMT8dtvv3FxPg3Ctipa2F5FC9ur6GBbEVFRw25dSkpOTkbNmjXx6NEj6OnpwcPDA99++626w6JcsK2KFrZX0cL2KjrYVkRUlDA5yYMOHTqgcuXKWLFiBQwMDNQdDn0A26poYXsVLWyvooNtRURFBZOTPMjIyIC2tra6w6BPwLYqWtheRQvbq+hgWxFRUcHkhIiIiIiINAJn6yIiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISL6iCFDhkCSJEiSBF1dXdja2qJDhw745ZdfkJmZ+cnlbN26FRYWFgUXKBERURHH5ISI6BN06tQJYWFhCAkJwfHjx9G2bVtMnDgR3bp1Q3p6urrDIyIi+iwwOSEi+gT6+vqws7ND6dKlUa9ePXz//fc4cuQIjh8/jq1btwIAVqxYgZo1a8LY2BgODg4YO3Ys4uPjAQC+vr745ptvEBMTIz+FmTdvHgAgJSUF06ZNQ+nSpWFsbIzGjRvD19dXPRdKRESkRkxOiIjyqF27dqhduzYOHjwIANDS0oKXlxfu3LmDbdu24cyZM5g+fToAoFmzZli1ahXMzMwQFhaGsLAwTJs2DQAwbtw4+Pv7Y/fu3bh58yb69euHTp064cGDB2q7NiIiInWQhBBC3UEQEWmyIUOGIDo6GocPH86x78svv8TNmzdx9+7dHPv279+P0aNH49WrVwCyxpxMmjQJ0dHR8jGhoaGoUKECQkNDYW9vL29v3749GjVqhMWLF6v8eoiIiDSVjroDICIqyoQQkCQJAHD69Gl4enri77//RmxsLNLT05GcnIzExEQYGRnlev6tW7eQkZGBKlWqKGxPSUmBlZVVgcdPRESkSZicEBHlw71791C+fHmEhISgW7duGDNmDBYtWgRLS0tcvHgRw4YNQ2pq6nuTk/j4eGhrayMgIADa2toK+0xMTArjEoiIiDQGkxMiojw6c+YMbt26hcmTJyMgIACZmZlYvnw5tLSyhvPt3btX4Xg9PT1kZGQobKtbty4yMjIQGRmJli1bFlrsREREmojJCRHRJ0hJSUF4eDgyMjIQERGBEydOwNPTE926dcOgQYNw+/ZtpKWl4aeffkL37t3h5+eH9evXK5Th6OiI+Ph4+Pj4oHbt2jAyMkKVKlXg5uaGQYMGYfny5ahbty5evnwJHx8f1KpVC127dlXTFRMRERU+ztZFRPQJTpw4gVKlSsHR0RGdOnXC2bNn4eXlhSNHjkBbWxu1a9fGihUrsGTJEtSoUQM7duyAp6enQhnNmjXD6NGjMWDAAFhbW2Pp0qUAgC1btmDQoEGYOnUqnJyc0KtXL/z1118oW7asOi6ViIhIbThbFxERERERaQQ+OSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISIiIiIijcDkhIiIiIiINAKTEyIiIiIi0gj/B6eEVkmjq9zVAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -183,7 +200,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -207,10 +224,6 @@ " \n", " \n", " i_interval\n", - " -8\n", - " -7\n", - " -6\n", - " -5\n", " -4\n", " -3\n", " -2\n", @@ -224,86 +237,58 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " 2018\n", - " [2017-12-04, 2017-12-24)\n", - " [2018-01-03, 2018-01-23)\n", - " [2018-02-02, 2018-02-22)\n", - " [2018-03-04, 2018-03-24)\n", - " [2018-04-03, 2018-04-23)\n", - " [2018-05-03, 2018-05-23)\n", - " [2018-06-02, 2018-06-22)\n", - " [2018-07-02, 2018-07-22)\n", - " [2018-08-01, 2018-08-21)\n", + " 2021\n", + " [2020-12-01, 2021-01-01)\n", + " [2021-02-01, 2021-03-01)\n", + " [2021-04-01, 2021-05-01)\n", + " [2021-06-01, 2021-07-01)\n", + " [2021-08-01, 2021-08-31)\n", " \n", " \n", - " 2017\n", - " [2016-12-04, 2016-12-24)\n", - " [2017-01-03, 2017-01-23)\n", - " [2017-02-02, 2017-02-22)\n", - " [2017-03-04, 2017-03-24)\n", - " [2017-04-03, 2017-04-23)\n", - " [2017-05-03, 2017-05-23)\n", - " [2017-06-02, 2017-06-22)\n", - " [2017-07-02, 2017-07-22)\n", - " [2017-08-01, 2017-08-21)\n", + " 2020\n", + " [2019-12-01, 2020-01-01)\n", + " [2020-02-01, 2020-03-01)\n", + " [2020-04-01, 2020-05-01)\n", + " [2020-06-01, 2020-07-01)\n", + " [2020-08-01, 2020-08-31)\n", " \n", " \n", - " 2016\n", - " [2015-12-05, 2015-12-25)\n", - " [2016-01-04, 2016-01-24)\n", - " [2016-02-03, 2016-02-23)\n", - " [2016-03-04, 2016-03-24)\n", - " [2016-04-03, 2016-04-23)\n", - " [2016-05-03, 2016-05-23)\n", - " [2016-06-02, 2016-06-22)\n", - " [2016-07-02, 2016-07-22)\n", - " [2016-08-01, 2016-08-21)\n", + " 2019\n", + " [2018-12-01, 2019-01-01)\n", + " [2019-02-01, 2019-03-01)\n", + " [2019-04-01, 2019-05-01)\n", + " [2019-06-01, 2019-07-01)\n", + " [2019-08-01, 2019-08-31)\n", " \n", " \n", "\n", "" ], "text/plain": [ - "i_interval -8 -7 \\\n", - "anchor_year \n", - "2018 [2017-12-04, 2017-12-24) [2018-01-03, 2018-01-23) \n", - "2017 [2016-12-04, 2016-12-24) [2017-01-03, 2017-01-23) \n", - "2016 [2015-12-05, 2015-12-25) [2016-01-04, 2016-01-24) \n", - "\n", - "i_interval -6 -5 \\\n", - "anchor_year \n", - "2018 [2018-02-02, 2018-02-22) [2018-03-04, 2018-03-24) \n", - "2017 [2017-02-02, 2017-02-22) [2017-03-04, 2017-03-24) \n", - "2016 [2016-02-03, 2016-02-23) [2016-03-04, 2016-03-24) \n", - "\n", "i_interval -4 -3 \\\n", "anchor_year \n", - "2018 [2018-04-03, 2018-04-23) [2018-05-03, 2018-05-23) \n", - "2017 [2017-04-03, 2017-04-23) [2017-05-03, 2017-05-23) \n", - "2016 [2016-04-03, 2016-04-23) [2016-05-03, 2016-05-23) \n", + "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", + "2020 [2019-12-01, 2020-01-01) [2020-02-01, 2020-03-01) \n", + "2019 [2018-12-01, 2019-01-01) [2019-02-01, 2019-03-01) \n", "\n", "i_interval -2 -1 \\\n", "anchor_year \n", - "2018 [2018-06-02, 2018-06-22) [2018-07-02, 2018-07-22) \n", - "2017 [2017-06-02, 2017-06-22) [2017-07-02, 2017-07-22) \n", - "2016 [2016-06-02, 2016-06-22) [2016-07-02, 2016-07-22) \n", + "2021 [2021-04-01, 2021-05-01) [2021-06-01, 2021-07-01) \n", + "2020 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", + "2019 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", "\n", "i_interval 1 \n", "anchor_year \n", - "2018 [2018-08-01, 2018-08-21) \n", - "2017 [2017-08-01, 2017-08-21) \n", - "2016 [2016-08-01, 2016-08-21) " + "2021 [2021-08-01, 2021-08-31) \n", + "2020 [2020-08-01, 2020-08-31) \n", + "2019 [2019-08-01, 2019-08-31) " ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -317,19 +302,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##### Train-validate-test split based on the anchor years (70%/15%/15% split)" + "##### Train-validate-test split based on the anchor years (60%/20%/20% split)" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# get 70% of instance as training\n", "years = sorted(calendar.get_intervals().index)\n", - "train_samples = round(len(years) * 0.7)\n", - "test_samples = round(len(years) * 0.15)\n", + "train_samples = round(len(years) * 0.6)\n", + "test_samples = round(len(years) * 0.2)\n", "start_year = years[0]" ] }, @@ -346,7 +331,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -364,7 +349,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -382,7 +367,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -392,13 +377,13 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "# select variables and intervals\n", "precursor_field_sel = precursor_field_resample['sst']\n", - "target_series_sel = target_field_resample['ts'].sel(cluster=3)" + "target_series_sel = target_field_resample['t2m'].sel(cluster=3)" ] }, { @@ -420,7 +405,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -448,7 +433,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -479,7 +464,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -533,7 +518,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -565,20 +550,14 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ + "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" ] } @@ -589,13 +568,13 @@ "\n", "# define hyperparameters and the \n", "hyperparameters = dict(\n", - " epoch = 10,\n", + " epoch = 120,\n", " input_dim = lat_precursor*lon_precursor,\n", " hidden_dim = lat_precursor*lon_precursor*2,\n", " output_dim = 1,\n", - " batch_size = 3, \n", - " num_layers = 4,\n", - " learning_rate = 0.01,\n", + " batch_size = 4, \n", + " num_layers = 2,\n", + " learning_rate = 0.02,\n", " dataset = 'Weather',\n", " architecture = 'LSTM'\n", ")\n", @@ -617,7 +596,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -638,7 +617,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -647,7 +626,7 @@ "text": [ "Model details:\n", " LSTM(\n", - " (lstm): LSTM(65, 130, num_layers=4, batch_first=True)\n", + " (lstm): LSTM(65, 130, num_layers=2, batch_first=True)\n", " (linear): Linear(in_features=130, out_features=1, bias=True)\n", ")\n", "Optimizer details:\n", @@ -660,7 +639,7 @@ " eps: 1e-08\n", " foreach: None\n", " fused: None\n", - " lr: 0.01\n", + " lr: 0.02\n", " maximize: False\n", " weight_decay: 0\n", ")\n" @@ -672,7 +651,7 @@ "[]" ] }, - "execution_count": 18, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -705,104 +684,1094 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/27(0%)]\tLoss: 2.147859\n", - "Epoch : 0 [3/27(11%)]\tLoss: 2.838991\n", - "Epoch : 0 [6/27(22%)]\tLoss: 4.700762\n", - "Epoch : 0 [9/27(33%)]\tLoss: 2.927927\n", - "Epoch : 0 [12/27(44%)]\tLoss: 8.235095\n", - "Epoch : 0 [15/27(56%)]\tLoss: 3.152937\n", - "Epoch : 0 [18/27(67%)]\tLoss: 1.321228\n", - "Epoch : 0 [21/27(78%)]\tLoss: 0.238537\n", - "Epoch : 0 [24/27(89%)]\tLoss: 6.549410\n", - "Epoch : 1 [0/27(0%)]\tLoss: 2.094426\n", - "Epoch : 1 [3/27(11%)]\tLoss: 2.990226\n", - "Epoch : 1 [6/27(22%)]\tLoss: 5.637078\n", - "Epoch : 1 [9/27(33%)]\tLoss: 0.746574\n", - "Epoch : 1 [12/27(44%)]\tLoss: 3.033168\n", - "Epoch : 1 [15/27(56%)]\tLoss: 2.280286\n", - "Epoch : 1 [18/27(67%)]\tLoss: 0.193785\n", - "Epoch : 1 [21/27(78%)]\tLoss: 2.557035\n", - "Epoch : 1 [24/27(89%)]\tLoss: 7.860909\n", - "Epoch : 2 [0/27(0%)]\tLoss: 4.077698\n", - "Epoch : 2 [3/27(11%)]\tLoss: 1.303299\n", - "Epoch : 2 [6/27(22%)]\tLoss: 2.873337\n", - "Epoch : 2 [9/27(33%)]\tLoss: 0.622593\n", - "Epoch : 2 [12/27(44%)]\tLoss: 4.604242\n", - "Epoch : 2 [15/27(56%)]\tLoss: 1.467831\n", - "Epoch : 2 [18/27(67%)]\tLoss: 4.344764\n", - "Epoch : 2 [21/27(78%)]\tLoss: 0.670500\n", - "Epoch : 2 [24/27(89%)]\tLoss: 4.583524\n", - "Epoch : 3 [0/27(0%)]\tLoss: 2.920188\n", - "Epoch : 3 [3/27(11%)]\tLoss: 1.507501\n", - "Epoch : 3 [6/27(22%)]\tLoss: 3.524598\n", - "Epoch : 3 [9/27(33%)]\tLoss: 0.152751\n", - "Epoch : 3 [12/27(44%)]\tLoss: 2.574660\n", - "Epoch : 3 [15/27(56%)]\tLoss: 0.970052\n", - "Epoch : 3 [18/27(67%)]\tLoss: 0.679160\n", - "Epoch : 3 [21/27(78%)]\tLoss: 1.840932\n", - "Epoch : 3 [24/27(89%)]\tLoss: 4.953326\n", - "Epoch : 4 [0/27(0%)]\tLoss: 1.933493\n", - "Epoch : 4 [3/27(11%)]\tLoss: 1.163767\n", - "Epoch : 4 [6/27(22%)]\tLoss: 3.193460\n", - "Epoch : 4 [9/27(33%)]\tLoss: 0.198850\n", - "Epoch : 4 [12/27(44%)]\tLoss: 2.312027\n", - "Epoch : 4 [15/27(56%)]\tLoss: 0.589022\n", - "Epoch : 4 [18/27(67%)]\tLoss: 1.609872\n", - "Epoch : 4 [21/27(78%)]\tLoss: 0.392519\n", - "Epoch : 4 [24/27(89%)]\tLoss: 4.259182\n", - "Epoch : 5 [0/27(0%)]\tLoss: 2.218642\n", - "Epoch : 5 [3/27(11%)]\tLoss: 0.902634\n", - "Epoch : 5 [6/27(22%)]\tLoss: 2.880584\n", - "Epoch : 5 [9/27(33%)]\tLoss: 0.322327\n", - "Epoch : 5 [12/27(44%)]\tLoss: 1.675611\n", - "Epoch : 5 [15/27(56%)]\tLoss: 0.282689\n", - "Epoch : 5 [18/27(67%)]\tLoss: 1.899767\n", - "Epoch : 5 [21/27(78%)]\tLoss: 0.384892\n", - "Epoch : 5 [24/27(89%)]\tLoss: 4.489583\n", - "Epoch : 6 [0/27(0%)]\tLoss: 1.115306\n", - "Epoch : 6 [3/27(11%)]\tLoss: 1.023765\n", - "Epoch : 6 [6/27(22%)]\tLoss: 2.508713\n", - "Epoch : 6 [9/27(33%)]\tLoss: 0.422266\n", - "Epoch : 6 [12/27(44%)]\tLoss: 1.836682\n", - "Epoch : 6 [15/27(56%)]\tLoss: 0.374262\n", - "Epoch : 6 [18/27(67%)]\tLoss: 1.706558\n", - "Epoch : 6 [21/27(78%)]\tLoss: 0.313639\n", - "Epoch : 6 [24/27(89%)]\tLoss: 3.754131\n", - "Epoch : 7 [0/27(0%)]\tLoss: 3.516588\n", - "Epoch : 7 [3/27(11%)]\tLoss: 0.938229\n", - "Epoch : 7 [6/27(22%)]\tLoss: 3.811188\n", - "Epoch : 7 [9/27(33%)]\tLoss: 0.161626\n", - "Epoch : 7 [12/27(44%)]\tLoss: 2.201589\n", - "Epoch : 7 [15/27(56%)]\tLoss: 0.450430\n", - "Epoch : 7 [18/27(67%)]\tLoss: 1.552927\n", - "Epoch : 7 [21/27(78%)]\tLoss: 0.262236\n", - "Epoch : 7 [24/27(89%)]\tLoss: 2.693389\n", - "Epoch : 8 [0/27(0%)]\tLoss: 0.699863\n", - "Epoch : 8 [3/27(11%)]\tLoss: 1.064229\n", - "Epoch : 8 [6/27(22%)]\tLoss: 2.403443\n", - "Epoch : 8 [9/27(33%)]\tLoss: 1.199810\n", - "Epoch : 8 [12/27(44%)]\tLoss: 2.658897\n", - "Epoch : 8 [15/27(56%)]\tLoss: 1.581239\n", - "Epoch : 8 [18/27(67%)]\tLoss: 1.668870\n", - "Epoch : 8 [21/27(78%)]\tLoss: 0.265352\n", - "Epoch : 8 [24/27(89%)]\tLoss: 2.040637\n", - "Epoch : 9 [0/27(0%)]\tLoss: 1.674989\n", - "Epoch : 9 [3/27(11%)]\tLoss: 1.018218\n", - "Epoch : 9 [6/27(22%)]\tLoss: 2.660330\n", - "Epoch : 9 [9/27(33%)]\tLoss: 0.151746\n", - "Epoch : 9 [12/27(44%)]\tLoss: 0.950755\n", - "Epoch : 9 [15/27(56%)]\tLoss: 1.026690\n", - "Epoch : 9 [18/27(67%)]\tLoss: 1.508369\n", - "Epoch : 9 [21/27(78%)]\tLoss: 0.281834\n", - "Epoch : 9 [24/27(89%)]\tLoss: 1.335783\n", - "--- 0.016478101412455242 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 507.983582\n", + "Epoch : 0 [4/36(11%)]\tLoss: 485.545990\n", + "Epoch : 0 [8/36(22%)]\tLoss: 477.454285\n", + "Epoch : 0 [12/36(33%)]\tLoss: 432.951752\n", + "Epoch : 0 [16/36(44%)]\tLoss: 305.954041\n", + "Epoch : 0 [20/36(56%)]\tLoss: 181.917877\n", + "Epoch : 0 [24/36(67%)]\tLoss: 112.253494\n", + "Epoch : 0 [28/36(78%)]\tLoss: 57.063919\n", + "Epoch : 0 [32/36(89%)]\tLoss: 43.682007\n", + "Epoch : 1 [0/36(0%)]\tLoss: 13.681940\n", + "Epoch : 1 [4/36(11%)]\tLoss: 0.649184\n", + "Epoch : 1 [8/36(22%)]\tLoss: 4.794668\n", + "Epoch : 1 [12/36(33%)]\tLoss: 15.757802\n", + "Epoch : 1 [16/36(44%)]\tLoss: 20.147532\n", + "Epoch : 1 [20/36(56%)]\tLoss: 22.499285\n", + "Epoch : 1 [24/36(67%)]\tLoss: 25.619698\n", + "Epoch : 1 [28/36(78%)]\tLoss: 28.632963\n", + "Epoch : 1 [32/36(89%)]\tLoss: 20.574209\n", + "Epoch : 2 [0/36(0%)]\tLoss: 18.872978\n", + "Epoch : 2 [4/36(11%)]\tLoss: 14.648389\n", + "Epoch : 2 [8/36(22%)]\tLoss: 5.900297\n", + "Epoch : 2 [12/36(33%)]\tLoss: 3.351698\n", + "Epoch : 2 [16/36(44%)]\tLoss: 1.113437\n", + "Epoch : 2 [20/36(56%)]\tLoss: 2.335231\n", + "Epoch : 2 [24/36(67%)]\tLoss: 2.825702\n", + "Epoch : 2 [28/36(78%)]\tLoss: 3.798011\n", + "Epoch : 2 [32/36(89%)]\tLoss: 6.569637\n", + "Epoch : 3 [0/36(0%)]\tLoss: 3.737962\n", + "Epoch : 3 [4/36(11%)]\tLoss: 4.708276\n", + "Epoch : 3 [8/36(22%)]\tLoss: 6.664110\n", + "Epoch : 3 [12/36(33%)]\tLoss: 3.995237\n", + "Epoch : 3 [16/36(44%)]\tLoss: 5.634778\n", + "Epoch : 3 [20/36(56%)]\tLoss: 6.125483\n", + "Epoch : 3 [24/36(67%)]\tLoss: 2.957626\n", + "Epoch : 3 [28/36(78%)]\tLoss: 2.246599\n", + "Epoch : 3 [32/36(89%)]\tLoss: 1.954396\n", + "Epoch : 4 [0/36(0%)]\tLoss: 0.826026\n", + "Epoch : 4 [4/36(11%)]\tLoss: 2.171590\n", + "Epoch : 4 [8/36(22%)]\tLoss: 1.378437\n", + "Epoch : 4 [12/36(33%)]\tLoss: 2.751612\n", + "Epoch : 4 [16/36(44%)]\tLoss: 1.956753\n", + "Epoch : 4 [20/36(56%)]\tLoss: 2.154751\n", + "Epoch : 4 [24/36(67%)]\tLoss: 2.226980\n", + "Epoch : 4 [28/36(78%)]\tLoss: 2.994128\n", + "Epoch : 4 [32/36(89%)]\tLoss: 5.376053\n", + "Epoch : 5 [0/36(0%)]\tLoss: 1.641360\n", + "Epoch : 5 [4/36(11%)]\tLoss: 61.552425\n", + "Epoch : 5 [8/36(22%)]\tLoss: 0.517432\n", + "Epoch : 5 [12/36(33%)]\tLoss: 0.599537\n", + "Epoch : 5 [16/36(44%)]\tLoss: 0.872480\n", + "Epoch : 5 [20/36(56%)]\tLoss: 2.146992\n", + "Epoch : 5 [24/36(67%)]\tLoss: 1.557322\n", + "Epoch : 5 [28/36(78%)]\tLoss: 1.163762\n", + "Epoch : 5 [32/36(89%)]\tLoss: 1.936478\n", + "Epoch : 6 [0/36(0%)]\tLoss: 0.236009\n", + "Epoch : 6 [4/36(11%)]\tLoss: 0.449621\n", + "Epoch : 6 [8/36(22%)]\tLoss: 0.464321\n", + "Epoch : 6 [12/36(33%)]\tLoss: 0.386675\n", + "Epoch : 6 [16/36(44%)]\tLoss: 1.017627\n", + "Epoch : 6 [20/36(56%)]\tLoss: 2.735424\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.833501\n", + "Epoch : 6 [28/36(78%)]\tLoss: 1.378521\n", + "Epoch : 6 [32/36(89%)]\tLoss: 1.746123\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.407802\n", + "Epoch : 7 [4/36(11%)]\tLoss: 1.522333\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.567280\n", + "Epoch : 7 [12/36(33%)]\tLoss: 0.760593\n", + "Epoch : 7 [16/36(44%)]\tLoss: 0.810266\n", + "Epoch : 7 [20/36(56%)]\tLoss: 2.084057\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.535880\n", + "Epoch : 7 [28/36(78%)]\tLoss: 1.548715\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.704262\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.267778\n", + "Epoch : 8 [4/36(11%)]\tLoss: 0.470362\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.319555\n", + "Epoch : 8 [12/36(33%)]\tLoss: 0.386292\n", + "Epoch : 8 [16/36(44%)]\tLoss: 0.997348\n", + "Epoch : 8 [20/36(56%)]\tLoss: 1.680269\n", + "Epoch : 8 [24/36(67%)]\tLoss: 1.286102\n", + "Epoch : 8 [28/36(78%)]\tLoss: 1.456243\n", + "Epoch : 8 [32/36(89%)]\tLoss: 1.600214\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.376325\n", + "Epoch : 9 [4/36(11%)]\tLoss: 0.536471\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.184534\n", + "Epoch : 9 [12/36(33%)]\tLoss: 1.879885\n", + "Epoch : 9 [16/36(44%)]\tLoss: 0.726486\n", + "Epoch : 9 [20/36(56%)]\tLoss: 1.361504\n", + "Epoch : 9 [24/36(67%)]\tLoss: 0.992220\n", + "Epoch : 9 [28/36(78%)]\tLoss: 1.238194\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.704631\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.401274\n", + "Epoch : 10 [4/36(11%)]\tLoss: 0.591326\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.225017\n", + "Epoch : 10 [12/36(33%)]\tLoss: 0.553684\n", + "Epoch : 10 [16/36(44%)]\tLoss: 0.683837\n", + "Epoch : 10 [20/36(56%)]\tLoss: 41.919888\n", + "Epoch : 10 [24/36(67%)]\tLoss: 0.954259\n", + "Epoch : 10 [28/36(78%)]\tLoss: 1.348911\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.275428\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.692238\n", + "Epoch : 11 [4/36(11%)]\tLoss: 0.759567\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.491525\n", + "Epoch : 11 [12/36(33%)]\tLoss: 0.890592\n", + "Epoch : 11 [16/36(44%)]\tLoss: 0.883045\n", + "Epoch : 11 [20/36(56%)]\tLoss: 1.011938\n", + "Epoch : 11 [24/36(67%)]\tLoss: 1.097416\n", + "Epoch : 11 [28/36(78%)]\tLoss: 1.227733\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.541118\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.338693\n", + "Epoch : 12 [4/36(11%)]\tLoss: 0.303745\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.484650\n", + "Epoch : 12 [12/36(33%)]\tLoss: 0.439541\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.740936\n", + "Epoch : 12 [20/36(56%)]\tLoss: 2.187052\n", + "Epoch : 12 [24/36(67%)]\tLoss: 1.159384\n", + "Epoch : 12 [28/36(78%)]\tLoss: 1.456004\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.407920\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.316378\n", + "Epoch : 13 [4/36(11%)]\tLoss: 1.284834\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.311175\n", + "Epoch : 13 [12/36(33%)]\tLoss: 1.623467\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.881614\n", + "Epoch : 13 [20/36(56%)]\tLoss: 1.191420\n", + "Epoch : 13 [24/36(67%)]\tLoss: 0.891233\n", + "Epoch : 13 [28/36(78%)]\tLoss: 2.473056\n", + "Epoch : 13 [32/36(89%)]\tLoss: 2.165516\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.268527\n", + "Epoch : 14 [4/36(11%)]\tLoss: 0.460274\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.075448\n", + "Epoch : 14 [12/36(33%)]\tLoss: 0.581868\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.733167\n", + "Epoch : 14 [20/36(56%)]\tLoss: 0.966595\n", + "Epoch : 14 [24/36(67%)]\tLoss: 1.194532\n", + "Epoch : 14 [28/36(78%)]\tLoss: 1.389047\n", + "Epoch : 14 [32/36(89%)]\tLoss: 0.836293\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.342130\n", + "Epoch : 15 [4/36(11%)]\tLoss: 1.427072\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.163315\n", + "Epoch : 15 [12/36(33%)]\tLoss: 0.439176\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.720854\n", + "Epoch : 15 [20/36(56%)]\tLoss: 1.454335\n", + "Epoch : 15 [24/36(67%)]\tLoss: 1.065300\n", + "Epoch : 15 [28/36(78%)]\tLoss: 1.736128\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.193403\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.245131\n", + "Epoch : 16 [4/36(11%)]\tLoss: 0.417922\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.162268\n", + "Epoch : 16 [12/36(33%)]\tLoss: 0.682358\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.768364\n", + "Epoch : 16 [20/36(56%)]\tLoss: 1.130387\n", + "Epoch : 16 [24/36(67%)]\tLoss: 0.845534\n", + "Epoch : 16 [28/36(78%)]\tLoss: 1.194760\n", + "Epoch : 16 [32/36(89%)]\tLoss: 1.207175\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.330018\n", + "Epoch : 17 [4/36(11%)]\tLoss: 0.517002\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.101239\n", + "Epoch : 17 [12/36(33%)]\tLoss: 0.683044\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.624549\n", + "Epoch : 17 [20/36(56%)]\tLoss: 1.242234\n", + "Epoch : 17 [24/36(67%)]\tLoss: 1.108698\n", + "Epoch : 17 [28/36(78%)]\tLoss: 1.931416\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.270404\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.219970\n", + "Epoch : 18 [4/36(11%)]\tLoss: 0.424081\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.074651\n", + "Epoch : 18 [12/36(33%)]\tLoss: 0.574489\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.707835\n", + "Epoch : 18 [20/36(56%)]\tLoss: 1.049430\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.950562\n", + "Epoch : 18 [28/36(78%)]\tLoss: 1.290967\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.415727\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.317242\n", + "Epoch : 19 [4/36(11%)]\tLoss: 0.495935\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.230634\n", + "Epoch : 19 [12/36(33%)]\tLoss: 0.672741\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.699571\n", + "Epoch : 19 [20/36(56%)]\tLoss: 1.410765\n", + "Epoch : 19 [24/36(67%)]\tLoss: 0.431498\n", + "Epoch : 19 [28/36(78%)]\tLoss: 1.059802\n", + "Epoch : 19 [32/36(89%)]\tLoss: 1.268896\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.481073\n", + "Epoch : 20 [4/36(11%)]\tLoss: 0.614935\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.323890\n", + "Epoch : 20 [12/36(33%)]\tLoss: 0.737223\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.635708\n", + "Epoch : 20 [20/36(56%)]\tLoss: 1.322181\n", + "Epoch : 20 [24/36(67%)]\tLoss: 0.764492\n", + "Epoch : 20 [28/36(78%)]\tLoss: 1.316211\n", + "Epoch : 20 [32/36(89%)]\tLoss: 1.350003\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.257974\n", + "Epoch : 21 [4/36(11%)]\tLoss: 1.036465\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.162682\n", + "Epoch : 21 [12/36(33%)]\tLoss: 0.318855\n", + "Epoch : 21 [16/36(44%)]\tLoss: 0.666395\n", + "Epoch : 21 [20/36(56%)]\tLoss: 1.247852\n", + "Epoch : 21 [24/36(67%)]\tLoss: 0.617214\n", + "Epoch : 21 [28/36(78%)]\tLoss: 1.401607\n", + "Epoch : 21 [32/36(89%)]\tLoss: 0.537909\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.195451\n", + "Epoch : 22 [4/36(11%)]\tLoss: 0.689567\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.237167\n", + "Epoch : 22 [12/36(33%)]\tLoss: 1.119654\n", + "Epoch : 22 [16/36(44%)]\tLoss: 0.795430\n", + "Epoch : 22 [20/36(56%)]\tLoss: 0.663951\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.542521\n", + "Epoch : 22 [28/36(78%)]\tLoss: 1.752671\n", + "Epoch : 22 [32/36(89%)]\tLoss: 0.575506\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.240803\n", + "Epoch : 23 [4/36(11%)]\tLoss: 0.540746\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.056322\n", + "Epoch : 23 [12/36(33%)]\tLoss: 0.874979\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.756174\n", + "Epoch : 23 [20/36(56%)]\tLoss: 1.012967\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.872605\n", + "Epoch : 23 [28/36(78%)]\tLoss: 1.476786\n", + "Epoch : 23 [32/36(89%)]\tLoss: 0.872029\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.201539\n", + "Epoch : 24 [4/36(11%)]\tLoss: 0.490549\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.072448\n", + "Epoch : 24 [12/36(33%)]\tLoss: 0.694031\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.683765\n", + "Epoch : 24 [20/36(56%)]\tLoss: 0.814258\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.502935\n", + "Epoch : 24 [28/36(78%)]\tLoss: 1.313967\n", + "Epoch : 24 [32/36(89%)]\tLoss: 0.639446\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.109385\n", + "Epoch : 25 [4/36(11%)]\tLoss: 0.648739\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.131458\n", + "Epoch : 25 [12/36(33%)]\tLoss: 0.577728\n", + "Epoch : 25 [16/36(44%)]\tLoss: 0.778316\n", + "Epoch : 25 [20/36(56%)]\tLoss: 0.949162\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.551733\n", + "Epoch : 25 [28/36(78%)]\tLoss: 1.238571\n", + "Epoch : 25 [32/36(89%)]\tLoss: 0.594090\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.265101\n", + "Epoch : 26 [4/36(11%)]\tLoss: 0.560474\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.152485\n", + "Epoch : 26 [12/36(33%)]\tLoss: 0.203402\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.464279\n", + "Epoch : 26 [20/36(56%)]\tLoss: 0.700884\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.356159\n", + "Epoch : 26 [28/36(78%)]\tLoss: 1.396630\n", + "Epoch : 26 [32/36(89%)]\tLoss: 1.599944\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.185093\n", + "Epoch : 27 [4/36(11%)]\tLoss: 0.492970\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.341786\n", + "Epoch : 27 [12/36(33%)]\tLoss: 1.178146\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.771961\n", + "Epoch : 27 [20/36(56%)]\tLoss: 0.838922\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.458040\n", + "Epoch : 27 [28/36(78%)]\tLoss: 1.720198\n", + "Epoch : 27 [32/36(89%)]\tLoss: 1.835427\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.181525\n", + "Epoch : 28 [4/36(11%)]\tLoss: 0.597012\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.196241\n", + "Epoch : 28 [12/36(33%)]\tLoss: 0.280821\n", + "Epoch : 28 [16/36(44%)]\tLoss: 0.486992\n", + "Epoch : 28 [20/36(56%)]\tLoss: 0.514253\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.710886\n", + "Epoch : 28 [28/36(78%)]\tLoss: 0.873084\n", + "Epoch : 28 [32/36(89%)]\tLoss: 1.114879\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.231928\n", + "Epoch : 29 [4/36(11%)]\tLoss: 0.660394\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.217593\n", + "Epoch : 29 [12/36(33%)]\tLoss: 0.144636\n", + "Epoch : 29 [16/36(44%)]\tLoss: 0.611048\n", + "Epoch : 29 [20/36(56%)]\tLoss: 0.942559\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.374731\n", + "Epoch : 29 [28/36(78%)]\tLoss: 1.207942\n", + "Epoch : 29 [32/36(89%)]\tLoss: 0.422186\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.164200\n", + "Epoch : 30 [4/36(11%)]\tLoss: 0.526184\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.374550\n", + "Epoch : 30 [12/36(33%)]\tLoss: 1.219283\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.612514\n", + "Epoch : 30 [20/36(56%)]\tLoss: 0.852067\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.520570\n", + "Epoch : 30 [28/36(78%)]\tLoss: 1.699223\n", + "Epoch : 30 [32/36(89%)]\tLoss: 1.696208\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.292037\n", + "Epoch : 31 [4/36(11%)]\tLoss: 0.301410\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.173668\n", + "Epoch : 31 [12/36(33%)]\tLoss: 0.963079\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.774462\n", + "Epoch : 31 [20/36(56%)]\tLoss: 0.724868\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.495552\n", + "Epoch : 31 [28/36(78%)]\tLoss: 1.187096\n", + "Epoch : 31 [32/36(89%)]\tLoss: 0.627896\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.216579\n", + "Epoch : 32 [4/36(11%)]\tLoss: 0.350364\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.222970\n", + "Epoch : 32 [12/36(33%)]\tLoss: 0.271730\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.355948\n", + "Epoch : 32 [20/36(56%)]\tLoss: 0.803394\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.360208\n", + "Epoch : 32 [28/36(78%)]\tLoss: 0.574051\n", + "Epoch : 32 [32/36(89%)]\tLoss: 0.713544\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.418268\n", + "Epoch : 33 [4/36(11%)]\tLoss: 0.608432\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.335705\n", + "Epoch : 33 [12/36(33%)]\tLoss: 0.226859\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.244683\n", + "Epoch : 33 [20/36(56%)]\tLoss: 0.689198\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.498711\n", + "Epoch : 33 [28/36(78%)]\tLoss: 1.208200\n", + "Epoch : 33 [32/36(89%)]\tLoss: 0.478432\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.190441\n", + "Epoch : 34 [4/36(11%)]\tLoss: 0.513194\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.111395\n", + "Epoch : 34 [12/36(33%)]\tLoss: 0.419770\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.390268\n", + "Epoch : 34 [20/36(56%)]\tLoss: 0.613014\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.388546\n", + "Epoch : 34 [28/36(78%)]\tLoss: 1.165198\n", + "Epoch : 34 [32/36(89%)]\tLoss: 0.365966\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.129787\n", + "Epoch : 35 [4/36(11%)]\tLoss: 0.255420\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.459165\n", + "Epoch : 35 [12/36(33%)]\tLoss: 0.102898\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.278423\n", + "Epoch : 35 [20/36(56%)]\tLoss: 0.323771\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.370440\n", + "Epoch : 35 [28/36(78%)]\tLoss: 1.158634\n", + "Epoch : 35 [32/36(89%)]\tLoss: 0.271893\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.184716\n", + "Epoch : 36 [4/36(11%)]\tLoss: 0.241789\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.177044\n", + "Epoch : 36 [12/36(33%)]\tLoss: 0.435624\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.234682\n", + "Epoch : 36 [20/36(56%)]\tLoss: 0.425640\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.252957\n", + "Epoch : 36 [28/36(78%)]\tLoss: 0.323449\n", + "Epoch : 36 [32/36(89%)]\tLoss: 0.649497\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.386791\n", + "Epoch : 37 [4/36(11%)]\tLoss: 0.346557\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.159452\n", + "Epoch : 37 [12/36(33%)]\tLoss: 0.165276\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.250041\n", + "Epoch : 37 [20/36(56%)]\tLoss: 0.896734\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.354154\n", + "Epoch : 37 [28/36(78%)]\tLoss: 0.927789\n", + "Epoch : 37 [32/36(89%)]\tLoss: 0.261597\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.231714\n", + "Epoch : 38 [4/36(11%)]\tLoss: 0.349499\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.590888\n", + "Epoch : 38 [12/36(33%)]\tLoss: 0.392239\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.131214\n", + "Epoch : 38 [20/36(56%)]\tLoss: 0.606150\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.095998\n", + "Epoch : 38 [28/36(78%)]\tLoss: 0.966528\n", + "Epoch : 38 [32/36(89%)]\tLoss: 0.439646\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.211780\n", + "Epoch : 39 [4/36(11%)]\tLoss: 0.250679\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.356316\n", + "Epoch : 39 [12/36(33%)]\tLoss: 0.155289\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.507224\n", + "Epoch : 39 [20/36(56%)]\tLoss: 0.290364\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.397426\n", + "Epoch : 39 [28/36(78%)]\tLoss: 0.765451\n", + "Epoch : 39 [32/36(89%)]\tLoss: 0.383856\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.223476\n", + "Epoch : 40 [4/36(11%)]\tLoss: 0.278307\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.075358\n", + "Epoch : 40 [12/36(33%)]\tLoss: 0.493854\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.276442\n", + "Epoch : 40 [20/36(56%)]\tLoss: 0.916430\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.178844\n", + "Epoch : 40 [28/36(78%)]\tLoss: 0.819642\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.389709\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.186383\n", + "Epoch : 41 [4/36(11%)]\tLoss: 0.237005\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.493227\n", + "Epoch : 41 [12/36(33%)]\tLoss: 0.546487\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.214588\n", + "Epoch : 41 [20/36(56%)]\tLoss: 0.418337\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.285581\n", + "Epoch : 41 [28/36(78%)]\tLoss: 0.723503\n", + "Epoch : 41 [32/36(89%)]\tLoss: 0.210814\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.161292\n", + "Epoch : 42 [4/36(11%)]\tLoss: 0.416499\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.392076\n", + "Epoch : 42 [12/36(33%)]\tLoss: 0.399175\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.391687\n", + "Epoch : 42 [20/36(56%)]\tLoss: 0.357929\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.427770\n", + "Epoch : 42 [28/36(78%)]\tLoss: 0.677348\n", + "Epoch : 42 [32/36(89%)]\tLoss: 0.251413\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.268350\n", + "Epoch : 43 [4/36(11%)]\tLoss: 0.386606\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.378551\n", + "Epoch : 43 [12/36(33%)]\tLoss: 0.328673\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.009764\n", + "Epoch : 43 [20/36(56%)]\tLoss: 0.293181\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.209063\n", + "Epoch : 43 [28/36(78%)]\tLoss: 0.067298\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.081896\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.147998\n", + "Epoch : 44 [4/36(11%)]\tLoss: 0.342878\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.387698\n", + "Epoch : 44 [12/36(33%)]\tLoss: 0.255189\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.064371\n", + "Epoch : 44 [20/36(56%)]\tLoss: 0.345002\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.142080\n", + "Epoch : 44 [28/36(78%)]\tLoss: 0.461973\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.036998\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.151593\n", + "Epoch : 45 [4/36(11%)]\tLoss: 0.265187\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.515073\n", + "Epoch : 45 [12/36(33%)]\tLoss: 0.368483\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.212054\n", + "Epoch : 45 [20/36(56%)]\tLoss: 0.193509\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.328555\n", + "Epoch : 45 [28/36(78%)]\tLoss: 0.590888\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.083419\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.197201\n", + "Epoch : 46 [4/36(11%)]\tLoss: 0.463341\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.356213\n", + "Epoch : 46 [12/36(33%)]\tLoss: 0.287299\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.072780\n", + "Epoch : 46 [20/36(56%)]\tLoss: 0.504454\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.119488\n", + "Epoch : 46 [28/36(78%)]\tLoss: 0.840145\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.316261\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.531540\n", + "Epoch : 47 [4/36(11%)]\tLoss: 0.286747\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.319102\n", + "Epoch : 47 [12/36(33%)]\tLoss: 0.329314\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.249649\n", + "Epoch : 47 [20/36(56%)]\tLoss: 0.818986\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.110241\n", + "Epoch : 47 [28/36(78%)]\tLoss: 0.285651\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.051733\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.172740\n", + "Epoch : 48 [4/36(11%)]\tLoss: 0.361232\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.592481\n", + "Epoch : 48 [12/36(33%)]\tLoss: 0.608154\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.509293\n", + "Epoch : 48 [20/36(56%)]\tLoss: 0.094671\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.089356\n", + "Epoch : 48 [28/36(78%)]\tLoss: 0.369758\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.499705\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.730791\n", + "Epoch : 49 [4/36(11%)]\tLoss: 0.514196\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.390879\n", + "Epoch : 49 [12/36(33%)]\tLoss: 0.354510\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.790390\n", + "Epoch : 49 [20/36(56%)]\tLoss: 0.536330\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.283101\n", + "Epoch : 49 [28/36(78%)]\tLoss: 0.731982\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.077696\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.408365\n", + "Epoch : 50 [4/36(11%)]\tLoss: 0.332831\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.364565\n", + "Epoch : 50 [12/36(33%)]\tLoss: 0.231663\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.261591\n", + "Epoch : 50 [20/36(56%)]\tLoss: 0.381247\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.484968\n", + "Epoch : 50 [28/36(78%)]\tLoss: 0.976296\n", + "Epoch : 50 [32/36(89%)]\tLoss: 0.558600\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.291731\n", + "Epoch : 51 [4/36(11%)]\tLoss: 0.341915\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.309448\n", + "Epoch : 51 [12/36(33%)]\tLoss: 0.355963\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.722240\n", + "Epoch : 51 [20/36(56%)]\tLoss: 0.969864\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.332814\n", + "Epoch : 51 [28/36(78%)]\tLoss: 0.379431\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.263760\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.430804\n", + "Epoch : 52 [4/36(11%)]\tLoss: 0.299257\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.297648\n", + "Epoch : 52 [12/36(33%)]\tLoss: 0.050876\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.058078\n", + "Epoch : 52 [20/36(56%)]\tLoss: 0.313981\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.632113\n", + "Epoch : 52 [28/36(78%)]\tLoss: 0.338595\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.140811\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.251054\n", + "Epoch : 53 [4/36(11%)]\tLoss: 0.419119\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.287933\n", + "Epoch : 53 [12/36(33%)]\tLoss: 0.399620\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.420129\n", + "Epoch : 53 [20/36(56%)]\tLoss: 0.218050\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.074752\n", + "Epoch : 53 [28/36(78%)]\tLoss: 0.549127\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.568255\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.557974\n", + "Epoch : 54 [4/36(11%)]\tLoss: 0.629969\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.353461\n", + "Epoch : 54 [12/36(33%)]\tLoss: 0.195128\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.118042\n", + "Epoch : 54 [20/36(56%)]\tLoss: 0.423963\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.871856\n", + "Epoch : 54 [28/36(78%)]\tLoss: 1.147663\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.490736\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.079491\n", + "Epoch : 55 [4/36(11%)]\tLoss: 0.429729\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.370082\n", + "Epoch : 55 [12/36(33%)]\tLoss: 0.072012\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.383643\n", + "Epoch : 55 [20/36(56%)]\tLoss: 0.323159\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.216379\n", + "Epoch : 55 [28/36(78%)]\tLoss: 0.672188\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.123967\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.182371\n", + "Epoch : 56 [4/36(11%)]\tLoss: 0.153205\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.274874\n", + "Epoch : 56 [12/36(33%)]\tLoss: 0.082418\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.125994\n", + "Epoch : 56 [20/36(56%)]\tLoss: 0.247387\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.210949\n", + "Epoch : 56 [28/36(78%)]\tLoss: 0.029300\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.139851\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.155510\n", + "Epoch : 57 [4/36(11%)]\tLoss: 0.303457\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.212240\n", + "Epoch : 57 [12/36(33%)]\tLoss: 0.177613\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.059528\n", + "Epoch : 57 [20/36(56%)]\tLoss: 0.216950\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.225310\n", + "Epoch : 57 [28/36(78%)]\tLoss: 0.627856\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.143822\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.156430\n", + "Epoch : 58 [4/36(11%)]\tLoss: 0.174259\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.244065\n", + "Epoch : 58 [12/36(33%)]\tLoss: 0.169281\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.134861\n", + "Epoch : 58 [20/36(56%)]\tLoss: 0.109047\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.191867\n", + "Epoch : 58 [28/36(78%)]\tLoss: 0.071824\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.114122\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.089507\n", + "Epoch : 59 [4/36(11%)]\tLoss: 0.355131\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.240056\n", + "Epoch : 59 [12/36(33%)]\tLoss: 0.313155\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.125612\n", + "Epoch : 59 [20/36(56%)]\tLoss: 0.096158\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.522777\n", + "Epoch : 59 [28/36(78%)]\tLoss: 0.920282\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.187011\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.063962\n", + "Epoch : 60 [4/36(11%)]\tLoss: 0.357095\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.943313\n", + "Epoch : 60 [12/36(33%)]\tLoss: 0.344040\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.208868\n", + "Epoch : 60 [20/36(56%)]\tLoss: 0.124185\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.314008\n", + "Epoch : 60 [28/36(78%)]\tLoss: 0.447775\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.157903\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.263541\n", + "Epoch : 61 [4/36(11%)]\tLoss: 0.164451\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.114984\n", + "Epoch : 61 [12/36(33%)]\tLoss: 0.255978\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.197224\n", + "Epoch : 61 [20/36(56%)]\tLoss: 0.516358\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.406527\n", + "Epoch : 61 [28/36(78%)]\tLoss: 0.232901\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.165671\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.126990\n", + "Epoch : 62 [4/36(11%)]\tLoss: 0.194324\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.345807\n", + "Epoch : 62 [12/36(33%)]\tLoss: 0.442099\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.751966\n", + "Epoch : 62 [20/36(56%)]\tLoss: 0.048154\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.232280\n", + "Epoch : 62 [28/36(78%)]\tLoss: 0.358135\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.370076\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.280223\n", + "Epoch : 63 [4/36(11%)]\tLoss: 0.247358\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.203331\n", + "Epoch : 63 [12/36(33%)]\tLoss: 0.317181\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.284695\n", + "Epoch : 63 [20/36(56%)]\tLoss: 0.450282\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.444783\n", + "Epoch : 63 [28/36(78%)]\tLoss: 1.134185\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.460922\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.391640\n", + "Epoch : 64 [4/36(11%)]\tLoss: 0.299099\n", + "Epoch : 64 [8/36(22%)]\tLoss: 1.128513\n", + "Epoch : 64 [12/36(33%)]\tLoss: 0.880037\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.943555\n", + "Epoch : 64 [20/36(56%)]\tLoss: 0.770157\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.321436\n", + "Epoch : 64 [28/36(78%)]\tLoss: 1.537467\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.372177\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.692623\n", + "Epoch : 65 [4/36(11%)]\tLoss: 0.287054\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.302303\n", + "Epoch : 65 [12/36(33%)]\tLoss: 0.226319\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.465100\n", + "Epoch : 65 [20/36(56%)]\tLoss: 1.373231\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.280714\n", + "Epoch : 65 [28/36(78%)]\tLoss: 0.294630\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.210705\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.158582\n", + "Epoch : 66 [4/36(11%)]\tLoss: 0.547003\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.336253\n", + "Epoch : 66 [12/36(33%)]\tLoss: 0.358549\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.166964\n", + "Epoch : 66 [20/36(56%)]\tLoss: 0.445944\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.248931\n", + "Epoch : 66 [28/36(78%)]\tLoss: 0.340863\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.935423\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.422308\n", + "Epoch : 67 [4/36(11%)]\tLoss: 0.187136\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.083363\n", + "Epoch : 67 [12/36(33%)]\tLoss: 0.327817\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.219522\n", + "Epoch : 67 [20/36(56%)]\tLoss: 0.473091\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.305501\n", + "Epoch : 67 [28/36(78%)]\tLoss: 0.704275\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.393954\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.329316\n", + "Epoch : 68 [4/36(11%)]\tLoss: 0.245231\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.301314\n", + "Epoch : 68 [12/36(33%)]\tLoss: 0.069452\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.273918\n", + "Epoch : 68 [20/36(56%)]\tLoss: 0.247260\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.315153\n", + "Epoch : 68 [28/36(78%)]\tLoss: 1.094564\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.195727\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.058028\n", + "Epoch : 69 [4/36(11%)]\tLoss: 0.200231\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.071208\n", + "Epoch : 69 [12/36(33%)]\tLoss: 0.067877\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.182366\n", + "Epoch : 69 [20/36(56%)]\tLoss: 0.499522\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.110493\n", + "Epoch : 69 [28/36(78%)]\tLoss: 0.232243\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.158149\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.337688\n", + "Epoch : 70 [4/36(11%)]\tLoss: 0.295254\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.212412\n", + "Epoch : 70 [12/36(33%)]\tLoss: 0.221524\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.448573\n", + "Epoch : 70 [20/36(56%)]\tLoss: 0.512592\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.103223\n", + "Epoch : 70 [28/36(78%)]\tLoss: 0.231413\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.185129\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.072488\n", + "Epoch : 71 [4/36(11%)]\tLoss: 0.136687\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.198924\n", + "Epoch : 71 [12/36(33%)]\tLoss: 0.326606\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.220849\n", + "Epoch : 71 [20/36(56%)]\tLoss: 0.233199\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.096637\n", + "Epoch : 71 [28/36(78%)]\tLoss: 0.344165\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.177654\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.405474\n", + "Epoch : 72 [4/36(11%)]\tLoss: 0.026111\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.018074\n", + "Epoch : 72 [12/36(33%)]\tLoss: 0.193470\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.272226\n", + "Epoch : 72 [20/36(56%)]\tLoss: 0.034218\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.130840\n", + "Epoch : 72 [28/36(78%)]\tLoss: 0.404787\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.099369\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.263782\n", + "Epoch : 73 [4/36(11%)]\tLoss: 0.089344\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.131802\n", + "Epoch : 73 [12/36(33%)]\tLoss: 0.140482\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.044323\n", + "Epoch : 73 [20/36(56%)]\tLoss: 0.062840\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.236557\n", + "Epoch : 73 [28/36(78%)]\tLoss: 0.625946\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.102461\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.136104\n", + "Epoch : 74 [4/36(11%)]\tLoss: 0.030818\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.452775\n", + "Epoch : 74 [12/36(33%)]\tLoss: 0.431664\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.124537\n", + "Epoch : 74 [20/36(56%)]\tLoss: 0.066081\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.304384\n", + "Epoch : 74 [28/36(78%)]\tLoss: 0.555564\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.222739\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.192729\n", + "Epoch : 75 [4/36(11%)]\tLoss: 0.221225\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.028449\n", + "Epoch : 75 [12/36(33%)]\tLoss: 0.391292\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.280716\n", + "Epoch : 75 [20/36(56%)]\tLoss: 0.217536\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.085715\n", + "Epoch : 75 [28/36(78%)]\tLoss: 0.616802\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.038608\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.087333\n", + "Epoch : 76 [4/36(11%)]\tLoss: 0.688452\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.341086\n", + "Epoch : 76 [12/36(33%)]\tLoss: 0.508193\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.209841\n", + "Epoch : 76 [20/36(56%)]\tLoss: 0.173942\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.550671\n", + "Epoch : 76 [28/36(78%)]\tLoss: 1.010044\n", + "Epoch : 76 [32/36(89%)]\tLoss: 1.104467\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.202633\n", + "Epoch : 77 [4/36(11%)]\tLoss: 0.148597\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.814240\n", + "Epoch : 77 [12/36(33%)]\tLoss: 0.983156\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.574800\n", + "Epoch : 77 [20/36(56%)]\tLoss: 0.153096\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.160473\n", + "Epoch : 77 [28/36(78%)]\tLoss: 0.063832\n", + "Epoch : 77 [32/36(89%)]\tLoss: 1.022892\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.245566\n", + "Epoch : 78 [4/36(11%)]\tLoss: 0.204380\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.375374\n", + "Epoch : 78 [12/36(33%)]\tLoss: 0.218102\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.506519\n", + "Epoch : 78 [20/36(56%)]\tLoss: 0.488757\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.991918\n", + "Epoch : 78 [28/36(78%)]\tLoss: 0.660751\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.345542\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.047863\n", + "Epoch : 79 [4/36(11%)]\tLoss: 0.581503\n", + "Epoch : 79 [8/36(22%)]\tLoss: 1.510533\n", + "Epoch : 79 [12/36(33%)]\tLoss: 0.679880\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.174522\n", + "Epoch : 79 [20/36(56%)]\tLoss: 0.296182\n", + "Epoch : 79 [24/36(67%)]\tLoss: 1.183414\n", + "Epoch : 79 [28/36(78%)]\tLoss: 1.841594\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.934966\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.911867\n", + "Epoch : 80 [4/36(11%)]\tLoss: 0.231247\n", + "Epoch : 80 [8/36(22%)]\tLoss: 2.147608\n", + "Epoch : 80 [12/36(33%)]\tLoss: 1.957234\n", + "Epoch : 80 [16/36(44%)]\tLoss: 1.529552\n", + "Epoch : 80 [20/36(56%)]\tLoss: 1.037712\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.377026\n", + "Epoch : 80 [28/36(78%)]\tLoss: 1.236741\n", + "Epoch : 80 [32/36(89%)]\tLoss: 1.094321\n", + "Epoch : 81 [0/36(0%)]\tLoss: 1.026140\n", + "Epoch : 81 [4/36(11%)]\tLoss: 0.969630\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.103538\n", + "Epoch : 81 [12/36(33%)]\tLoss: 0.042448\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.732809\n", + "Epoch : 81 [20/36(56%)]\tLoss: 1.691564\n", + "Epoch : 81 [24/36(67%)]\tLoss: 1.040061\n", + "Epoch : 81 [28/36(78%)]\tLoss: 0.989351\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.165973\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.346685\n", + "Epoch : 82 [4/36(11%)]\tLoss: 1.751097\n", + "Epoch : 82 [8/36(22%)]\tLoss: 1.272441\n", + "Epoch : 82 [12/36(33%)]\tLoss: 0.788554\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.223780\n", + "Epoch : 82 [20/36(56%)]\tLoss: 0.536842\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.639188\n", + "Epoch : 82 [28/36(78%)]\tLoss: 1.333787\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.871423\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.393604\n", + "Epoch : 83 [4/36(11%)]\tLoss: 0.398699\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.672005\n", + "Epoch : 83 [12/36(33%)]\tLoss: 1.192709\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.644871\n", + "Epoch : 83 [20/36(56%)]\tLoss: 0.294046\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.079848\n", + "Epoch : 83 [28/36(78%)]\tLoss: 0.333227\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.870014\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.409277\n", + "Epoch : 84 [4/36(11%)]\tLoss: 0.236562\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.181612\n", + "Epoch : 84 [12/36(33%)]\tLoss: 0.154829\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.161943\n", + "Epoch : 84 [20/36(56%)]\tLoss: 0.278741\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.309019\n", + "Epoch : 84 [28/36(78%)]\tLoss: 0.960270\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.088923\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.002025\n", + "Epoch : 85 [4/36(11%)]\tLoss: 0.100541\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.313190\n", + "Epoch : 85 [12/36(33%)]\tLoss: 0.444372\n", + "Epoch : 85 [16/36(44%)]\tLoss: 1.041807\n", + "Epoch : 85 [20/36(56%)]\tLoss: 0.314518\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.251520\n", + "Epoch : 85 [28/36(78%)]\tLoss: 1.283191\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.462550\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.605820\n", + "Epoch : 86 [4/36(11%)]\tLoss: 0.381609\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.051112\n", + "Epoch : 86 [12/36(33%)]\tLoss: 0.485893\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.458341\n", + "Epoch : 86 [20/36(56%)]\tLoss: 1.162276\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.311185\n", + "Epoch : 86 [28/36(78%)]\tLoss: 0.410062\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.111831\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.563563\n", + "Epoch : 87 [4/36(11%)]\tLoss: 1.113748\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.610995\n", + "Epoch : 87 [12/36(33%)]\tLoss: 0.737425\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.136035\n", + "Epoch : 87 [20/36(56%)]\tLoss: 0.872532\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.490218\n", + "Epoch : 87 [28/36(78%)]\tLoss: 0.909789\n", + "Epoch : 87 [32/36(89%)]\tLoss: 1.196093\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.366298\n", + "Epoch : 88 [4/36(11%)]\tLoss: 0.652463\n", + "Epoch : 88 [8/36(22%)]\tLoss: 1.585038\n", + "Epoch : 88 [12/36(33%)]\tLoss: 1.406729\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.585281\n", + "Epoch : 88 [20/36(56%)]\tLoss: 0.259845\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.320392\n", + "Epoch : 88 [28/36(78%)]\tLoss: 0.520836\n", + "Epoch : 88 [32/36(89%)]\tLoss: 1.467909\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.555926\n", + "Epoch : 89 [4/36(11%)]\tLoss: 0.267365\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.120339\n", + "Epoch : 89 [12/36(33%)]\tLoss: 0.647127\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.317099\n", + "Epoch : 89 [20/36(56%)]\tLoss: 0.504493\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.378018\n", + "Epoch : 89 [28/36(78%)]\tLoss: 0.501669\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.495069\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.176632\n", + "Epoch : 90 [4/36(11%)]\tLoss: 0.263795\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.737361\n", + "Epoch : 90 [12/36(33%)]\tLoss: 0.341994\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.410565\n", + "Epoch : 90 [20/36(56%)]\tLoss: 0.622714\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.510921\n", + "Epoch : 90 [28/36(78%)]\tLoss: 1.440267\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.863993\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.422403\n", + "Epoch : 91 [4/36(11%)]\tLoss: 0.032475\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.597104\n", + "Epoch : 91 [12/36(33%)]\tLoss: 0.683082\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.946118\n", + "Epoch : 91 [20/36(56%)]\tLoss: 0.464650\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.116632\n", + "Epoch : 91 [28/36(78%)]\tLoss: 0.566201\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.478480\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.909044\n", + "Epoch : 92 [4/36(11%)]\tLoss: 0.540279\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.254518\n", + "Epoch : 92 [12/36(33%)]\tLoss: 0.200436\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.546569\n", + "Epoch : 92 [20/36(56%)]\tLoss: 1.720573\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.646944\n", + "Epoch : 92 [28/36(78%)]\tLoss: 0.554087\n", + "Epoch : 92 [32/36(89%)]\tLoss: 2.065887\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.171944\n", + "Epoch : 93 [4/36(11%)]\tLoss: 1.541846\n", + "Epoch : 93 [8/36(22%)]\tLoss: 2.194288\n", + "Epoch : 93 [12/36(33%)]\tLoss: 1.942341\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.313381\n", + "Epoch : 93 [20/36(56%)]\tLoss: 0.905164\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.937344\n", + "Epoch : 93 [28/36(78%)]\tLoss: 2.616563\n", + "Epoch : 93 [32/36(89%)]\tLoss: 1.593619\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.442287\n", + "Epoch : 94 [4/36(11%)]\tLoss: 0.400634\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.833420\n", + "Epoch : 94 [12/36(33%)]\tLoss: 1.516606\n", + "Epoch : 94 [16/36(44%)]\tLoss: 1.375820\n", + "Epoch : 94 [20/36(56%)]\tLoss: 0.631176\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.060612\n", + "Epoch : 94 [28/36(78%)]\tLoss: 0.889196\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.579371\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.511248\n", + "Epoch : 95 [4/36(11%)]\tLoss: 0.150397\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.110574\n", + "Epoch : 95 [12/36(33%)]\tLoss: 0.477892\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.243976\n", + "Epoch : 95 [20/36(56%)]\tLoss: 0.365813\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.597229\n", + "Epoch : 95 [28/36(78%)]\tLoss: 0.349245\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.220596\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.089355\n", + "Epoch : 96 [4/36(11%)]\tLoss: 0.212888\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.208956\n", + "Epoch : 96 [12/36(33%)]\tLoss: 0.537428\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.223924\n", + "Epoch : 96 [20/36(56%)]\tLoss: 0.256076\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.172926\n", + "Epoch : 96 [28/36(78%)]\tLoss: 0.812030\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.218781\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.115903\n", + "Epoch : 97 [4/36(11%)]\tLoss: 0.177059\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.125694\n", + "Epoch : 97 [12/36(33%)]\tLoss: 0.365648\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.212901\n", + "Epoch : 97 [20/36(56%)]\tLoss: 0.210495\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.145687\n", + "Epoch : 97 [28/36(78%)]\tLoss: 0.557763\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.138183\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.100495\n", + "Epoch : 98 [4/36(11%)]\tLoss: 0.192695\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.164880\n", + "Epoch : 98 [12/36(33%)]\tLoss: 0.053229\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.161466\n", + "Epoch : 98 [20/36(56%)]\tLoss: 0.315790\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.089623\n", + "Epoch : 98 [28/36(78%)]\tLoss: 0.747989\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.210732\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.105131\n", + "Epoch : 99 [4/36(11%)]\tLoss: 0.283214\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.086097\n", + "Epoch : 99 [12/36(33%)]\tLoss: 0.289705\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.129297\n", + "Epoch : 99 [20/36(56%)]\tLoss: 0.391019\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.062594\n", + "Epoch : 99 [28/36(78%)]\tLoss: 0.684636\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.127489\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.127472\n", + "Epoch : 100 [4/36(11%)]\tLoss: 0.202603\n", + "Epoch : 100 [8/36(22%)]\tLoss: 0.069482\n", + "Epoch : 100 [12/36(33%)]\tLoss: 0.111396\n", + "Epoch : 100 [16/36(44%)]\tLoss: 0.038661\n", + "Epoch : 100 [20/36(56%)]\tLoss: 0.163782\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.127606\n", + "Epoch : 100 [28/36(78%)]\tLoss: 0.323295\n", + "Epoch : 100 [32/36(89%)]\tLoss: 0.147426\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.094921\n", + "Epoch : 101 [4/36(11%)]\tLoss: 0.059642\n", + "Epoch : 101 [8/36(22%)]\tLoss: 0.131736\n", + "Epoch : 101 [12/36(33%)]\tLoss: 0.059232\n", + "Epoch : 101 [16/36(44%)]\tLoss: 0.057350\n", + "Epoch : 101 [20/36(56%)]\tLoss: 0.215281\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.030780\n", + "Epoch : 101 [28/36(78%)]\tLoss: 0.176347\n", + "Epoch : 101 [32/36(89%)]\tLoss: 0.131793\n", + "Epoch : 102 [0/36(0%)]\tLoss: 0.182563\n", + "Epoch : 102 [4/36(11%)]\tLoss: 0.124452\n", + "Epoch : 102 [8/36(22%)]\tLoss: 0.096170\n", + "Epoch : 102 [12/36(33%)]\tLoss: 0.034396\n", + "Epoch : 102 [16/36(44%)]\tLoss: 0.090513\n", + "Epoch : 102 [20/36(56%)]\tLoss: 0.095970\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.120022\n", + "Epoch : 102 [28/36(78%)]\tLoss: 0.518787\n", + "Epoch : 102 [32/36(89%)]\tLoss: 0.083936\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.175328\n", + "Epoch : 103 [4/36(11%)]\tLoss: 0.041257\n", + "Epoch : 103 [8/36(22%)]\tLoss: 0.072607\n", + "Epoch : 103 [12/36(33%)]\tLoss: 0.026839\n", + "Epoch : 103 [16/36(44%)]\tLoss: 0.040202\n", + "Epoch : 103 [20/36(56%)]\tLoss: 0.105807\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.157520\n", + "Epoch : 103 [28/36(78%)]\tLoss: 0.211899\n", + "Epoch : 103 [32/36(89%)]\tLoss: 0.122434\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.106286\n", + "Epoch : 104 [4/36(11%)]\tLoss: 0.111526\n", + "Epoch : 104 [8/36(22%)]\tLoss: 0.097372\n", + "Epoch : 104 [12/36(33%)]\tLoss: 0.077214\n", + "Epoch : 104 [16/36(44%)]\tLoss: 0.063729\n", + "Epoch : 104 [20/36(56%)]\tLoss: 0.288503\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.028669\n", + "Epoch : 104 [28/36(78%)]\tLoss: 0.395364\n", + "Epoch : 104 [32/36(89%)]\tLoss: 0.119164\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.133995\n", + "Epoch : 105 [4/36(11%)]\tLoss: 0.123143\n", + "Epoch : 105 [8/36(22%)]\tLoss: 0.009681\n", + "Epoch : 105 [12/36(33%)]\tLoss: 0.079229\n", + "Epoch : 105 [16/36(44%)]\tLoss: 0.152628\n", + "Epoch : 105 [20/36(56%)]\tLoss: 0.349083\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.076181\n", + "Epoch : 105 [28/36(78%)]\tLoss: 0.254845\n", + "Epoch : 105 [32/36(89%)]\tLoss: 0.119811\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.092566\n", + "Epoch : 106 [4/36(11%)]\tLoss: 0.265041\n", + "Epoch : 106 [8/36(22%)]\tLoss: 0.041758\n", + "Epoch : 106 [12/36(33%)]\tLoss: 0.063744\n", + "Epoch : 106 [16/36(44%)]\tLoss: 0.088676\n", + "Epoch : 106 [20/36(56%)]\tLoss: 0.179997\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.096968\n", + "Epoch : 106 [28/36(78%)]\tLoss: 0.256847\n", + "Epoch : 106 [32/36(89%)]\tLoss: 0.095598\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.114264\n", + "Epoch : 107 [4/36(11%)]\tLoss: 0.041452\n", + "Epoch : 107 [8/36(22%)]\tLoss: 0.049057\n", + "Epoch : 107 [12/36(33%)]\tLoss: 0.045733\n", + "Epoch : 107 [16/36(44%)]\tLoss: 0.053891\n", + "Epoch : 107 [20/36(56%)]\tLoss: 0.276433\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.165489\n", + "Epoch : 107 [28/36(78%)]\tLoss: 0.350291\n", + "Epoch : 107 [32/36(89%)]\tLoss: 0.321257\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.542668\n", + "Epoch : 108 [4/36(11%)]\tLoss: 0.060620\n", + "Epoch : 108 [8/36(22%)]\tLoss: 0.137485\n", + "Epoch : 108 [12/36(33%)]\tLoss: 0.008441\n", + "Epoch : 108 [16/36(44%)]\tLoss: 0.198874\n", + "Epoch : 108 [20/36(56%)]\tLoss: 0.160716\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.300373\n", + "Epoch : 108 [28/36(78%)]\tLoss: 0.511211\n", + "Epoch : 108 [32/36(89%)]\tLoss: 0.176301\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.178465\n", + "Epoch : 109 [4/36(11%)]\tLoss: 0.057652\n", + "Epoch : 109 [8/36(22%)]\tLoss: 0.143417\n", + "Epoch : 109 [12/36(33%)]\tLoss: 0.059465\n", + "Epoch : 109 [16/36(44%)]\tLoss: 0.195057\n", + "Epoch : 109 [20/36(56%)]\tLoss: 0.189335\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.141871\n", + "Epoch : 109 [28/36(78%)]\tLoss: 0.615230\n", + "Epoch : 109 [32/36(89%)]\tLoss: 0.215620\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.215612\n", + "Epoch : 110 [4/36(11%)]\tLoss: 0.053607\n", + "Epoch : 110 [8/36(22%)]\tLoss: 0.371824\n", + "Epoch : 110 [12/36(33%)]\tLoss: 0.180240\n", + "Epoch : 110 [16/36(44%)]\tLoss: 0.337481\n", + "Epoch : 110 [20/36(56%)]\tLoss: 0.179367\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.138704\n", + "Epoch : 110 [28/36(78%)]\tLoss: 0.488978\n", + "Epoch : 110 [32/36(89%)]\tLoss: 0.224748\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.094714\n", + "Epoch : 111 [4/36(11%)]\tLoss: 0.144241\n", + "Epoch : 111 [8/36(22%)]\tLoss: 0.202913\n", + "Epoch : 111 [12/36(33%)]\tLoss: 0.137015\n", + "Epoch : 111 [16/36(44%)]\tLoss: 0.059306\n", + "Epoch : 111 [20/36(56%)]\tLoss: 0.276600\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.045100\n", + "Epoch : 111 [28/36(78%)]\tLoss: 0.312854\n", + "Epoch : 111 [32/36(89%)]\tLoss: 0.032778\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.092271\n", + "Epoch : 112 [4/36(11%)]\tLoss: 0.163441\n", + "Epoch : 112 [8/36(22%)]\tLoss: 0.118656\n", + "Epoch : 112 [12/36(33%)]\tLoss: 0.274510\n", + "Epoch : 112 [16/36(44%)]\tLoss: 0.175687\n", + "Epoch : 112 [20/36(56%)]\tLoss: 0.432427\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.310808\n", + "Epoch : 112 [28/36(78%)]\tLoss: 0.493357\n", + "Epoch : 112 [32/36(89%)]\tLoss: 0.050198\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.072987\n", + "Epoch : 113 [4/36(11%)]\tLoss: 0.331352\n", + "Epoch : 113 [8/36(22%)]\tLoss: 0.387593\n", + "Epoch : 113 [12/36(33%)]\tLoss: 0.834939\n", + "Epoch : 113 [16/36(44%)]\tLoss: 0.199774\n", + "Epoch : 113 [20/36(56%)]\tLoss: 0.385507\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.484463\n", + "Epoch : 113 [28/36(78%)]\tLoss: 0.273400\n", + "Epoch : 113 [32/36(89%)]\tLoss: 0.718488\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.403973\n", + "Epoch : 114 [4/36(11%)]\tLoss: 0.068258\n", + "Epoch : 114 [8/36(22%)]\tLoss: 0.290743\n", + "Epoch : 114 [12/36(33%)]\tLoss: 0.477761\n", + "Epoch : 114 [16/36(44%)]\tLoss: 0.380654\n", + "Epoch : 114 [20/36(56%)]\tLoss: 0.091875\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.081151\n", + "Epoch : 114 [28/36(78%)]\tLoss: 0.274136\n", + "Epoch : 114 [32/36(89%)]\tLoss: 0.250242\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.507620\n", + "Epoch : 115 [4/36(11%)]\tLoss: 0.323539\n", + "Epoch : 115 [8/36(22%)]\tLoss: 0.177284\n", + "Epoch : 115 [12/36(33%)]\tLoss: 0.091285\n", + "Epoch : 115 [16/36(44%)]\tLoss: 0.163077\n", + "Epoch : 115 [20/36(56%)]\tLoss: 0.192332\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.923827\n", + "Epoch : 115 [28/36(78%)]\tLoss: 1.110100\n", + "Epoch : 115 [32/36(89%)]\tLoss: 0.126186\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.216951\n", + "Epoch : 116 [4/36(11%)]\tLoss: 0.475299\n", + "Epoch : 116 [8/36(22%)]\tLoss: 0.741449\n", + "Epoch : 116 [12/36(33%)]\tLoss: 0.492211\n", + "Epoch : 116 [16/36(44%)]\tLoss: 0.770206\n", + "Epoch : 116 [20/36(56%)]\tLoss: 0.228203\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.209725\n", + "Epoch : 116 [28/36(78%)]\tLoss: 0.849331\n", + "Epoch : 116 [32/36(89%)]\tLoss: 1.219790\n", + "Epoch : 117 [0/36(0%)]\tLoss: 1.739294\n", + "Epoch : 117 [4/36(11%)]\tLoss: 0.044670\n", + "Epoch : 117 [8/36(22%)]\tLoss: 0.373039\n", + "Epoch : 117 [12/36(33%)]\tLoss: 0.729918\n", + "Epoch : 117 [16/36(44%)]\tLoss: 1.452151\n", + "Epoch : 117 [20/36(56%)]\tLoss: 2.124308\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.173664\n", + "Epoch : 117 [28/36(78%)]\tLoss: 0.098715\n", + "Epoch : 117 [32/36(89%)]\tLoss: 1.049638\n", + "Epoch : 118 [0/36(0%)]\tLoss: 1.757223\n", + "Epoch : 118 [4/36(11%)]\tLoss: 2.485800\n", + "Epoch : 118 [8/36(22%)]\tLoss: 0.674959\n", + "Epoch : 118 [12/36(33%)]\tLoss: 0.267450\n", + "Epoch : 118 [16/36(44%)]\tLoss: 1.035533\n", + "Epoch : 118 [20/36(56%)]\tLoss: 2.995363\n", + "Epoch : 118 [24/36(67%)]\tLoss: 2.088578\n", + "Epoch : 118 [28/36(78%)]\tLoss: 1.321098\n", + "Epoch : 118 [32/36(89%)]\tLoss: 0.358190\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.249299\n", + "Epoch : 119 [4/36(11%)]\tLoss: 2.127769\n", + "Epoch : 119 [8/36(22%)]\tLoss: 3.364528\n", + "Epoch : 119 [12/36(33%)]\tLoss: 2.444489\n", + "Epoch : 119 [16/36(44%)]\tLoss: 0.460074\n", + "Epoch : 119 [20/36(56%)]\tLoss: 1.865427\n", + "Epoch : 119 [24/36(67%)]\tLoss: 2.367867\n", + "Epoch : 119 [28/36(78%)]\tLoss: 3.739734\n", + "Epoch : 119 [32/36(89%)]\tLoss: 1.450463\n", + "--- 0.10907597541809082 minutes ---\n" ] } ], @@ -866,14 +1835,14 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrrklEQVR4nO3dd3iTZRcG8DtpaWmhLVDoklL2pgMoFSqIDNnKEkS2DGUjooJsFFHZyEYBB0vmh0wBQfamzLJklVGGQBe7eb8/jumAtHQkeTPu33XlIg1pckpLc/I85zlHoyiKAiIiIiIboVU7ACIiIiJjYnJDRERENoXJDREREdkUJjdERERkU5jcEBERkU1hckNEREQ2hckNERER2RRHtQMwN51Ohxs3bsDNzQ0ajUbtcIiIiCgDFEVBXFwc/Pz8oNWmvzZjd8nNjRs34O/vr3YYRERElAVRUVEoWLBguvexu+TGzc0NgPzjuLu7qxwNERERZURsbCz8/f2TXsfTY3fJjX4ryt3dnckNERGRlclISQkLiomIiMimMLkhIiIim8LkhoiIiGyK3dXcEBGRcSUmJuLZs2dqh0E2wMnJ6ZXHvDOCyQ0REWWJoiiIjo7GgwcP1A6FbIRWq0WRIkXg5OSUrcdhckNERFmiT2y8vLzg6urKxqiULfomuzdv3kShQoWy9fPE5IaIiDItMTExKbHx9PRUOxyyEQUKFMCNGzfw/Plz5MiRI8uPw4JiIiLKNH2Njaurq8qRkC3Rb0clJiZm63GY3BARUZZxK4qMyVg/T0xuiIiIyKYwuSEiIiKbwuSGiIgomwoXLozJkydn+P7bt2+HRqMx+TH6BQsWIE+ePCZ9DkvE5IbI0iUmyoWIsk2j0aR7GTlyZJYe9+DBg+jevXuG71+tWjXcvHkTHh4eWXo+Sh+PghNZukaNgOPHgVOngLx51Y6GyKrdvHkz6frSpUsxfPhwnD17Num23LlzJ11XFAWJiYlwdHz1S2WBAgUyFYeTkxN8fHwy9TmUcVy5IbJkV68CmzYBN28CO3aoHQ1RuhQFSEhQ56IoGYvRx8cn6eLh4QGNRpP08ZkzZ+Dm5oYNGzagUqVKcHZ2xq5du/DPP//g3Xffhbe3N3Lnzo3Q0FBs2bIl1eO+uC2l0Wjw448/olmzZnB1dUWJEiWwZs2apL9/cVtKv320adMmlClTBrlz50b9+vVTJWPPnz9H3759kSdPHnh6euKLL75Ax44d0bRp00x9n2bOnIlixYrByckJpUqVwq+//prie6hg5MiRKFSoEJydneHn54e+ffsm/f2MGTNQokQJ5MyZE97e3mjZsmWmnttcmNwQWbLNm5OvHzigXhxEGfDwIZA7tzqXhw+N93UMGjQI3377LSIjIxEYGIj4+Hg0bNgQW7duxdGjR1G/fn00adIEV69eTfdxRo0ahVatWuH48eNo2LAh2rZti3v37qXz7/cQ48ePx6+//oodO3bg6tWrGDhwYNLff/fdd1i4cCHmz5+P3bt3IzY2FqtXr87U17Zq1Sr069cPn376KU6ePImPPvoInTt3xrZt2wAAK1aswKRJkzB79mycP38eq1evRoUKFQAAhw4dQt++fTF69GicPXsWGzduRI0aNTL1/GajqOjvv/9WGjdurPj6+ioAlFWrVmX4c3ft2qU4ODgoQUFBmXrOmJgYBYASExOTuWCJ1NCqlaLIm1JFqVNH7WiIkjx69Eg5ffq08ujRo6Tb4uOTf1zNfYmPz/zXMH/+fMXDwyPp423btikAlNWrV7/yc8uVK6f88MMPSR8HBAQokyZNSvoYgDJ06NAU/zbxCgBlw4YNqZ7r/v37SbEAUC5cuJD0OdOnT1e8vb2TPvb29lbGjRuX9PHz58+VQoUKKe+++26Gv8Zq1aop3bp1S3Wf9957T2nYsKGiKIoyYcIEpWTJksrTp09feqwVK1Yo7u7uSmxsbJrPl12Gfq70MvP6rerKTUJCAoKCgjB9+vRMfd6DBw/QoUMH1K5d20SREVmAxEQg5dL3wYOATqdePESv4OoKxMerczFmo+TKlSun+jg+Ph4DBw5EmTJlkCdPHuTOnRuRkZGvXLkJDAxMup4rVy64u7vj9u3bad7f1dUVxYoVS/rY19c36f4xMTG4desWqlSpkvT3Dg4OqFSpUqa+tsjISISHh6e6LTw8HJGRkQCA9957D48ePULRokXRrVs3rFq1Cs+fPwcA1K1bFwEBAShatCjat2+PhQsX4qExl8yMSNWC4gYNGqBBgwaZ/ryPP/4YH3zwARwcHDK9JEdkNY4eBe7dA9zdgWfPgJgY4Px5oFQptSMjMkijAXLlUjuK7Mv1whcxcOBAbN68GePHj0fx4sXh4uKCli1b4unTp+k+zouzkTQaDXTpvEExdH8lo8VERuLv74+zZ89iy5Yt2Lx5M3r27Ilx48bh77//hpubG44cOYLt27fjzz//xPDhwzFy5EgcPHjQ4o6bW13Nzfz583Hx4kWMGDEiQ/d/8uQJYmNjU12IrMKff8qftWoBFSvKddbdEJnd7t270alTJzRr1gwVKlSAj48PLl++bNYYPDw84O3tjYMHDybdlpiYiCNHjmTqccqUKYPdu3enum337t0oW7Zs0scuLi5o0qQJpk6diu3bt2Pv3r04ceIEAMDR0RF16tTB999/j+PHj+Py5cv466+/svGVmYZVHQU/f/48Bg0ahJ07d2boaB4AjB07FqNGjTJxZEQmoE9u3n5bVmx275bkpn17deMisjMlSpTAypUr0aRJE2g0GgwbNizdFRhT6dOnD8aOHYvixYujdOnS+OGHH3D//v1MzWP67LPP0KpVK4SEhKBOnTr4448/sHLlyqTTXwsWLEBiYiLCwsLg6uqK3377DS4uLggICMDatWtx8eJF1KhRA3nz5sX69euh0+lQygJXk61m5SYxMREffPABRo0ahZIlS2b48wYPHoyYmJikS1RUlAmjJDKS+Hhgzx65/vbbgH6fnSs3RGY3ceJE5M2bF9WqVUOTJk1Qr149VNSvpprRF198gTZt2qBDhw6oWrUqcufOjXr16iFnzpwZfoymTZtiypQpGD9+PMqVK4fZs2dj/vz5qFmzJgAgT548mDt3LsLDwxEYGIgtW7bgjz/+gKenJ/LkyYOVK1eiVq1aKFOmDGbNmoXFixejXLlyJvqKs06jmHtDLw0ajQarVq1K87z+gwcPkDdvXjg4OCTdptPpoCgKHBwc8Oeff6JWrVqvfJ7Y2Fh4eHggJiYG7u7uxgqfyLjWrQMaNwaKFgX++Qe4eBEoVgxwcgJiYwFnZ7UjJDv3+PFjXLp0CUWKFMnUiysZj06nQ5kyZdCqVSt89dVXaodjFOn9XGXm9dtqtqXc3d2T9vz0ZsyYgb/++gvLly9HkSJFVIqMyARSbkkBQJEigKcn8O+/0q04NFS92IhIFVeuXMGff/6JN998E0+ePMG0adNw6dIlfPDBB2qHZnFUTW7i4+Nx4cKFpI8vXbqEiIgI5MuXD4UKFcLgwYNx/fp1/PLLL9BqtShfvnyqz/fy8kLOnDlfup3I6umTm7p15U+NRramNmyQrSkmN0R2R6vVYsGCBRg4cCAURUH58uWxZcsWlClTRu3QLI6qyc2hQ4fw1ltvJX08YMAAAEDHjh2xYMEC3Lx585V9BIhsztWrwJkzgFYrJ6X0UiY3vXqpFx8RqcLf3/+lk05kmKrJTc2aNdM9w79gwYJ0P3/kyJFZnuBKZLH0IxfCwoCUvSNYVExElCFWc1qKyG7okxt9vY2efivqzBlp6EdERAYxuSGyJImJaSc3BQpIYTEAHDpk3riIiKwIkxsiS5Jy5EKKGTJJuDVFRPRKTG6ILEnKkQuGunAzuSEieiUmN0SW5MX+Ni9ickNkEWrWrIn+/fsnfVy4cGFMnjw53c/RaDRGGfZsrMdJz8iRIxEcHGzS5zAlJjdEluLFkQuGhIQADg7AjRvA9evmi43IRjRp0gT169c3+Hc7d+6ERqPB8ePHM/24Bw8eRPfu3bMbXippJRg3b95EgwYNjPpctobJDZGl+Ptv4NkzGblQrJjh++TKBeibVnL1hijTunTpgs2bN+PatWsv/d38+fNRuXJlBAYGZvpxCxQoAFdXV2OE+Eo+Pj5w5giWdDG5IbIUL3YlTgu3poiyrHHjxihQoMBLfdTi4+OxbNkydOnSBf/++y/atGmD1157Da6urqhQoQIWL16c7uO+uC11/vx51KhRAzlz5kTZsmWxWX8KMoUvvvgCJUuWhKurK4oWLYphw4bh2bNnAKTP26hRo3Ds2DFoNBpoNJqkmF/cljpx4gRq1aoFFxcXeHp6onv37oiPj0/6+06dOqFp06YYP348fH194enpiV69eiU9V0bodDqMHj0aBQsWhLOzM4KDg7Fx48akv3/69Cl69+4NX19f5MyZEwEBARg7diwAQFEUjBw5EoUKFYKzszP8/PzQt2/fDD93VljNbCkim/eqehu9KlWAuXOZ3JDlURTg4UN1ntvVVcaUvIKjoyM6dOiABQsWYMiQIdD89znLli1DYmIi2rRpg/j4eFSqVAlffPEF3N3dsW7dOrRv3x7FihVDFUOnGF+g0+nQvHlzeHt7Y//+/YiJiUlVn6Pn5uaGBQsWwM/PDydOnEC3bt3g5uaGzz//HK1bt8bJkyexceNGbNmyBQDg4eHx0mMkJCSgXr16qFq1Kg4ePIjbt2+ja9eu6N27d6oEbtu2bfD19cW2bdtw4cIFtG7dGsHBwejWrdsrvx4AmDJlCiZMmIDZs2cjJCQE8+bNwzvvvINTp06hRIkSmDp1KtasWYPff/8dhQoVQlRUFKKiogAAK1aswKRJk7BkyRKUK1cO0dHROHbsWIaeN8sUOxMTE6MAUGJiYtQOhSjZlSuKAiiKVqso9++nf99jx+S+bm6KkpholvCIXvTo0SPl9OnTyqNHj5JvjI+Xn001LvHxGY49MjJSAaBs27Yt6bbq1asr7dq1S/NzGjVqpHz66adJH7/55ptKv379kj4OCAhQJk2apCiKomzatElxdHRUrl+/nvT3GzZsUAAoq1atSvM5xo0bp1SqVCnp4xEjRihBQUEv3S/l48yZM0fJmzevEp/i61+3bp2i1WqV6OhoRVEUpWPHjkpAQIDy/PnzpPu89957SuvWrdOM5cXn9vPzU8aMGZPqPqGhoUrPnj0VRVGUPn36KLVq1VJ0Ot1LjzVhwgSlZMmSytOnT9N8Pj2DP1f/yczrN7eliCxBWiMXDClbVt6lxsUBZ8+aPDQiW1O6dGlUq1YN8+bNAwBcuHABO3fuRJcuXQAAiYmJ+Oqrr1ChQgXky5cPuXPnxqZNmzI86zAyMhL+/v7w8/NLuq1q1aov3W/p0qUIDw+Hj48PcufOjaFDh2Z6nmJkZCSCgoKQK1eupNvCw8Oh0+lwNsXvh3LlysHBwSHpY19fX9y+fTtDzxEbG4sbN24gPDw81e3h4eGIjIwEIFtfERERKFWqFPr27Ys/9SvRAN577z08evQIRYsWRbdu3bBq1So8f/48U19nZjG5IbIEaXUlNsTREahUSa5za4osiaurnPpT45LJYt4uXbpgxYoViIuLw/z581GsWDG8+eabAIBx48ZhypQp+OKLL7Bt2zZERESgXr16ePr0qdH+qfbu3Yu2bduiYcOGWLt2LY4ePYohQ4YY9TlSypEjR6qPNRoNdDqd0R6/YsWKuHTpEr766is8evQIrVq1QsuWLQHIwM+zZ89ixowZcHFxQc+ePVGjRo1M1fxkFpMbIrWlHLnwqmJiPRYVkyXSaOREnxqXDNTbpNSqVStotVosWrQIv/zyCz788MOk+pvdu3fj3XffRbt27RAUFISiRYvi3LlzGX7sMmXKICoqCjdv3ky6bd++fanus2fPHgQEBGDIkCGoXLkySpQogStXrqS6j5OTExITE1/5XMeOHUNCQkLSbbt374ZWq0WpUqUyHHN63N3d4efn99JE8t27d6Ns2bKp7te6dWvMnTsXS5cuxYoVK3Dv3j0AgIuLC5o0aYKpU6di+/bt2Lt3L06cOGGU+AxhQTGR2l41csEQJjdE2ZI7d260bt0agwcPRmxsLDp16pT0dyVKlMDy5cuxZ88e5M2bFxMnTsStW7dSvZCnp06dOihZsiQ6duyIcePGITY2FkOGDEl1nxIlSuDq1atYsmQJQkNDsW7dOqxatSrVfQoXLoxLly4hIiICBQsWhJub20tHwNu2bYsRI0agY8eOGDlyJO7cuYM+ffqgffv28Pb2zto/jgGfffYZRowYgWLFiiE4OBjz589HREQEFi5cCACYOHEifH19ERISAq1Wi2XLlsHHxwd58uTBggULkJiYiLCwMLi6uuK3336Di4sLAgICjBbfi7hyQ6S2lCMXXlg6TpM+uTl2DHj82DRxEdm4Ll264P79+6hXr16q+pihQ4eiYsWKqFevHmrWrAkfHx80bdo0w4+r1WqxatUqPHr0CFWqVEHXrl0xZsyYVPd555138Mknn6B3794IDg7Gnj17MGzYsFT3adGiBerXr4+33noLBQoUMHgc3dXVFZs2bcK9e/cQGhqKli1bonbt2pg2bVrm/jFeoW/fvhgwYAA+/fRTVKhQARs3bsSaNWtQokQJAHLy6/vvv0flypURGhqKy5cvY/369dBqtciTJw/mzp2L8PBwBAYGYsuWLfjjjz/g6elp1BhT0iiKopjs0S1QbGwsPDw8EBMTA3d3d7XDIQJq1pQGfjNmAD16ZOxzFAXw9gbu3AH27ZNCZCIzevz4MS5duoQiRYogZ86caodDNiK9n6vMvH5z5YZITRkZuWCIRsOtKSKiNDC5IVKTfuRCkSJpj1xIC5MbIiKDmNwQqSmjXYkNYXJDRGQQkxsiNWUnuQkNlT/PnQPu3zdeTEREVo7JDZFaoqKAM2cArVZOSmWWp2fyVtahQ8aNjSiD7OxMCpmYsX6emNwQqSUzIxfSwq0pUom+4+1DtQZlkk3Sd2hOOSoiK9jEj0gt+i2pjHYlNqRKFWDxYiY3ZHYODg7IkydP0nwiV1fXpA6/RFmh0+lw584duLq6wtExe+kJkxsiNaQcuZCVehs9/crN/v3S+4YvLmRGPj4+AJDhAYxEr6LValGoUKFsJ8pMbojUkJWRC4aEhAAODsCtW8C1a4C/v/FiJHoFjUYDX19feHl5mXQIItkPJycnaLXZr5hhckOkhqyMXDDExQUIDJRk6cABJjekCgcHh2zXSBAZEwuKidRgjC0pPRYVExGlwuSGyNzi44Hdu+V6doqJ9ZjcEBGlwuSGyNyyM3LBEH1yc+iQFCoTEdk5JjdE5payK7ExTjeVKQPkyiUrQmfOZP/xiIisHJMbInPLzsgFQxwcgMqV5Tq3poiImNwQmVV2Ry6khXU3RERJmNwQmZP+lFSVKlkfuWAIkxsioiRMbojMydhbUnr65Ob4ceDRI+M+NhGRlWFyQ2Quxhq5YIi/P+DtDTx/DkREGPexiYisDJMbInMx1sgFQzQabk0REf2HyQ2RuehXbbI7ciEtTG6IiAAwuSEyH329jTG6EhuiT24OHjTN4xMRWQkmN0TmkHLkgrHrbfT0vW7On5ftLyIiO8XkhsgcjD1ywZB8+YASJeT6oUOmeQ4iIivA5IbIHIw9ciEtoaHyJ+tuiMiOMbkhMgdTHQF/EYuKiYiY3BCZXFQUEBlp/JELhqRMbhTFtM9FRGShmNwQmZqpRi4YEhwMODoCt25JUkVEZIeY3BCZmqlGLhji4gIEBsp1bk0RkZ1ickNkSjodsGWLXDdHcgOw7oaI7B6TGyJTOnoU+Pdf04xcSAuTGyKyc0xuiExJvyX11lumGblgiD65OXRIhnUSEdkZJjdEpmTOehu90qWB3LmBhAQ5pUVEZGeY3BCZijlGLhji4JA8ioFbU0Rkh5jcEJmKOUYupIV1N0Rkx5jcEJlKyq7Ephy5YAiTGyKyY0xuiExFX29Tt675n1uf3Bw/Djx6ZP7nJyJSEZMbIlMw58gFQwoWBHx85LTU0aPmf34iIhUxuTGWY8eAtm2Bjz9WOxKyBClHLuTNa/7n12i4NUVEdkvV5GbHjh1o0qQJ/Pz8oNFosHr16nTvv3LlStStWxcFChSAu7s7qlatik2bNpkn2Fd5/BhYtAhYuZIDC0mdI+AvYnJDRHZK1eQmISEBQUFBmD59eobuv2PHDtStWxfr16/H4cOH8dZbb6FJkyY4agnL7oGBMrDwzh0OLLR3aoxcMITJDRHZKY2iWMYyg0ajwapVq9C0adNMfV65cuXQunVrDB8+PEP3j42NhYeHB2JiYuDu7p6FSNMREgJERAArVgDNmxv3scl6HD4sfWbc3GT0grk6E7/o/n0gXz65fvcu4OmpThxEREaQmddvq6650el0iIuLQz79L3ADnjx5gtjY2FQXk9E3Tjt0yHTPQZZPvyVVq5Z6iQ0gtT4lS8r1gwfVi4OIyMysOrkZP3484uPj0apVqzTvM3bsWHh4eCRd/P39TReQPrk5fNh0z0GWzxLqbfS4NUVEdshqk5tFixZh1KhR+P333+Hl5ZXm/QYPHoyYmJikS5QJ62Eu5EmxcmMZu31kbmqNXEgLkxsiskOOageQFUuWLEHXrl2xbNky1KlTJ937Ojs7w9nZ2eQxbdsGtOpWHtc1TnC6dw+4fFna7pN92bFDvZELhqRMbhTF/J2SiYhUYHUrN4sXL0bnzp2xePFiNGrUSO1wkuTPDzzVOOOYEggA0B1g3Y1dStmV2BISiaAgqfu5cwe4ckXtaIiIzELV5CY+Ph4RERGIiIgAAFy6dAkRERG4evUqANlS6tChQ9L9Fy1ahA4dOmDChAkICwtDdHQ0oqOjERMTo0b4qVSoIIekjmhka2rHJCY3dsmS6m0AIGdOSXAAbk0Rkd1QNbk5dOgQQkJCEBISAgAYMGAAQkJCko5137x5MynRAYA5c+bg+fPn6NWrF3x9fZMu/fr1UyX+F9WpA5TvJMlN4v5DmDlT5YDIvNQeuZAW1t0QkZ2xmD435mLSPjeAjGEIDsYDeCC/5h5Wr9GicWPjPw1ZoHnzgC5dgNdfB/buVTuaZD//DHTqBFSvLjVBRERWyG763FiksmWhODsjD2JQRPkHrVuz7Y3dsLQtKT39ys3hw8Dz5+rGQkRkBkxujC1HDmiCgwEAncsfwsOHQKNGwKVL6oZFJpZy5ELduurG8qJSpaRb8sOHwOnTakdDRGRyTG5M4b9mfp/WPITAQOD2baBhQ+DePZXjItM5elRGLbi5AWFhakeTmlYLhIbKddbdEJEdYHJjCv8lN87HD2H9eqBgQeDMGaBZM+DJE5VjI9OwlJELaWFRMRHZESY3pqAfw3DkCF7zScT69YC7u9RyduokOxhkYyy13kaPyQ0R2REmN6ZQujTg6iqt+M+dS+qB4+gILFkCfPml2gGSUVnayAVD9MnNyZNAQoK6sRARmRiTG1NwdAT+692jPypVpw7w449y03ffAbNmqRQbGZ9+5ELhwpYxcsGQ114D/PyAxESpDyIismFMbkylcoohmv/p2BEYNUqu9+oFrF2rQlxkfCm3pCxh5EJauDVFRHaCyY2pGEhuAGDYMKBzZ6m7YQ8cG2Hp9TZ6TG6IyE4wuTEVfXJz9GiqxmkaDTB7trRCefgQaNxYBoiTlbLUkQuGMLkhIjvB5MZUSpYEcucGHj2Sc+Ap5MgBLF8OBAYCt24BDRoA9++rFCdlz+bN8meVKkDevOrG8ir6hPvSJZkSTkRko5jcmIpWC1SqJNcN7D25uyNVD5ymTdkDxyrpkxtL35ICAA8POckHAAcPqhsLEZEJMbkxpTTqbvReew3sgWPNdLrk5MbSRi6khVtTRGQHmNyY0iuSGwAv9cAZMsRMsVH2WfLIhbQwuSEiO8DkxpT0yU1EhPRBSUPKHjjffsseOFbD0kcuGJIyuVEUdWMhIjIRJjemVKyY1Dk8eQKcOpXuXdkDxwpZyxHwlAIDAScnWXHiqHoislFMbkxJo0m3qPhF7IFjRRISLH/kgiHOzkBwsFzn1hQR2SgmN6aWgbobPfbAsSJ//235IxfSwrobIrJxTG5MLRPJDcAeOFbDWkYuGMLkhohsHJMbU9MnN8ePZ7iRDXvgWAFrrLfR0yc3R46kW+hORGStmNyYWuHCQL588iJy4kSGP409cCzYtWvWM3LBkBIlpND90aNXFroTEVkjJjemptFkemtKjz1wLJQ1jVwwRKsFQkPlOremiMgGMbkxhywmNwB74Fgk/ZaUtXQlNoR1N0Rkw5jcmEM2khuAPXAsSsqRC9ZYb6PH5IaIbBiTG3PQJzcnT0qdQxawB46FsMaRC4bok5tTp4D4eHVjISIyMiY35lCwIODlBSQmAseOZekh2APHQljjyAVDfH3l51Knk1NTREQ2hMmNOaQsKj58OMsPwx44FsAWtqT0uDVFRDaKyY25ZLPuRo89cFSUkADs2iXXrbmYWI/JDRHZKCY35mKk5AZgDxzVpBy5ULy42tFkH5MbIrJRTG7MRT9A8/RpWQHIJvbAUYE1j1wwpFIl+TquXJF9TiIiG8Hkxlz8/OSi0wEREUZ5yBd74MyebZSHpbRY88gFQ9zdgTJl5PrBg+rGQkRkRExuzMmIW1N6KXvg9Owp21VkAtY+ciEt+q0pJjdEZEOY3JiTfmvKyE1qUvbAadUqWweyKC36U1KhodY5ciEtrLshIhvE5MacTLByA6TugZOQwB44JmFrW1J6KZMbRVE3FiIiI2FyY076lZuzZ4HYWKM+dMoeONHRQMOG7IFjNLYycsGQChUAZ2fg3j3g4kW1oyEiMgomN+bk7Q34+8s75KNHjf7wKXvgREYCzZqxB45R2MrIBUOcnIDgYLnOrSkishFMbszNRFtTeil74Pz9d3ItDmWDftXG2kcupIV1N0RkY5jcmJuJkxsgdQ+cxYuBoUNN9lT2QV9vYwtdiQ1hckNENobJjbmZIbkBUvfAGTuWPXCyLOXIBVurt9HTJzdHjkgHZiIiK8fkxtz0RcUXLpi84pc9cIzA1kYuGFK8OJAnD/D4MXDypNrREBFlG5Mbc/P0BIoUketHjpj86dgDJ5tsbeSCIVqt9O8BuDVFRDaByY0azLQ1BbAHTrbZ6hHwF7HuhohsCJMbNeiTGzMto7AHThZduyaDTm1t5IIhTG6IyIYwuVGDGVdu9NgDJwtsdeSCIfptqVOngLg4dWMhIsomJjdqqFhR/rx0SZrDmQl74GSSrY5cMMTXN7nBpBlqwYiITInJjRry5AFKlJDrZq7wZQ+cDNLpgC1b5Lo9JDcAt6aIyGYwuVGLCltTeuyBkwEREcDdu7Y5ciEtTG6IyEYwuVGLiskNwB44r6TfknrrLdscuWAIkxsishFMbtSib+anUnIDsAdOuuyp3kavUiXpHXD1qhyrIyKyUkxu1BISIi8kUVHArVuqhMAeOGmwh5ELhri5AWXLyvWDB9WNhYgoG5jcqMXdHShVSq6ruGTCHjgG2MPIhbRwa4qIbACTGzWpXHejxx44L0jZldhWRy6khckNEdkAJjdqspDkBni5B06bNkBsrNpRqURfb1O3rrpxqCFlcqMo6sZCRJRFTG7UZEHJDZC6B86qVbJV9fffakdlZvY0csGQChUAZ2fgwQOZXE9EZIVUTW527NiBJk2awM/PDxqNBqtXr37l52zfvh0VK1aEs7MzihcvjgULFpg8TpMJDpYX0Zs3gRs31I4GgPTA2bZNBpdfuSInoQcOBB4/VjsyM0k5ciFfPnVjUUOOHMkdtLk1RURWStXkJiEhAUFBQZg+fXqG7n/p0iU0atQIb731FiIiItC/f3907doVmzZtMnGkJpIrV/LpFAtZvQGAN94Ajh0DunWTnYkJE+SU8NGjakdmBvZ4BPxFrLshIiunanLToEEDfP3112jWrFmG7j9r1iwUKVIEEyZMQJkyZdC7d2+0bNkSkyZNMnGkJmRhW1N6bm7AnDnAH38A3t6yU1OlCjBmDPD8udrRmYg9jlwwhMkNEVk5q6q52bt3L+rUqZPqtnr16mHv3r1pfs6TJ08QGxub6mJRLDS50WvcGDh5EmjRQpKaoUOB6tWB8+fVjswE7HHkgiH65OboUeDpU3VjISLKAqtKbqKjo+Ht7Z3qNm9vb8TGxuLRo0cGP2fs2LHw8PBIuvj7+5sj1IzTJzeHD1vs6ZT8+YFly4BffwU8PIB9+6RcaMYMiw05a+xx5IIhxYoBefNKP4ATJ9SOhogo06wqucmKwYMHIyYmJukSFRWldkipBQbK8aTbt+WkjoXSaIB27eS1rlYt4OFDoFcvoH594Pp1taMzEtbbCI2GW1NEZNWsKrnx8fHBrRdGFdy6dQvu7u5wcXEx+DnOzs5wd3dPdbEoLi5A+fJy3UK3plLy95cDRVOmADlzSj5QoQKwZInakWWTvY5cSAuTGyKyYlaV3FStWhVbt25NddvmzZtRtWpVlSIyEguvu3mRVgv07SslGZUry7iGNm2A998H7t1TO7ossueRC4YwuSEiK6ZqchMfH4+IiAhEREQAkKPeERERuHr1KgDZUurQoUPS/T/++GNcvHgRn3/+Oc6cOYMZM2bg999/xyeffKJG+MZjZcmNXunSwJ49wMiRgIMDsHSpLEJt3Kh2ZFmg729Tt679jVwwJDRU/oyMtONW1URkrVRNbg4dOoSQkBCEhIQAAAYMGICQkBAMHz4cAHDz5s2kRAcAihQpgnXr1mHz5s0ICgrChAkT8OOPP6JevXqqxG80KZMbK6vQzZEDGDFCioxLl5Z+hA0aAD16yE6P1WC9TWre3kBAgPw8qjjYlYgoKzSKYmWvptkUGxsLDw8PxMTEWE79zZMncvz42TPg4kVpD2yFHj0CBg+WehxADt38+itg8buG165JMZFWC9y5Y5+diQ1p1UqOyX37LfDFF2pHQ0R2LjOv31ZVc2OznJ3l1BRgdVtTKbm4AJMnSx+8ggWBf/6RbsdDhlh4uxR7H7mQFtbdEJGVYnJjKay07saQ2rXlyHj79tL095tv5HXy5Em1I0sDt6QMY3JDRFaKyY2lsKHkBgDy5AF++QVYvhzw9JRZVZUqAePHA4mJakeXQsqRC3XrqhuLpalYUbbqrl2zmMGuREQZweTGUqTsVKzTqRuLEbVoISs2jRvL1tRnn0kD4EuX1I7sP/qRC7lzA6+/rnY0liV3bqBcObl+8KC6sRARZQKTG0tRrpzU3sTESLGKDfHxAdasAX78UV4vd+6UEqOffrKAw2H6Lalatex75EJauDVFRFaIyY2lyJFDBjYBNrM1lZJGA3TpIttTb7wBxMcDXbsC774LvNB02rxYb5M+JjdEZIWY3FgSG6u7MaRoUWD7duD77wEnJ+CPP6Tx38qVKgTDkQuvpk9uDh60qe1SIrJtTG4siR0kN4B0M/7sM/kyg4Kk5KVFC6BjR9mVM5sdO6S3UEAARy6kpVw5OeMfEwOcP692NEREGcLkxpLok5sjR+ziXXKFCsD+/dL4T6uV01UVKgB//WWmAFJuSXHkgmE5csipKYBbU0RkNZjcWJLSpQFXVylIOXdO7WjMwtlZ+uDs2CEdjaOipE9O//7S8dikWG+TMay7ISIrw+TGkjg6Av/N2bL1rakXhYfLqeyPPpKPp0yRBQOT/TNcuwacPi1LRrVqmehJbASTGyKyMkxuLI2d1N0Ykjs3MGsWsH494OsLnDkjrWdGjZLSGKPiyIWM0yc3EREyB42IyMIxubE0dpzc6DVoIOMbWrWSbsYjR8rKzpkzRnwSfXLDrsSvVqSItJl++hQ4flztaIiIXilLyU1UVBSuXbuW9PGBAwfQv39/zJkzx2iB2S19cnP0KPD8ubqxqMjTE1iyBFi0SEY5HDwoO3Y//GCEWmudLjm5Yb3Nq2k03JoiIquSpeTmgw8+wLZt2wAA0dHRqFu3Lg4cOIAhQ4Zg9OjRRg3Q7pQsKfszDx8aeanC+mg0QJs2Mr7h7beBx4+Bvn2BevWk8DjLOHIh85jcEJEVyVJyc/LkSVT575fd77//jvLly2PPnj1YuHAhFixYYMz47I9Wm3z01o63plJ67TVg40Zg2jRpubJlixwZ/+23LI5v4MiFzGNyQ0RWJEvJzbNnz+Ds7AwA2LJlC9555x0AQOnSpXHz5k3jRWevWHfzEo0G6NVLFl3CwqSnXPv2Updz924mH4xHwDMvNFT+PHPGzJ0WiYgyL0vJTbly5TBr1izs3LkTmzdvRv369QEAN27cgKenp1EDtEtMbtJUsqRMTPjqKzk5v3y5jG9Yty6DD5CQAOzeLddZTJxxBQpIYTHAn0sisnhZSm6+++47zJ49GzVr1kSbNm0QFBQEAFizZk3SdhVlgz65iYgwwRlo6+foCAwdKt2Ny5aVwZuNGwPduwNxca/45B075NRPQABQooRZ4rUZ3JoiIiuRpeSmZs2auHv3Lu7evYt58+Yl3d69e3fMmjXLaMHZrWLFAA8P6Sly6pTa0VisihWBw4eBAQNk22ruXJlVpZ+FaRBHLmQdkxsishJZSm4ePXqEJ0+eIG/evACAK1euYPLkyTh79iy8vLyMGqBd0mqBSpXkOrcA0pUzJzBhgsyjKlQIuHQJqFED+OKLNPrNsd4m65jcEJGVyFJy8+677+KXX34BADx48ABhYWGYMGECmjZtipkzZxo1QLvFuptMqVlTGv916iQnqL7/Xmpgjx1LcSeOXMiekBAZ6X7jBnD9utrREBGlKUvJzZEjR1C9enUAwPLly+Ht7Y0rV67gl19+wdSpU40aoN1icpNp7u7A/PnAqlVS/3rihHQ2TtrZ27JF/qxcmSMXsiJXLqneBrh6Q0QWLUvJzcOHD+Hm5gYA+PPPP9G8eXNotVq8/vrruHLlilEDtFv65Ob4cc7zyaSmTaXxX/Xqcjjqvfdk0Dq3pIyAW1NEZAWylNwUL14cq1evRlRUFDZt2oS3/3uxuH37Ntzd3Y0aoN0qXFhWF549kyUIyhQvLzkm7ucHREYCH3fXQeHIhexjckNEViBLyc3w4cMxcOBAFC5cGFWqVEHVqlUByCpOSEiIUQO0WxpN8urN4cPqxmKlvLxkPpWDA3B6cQQ0HLmQffrk5tAhIwz5IiIyjSwlNy1btsTVq1dx6NAhbNq0Ken22rVrY9KkSUYLzu6x7ibbqlcHvvkGeBuyJfWgEkcuZEvZsoCrKxAbC5w7p3Y0REQGZSm5AQAfHx+EhITgxo0bSRPCq1SpgtKlSxstOLvH5MYoBg4E2uSXLalJJ9/GgwfqxmPVHB2T2xRwa4qILFSWkhudTofRo0fDw8MDAQEBCAgIQJ48efDVV19Bx6Vq49EnNydPAo8eqRuLFdM+SkBgrHT2W/xvXXTunMWBmyRYd0NEFi5Lyc2QIUMwbdo0fPvttzh69CiOHj2Kb775Bj/88AOGDRtm7BjtV8GCUjjy/LmcmqKs2bEDmqdP8cQ3AFdylMDq1cDEiWoHZcWY3BCRhctScvPzzz/jxx9/RI8ePRAYGIjAwED07NkTc+fOxYIFC4wcoh1LWVTMrams++8IuHPjtzFpsoxc+OKL5PmZlEn65CYigm0KiMgiZSm5uXfvnsHamtKlS+PevXvZDopS4BiG7EvR36ZHD+D994HERKB1a+DOHXVDs0oBAUD+/NKmIFULaCIiy5Cl5CYoKAjTpk176fZp06YhMDAw20FRCly5yZ7r11ONXNBogDlzgFKl5K/atZNEhzJBo+HWFBFZNMesfNL333+PRo0aYcuWLUk9bvbu3YuoqCisX7/eqAHaPX1yc/q0tNvNlUvdeKyNvnFfipELbm7S4K9KFVnUGTMGGD5cxRitUZUqwPr1TG6IyCJlaeXmzTffxLlz59CsWTM8ePAADx48QPPmzXHq1Cn8+uuvxo7Rvvn5Ab6+0jAtIkLtaKxPGiMXypcH9DNeR45MHjtFGcSVGyKyYBpFMd6h2GPHjqFixYpItOB1/tjYWHh4eCAmJsZ6RkW88w7wxx/A5MlAv35qR2M9dDrA2xu4exfYsUM6+r2ga1fgp59k0ObRo8Brr6kQpzW6e1f+0QDg/n0gTx5VwyEi25eZ1+8sN/EjM2LdTdZERMiLcDojF374AQgKksLi99+XGlnKgPz5gaJF5Tp/LonIwjC5sQZMbrJGX29TK+2RCy4uwLJlUoezaxcwZIgZ47N23JoiIgvF5MYa6I+Dnz0rM30oY/T1NnXrpnu3EiWA+fPl+rhxwJo1Jo7LVjC5ISILlanTUs2bN0/37x9waI9peHsD/v5AVJQUhrz5ptoRWb7792UpBnhlcgMALVpIOdOUKUDHjsCRI0CRIiaO0drpk5v9+2WehUajbjxERP/J1MqNh4dHupeAgAB06NDBVLHaN25NZc6SJcDTp0CFCkDJkhn6lO+/B8LCgAcPgFat2Hz3lUJCAAcHIDpamgYREVmITK3czNev3ZP5Va4MrFoFHD6sdiTWYd48+fPDDzO8ouDkBPz+u7xmHzoEDBgATJ9uwhitnaurJI8REbI1VbCg2hEREQFgzY314MpNxp08Kf9Ojo5A27aZ+tRChYDffpPrM2bIAhClg3U3RGSBmNxYC31R8fnzsm9CadOvML7zTnIvlkxo0AD48ku53rUrcOaMEWOzNUxuiMgCMbmxFp6eyRWuR46oG4sle/YM0HfJ7tw5yw8zahRQs6ZMvGjZUv4kA/TJzaFDHNJFRBaDyY014dbUq61bJx35fHyA+vWz/DCOjsDixfIwp04BPXvKgSB6QdmyMu8sLk5aFRARWQAmN9aEyc2r6QuJO3SQDCUbfHwkwdFqgV9+SX5oSsHBIXnLlFtTRGQhmNxYE/2LCJMbw6KjZVI1kK0tqZRq1gS++kqu9+4NHDtmlIe1Lay7ISILw+TGmlSsKH9eugT8+6+6sViiX3+Vuo+qVYHSpY32sIMGAQ0bAo8fS/1NTIzRHto2MLkhIgvD5Maa5M0LFC8u19nvJjVFST4lZaRVGz39tlShQsCFC0CXLqy/SUWf3Bw7JhkgEZHKmNxYG9bdGHbgABAZKZMwW7c2+sN7ekqDvxw5gBUrgKlTjf4U1qtQIcDLC3j+XBr6ERGpjMmNtWFyY5i+2rdlS8Dd3SRPERYGjB8v1wcOBPbtM8nTWB+NhltTRGRRmNxYGyY3L3v4MLmVsJG3pF7Up4/kT8+fy/wplj79h8kNEVkQJjfWJiRE3ilHRQG3bqkdjWVYuRKIjZUmhyaemK7RAD/+KKVPUVFA+/aATmfSp7QOTG6IyIIwubE27u5AqVJynUXFQl9I3KmTVP+amIcHsHw5kDMnsGED8O23Jn9KyxcaKn+ePw/cu6duLERk91RPbqZPn47ChQsjZ86cCAsLw4FXvPObPHkySpUqBRcXF/j7++OTTz7BY3s7ocGtqWSXLgF//SVLKh07mu1pg4KAadPk+rBhwLZtZntqy5QvX/JJPv5cEpHKVE1uli5digEDBmDEiBE4cuQIgoKCUK9ePdy+fdvg/RctWoRBgwZhxIgRiIyMxE8//YSlS5fiS/2UQ3vB5CbZzz/Ln7VrAwEBZn3qDz+UfEqnA9q0AW7eNOvTWx5uTRGRhVA1uZk4cSK6deuGzp07o2zZspg1axZcXV0xL40+93v27EF4eDg++OADFC5cGG+//TbatGnzytUem6NPbux9W0qnAxYskOsffmj2p9dogBkzgPLlpfypTRspNLZbTG6IyEKoltw8ffoUhw8fRp06dZKD0WpRp04d7N271+DnVKtWDYcPH05KZi5evIj169ejYcOGaT7PkydPEBsbm+pi9YKDpbbkxg252Ktt24ArV6QIpmlTVUJwdZX6m9y5gb//BoYPVyUMy5AyuWGXQyL7tWkT8OSJqiGoltzcvXsXiYmJ8Pb2TnW7t7c3oqOjDX7OBx98gNGjR+ONN95Ajhw5UKxYMdSsWTPdbamxY8fCw8Mj6eLv72/Ur0MVuXLJNGbAvldv9IXEbdpI8z6VlColJ6gAYOzY5PFWdic4WIaV3rolR8mIyP6sXy/zamrXBhISVAtD9YLizNi+fTu++eYbzJgxA0eOHMHKlSuxbt06fKWfbGjA4MGDERMTk3SJspVfuvZed/PggbQKBlTZknpR69ZAz55yvX174OpVdeNRhYsLEBgo17k1RWR/Tp0C3n9fSgZKl5albZWoltzkz58fDg4OuPVCr5Zbt27Bx8fH4OcMGzYM7du3R9euXVGhQgU0a9YM33zzDcaOHQtdGs1GnJ2d4e7unupiE+w9uVm6VOYYlSuX/G+hsokTJZR796TB39OnakekAtbdENmnO3eAJk2AuDigRg0pSNRoVAtHteTGyckJlSpVwtatW5Nu0+l02Lp1K6pWrWrwcx4+fAjtC31MHBwcAACKve3xp0xu7O1rB5LHLXz4oar/gVJydpb5U3nyAPv3A599pnZEKmByQ2R/njwBmjeX1hxFi8qqupOTqiGpui01YMAAzJ07Fz///DMiIyPRo0cPJCQkoPN/LfQ7dOiAwYMHJ92/SZMmmDlzJpYsWYJLly5h8+bNGDZsGJo0aZKU5NiNwEDAwQG4fRu4dk3taMzr9Gl58XR0BNq1UzuaVIoUkQnigAzXXLZM3XjMTp/cHDoEJCaqGwsRmZ6iAB9/DOzaJU1m164F8udXOyo4qvnkrVu3xp07dzB8+HBER0cjODgYGzduTCoyvnr1aqqVmqFDh0Kj0WDo0KG4fv06ChQogCZNmmDMmDFqfQnqcXGRM8jHjskLiS0USmeUvpC4USOZRm1hmjQBPv8c+P57oEsXafhXsqTaUZlJ6dJydCw+Xqa0ly+vdkREZErjx0tLDq1Wlq7LlFE7IgCARrGz/ZzY2Fh4eHggJibG+utvunYFfvoJ+PJLwF4SvGfPgIIFZcXqf/8D3nlH7YgMev4cqFUL2LlTFtn27VP1QJd5vfUWsH27/GxaQLE3EZnImjXShkNRZKm6Tx+TPl1mXr+t6rQUvcAei4o3bJDExssLaNBA7WjS5Ogog8oLFACOHzf5/3nLwrobItt3/DjwwQfJ21K9e6sdUSpMbqyZPRYV6wuJO3QAcuRQN5ZX8PMDFi2SeueffkqeFGHzbDm52b9fkmp3d+CNN4DBg6Wvx4MHakdGZD63bsn+e0KC9LOZOtViDnbocVvKmj15Ari5yVbNxYtSzWrLbt2SLannz6Wfgr6RoYUbPRoYMUK2pfbvBypUUDsiE4uKAgoVkoL3uDjb2I87fFi+ievWGf57jUb2H6tXl8sbb0h2S2RrHj+Wred9+6SYcN8+IG9eszw1t6XshbNzctM0e9ia+u03SWzCwqwmsQGAoUOBt98GHj0C3ntPXu9tWsGCgI+PnJY6elTtaLInIkJqCipXlsTGwQHo3BnYs0dWETt3lmnoiiLF/dOmSUfH114DihUDOnWSZbtz5+xndZVsl6JIree+fdLz4o8/zJbYZBaTG2tnL3U3ipJ8Suq/VgHWQquVvOy114CzZ4Fu3Wz8dU6jsf6tqZMngZYtgZAQKVzXaKTtQGSkJDVVq8rP4bx5wPnzMuPt99+luCo4WO5/8aLsRXbtKjM6fH3lMadMAY4c4VF5sj5jxwILF0qSv3y5RR8DZXJj7ewluTl0SLaicuaU9t5WpkABee1zdJTmyjNmqB2RiVlrcnPmjMwqCwyURmQajfy8nToF/PorUKKE4c/z9ZVlualTZbXq/n2pxRk8WLaonJxkW3XFCqB/f6BSJXnHW7++nHTcsUOW+4ks1cqVwJAhcn3aNKm1sWCq9rkhI9AnN4cPyzwPrY3mq/pC4hYtZAq4FapWDfjuO+DTT4FPPpHX/9BQtaMyEWtLbs6fl+KoRYvk/xEgP2sjR2atV4+HhxQe60/0PX4sCfrOnXLZvRuIjZXpyZs2yX2cnOQH4o03pG4nPFyW/onUduSIDM0DZHXy44/VjScDWFBs7Z49k6LiJ09kXz+td5bW7NEjeWccEwNs2WLx7xjSoyjSpXz1aqBwYfmdYaFb1tlz/z6QL59cv3sX8PRUN560XLwIfP21tJXWbxO9+64kNcHBpnvexETgxInkZGfnTiA6OvV9NBqpPtcXKVevziJlMr8bN+TNyvXrQL160oHYUZ11kcy8fjO5sQWvvy7HcBYvtsotm1datAho2xYICJAXIytfnXrwQHYlLl6U05SrV1v9l2RYqVKScG/YINsvluTKFdkOmj9fitQB6Xg9apR8c8xNUYB//kmd7Fy48PL9ihZNneyUKGFxR3DJhjx8CLz5pqw6likD7N2r6so5T0vZG1uvu9EXEnfqZBNZQJ48MnPK2VkOG4wfr3ZEJmKJW1PXrgE9e0pSMHeuJDb16snpj7Vr1UlsAElQihdPu0g5JER+9lmkTOaiKPLzeOiQrML+8YdVlQRY/ysF2XZyc+UKoJ8c36mTqqEYU8WK8noEyPSMHTvUjcckLCm5uXkT6NdPEoiZM2U7Vz8fY+NGaS9gaVIWKR85Aty7J6tgX34pqzbOzukXKf/9t2zpEmXF6NHJpyBWrpTWBlaE21K24ORJ2ZvPnVvqUmxgdSOJvgNerVrJSY6NUBSp0Vu4UF7Hjh4F/psZaxv275ct0wIF5EVYje2T27elinvGjOTTSNWry89VzZrmj8eY0ipSTsnJSd786LexWKRMGbF0aXKJw48/ygRgC8Cam3TYZHLz/Lm0g3/0SPpwlC6tdkTGodPJO+1Ll+QYbrt2akdkdPHxssARGSn5259/SgsJm/D4sfxcPnsm38PChc333HfvAuPGyZHVhw/ltqpVJampXds261RYpEzGcOCA1Nk8fixHOy1o35zJTTpsMrkB5B3Znj22lQRs2yav+O7usq3g6qp2RCZx+rScAH74EBg+XGpabUZoqKwuLF0KtGpl+ue7dw+YOFH2/OLjk2MYPVpqa2wxqUmLokiNTspk5/z5l+9XpIj8/tBfypWzrdVfyrhr1+T/S3S0FNj/738W9W6LBcX2yBbrbvSFxO+/b7OJDSCTJGbPlutffSWrNzbDXHU3MTGSFRYpIvUm8fFShPvHH7I9Vr++fSU2gHy9L46AuHlTqtn79k0uUr50SVpo9+ghzQvz5ZP+PGPGANu3J698kW1LSADeeUcSm/Ll5ZSqBSU2mcWVG1vx668yKTs8HNi1S+1osi8mRgpRHj2SkyyWWPBpZB99BMyZA+TPL/U3BQuqHZER/PyzvLhWr26aqum4OCm4HT8+eTJ3hQqS6DRtan8JTWbFxsr/r9275bJvn7zIpeToKIlQeLg0GAwPl9lhZDt0OileX7lSauQOHDDvNnIGcVsqHTab3ERGyhKAq6skBio1WTKauXOB7t2lt8KpU3bxIvX4sXQxPnpU/ty+HciRQ+2osslUP5fx8cD06VJX8++/clvZstJ8r0ULbqtk1fPnwPHj8gZJn/Bcv/7y/YoWTb2VVbYs/82t2dChslLn5AT89Zd8Ty0Qk5t02Gxyk5gopyDi46WoMCst4y1J1aryLnLcOGDgQLWjMZt//pETvTExwIABwIQJakeUTTqd/FzGxcnUbP0U+6x6+FCOcn/3HXDnjtxWsqQkNa1aWfUyukVSFODq1eREZ9cu+f3y4stGnjySkeuTndBQm95Ktim//ZY8WuHnn2UHwEIxuUmHzSY3gFS479ghtSrW3BNG/27fwUEK3OxsCXzVKhnRAMgqcbNm6saTbbVry7vBuXOl+VxWPH4se3ZjxyafACpaVNoEfPCB9a9UWpOYmJe3sl6sy3F0lCw95eqOTfU5sBF790pLhKdPgUGD5P+XBWNBsb2ylaLiBQvkz4YN7S6xASSZGTBArnfqJKs5Vi07RcVPnkiPmuLFpQlfdLTUAvz0k0zw7tCBiY25eXjIybPRo6X31IMHwMGDwOTJUrfh5yfbW/v3y8m1Fi3k/3Hx4kDHjpLknj6dPKCU1HHlitSlPX0qf44Zo3ZERsWVG1uyeLG8iw0Lk3dT1uj5c8DfX17EVq2S/3R26NkzWYjbu1dqOffsAXLmVDuqLNIvRQUHS0FRRjx7Jknu11/LtgggPxdDh0rG5+RkomAp2xQFuHw5eWVn925pNPriS03evMlbWW+8IW/OXFxUCdnuxMXJv/uJE0BQkGw35s6tdlSvxG2pdNh0cnP+vNQfODvLD681VqOuXSvTJAsUkEJGa/wajCQqShKbf/+V2upZs6y0rvr6dTn65eAgp3PSq8V4/lxO/n31lRxRBmQl4MsvZUvL2dk8MZNxPXggmbo+2dm//+XREDlyvLyV5eWlSrg2LTFR3mysWSNbhQcPyhsHK8DkJh02ndzodNKjIiZG3iEHB6sdUeY1by7v9G2imjb7Nm2SliOKAnTrJg13rXLR4rXXZBDkrl2GT2IkJkpfjdGjk6dhe3sDgwdLZsd39Lbl2TMgIiK5SHn37pe7KQMy4DRlslO6tJVm+Bbk88/loIazs8wfs6I2G6y5sVdabfJUY2usu7lzR5quATKNllCvHvDDD/KtnTtXetHdu6d2VFmQVt2NTgcsWSJdcTt0kMQmf37pW3PxotTZMLGxPTlyyImq/v2B5csl8f3nH+CXX6Thk/605/nzsj3ZrZscMsifX1Z2v/tOkiL9vDDKmPnzJbHRX7eixCazmNzYGn1R8eHD6saRFb/9JtsSoaHWf5TdiHr1khXk3LllIsXrr0uzWavyYnKj08mLWmAg0KYNcPasrDqOHSvbUZ9+yqPE9kSjkdNv7dvL/uuJE5LFr1snW5JvvilFZ/fuydb1oEHSGNLDQ+p2vvjCBirvTWznTkkcAWDYMPl/Z8OY3Ngaaz0xpSjJ4xa4avOSRo2kqDggQN7MhoVZ2ZB0fXKzf7/Mq6lYUU7WnDolPVL0NTaDBllFYSOZQd68cmJSPwZCfwR9wgTZvvb2lpM+e/cC338vDT8HDkzuVE3JLl6UY5jPngEtW0pfKBvHmhtbc+mSvAPKkUOKiq2lAPPwYUnMnJ1l/k3evGpHZJFu35YDZHv3ygno6dOlJMXiPXjw8vfUzQ345BO55MmjRlRkzRRFVmt275Z6Lf1QNk9PGb/RvbtdH0hIEhsrTVFPn5ayhR07rHZVlDU39qxwYVnef/ZMjl9ai3nz5M/mzZnYpMPLS/rhtW0rO3gffSS5QWKi2pG9Qp48MvMJAHLlkq2Gy5flRYiJDWWFRpPcO2fTJmDDBqnL+fdfoHdv2fJcv/7lI+j25PlzGTx8+rScOvzf/6w2scksJje2RqOxvqLix4/lnRfALakMyJkz+bQ0IL3T3nlH3qBZtN9+k+Nely7JVkO+fGpHRLakfn0Z8TFjhhQenzkj+7n16kkNjz367DNJ+lxcJLF57TW1IzIbJje2yNrqblavlm2LQoWAWrXUjsYqaDTSz+733+X31vr1clL28mW1I0tHYKBURxcooHYkZKscHYEePeTU3WefSd+EzZulLcZHHwG3bqkdofnMmSPvfACZGaV/XbATTG5skbUlN/pC4o4dOfgwk957T7bQfX1lF7JKFSk8JrJrHh5SZBwZKQW0Op282JcoAXz7re0fId+2Td5IANI76r331I1HBUxubJE+uTl58uUuoJbm6lV5ZwVY97BPFVWuLCesQ0KkVdBbbwELF6odFZEFKFoUWLZMjkFXriyHLAYPlmaAS5faZj3O+fMyz+v5cznuPXSo2hGpgsmNLfL3l6X/58+B48fVjiZ9v/wiv2Bq1pRfRJQlBQvK72/9HLx27eR3GmcTEkFmV+3fL8VqBQvK0Mj335e93P371Y7OeO7flyaH9+9Lv4iffrLbjs5MbmyRRmMdW1M6HXvbGFGuXMCKFdIqBpCa3datgYcP1Y2LyCJotZL1nz0rWzWurtJT4fXXZeDwlStqR5g9z54BrVrJ1+fvL7WMdtzdm8mNrbKG5GbnTmku5eYmy6iUbVqtNPldsEBafCxfDtSoId3tiQiS1AwbJts3nTvLm8HFi2WrasgQ2bqyRp98AmzZIl/fmjWAj4/aEamKyY2tsobkRr9q07q1LDuQ0XTsKB2MPT2lP2JoKHDkiNpREVkQPz/pr3X4sGyLP34MfPONFB3/+KMVNI9KYfp0uWg0UnBnjUOTjYzJja3SJzenTwMJCerGYkhcnBT6AcCHH6obi42qXl0KjcuUkZWb6tWBlSvVjorIwoSESGfM1aulKeCtWzKos2JF65hxsnmzDJgFZNm2aVNVw7EUTG5slZ+fnA/W6YCICLWjednvv0sxSKlSsudNJlG0qJQV1Ksn/9wtWsjvP1s8JEKUZRoN8O67Muts0iTpmn38OFCnjhTonjmjdoSGnTkjx7wTE4EOHYDPP1c7IovB5MaWWfLWlH7cwocf2m01v7l4eMgg5T595OMvv5RT90+eqBoWkeVxcgL695cmgH37SlPAtWtldEjfvjLawVL8+y/QuLEMFA0Plz4+/F2ahMmNLbPU5ObsWek05+AAtG+vdjR2wdERmDpVtuUdHOQEfu3a0heHiF7g6QlMmSK9wt55R9pq/PCDbFtNmiT9FtT09Kk0J/znHyAgQPabrWVIspkwubFl+uTm8GF143jRggXyZ/36snVGZtOzp4ya8fCQYcphYbIST0QGlColM5m2bAGCgmRMzIABQLlyUqOjxv6uoshg0O3bgdy5gT/+kIm6lAqTG1umH6B55ozlHG98/lzmnAAsJFZJ3brAvn1AsWIyw7JaNWDjRrWjIrJgtWvLm8QffwS8vWXbqlkzmYVn7mOIU6cCc+fKFtSSJbJlRi9hcmPLvL2lmZOiAEePqh2N+PNP4OZNmdrbuLHa0dit0qWlMWuNGjJNvFEjWXVnoTFRGhwcgC5dpD/OkCFAzpyyelK5svTLMUczqQ0bZOUIAMaPl/+4ZBCTG1tnaXU3+kLidu2keI9U4+kpp0g//FAO1fXtK7P2nj1TOzIiC+bmBnz9tdQOtm0r7wgWLJD+OKNHm64l+KlT0hNMp5Mk65NPTPM8NoLJja3Tb01ZQnJz9650zgQ4bsFCODnJSvv338sq98yZQMOGUlpAROkoVAj47TfZ461WTZKaESOAkiVlhpUxB7vduSNH0uPiZLl1xgyejHoFJje2zpJWbhYulGWBSpWAwEC1o6H/aDTAZ59JfWSuXFI7+frrUlZARK8QFgbs2iW9uwoXBq5fl54zYWEyYia7njwBmjeXArmiRWWAHFe9X4nJja3Tr9ycP6/+23EOybRo77wjv6P9/WXFPSwM+PtvtaMisgIajTTTi4wEvv1Wtq4OHZJVlpYtZYZeVigK0KOH/Md0d5eeO/nzGzd2G8Xkxtblzy/vJgB1hwsdPQocOybvONq0US8OSldwsIxsqFIFuHdPTlbpy6SI6BVy5gS++EKWPT/+WCbZrlghM1A++yzzbzAnTJA3hVqtrAyVKWOSsG0Rkxt7YAlbU/pXyGbNgHz51IuDXsnHRw6BtG4tu4hdusjvZWuaI0ikKi8vKWA7dgx4+21pujd+vBQdz5ghLTFeZc2a5HEKkyfLDBXKMCY39kDt5ObxY6m3AbglZSVcXIDFi6U+EpDfy82bA/Hx6sZFZFXKlwc2bZIj3GXLyqGKXr2k5nDDhrR7Lxw/Dnzwgfz9xx9L0z7KFCY39kDt5GbNGuD+faBgQRlER1ZBowFGjpQkx9lZvo3h4cDVq2pHRmRl6teXVZwZM6RUIDJSjiXWry8jHlK6dUtORiUkSPPAqVN5MioLmNzYg4oV5c9Ll9QZ/KYvJO7YURphkVV5/33ZpvL2ljeUVapIA0AiygRHRykOPn9e9nmdnKSpaVCQrM7cvi2r3M2ayTuIkiWBZcuAHDnUjtwqMbmxB3nzysA3wPxzpq5dk2VZQEZRk1V6/XUpNA4MlDeWb74pnd+JKJPy5JHGUqdPy0kqnQ6YPVt+R9euDezdK/f54w/53U1ZwuTGXqi1NfXLL7JvXKNGcoJFVqlQITmR2qSJtN5o00a2rTiygSgLihWTlZmdO+X3c1wcsGePrG4vXy4rN5Rlqic306dPR+HChZEzZ06EhYXhwIED6d7/wYMH6NWrF3x9feHs7IySJUti/fr1ZorWiqmR3CgKe9vYGDc3YNUqYOBA+XjUKElyHj1SNy4iq/XGG7LP++uvcv2XX2QFh7JF1eRm6dKlGDBgAEaMGIEjR44gKCgI9erVw+3btw3e/+nTp6hbty4uX76M5cuX4+zZs5g7dy5ee+01M0duhdRIbnbtkn4PuXPL8ivZBAcHYNw4Gdvg6AgsXQrUrAlER6sdGZGV0mpl3t7OnXJKirJNoyjqLSqHhYUhNDQU06ZNAwDodDr4+/ujT58+GDRo0Ev3nzVrFsaNG4czZ84gRxaLrGJjY+Hh4YGYmBi4u7tnK36rEhsr+7iKIkUTXl6mf84PP5SVmw8/BH76yfTPR2a3fTvQooU0/PP3lzKBoCC1oyIiW5SZ12/VVm6ePn2Kw4cPo06Ko8FarRZ16tTB3r17DX7OmjVrULVqVfTq1Qve3t4oX748vvnmGySm013syZMniI2NTXWxS+7uQKlSct0cRcXx8dJRE5DkhmxSzZqyol6qFBAVJUfF9bNRiYjUolpyc/fuXSQmJsLb2zvV7d7e3ohOY3374sWLWL58ORITE7F+/XoMGzYMEyZMwNdff53m84wdOxYeHh5JF39/f6N+HVbFnFtTy5ZJn4aSJWViLtms4sXlgEedOvItb9pUtq1YaExEalG9oDgzdDodvLy8MGfOHFSqVAmtW7fGkCFDMGvWrDQ/Z/DgwYiJiUm6REVFmTFiC2PO5EY/bqFTJzagsgN58wLr10sbD0WRrvFdu0rXeSIic3NU64nz588PBwcH3Lp1K9Xtt27dgo+Pj8HP8fX1RY4cOeCQohFcmTJlEB0djadPn8LJwBh4Z2dnODs7Gzd4a6WfEG7q5Ob8eSkm1mqBDh1M+1xkMXLkAKZPl9l+/ftLfvvPPzI30NNT7eiIyJ6otnLj5OSESpUqYevWrUm36XQ6bN26FVWrVjX4OeHh4bhw4QJ0Ol3SbefOnYOvr6/BxIZeEBwsCceNG3IxlQUL5M969QCeZLMrGg3Qpw+wdq0cG//7byAsDDhzRu3IiMieqLotNWDAAMydOxc///wzIiMj0aNHDyQkJKDzfz1ROnTogMGDByfdv0ePHrh37x769euHc+fOYd26dfjmm2/Qq1cvtb4E65I7t7ytBkxXVJyYCPz8s1xnIbHdatBA6nAKF5bVm9dfBzZvVjsqIrIXqiY3rVu3xvjx4zF8+HAEBwcjIiICGzduTCoyvnr1Km7evJl0f39/f2zatAkHDx5EYGAg+vbti379+hk8Nk5pMHXdzebNwPXrQL580sqW7Fa5cjKyITwciImRhGfCBODcOeDZM7WjIyJbpmqfGzXYbZ8bvWnTZN+gYUNg3TrjP36rVnJSqm9fYMoU4z8+WZ0nT4Du3aXxqp6Dg6zqFC8OlCiR+lK4sDQHJMqIS5eARYvkV1pIiNrRkCll5vWbyY292bcPqFpVmvhFRxv3JNO//wJ+fnJE5uhRqfEhgpygmjpViowvXAAePkz7vo6OQJEiLyc9JUrIfCsOlidAkubx44Gvv5Zh2gDQqBEwdKhsg5LtYXKTDrtPbh49kkrPxETg6lVpK2ssP/wgKzbBwZLcEBmgKMDNm3Ko7sXLhQvJL1SG5MgBFC1qOPHx95d6ebJ9f/0F9OwJnD0rH5cpI9f1Z03q1JEk58031YuRjC8zr99c/LU3Li5A+fLAsWNSd2PM5EY/JJOFxJQOjUYW+Pz8Xn7x0emkZMtQ4vPPP7IoePZs8otaSs7OMmjZUOLj58fExxbcugV8+imwcKF87OUFTJwo45guXADGjpX5k1u2yKV6dUly6tZluy17w5Ube9S1q8x6+vJLYMwY4zxmRIRseDs5yTFzNjYhI0tMBK5dM5z4XLyYfpGyi0vaiY+vL1/4LF1iIjB7tvzKiomR71ePHvLrK0+e1Pe9fBn4/nv5FadvIlmliiQ5jRvze23NuC2VDiY3AGbNkt8Mb78NbNpknMfs10+KKt57L3mmFJGZPH8uu6yGtrkuXZK/T0uuXIYLm0uUkJUBvhiq6/Bh+XV18KB8XKkSMHMmEBqa/uddvy41ObNny248IENdhwyRYa9cybM+TG7SweQGsh0VGirHte/ezf5v7ydPpFnfv/9KD/4GDYwTJ5ERPHsGXLlieMXn8uXkOg1D3NwMJz6lS8t/HzKdmBhZbZkxQ75H7u6yUtOjR+aKym/flq2r6dNlni8gNTpffgm8/z5P5lkTJjfpYHIDSUbc3OS3/sWLcjQlO5YvlxWb116TVxEeZyEr8fSprOy8uNpz/rz8KKf121GrBdq0kRfIsmXNG7OtUxRgyRJgwAA50AnIv/WECbKFmFX37sni8pQpwIMHcluxYsDgwUD79rKjTpaNyU06mNz8p3JlWe9dtgxo2TJ7j9WokazYDB4MfPONceIjUtmTJ5L7G1rx0c/f1WiA5s1lq4M9VrLv3DmgVy8pBgaAkiVlxaVOHeM9R0yMrAZNnCgL14Ccq/jiC6BLFyBnTuM9FxlXZl6/uetor4zVqfj6dWDjRrneqVP2HovIgjg7y/bFO+/ICZ1Zs4CtW6W25/BhSWoURQaDVqwoxar79qkdtXV69AgYPhyoUEESG2dnYPRo4Phx4yY2AODhIe/DLl+W1SAfH0lWe/eWReyJE4GEBOM+J5kfkxt7Zazk5tdfZUP8jTfkbRaRHahYUZKakyflGLJWKw2/q1aVF+Pt29Pe0qLUNm6UpOarr2SbsH594NQpYNgwSXJMJVcu2fq6dEkat/v7yzbYp59Kl+yxY4HYWNM9P5kWkxt7lTK5yepvYUVJ7m3z37BTIntSrpz0XDlzRto7OTrK6s5bbwE1ashhRCY5hl2/LqV6DRpIDyM/P9klX79eamHMJWdO2Qq7cAH48UdpEnn3rtRTBQQAI0dKvQ5ZFyY39qpcOXlbFBMjv1myYs8e2STPlUt+SxHZqRIlpK/KhQvSOdfZGdi1S1YhqlQB/ve/9E9l2ZPnz4FJk+TE2fLlcv7gk08kQWzZUr2j905OUnNz9qwsSJcuLYXHo0ZJkjNokJy8IuvA5MZe5cghTR+ArG9N6Vdt3ntPTl8R2bmAACmAvXhRtjxcXeW/V9OmMpVk6VJpSGev9u2TReMBA+RY9uuvS/3SxImW8yvE0RFo1062HH//HQgMlFi/+062qz75RPqUkmVjcmPPslN3k5Agv6kBjlsgeoGfnxSrXr4s2xtubsCJE9JXpWxZ4Oef0++obGvu3QM++gioVk0mv+TNC8yZA+zenfwey9I4OMj7tqNHZeWtcmUpfJ48WQqPe/aUdgFkmZjc2LPsJDfLl8vbmeLFpZiYiF5SoIA0nrtyRbY38uaVndxOnaT+fvZsOXJuqxRFErlSpSSZURT52s+eBbp1s44uwVqtnJg7cECKn8PDpfB55kz59deli2xHkmWxgh8tMhl9cnP4cOYLAubNkz87dWJ/eqJXyJtXjjpfuSLbG15esqrz8cdSPDtlCvDwodpRGtepU0DNmvIr4u5dKfPbsUN2swsUUDu6zNNogHr1gJ075TRc7dpSPzRvniRv7doBp0+rHSXpMbmxZ2XKyETB+Hh5O5lR//wjv6U0GqBjR9PFR2Rj3NyAzz+X48dTpkhT7+vXgf79Zavj+++BuDi1o8yehAQpvg0Oll8Trq6S0B09KlO6rZ1GI9Pst2yRMxWNGsl7w4ULgfLlpSg6IkLtKInJjT1zdExuq5qZrakFC+TPt98GChY0elhEts7VFejbV94nzJ4thaq3b0uX3IAAaWB3/77aUWbemjVSU/Tdd7Kq8e67sprx+edyhsHWVK0KrF37clPHkBCgSRNg/361I7RfTG7sXWbrbhITk5MbFhITZYuzM9C9uyyc6mtT7t8HRoyQJOfLL4E7d9SO8tWuXJFE5t13pYNzQIAkOqtXy3Vbp2/qeOKEzMHSaiXpef11eQ+4Y4faEdofJjf2LrPJzdatwLVrUkTwzjumi4vIjuTIAXToIHUqS5dKx964OOmSGxAgR6ct8fjx06eySlO2rCQzjo6yJXXqlKxc2Jvy5YFFi4DISKk1cnAANm+WbawaNeQ6mzqaB5Mbe6dPbo4elXXkV9EXErdtywlzREbm4AC0aiU1G6tXJx8/njTJ8o4f79gh2y+DBkkxdI0acsx77Fjp62nPSpaUwukLF6Ro3MlJCpHffjt5K4tJjmkxubF3JUsCuXPLb6czZ9K/77178hsX4LgFIhPSamWLJ63jxx9+KNPJ1XDnjqxKvPmm1NPkzy9batu3ywoOJStcWL5n//wD9Osn7wf375dVrZAQ6ajBztWmweTG3jk4yIYx8OqtqcWLpSlHYGByITIRmcyLx4/r1JEF1vnzZTxA27ayBWQOOp30qilVSpIZjUYa8509K1tq7AiRtoIFpfnf5ctSXJ07t6xyvfeebGUtXJixhXPKOCY3lLrfTXr04xY+/JC/yYjMSH/8ePNmYO9eoHFjSTYWLZIXxxYtgCNHTPf8ERGyevTRR1LwHBwsx6BnzQLy5TPd89oab2+pUbp8WfoeeXhIfU67dtKZY948++pcbUpMbihjRcXHj0vykyOHvF0kIlW8/jrwxx+SzOgHTa5cCVSqJD1X9u413nPFxckspUqVZC5U7txS/3PwoMRBWePpKR2rr1yRDtaenlKf06WL1OSoteVoS5jcUHJyExGR9tsG/arNO+/IJjsRqSokBFi2TAY8tmsndTrr18v8ptq1gW3bsl60qijy2KVLy3aKTidbKGfOSMNBR0djfiX2y8NDjvtfvgyMHy+rYIcPy/d2wQIWHWcHkxuS/u8eHsDjx4b7hz99Cvz2m1xnITGRRSlbFvj1V6l96dJFEo+//gJq1ZKxbxs2ZO5F8p9/gAYN5NTWjRvy62HjRpmQ/dprpvs67Fnu3MCnn0odTs2a0uW5c2fpmfPggdrRWScmNyRv+dIrKl67VobD+PpKdSMRWZzixYEff5TkpFcvaRC4Zw/QsKEszq5alf7JnCdPpDNyuXLApk1yfHn4cGlMx//25lGwoIx1GDtWktSlS6W+afdutSOzPkxuSKRXd6PfkurQgevRRBauUCFg2jSZX/XppzLq4cgRGQ8QGCiHHhMTU3/Oli3SOHDECEly6tSRpGbUKBk/R+bj4CC9g3bvBooWlbqcGjXke8ETVRnH5IZEWsnNzZuykQ9wS4rIivj6Sh3HlSvAkCGAu7scG//gAzmZM3++jEpo0waoW1eKWH18JPn5809pgUXqqVJFequ2by8rbiNHAm+9ZTlNHC0dkxsS+uTm2DF566b366/yP6taNWlwQURWJX9+4Ouv5UXxq6+kaPX8eenoEBAALFkiO9N9+kjB8Pvvs9ODpXB3B375RUoe3dyAXbuAoCCpf6L0MbkhUaSIzIt69kyOXwBShajfkuKqDZFVy5MHGDpUkpxx46TnCgCEhsrR7qlT5VwBWZ62beUwa1gYEBMDtG4txePx8WpHZrmY3JDQaF7emtq3T97KubrK0Qkisnq5cwMDB0pNzv790hdHf56ALFfRotKpeuhQ+XU9b558317Ve9VeMbmhZC8mN/pVm5YtZX2UiGyGi4vUdTg4qB0JZVSOHLK1uG2bnKw6f16a/o0fzxlVL2JyQ8lSJjcJCbIZD8jmPBERWYQ335TyyObNpZLgs8/kuP7Nm2pHZjmY3FAyfXJz8qRMcouLk7XQGjXUjYuIiFLJl0+mis+ZI6twW7bIUf+1a9WOzDIwuaFk/v5AgQLSTGH4cLmtUycenSAiskAaDdCtm/QxCg6WXqtNmsjJt0eP1I5OXUxuKFnKouJbt+Tjjh3VjYmIiNJVurSc//jkE/l42jSpp9IffLVHTG4oNX1yA0ib0kKF1IuFiIgyxNkZmDhRZol5eUliExoKzJhhnwM4mdxQaimTGxYSExFZlfr1gePHZfjp48cyZ6xpU9mysidMbii111+XvjY+PvI/goiIrIq3txQWT54sA1DXrJFi461b1Y7MfJjcUGpeXnIUfN8+IGdOtaMhIqIs0GqBfv2AAwekJufmTZkhNmgQ8PSp2tGZHpMbelmZMjJ0hoiIrFpQkHQx/ugjqb357jsgPFwaANoyJjdEREQ2zNUVmDULWLFCRggeOgSEhAA//2y7xcZMboiIiOxA8+ZSbFyzpjSh79QJ+OAD4MEDlQMzASY3REREdqJgQelmPGaMzBVbskQaAO7Zo3ZkxsXkhoiIyI44OABffgns3i0Tdq5ckSk7o0dLg3pbwOSGiIjIDoWFAUePAu3aAYmJwIgRwFtvAVevqh1Z9jG5ISIislPu7sCvv8rFzQ3YtUtOWC1bpnZk2cPkhoiIyM61awdERMhqzoMHQKtWQJcuUnhsjZjcEBEREYoWBXbuBIYMkbnJ8+YBFSvK1HFrw+SGiIiIAAA5cgBffw1s2yYnq86dk6k8EyYAOp3a0WUckxsiIiJK5c03gWPHpDfOs2fAwIEylPPmTbUjyxgmN0RERPSSfPmA5cuBOXMAFxdg82YZwLlundqRvRqTGyIiIjJIowG6dZP5VEFBwN27QOPGQN++wOPHakeXNotIbqZPn47ChQsjZ86cCAsLw4EDBzL0eUuWLIFGo0HTpk1NGyAREZEdK1MG2L8f6N9fPv7hB6BKFeDUKVXDSpPqyc3SpUsxYMAAjBgxAkeOHEFQUBDq1auH27dvp/t5ly9fxsCBA1G9enUzRUpERGS/nJ2BSZOA9esBLy/gxAmgcmVg5kzLG8CpenIzceJEdOvWDZ07d0bZsmUxa9YsuLq6Yt68eWl+TmJiItq2bYtRo0ahaNGiZoyWiIjIvjVoIAM469eXramePYFmzWTLylKomtw8ffoUhw8fRp06dZJu02q1qFOnDvbu3Zvm540ePRpeXl7o0qXLK5/jyZMniI2NTXUhIiKirPP2lsLiSZMAJyfgf/+Tmpy//lI7MqFqcnP37l0kJibC29s71e3e3t6Ijo42+Dm7du3CTz/9hLlz52boOcaOHQsPD4+ki7+/f7bjJiIisndardTg7N8PlC4N3LgB1KkDDBokx8dVjU3dp8+cuLg4tG/fHnPnzkX+/Pkz9DmDBw9GTExM0iUqKsrEURIREdmP4GDg0CGge3epvfnuOyA8HHj4UL2YHNV7aiB//vxwcHDArVu3Ut1+69Yt+Pj4vHT/f/75B5cvX0aTJk2SbtP91zLR0dERZ8+eRbFixVJ9jrOzM5ydnU0QPREREQFArlzA7NlAvXpA166S8Li6qhePqsmNk5MTKlWqhK1btyYd59bpdNi6dSt69+790v1Lly6NEydOpLpt6NChiIuLw5QpU7jlREREpKLmzeWIeN686sahanIDAAMGDEDHjh1RuXJlVKlSBZMnT0ZCQgI6d+4MAOjQoQNee+01jB07Fjlz5kT58uVTfX6ePHkA4KXbiYiIyPwKFlQ7AgtIblq3bo07d+5g+PDhiI6ORnBwMDZu3JhUZHz16lVotVZVGkREREQq0iiKpbXeMa3Y2Fh4eHggJiYG7u7uaodDREREGZCZ128uiRAREZFNYXJDRERENoXJDREREdkUJjdERERkU5jcEBERkU1hckNEREQ2hckNERER2RQmN0RERGRTmNwQERGRTWFyQ0RERDaFyQ0RERHZFNUHZ5qbfpRWbGysypEQERFRRulftzMyEtPukpu4uDgAgL+/v8qREBERUWbFxcXBw8Mj3fvY3VRwnU6HGzduwM3NDRqNxqiPHRsbC39/f0RFRXHiuAXg98Oy8PthWfj9sDz8nqRPURTExcXBz88PWm36VTV2t3Kj1WpRsGBBkz6Hu7s7fzAtCL8floXfD8vC74fl4fckba9asdFjQTERERHZFCY3REREZFOY3BiRs7MzRowYAWdnZ7VDIfD7YWn4/bAs/H5YHn5PjMfuCoqJiIjItnHlhoiIiGwKkxsiIiKyKUxuiIiIyKYwuSEiIiKbwuTGSKZPn47ChQsjZ86cCAsLw4EDB9QOyW6NHTsWoaGhcHNzg5eXF5o2bYqzZ8+qHRb959tvv4VGo0H//v3VDsVuXb9+He3atYOnpydcXFxQoUIFHDp0SO2w7FJiYiKGDRuGIkWKwMXFBcWKFcNXX32VoflJlDYmN0awdOlSDBgwACNGjMCRI0cQFBSEevXq4fbt22qHZpf+/vtv9OrVC/v27cPmzZvx7NkzvP3220hISFA7NLt38OBBzJ49G4GBgWqHYrfu37+P8PBw5MiRAxs2bMDp06cxYcIE5M2bV+3Q7NJ3332HmTNnYtq0aYiMjMR3332H77//Hj/88IPaoVk1HgU3grCwMISGhmLatGkAZH6Vv78/+vTpg0GDBqkcHd25cwdeXl74+++/UaNGDbXDsVvx8fGoWLEiZsyYga+//hrBwcGYPHmy2mHZnUGDBmH37t3YuXOn2qEQgMaNG8Pb2xs//fRT0m0tWrSAi4sLfvvtNxUjs25cucmmp0+f4vDhw6hTp07SbVqtFnXq1MHevXtVjIz0YmJiAAD58uVTORL71qtXLzRq1CjV/xUyvzVr1qBy5cp477334OXlhZCQEMydO1ftsOxWtWrVsHXrVpw7dw4AcOzYMezatQsNGjRQOTLrZneDM43t7t27SExMhLe3d6rbvb29cebMGZWiIj2dTof+/fsjPDwc5cuXVzscu7VkyRIcOXIEBw8eVDsUu3fx4kXMnDkTAwYMwJdffomDBw+ib9++cHJyQseOHdUOz+4MGjQIsbGxKF26NBwcHJCYmIgxY8agbdu2aodm1ZjckE3r1asXTp48iV27dqkdit2KiopCv379sHnzZuTMmVPtcOyeTqdD5cqV8c033wAAQkJCcPLkScyaNYvJjQp+//13LFy4EIsWLUK5cuUQERGB/v37w8/Pj9+PbGByk0358+eHg4MDbt26ler2W7duwcfHR6WoCAB69+6NtWvXYseOHShYsKDa4ditw4cP4/bt26hYsWLSbYmJidixYwemTZuGJ0+ewMHBQcUI7Yuvry/Kli2b6rYyZcpgxYoVKkVk3z777DMMGjQI77//PgCgQoUKuHLlCsaOHcvkJhtYc5NNTk5OqFSpErZu3Zp0m06nw9atW1G1alUVI7NfiqKgd+/eWLVqFf766y8UKVJE7ZDsWu3atXHixAlEREQkXSpXroy2bdsiIiKCiY2ZhYeHv9Qa4dy5cwgICFApIvv28OFDaLWpX4odHByg0+lUisg2cOXGCAYMGICOHTuicuXKqFKlCiZPnoyEhAR07txZ7dDsUq9evbBo0SL873//g5ubG6KjowEAHh4ecHFxUTk6++Pm5vZSvVOuXLng6enJOigVfPLJJ6hWrRq++eYbtGrVCgcOHMCcOXMwZ84ctUOzS02aNMGYMWNQqFAhlCtXDkePHsXEiRPx4Ycfqh2aVeNRcCOZNm0axo0bh+joaAQHB2Pq1KkICwtTOyy7pNFoDN4+f/58dOrUybzBkEE1a9bkUXAVrV27FoMHD8b58+dRpEgRDBgwAN26dVM7LLsUFxeHYcOGYdWqVbh9+zb8/PzQpk0bDB8+HE5OTmqHZ7WY3BAREZFNYc0NERER2RQmN0RERGRTmNwQERGRTWFyQ0RERDaFyQ0RERHZFCY3REREZFOY3BAREZFNYXJDRERENoXJDRHZPY1Gg9WrV6sdBhEZCZMbIlJVp06doNFoXrrUr19f7dCIyEpxcCYRqa5+/fqYP39+qtucnZ1VioaIrB1XbohIdc7OzvDx8Ul1yZs3LwDZMpo5cyYaNGgAFxcXFC1aFMuXL0/1+SdOnECtWrXg4uICT09PdO/eHfHx8anuM2/ePJQrVw7Ozs7w9fVF7969U/393bt30axZM7i6uqJEiRJYs2aNab9oIjIZJjdEZPGGDRuGFi1a4NixY2jbti3ef/99REZGAgASEhJQr1495M2bFwcPHsSyZcuwZcuWVMnLzJkz0atXL3Tv3h0nTpzAmjVrULx48VTPMWrUKLRq1QrHjx9Hw4YN0bZtW9y7d8+sXycRGYlCRKSijh07Kg4ODkquXLlSXcaMGaMoiqIAUD7++ONUnxMWFqb06NFDURRFmTNnjpI3b14lPj4+6e/XrVunaLVaJTo6WlEURfHz81OGDBmSZgwAlKFDhyZ9HB8frwBQNmzYYLSvk4jMhzU3RKS6t956CzNnzkx1W758+ZKuV61aNdXfVa1aFREREQCAyMhIBAUFIVeuXEl/Hx4eDp1Oh7Nnz0Kj0eDGjRuoXbt2ujEEBgYmXc+VKxfc3d1x+/btrH5JRKQiJjdEpLpcuXK9tE1kLC4uLhm6X44cOVJ9rNFooNPpTBESEZkYa26IyOLt27fvpY/LlCkDAChTpgyOHTuGhISEpL/fvXs3tFotSpUqBTc3NxQuXBhbt241a8xEpB6u3BCR6p48eYLo6OhUtzk6OiJ//vwAgGXLlqFy5cp44403sHDhQhw4cAA//fQTAKBt27YYMWIEOnbsiJEjR+LOnTvo06cP2rdvD29vbwDAyJEj8fHHH8PLywsNGjRAXFwcdu/ejT59+pj3CyUis2ByQ0Sq27hxI3x9fVPdVqpUKZw5cwaAnGRasmQJevbsCV9fXyxevBhly5YFALi6umLTpk3o168fQkND4erqihYtWmDixIlJj9WxY0c8fvwYkyZNwsCBA5E/f360bNnSfF8gEZmVRlEURe0giIjSotFosGrVKjRt2lTtUIjISrDmhoiIiGwKkxsiIiKyKay5ISKLxp1zIsosrtwQERGRTWFyQ0RERDaFyQ0RERHZFCY3REREZFOY3BAREZFNYXJDRERENoXJDREREdkUJjdERERkU/4PLwU8aoLIm9UAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADLy0lEQVR4nOzdd3iTVRsG8DsddNAFBdoCpey9h1j2XsoWXCgIigNRQD8VUUBEUVBRFEERwYUiU0EFAQHZIIhMkVE2LbMtpXTQvt8fpydvkiZpkiZ50/T+XVevpEmanLZpk/t9nnOOTlEUBURERERERETkVj5aD4CIiIiIiIioOGIgJyIiIiIiItIAAzkRERERERGRBhjIiYiIiIiIiDTAQE5ERERERESkAQZyIiIiIiIiIg0wkBMRERERERFpgIGciIiIiIiISAMM5EREREREREQaYCAnIiIiIiqCOnTogA4dOth82/r167t2QHkqV66MYcOGueWxiIo6BnKiYmThwoXQ6XTQ6XTYunVrvusVRUFsbCx0Oh3uvfde/eVpaWmYNGkS6tevj5IlSyIyMhKNGzfG888/j4sXL+pvN3nyZP39m/tITEx0y/dJRERkK/na+Ndff2k9lEK7ePEiJk+ejP3792s9FKepXLkydDodunTpYvb6efPm6d9nmP4Ot27dip49e6JChQoIDAxEpUqV0Lt3byxatMjodtbeuzz11FMu+96IAMBP6wEQkfsFBgZi0aJFaNOmjdHlmzdvxvnz5xEQEKC/LDs7G+3atcO///6LoUOHYvTo0UhLS8Phw4exaNEi9O/fH+XLlze6nzlz5iAkJCTf40ZERLjk+yEiIiqOfv/9d6PPL168iDfeeAOVK1dG48aNtRkUgGPHjsHHx3l1v8DAQGzcuBGJiYmIjo42uu67775DYGAgMjIyjC5fsmQJ7r//fn0BoVSpUkhISMCff/6JefPm4aGHHjK6fdeuXfHoo4/me+yaNWs67fsgMoeBnKgY6tWrF5YsWYJZs2bBz0/9N7Bo0SI0a9YMV69e1V+2cuVK/P333/juu+/yvXhlZGQgKysr3/3fd999KFOmjOu+ASIiomIsPT0dwcHBKFGihNZDMcvwwL4ztG7dGnv27MHixYvx/PPP6y8/f/48tmzZgv79+2PZsmVGXzN58mTUrVsXO3fuzPdzunz5cr7HqFmzJoYMGeLUcRPZgi3rRMXQgw8+iGvXrmHdunX6y7KysrB06dJ8ofvkyZMAxIuhqcDAQISFhbl2sERERB7g77//Rs+ePREWFoaQkBB07twZO3fuzHe7AwcOoH379ggKCkLFihUxdepULFiwADqdDqdPn9bf7qeffsI999yD8uXLIyAgANWqVcObb76JnJwco/uTc7/37t2Ldu3aITg4GK+++qr+OjmHfNOmTWjRogUA4LHHHtO3XC9cuNDo/o4cOYKOHTsiODgYFSpUwPTp042u37RpE3Q6HX788Ue88cYbqFChAkJDQ3HfffchJSUFmZmZGDNmDMqVK4eQkBA89thjyMzMNLoPc3PIk5OTMXbsWFSuXBkBAQGoWLEiHn30UaMigCWBgYEYMGBAvlbz77//HqVKlUL37t3zfc3JkyfRokULswctypUrV+BjErkLK+RExVDlypURHx+P77//Hj179gQA/Pbbb0hJScEDDzyAWbNm6W8bFxcHAPj666/x2muvQafTFXj/169fz3eZn58fW9aJiKhIOnz4MNq2bYuwsDC89NJL8Pf3x2effYYOHTpg8+bNaNmyJQDgwoUL6NixI3Q6HcaPH4+SJUviiy++MFsxXrhwIUJCQjBu3DiEhITgjz/+wMSJE5GamooZM2YY3fbatWvo2bMnHnjgAQwZMgRRUVH57q9OnTqYMmUKJk6ciJEjR6Jt27YAgFatWulvc+PGDfTo0QMDBgzA4MGDsXTpUrz88sto0KCB/v2ANG3aNAQFBeGVV17BiRMn8PHHH8Pf3x8+Pj64ceMGJk+ejJ07d2LhwoWoUqUKJk6caPHnl5aWhrZt2+Lo0aMYPnw4mjZtiqtXr+Lnn3/G+fPnbeqqe+ihh9CtWzecPHkS1apVAyA6++677z74+/vnu31cXBw2bNiA8+fPo2LFigXef0ZGhtmDA2FhYR7biUBeQiGiYmPBggUKAGXPnj3KJ598ooSGhirp6emKoijKoEGDlI4dOyqKoihxcXHKPffcoyiKoqSnpyu1atVSAChxcXHKsGHDlPnz5ytJSUn57n/SpEkKALMftWrVct83SkREZCPD10ZL+vXrp5QoUUI5efKk/rKLFy8qoaGhSrt27fSXjR49WtHpdMrff/+tv+zatWtK6dKlFQBKQkKC/nL5+mvoySefVIKDg5WMjAz9Ze3bt1cAKHPnzs13+/bt2yvt27fXf75nzx4FgLJgwQKztwWgfP311/rLMjMzlejoaGXgwIH6yzZu3KgAUOrXr69kZWXpL3/wwQcVnU6n9OzZ0+h+4+Pjlbi4OKPL4uLilKFDh+o/nzhxogJAWb58eb5x5ebm5rvM9L7uuece5c6dO0p0dLTy5ptvKoqiKEeOHFEAKJs3bzb7O5w/f74CQClRooTSsWNH5fXXX1e2bNmi5OTk5HsMS+9dACjff/+91fERFRZb1omKqcGDB+P27dtYvXo1bt68idWrV+drVweAoKAg7Nq1C//73/8AiCP6I0aMQExMDEaPHp2vTQ0Ali1bhnXr1hl9LFiwwOXfExERkbPl5OTg999/R79+/VC1alX95TExMXjooYewdetWpKamAgDWrFmD+Ph4owXVSpcujYcffjjf/QYFBenP37x5E1evXkXbtm2Rnp6Of//91+i2AQEBeOyxxwr9vYSEhBjNky5RogTuuusunDp1Kt9tH330UaPKc8uWLaEoCoYPH250u5YtW+LcuXO4c+eOxcddtmwZGjVqhP79++e7zpbOOwDw9fXF4MGD8f333wMQi7nFxsbqOwFMDR8+HGvWrEGHDh2wdetWvPnmm2jbti1q1KiB7du357t937598713WbduHTp27GjT+IgcxZZ1omKqbNmy6NKlCxYtWoT09HTk5OTgvvvuM3vb8PBwTJ8+HdOnT8eZM2ewYcMGvPfee/jkk08QHh6OqVOnGt2+Xbt2XNSNiIi8wpUrV5Ceno5atWrlu65OnTrIzc3FuXPnUK9ePZw5cwbx8fH5ble9evV8lx0+fBivvfYa/vjjD32gl1JSUow+r1ChglPapitWrJgvAJcqVQoHDhzId9tKlSoZfR4eHg4AiI2NzXd5bm4uUlJSEBkZafZxT548iYEDBxZm6ABE2/qsWbPwzz//YNGiRXjggQesBvru3buje/fuSE9Px969e7F48WLMnTsX9957L/7991+jueQVK1a0uLUakSuxQk5UjD300EP47bffMHfuXPTs2dOmOd5xcXEYPnw4tm3bhoiICHz33XeuHygREZEXSU5ORvv27fHPP/9gypQpWLVqFdatW4d3330XAJCbm2t0e8NqemH4+vqavVxRFJtva899OFvLli1RrVo1jBkzBgkJCWY7+8wJDg5G27Zt8cknn+C1117DjRs38Ntvv7l4tES2YYWcqBjr378/nnzySezcuROLFy+262tLlSqFatWq4dChQy4aHRERkfbKli2L4OBgHDt2LN91//77L3x8fPRV47i4OJw4cSLf7Uwv27RpE65du4bly5ejXbt2+ssTEhIKNVZb27/dzZnvFx588EFMnToVderUcWiv9ebNmwMALl265JTxEBUWK+RExVhISAjmzJmDyZMno3fv3mZv888//5hddfTMmTM4cuSI2RY+IiIib+Hr64tu3brhp59+Mtq2LCkpCYsWLUKbNm30W4B2794dO3bswP79+/W3u379er5uMlllNqwqZ2Vl4dNPPy3UWEuWLAlAVOA9ycCBA/HPP/9gxYoV+a6zt7L++OOPY9KkSXj//fet3m7Dhg1mL//1118BgO9fyGOwQk5UzA0dOtTq9evWrcOkSZPQp08f3H333QgJCcGpU6fw5ZdfIjMzE5MnT873NUuXLkVISEi+y7t27Wp2qxYiIiKtffnll1izZk2+y59//nlMnToV69atQ5s2bfDMM8/Az88Pn332GTIzM4328X7ppZfw7bffomvXrhg9erR+27NKlSrh+vXr+gp2q1atUKpUKQwdOhTPPfccdDodvvnmm0K3fVerVg0RERGYO3cuQkNDUbJkSbRs2RJVqlQp1P0W1v/+9z8sXboUgwYNwvDhw9GsWTNcv34dP//8M+bOnYtGjRrZfF9xcXFm33uY6tu3L6pUqYLevXujWrVquHXrFtavX49Vq1ahRYsW+QoR//33H7799tt89xMVFYWuXbvaPD4iezGQE5FVAwcOxM2bN/H777/jjz/+wPXr11GqVCncddddeOGFF8yuPvr000+bva+NGzcykBMRkUeaM2eO2cuHDRuGevXqYcuWLRg/fjymTZuG3NxctGzZEt9++61+D3JALHi2ceNGPPfcc3j77bdRtmxZjBo1CiVLlsRzzz2HwMBAAEBkZCRWr16NF154Aa+99hpKlSqFIUOGoHPnzujevbvD34O/vz+++uorjB8/Hk899RTu3LmDBQsWaB7IQ0JCsGXLFkyaNAkrVqzAV199hXLlyqFz58427RHuiC+++AI//fQTfvzxR1y8eBGKoqBq1aqYMGECXn75Zfj5Gccguaq6qfbt2zOQk0vpFHeswEBEREREVEyNGTMGn332GdLS0iwuikZExRPnkBMREREROcnt27eNPr927Rq++eYbtGnThmGciPJhyzoRERERkZPEx8ejQ4cOqFOnDpKSkjB//nykpqbi9ddf13poROSBGMiJiIiIiJykV69eWLp0KT7//HPodDo0bdoU8+fPN9rejIhI4hxyIiIiIiIiIg1wDjkRERERERGRBhjIiYiIiIiIiDTg9XPIc3NzcfHiRYSGhkKn02k9HCIiIiiKgps3b6J8+fLw8eGx8cLiaz0REXkaW1/rvT6QX7x4EbGxsVoPg4iIKJ9z586hYsWKWg+jyONrPREReaqCXuu9PpCHhoYCED+IsLAwjUdDREQEpKamIjY2Vv8aRYXD13oiIvI0tr7We30gl61rYWFhfJEmIiKPwvZq5+BrPREReaqCXus5cY2IiIiIiIhIAwzkRERERERERBpgICciIiIiIiLSgNfPIScispWiKLhz5w5ycnK0HgoVcb6+vvDz8+MccSIiD8PXenIWZ73WM5ATEQHIysrCpUuXkJ6ervVQyEsEBwcjJiYGJUqU0HooREQEvtaT8znjtZ6BnIiKvdzcXCQkJMDX1xfly5dHiRIlWNkkhymKgqysLFy5cgUJCQmoUaMGfHw4Q4yISEt8rSdncuZrPQM5ERV7WVlZyM3NRWxsLIKDg7UeDnmBoKAg+Pv748yZM8jKykJgYKDWQyIiKtb4Wk/O5qzXeh6yJyLKwyomOROfT0REnof/m8mZnPF84jOSiIiIiIiISAMM5EREREREREQaYCAnIiK9ypUr48MPP7T59ps2bYJOp0NycrLLxgQACxcuREREhEsfg4iIqLjg673nYCAnIiqCdDqd1Y/Jkyc7dL979uzByJEjbb59q1atcOnSJYSHhzv0eERERGQZX++9H1dZJyIqgi5duqQ/v3jxYkycOBHHjh3TXxYSEqI/rygKcnJy4OdX8L/8smXL2jWOEiVKIDo62q6vISIiItvw9d77sUJuh3btgAYNgIQErUdCRK6kKMCtW9p8KIptY4yOjtZ/hIeHQ6fT6T//999/ERoait9++w3NmjVDQEAAtm7dipMnT6Jv376IiopCSEgIWrRogfXr1xvdr2kLm06nwxdffIH+/fsjODgYNWrUwM8//6y/3rSFTbaarV27FnXq1EFISAh69Ohh9Ibizp07eO655xAREYHIyEi8/PLLGDp0KPr162fX72nOnDmoVq0aSpQogVq1auGbb74x+B0qmDx5MipVqoSAgACUL18ezz33nP76Tz/9FDVq1EBgYCCioqJw33332fXY5L1efhmoXx9YtEjrkRCRq2n1em/raz3A13vA+1/vGcjtcOQIcOgQkJGh9UiIyJXS04GQEG0+0tOd93288soreOedd3D06FE0bNgQaWlp6NWrFzZs2IC///4bPXr0QO/evXH27Fmr9/PGG29g8ODBOHDgAHr16oWHH34Y169ft/LzS8d7772Hb775Bn/++SfOnj2LF198UX/9u+++i++++w4LFizAtm3bkJqaipUrV9r1va1YsQLPP/88XnjhBRw6dAhPPvkkHnvsMWzcuBEAsGzZMsycOROfffYZjh8/jpUrV6JBgwYAgL/++gvPPfccpkyZgmPHjmHNmjVo166dXY9P3uv8eeDwYSApSeuREJGrafV678zXeoCv90X+9V7xcikpKQoAJSUlpdD3VbasogCKcvCgEwZGRB7j9u3bypEjR5Tbt28riqIoaWnib12Lj7Q0+8e/YMECJTw8XP/5xo0bFQDKypUrC/zaevXqKR9//LH+87i4OGXmzJn6zwEor732mv7ztLQ0BYDy22+/GT3WjRs39GMBoJw4cUL/NbNnz1aioqL0n0dFRSkzZszQf37nzh2lUqVKSt++fW3+Hlu1aqU88cQTRrcZNGiQ0qtXL0VRFOX9999XatasqWRlZeW7r2XLlilhYWFKamqqxcdzBtPnlSFnvjaRc3+ew4aJv8V33nHCwIjIY5j7n6zV670jr/WKwtd7yZNe753xWs8KuR18fcVpbq624yAi1woOBtLStPkIDnbe99G8eXOjz9PS0vDiiy+iTp06iIiIQEhICI4ePVrgEfOGDRvqz5csWRJhYWG4fPmyxdsHBwejWrVq+s9jYmL0t09JSUFSUhLuuusu/fW+vr5o1qyZXd/b0aNH0bp1a6PLWrdujaNHjwIABg0ahNu3b6Nq1ap44oknsGLFCty5cwcA0LVrV8TFxaFq1ap45JFH8N133yHd2eUKKrICAsRpZqa24yAi19Pq9d6Zr/UAX++L+us9A7kdfPJ+Wjk52o6DiFxLpwNKltTmQ6dz3vdRsmRJo89ffPFFrFixAm+//Ta2bNmC/fv3o0GDBsjKyrJ6P/7+/iY/Hx1yrRyZNHd7xZ4Jc04QGxuLY8eO4dNPP0VQUBCeeeYZtGvXDtnZ2QgNDcW+ffvw/fffIyYmBhMnTkSjRo1cvpULFQ0lSojTAv4siMgLaPV678zXeoCv90X99Z6B3A6skBNRUbZt2zYMGzYM/fv3R4MGDRAdHY3Tp0+7dQzh4eGIiorCnj179Jfl5ORg3759dt1PnTp1sG3bNqPLtm3bhrp16+o/DwoKQu/evTFr1ixs2rQJO3bswMGDBwEAfn5+6NKlC6ZPn44DBw7g9OnT+OOPPwrxnZG3YIWciIo6vt4Xrdd7bntmB1bIiagoq1GjBpYvX47evXtDp9Ph9ddft3rk21VGjx6NadOmoXr16qhduzY+/vhj3LhxAzo7Sgb/+9//MHjwYDRp0gRdunTBqlWrsHz5cv0qsgsXLkROTg5atmyJ4OBgfPvttwgKCkJcXBxWr16NU6dOoV27dihVqhR+/fVX5ObmolatWq76lqkIYSAnoqKOr/dF6/WegdwOrJATUVH2wQcfYPjw4WjVqhXKlCmDl19+GampqW4fx8svv4zExEQ8+uij8PX1xciRI9G9e3f4yn+yNujXrx8++ugjvPfee3j++edRpUoVLFiwAB06dAAARERE4J133sG4ceOQk5ODBg0aYNWqVYiMjERERASWL1+OyZMnIyMjAzVq1MD333+PevXqueg7pqKELetEVNTx9b5ovd7rFHc3+rtZamoqwsPDkZKSgrCwsELdV40awIkTwNatgMnaAkRUhGVkZCAhIQFVqlRBYGCg1sMpdnJzc1GnTh0MHjwYb775ptbDcRprzytnvjaRc3+e774LvPIKMGwYsGCBc8ZHRNrja732vPH13hmv9ZrOIa9cuTJ0Ol2+j1GjRgEQ3+CoUaMQGRmJkJAQDBw4EEkabgzKCjkRUeGdOXMG8+bNw3///YeDBw/i6aefRkJCAh566CGth0bECjkRkZPw9d42mgbyPXv24NKlS/qPdevWARDL1wPA2LFjsWrVKixZsgSbN2/GxYsXMWDAAM3GyznkRESF5+Pjg4ULF6JFixZo3bo1Dh48iPXr16NOnTpaD408wDvvvAOdTocxY8Zo8vicQ05E5Bx8vbeNpnPIy5Yta/T5O++8g2rVqqF9+/ZISUnB/PnzsWjRInTq1AkAsGDBAtSpUwc7d+7E3Xff7fbxskJORFR4sbGx+VZMJQLEgfrPPvvMaC9cd2OFnIjIOfh6bxuP2fYsKysL3377LYYPHw6dToe9e/ciOzsbXbp00d+mdu3aqFSpEnbs2GHxfjIzM5Gammr04SyskBMREblGWloaHn74YcybNw+lSpXSbByskBMRkTt5TCBfuXIlkpOTMWzYMABAYmIiSpQogYiICKPbRUVFITEx0eL9TJs2DeHh4fqP2NhYp42RFXIiIiLXGDVqFO655x6jA/GWuPLgOwM5ERG5k8cE8vnz56Nnz54oX758oe5n/PjxSElJ0X+cO3fOSSNkhZyIiMgVfvjhB+zbtw/Tpk2z6fauPPjOlnUiInInjwjkZ86cwfr16/H444/rL4uOjkZWVhaSk5ONbpuUlITo6GiL9xUQEICwsDCjD2dhhZyIiMi5zp07h+effx7fffedzVsRufLgOyvkRETkTh4RyBcsWIBy5crhnnvu0V/WrFkz+Pv7Y8OGDfrLjh07hrNnzyI+Pl6LYbJCTkRE5GR79+7F5cuX0bRpU/j5+cHPzw+bN2/GrFmz4OfnhxwzL7quPPjOCjkREbmTpqusA2KD+AULFmDo0KHw81OHEx4ejhEjRmDcuHEoXbo0wsLCMHr0aMTHx2uywjrACjkREZGzde7cGQcPHjS67LHHHkPt2rXx8ssvw1e++LoJK+REROROmlfI169fj7Nnz2L48OH5rps5cybuvfdeDBw4EO3atUN0dDSWL1+uwSgFVsiJyNt06NDBaL/nypUr48MPP7T6NTqdDitXriz0YzvrfqyZPHkyGjdu7NLHoMIJDQ1F/fr1jT5KliyJyMhI1K9f3+3jYSAnIm/E13vPpXkg79atGxRFQc2aNfNdFxgYiNmzZ+P69eu4desWli9fbnX+uKuxQk5EnqJ3797o0aOH2eu2bNkCnU6HAwcO2H2/e/bswciRIws7PCOWXiQvXbqEnj17OvWxiAqLLetE5En4eu/9NG9ZL0pYISciTzFixAgMHDgQ58+fR8WKFY2uW7BgAZo3b46GDRvafb9ly5Z11hALpOUBVvJsmzZt0uyxWSEnIk/C13vvp3mFvChhhZyomFAU4NYtbT4UxaYh3nvvvShbtiwWLlxodHlaWhqWLFmCESNG4Nq1a3jwwQdRoUIFBAcHo0GDBvj++++t3q9pC9vx48fRrl07BAYGom7duli3bl2+r3n55ZdRs2ZNBAcHo2rVqnj99deRnZ0NAFi4cCHeeOMN/PPPP9DpdNDpdPoxm7awHTx4EJ06dUJQUBAiIyMxcuRIpKWl6a8fNmwY+vXrh/feew8xMTGIjIzEqFGj9I9li9zcXEyZMgUVK1ZEQEAAGjdujDVr1uivz8rKwrPPPouYmBgEBgYiLi5OvxWXoiiYPHkyKlWqhICAAJQvXx7PPfeczY9NRQMr5ETFiFav9za+1gN8vS8Or/eskNuBFXKiYiI9HQgJ0eax09KAkiULvJmfnx8effRRLFy4EBMmTIBOpwMALFmyBDk5OXjwwQeRlpaGZs2a4eWXX0ZYWBh++eUXPPLII6hWrRruuuuuAh8jNzcXAwYMQFRUFHbt2oWUlBSj+WdSaGgoFi5ciPLly+PgwYN44oknEBoaipdeegn3338/Dh06hDVr1mD9+vUAxKKdpm7duoXu3bsjPj4ee/bsweXLl/H444/j2WefNXoTsnHjRsTExGDjxo04ceIE7r//fjRu3BhPPPFEgd8PAHz00Ud4//338dlnn6FJkyb48ssv0adPHxw+fBg1atTArFmz8PPPP+PHH39EpUqVcO7cOf2WWsuWLcPMmTPxww8/oF69ekhMTMQ///xj0+NS0cEKOVExotXrvY2v9QBf74vF673i5VJSUhQASkpKSqHvq1cvRQEUZcGCwo+LiDzH7du3lSNHjii3b98WF6SliT92LT7S0mwe99GjRxUAysaNG/WXtW3bVhkyZIjFr7nnnnuUF154Qf95+/btleeff17/eVxcnDJz5kxFURRl7dq1ip+fn3LhwgX99b/99psCQFmxYoXFx5gxY4bSrFkz/eeTJk1SGjVqlO92hvfz+eefK6VKlVLSDL7/X375RfHx8VESExMVRVGUoUOHKnFxccqdO3f0txk0aJBy//33WxyL6WOXL19eeeutt4xu06JFC+WZZ55RFEVRRo8erXTq1EnJzc3Nd1/vv/++UrNmTSUrK8vi4xnK97wy4MzXJnLuz/PyZfXPMSfHCYMjIo9g9n+yVq/3drzWKwpf7xXFc1/vnfFaz5Z1O7BCTlRMBAeLo9dafAQH2zzM2rVro1WrVvjyyy8BACdOnMCWLVswYsQIAEBOTg7efPNNNGjQAKVLl0ZISAjWrl2Ls2fP2nT/R48eRWxsLMqXL6+/LD4+Pt/tFi9ejNatWyM6OhohISF47bXXbH4Mw8dq1KgRShpUDFq3bo3c3FwcO3ZMf1m9evWMtsGKiYnB5cuXbXqM1NRUXLx4Ea1btza6vHXr1jh69CgA0Sa3f/9+1KpVC8899xx+//13/e0GDRqE27dvo2rVqnjiiSewYsUK3Llzx67vkzyfrJADbFsn8npavd7b8VoP8PUe8O7XewZyO3AOOVExodOJVjItPvJa0Ww1YsQILFu2DDdv3sSCBQtQrVo1tG/fHgAwY8YMfPTRR3j55ZexceNG7N+/H927d0eWE1PGjh078PDDD6NXr15YvXo1/v77b0yYMMGpj2HI39/f6HOdTodcJ/5Tbtq0KRISEvDmm2/i9u3bGDx4MO677z4AQGxsLI4dO4ZPP/0UQUFBeOaZZ9CuXTu75rSR5zMM5GxbJ/JyWr3e2/laD/D13ptf7xnI7cAKORF5msGDB8PHxweLFi3C119/jeHDh+vnl23btg19+/bFkCFD0KhRI1StWhX//fefzfddp04dnDt3DpcuXdJftnPnTqPbbN++HXFxcZgwYQKaN2+OGjVq4MyZM0a3KVGiBHIK+MdZp04d/PPPP7h165b+sm3btsHHxwe1atWyeczWhIWFoXz58ti2bZvR5du2bUPdunWNbnf//fdj3rx5WLx4MZYtW4br168DAIKCgtC7d2/MmjULmzZtwo4dO3Dw4EGnjI88g+F7QFbIichT8PXedkXt9Z6LutmBFXIi8jQhISG4//77MX78eKSmpmLYsGH662rUqIGlS5di+/btKFWqFD744AMkJSUZvRhZ06VLF9SsWRNDhw7FjBkzkJqaigkTJhjdpkaNGjh79ix++OEHtGjRAr/88gtWrFhhdJvKlSsjISEB+/fvR8WKFREaGooAwzIkgIcffhiTJk3C0KFDMXnyZFy5cgWjR4/GI488gqioKMd+OGb873//w6RJk1CtWjU0btwYCxYswP79+/Hdd98BAD744APExMSgSZMm8PHxwZIlSxAdHY2IiAgsXLgQOTk5aNmyJYKDg/Htt98iKCgIcXFxThsfac/HR4Ty7GxWyInIc/D13j5F6fWeFXI7sEJORJ5oxIgRuHHjBrp37240/+u1115D06ZN0b17d3To0AHR0dHo16+fzffr4+ODFStW4Pbt27jrrrvw+OOP46233jK6TZ8+fTB27Fg8++yzaNy4MbZv347XX3/d6DYDBw5Ejx490LFjR5QtW9bsVizBwcFYu3Ytrl+/jhYtWuC+++5D586d8cknn9j3wyjAc889h3HjxuGFF15AgwYNsGbNGvz888+oUaMGALGC7PTp09G8eXO0aNECp0+fxq+//gofHx9ERERg3rx5aN26NRo2bIj169dj1apViIyMdOoYSXvc+oyIPBFf721XlF7vdYpix0Z4RVBqairCw8ORkpKCsLCwQt3XQw8B338PfPgh8PzzzhkfEWkvIyMDCQkJqFKlCgIDA7UeDnkJa88rZ742kfN/npGRwPXrwJEjQJ06ThggEWmOr/XkCs54rWeF3A6skBMREXk/VsiJiMhdGMjtwDnkRERE3k9OeeQcciIicjUGcjuwQk5EROT9GMiJiMhdGMjtwAo5ERGR92PLOhERuQsDuR1YISfybl6+xiW5GZ9PRRcr5ETei/+byZmc8XxiILcDK+RE3snf3x8AkJ6ervFIyJvI55N8flHRwQo5kffhaz25gjNe6/2cNZjigBVyIu/k6+uLiIgIXL58GYDYI1On02k8KiqqFEVBeno6Ll++jIiICPjKo7lUZLBCTuR9+FpPzuTM13oGcjuwQk7kvaKjowFA/0JNVFgRERH65xUVLQzkRN6Jr/XkbM54rWcgtwMr5ETeS6fTISYmBuXKlUN2drbWw6Eizt/fn5XxIowt60Teia/15EzOeq1nILcDK+RE3s/X15dBiqiYY4WcyLvxtZ48CRd1swMr5ERERN6PFXIiInIXBnI7sEJORETk/VghJyIid2EgtwMr5ERERN6PFXIiInIXBnI7sEJORETk/VghJyIid2EgtwMr5ERERN6PgZyIiNyFgdwOrJATERF5P7asExGRuzCQ24EVciIiIu/HCjkREbkLA7kdWCEnIiLyfqyQExGRuzCQ24EVciIiIu/HCjkREbkLA7kdWCEnIiLyfrJCzkBORESuxkBuB1bIiYiIvJ+skLNlnYiIXI2B3A6skBMREXk/tqwTEZG7MJDbgRVyIiIi78dF3YiIyF0YyO3ACjkREZH3Y4WciIjchYHcDqyQExEROd+cOXPQsGFDhIWFISwsDPHx8fjtt980Gw8r5ERE5C4M5HaQFXIGciIiIuepWLEi3nnnHezduxd//fUXOnXqhL59++Lw4cOajIcVciIichc/rQdQlMgKOVvWiYiInKd3795Gn7/11luYM2cOdu7ciXr16rl9PNz2jIiI3EXzCvmFCxcwZMgQREZGIigoCA0aNMBff/2lv15RFEycOBExMTEICgpCly5dcPz4cU3Gygo5ERGRa+Xk5OCHH37ArVu3EB8fb/Y2mZmZSE1NNfpwJm57RkRE7qJpIL9x4wZat24Nf39//Pbbbzhy5Ajef/99lCpVSn+b6dOnY9asWZg7dy527dqFkiVLonv37sjIyHD7eFkhJyIico2DBw8iJCQEAQEBeOqpp7BixQrUrVvX7G2nTZuG8PBw/UdsbKxTx8KWdSIichdNW9bfffddxMbGYsGCBfrLqlSpoj+vKAo+/PBDvPbaa+jbty8A4Ouvv0ZUVBRWrlyJBx54wK3jZYWciIjINWrVqoX9+/cjJSUFS5cuxdChQ7F582azoXz8+PEYN26c/vPU1FSnhnIu6kZERO6iaYX8559/RvPmzTFo0CCUK1cOTZo0wbx58/TXJyQkIDExEV26dNFfFh4ejpYtW2LHjh1m79OVbWyskBMREblGiRIlUL16dTRr1gzTpk1Do0aN8NFHH5m9bUBAgH5FdvnhTKyQExGRu2gayE+dOoU5c+agRo0aWLt2LZ5++mk899xz+OqrrwAAiYmJAICoqCijr4uKitJfZ8qVbWyskBMREblHbm4uMjVKxKyQExGRu2jasp6bm4vmzZvj7bffBgA0adIEhw4dwty5czF06FCH7tOVbWyskBMRETnf+PHj0bNnT1SqVAk3b97EokWLsGnTJqxdu1aT8cgK+Z074jXfR/MlcImIyFtpGshjYmLyzQ2rU6cOli1bBgCIjo4GACQlJSEmJkZ/m6SkJDRu3NjsfQYEBCBAvpI6GSvkREREznf58mU8+uijuHTpEsLDw9GwYUOsXbsWXbt21WQ8hm8jMjOBoCBNhkFERMWApoG8devWOHbsmNFl//33H+Li4gCIBd6io6OxYcMGfQBPTU3Frl278PTTT7t7uKyQExERucD8+fO1HoIR2bIOiLZ1BnIiInIVTQP52LFj0apVK7z99tsYPHgwdu/ejc8//xyff/45AECn02HMmDGYOnUqatSogSpVquD1119H+fLl0a9fP7ePlxVyIiIi72cYyLmwGxERuZKmgbxFixZYsWIFxo8fjylTpqBKlSr48MMP8fDDD+tv89JLL+HWrVsYOXIkkpOT0aZNG6xZswaBgYFuHy8r5ERERN5PpwP8/YHsbC7sRkRErqVpIAeAe++9F/fee6/F63U6HaZMmYIpU6a4cVTmsUJORERUPAQEiEDOCjkREbkS1w21AyvkRERExYNsW2cgJyIiV2IgtwMr5ERERMWDXGmdLetERORKDOR2kIGcFXIiIiLvJgM5K+RERORKDOR2kC3rrJATERF5N9myzgo5ERG5EgO5HVghJyIiKh5YISciIndgILcDK+RERETFAyvkRETkDgzkdmCFnIiIqHhghZyIiNyBgdwOrJATEREVD9z2jIiI3IGB3A6skBMRERUP3PaMiIjcgYHcDqyQExERFQ9sWSciIndgILcDK+RERETFAxd1IyIid2AgtwMr5ERERMUDK+REROQODOR2YIWciIioeGCFnIiI3IGB3A6skBMRERUPrJATEZE7MJDbgRVyIiKi4oHbnhERkTswkNuBFXIiIqLigdueERGROzCQ24EVciIiouKBLetEROQODOR2YIWciIioeOCibkRE5A4M5HZghZyIiKh4YIWciIjcgYHcDrJCrijig4iIiLwTF3UjIiJ3YCC3g6yQA6ySExEReTMu6kZERO7AQG4HH4OfFueRExEReS+2rBMRkTswkNuBFXIiIqLigYu6ERGROzCQ24EVciIiouKBFXIiInIHBnI7sEJORERUPLBCTkRE7sBAbgdWyImIiIoHVsiJiMgdGMjtwAo5ERFR8cBtz4iIyB0YyO3ACjkREVHxwG3PiIjIHRjI7aDTiQ+AFXIiIiJvxpZ1IiJyBwZyO8kqOSvkRERE3ouLuhERkTswkNtJziNnhZyIiMg5pk2bhhYtWiA0NBTlypVDv379cOzYMU3HxAo5ERG5AwO5nVghJyIicq7Nmzdj1KhR2LlzJ9atW4fs7Gx069YNt27d0mxMXNSNiIjcwU/rARQ1rJATERE515o1a4w+X7hwIcqVK4e9e/eiXbt2moyJi7oREZE7MJDbiRVyIiIi10pJSQEAlC5d2uz1mZmZyDQoXaempjp9DLJCnpMjPgy3PiUiInIWtqzbiRVyIiIi18nNzcWYMWPQunVr1K9f3+xtpk2bhvDwcP1HbGys08chK+QAq+REROQ6DOR2YoWciIjIdUaNGoVDhw7hhx9+sHib8ePHIyUlRf9x7tw5p4/DMJBzHjkREbkKW9btxAo5ERGRazz77LNYvXo1/vzzT1SsWNHi7QICAhBgmJhdwN9fPc8KORERuQor5HZihZyIiMi5FEXBs88+ixUrVuCPP/5AlSpVtB4SdDqutE5ERK6naSCfPHkydDqd0Uft2rX112dkZGDUqFGIjIxESEgIBg4ciKSkJA1HzAo5ERGRs40aNQrffvstFi1ahNDQUCQmJiIxMRG3b9/WdFwM5ERE5GqaV8jr1auHS5cu6T+2bt2qv27s2LFYtWoVlixZgs2bN+PixYsYMGCAhqNlhZyIiMjZ5syZg5SUFHTo0AExMTH6j8WLF2s6Lm59RkRErqb5HHI/Pz9ER0fnuzwlJQXz58/HokWL0KlTJwDAggULUKdOHezcuRN333232ftz9VYorJATERE5l6IoWg/BLBnIWSEnIiJX0bxCfvz4cZQvXx5Vq1bFww8/jLNnzwIA9u7di+zsbHTp0kV/29q1a6NSpUrYsWOHxftz9VYorJATEREVD7JlnRVyIiJyFU0DecuWLbFw4UKsWbMGc+bMQUJCAtq2bYubN28iMTERJUqUQEREhNHXREVFITEx0eJ9unorFFbIiYiIigdWyImIyNU0bVnv2bOn/nzDhg3RsmVLxMXF4ccff0RQUJBD9+nqrVBYISciIioeWCEnIiJX07xl3VBERARq1qyJEydOIDo6GllZWUhOTja6TVJSktk55+7CCjkREVHxwAo5ERG5mkcF8rS0NJw8eRIxMTFo1qwZ/P39sWHDBv31x44dw9mzZxEfH6/ZGFkhJyIiKh647RkREbmapi3rL774Inr37o24uDhcvHgRkyZNgq+vLx588EGEh4djxIgRGDduHEqXLo2wsDCMHj0a8fHxFldYdwdWyImIiIoHbntGRESupmkgP3/+PB588EFcu3YNZcuWRZs2bbBz506ULVsWADBz5kz4+Phg4MCByMzMRPfu3fHpp59qOWRWyImIiIoJtqwTEZGraRrIf/jhB6vXBwYGYvbs2Zg9e7abRlQwVsiJiIiKBy7qRkREruZRc8iLAlbIiYiIigdWyImIyNUYyO0kK+QM5ERERN6Ni7oREZGrMZDbSVbI2bJORETk3bioGxERuRoDuZ1YISciIioeWCEnIiJXYyC3EyvkRERExQMr5ERE5GoM5HZihZyIiLzRvn37cPDgQf3nP/30E/r164dXX30VWcU0kXJRNyIicjUGcjuxQk5ERN7oySefxH///QcAOHXqFB544AEEBwdjyZIleOmllzQenTa47RkREbkaA7mdWCEnIiJv9N9//6Fx48YAgCVLlqBdu3ZYtGgRFi5ciGXLlmk7OI2wQk5ERK7GQG4nVsiJiMgbKYqC3LwXt/Xr16NXr14AgNjYWFy9elXLoWmGi7oREZGrMZDbiRVyIiLyRs2bN8fUqVPxzTffYPPmzbjnnnsAAAkJCYiKitJ4dNpghZyIiFyNgdxOrJATEZE3+vDDD7Fv3z48++yzmDBhAqpXrw4AWLp0KVq1aqXx6LQRHi5Ok5M1HQYREXkxP60HUNSwQk5ERN6oYcOGRqusSzNmzICvfPErZsqUEafXrmk7DiIi8l6skNuJFXIiIvJG586dw/nz5/Wf7969G2PGjMHXX38Nf39/DUemHRnIi+kUeiIicgMGcjuxQk5ERN7ooYcewsaNGwEAiYmJ6Nq1K3bv3o0JEyZgypQpGo9OGwzkRETkagzkdmKFnIiIvNGhQ4dw1113AQB+/PFH1K9fH9u3b8d3332HhQsXajs4jchAnpYGZGRoOxYiIvJODOR2YoWciIi8UXZ2NgLylhVfv349+vTpAwCoXbs2Ll26pOXQNBMerr7ucx45ERG5AgO5nVghJyIib1SvXj3MnTsXW7Zswbp169CjRw8AwMWLFxEZGanx6LSh0wHyW2fbOhERuQIDuZ1YISciIm/07rvv4rPPPkOHDh3w4IMPolGjRgCAn3/+Wd/KXhxxpXUiInIlbntmJ1bIiYjIG3Xo0AFXr15FamoqSpUqpb985MiRCA4O1nBk2uLCbkRE5EoM5HZihZyIiLyVr68v7ty5g61btwIAatWqhcqVK2s7KI0xkBMRkSuxZd1OrJATEZE3unXrFoYPH46YmBi0a9cO7dq1Q/ny5TFixAikp6drPTzNMJATEZErMZDbiRVyIiLyRuPGjcPmzZuxatUqJCcnIzk5GT/99BM2b96MF154QevhaYaBnIiIXIkt63ZihZyIiLzRsmXLsHTpUnTo0EF/Wa9evRAUFITBgwdjzpw52g1OQ1xlnYiIXIkVcjuxQk5ERN4oPT0dUVFR+S4vV65c8W1Zz8pC678/QQwucpV1IiJyCQZyO7FCTkRE3ig+Ph6TJk1CRkaG/rLbt2/jjTfeQHx8vIYj09Ds2Wj57WgsxDBWyImIyCUYyO3ECjkREXmjjz76CNu2bUPFihXRuXNndO7cGbGxsdi+fTs++ugjlz72n3/+id69e6N8+fLQ6XRYuXKlSx/PZr/9BgDohnUISkzQeDBEROSNGMjtJAM5K+RERORN6tevj+PHj2PatGlo3LgxGjdujHfeeQfHjx9HvXr1XPrYt27dQqNGjTB79myXPo5dMjKALVv0n95zeYGGgyEiIm/FRd3sJFvWWSEnIiJvExwcjCeeeMLtj9uzZ0/07NnT7Y9r1bZtIpTnGXJnAdJvTkJwqK+GgyIiIm/DQG4nVsiJiMhb/Pzzzzbftk+fPi4ciX0yMzORmZmp/zw1NdX5D7JuHQBAuf9+XF+8DrE4jysrfkfwox524ICIiIo0BnI7sUJORETeol+/fjbdTqfTIceDXvimTZuGN954w7UPsn49AEB3771YsSoKj6fPgv/X8wEGciIiciLOIbcTK+REROQtcnNzbfrwpDAOAOPHj0dKSor+49y5c859gGvXgH37xPnOnfFb+REAgLBNPwGXLzv3sYiIqFhjILcTK+RERETaCggIQFhYmNGHU23YACgKUL8+EBOD6xUbYjdawCfnDvDNN859LCIiKtYYyO3ECjkREZGXy2tXR5cuAIAyZYD5EFVyfPutRoMiIiJvxDnkdmKFnIiIyLnS0tJw4sQJ/ecJCQnYv38/SpcujUqVKrl3MIqiX9ANXbsCEIH8D3QQl5065d7xEBGRV2MgtxMr5ERERM71119/oWPHjvrPx40bBwAYOnQoFi5c6N7BnDoFnD4N+PsD7doBEIH8GiLF9ampQHa2uJ6IiKiQGMjtxAo5ERGRc3Xo0AGKomg9DEFWx+PjgZAQAEBkJHADpZALHXygANevA1FRGg6SiIi8BeeQ24kVciIi8ka//vor1q5dm+/ytWvX4rffftNgRBqRgTxv/jggKuS58EWaX4S44No194+LiIi8kscE8nfeeQc6nQ5jxozRX5aRkYFRo0YhMjISISEhGDhwIJKSkrQbJFghJyIi7/TKK6+Y3d5MURS88sorGoxII/36AQMGAD3V/cbLlBGnyT55bevXr7t/XERE5JU8IpDv2bMHn332GRo2bGh0+dixY7Fq1SosWbIEmzdvxsWLFzFgwACNRimwQk5ERN7o+PHjqFu3br7La9eubbTgmtd75BFg2TKgeXP9RTKQX5XzyFkhJyIiJ9E8kKelpeHhhx/GvHnzUKpUKf3lKSkpmD9/Pj744AN06tQJzZo1w4IFC7B9+3bs3LlTs/GyQk5ERN4oPDwcp8ysIH7ixAmULFlSgxF5DhnIk+4wkBMRkXNpHshHjRqFe+65B10M5moBwN69e5GdnW10ee3atVGpUiXs2LHD4v1lZmYiNTXV6MOZWCEnIiJv1LdvX4wZMwYnT57UX3bixAm88MIL6NOnj4Yj056+Qp5bWpxhICciIifRNJD/8MMP2LdvH6ZNm5bvusTERJQoUQIRERFGl0dFRSExMdHifU6bNg3h4eH6j9jYWKeOmRVyIiLyRtOnT0fJkiVRu3ZtVKlSBVWqVEGdOnUQGRmJ9957T+vhaapkSaBECYOtzwoI5HfuuGFQRETkFTTb9uzcuXN4/vnnsW7dOgQGBjrtfsePH6/fvxQAUlNTnRrKWSEnIiJvFB4eju3bt2PdunX4559/EBQUhIYNG6Jd3l7cxZlOl7cX+cWCA/kvvwD33QfMmwcMGeKmARIRUZGlWSDfu3cvLl++jKZNm+ovy8nJwZ9//olPPvkEa9euRVZWFpKTk42q5ElJSYiOjrZ4vwEBAQgICHDZuFkhJyIib6XT6dCtWzd069ZN66F4HFsD+aZNQEYGsGULAzkRERVMs0DeuXNnHDx40Oiyxx57DLVr18bLL7+M2NhY+Pv7Y8OGDRg4cCAA4NixYzh79izi4+O1GDIAVsiJiMh7zJo1CyNHjkRgYCBmzZpl9bbPPfecm0blmcqUMWhZt7LtWXKyOE1Pd/2YiIio6NMskIeGhqJ+/fpGl5UsWRKRkZH6y0eMGIFx48ahdOnSCAsLw+jRoxEfH4+7775biyEDYIWciIi8x8yZM/Hwww8jMDAQM2fOtHg7nU7HQF7GtjnkKSni9PZtNwyKiIiKPM0CuS1mzpwJHx8fDBw4EJmZmejevTs+/fRTTcfECjkREXmLhIQEs+cpvzJlgP9sCOSskBMRkT08KpBv2rTJ6PPAwEDMnj0bs2fP1mZAZrBCTkREVPxERgLXYbDtmaKI1d5MMJATEZE9HArk586dg06nQ8WKFQEAu3fvxqJFi1C3bl2MHDnSqQP0NKyQExGRN1IUBUuXLsXGjRtx+fJl5Jq80C1fvlyjkXkGo5b1rCzg1i0gJCTf7diyTkRE9nBoH/KHHnoIGzduBCD2C+/atSt2796NCRMmYMqUKU4doKdhhZyIiLzRmDFj8MgjjyAhIQEhISEIDw83+ijuypQBbqEksnQlxAUW2tZZISciIns4VCE/dOgQ7rrrLgDAjz/+iPr162Pbtm34/fff8dRTT2HixIlOHaQnYYWciIi80TfffIPly5ejV69eWg/FI5UpAwA6JPtGotydSyKQx8Xlu50M5KyQExGRLRyqkGdnZ+v3+l6/fj369OkDAKhduzYuXbrkvNF5IFbIiYjIG4WHh6Nq1apaD8NjlSsnTq8qlrc+y8gQ3ewAK+RERGQbhwJ5vXr1MHfuXGzZsgXr1q1Djx49AAAXL15EZGSkUwfoaVghJyIibzR58mS88cYbuM3SrlnVq4vTyzmWV1qX1XGAFXIiIrKNQy3r7777Lvr3748ZM2Zg6NChaNSoEQDg559/1reyeytWyImIyBsNHjwY33//PcqVK4fKlSvD39/f6Pp9+/ZpNDLPEBIiOtSvnbEtkLNCTkREtnAokHfo0AFXr15FamoqSpUqpb985MiRCA4OdtrgPBEr5ERE5I2GDh2KvXv3YsiQIYiKioLOzJZexV3dutYDuVxhHRCt6zk56vsGIiIicxwK5Ldv34aiKPowfubMGaxYsQJ16tRB9+7dnTpAT8MKOREReaNffvkFa9euRZs2bbQeiseqWxe4/pvBXuQmDCvkgGhbN7MzGhERkZ5Dc8j79u2Lr7/+GgCQnJyMli1b4v3330e/fv0wZ84cpw7Q07BCTkRE3ig2NhZhYWFaD8Oj1a1rsBe5DYGcbetERFQQhwL5vn370LZtWwDA0qVLERUVhTNnzuDrr7/GrFmznDpAT8MKOREReaP3338fL730Ek6fPq31UDxWnTrWA7lhyzrAhd2IiKhgDrWsp6enIzQ0FADw+++/Y8CAAfDx8cHdd9+NM2fOOHWAnoYVciIi8kZDhgxBeno6qlWrhuDg4HyLul03s81XcWMYyO9cvpbvTRQr5EREZC+HAnn16tWxcuVK9O/fH2vXrsXYsWMBAJcvX/b6djdWyImIyBt9+OGHWg/B40VEALrISOAakJ103WWBPCMDCAx07GuJiKhocSiQT5w4EQ899BDGjh2LTp06IT4+HoColjdp0sSpA/Q0rJATEZE3Gjp0qNZDKBIia0YCOwCf665pWT9wAGjZEnjhBWDqVAcHSURERYZDgfy+++5DmzZtcOnSJf0e5ADQuXNn9O/f32mD80SskBMRkbfKzc3FiRMncPnyZeSaHHlu166dRqPyLNH1RCD3T0/Ot6+ZMyrke/aICvmWLYUaJhERFREOBXIAiI6ORnR0NM6fPw8AqFixIu666y6nDcxTsUJORETeaOfOnXjooYdw5swZKIpidJ1Op0MOj0QDAOKaiG3PfKAAN24AZcror3NGhfzWLXHK+edERMWDQ6us5+bmYsqUKQgPD0dcXBzi4uIQERGBN998M98RdW/DCjkREXmjp556Cs2bN8ehQ4dw/fp13LhxQ//BBd1UdRr4IQV56+WYrLTujAq5DOTylIiIvJtDFfIJEyZg/vz5eOedd9C6dWsAwNatWzF58mRkZGTgrbfecuogPQkr5ERE5I2OHz+OpUuXonr16loPxaPJvcjDkYrb568hqJZ6nQzkgYGi7bwwFXIGciKi4sGhQP7VV1/hiy++QJ8+ffSXNWzYEBUqVMAzzzzj1YGcFXIiIvJGLVu2xIkTJxjICxAZCZz1iwTuJODCgWuo3lm9Trasly8PnDrFCjkRERXMoUB+/fp11K5dO9/ltWvX9vq2NlkhZyAnIqKi7sCBA/rzo0ePxgsvvIDExEQ0aNAg3z7kDRs2dPfwPFZ2aCRwA0g6eh2Ghy9khTwmxvFAnpYmThnIiYiKB4cCeaNGjfDJJ59g1qxZRpd/8sknXv+CLSvkbFknIqKirnHjxtDpdEaLuA0fPlx/Xl7HRd1MlBGBPPmkOof8zh01TMfEiNPCtKxnZORbxJ2IiLyQQ4F8+vTpuOeee7B+/Xr9HuQ7duzAuXPn8Ouvvzp1gJ6GFXIiIvIWCQkJWg+hSAooHwkcB9LPqYE8NVW9XgbywrSsy68PDXVwkEREVCQ4tMp6+/bt8d9//6F///5ITk5GcnIyBgwYgMOHD+Obb75x9hg9CivkRETkLeROKXFxcThz5gwqVKhgdFlcXBwqVKiAM2fOaD1UjxJaORIAcCdJDeSyXb1kSSAsbxH2wlTITc8TEZF3ciiQA0D58uXx1ltvYdmyZVi2bBmmTp2KGzduYP78+c4cn8dhhZyIiLxRx44dza4Dk5KSgo4dO7plDLNnz0blypURGBiIli1bYvfu3W55XHuVqSH2IvdPvaYP3TKQh4cDwcHivDMq5ERE5N0cDuTFFSvkRETkjeRccVPXrl1DyZIlXf74ixcvxrhx4zBp0iTs27cPjRo1Qvfu3XH58mWXP7a9ZIW8NK7h5ElxmVxhPSICCAoS5wsbyFkhJyLyfg7NIS/OZIVcUcSHmfcuRERERcaAAQMAiAXchg0bhoCAAP11OTk5OHDgAFq1auXycXzwwQd44okn8NhjjwEA5s6di19++QVffvklXnnlFZc/vj10ZUQgj8Q1JCQA9eurFfKICLVC7kjLulwYDmAgJyIqDhjI7eRj0FOQm8vVT4mIqGgLDw8HICrkoaGhCJLlXQAlSpTA3XffjSeeeMKlY8jKysLevXsxfvx4/WU+Pj7o0qULduzYke/2mZmZyMzM1H+eariimjtEygr5dWzOWxfPsGWdFXIiIrKVXYFcHkW3JFm+GnkxwwDO7UiIiKioW7BgAQCgcuXKePHFF93Snm7q6tWryMnJQVRUlNHlUVFR+Pfff/Pdftq0aXjjjTfcNbz8ItUK+alT4iLDlvXCVMgZyImIihe7Ark8im7t+kcffbRQA/J0phVyIiIibzBp0iSth2Cz8ePHY9y4cfrPU1NTERsb674B5AXyYNzG+eO3AQSZbVm3t0KuKMZfw0BOROT97Ark8ih6cWZaISciIiqqmjZtig0bNqBUqVJo0qSJ2UXdpH379rlsHGXKlIGvry+SkpKMLk9KSkJ0dHS+2wcEBBjNdXe70FDk+vrBJ+cOkk9eA1DRbMu6vRXy27dFKJcYyImIvB/nkNuJFXIiIvIWffv21Qfbfv36aTaOEiVKoFmzZtiwYYN+HLm5udiwYQOeffZZzcZlkU4HJTQMSL6OG2dSoSjmW9btrZAbLujmyNcTEVHRw0BuJ1bIiYjIW8g29ZycHHTs2BENGzZERESEJmMZN24chg4diubNm+Ouu+7Chx9+iFu3bulXXfc0PmGhQPJ1+Gak4fJl41XWHV3UzbQizgo5EZH3YyC3EyvkRETkbXx9fdGtWzccPXpUs0B+//3348qVK5g4cSISExPRuHFjrFmzJt9Cb55CFxYKAAjFTZw6ZbzKuqOLujGQE7lBZqb4CAvTeiREAACfgm9ChlghJyIib1S/fn2ckkuGa+TZZ5/FmTNnkJmZiV27dqFly5aajseqUDWQJyQ4p2WdgZzIxRQFaNECqFMHuH5d69EQAWAgt5vhejeskBMRkbeYOnUqXnzxRaxevRqXLl1Camqq0QeZCDVfITdsWc/JAbKzbb9LBnIiF0tOBg4eBC5eBL76SuvREAFgy7pDfH3Fiywr5ERE5C169eoFAOjTp4/RauuKokCn0yGHL3rGLARyw5Z1QFTJC9g1Vo+BnMjFLlxQz8+dC4wZY1xtI9IAA7kDfHxEGGeFnIiIvMXGjRu1HkLREhICQATyI6eMW9ZLlBDv8RVFzCO3NZCbrrLOQE7kZIaB/L//gD/+ADp31m48RGAgd4ivr2hBY7GAiIi8Rfv27bUeQtFiUCE/cEA9SB8eLsJ4cLAI1PbMI2eFnMjFDAM5AHz6KQM5aU7TOeRz5sxBw4YNERYWhrCwMMTHx+O3337TX5+RkYFRo0YhMjISISEhGDhwIJKSkjQcsSBXWmeFnIiIvE16ejr+/fdfHDhwwOiDTBgE8hs3xEX+/ur8cUcWdpMBPG9reO5DTuRsMpDLBSN/+il/SCdyM00DecWKFfHOO+9g7969+Ouvv9CpUyf07dsXhw8fBgCMHTsWq1atwpIlS7B582ZcvHgRAwYM0HLIANSV1lkhJyIib3HlyhXce++9CA0NRb169dCkSROjDzKRF8hL+d7UXxQRoU5HlcHcnq3PZCAvV874cyJykosXxWnXrkDbtuLN/BdfaDsmKvY0DeS9e/dGr169UKNGDdSsWRNvvfUWQkJCsHPnTqSkpGD+/Pn44IMP0KlTJzRr1gwLFizA9u3bsXPnTi2HzQo5ERF5nTFjxiA5ORm7du1CUFAQ1qxZg6+++go1atTAzz//rPXwPE9eII8KVgO54VzxwlTIy5Y1/pzIY2RnAytXFt0tw2Q1vEIF4Omnxfl584A7d7QbExV7HrPtWU5ODn744QfcunUL8fHx2Lt3L7Kzs9GlSxf9bWrXro1KlSphx44dFu8nMzPT5Vu1sEJORETe5o8//sAHH3yA5s2bw8fHB3FxcRgyZAimT5+OadOmaT08z5MXyMsEqiuxRUSoV7NCTl7pu++A/v2BV17ReiSOMQzkAwaIP7YLFwBvWdTy8mXo59BQkaF5ID948CBCQkIQEBCAp556CitWrEDdunWRmJiIEiVKIMLw1Q1AVFQUEhMTLd7ftGnTEB4erv+IjY11+phZISciIm9z69YtlMtLgqVKlcKVK1cAAA0aNMC+ffu0HJpnki3rfsYt65IjFXK5ynpUlDhlICePI9eT+PtvbcfhKMNAHhAA3H23+PzUKe3G5CzJyUD9+mJ+PENKkaJ5IK9Vqxb279+PXbt24emnn8bQoUNx5MgRh+9v/PjxSElJ0X+cO3fOiaMVWCEnIiJvU6tWLRw7dgwA0KhRI3z22We4cOEC5s6di5iYGI1H54Hkom4657esG1bIFaUwgyRyMhlc//uv6D05s7NFBRkQgRwAoqPFqZViX5GxZg1w5Qpw/Dhw5ozWo9GGogD//lvkQprmgbxEiRKoXr06mjVrhmnTpqFRo0b46KOPEB0djaysLCQnJxvdPikpCdHyj8eMgIAA/art8sPZWCEnIiJv8/zzz+PSpUsAgEmTJuG3335DpUqVMGvWLLz99tsaj84D5QXy4BzzFXJntKzn5ABZWYUYI5GzyUCemqqG24JkZwNbtmg/T/vSJRHY/P3VhRq8KZD/8ot6/tAh7cahpdmzgTp1gHff1XokdtE8kJvKzc1FZmYmmjVrBn9/f2zYsEF/3bFjx3D27FnEx8drOEJWyImIyPsMGTIEw4YNAwA0a9YMZ86cwZ49e3Du3Dncf//92g7OE+UF8oAs57Wsmy7qZngZUT5JScAzzwAnT7rn8RTFuLX7v/9s+7p584B27YDRo50zhk2bRBXUXnKF9ZgYtbomu3+KeiDPyQEMto5G3o5VxUpODvDee+L8t99qOxY7aRrIx48fjz///BOnT5/GwYMHMX78eGzatAkPP/wwwsPDMWLECIwbNw4bN27E3r178dhjjyE+Ph53y/keGmGFnIiIvF1wcDCaNm2KMmXKaD0UzxQSAgDwTTffsl6YCnlEhCjiAdyLnKyYOROYMwd48UX3PN7Vq8ZHiGwN5DIcfv45cPSo449/7JjYrqxjRzFPWgZsWxnOH5e8pUK+axdw7Zr6eXEM5L/+qrbqHz3qvgNVTuCn5YNfvnwZjz76KC5duoTw8HA0bNgQa9euRdeuXQEAM2fOhI+PDwYOHIjMzEx0794dn376qZZDBsAKOREReZ9x48aZvVyn0yEwMBDVq1dH3759Ubp0aTePzEPlVch1mZkoXzYbF6/4O21Rt5AQoGRJsUYTK+Rk0f794vT338WRH3kUyFaKAvzwA9CmDWDLIsimC5/ZGsjzFohEbi7w6qvAihX2jTM3F5g0SbQhZ2eLy1JTgf/9T6z6bitXBPKcHOD8eSAuzrGvdxbZrh4ZKYJ5cWxZN82Iq1cDzz+vzVjspGmFfP78+Th9+jQyMzNx+fJlrF+/Xh/GASAwMBCzZ8/G9evXcevWLSxfvtzq/HF3YYWciIi8zd9//4358+fj888/x+bNm7F582bMmzcP8+fPx4YNGzBu3DhUr169UAuvepW8QA4A9eNElbxUKfVqGcgdqZCXLKl+PQN5EeWOqs3Bg+I0PR1Yv97+r//pJ+Chh4C8qSoFMg3kx4/b9nUykANiD/Pt2237OmnRImDqVBHGe/UCliwBdDpx+aZNtt+PDOTly6uXGQZyRxape/ddoHJlYPFi+7/WmWQgf/ZZcXr0aPGqHJ48KRa10+mAUaPEZatXazsmO3jcHPKigBVyIiLyNn379kWXLl1w8eJF7N27F3v37sX58+fRtWtXPPjgg7hw4QLatWuHsWPHaj1Uz+DvL7ZNAvDyMzcxaJDICpIsVhpVyPfsAf76y+JdGgbykiWNL6MiZP9+oHRpUQ12latXjVu2f/rJ/vvYs0ecbt4MpKQUfHsZyGWItbdCXquWOH35ZfvC78qV4nTsWBGy7rsPeOopcdmoUWrVvCDmKuRyj8GMDFF1t9fy5eLUnkq9IWesCn7+PPDPPyKMPv20+OeTmVmkWrYLbc4ccdqjh1oV37zZsd+pBhjIHcAKOREReZsZM2bgzTffNNqdJDw8HJMnT8b06dMRHByMiRMnYu/evRqO0sPkVck73ZWGH38UGUzK17KekSHmvnbsKM6bwUDuJaZPF0HAcNVrSxxdRl9Wx+Wb0lWr7H9jKucZ5+QAf/xR8O0TEsRp9+7i9MQJ24KkDOQffAAEBgJbt9pevczOBtatE+cfeECETkBUzMuUAY4cAWbNsu2+zAXyoCB18Ye8XSZsduuWOm1g0ybbDwwY+vFHsSr466/b/7XSr7+K07vvFgcY6tQRnxeXeeS3bwNffinOP/MMUKMGULOm8XPHwzGQO4AVciIi8jYpKSm4bGYboytXriA1r8oQERGBLO7DpZJt6zdv5rsq36JuiYniDXxamtn5qrm5ani3KZAvWyYWtrK1bZjcIykJWLpUnC9o0bFPPxUBtUwZoFUrYMQI2xc9k4G8Rw8RKC9fFgt72cNw+snatQXfXlbIO3YUHSKZmcC5c9a/JjdXXWyscWNgzBhxfsYM28a4fbs4uFG2LNC8uXp56dLq1laTJwM3bhR8X/L3YRjIAcfnkf/1lxoGbt60/+cPAHI3qS++cHxbOHng5557xGm9euK0KARyRQG++gp44w3HK52LF4vff1wc0LOnuOzee8XpqlXOGaeLMZA7QAZyVsiJiMhb9O3bF8OHD8eKFStw/vx5nD9/HitWrMCIESPQr18/AMDu3btRs2ZNbQfqSawE8nwVcsODHUlJ+W5vONfcpkD+4YfA7t1q+LOVI/NkyXZffKFWSq9eFaHVkpUrxe/j2jVgxw5R5bO1UnrggDht1kydK2FP23pGhnFL85o1BT83ZCCvXl18AAW3rd+4oYbWMmWARx8V5//+27Y30rL626OH2g0gDRsGVKkiDnIV1LmjKOYr5IDjgXzHDuPPHanGygMwV64AGzfa//UZGer6ATKQ168vTj19Ybfz58XvddgwcVDFke8fAL7/Xpw++aQa0mQg//XXIlFBZSB3gPx/UAR+v0RERDb57LPP0LlzZzzwwAOIi4tDXFwcHnjgAXTu3Blz584FANSuXRtffPGFxiP1IDYEcn3QNlzYyswbf7nCuvxaGcjNrtKekwPs2yfOyzZiW0yYIKqphdl6ypucP+/cKuKdO8BnnxlfZi3kyUD8xReiQgjYvr+2DOQNGgB9+ojz9gTyf/8VgTgsDChRQmwXZS1cZ2er1fCqVUVLMFBwIL96VZyGh4vHqV5dnKalqVtUWSMDueECDZKPD9CwoThf0HM6NVU9umUayB3di1wuTicDsL2BXFGMuxR++MG+rweALVvEP4kKFYBGjcRlRaFCvnix+Ln9/rt6mewWsJf8Pjt2VC9r00Y8565cUddK8GAM5A5ghZyIiLxNSEgI5s2bh2vXruHvv//G33//jWvXruHzzz9Hybx02LhxYzRu3FjbgXoSG1rW9YHaMJCbqZDLrBAcLHKG1Qr5sWPqHZuufG3N6tVirFqvCO0J7twBWrcWgdZZqzH/8osIrWXKqCt5W2pbz8oCTp8W53v2BB5+WJw/ebLgN5g5OWoIadhQfL2/vwjZti60JoNgo0YivADW29bPnhXjCgwUFWVbA7l83pctK079/dU5zgVVcM+eFbfx8QG6dTN/G3lfBR3IkNXxiAj1aJnkSIVcUdQK+WuvidPdu21bHE+6cgW4fl39fNky6x0V5siDAh07qvPr5QGCY8ccm9fuaidOiNX9U1KAu+4SBwoBxwL5zZvq71YuGgiI51mPHuJ8EVhtnYHcAayQExGRtwoJCUHp0qVRunRphISEaD0cz2ZPy3oBFXLDBd0Mv95sIDdcqd2elZTlG1d7torSQk6OfRu4O+KPP0TgUxTgwQed0947e7Y4HTFCbIUFWA7kZ86IgBsUJCq0cXGAn59oQZa/J0tOnRI/n8BAUXEODwc6dBDX2Voll4G+bl01uKxZY/0xAVEd1+nUQF7QGgamgRywvaX6t9/E6d13G6+YaKh2bXFqayA3rY4DjgXyEydE9T8gAOjXTywklpNj39+WPChSubIYV0qKbXP5Dcl56y1bqpdVqgSEhIgw7olrTHz1lXjud+wIbNsmWs0B8X/NngMagDjoAIjF7Az3nQSM29ZtdOeOxTU3XYqB3AGskBMRkbfJzc3FlClTEB4erm9Zj4iIwJtvvolcvuCZZ8+iboZzyG0I5FYr5IaB/OxZ26pgmZnq4lo7d2rzrtNWo0cDkZGunQO7aJE49fcX7dO9exv/jgARuqZNA9q3B2bOtHxfWVlii6V160RYffLJgivk8kBK9eria/z8xHxooOAQJdvV69dX35T27StObV3ESgbyevXUVdM3bbL8vJCBXI6xRg1xamuFvEwZ9TJbA7m1dnVJq0Auq+PNmolQ3rWr+NyetnUZyOvXBwYPFuftaVtXFFGVB0SlWdLpPLdtPTdXBHJA/J34+QGxseL5lJsr/o7sIX/v8nlgqHNncbp/v81Bf+tWcXyrf3/7hlFYDOQOYIWciIi8zYQJE/DJJ5/gnXfe0besv/322/j444/xemG25PFmsoPAMJCnpwOLFyM0N0X/KQCbW9ZtCuSGC1jl5opQXhDDLZ0yMx1bEbqwcnNF6LNW/c7JEXs6Z2SILaFc4fZtdf/opUtFKD59WgS/Z58FBg0Srdw1aoi9xP/8E3jllfyBbcUKEaZKllQr1L16idBaUCA/cUKcVqumXiZDrrzOEsP541KXLuJ0zx7bDtDIMFi3rrifmBjxc9m61fzt5VoFVauKU1khP33aepu1oxXyzEx1sTJbAvnFi9ZDl/w9yN+LIUcCuWwVb9VKnDoSyOW89zp1xJZugOhwsHWvw1OnxEG2EiXU+eOSDOTOOKiVmyv+JgcMAKZMKXhlfWs2bhRfHx6uHkQC1PBsb9u6tUAeEyP+thVF/X0VYOdOcXzNz8++YRQWA7kDWCEnIiJv89VXX+GLL77A008/jYYNG6Jhw4Z45plnMG/ePCxcuFDr4XkmcxXyOXOABx5A7CKxJZOti7rJ9+Ay41sM5HfuiBWqDW9kOI9cUYBPPhGLPRkybYPWom194ULRpjpxouXb/POPWIALUAOZs/36q/idVaok2lpXrRIBYe9e0Xa+dKkIvb6+ImjVri3epectbghA/D4feURUIO/cEYujtW0LvPWWuN7WQC5XKzc8X1CFXG55Jhc0A0SYDwsTBzIKqooarrBer56oqMoquaW2dcOWdUCE2JAQ8WbY2joG1gL50aOWDx78+ac4cBMTI7ZLsyQ8XF2UTbYvm2NLhdyefchlhTw+Xpx27CieL//9Z9sBMsD4oEiLFuJATnq6bfvXA+pBtSZNRJXekDMq5IoixtKkCTBkiDgANWmSmF7Ro4f6f8jQ7t1iSztLIUlWxx98UEy5kDp1Eqd//GHfGK0FckD8TQLi+WQD01+ruzCQO4AVciIi8jbXr19HbTNvamrXro3rhgsPkcpcIM8LU0FnxBtFWyvkcpX1AivkR4+KlB8aKlqpAeNAtHOnaPl+7DHjrzMNhloEcrmtkbXHNmxZ3b1bDefOJNvVH3hAvKmrXVvMV37qKVERnzULWLJEBLTff1dXQJ8zR60Gv/uu+OU0ayYCWHKyeNMvK5UykFuaD27Ysi7ZWyE3DOQ+Puo+3QWtKi1XWC9dWsy9BdRAbmkOs2kgN5xHbq1t3Vwgt2WOs+xg6NlTXazMElva1m0J5Feu2LYXeGqqelBEJrfwcLVt3NYquWGFXKdTq+RyG6+CmGtXl5yx9dnUqeKA1YED4vv73//EgQdFEc+Te+8VB6qk7GzR6/3SS+anTty8KRauA4ChQ42vkyukHzpk9v+jRfJ3brigmyEZyE0PUJqhKOLfJyCWLXAnBnIHsEJORETeplGjRvjkk0/yXf7JJ5+gkWk7JAkykBvuWZb3ZtL/qgjAt2/nbe9srUKekwOfhJMAlIIDuZw/3rSpGuYMF3aTYSwhwbj6KAO5DHFazCPfv1+cHjpkuTJqGMhzcmyubNksJUWtQD70kHp5fLwI3G+9JQ5o3HefGiL79wcqVhRzzH/4QQR1uYDbm2+KObCmodGRlnVbKuRpaerv27BlHRBVVqDgQG5YmZXjlgd3Dh82DlmS6RxywLZALrc9MwzkPj7WA+OVK2ol1fB3ZElhA3mZMuLNvaIY/51asmuXuG3lymp1HlDb1m3p7LhxQ63Iy5Xi+/UTp5amDZgbB2C8oJskK+QnTti/cjsgvj/ZETJqlPj9T58uKtjHj4uDGBcvqgdOAHFePt/NTYlZulQcoaxVK/+Yy5RROyFsrZLn5Kh/KwVVyPfsKfD/XUKC+BP39xf/Xt2JgdwBrJATEZG3mT59Or788kvUrVsXI0aMwIgRI1C3bl0sXLgQM2bM0Hp4nslchTwvbPsliQCgKHnvhw0XDLt1yzjEf/QRHnitOh7F1/kCeb7p1nL+ePPmapgzrJDLNtLcXLHPtiQDSadOoiqakaFW2NwhI0OtCGZmmm8vzs1VK1nyzbmz29ZXrBCPX7eucYXZGn9/MbccAD78EHjnHfH93H23ukK5KWuBPCdH/Z2Zq5Bb2/pMtiBHRxuHXMD2QG64oJsUFSXanhUlf1U/OVkESMD+QG6uQg5YD+SffCKOZDVtqrYyWyPDmLW9yK0Fcl9foFw5cd6WeeSyr1nOH5fkQQ15vTVyrBUriqkGgPr7uHpVPZBhSVaW+rduLpCXLy+2eMvJcaxKfvSoeO4GBgLvvWe8yn316sDTT4vzH32kXv7xx+p5w4UnJTn1adgw810P9ratnz4tfg6BgaLrwpxq1cTfSlZWgf/vZHW8SRPjbnp3YCB3ACvkRETkbdq3b4///vsP/fv3R3JyMpKTkzFgwAAcO3YMbWWVgYxZCeS6xEvwgThyn341XU3W8k2EYVtmXgv3/Vhc8LZn8o1us2Zq+7C5QA6o+1wDajCsUEENDu5sWz90yLiS8c8/+W9z+LDYl7lkSdEeCzi2N7E1sl39wQcLboU29MQTYun8/ftFYAREddzSfcjgl5KS/5d44YIICP7+orou2bL1mbl2dUkG8oMHDRYvMMNcIPfxUcdiumiXXNCtXDl1kQPAtpXW7Q3kt26pP9+XX7btd1TQXuR37qh/b+YCOWDfwm5ygTDTicYtWojxnjlT8P0YtqtLJUuK5wBQ8KrxBw6IA0ulSxt3WUg6nfp3vnSp9fsy5/ffxWm7dubT6ZNPiufvzp0i6O7bJ7Ywk/76K681KM+pU6LbRacT89HNsXdhN/kzqllT/b9qSqezuW1dq/njAAO5Q1ghJyIib1S+fHm89dZbWLZsGZYtW4apU6ciNzcXI0eO1Hponsk0kCuK/o2/LicHFfxEVTzrQl4oKVFCreQYvmHPa0Fuiy0IDRSt3CKYKxh4dibw9dfidtnZatt38+ZqID95Ui3FGy7iZC6Qly+vrghemECeng68/37BwUGS47b0OaC2q7dqBXTrJs4fOmTf6tfWXL6svtl/8EH7vrZ0aeDRR8X53FwRVGSAMCc0VG1zMF0sTLarV6liHCQMtz6zNI/cWiCPjRWhOSfH+Od7/brx54Yt66ZfD+RflMx0/rgk5+1aeg4YtoAbbnsGqIFczsWWvvhCjLdaNWDgQPP3a0pWyE+cMD8VIilJ/M78/NRKuCl7Ark8mCQPgEihoepBjoJ2MbD0O7Cl2m94/3fdZfmghQy+331nvYqYlJR/60Y5D1624ZuKilLnvH/8sVodHzhQ/J+7ccP4/89PP4nTTp1EV4A5bduK31FCgnoQyJqCFnST2rUTpwUEcq3mjwMM5A5hhZyIiIqLa9euYf78+VoPwzOZBvKbN40qk1UCRAjWB/KyZdU3/rJiZ7BKdSjSUCtNtKSXLAm0wB68nDROLIC0cKF4E5+ZKRZYqlZNDW+pqSLEHDpkvCiV4RtiWXE1DOQ7djg2vxQAxowBXnxRVDFtIQOhDGbWAnn79o7NKS3Ihg3i592okfmqYkGee049P2WK9eqtTme5bd3cCutSQfPIZWowt66DTpe/bV1RxB7rTZqI+fGmK6wbkgeLLFXITQO5nIN++bL5IJuWpj6/LFXIT55Uu0eys4EPPhDnX3zRctXTVIUK4g/mzh3zK77Lv4OYGLWqZsrWQH7zpnobcwuJyfbxggK5DNymgVxWzG0N5Oba1aV77xX/K86ds7y/d0KCeM61aaNWGjMz1YN18sCYOc8/L04XL1YXonvhBfVgkWHbupx60rOn5fsLDVUXqGvfHpgwwfoBP1sDuayQb9+u/n/86y/g00/1Vfzbt9V/SayQFxGskBMREVG+QG6yOnBlfxGCcy7lzR8vVy7/G//ERKPFhmpdEiuRlywJDIDBgklPPCEq0oBoV/fxES3UMvSdOpV/GyJLLeu1a4uxODqP/I8/gHnzxPmCVgSX5Lvdhx8Wp//8Y9zSqijqAm6y1VburW1v2/qSJSLYmP485Crv1irb1tStCyxYIN7IyzFaYymQm1thXbK20vqFCyJI6HSWK5cy0MhAvnu32mL92mvA44+LgxKlSqkrrEsFVcgN548D4kkqx2tuCoKsjgcFqd0CUlSUCOmKoobPH34Qj12uXP5VuK3x8bFerZfff7Nmlu/D1kAufy9lyog52qZkedXWCrlhy7rh5wUFcmsrrEuBgcCgQeL8N9+Yv83s2eLAyYEDwMqV4rIdO8RBkqio/AsHGmrWTHSzZGeLEN+smfj+5c9ZBvKsLPWAgPybtuSFF8Sc+nPngLffFj+P1183f1tbA3n9+uLAxM2b4nm6e7f4+x01Sv+/Ze9ekdWrRt1CpWwrazi4CAO5A1ghJyIionyB3OTNfCXfvECeaFAhlyFI3tZwhXQAVc/kBfJgBQORt0VQjRri3aJ8U20YLAznkcsAKoOVDOQ3b6qLyMXEGM8vLaj6fPu28fd165Y4OCCdPWscrM3JzVUD25AhIkBduWLcyn3smKi0BgaqVV4ZnNevL/gxpLQ08Ub733/FAmyGZCCXWyw5YtgwdUGrghRUITdXpbdWIf/5Z3F69935w7RkWiGX87FlmP7uO3Eq9x83JCvkpoFcjte0Qg6olXprgdy0Oi4ZziO/dEkcMABE5TUoyPzXWGItyMpW5TZtLH+9rYFc/l7kgQhTsmK9e7flyt2tW2KeOWC5Qm6tMnzjhrooorVADgCPPCJO5QrnhtLTAcPupxkzxN+ZnD/epUvBc/gNu0ZGjxa3l9vvyUC+a5f4nsuWtR7wAWDAAPE7WLwYuOcecdnUqWrLuyFbA7mvL9C6tTi/cKHoHJA/i7wDhXL++GNVN0NXo7r1zgMXYCB3ACvkREREzvHWW2+hVatWCA4ORoS5ipMnk4FcVohMKuQVdXkrrV+x0rKeV328GigWm6qQsBXIzETYucOogRPIQAByt25X31AC6htewHwgl9snyVZj2a4eFqYuyiUrrOb2CzbUv78I8X36iDfYr78uHksujpWWJlbhtubkSXG7wEDRhi7fQBu2rcsK2t13i9W+AdFq6u8vAqLJgQuLZs1Sg+Dq1WqL6rlzIlj6+qpzSl3NkZZ1axVyWcGUv19zZCA/dkyExx9/FJ//+CMwbZp6O9N2dcDyom5y0Ta5qroha4Hc3JZnhmQg37FDhK+zZ8XPZNQo87e3xtLWZ7m56jZi1hanlH+XpvP9TRUUyOvWFX9jaWmWq9xyjOXKAZGRxtfJQH7mjJktFvLIgy3VquWfm2+qTRuxUNzNm/n/1hctEn+7FSuKv7ldu8TPSs4ft9auLg0YIA4KNG4M3H+/uEz+f9q7VwR82a7eubPlKQOGgoKAwYPF3++4ceKyoUONpyMYrkRv7nlpSv7uP/lE/H+Q48hbc0POBGkbkbdGg6Xfr4swkDuAFXIiIvIWAwYMsPoxduxYlz5+VlYWBg0ahKdtrTp6EsM2XMO5pXliFBHEfK6aCeQmFfIdpe/BZZSFX9ZtYPduhKwT7eq/oxvSg8uIMFarlnhMw0ApA/nx42oo6t9fnMrVvA3b1aW+fcWb0r171WqdqSNHgLVrxflVq0TYmzlTfD5vnhq0TCuqpmTwbtBALNok54YbhjjD+eNSyZLqhE5btj9LThZVPkBU6q5fV1d+ltXxZs3UbaZczVwgVxTrLevyshMnjN9opqSo30PfvpYfs0wZsT82ICr5WVkiMDVvDrzyipj2EB2ttjIbMlchz8hQPzcXfMz9LiVbK+SffSYOJpUrB6xZI9qL7WUpkB85IirKwcFiHr0lcj/xwlbIfX3VgyKW2tYttasD4vcXGSmeJ+a2BgTUv4WCquOA+BuXi7sZtq0rimhXB0RHgpwiMGGCurViQe3lgDhgtmuX+P3J1djr1RMBPyVFPNfleG25P1PvvCP+B6SkiOesnN4jfzaxsfmnQ5hjeDAmLk7tnjlyBIqiVsjrZOU9j23dEtFJGMgdwAo5ERF5i/DwcKsfcXFxeFSuLu0Cb7zxBsaOHYsGBbUyeiI/P7W19uZNteqdV4WOzhWVaZ9rBnPIZauxvG1eODvtWw2b0EFctnEjSqwWgXw5BohCWZkyItieOaOGekBte/79d1FRCw4Wbz4DA9W9yA1XWJfKlVPfpC43mKtuSO4b3L69aH2Vb4AeeUQszmSpxdmUrNzL8CarqjKo5+Soi0iZzs3u3t36GA29/74I5XXrqnPVZaurDLO27GvtLOYCeVKSaN/18VGDs6HKldWtzwy/bs0a0YlRq5b5xcQMyUAo597LPdQBUXG8dMn8PHpZIU9JEQsFAuoK/mFh5oO1/F3++6/RWggAbA/kgHjerl7t2GJ7gHGrt+H0BtmuHh8vwqMlzmpZB9R2Z1l2NWVpQTfJWvv9wYNqmBwwwOpQ9WTb+po1YloIIObV798v/k8MHy7mbut04uelKOJ3Y/j/wh7+/sYLMsoDE44Ecn9/0b4eGSm2Vnv2WfF/zdZ2dal5c9EJUKaM+DnI5/+RIzh3VsGlS+LPrszFvAq5uUUTXcjPrY/mJVghJyIib7FgwQKth2C3zMxMZBqsDp4qw4MWQkPFPOu0NPXNfJMmwJYtKJctArn/DSsV8rw2zJNKNRxBKAZjCfD119CdPIk78MUq9MYkuY11YGD+PYFlhVy2pTdsKN5ZxsWJKtLp08YrrBsaMEBUppcvB0w7IQznrI8ZI9qkX39dtLTK7Y5iY0U1zbTF2ZQM3rJCKd+sy8u//lqExFKl8u85dP/9omq3YYP4mcmfX2amaHO+dk1U93r2VIPKm2+K02+/FYH8/ffVufKFmT9uL9mRYLinuGxFr1RJbA9lys9PhPITJ0T4k1tEyXZ1a9VxqUULsbAdIJ5z5qrh5oSGioXKkpPF77RePTWA1qxpfj5xhQpiS7jr10X7r+H6Bpa2PJMaNBAHtLKyREu96TZi9qheXRzkSEkRzxNZ8ZaB3Fq7OqA+r27eFAdMLFVd7QnkjlTI5eVbt+YP5NnZYg2D7GwxhcTWbeFq1RI/2z17xPP/nXdEuzoAPPSQ+P2VLi2eW/J5ZmnRQFs1by6+/w8+EAfcqldX91i3V2ys+Fvu1UvMec/JEf8rANsDeUCA+Lnn5ooOjOxsEfbT0vDPqrMA4tCiQQZ8DuRV3lkh93yskBMREWln2rRpRlX8WFnZ04Lhwm6y6t20KQAgMlNUOP1TzCzqlpRk1L78X041/IG86m3eZdv8O+A6InFLBnJzTBfakqFXVl9Pnzbfsg6ore3btuWvDK5ZIy4rW1ZdXKlGDeCxx9SuAFsr5DJ4m1bIjx8XoU2uojxhQv7FvKpVE9XN3FyxCrf0/fcipO/fLw4m1K4tDoo0bSq+r27dxJvwU6dE5fXsWfEG3HAuvqsZVshl1dba/HHJdB55Vhbw66/ivLX545JhsH388fwHcawxnUdubf44IEK6pXnkBVXIQ0NFZ8T27epzzFEBAerfgmHbupw/bm1BN0B0tQQHi/Mma0HopaSo35MtgfzQofz7ewO2V8hN2++nTxdV4lKlgLlzC15wzfRrS5cWobRPH/VvyXC+/v/+p553RiAH1NZyR6rjhnr0AL76SlRFFy4Ua0UAtgdyQDzf5HQIf3/9czrxD3GApE+NoyLclS7teHeAgxjIHcAKORERkWWvvPIKdDqd1Y9/ra0iXIDx48cjJSVF/3GuoAqtKxkGchlq8wJ5aPYNBOI2AlPNBPKMDFE5zXuDfzSzKv5DTWSXjdHf9bpQ0ZJqNZBHRalBwuCxzQZy0zeZsbEivClK/lWMZefEkCGWW31tCeRJSaL6rdOpKyxHRYkKpqKIFdsvXBD3ZWkxL9l+/u234lRRgPfeE+cHDFCDPiD22tbpRMCSIeDFF8Vpy5a2zTd1FlmlTU83bgEHrAdy05XWN28WXx8VZdvqz82aieeEvz/w1FP2jdn0d2pLRdjRQA6IedC2zIW2hQy4q1eL0zNnxIEFP7/8nRemdLqC29blzyIqSv27NycmRvwcFcV4L25AdHbIAy3WKuSAcYX84EHgjTfE+Vmz1OeWrTp0EM+9V15RD9C0aqX+v5CfP/mkCL+FndphusVcYQM5IFrvly0TnSWyKmpPIDeV93zxOSoWdmsZnNeu3rChfQc7nICB3AGskBMREVn2wgsv4OjRo1Y/qprbQslGAQEBCAsLM/rQjLlAXrOmPiRXwAUEpRnMIQ8OVhcVk/sjlymDpNthAHTIjFdbqrdG9gNQQCDX6Yyr5OYq5JZa1gG17dVwjvbVq+qKzMOGWX5sWwK5rI7XqKGu8A6oIU4eCHjrLcuV3MGDRTVk715RNVy7VrRHh4YCX34pqoZ//SWqrT16qF8n27tllded7eqA+F3LnQPkQRFrW55JMvwePy6C+OLF4vPevW1bpTo0VLTob96s/o5sZW+FHLC8sJstgdyZ5MGHjz8WP2fZrt60qW0HYmwN5LaswG2pbf34cbVt2lKoloH8v//E1BFFAZ55Rm1VlweoIJonJk0qeNtzAOK5OG2aGMMHH6ht64bmzgV++03d6cBRdeqo3S46nfP+9vr2FeMrWVL8vyhMa3neTgMRF0Ugr5ZmEMjdjHPIHcAKORERkWVly5ZFWXe9CdeaDOSpqWqra3S0aA8/fhzVcQIlsvIStfyZREWJ2+cFcqVqVdzeLa7K7dIN+HkR0Lo10rNEgLYayAERyA8dEpVAuVCWLS3rgGjvfuUVEeBu3BDtsN99J978N21q/c2ppUB+5YoIyL6+auA2XeG6cWPRFi/PP/SQ5ccpW1YE7V9+EWOTSyI//rjagmpakQNEgNXp1HZxdy7oJpUvL+ZkX7woQooMdbZUyFeuNF5x3JZ2dcnRfZRNf6cykNtaIVcUtbpY0LZnztazp1gEcO1a4KWX1MctaP645MxAfvfdYh6/6cJuhvPHLVVhY2PFwZz0dDHl4sIF0XofEAB8+qnR1/38MzBlipi9IbvzC1SxYv41I5zNz0/8zW/fLv42S5d23n136iQOzKWlFbztmzV5gTw2VfxOyiVqF8hZIXcAK+RERETOcfbsWezfvx9nz55FTk4O9u/fj/379yMtLU3rodlGBvLz50W5ChCBOy/8NkJe1dDfX62Myzf+eYH8TpxaLfUbNkRsA/X11/pOdJsCOSBaMGVlSwbyhATLLeuAqHzWry8qcR9+KN7wy/mZjz1m/XFleLtwQd3vGxDVsF69RDiaM0dcZrpqsWGb+YwZBVd+ZVXw009F+vD1Fds1WRMdrQbTgICC25ZdwXAe+cGDospvOO/anBYtjFuiS5YUq0I7o+23IPJ3eu6ccdeHtRBap44IYHIxOMndFXJALODn6wusWKF2FtgbyHftMl6pXbLlYIpkWCE3vK+C5o8D4m9BrqR/9Cgwdao4//jj+Q6qyXxvbtt6zckdE+691/n3XbFi4drVAf3voA6OIDBAQcCxvP/Vbl5hHWCF3CGskBMRETnHxIkT8dVXX+k/b5JXSd24cSM6dOig0ajsIIOTfLMeHi5aNfOCWGPsF5eXK6dWtuQ88rztwDIriECu0wFBIb7AyJEA1C7bAgO5nAdquD+5DOTnz6uXGW6XZmjAAFFhnzJFvSwoCHjwQeuPGxUlDjRkZ4vAWamS6BI4LFpA0aiRuiKyQZstABEwq1QRYcmWoNm3r2h5v35dfD54sG2rNvfrJ6qUbdrYt7iZsxgG8p9/FucHDRLfuyVlyoiDHMnJ4rzpQneuJFvWz55Vn9Nly6qt9+YEBIhQfvCgqJJXqiTmSssFzdwZyOvVE/OgP/1ULMIG2L6QX/fu4uu+/lo8t99917iKLVOvLRXypk3FQYrERHGQQh7okIHc0vxxqU4d8f/hyy9F94q/v6j6m5ANDElJYlkKLZ7iFk2YIA682dPZ4U41aiDXzx+hd9LQr/xu6BKuiIMh1g6WuAgr5A5ghZyIiMg5Fi5cCEVR8n0UiTAOqIFcvlmXYTuvkqUP5IahRAbjvKpyerSocAcHG7//l4E8PT3/w164ILJDdjZEu/fGjWJ+qBQVZfzuvFw589tsAaISHh0tPnr2BF59VdxfZKSVbxziDZHclku2OO/bJ05r1RLzxw8eBP78M/9c5jJlRDuuwcEYq4KD1VXhAbFvsi2ee04shvXxx7bd3tlkIF+7Fli6VPyC5ary1oSGinDszjAOqL+n8+fVFbKtzR+XTBd2k9VxPz/jtnt3eOMN9THr1LG9rblPH7U7ZMYMsd2fYXXbnpb1oCD1Z2LYtl7QlmeSvF4exBk61Ox6AHJIQMGbHbhdyZLiwJml/zta8/fHjbLiuf2gLm/V+Ro1jBfJdBMGcgewQk5EREQA8lfIZdjOC+Q1IUpYuZFl8dJLeVtkm1Sqb5YTFXLTdaesVcifeUYsSv711xBvTDp0MF40TaczriBb28ancmVRwb10SWyv9dZbts9BNp1zLAO5uTndhTVypDgI0KuX7fcfFARMnFhwAHIV+XPfuFGcDhqkzvP3RBUqiOdOZqa66KA9gVwu4me4B7mbV6xGmTLiOQzYX50dPVpMGQFEOH/1VXH+xg2x5z1gW8s6oE6RkIH8zh21pF1QFdbw+errK9Z5MKEo6t0BYrkIss/ZEPF7aJ+UN71Bg/njAAO5Q1ghJyIiIgBqCJZv1k0q5L4QR+//OFQWM2aIbHhZF2V0F8mR9gXyzExg/Xpx/tAhK2OTbetAwfvqOhqaTAP53r3i1HA7JWdp00Yc+FiyxPn37SqGc35trY5ryd9fXf17wwZxaktF2HSldS3mjxsaNUpU+OVWYfYYORKYP1+cf/99sX2aPOAWE2N84Msa05XWExLEH29QUMHTLQznRz/0kNlV+a9eFbMapDNnbBsWqQ5DLOwWfuuSuICBvOhghZyIiIgA5N+PWFa/TQLwwaRy+vO7zxpUyAMCcCNQBCBbA/mOHWobu9zW2izDQG5uhXVnMFwEDHBthRwQC9hp0FLqMMPngadXxyU5j1zOd7anQn7ypOi20DqQA2Lc/v4OfemF7sOxLaizmBPy1lv2tatLskK+d69Y8FH+PGvXLngRwxo1RNu9ry8wfrzZmxi2qwMM5I7YnVbP+AIG8qKDFXIiIiICkD+Qm1TIpdsly2LIEHF+/UGDCnnVqkhLF28sTAtvlgL577+r520O5AVVyB1lWCG/dk1NBYarqBdn8udTFKrjkulcZVtCaNmyYnV4RQGGDFG3ACyi2x/+9BPw0u286vqCBcC6deK8PYG8enWx3VdmJnDggO0LugFi3vWGDWL9BQu3N2xXB9iybq87d4BNl02mDmiwwjrAQO4QWSFnICciIirmLFXIZdtvnideLYsXXxTnf9lrUCGvVk0fuE0r5Ja2PTMM5KdOmd+hCYD7A7msjlerZn1V7uKkfHl15e6iUB0H1Aq5ZOuc6W++EU/ijRuB6dPFZUU0kO/dC2xHa/yOriK5ycUH7QnkOp3atr5zp+0LuknNmgGtWlm8WgZyufYiK+T2OXsWOJpTA1nI66IICzO7cJ47MJA7QFbI2bJORERUzFkK5CVKGIWRsnXLomFDkc/OZqrt66ha1WIgN1chv3pVzb06ndjq6NIlC2NzZ8u6YSB3Vbt6UfX009C3RxQFhqGkYkXbpwjUqgXMnSvOywq5rSucexj5VJ6MycZX2BPIAeOF3WzZg9wOsmVd7hrIQG6f48eBO/DHmYC8KRkNG7p/AcI8DOQOYIWciIiIAFhuWQeMQ3C5ctDpgB49gCwE4FZAKXG5lQq5uW3PNmwQFfEGDdS8bbFt3R0VcllNTU4GNm0S512xoBu5j2GF3Jb544aGDAGGD1c/L4IV8sxMdbHEHWiFC/W7qVfaG8gNK+T2tKzbQFbIu3YVpxcu5G2DSDaRBzQuR+YdINFo/jjAQO4QVsiJiIgIgOUKOWAcyPOCSc+e4tMLyLuuRg27KuSyXb1rV7G+GWAlkEdFqfuRV6lS8PfiiNBQtT39jz/EKSvkRZthhdzeQA6IPd9le76TqsHudOiQ6FKXVjaaLM6UKGF2tXOr7rpLnJ48CaSliX3ZbZ0CYEVurhoo27QBAgLEZefPF/qui40TJ8TpgbajgObNxer6GmEgdwAr5ERERAQgfyAvZ9CObiaQd+ki3kc8lzkDKSPGAV262BzIFUVdW6pbNzUbnDplYWw6HbBli1iW3ZVzumWAy8oSp02auO6xyPUMK+T2VoQB0eK+bRuweTPQvr3zxuUmsl1dWpMSD/zwA7Bsmf0r/JcqJVr5pRo1HF753dDFi8Dt2+J/SdWq6p8g29ZtJw9o+HRsD+zZo9mCboDGgXzatGlo0aIFQkNDUa5cOfTr1w/Hjh0zuk1GRgZGjRqFyMhIhISEYODAgUiS81I0wgo5ERERATAO5KVLiyqaJNvE/f3FFkYQuTg+HliLHljU7H1k5vrjr7/EzQoK5MeOid3FAgKAtm3VQG51pfUaNVy/4rlhRbVyZXWVKSqaypYVTzLAsQo5IBbIatdOszm5hSEDuew2P3wYwP33A/fe69gdynnkgNPb1atWFf9e5OwUrrRuO1khd+SYk7NpGsg3b96MUaNGYefOnVi3bh2ys7PRrVs33DLozRo7dixWrVqFJUuWYPPmzbh48SIGDBig4ahZISciIqI8hinacP44oFbIy5Y1CiaybX3xYtF6vn69eG8hLze9a/m2SLart20rCnU2BXJ3MAzknD9e9Pn4AK1biydZixZaj8btZCB/5BFxevp0/p0O7CKTPeC0Fn4ZyOXxkrg4ccoKuW3u3FE7i5wwg6DQ/LR88DVr1hh9vnDhQpQrVw579+5Fu3btkJKSgvnz52PRokXo1KkTAGDBggWoU6cOdu7cibsNjzi5ESvkREREBEC8KShZUrxjN5w/DqiTvE22kerZE5gwQXT0AqKY+OOPYi6oIdkde/GieMMtF3eTizjJuzdsWc/KAkaNElNXn3iikN+brRjIvc+aNWLOc6lSWo/ErbKzgX/+Eee7dxeLxF+9KrpTHH5qu6BCLtutZXWXgdw+Z8+KUB4QIDYS0JpHzSFPSUkBAJQuXRoAsHfvXmRnZ6OLXM8fQO3atVGpUiXs2LHD7H1kZmYiNTXV6MPZWCEnIiIiPdm2bloh79AB+PBDYPZso4sbN1aze9WqYop39+7577ZqVbWgdvasCAY6HdCrl7hMVsivXAFu3hTnf/kF+OILYMwYsSWaWxgGci7o5h38/YtdGAfEQuiZmeIgmeHfn9xC3CENGgAhIeK8k/aiN62Qs2XdPvKARrVqaqFVSx4wBCE3NxdjxoxB69atUT/vyZqYmIgSJUogwmQhkqioKCQmJpq9n2nTpiE8PFz/EWtyVNoZWCEnIiIiPRnITSvkPj7A88/nC6k6HfDZZ6KSvWuX5S7WEiWAgwdFhXz7duD770V7u3xPHxambvMs29blom/p6eouZC5n+F6LFXIqwmS7etOm4s9X/m0ePlyIO/XzA777DvjoI6dtrcWW9cIx7TDQmqYt64ZGjRqFQ4cOYevWrYW6n/Hjx2PcuHH6z1NTU50eylkhJyIiIj1LgdyKPn3ER0F8fICYGPERH5//+mrVROX85ElReZeBHBDV8h49bB6S4+rXF0cHqlc3XmWeqIgxDOSAkyrkgG1/7DYynP9s2rJ+7pzIJzKrkHlyQTdPmD8OeEiF/Nlnn8Xq1auxceNGVDRo5I+OjkZWVhaSk5ONbp+UlIRoCy96AQEBCAsLM/pwNlbIiYiISC9vBXV7ArmzGG59dvq0+kYTAH79VWyVJi1aBPTuDVhoMnRcRASQkCC2urLi33/FdNq1a538+EROYhrI69UTp4aBfPduYO5c478tdzp9WoTywEB1/nP58qIQn50NXLqkzbiKEk+rkGsayBVFwbPPPosVK1bgjz/+QJUqVYyub9asGfz9/bFhwwb9ZceOHcPZs2cRb+4wsZuwQk5ERER6Y8YA/fo5vi1SIciF3U6eFO3sgNhOt0QJEdLlbrI3bwLPPAOsXg28+ab1+zx9WlTa7FK6tEgIVnz6qWjRN5lSn8+77wK1awPnz9s5BqJCyMkB9u8X500r5KdOiX2/k5NF18nTTwOFbOp1mGxXr15dLRL6+anhnG3rBZP/FxnIIdrUv/32WyxatAihoaFITExEYmIibt++DQAIDw/HiBEjMG7cOGzcuBF79+7FY489hvj4eM1WWAdYISciIiIDffoAK1Zosv+24dZnMpD37SvWkwNE2zogFnrLWzsX8+dbrqKdOyfWoGrSRF0ozllkAf3oUeu3++IL8YZ5yRLnPj6RNf/9JzZLCA5W52ZHRYm17XJzxXNyxgzgxg1x3cGD2oxTVndNt4jnPHLb3LyprrnRoIG2Y5E0DeRz5sxBSkoKOnTogJiYGP3H4sWL9beZOXMm7r33XgwcOBDt2rVDdHQ0li9fruGoWSEnIiIizyAD+fHjgGwo7NoVuOcecf6XX0Qb68yZ4vOSJcUq0h98YP7+Jk0Su11duyb2SXeWtDR1O6lTpyyvAJ+Roc6P3b7deY9PVBDZrt64sfpeX6dTq+R//CE2TZAKOrBkK3tb3y21W3OlddscOiROY2KAsmW1HYukecu6uY9hw4bpbxMYGIjZs2fj+vXruHXrFpYvX25x/ri7sEJOREREnkAG8jNnxOJuISFAy5bq1mhbtoiK87lzotr31Vfi8jlzgOvXje/r8GH1ekBU0p1l1y61kJGbq4YKUydOqO+vtm/Xbp4uFT8HDojTxo2NL5fzyF9/Xexe4O8vPv/338I/5nffib/Lb7+1/WvkASv5ty+xQm4b+Xtu1EjbcRjyiEXdihpWyImIiMgTREcbT93u0EEEhurVRUvrnTuA3Hxm9GhgwADxRvTWLWDWLOP7evVVEYY7dBDvdXbudMLq0nlM13uzVF00DDkXLzowl53IQQkJ4tS08iwr5Onp4nTyZHFa2EC+YgXw6KPAlSuAPc2/MpDL9SMkBnLbyE4dJ+1A5xQM5A5ghZyIiIg8gY+P8Rvzrl3V87JtPSNDzIt96inRgjthgrh81ix1nvjWrcDPP4sgPneuuj6dtSq5Pe+DZCAPCBCntgRyANixw/bHICoM2eotW78lGcgBoFs38XcEiEUHHV1n4fffgQceUP+GbD3wlJurHjgwrZCzZd02skLOQF7EsUJOREREnsLwjXmXLup5GcgBYMQIdc25AQOAWrXE4lS1awNDhgDPPiuuGz5cXDdihPj866+BrCxxPjcX2LxZBPoWLUQlXlYLrcnJUYP1ffeJ04ICeYkS4pTzyIuOBQuAadO0HoXjLAXy+vXV82+/LTYUKFdOfC5XPLfHrl1iU4asLKBZM3HZ2bO2fe2FC+LrDFdVlwwr5JzqYZ6isGXda7BCTkRERJ5CBvLy5YE6ddTL27ZVW9rHjlUv9/UV1fGSJUVb+HffiTbOoCCxqBsA9OwpvvbqVWDVKtEm2769aGd/+23gr7/E+6CPP1YDuyWHDolKYmgoMGiQuKygQN6/vzhlhbxoyM4WleNXXxXrABQ16emidRzIH8hjYoAvvwS++UYN0LVri1NHFnabOlVsoda9u+hKAYDLl8ViiwWR7epxcSKUG6pQQZxmZKg7KpCx06fF/yJ/f3Hg0VMwkDuAFXIiIiLyFHIn2IEDRUu6VKKECLR//w1UqWL8Nd26iRCwYYNYrKp7d7HQm3xT7+cHDB0qzk+YIKpJW7eKReMefhhYuFAsRnX9urrdmiWyXf3uu9Vq47Fj+d9H5eaqgXz4cHH6998ivJBnO3dOPTDjrNXH3UnOuw4PByIi8l//2GOik0SSgdyReeTya155RYR9uQbE+fMFf62l+eOAuJ+wMHE+Kcn+cRUHsjpet666OJ8nYCB3ACvkRERE5CkGDxat3dOn57+ucmU1PJgKDgY6dQKmTAHWrFEDuCRD8bFjYtuytm3FG9pvvxW3ldXugrZHk4G8dWsxnoAAUQ00net64YJYbM7PD+jYUYSVO3dENZ48m5zXDIjnS1FjqV3dEkcDeXa28eJxOh1QqZL43Ja2dWuBHBBdLQCQmGjfuIoLT2xXBxjIHcIKOREREXkKnQ6Ijzdebd0ZatYE7r9fBOh33wU2bjSutN9/vzhdscLyvuKAcSD39RX3C+SvpMpwU726qF61aiU+5zxyzyeDIlA8ArmcGmJvID9zRuSHoCBxwAkAYmPFqS0Lu1na8kyKihKnrJCb54krrAMM5A5hhZyIiIiKg+++E3MuX3pJLUhIrVqJhaVu3hQVdnPOnxchxMdH7I8OqGHGUiCX1UcG8qLDMJA7Y39ud3O0Qv7ff6KLw1bHj4vT6tXVPOFIILdUIWcgt44Vci/CCjkREREVB76+luda+viIdnnActu6rI43aiQWdQNsD+Tx8eJ0xw6uGu3pvKVCLlcqL0ilSqLKbdiCbgvDQG54X4BtLesnT4pTtqzb79YtdcFBVsi9ACvkRERERGIvZUCsFn3rlnr5+fPA55+LVndAtKtLtgbypk3FwnRXrqhBhDyTYSC/ckUs9leU2Fsh9/FRV+m2pyNABsIaNdTLbK2Q37yprgTPCrn9Dh0SB/aiotRt6zwFA7kDWCEnIiIiApo3F+EgPR1YtkxsDRUfL0LGk0+KVdIB4z3RDQO5YeVbBnR5fUCAuH+A2595OhnI5Sr/Ra1Kbm8gBxxb2E1WyB0J5LISHxkpVoM3hxVyyzy1XR1gIHcIK+REREREIoDJxd2GDgUefRTYuVNcfvfdwJtvijfCPXqoX1OzpngvlZKiBoeUFODSJXHecH9gw7Z18kwpKWpF/K67xGlRCuTp6WILQMD1gVxWyG1pWb9+Xa2IAwXPHwdYIbfGUxd0AxjIHcIKOREREZHw4INqZTQ2Fpg6Fbh4UYTo114DGjQwvn1goLpau6yKywAXE2Nc/WvRQpzu3eu68VPhyMpt2bJAs2bifFFa2E3uQR4WZn4PcktkILd133XTLc8kWSFPTRUfgFgorkULoH59IDlZXMZAXjiyQs5A7iVYISciInKO06dPY8SIEahSpQqCgoJQrVo1TJo0CVlZWVoPjWzUoIFYZf2XX0RomDBBbZ21xHQeuen8cUm2rP/zD8CnhGcyDIqyu6EoVcgN29XlgSVbGG59Zsuig+a2PAOAkBD1QIBsWz9yRPxcL18W6zMAtgVy+XeXlMSFEA0pClvWvQ4r5ERERM7x77//Ijc3F5999hkOHz6MmTNnYu7cuXj11Ve1HhrZoVs3oFcvwM/PttvbGsirVhVhJTMTOHzYKUMlJzMMivL3V5QCuayQ29OuDogqt04H3Lhh3FpuibktzyRZJZdt63v2qNctXSpO5cKGlvYgB9TFyrKy1Mo6iYMuKSlixwjT/zGegIHcAayQExEROUePHj2wYMECdOvWDVWrVkWfPn3w4osvYvny5VoPjVxIBvItW8SbZUuBXKdTq+R//eW24ZEdzFXIT5ywb39uLTmyoBsgKt3ya2xp0Te3oJsk55HLCvnu3ep1a9eKMGlLhTwwUK22c2E3lfzf0bCh2LnB0zCQO4AVciIiItdJSUlB6dKlLV6fmZmJ1NRUow8qWpo2FacHDoiA8csv4nMZ1A0xkNvm8mUxT9nd5LzoKlVEpdeR/bm15GggB+ybR25uQTfJdKV1WSHX6US1+6ef1HFaC+QA55GbI9egkGsceBoGcgewQk5EROQaJ06cwMcff4wnn3zS4m2mTZuG8PBw/UesfDdLRUajRmJubJcuYn6nnB9uTyDfts24tbc4O34cqFBB3RfenQwrtz4+YhV9wLPa1rOzLRfSChPI5fcqw7Y11irkhi3rt2+r852HDhWnH34o/kb8/ICKFa0/DgN5fjKQy/8lnoaB3AGskBMREVn3yiuvQKfTWf3416TP88KFC+jRowcGDRqEJ554wuJ9jx8/HikpKfqPcwVt4EseqXdvYN06EWYmTgTmzDEfNuSb6IMHgYwMcf70aaBDB6BNG9vCkLfbuFG0iG/b5t7HzcnJX7mVbeuestL6lSsipN57r/liWmECudwtwJZuAGsVcsOW9f37xc81OhoYN05c/vff6hhlDrGEe5EbUxTPr5DbuPQGGWKFnIiIyLoXXngBw4YNs3qbqga9lxcvXkTHjh3RqlUrfP7551a/LiAgAAEBAc4YJnmAatWAN96wfH2lSkCZMsDVqyKUt2gBfPONOkd53Dh1JeriSlZUk5JEhTUoyD2Pe/Fi/sqtp620vm+fWHhtzRrgu++ARx5Rr7t9W60kuzKQW9ryTDJsWZfzx+W2Z7VqqT9Lawu6SayQG0tIEL//EiXEz9MTsULuAFbIiYiIrCtbtixq165t9aNE3uo6Fy5cQIcOHdCsWTMsWLAAPqZLEFOxZrqwm6IAX32lXr9qFfDbb9qMzVkyMoD331fbv+0lAzmgrhruDnK8hpVbOa/aUyrkhsH05ZeBmzfVzx3dg1ySxxQLCuSGW56VL5//enOB/K67xHN/0KD8j2eNDOSskAuyOt6ggWcu6AYwkDuEFXIiIiLnkGG8UqVKeO+993DlyhUkJiYike8myYBhIN+2TWwBFRICPPWUuPz554v2PuWffQa8+CLQubOo5tnDcI9lQG3BdgcZyGWlGPC8CrlhIL90CXj7bfVzR/cgl2RV/cYN69uMGW55Zu5xKlQQl2dmilXVAVEhB+wP5IZ7kZO69oSnzh8HGMgdwgo5ERGRc6xbtw4nTpzAhg0bULFiRcTExOg/iCQZTv76S62O33cf8O67oiJ4/Djw0Ufaja+wNmwQp6dPA8OHi5Btq3PnxLZYkjsDuawMGwZFudDZlSvA9evuG4slMpjKduUPPlDncxdm/jggDgqVLSvOm1bJv/1WDdfWFnQDgIAAtbJ97Zo4lc/5Bg3UrgNzix6aYsu6MU+fPw4wkDuEFXIiIiLnGDZsGBRFMftBJMnq1uHDwOLF4vzQoaLV+N13xedTpoitv4qanBzgzz/FeZ0OWLkSmDXL9q83rI4D2lTIDQN5aKio+AKeUSWXwfSRR4Du3UUnxciRIqjJ8cfFOX7/5uaRHzsmHq9HD9H5INv3zS3oJhluFlGtGiB3ftTpxHP+ww+Bnj0LHg8XdVMVhQXdAAZyh7BCTkREROQ+5csDMTHivdfNm6Ki2a6duO6RR4AmTYC0NODHHzUdpkP27xcV7rAwYOZMcdn//icWITOsfFsiA7lshdY6kAOiqguo+8trSQbyqCgRav38xKr0zZsDM2aI6xytkAPm55Hv26eef/99YO5ccd5ShRwwDuR33WV8XcOGYlqGLctryAr55cssHp46JaYSePKCbgADuUNYISciIiJyL8M5oI8+qr4f8/ERnwNq9bwo2bRJnLZrBzz3HDBggFiVu2dPsdBYWBjQt6+6qrwpGchbthSnnhDI5a6Fs2cDqanuG485hoG8dm3RRt6/v2g3l+QBBEfICrnhgnwHD4rTpk3F48iGH2sVcrn1GZA/kNujXDlxmp1t/3oE3kZWxxs29NwF3QAGcoewQk5ERETkXqaB3NB994nTrVuB8+fdNyZn2LhRnHboIKrc8+cDffoApUqJy2/eFNu6/fOP+a+XgbxPH3HqrkB+65Yadg0XdQOAfv3E4m7JyUABuxi6nGEgB4BOnYDly8U2euvWifNdujh+/+Za1mUgf+wxsWp6vXqilbxpU8v3Y1ghl/PHHREQoD53ivs88qLQrg4wkDtEBnJWyImIiIjcQ4ambt3y78dcsSLQpo04v3Sp5fvYtg2YNAm45x4RkOrV03bhsTt3gC1bxPmOHcVpRATw009iXGlpQKtW4vLDh/N/fUaGOk9bBnK5F7mrnTwpTsPD1QAo+fiILcYAsYhaZqbrx2NOTo5YXA5QA7kUECCeU/37O7bCumQtkDdoIBZiO3hQbH0WFmb5fmQg9/UVUzAKg1ufCUVhhXWAgdwhskWKFXIiIiIi92jVSszNtdSWPniwOLV0/YkToi18yhTg119FcD1yBHjnnfy3ddficPv3i5buiAigUaP815csCTRuLM6bC+RHjogCUWQkULeuGvjcsRf5tm3i1FLV9+GHxYGSS5eAb75x/XjMuXZNLaDJ1dCdTbbrnz4tWtNTU9Wfv2yF1+kKbplu0kTcrk0bIDi4cGMqTluf7doFvPQSkJ5ufLmiqHP5WSH3QrJCrij2bUtBRERERI5r0kSEV3Puu08Emp07zQfSn34S4ax2beDjj9Vt0j7+2LjN/Z13RIVR7nHuSobzx+X7S1P16onTI0fyXyfb1Rs2FN+7XJzMHW3rf/whTmVl31SJEsALL4jz06drU8iSgTQyEvD3d81jxMaKYl1GhqhIHzokLi9fXl0p3RbVq4vV2H/6qfBjKk5bn40fLxbnW7LE+HLDBd3k35CnYiB3gOEKh2xbJyIiItJeTAzQvr04b/rmHABWrxanTz8NPPssMHq0qEZmZABvvCGu27ABePVVcf6zz4CFC/PfjzOLMYbzxy2RYcJchdywNRpwXyDPzVUPJlgK5ADw+OMilB4/bn0qgauYzh93BX9/td381Kn8vxN71KwppgAUVnFqWZd7vJv+fezfL04bNPDsBd0ABnKHGB7BZCAnIiIi8gyW2taTk8WCb4CYPw6IirLcw/zLL0XF96GHROCWq2E/84xa8dyyRbSPt2rlnGqv4fxxa4G8bl1xmpAgFlIzZFghB9wXyA8fFouiBQdbXxE8JESsHA8AEya4fy65OwI5YDyPvDCB3FmKS8t6ZiZw4YI4L/d6l2RHiSdvdyYxkDvAsELOeeREREREnmHgQPE+7a+/jLeh+v13EYBr1zZeEK5VK7EYWm6uWCzu8mURuvfvF5/fvg0MGiSCebt2YqXznTuNF/By1N9/ixXUS5UyP39cKltWnf9sGjq0CuSyst+mTcHVxxdeEN0LJ08Cs2a5dlym3BXIDfci94RAXlwq5GfOqB0rlgK5PKDlyRjIHcAKOREREZHnKVdObaGeN0+9/JdfxKmsjht6+20R4nNyxKJoS5aIxdS+/RaoUEG80Z8zR9w2IECcGoZ9R8lQ266dcbHHHHNt60lJ4gCCTqde7+5Abq1dXQoJAaZNE+fffNO9VVt3V8gL27LuLMVlDrnh3+GpU8YdGAzkXo4VciIiIiLP9Oyz4vSjj4CLF8V7tV9/FZfde2/+29erB4waJeYCL1yotquXLQv88IMI59WqiZb2bt3EdXLLL0clJYntwADb9sA2F8hldbxGDXVVbncE8pwcYPNmcd6WQA4Ajzwi9ta+eVO0rruLuwP5tm3AjRuieFenjmsf05ri0rJu2KmSkyN2UgBEN4zcDpCB3EuxQk5ERETkmfr2BeLjRbv5lCnAnj1ivnN4ONC6tfmv+egjEaT69ze+vE0bsW3Xf/+J8Clbk22tkOfmilWgX3tNLB4nLxs6VISlBg2AESMKvh8ZKgwDudzSSbarA2ogd+Ve5P/8I35WoaG2byfl46Ouav/ll8Du3a4Zmyl3B3K5wFiNGkBgoGsf0xrDCrk3ZxXTv0PZtp6QIKrlQUFAXJz7x2UvBnIHsEJORERE5JkMF2v74gu1Et29u+Wtr3Q6UQk3JzRUfe8n55/bWiH/6Sexjdpbb4mDAadPi/GsXSvCwg8/iNOCmNv6TG6P1a6dellEhOv3Ipft6m3bAn5+tn9dfLy6aF7LliLE3nefa1dfd/cccknLdnVATN0ARE65fl3bsbiSrJDLv08ZyOXfSe3alrcT9CSaBvI///wTvXv3Rvny5aHT6bBy5Uqj6xVFwcSJExETE4OgoCB06dIFx+WhJw2xQk5ERETkudq2BXr3FoFEboFmbv64veypkCuKmJ8OiMC/bx/QtKmomAPAhx/a3k4rA7lcaf3cOWDHDnG/Aweqt3PHXuT2zB83NWMGcPfd4vzp08CyZSKkp6c7bXhG3BXIo6KMD6xoHchLlFD3QD93TtuxuJL8O2zZUpyaBvKi0K4OaBzIb926hUaNGmH27Nlmr58+fTpmzZqFuXPnYteuXShZsiS6d++ODNnzoxGdTj3PCjkRERGR55GLtQHivVvPnoW/T8MKeUH7ka9fL1Z7Dw4Wpy1aiFbvO3dEiH7iCdsft0wZtep59KhaVW7dGihf3vi2hQ3kf/0lVp7v0gVISzO+7s4d4M8/xXlHAnn58uJAwo0bYs/34GAgO1vdusqZcnPFoneA6wO54YEQQPtADojdAgDg1Ve9t4AoK+S9eonTo0fFKQO5HXr27ImpU6eiv+mEHYjq+IcffojXXnsNffv2RcOGDfH111/j4sWL+SrpWpBVcm99ghMREREVZfXri7nagNgrW24dVhiVK4vwlZYm5qVbI6vjI0eKyviWLcBLL4k27XnzjAs8tjBc2E1W/eW+66ZjBOwP5MeOibG1aAGsWiUCs2yLl/btEwuzRUSogc8RERFAp05AbKz4/Px5x+/LEnnwA1APZriSnEcOeEYgnzVLzGNfswb45BOtR+N8N24AycnivDzY9u+/4kCZXGuBgbyQEhISkJiYiC4GS0+Gh4ejZcuW2LFjh8Wvy8zMRGpqqtGHK8gjrqyQExEREXmmGTPECupyQbHCCgwUW6EB1ueRb98ObNok5qy/8IK4LCBAzG1fskTsPW4vGS7WrjXfri45EshTUsQCbcuWifuVnQCrVxvfbs0acdq+vXPm5roykMt29YgIdbs6V5KBvGRJ43CulXr1gPfeE+dfekndjs1byOp4uXJiYUM/PzGd4+xZtVLOQF5IiXk72UeZ9JhERUXprzNn2rRpCA8P13/Eyr90J2OFnIiIiMizRUaK6qCcY+oMMqxam0cuq+NDhwIVKzrncWWFfPFicdqmTf52dcCxQH7ypAgz4eFiO7WvvxaXr1kjWsoBUXn84Qdx3kxzq0Pkz8YV85zdNX9ckusL1K9f8L7y7vLMM2LthMxMMVffVSvva0H+/VWtKg58yb/LtWvFjgYBAfkX2/NUHvJ0cZ7x48cjJSVF/3HORSsZsEJOREREVPzIN/mWKuQHDwK//CLeK770kvMeVwZyWQwaNMj87RwJ5JcuidOqVUWgbNlSzFtPThbVfgA4dEhUHkuUAPr1s2/slshA7soKubsCeZ8+4nf05JPueTxb6HRim7ly5cTv74svtB6R88gKuexGkPu+L1smTmvVsm8XAC15bCCPztvRPslkR/ukpCT9deYEBAQgLCzM6MMVWCEnIiIiKn4K2vpMVpf79RP7UTuLDOSA5XZ1QN132Z69yC9eFKey4u7rqy6UtWqVOJWV+Z49RSXdGbwpkFevLkLvY4+55/FsVa6cOm3i99+1HYszGVbIAbHFGQD88Yc4LSrt6oAHB/IqVaogOjoaGzZs0F+WmpqKXbt2IT4+XsORCayQExERERU/1rY+UxTgxx/F+Ycecu7jRkaqi5NZalcHxPz0kBBx/uxZ2+5bVshjYtTL7r1XnK5ebdyufv/99o3bGkuB/M4dsVJ2QSvZW+OuFdaLgk6dxOmff6oL3RV1phVyGcjl98dAbqO0tDTs378f+/fvByAWctu/fz/Onj0LnU6HMWPGYOrUqfj5559x8OBBPProoyhfvjz6OatPphBYISciIiIqfqxVyHftEiE4JEStMDtT06bi1Foo1unUKrm9gdww5HfvLlp+jx0T1fGTJ8Ve27172z9uSywF8vffFx0B33zj+H27u0LuyZo0EV0NqanA339rPRrnkIHctEIuMZDb6K+//kKTJk3QpEkTAMC4cePQpEkTTJw4EQDw0ksvYfTo0Rg5ciRatGiBtLQ0rFmzBoGBgVoOGwAr5ERERETFkQwAFy/mbwmXbd19+ojw6mwffQR8/HHB85QrVRKnZ87Ydr+yZd2wQh4WJlZTB4DnnxenvXur1XdnkIH8yhWxEJck245lu7wjGMhVvr5Au3bi/KZNmg7FKXJz1TUSGMgLqUOHDlAUJd/HwoULAQA6nQ5TpkxBYmIiMjIysH79etSsWVPLIevJCjkDOREREVHxERkpwiqgVukAERLk/uDObOs2VLMm8OyzBS9W5WiF3DCQA2rbumz/dvb3Vbq02EoOUA8KAKIqDwC7dzt+3wzkxjp2FKcbN2o7Dme4eBHIyhJ/B/KgTni4+vz18xNz+osKj51D7ulkhZwt60RERETFh+E+3YbzyLdtAy5cEMGge3dtxibJCrmtgdx0UTfJsD09NFQs6OZMOl3+vchv31bHffYsYGW3YyPZ2cbfLwO5MRnIt2xRt7IrquTfXVycWiQF1Cp5zZpiK7SigoHcQayQExERERVP5rY+k+3q/fqJPZC1JCvktrSs5+aq4dW0Ql6tmhpy+vZ1TRu+6Tzy48eNF3OztUr+yivi+16wQHw9A7mxhg1FR0JaGrB3r9ajKRzTBd0k+VwtSu3qAAO5w1ghJyIiIiqeTCvkOTnA0qXivKva1e1hT4X86lWxMrVOZz68/u9/ooo9dqxzxyjJQH7unDiV7eqSrYF85UpxOnasuI/MTPE5A7ng46OuCVDU29ZNtzyTBg8Wz9WHH3b/mAqDgdxBrJATERERFU+mFfI//xQV2VKlgC5dtBuXJCvk584VXDyS7eply5pv8x0+XAR7ucK7s5lWyP/9V5zKLoNduwq+j0uX1JCWkgIMGSLOh4a6pqpfVBWleeTp6cC0acCJE/mvs1Qh79BBPFc9YEMuuzCQO4gVciIiIqLiybBCfv26ugr5gAGeMXc1JkYUj7KzjedgK4pY0dyQuS3P3Mk0kMsKuQxVe/YU/H572zZxGhMjFvSSLdmsjhuTgXzbNrEomqGkJLGIX6tWaneBlt55B3j1VWDChPzXWaqQF1UM5A5ihZyIiIioeJJB4NQpoEcP4OBBIDrafHjQguHq04bzyOfOBcqVA378Ub3M3JZn7mQpkA8YIKrbKSnAf/9Zv4+tW9WvefFF9XIGcmP16olOiPR046kAu3cDzZoBv/wC7NgB/POP+8b066/A22+LaRNSbi7w9dfi/JEj+b/GUoW8qGIgdxAr5ERERETFU6VKIvRmZooKbmQksH69ZwUEc/PI5TzrX35RL7O05Zm7GAZyRVEDeb16IiQCBc8jlxXy1q2BiRPVLa8YyI3pdKKtGwBefx2YPFn8vNq1EzsESAUdAHEWRQEee0wcyFq0SL18yxb1QNLJk8Z569Yt9SCS7FQp6hjIHcQKOREREVHx5OenztMOCwN+/3979x0fZZXvD/wzJTPpnSQkpNA7CImEABaKUvSq2FaNAuqqKHixg3ItrMviXu9PXctiuZa9uyiKS1OXZmiiEFroISAgIDEhENLbJHN+f3z3mcmEAJOQySQzn/frNa+ZPM8zM+eceSZnvqc9qyWAbEsarrSuFJCVJY/r9zq6e8i6dtmz/HyZ815aKh1f3boBqamy72LzyMvK7PkaPlx61f/+d2DgQOC++1yb9vZIuyTf+vXAnDnAq69Kw9LNN9sXJDx8uHXSkptrv8b9a6/ZA2+tdxyQy+Bp5yhgbyyIjJRV4z2B0d0JaK/YQ05ERETkve69F/jsM+nZc9WCZ5ejYQ95bq59/viBA/IbVq93/5D1yEjAZJI5zdpiY0lJsqjbkCHy98V6yLdulQ6y+Hh7nocOBXbtcmWq269Jk+RzP3pUzoczZ2T19WnTgP/3/+Tyfa3VQ17/M8rOBpYvB66/Hli0SLYZjTKU/eefgbg42aaNoOjZs3XS2BoYkDcTe8iJiIhaxk033YRdu3bh9OnTCAsLw5gxY/DnP/8Zse7qsiNywiuvyK2tathDXj/4qaiQQD0pyf095DqdDFs/ehTIyJBtWrClBeS7dwNVVYCv7/nP1+aPDx/u+rR6Ah8fGSbemB495L61esi1c1ILvOfNk3OztFTOzR49ZPTJzz/bL9mmBeRaWj0Bh6w3E3vIiYiIWsbIkSPx1VdfIScnB//85z9x5MgR3H777e5OFlG71rCHXBvWrdm/X+7dPYccsM8jbxiQJybKInQWy4V7vLX54yNGuDSJXqF7d7k/dEimOLiatnjck09KY8vWrcCsWbLtvvvsQXf9S595Yg85A/JmYg85ERFRy3jyyScxdOhQJCYmYtiwYZg1axa2bNkCi8Xi7qQRtVsNe8gbBuQHDkjQ5e4ecsAekGvD53v1knudzt5L3tg88ro6WRUcYA95S+jaVcq8tNQ+t9uVtEaW664Dfv97eXzypNxPmmRfnI8BOTWKPeREREQtr7CwEAsWLMCwYcPgc4ELOldXV6OkpMThRkSOtB7y4mK5aQG5NvT3wAHg7FnpfQbcuyK5FpBr6gdb2sJuGzee/7y9eyV4DAoC+vd3Xfq8hdlsb8hx9Tzy0lJ7oD1wIPD00/YOz2HDJBhvGJArZU8XA3JiDzkREVELmjlzJgICAhAREYETJ05g2bJlFzx23rx5CAkJsd3itWWaicgmIEAuxwZI4Kpduzk9Xe7377f3SGsLq7nLxQLyCRPkfsmS86+Prc0fT0uz/zany9Na88j37pUAOzZWpiUkJQEPPij7HntM7usH5NpojrIy+aw95ZJnAAPyZmMPORER0YXNmjULOp3uoreDBw/ajn/22WeRlZWF1atXw2AwYNKkSVAXmMT4/PPPo7i42HY7qY1xJCIHWi/58uX2v7W51gcO2ANyd6+fWD8gDwoCYmLsfw8eDNx5pwRkzzzjOLe5/vXHqWXUn0fuSlrjyhVX2Le9+64E6lqjUVKSxFxlZXJZPG24eufO7m1AamlcZb2Z2ENORER0YU8//TSmTJly0WO6dOliexwZGYnIyEj06NEDvXv3Rnx8PLZs2YK0tLTznmc2m2E2m1s6yUQeJzFRhqprA04GDZJeRx8foLzcPi/bnQu6AfZrkQPSO67TOe6fNw9YuhT4/ntg1Spg3Dhgyxbgu+9kPwPyltNaPeTa/PGBA+3bfHyAfv3sf5vN0oj0yy/SS+6J88cBBuTNxh5yIiKiC+vQoQM6dOjQrOda/125VldXt2SSiLyO1kOu9XYOGiRBT48eMmT9++9le1vqIW8s2OrSBXj8cblO9jPPSMfYxInSqDB8uH1ePF2+1uoh1wLy+j3kjenWzfMDcg5Zbyb2kBMREV2+zMxMvPvuu9i1axeOHz+OtWvX4u6770bXrl0b7R0nIudpC3RpBg2S+z595H7LFrl3dw95VJRcixq4cLA1ezYQFiYNCddfL8H4mDHAypX259Llq3+pMVd1PNbWAnv2yGNnAnItPZ54DXKAAXmzsYeciIjo8vn7+2Px4sUYPXo0evbsiQcffBADBgzAhg0bOCyd6DJpPeQaLfjp21fua2vl3t095Ho9EBcnjy8UkIeFAS+9ZP/75puBb74BAgNdnz5vkpgoDRxVVcCvv7rmPQ4fltcPCLj04myNBeSe1kPO9qRmYg85ERHR5evfvz/Wrl3r7mQQeaT6PeTh4fa52loPucbdPeQA8NBDwNdfS6/3hTz2GJCdLavHz5kjw++pZRmNEiTn5Miw9YaNOi1BW9Ctf/9Lr46vBeT798vQdcDzAnL2kDeT1kOuXbuRiIiIiKgtqR9MDRpkXyxN6yHXtIWAfPZsWYAuPPzCx5hMwAcfAH/6E4NxV9LmkbtqYTdn548D9oB83z4ZmdxwFX5PwIC8mbThFdoJRURERETUlkRFyUrVgH3+OCBBTv151+4esk5tizZH21ULuzUlIK93MQ4Aja/C394xIG+mUaPknqPsiIiIiKgt0unsveT1A3KTyd4LCnhejyNdnrbUQ+7nd+lV+Ns7BuTNdM01Mmz94EHg1Cl3p4aIiIiI6HxPPy3zsm+4wXG7Nmw9IsLei04EuLaH/NgxID9fGovqX3P8Yuo3HjEgJ5vQUGDwYHm8bp1bk0JERERE1KhHHgHWrAFCQhy3awu7tYX549S2aAHwsWMtv17WJ5/I/ahRssq6M7R55AADcqqvqAhTO6+CAbUctk5ERERE7Upqqtz36uXedFDbExcnQ8Vra+0rm2tyc2WKw9SpTX9diwX4+GN5/Mgjzj+vfkDuadcgBxiQN09BATB0KB5cNA5rcB12r86HUu5OFBERERGRc8aPB1asAP76V3enhNoavd4eBDcctv7ddzLk/O9/t1/HXqMUcPQosH697H/vPaCkxPG5v/0miw3efLPz6akfkNcfvu4pGJA3VWkpMGGC7cr0I7Eey04lI3fxFjcnjIiIiIjIOTodMG4c0KGDu1NCbZG2xkBWluP2zEy5r6gADhxw3PfQQ3IlqpEjgUmTgOnTgTvuAOrqZP+HH8r9/ffLwoLOGjhQztc+fZwf5t6eMCBviupq4JZbgO3bZQWMpUtx3K8XOuEUYn53NbB8ubtTSEREREREdFmGDZP7H3903L51a+OPa2uBL7+Ux127yhxxf39g9WrgD3+Qoe8rV8r+3/++aWnp2hXYuBH49tumPa+9YEDurLo64J575DpngYFyRt18MxbM2Ip/4lYY6izAzJng2HUiIiIiImrPhg+X+59+svdwl5UB+/fbj6kfkGdlyf7QUBnmnpEBfPCB7Hv1VeDBByVMGjPGcQi6s0aMADp3blZW2jwG5M46dQrYvFnGVyxbBqSkAABGjA/C/fgUZbpAuQbaRVZ4KygAfvihtRJMRERERETUdAMGyPDwkhJ7EL59O2C12o+pH5Bv3Cj3V10lc9AB4N57ZfE3pewh0sMPuz7t7Q0DcmclJEgT0ZIlMgbj31JTgVq/YHymJsuGd99t9OlKydTzq6+WBQ2IiIiIiIjaIqMRSEuTx9qwdS0AHzpU7vftA8rL5bEWkF99tePrvPWWrR+zyYu5eQsG5E2RlCRRdT1mswyheA/TZMPy5cDx4+c9dcUKaVUCgPnzXZxOIiIiIiKiy6ANW9+0Se61Bd1uvRWIjZWh7Dt3Sq+5Ngq4YUBuNgP//Cdw003AX/7StMXcvAUD8hYwbhxwEL2xVjdazsj333fYrxQwd6797xUrZAR8UykFFBVdXlqJiIiIiIguRQvItR5yLSAfMkRugPSa79sHnDsnQ9wHDz7/dRISZMbvXXe5Ps3tEQPyFvDYY8DEicDbajoAoPKdj4CqKtv+jRtltLvZLPMxrFbgs8+a/j4vvACEhwMLFrRQwomIiIiIiBoxdKjMBz9+XALvU6fk7+RkmbYLyHZtuPrw4TLUnZqGAXkL8PUFFi0C4qfeiONIgF/5WfzjxoWorJT9Wu/4Aw8ATz8tjz/+2HFRhEvZuRP47/+WXvIZM4CzZ1s2D0RERERERJqgILkGOAC8+abc9+snF5yq30N+ofnj5BwG5C3EYADe/qsRR8c+BgAYmvFHjOpfgPffB9askf3PPgvcfjsQHAwcOwasX+/ca9fVyQqFWgB/9iwwa5Zr8kHUbFarXO+ivdq5UyZF3XYb8Nprcr2O9pyfhprSAkhEREQE+7D1RYvkXusZT04GdDq5vviqVbKNAXnztItBBe+99x5ef/115OXlYeDAgXjnnXcwRGuWaUN0OmDk5w+hsue76HbmCN49Mg6jHl0LIATp6fZr591zj0wz/9///feC7YWFwNKlclG+q66SF6rngw+AbduAkBB5zh13yP0DD9hXP7QpLZWVF2pr5UJ/fn7OJT4nRyaoDxjg/HNamtVqv07ChRQXy31IiOvSUVgIHD4swxHCw4GwMMDfX9KnlNzX1gIWizzu0OH8FSpqaoCKCmlNsVol3T//LK977pzMcejfv/H3r60FNmyQy+jp9dKaExgIXHedvNfFWCzAunXA4sXyXv36ydKWKSlAz56XLl9Ars+3dCmwYwfQq5c0gQ4adOHzoqIC+L//A954Q97z2muBadNkGU0fnwu/z7lzMnxkwwZZGSQxEejSRZ4/cOB53wMHhYWSvu3bgexsOe/Ly2WqSEQE0KmT3AYPBq655uIriFRUAC+/LOnXgtbFi+U+NFT2TZt28bzUV10tk6zWr5c8JifLmK+uXS+ep/qqqqRBIDtb/i/06SPPNxicez4AnDgh/wt++kkmf+3ZA/TtC9x3n/wTiotz/rUupK5O8ltbK2PUTCZJo7P5rM9qBXJzgaNH5ftSUSG3qCjgyivlviksFmmyz8yU71J2trzuoEHyayI1VR77+zudvIMHgehoOcWIiIi8wfDhchEp7VrkWggWEiI/E7Oz5dJoZrNU19R0OqWUcnciLubLL7/EpEmT8P777yM1NRVvvfUWFi1ahJycHEQ58QOtpKQEISEhKC4uRnBwcCukGMDBg7BedTX0ZwqwAVfjHt1C7Ji9GDHffAQcOYLCtBtw75pJyPJJxd6H30H4396EvqwEAKCGDYPuhRckel+5EtXLVuLIplwcsPZC4vi+uPL2RCx+NxdFWUfRJ/AkhozwgT44SFZROHAAavt26P79jVFBQdDdeqsEOLt3yw/z7GwJUiZOBG64QX6szp9vX63BYJAg7oorJA1JSRLYGAzyi7SuTgK2U6fkx3NVlQQqJpPsO3dOgqXaWgmEbrxRggkAyM8HDh2yXx9BKWlW+/FHCRxycyVtI0bIt91qldcqKJALIO7cKT/WAVkdYuBACTDi4yW46NBBGhUKCmQYgdUqQYLRKO9ZUACcOSPbteAvPFyCyOxsuR061PT5ADod0LGjlFNlJfDbb/I+lzJ2LPDUU1LG585J+latAr76Cjh9+vzjDQZg5EjpwY2JsTcO5OUBR47IbePGC6/8FxoqgaF2rYrcXEmrxSLnT2CgTBLauPH83lSjUZo977hDzh29XpbT3LAB+PzzxvPbsSNw/fX24Cc+XoIfkwn46CPgpZcuXNZxccD48RL5lJZKT3VBgaQ5N1ceOyskRM71a6+V1wsLk+3Z2XJe/etfch4CwO9+J40X27bJ9+XXX2V7z54SmHfqhDqTH0osfghJCIE+PFTmrOzYIQH02rVyPtdbQ8ImPFyC8+RkOc9795Zz0N9fPoP9+6WBYdUqWflR+55ofH3lsxs1Ss6DoCApv8JCOX+Ki+V29CjUDz9Ad/LkhctEp5MGIe07Hh0tn4vJZD+ntHIOCZHzLSpKzsv9+4EDB+QYrXauz2CQ4zt1koaWsjLg5Ekpy4AA+W4PHSqf8eHDEuUePCjnb2PlpomPB3r0kDQajVLzBwXJkKPgYHltPz/5f7Rpk1xfUmvAuxCDQf6HJCfLc7VzLSICRb2GYrtxKLYc6YCSDVkIOLgD/Wp2wO+Z6Zjw+siLv64T3FI3eTCWJxGRa/z6q1TBmj177H1KU6YAf/ubPL7mGudH/3oLZ+umNh+Qp6am4sorr8S7/76+t9VqRXx8PB5//HHMcmLcttsq6awsCQBKSpw6/BC6IwEn4Ivqy37rI+gCI2qRiBNOP6dWZ0SpTzjCahoJBC9TWUgsfGrKYa68xI/jNqQmKg7KYISx9BwMZY1/hurfvZW6xoKShsf6+QFdu6GuSzcoSx2Mq76F7iJDiOvCIlCRfBVq6/Sos1jh89txhBzJcirt1g5RqLz+FpT3uRLWvftg3rsdQYd3wlhT6dTzAUiAcu21wOHDUJmZ0OXn2/Oi00HX4N+GNakzqh59EhXDroPhywUI/OIj+JzNx6VUdumDsw/OlPMj7zjMh/fBvHkd9JUVl3yu6tYNupQUaZjRRjGYzdI48Ouv0rjw/feNN240TEdkJ2Q/Ph/FV90IvV7iVZ21DoFffYKef58N/7ImNAAAKPWPQm7PkTB0jEbUiW0IPLQT+prGv9vVER1hLCmEweK4v9A/DkcihyLOcgxRZ7Ob9vkBqIUBWRiETRiBg2HDYB4yEOPM6zAk5++IzPmxSa/VagwGaSAID5cA29dXPseDB6UBqolqI6JQnjoa6NcXpgG9YQwNhGXzdqjMTJiyMp06RxvaNOYVjFjzcpOf1xADyJbF8iQicp3ERBl4Fxgo/T7agL2//lUGEQLAiy8Cf/iD25LYJnlEQF5TUwN/f398/fXXuOWWW2zbJ0+ejKKiIixbtuy851RXV6O62v7DtqSkBPHx8e6ppH/4QXpBKyulF+aRR6RnbNEiVH36OXxLCrAfffAn0xys8LsVvsX5eAJv4lHMhw8sWI9rsRLjcMzYA+9OP4j4kv0SaMTFYce5znh7aQL0sCIIpQhGCU4iHuswEgW+CVB1VqRYfkI6FqAf9mE3BuInDEM2euMabMAtWIqr8ANyEYsP8TD+F79HHmIQh1NIwXb0x14k4jgScRyxyIUOClboYYUeZxGBU4hDLmJRAX/4wAIfWKCgQyHCcQ5h8EUVxmIVRiPD1shQBz1+QRLOIcxWRIUIx48Yjk0YgeNIRCoyMQKbMAhZqIA/ChGOQoTjMLpjJwYjC4NghR4DsAcDsRs9kYM4nEIcTiESZ1CEUBSgA84gEnUwwIha+MCCCvijAB1QABny3RnH0BnHEIGzOIKuyEZvZKM3ctATh9EdFQiwpdGAWphRDSv0UNDBCj1qYYSCHoBCBxQgASfQCb+iAv74DR2Rh46oMgXDYjWg1qqHVekc4onOOIoZ+Asm4f+gh9VWbnswAAtxFzIwGrVwHCLdBUdwBxbheqyGL6qgoIOCDgXogKPogiPoij0YgM1IgxWOQ5uNsGAA9iANm5GC7aiBCacNsSjy6wiL3gyTpRwmSznK4Y+1fjfitH8SjEZpTyotVeiKI5iIJbgDizAE2wAA+9AXG3E1VuN6fIsbUVdvBowPajAG32MotiAVmUjBdkSg0Lb/LMLxEv6AD/CIw/MAwIwqXIv1GI0MGFGLMgTB4huIYn04jtXE4ZfaOJxAAooRCl9ficENBvvofqXst7qaOgysysSEmqXog/0IRRFCUQQfWHAIPbAffbEX/bEMN6MMQY1+jYNRjOcxD2OxCv6ogB8q4Y8KhKAYPqgFAJxDKNZhJNZiFNZiFLLRG4B92LYPajAAezAYO5GMHRiELHTHYYShyHZMEUKwA8n4CcOwDDdjB5Jtr6GDFT1wCNdiPUZhLa7CD9BBoRDhOIsInEMYihGCYoQgDzH4CcOwzz8VUZ0DkJMjA1bqS8Bx9MV+JOEXJOEXROKM7Xts0Cuc1sXgN10sCtABQaoE0SoP0SoPxfow/Gzui2P+fXHGPwFWHzNqDWYogxGorYWu1gKjpRIdVS46qZOIseaiXB+EU/pOyNV1QkjtWVxRnYmB1ZmIqDuNX3x64KipF46aeuGYsTtO6hJQbfVBTY2MhK+uls8xVF+CwdiJOPUr9NZa6OpqYVLVCDeWINxYglB9CUx1FTDVVsCnrgoHrT2wBBORidTzvgt2CrHIRQq2YxCyoINCKYJQhkAk4jiGYguG6rbCT1WgOKo71OBkBI1KgWHsdTK15zIxgGxZLE8iIte55x7giy+kr2bdOvv2HTtkYCEga2aNGeOW5LVZHhGQ5+bmIi4uDj/99BPS6k2Wfu6557BhwwZkahfDq+eVV17BnDlzztvutkr6559l2OTgwY7zKi0WWH85AX2XJFszk8Uio7pzj1tQXWmFT6AZPj4y6rNjx/Nfes8eeWkt+AgNlVGi4eHyWtnZMsr7xAkZqRsVJR2JpaXSiXjutyrAZEJQiB6BgfKa5eUyYrOy0j4iGpDOR39/6bCqrpZArbhYRqxqo8L1eth6F7X1varOliPqxHaUmiJQENINtUZfew+kTkaJRkdL2vz8ZCT88eNyX1trn7YdGSmj1BMT5b1On5ayOn3aPkpem7/i5yfpVAoOP+wrK2VEbFWV4xRwX1/7c7QWP51O8lZTYz9Oy6e2r65OXqd+fsrL5TnO0AJIrbzq6mSb0SjbTSZpiQwMlLRp72ex2F9DKXnPkhKZbqsxGuU5YWFyCwyUMsrPl/K6HNHIgwU+KETjE2n9/ORcCQiQUckJCXJeVlfU4czJSpz7tRy/loehrMaEmhopr9pax7xp554Tgw+azWCQ71ZMjHwGFoucJ9o5B8iI6K5dZWR5ly7yuGtXOWd/OaZweHcFTuwvRVVQB/gHGeDnJ5/FiRP281g7V0tLpUxCQ2WEtU4HBFkKEVd1RDZ27Yq4eD0iIuQ8NpkkPUePyr+RkyelXMPC5PC6Ovv31d9fRp937gx07y7/brp3lzxWVMhI+M2b5X9CTo50OGv/OzyVTiej7fV6+UzqN0r4+clnq30/wsLkf2xcnJyrPXrID4xA31r5EAICLvxGzcQAsmWxPImIXGfFCmDCBODDD4GHHrJvr6mRpW4sFvmt4oLqsl3z2oC8TfWQk1eqqpLhPDU19kYKvd4+RdfHR27OrK/WFBaLBB3auloXO056vuWmNUqYzZKm6mrJg8UigaMWQPr42NuUtLW8tADWbHZNvqqqJHAsKpLgUWsYMhrt6dTSoDWSaI0jOp2kx2y296JrxxgMsuRAU9ZIu1zOrFnY2pSS8tAaI7RbffXL02KRhq3KSjlOaySq32CllbPWwFK/kalh/rWGF6UcRzmYTPZzUmsAq62V47TzDJDPX0uPySSBtp+ffVq59n5K2RvjgoLaxjVSGUC2LJYnEZFraR1HDddtLSiQerapa696A2frpjbws+TCIiMjYTAYkF9v/ioA5OfnIyYmptHnmM1mmM3m1kgeUaN8faXXtbXVD1QudVxExOWtFG0w2INjV/L1lVt0tGvfpzW0tWAckEpVC6TddXGF1qCNxvHkPBIREbnShToxLnUBILq0NvgT0c5kMiE5ORkZGRm2bVarFRkZGQ495kRERERERETtTZvuIQeAp556CpMnT0ZKSgqGDBmCt956C+Xl5bj//vvdnTQiIiIiIiKiZmvzAfnvfvc7FBQU4KWXXkJeXh6uuOIKrFy5EtGeMIaViIiIiIiIvFabD8gBYPr06Zg+fbq7k0FERERERETUYtr0HHIiIiIiIiIiT8WAnIiIiIiIiMgNGJATERERERERuQEDciIiIiIiIiI3YEBORERERERE5AYMyImIiIiIiIjcgAE5ERERtQnV1dW44ooroNPpsGvXLncnh4iIyOUYkBMREVGb8NxzzyE2NtbdySAiImo1DMiJiIjI7VasWIHVq1fjf/7nf9ydFCIiolZjdHcCiIiIyLvl5+fjoYcewtKlS+Hv73/J46urq1FdXW37u6SkxJXJIyIichmPD8iVUgBYWRMRUduh1UlaHeXNlFKYMmUKpk6dipSUFPzyyy+XfM68efMwZ86c87azriciorbC2bre4wPy0tJSAEB8fLybU0JEROSotLQUISEh7k6GS8yaNQt//vOfL3pMdnY2Vq9ejdLSUjz//PNOv/bzzz+Pp556yvb3qVOn0KdPH9b1RETU5lyqrtcpD2+et1qtyM3NRVBQEHQ63WW9VklJCeLj43Hy5EkEBwe3UArbF28vA2/PP8Ay8Pb8AywD4PLLQCmF0tJSxMbGQq/3zOVcCgoKcPbs2Yse06VLF9x555345ptvHOrouro6GAwGpKen429/+9sl34t1fctiGbAMvD3/AMvA2/MPtF5d7/E95Hq9Hp06dWrR1wwODvbaE1Pj7WXg7fkHWAbenn+AZQBcXhl4as+4pkOHDujQocMlj3v77bfxxz/+0fZ3bm4uxo4diy+//BKpqalOvRfretdgGbAMvD3/AMvA2/MPuL6u9/iAnIiIiNquhIQEh78DAwMBAF27dm3xIJuIiKit8cxxckRERERERERtHHvIm8BsNuPll1+G2Wx2d1LcxtvLwNvzD7AMvD3/AMsAYBm4UlJSkltXn+dnyzIAWAbenn+AZeDt+Qdarww8flE3IiIiIiIioraIQ9aJiIiIiIiI3IABOREREREREZEbMCAnIiIiIiIicgMG5ERERERERERuwIC8Cd577z0kJSXB19cXqamp2Lp1q7uT5BLz5s3DlVdeiaCgIERFReGWW25BTk6OwzFVVVWYNm0aIiIiEBgYiNtuuw35+fluSrFrvfbaa9DpdHjiiSds27wh/6dOncK9996LiIgI+Pn5oX///ti+fbttv1IKL730Ejp27Ag/Pz+MGTMGhw8fdmOKW1ZdXR1efPFFdO7cGX5+fujatSteffVVh9WfPakMNm7ciP/4j/9AbGwsdDodli5d6rDfmbwWFhYiPT0dwcHBCA0NxYMPPoiysrJWzMXluVgZWCwWzJw5E/3790dAQABiY2MxadIk5ObmOrxGey8DYl1fnzfUdfV5Y33Put676nqA9X2brOsVOWXhwoXKZDKpTz75RO3fv1899NBDKjQ0VOXn57s7aS1u7Nix6tNPP1X79u1Tu3btUhMmTFAJCQmqrKzMdszUqVNVfHy8ysjIUNu3b1dDhw5Vw4YNc2OqXWPr1q0qKSlJDRgwQM2YMcO23dPzX1hYqBITE9WUKVNUZmamOnr0qFq1apX6+eefbce89tprKiQkRC1dulTt3r1b3XTTTapz586qsrLSjSlvOXPnzlURERHq22+/VceOHVOLFi1SgYGB6i9/+YvtGE8qg3/9619q9uzZavHixQqAWrJkicN+Z/I6btw4NXDgQLVlyxb1ww8/qG7duqm77767lXPSfBcrg6KiIjVmzBj15ZdfqoMHD6rNmzerIUOGqOTkZIfXaO9l4O1Y13tnXa+Ud9b3rOu9r65XivV9W6zrGZA7aciQIWratGm2v+vq6lRsbKyaN2+eG1PVOk6fPq0AqA0bNiil5GT18fFRixYtsh2TnZ2tAKjNmze7K5ktrrS0VHXv3l2tWbNGXXPNNbYK2hvyP3PmTDVixIgL7rdarSomJka9/vrrtm1FRUXKbDarL774ojWS6HI33HCDeuCBBxy23XrrrSo9PV0p5dll0LCCciavBw4cUADUtm3bbMesWLFC6XQ6derUqVZLe0tp7EdKQ1u3blUA1PHjx5VSnlcG3oh1vffV9Up5b33Put6763qlWN+3lbqeQ9adUFNTgx07dmDMmDG2bXq9HmPGjMHmzZvdmLLWUVxcDAAIDw8HAOzYsQMWi8WhPHr16oWEhASPKo9p06bhhhtucMgn4B35X758OVJSUnDHHXcgKioKgwYNwkcffWTbf+zYMeTl5TmUQUhICFJTUz2mDIYNG4aMjAwcOnQIALB7925s2rQJ48ePB+AdZaBxJq+bN29GaGgoUlJSbMeMGTMGer0emZmZrZ7m1lBcXAydTofQ0FAA3lkGnoR1vXfW9YD31ves61nXN8T6/nytUdcbWyKhnu7MmTOoq6tDdHS0w/bo6GgcPHjQTalqHVarFU888QSGDx+Ofv36AQDy8vJgMplsJ6YmOjoaeXl5bkhly1u4cCF27tyJbdu2nbfPG/J/9OhRzJ8/H0899RReeOEFbNu2Df/5n/8Jk8mEyZMn2/LZ2HfCU8pg1qxZKCkpQa9evWAwGFBXV4e5c+ciPT0dALyiDDTO5DUvLw9RUVEO+41GI8LDwz2uPACZVzpz5kzcfffdCA4OBuB9ZeBpWNd7X10PeHd9z7qedX1DrO8dtVZdz4CcLmratGnYt28fNm3a5O6ktJqTJ09ixowZWLNmDXx9fd2dHLewWq1ISUnBn/70JwDAoEGDsG/fPrz//vuYPHmym1PXOr766issWLAAn3/+Ofr27Ytdu3bhiSeeQGxsrNeUATXOYrHgzjvvhFIK8+fPd3dyiC6bN9b1AOt71vWs6+nCWrOu55B1J0RGRsJgMJy3qmZ+fj5iYmLclCrXmz59Or799lusW7cOnTp1sm2PiYlBTU0NioqKHI73lPLYsWMHTp8+jcGDB8NoNMJoNGLDhg14++23YTQaER0d7dH5B4COHTuiT58+Dtt69+6NEydOAIAtn578nXj22Wcxa9Ys3HXXXejfvz/uu+8+PPnkk5g3bx4A7ygDjTN5jYmJwenTpx3219bWorCw0KPKQ6ugjx8/jjVr1thazAHvKQNPxbreu+p6gPU963rW9Q2xvhetXdczIHeCyWRCcnIyMjIybNusVisyMjKQlpbmxpS5hlIK06dPx5IlS7B27Vp07tzZYX9ycjJ8fHwcyiMnJwcnTpzwiPIYPXo09u7di127dtluKSkpSE9Ptz325PwDwPDhw8+7/M2hQ4eQmJgIAOjcuTNiYmIcyqCkpASZmZkeUwYVFRXQ6x3/RRoMBlitVgDeUQYaZ/KalpaGoqIi7Nixw3bM2rVrYbVakZqa2uppdgWtgj58+DC+//57REREOOz3hjLwZKzrvauuB1jfs65nXd8Q63s31fXNWgrOCy1cuFCZzWb12WefqQMHDqiHH35YhYaGqry8PHcnrcU9+uijKiQkRK1fv1799ttvtltFRYXtmKlTp6qEhAS1du1atX37dpWWlqbS0tLcmGrXqr/qqlKen/+tW7cqo9Go5s6dqw4fPqwWLFig/P391T/+8Q/bMa+99poKDQ1Vy5YtU3v27FE333xzu74MSEOTJ09WcXFxtkuhLF68WEVGRqrnnnvOdownlUFpaanKyspSWVlZCoB64403VFZWlm1VUWfyOm7cODVo0CCVmZmpNm3apLp3795uLoOi1MXLoKamRt10002qU6dOateuXQ7/G6urq22v0d7LwNuxrvfuul4p76rvWdd7X12vFOv7tljXMyBvgnfeeUclJCQok8mkhgwZorZs2eLuJLkEgEZvn376qe2YyspK9dhjj6mwsDDl7++vJk6cqH777Tf3JdrFGlbQ3pD/b775RvXr10+ZzWbVq1cv9eGHHzrst1qt6sUXX1TR0dHKbDar0aNHq5ycHDeltuWVlJSoGTNmqISEBOXr66u6dOmiZs+e7fAP2ZPKYN26dY1+7ydPnqyUci6vZ8+eVXfffbcKDAxUwcHB6v7771elpaVuyE3zXKwMjh07dsH/jevWrbO9RnsvA2Jd7811vVLeV9+zrveuul4p1vdtsa7XKaVU8/rWiYiIiIiIiKi5OIeciIiIiIiIyA0YkBMRERERERG5AQNyIiIiIiIiIjdgQE5ERERERETkBgzIiYiIiIiIiNyAATkRERERERGRGzAgJyIiIiIiInIDBuREREREREREbsCAnIhcSqfTYenSpe5OBhEREbkQ63ui5mFATuTBpkyZAp1Od95t3Lhx7k4aERERtRDW90Ttl9HdCSAi1xo3bhw+/fRTh21ms9lNqSEiIiJXYH1P1D6xh5zIw5nNZsTExDjcwsLCAMjwsvnz52P8+PHw8/NDly5d8PXXXzs8f+/evRg1ahT8/PwQERGBhx9+GGVlZQ7HfPLJJ+jbty/MZjM6duyI6dOnO+w/c+YMJk6cCH9/f3Tv3h3Lly93baaJiIi8DOt7ovaJATmRl3vxxRdx2223Yffu3UhPT8ddd92F7OxsAEB5eTnGjh2LsLAwbNu2DYsWLcL333/vUAHPnz8f06ZNw8MPP4y9e/di+fLl6Natm8N7zJkzB3feeSf27NmDCRMmID09HYWFha2aTyIiIm/G+p6ojVJE5LEmT56sDAaDCggIcLjNnTtXKaUUADV16lSH56SmpqpHH31UKaXUhx9+qMLCwlRZWZlt/3fffaf0er3Ky8tTSikVGxurZs+efcE0AFD/9V//Zfu7rKxMAVArVqxosXwSERF5M9b3RO0X55ATebiRI0di/vz5DtvCw8Ntj9PS0hz2paWlYdeuXQCA7OxsDBw4EAEBAbb9w4cPh9VqRU5ODnQ6HXJzczF69OiLpmHAgAG2xwEBAQgODsbp06ebmyUiIiJqgPU9UfvEgJzIwwUEBJw3pKyl+Pn5OXWcj4+Pw986nQ5Wq9UVSSIiIvJKrO+J2ifOISfyclu2bDnv7969ewMAevfujd27d6O8vNy2/8cff4Rer0fPnj0RFBSEpKQkZGRktGqaiYiIqGlY3xO1TewhJ/Jw1dXVyMvLc9hmNBoRGRkJAFi0aBFSUlIwYsQILFiwAFu3bsXHH38MAEhPT8fLL7+MyZMn45VXXkFBQQEef/xx3HfffYiOjgYAvPLKK5g6dSqioqIwfvx4lJaW4scff8Tjjz/euhklIiLyYqzvidonBuREHm7lypXo2LGjw7aePXvi4MGDAGRF1IULF+Kxxx5Dx44d8cUXX6BPnz4AAH9/f6xatQozZszAlVdeCX9/f9x222144403bK81efJkVFVV4c0338QzzzyDyMhI3H777a2XQSIiImJ9T9RO6ZRSyt2JICL30Ol0WLJkCW655RZ3J4WIiIhchPU9UdvFOeREREREREREbsCAnIiIiIiIiMgNOGSdiIiIiIiIyA3YQ05ERERERETkBgzIiYiIiIiIiNyAATkRERERERGRGzAgJyIiIiIiInIDBuREREREREREbsCAnIiIiIiIiMgNGJATERERERERuQEDciIiIiIiIiI3+P954mDIjVruKgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -882,12 +1851,24 @@ ], "source": [ "import matplotlib.pyplot as plt\n", - "fig = plt.figure()\n", + "\n", + "fig = plt.figure(figsize=(12, 5))\n", + "fig.add_subplot(1, 2, 1)\n", "plt.plot(np.asarray(hist_train), 'b', label=\"Training loss\")\n", "plt.plot(np.asarray(hist_valid), 'r', label=\"Validation loss\")\n", "plt.xlabel('Epoch')\n", "plt.ylabel('Loss')\n", + "plt.title(\"MSE\")\n", + "plt.legend()\n", + "\n", + "fig.add_subplot(1, 2, 2)\n", + "plt.plot(np.log(np.asarray(hist_train)), 'b', label=\"Training loss\")\n", + "plt.plot(np.log(np.asarray(hist_valid)), 'r', label=\"Validation loss\")\n", + "plt.xlabel('Epoch')\n", + "plt.ylabel('Logarithmic loss')\n", + "plt.title(\"Logarithmic MSE\")\n", "plt.legend()\n", + "\n", "plt.show()" ] }, @@ -902,7 +1883,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -937,12 +1918,19 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MSE loss is 0.446\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA66UlEQVR4nO3deXxU1f3/8fdkIAnZJgayYggBZEkB2QQSXEKNJKgsbrigEKTYIlgwWCH9VVnUghYq1AWw1IBVK/RboYA2ilFcIOymgkgKlE3IgiATE0rAyfz+iIyMWUggmcnMfT0fj/vAe+fcez8zTTPvnHPuvSa73W4XAACAAfm4uwAAAAB3IQgBAADDIggBAADDIggBAADDIggBAADDIggBAADDIggBAADDaubuApq6iooKHTt2TMHBwTKZTO4uBwAA1IHdbtd3332nmJgY+fjU3O9DELqIY8eOKTY21t1lAACAS3DkyBFdeeWVNb5OELqI4OBgSZUfZEhIiJurAQAAdVFSUqLY2FjH93hNCEIXcX44LCQkhCAEAICHudi0FiZLAwAAwyIIAQAAwyIIAQAAw2KOUAOx2Ww6d+6cu8tAE9W8eXOZzWZ3lwEA+AmC0GWy2+0qLCzUqVOn3F0KmrjQ0FBFRUVxPyoAaEIIQpfpfAiKiIhQQEAAX3Kowm636/Tp0youLpYkRUdHu7kiAMB5BKHLYLPZHCGoZcuW7i4HTViLFi0kScXFxYqIiGCYDACaCCZLX4bzc4ICAgLcXAk8wfmfE+aSAUDTQRBqAAyHoS74OQGApoehMQAALmCrsGvLgZMq/u6MIoL91Tc+TGYf/pDxVgQhAAB+kL2rQDPX7FaB9YxjW7TFX9OHJCitKxc6eCOGxtCo0tPTNXz4cMd6cnKyJk+efFnHbIhjAMBPZe8q0PjXdziFIEkqtJ7R+Nd3KHtXgZsqQ2MiCDUBtgq7cvef0D/zjip3/wnZKuyNfs709HSZTCaZTCb5+vqqQ4cOmjVrlr7//vtGPe/bb7+tp556qk5t169fL5PJVOUeTfU5BgDUha3Crplrdqu6377nt81cs9slv5/hWgyNuZk7u2HT0tKUlZWl8vJyvfvuu5owYYKaN2+uzMxMp3Znz56Vr69vg5wzLCysSRwDAC605cDJKj1BF7JLKrCe0ZYDJ5XYntuleBN6hNzI3d2wfn5+ioqKUlxcnMaPH6+UlBStXr3aMZz1zDPPKCYmRp06dZIkHTlyRCNGjFBoaKjCwsI0bNgwHTx40HE8m82mjIwMhYaGqmXLlnr88cdltzv/9fTTYa3y8nJNnTpVsbGx8vPzU4cOHfSXv/xFBw8e1MCBAyVJV1xxhUwmk9LT06s9xrfffqtRo0bpiiuuUEBAgAYPHqy9e/c6Xl+6dKlCQ0P13nvvqUuXLgoKClJaWpoKCn78fNevX6++ffsqMDBQoaGhGjBggA4dOtRAnzSApq74u5pD0KW0g+cgCLlJU+yGbdGihc6ePStJysnJUX5+vtatW6e1a9fq3LlzSk1NVXBwsD799FNt2LDBESjO7zNv3jwtXbpUr776qj777DOdPHlSK1eurPWco0aN0t/+9jf96U9/0ldffaXFixcrKChIsbGx+sc//iFJys/PV0FBgRYsWFDtMdLT07Vt2zatXr1aubm5stvtuvnmm53u13P69GnNnTtXf/3rX/XJJ5/o8OHDeuyxxyRJ33//vYYPH64bbrhBX3zxhXJzc/XQQw9xuTtgIBHB/g3aDp6DoTE3aUrdsHa7XTk5OXrvvff0yCOP6Pjx4woMDNSSJUscQ2Kvv/66KioqtGTJEkdAyMrKUmhoqNavX69BgwZp/vz5yszM1O233y5JWrRokd57770az/uf//xHK1as0Lp165SSkiJJateuneP180NgERERCg0NrfYYe/fu1erVq7VhwwYlJSVJkt544w3FxsZq1apVuuuuuyRV3sRw0aJFat++vSRp4sSJmjVrliSppKREVqtVt956q+P1Ll261P+DBOCx+saHKdrir0LrmWr/QDVJirJUXkoP70KPkJs0hW7YtWvXKigoSP7+/ho8eLDuvvtuzZgxQ5LUrVs3p3lB//73v7Vv3z4FBwcrKChIQUFBCgsL05kzZ7R//35ZrVYVFBSoX79+jn2aNWumPn361Hj+vLw8mc1m3XDDDZf8Hr766is1a9bM6bwtW7ZUp06d9NVXXzm2BQQEOEKOVPm8r/PP/goLC1N6erpSU1M1ZMgQLViwwGnYDID3M/uYNH1IgqTK0HOh8+vThyRwPyEvRBByk6bQDTtw4EDl5eVp7969+t///qdly5YpMDBQkhz/nldaWqrevXsrLy/PafnPf/6j++6775LOf/75W67QvHlzp3WTyeQ0fykrK0u5ublKSkrS8uXL1bFjR23atMll9QFwv7Su0Vp4fy9FWZx/70ZZ/LXw/l7cR8hLMTTmJk2hGzYwMFAdOnSoU9tevXpp+fLlioiIUEhISLVtoqOjtXnzZl1//fWSKufebN++Xb169aq2fbdu3VRRUaGPP/7YMTR2ofM9Ujabrca6unTpou+//16bN292DI2dOHFC+fn5SkhIqNN7O69nz57q2bOnMjMzlZiYqDfffFP9+/ev1zEAeLa0rtG6KSGKO0sbCD1CbuJp3bAjR45Uq1atNGzYMH366ac6cOCA1q9fr1//+tf6+uuvJUmTJk3SnDlztGrVKu3Zs0cPP/xwlXsAXaht27YaPXq0HnzwQa1atcpxzBUrVkiS4uLiZDKZtHbtWh0/flylpaVVjnHVVVdp2LBhGjdunD777DP9+9//1v3336/WrVtr2LBhdXpvBw4cUGZmpnJzc3Xo0CG9//772rt3L/OEAIMy+5iU2L6lhvVorcT2LZvM72E0DoKQG3lSN2xAQIA++eQTtWnTRrfffru6dOmisWPH6syZM44eoilTpuiBBx7Q6NGjlZiYqODgYN122221HnfhwoW688479fDDD6tz584aN26cysrKJEmtW7fWzJkzNW3aNEVGRmrixInVHiMrK0u9e/fWrbfeqsTERNntdr377rtVhsNqe2979uzRHXfcoY4dO+qhhx7ShAkT9Mtf/rIenxAAwBOZ7D+90QuclJSUyGKxyGq1VhkSOnPmjA4cOKD4+Hj5+1/6XB4e8GcMDfXzAgC4uNq+vy/EHKEm4Hw3LAAAcC2CEAB4CHqPgYZHEAIAD+DO5xIC3ozJ0gDQxLn7uYSANyMIAUAT1hSfSwh4E4IQADRh9XkuIYD6IwgBQBPWFJ5LCHgzghAANGFN4bmEgDcjCMGjzJgxQz169HB3GUpOTtbkyZPdXQYM4PxzCWu6SN6kyqvHGvO5hIA3IwgZVGFhoSZNmqQOHTrI399fkZGRGjBggBYuXKjTp0+7u7xLtn79eplMplqfcebO4wH15WnPJQQ8DfcRagoqbNKhjVJpkRQUKcUlST7mRjvdf//7Xw0YMEChoaH6/e9/r27dusnPz087d+7UK6+8otatW2vo0KHV7nvu3Lk6P8OrKTt79qzj6fZAU3f+uYQ/vY9QFPcRAi4bPULutnu1NL+rtOxW6R9jK/+d37VyeyN5+OGH1axZM23btk0jRoxQly5d1K5dOw0bNkzvvPOOhgwZ4mhrMpm0cOFCDR06VIGBgXrmmWckVT4stX379vL19VWnTp3017/+1bHPwYMHZTKZlJeX59h26tQpmUwmrV+/XtKPPS05OTnq06ePAgIClJSUpPz8fKda58yZo8jISAUHBzse8lqTgwcPauDAgZKkK664QiaTSenp6ZIqh7ImTpyoyZMnq1WrVkpNTb1onbUdT5IqKir0+OOPKywsTFFRUZoxY0Zd/ycA6i2ta7Q+m/pz/W1cfy24p4f+Nq6/Ppv6c0IQcJk8Kgh98sknGjJkiGJiYmQymbRq1aqL7rN+/Xr16tVLfn5+6tChg5YuXdroddbZ7tXSilFSyTHn7SUFldsbIQydOHFC77//viZMmKDAwMBq25hMzl3sM2bM0G233aadO3fqwQcf1MqVKzVp0iRNmTJFu3bt0i9/+UuNGTNGH330Ub3r+X//7/9p3rx52rZtm5o1a6YHH3zQ8dqKFSs0Y8YM/f73v9e2bdsUHR2tl19+ucZjxcbG6h//+IckKT8/XwUFBVqwYIHj9WXLlsnX11cbNmzQokWLLlpbXY4XGBiozZs367nnntOsWbO0bt26en8GQF2dfy7hsB6tldi+JcNhQAPwqCBUVlamq6++Wi+99FKd2h84cEC33HKLBg4cqLy8PE2ePFm/+MUv9N577zVypXVQYZOyp0q13SYte1pluwa0b98+2e12derUyWl7q1atFBQUpKCgIE2dOtXptfvuu09jxoxRu3bt1KZNG82dO1fp6el6+OGH1bFjR2VkZOj222/X3Llz613PM888oxtuuEEJCQmaNm2aNm7c6Oj1mT9/vsaOHauxY8eqU6dOevrpp5WQkFDjscxms8LCKieMRkREKCoqShaLxfH6VVddpeeee06dOnWq8v4v5Xjdu3fX9OnTddVVV2nUqFHq06ePcnJy6v0ZAADcx6OC0ODBg/X000/rtttuq1P7RYsWKT4+XvPmzVOXLl00ceJE3XnnnXr++edr3Ke8vFwlJSVOS6M4tLFqT5ATu1RytLKdC2zZskV5eXn62c9+pvLycqfX+vTp47T+1VdfacCAAU7bBgwYoK+++qre5+3evbvjv6OjK7v4i4uLHefp16+fU/vExMR6n+O83r17X/K+1bmwdqmy/vO1A42iwiYd+FTa+X+V/zbwH0qAEXn1ZOnc3FylpKQ4bUtNTa31sufZs2dr5syZjVyZKidGN2S7OurQoYNMJlOVuTjt2rWTJLVo0aLKPjUNodXEx6cyX9vtP/Z2nTt3rtq2F068Pj8kV1FRUa/z1dVP30d96qzOTyeNm0ymRqsd0O7Vlb3IF/4BFRIjpT0rJVR/cQOAi/OoHqH6KiwsVGRkpNO2yMhIlZSU6H//+1+1+2RmZspqtTqWI0eONE5xQZEXb1OfdnXUsmVL3XTTTXrxxRdVVlZ2Scfo0qWLNmzY4LRtw4YNjmGr8PBwSVJBwY8PgrxwQnJ9zrN582anbZs2bap1n/NXgtlsF/9LuS511ud4QKNxw3xCwCi8ukfoUvj5+cnPz6/xTxSXVPnXXEmBqp8nZKp8PS6pwU/98ssva8CAAerTp49mzJih7t27y8fHR1u3btWePXsuOoT0m9/8RiNGjFDPnj2VkpKiNWvW6O2339YHH3wgqbJXqX///pozZ47i4+NVXFys3/3ud/Wuc9KkSUpPT1efPn00YMAAvfHGG/ryyy8dvVfViYuLk8lk0tq1a3XzzTerRYsWCgoKqrZtXeqsz/GARnHR+YSmyvmEnW9p1NtuAN7Kq3uEoqKiVFTkPLRUVFSkkJCQaoeAXMrHXNmlLanG26SlzWmUX2zt27fX559/rpSUFGVmZurqq69Wnz599MILL+ixxx7TU089Vev+w4cP14IFCzR37lz97Gc/0+LFi5WVlaXk5GRHm1dffVXff/+9evfurcmTJ+vpp5+ud5133323nnjiCT3++OPq3bu3Dh06pPHjx9e6T+vWrTVz5kxNmzZNkZGRmjhxYq3tL1ZnfY8HNLgmNp8Q8DYm+4UTJDyIyWTSypUrNXz48BrbTJ06Ve+++6527tzp2Hbffffp5MmTys7OrtN5SkpKZLFYZLVaFRIS4vTamTNndODAAcXHx8vf/xKf81PtuH/ryhDEuL9XaZCfFxjPzv+rvMfYxdzxF6nbnY1fD+Ahavv+vpBHDY2VlpZq3759jvUDBw4oLy9PYWFhatOmjTIzM3X06FG99tprkqRf/epXevHFF/X444/rwQcf1IcffqgVK1bonXfecddbqCphaGWXtgvvLA3Ag7hpPiFgFB4VhLZt2+a4068kZWRkSJJGjx6tpUuXqqCgQIcPH3a8Hh8fr3feeUePPvqoFixYoCuvvFJLlixRamqqy2uvlY9Zir/O3VUAaIrcOJ8QMAKPCkLJycmqbSSvurtGJycn6/PPP2/EqgCgEZ2fT7hilCrnD174O7Bx5xMCRuDVk6UBwCskDJVGvCaF/OS5YiExlduZTwhcMo/qEWqqPHS+OVyMnxNcFuYTAo2CIHQZzt9Z+PTp0+6/HB9N3unTpyVVvSM1UGfMJwQaHEHoMpjNZoWGhjqeLxUQEFDlye2A3W7X6dOnVVxcrNDQUJnN/AUPAE0FQegyRUVFSRIP28RFhYaGOn5eAABNA0HoMplMJkVHRysiIqJeD+yEsTRv3pyeIABogghCDcRsNvNFBwCAh+HyeQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgEIQAAYFgeF4ReeukltW3bVv7+/urXr5+2bNlSY9ulS5fKZDI5Lf7+/i6sFgAANGUeFYSWL1+ujIwMTZ8+XTt27NDVV1+t1NRUFRcX17hPSEiICgoKHMuhQ4dcWDEAAGjKPCoI/fGPf9S4ceM0ZswYJSQkaNGiRQoICNCrr75a4z4mk0lRUVGOJTIystZzlJeXq6SkxGkBAADeyWOC0NmzZ7V9+3alpKQ4tvn4+CglJUW5ubk17ldaWqq4uDjFxsZq2LBh+vLLL2s9z+zZs2WxWBxLbGxsg70HAADQtHhMEPrmm29ks9mq9OhERkaqsLCw2n06deqkV199Vf/85z/1+uuvq6KiQklJSfr6669rPE9mZqasVqtjOXLkSIO+DwAA0HQ0c3cBjSkxMVGJiYmO9aSkJHXp0kWLFy/WU089Ve0+fn5+8vPzc1WJAADAjTymR6hVq1Yym80qKipy2l5UVKSoqKg6HaN58+bq2bOn9u3b1xglAgAAD+MxQcjX11e9e/dWTk6OY1tFRYVycnKcen1qY7PZtHPnTkVHRzdWmQAAwIN41NBYRkaGRo8erT59+qhv376aP3++ysrKNGbMGEnSqFGj1Lp1a82ePVuSNGvWLPXv318dOnTQqVOn9Ic//EGHDh3SL37xC3e+DQAA0ER4VBC6++67dfz4cT355JMqLCxUjx49lJ2d7ZhAffjwYfn4/NjJ9e2332rcuHEqLCzUFVdcod69e2vjxo1KSEhw11sAAABNiMlut9vdXURTVlJSIovFIqvVqpCQEHeXAwAA6qCu398eM0cIAACgoRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYTVzdwEAAMCAKmzSoY1SaZEUFCnFJUk+ZpeXQRACAACutXu1lD1VKjn247aQGCntWSlhqEtLYWgMAAC4zu7V0opRziFIkkoKKrfvXu3ScghCAADANSpslT1Bslfz4g/bsqdVtnMRghAAAHCNQxur9gQ5sUslRyvbuQhBCAAAuEZpUcO2awAEIQAA4BpBkQ3brgEQhAAAgGvEJVVeHSZTDQ1MUkjrynYu4nFB6KWXXlLbtm3l7++vfv36acuWLbW2//vf/67OnTvL399f3bp107vvvuuiSgEAgBMfc+Ul8pKqhqEf1tPmuPR+Qh4VhJYvX66MjAxNnz5dO3bs0NVXX63U1FQVFxdX237jxo269957NXbsWH3++ecaPny4hg8frl27drm4cgAAIKnyPkEjXpNCop23h8RUbnfxfYRMdru9umvYmqR+/frpmmuu0YsvvihJqqioUGxsrB555BFNmzatSvu7775bZWVlWrt2rWNb//791aNHDy1atKjac5SXl6u8vNyxXlJSotjYWFmtVoWEhDTwOwIAwKAa+c7SJSUlslgsF/3+9pgeobNnz2r79u1KSUlxbPPx8VFKSopyc3Or3Sc3N9epvSSlpqbW2F6SZs+eLYvF4lhiY2Mb5g0AAIAf+Zil+OukbndW/uuGx2tIHhSEvvnmG9lsNkVGOs8kj4yMVGFhYbX7FBYW1qu9JGVmZspqtTqWI0eOXH7xAACgSeJZYz/h5+cnPz8/d5cBAABcwGN6hFq1aiWz2ayiIuebLBUVFSkqKqrafaKiourVHgAAGIvHBCFfX1/17t1bOTk5jm0VFRXKyclRYmJitfskJiY6tZekdevW1dgeAAAYi0cNjWVkZGj06NHq06eP+vbtq/nz56usrExjxoyRJI0aNUqtW7fW7NmzJUmTJk3SDTfcoHnz5umWW27RW2+9pW3btumVV15x59sAAABNhEcFobvvvlvHjx/Xk08+qcLCQvXo0UPZ2dmOCdGHDx+Wj8+PnVxJSUl688039bvf/U6//e1vddVVV2nVqlXq2rWru94CAABoQjzqPkLuUNf7EAAAgKbD6+4jBAAA0NAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLA86lljAJqoCpt0aKNUWiQFRUpxSZKP2d1VAcBFEYQAXJ7dq6XsqVLJsR+3hcRIac9KCUPdVxcA1AFDYwAu3e7V0opRziFIkkoKKrfvXu2eugCgjghCAC5Nha2yJ0j2al78YVv2tMp2ANBEEYQAXJpDG6v2BDmxSyVHK9sBQBNFEAJwaUqLGrYdALgBQQjApQmKbNh2AOAGBCEAlyYuqfLqMJlqaGCSQlpXtgOAJoogBODS+JgrL5GXVDUM/bCeNof7CQFo0ghCAC5dwlBpxGtSSLTz9pCYyu3cRwhAE8cNFQFcnoShUudbuLM0AI9EEAJw+XzMUvx17q4CAOqNoTEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYHhOETp48qZEjRyokJEShoaEaO3asSktLa90nOTlZJpPJafnVr37loooBAEBT18zdBdTVyJEjVVBQoHXr1uncuXMaM2aMHnroIb355pu17jdu3DjNmjXLsR4QENDYpQIAAA9xWUHozJkzWr58ucrKynTTTTfpqquuaqi6nHz11VfKzs7W1q1b1adPH0nSCy+8oJtvvllz585VTExMjfsGBAQoKiqqUeoCAACerc5DYxkZGXrkkUcc62fPnlViYqLGjRun3/72t+rZs6dyc3Mbpcjc3FyFhoY6QpAkpaSkyMfHR5s3b6513zfeeEOtWrVS165dlZmZqdOnT9favry8XCUlJU4LAADwTnUOQu+//75uuukmx/obb7yhQ4cOae/evfr2229111136emnn26UIgsLCxUREeG0rVmzZgoLC1NhYWGN+9133316/fXX9dFHHykzM1N//etfdf/999d6rtmzZ8tisTiW2NjYBnkPAACg6alzEDp8+LASEhIc6++//77uvPNOxcXFyWQyadKkSfr888/rdfJp06ZVmcz802XPnj31OuaFHnroIaWmpqpbt24aOXKkXnvtNa1cuVL79++vcZ/MzExZrVbHcuTIkUs+PwAAaNrqPEfIx8dHdrvdsb5p0yY98cQTjvXQ0FB9++239Tr5lClTlJ6eXmubdu3aKSoqSsXFxU7bv//+e508ebJe83/69esnSdq3b5/at29fbRs/Pz/5+fnV+ZgAAMBz1TkIdenSRWvWrFFGRoa+/PJLHT58WAMHDnS8fujQIUVGRtbr5OHh4QoPD79ou8TERJ06dUrbt29X7969JUkffvihKioqHOGmLvLy8iRJ0dHR9aoTAAB4pzoPjT3++OPKzMzUjTfeqBtvvFE333yz4uPjHa+/++676tu3b6MU2aVLF6WlpWncuHHasmWLNmzYoIkTJ+qee+5xXDF29OhRde7cWVu2bJEk7d+/X0899ZS2b9+ugwcPavXq1Ro1apSuv/56de/evVHqBAAAnqXOQei2227Tu+++q+7du+vRRx/V8uXLnV4PCAjQww8/3OAFnvfGG2+oc+fOjhB27bXX6pVXXnG8fu7cOeXn5zuuCvP19dUHH3ygQYMGqXPnzpoyZYruuOMOrVmzptFqBAAAnsVkv3DiTy1mzZqlxx57zHA3JCwpKZHFYpHValVISIi7ywEAAHVQ1+/vOvcIzZw586KPtAAAAPAkdQ5Cdew4AgAA8Bj1euiqyWRqrDoAAABcrl7PGuvYseNFw9DJkycvqyAAAABXqVcQmjlzpiwWS2PVAgAADMJWYdeWAydV/N0ZRQT7q298mMw+rh95qlcQuueee6o88wsAAKA+sncVaOaa3SqwnnFsi7b4a/qQBKV1de1Nj+s8R4j5QQAA4HJl7yrQ+Nd3OIUgSSq0ntH413coe1eBS+vhqjEAAOAStgq7Zq7ZreoSxfltM9fslq3CdZmjzkGooqKCYTEAAHDJthw4WaUn6EJ2SQXWM9pywHUXXtXr8nkAAIBLVfxdzSHoUto1BIIQAABwiYhg/wZt1xAIQgAAwCX6xocp2uKvmi6/Mqny6rG+8WEuq4kgBAAAXMLsY9L0IQmSVCUMnV+fPiTBpfcTIggBAACXSesarYX391KUxXn4K8rir4X393L5fYTqdUNFAACAy5XWNVo3JUR53p2lAQAAGoLZx6TE9i3dXQZDYwAAwLgIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLAIQgAAwLA8Jgg988wzSkpKUkBAgEJDQ+u0j91u15NPPqno6Gi1aNFCKSkp2rt3b+MWCgAAPIbHBKGzZ8/qrrvu0vjx4+u8z3PPPac//elPWrRokTZv3qzAwEClpqbqzJkzjVgpAADwFCa73W53dxH1sXTpUk2ePFmnTp2qtZ3dbldMTIymTJmixx57TJJktVoVGRmppUuX6p577qnT+UpKSmSxWGS1WhUSEnK55QMAABeo6/e3x/QI1deBAwdUWFiolJQUxzaLxaJ+/fopNze3xv3Ky8tVUlLitAAAAO/ktUGosLBQkhQZGem0PTIy0vFadWbPni2LxeJYYmNjG7VOAADgPm4NQtOmTZPJZKp12bNnj0tryszMlNVqdSxHjhxx6fkBAIDrNHPnyadMmaL09PRa27Rr1+6Sjh0VFSVJKioqUnR0tGN7UVGRevToUeN+fn5+8vPzu6RzAgAAz+LWIBQeHq7w8PBGOXZ8fLyioqKUk5PjCD4lJSXavHlzva48AwAA3stj5ggdPnxYeXl5Onz4sGw2m/Ly8pSXl6fS0lJHm86dO2vlypWSJJPJpMmTJ+vpp5/W6tWrtXPnTo0aNUoxMTEaPny4m95FJVuFXbn7T+ifeUeVu/+EbBUedeEeAABew609QvXx5JNPatmyZY71nj17SpI++ugjJScnS5Ly8/NltVodbR5//HGVlZXpoYce0qlTp3TttdcqOztb/v7+Lq39Qtm7CjRzzW4VWH+8l1G0xV/ThyQorWt0LXsCAICG5nH3EXK1hryPUPauAo1/fYd++oGbfvh34f29CEMAADQAw99HqKmxVdg1c83uKiFIkmPbzDW7GSYDAMCFCEIusuXASafhsJ+ySyqwntGWAyddVxQAAAZHEHKR4u/q9nyzurYDAACXjyDkIhHBdZugXdd2AADg8hGEXKRvfJiiLf6OidE/ZVLl1WN948NcWRYAAIZGEHIRs49J04ckSFKVMHR+ffqQBJl9aopKAACgoRGEXCita7QW3t9LURbn4a8oiz+XzgMA4AYec0NFb5HWNVo3JURpy4GTKv7ujCKCK4fD6AkCAMD1CEJuYPYxKbF9S3eXAQCA4TE0BgAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADIsgBAAADMtjgtAzzzyjpKQkBQQEKDQ0tE77pKeny2QyOS1paWmNWygAAPAYzdxdQF2dPXtWd911lxITE/WXv/ylzvulpaUpKyvLse7n59cY5QEAAA/kMUFo5syZkqSlS5fWaz8/Pz9FRUU1QkUAAMDTeczQ2KVav369IiIi1KlTJ40fP14nTpyotX15eblKSkqcFgAA4J28OgilpaXptddeU05Ojp599ll9/PHHGjx4sGw2W437zJ49WxaLxbHExsa6sGIAAOBKbg1C06ZNqzKZ+afLnj17Lvn499xzj4YOHapu3bpp+PDhWrt2rbZu3ar169fXuE9mZqasVqtjOXLkyCWfHwAANG1unSM0ZcoUpaen19qmXbt2DXa+du3aqVWrVtq3b59uvPHGatv4+fkxoRoAAINwaxAKDw9XeHi4y8739ddf68SJE4qOjnbZOQEAQNPlMXOEDh8+rLy8PB0+fFg2m015eXnKy8tTaWmpo03nzp21cuVKSVJpaal+85vfaNOmTTp48KBycnI0bNgwdejQQampqe56GwAAoAnxmMvnn3zySS1btsyx3rNnT0nSRx99pOTkZElSfn6+rFarJMlsNuuLL77QsmXLdOrUKcXExGjQoEF66qmnGPoykgqbdGijVFokBUVKcUmSj9ndVQEAmgiT3W63u7uIpqykpEQWi0VWq1UhISHuLgf1sXu1lD1VKjn247aQGCntWSlhqPvqAgA0urp+f3vM0BhQL7tXSytGOYcgSSopqNy+e7V76gIANCkEIXifCltlT5Cq6+z8YVv2tMp2AABDIwjB+xzaWLUnyIldKjla2Q4AYGgEIXif0qKGbQcA8FoEIXifoMiGbQcA8FoEIXifuKTKq8NkqqGBSQppXdkOAGBoBCF4Hx9z5SXykqqGoR/W0+ZwPyEAAEEIXiphqDTiNSnkJ49TCYmp3M59hAAA8qA7SwP1ljBU6nwLd5YGANSIIATv5mOW4q9zdxUAgCaKoTEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYBCEAAGBYHhGEDh48qLFjxyo+Pl4tWrRQ+/btNX36dJ09e7bW/c6cOaMJEyaoZcuWCgoK0h133KGioiIXVQ0AAJo6jwhCe/bsUUVFhRYvXqwvv/xSzz//vBYtWqTf/va3te736KOPas2aNfr73/+ujz/+WMeOHdPtt9/uoqoBAEBTZ7Lb7XZ3F3Ep/vCHP2jhwoX673//W+3rVqtV4eHhevPNN3XnnXdKqgxUXbp0UW5urvr371+n85SUlMhischqtSokJKTB6gcAAI2nrt/fHtEjVB2r1aqwsLAaX9++fbvOnTunlJQUx7bOnTurTZs2ys3NrXG/8vJylZSUOC0AAMA7eWQQ2rdvn1544QX98pe/rLFNYWGhfH19FRoa6rQ9MjJShYWFNe43e/ZsWSwWxxIbG9tQZQMAgCbGrUFo2rRpMplMtS579uxx2ufo0aNKS0vTXXfdpXHjxjV4TZmZmbJarY7lyJEjDX4OAADQNDRz58mnTJmi9PT0Wtu0a9fO8d/Hjh3TwIEDlZSUpFdeeaXW/aKionT27FmdOnXKqVeoqKhIUVFRNe7n5+cnPz+/OtUPAPBCFTbp0EaptEgKipTikiQfs7urQiNxaxAKDw9XeHh4ndoePXpUAwcOVO/evZWVlSUfn9o7s3r37q3mzZsrJydHd9xxhyQpPz9fhw8fVmJi4mXXDgDwQrtXS9lTpZJjP24LiZHSnpUShrqvLjQaj5gjdPToUSUnJ6tNmzaaO3eujh8/rsLCQqe5PkePHlXnzp21ZcsWSZLFYtHYsWOVkZGhjz76SNu3b9eYMWOUmJhY5yvGAAAGsnu1tGKUcwiSpJKCyu27V7unLjQqt/YI1dW6deu0b98+7du3T1deeaXTa+ev/j937pzy8/N1+vRpx2vPP/+8fHx8dMcdd6i8vFypqal6+eWXXVo7AMADVNgqe4JU3R1l7JJMUvY0qfMtDJN5GY+9j5CrcB8h4OJsFXZtOXBSxd+dUUSwv/rGh8nsY3J3WUDdHfhUWnbrxduNXivFX9f49eCy1fX72yN6hAA0Xdm7CjRzzW4VWM84tkVb/DV9SILSuka7sTKgHkrr+PiluraDx/CIOUIAmqbsXQUa//oOpxAkSYXWMxr/+g5l7ypwU2VAPQVFNmw7eAyCEIBLYquwa+aa3TXOqJCkmWt2y1bB6Ds8QFxS5dVhqmlI1ySFtK5sB69CEIJXs1XYlbv/hP6Zd1S5+0/wpdyAthw4WaUn6EJ2SQXWM9py4KTrigIulY+58hJ5SVXD0A/raXOYKO2FmCMEr8XclcZV/F3NIehS2gFulzBUGvFaDfcRmsN9hLwUQQhe6fzclZ/2/5yfu7Lw/l6EocsUEezfoO2AJiFhaOUl8txZ2jAIQvA6F5u7YlLl3JWbEqK4xPsy9I0PU7TFX4XWM9V+1iZJUZbKS+kBj+Jj5hJ5A2GOELwOc1dcw+xj0vQhCZJqnFGh6UMSCJsAmjSCELwOc1dcJ61rtBbe30tRFufhryiLP8OPADwCQ2PwOsxdca20rtG6KSGKO0sD8EgEIXgd5q64ntnHpMT2Ld1dBgDUG0Nj8DrMXQEA1BVBCF6JuSsAgLpgaAxei7krAICLIQjBqzF3BQBQG4bGAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYRGEAACAYXFDRXeosEmHNkqlRVJQpBSXJPmY3V0VAACGQxBytd2rpeypUsmxH7eFxEhpz0oJQ91XFwAABsTQmCvtXi2tGOUcgiSppKBy++7V7qkLAACDIgi5SoWtsidI9mpe/GFb9rTKdgAAwCUIQq5yaGPVniAndqnkaGU7AADgEgQhVyktath2AADgshGEXCUosmHbAQCAy0YQcpW4pMqrw2SqoYFJCmld2Q4AALgEQchVfMyVl8hLqhqGflhPm8P9hAAAcCGCkCslDJVGvCaFRDtvD4mp3M59hAAAcCluqOhqCUOlzrdwZ2kAAJoAgpA7+Jil+OvcXQUAAIbnEUNjBw8e1NixYxUfH68WLVqoffv2mj59us6ePVvrfsnJyTKZTE7Lr371KxdVDQAAmjqP6BHas2ePKioqtHjxYnXo0EG7du3SuHHjVFZWprlz59a677hx4zRr1izHekBAQGOXCwAAPIRHBKG0tDSlpaU51tu1a6f8/HwtXLjwokEoICBAUVFRjV0iAADwQB4xNFYdq9WqsLCwi7Z744031KpVK3Xt2lWZmZk6ffp0re3Ly8tVUlLitAAAAO/kET1CP7Vv3z698MILF+0Nuu+++xQXF6eYmBh98cUXmjp1qvLz8/X222/XuM/s2bM1c+bMhi4ZAAA0QSa73V7d49BdYtq0aXr22WdrbfPVV1+pc+fOjvWjR4/qhhtuUHJyspYsWVKv83344Ye68cYbtW/fPrVv377aNuXl5SovL3esl5SUKDY2VlarVSEhIfU6HwAAcI+SkhJZLJaLfn+7NQgdP35cJ06cqLVNu3bt5OvrK0k6duyYkpOT1b9/fy1dulQ+PvUb2SsrK1NQUJCys7OVmppap33q+kECAICmo67f324dGgsPD1d4eHid2h49elQDBw5U7969lZWVVe8QJEl5eXmSpOjo6NobAgAAQ/CIydJHjx5VcnKy2rRpo7lz5+r48eMqLCxUYWGhU5vOnTtry5YtkqT9+/frqaee0vbt23Xw4EGtXr1ao0aN0vXXX6/u3bu7660AAIAmxCMmS69bt0779u3Tvn37dOWVVzq9dn5k79y5c8rPz3dcFebr66sPPvhA8+fPV1lZmWJjY3XHHXfod7/7Xb3Off74XD0GAIDnOP+9fbEZQG6dI+QJvv76a8XGxrq7DAAAcAmOHDlSpRPlQgShi6ioqNCxY8cUHBwsk8nUYMc9fzXakSNHmITdyPisXYPP2TX4nF2Dz9k1GvNzttvt+u677xQTE1PrvGKPGBpzJx8fn1qT5OUKCQnh/2QuwmftGnzOrsHn7Bp8zq7RWJ+zxWK5aBuPmCwNAADQGAhCAADAsAhCbuLn56fp06fLz8/P3aV4PT5r1+Bzdg0+Z9fgc3aNpvA5M1kaAAAYFj1CAADAsAhCAADAsAhCAADAsAhCAADAsAhCbvLSSy+pbdu28vf3V79+/RwPi0XD+eSTTzRkyBDFxMTIZDJp1apV7i7J68yePVvXXHONgoODFRERoeHDhys/P9/dZXmlhQsXqnv37o4bzyUmJupf//qXu8vyanPmzJHJZNLkyZPdXYrXmTFjhkwmk9PSuXNnt9RCEHKD5cuXKyMjQ9OnT9eOHTt09dVXKzU1VcXFxe4uzauUlZXp6quv1ksvveTuUrzWxx9/rAkTJmjTpk1at26dzp07p0GDBqmsrMzdpXmdK6+8UnPmzNH27du1bds2/fznP9ewYcP05Zdfurs0r7R161YtXrxY3bt3d3cpXutnP/uZCgoKHMtnn33mljq4fN4N+vXrp2uuuUYvvviipMrnmcXGxuqRRx7RtGnT3FyddzKZTFq5cqWGDx/u7lK82vHjxxUREaGPP/5Y119/vbvL8XphYWH6wx/+oLFjx7q7FK9SWlqqXr166eWXX9bTTz+tHj16aP78+e4uy6vMmDFDq1atUl5enrtLoUfI1c6ePavt27crJSXFsc3Hx0cpKSnKzc11Y2XA5bNarZIqv6DReGw2m9566y2VlZUpMTHR3eV4nQkTJuiWW25x+j2Nhrd3717FxMSoXbt2GjlypA4fPuyWOnjoqot98803stlsioyMdNoeGRmpPXv2uKkq4PJVVFRo8uTJGjBggLp27erucrzSzp07lZiYqDNnzigoKEgrV65UQkKCu8vyKm+99ZZ27NihrVu3ursUr9avXz8tXbpUnTp1UkFBgWbOnKnrrrtOu3btUnBwsEtrIQgBaBATJkzQrl273DbObwSdOnVSXl6erFar/u///k+jR4/Wxx9/TBhqIEeOHNGkSZO0bt06+fv7u7scrzZ48GDHf3fv3l39+vVTXFycVqxY4fKhXoKQi7Vq1Upms1lFRUVO24uKihQVFeWmqoDLM3HiRK1du1affPKJrrzySneX47V8fX3VoUMHSVLv3r21detWLViwQIsXL3ZzZd5h+/btKi4uVq9evRzbbDabPvnkE7344osqLy+X2Wx2Y4XeKzQ0VB07dtS+fftcfm7mCLmYr6+vevfurZycHMe2iooK5eTkMNYPj2O32zVx4kStXLlSH374oeLj491dkqFUVFSovLzc3WV4jRtvvFE7d+5UXl6eY+nTp49GjhypvLw8QlAjKi0t1f79+xUdHe3yc9Mj5AYZGRkaPXq0+vTpo759+2r+/PkqKyvTmDFj3F2aVyktLXX66+LAgQPKy8tTWFiY2rRp48bKvMeECRP05ptv6p///KeCg4NVWFgoSbJYLGrRooWbq/MumZmZGjx4sNq0aaPvvvtOb775ptavX6/33nvP3aV5jeDg4Crz2wIDA9WyZUvmvTWwxx57TEOGDFFcXJyOHTum6dOny2w2695773V5LQQhN7j77rt1/PhxPfnkkyosLFSPHj2UnZ1dZQI1Ls+2bds0cOBAx3pGRoYkafTo0Vq6dKmbqvIuCxculCQlJyc7bc/KylJ6errrC/JixcXFGjVqlAoKCmSxWNS9e3e99957uummm9xdGlBvX3/9te69916dOHFC4eHhuvbaa7Vp0yaFh4e7vBbuIwQAAAyLOUIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIAAMCwCEIADC09PV3Dhw93dxkA3IQgBKDRpaeny2QyVVnS0tLcXZoWLFjQZB65YjKZtGrVKneXARgKzxoD4BJpaWnKyspy2ubn5+emaiSbzSaTySSLxeK2GgC4Hz1CAFzCz89PUVFRTssVV1yh9evXy9fXV59++qmj7XPPPaeIiAgVFRVJqnyo68SJEzVx4kRZLBa1atVKTzzxhC58VGJ5ebkee+wxtW7dWoGBgerXr5/Wr1/veH3p0qUKDQ3V6tWrlZCQID8/Px0+fLjK0FhycrIeeeQRTZ48WVdccYUiIyP15z//WWVlZRozZoyCg4PVoUMH/etf/3J6f7t27dLgwYMVFBSkyMhIPfDAA/rmm2+cjvvrX/9ajz/+uMLCwhQVFaUZM2Y4Xm/btq0k6bbbbpPJZHKsA2hcBCEAbpWcnKzJkyfrgQcekNVq1eeff64nnnhCS5YsUWRkpKPdsmXL1KxZM23ZskULFizQH//4Ry1ZssTx+sSJE5Wbm6u33npLX3zxhe666y6lpaVp7969jjanT5/Ws88+qyVLlujLL79UREREtTUtW7ZMrVq10pYtW/TII49o/Pjxuuuuu5SUlKQdO3Zo0KBBeuCBB3T69GlJ0qlTp/Tzn/9cPXv21LZt25Sdna2ioiKNGDGiynEDAwO1efNmPffcc5o1a5bWrVsnSdq6daskKSsrSwUFBY51AI3MDgCNbPTo0Xaz2WwPDAx0Wp555hm73W63l5eX23v06GEfMWKEPSEhwT5u3Din/W+44QZ7ly5d7BUVFY5tU6dOtXfp0sVut9vthw4dspvNZvvRo0ed9rvxxhvtmZmZdrvdbs/KyrJLsufl5VWpbdiwYU7nuvbaax3r33//vT0wMND+wAMPOLYVFBTYJdlzc3Ptdrvd/tRTT9kHDRrkdNwjR47YJdnz8/OrPa7dbrdfc8019qlTpzrWJdlXrlxZw6cIoDEwRwiASwwcOFALFy502hYWFiZJ8vX11RtvvKHu3bsrLi5Ozz//fJX9+/fvL5PJ5FhPTEzUvHnzZLPZtHPnTtlsNnXs2NFpn/LycrVs2dKx7uvrq+7du1+01gvbmM1mtWzZUt26dXNsO99TVVxcLEn697//rY8++khBQUFVjrV//35HXT89d3R0tOMYANyDIATAJQIDA9WhQ4caX9+4caMk6eTJkzp58qQCAwPrfOzS0lKZzWZt375dZrPZ6bULw0mLFi2cwlRNmjdv7rRuMpmctp0/RkVFheP8Q4YM0bPPPlvlWNHR0bUe9/wxALgHQQiA2+3fv1+PPvqo/vznP2v58uUaPXq0PvjgA/n4/DiNcfPmzU77bNq0SVdddZXMZrN69uwpm82m4uJiXXfdda4uX7169dI//vEPtW3bVs2aXfqv1ebNm8tmszVgZQAuhsnSAFyivLxchYWFTss333wjm82m+++/X6mpqRozZoyysrL0xRdfaN68eU77Hz58WBkZGcrPz9ff/vY3vfDCC5o0aZIkqWPHjho5cqRGjRqlt99+WwcOHNCWLVs0e/ZsvfPOO43+3iZMmKCTJ0/q3nvv1datW7V//3699957GjNmTL2CTdu2bZWTk6PCwkJ9++23jVgxgPPoEQLgEtnZ2U7DRJLUqVMn3XfffTp06JDWrl0rqXIo6ZVXXtG9996rQYMG6eqrr5YkjRo1Sv/73//Ut29fmc1mTZo0SQ899JDjWFlZWXr66ac1ZcoUHT16VK1atVL//v116623Nvp7i4mJ0YYNGzR16lQNGjRI5eXliouLU1pamlOv1sXMmzdPGRkZ+vOf/6zWrVvr4MGDjVc0AEmSyW6/4EYcANAEJScnq0ePHpo/f767SwHgZRgaAwAAhkUQAgAAhsXQGAAAMCx6hAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGERhAAAgGH9f83F2tH4x2d2AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPYElEQVR4nO3deVxU5f4H8M8wyj4Mos4MKCK5E2ruIV2jGwFqKtbVLE1Jb5YNJpq59MvUtFDLshVbbqCZlfcaRVYYLlC54IKUhJESLiUD5TKjIIgz5/fHxOjINujAmeF83q/XvPA855lnvnMQ5suzHZkgCAKIiIiIJMJF7ACIiIiImhOTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLSSuwAHJHJZMLp06ehUCggk8nEDoeIiIhsIAgCLly4gICAALi41N2/w+SnFqdPn0ZgYKDYYRAREdENOHXqFDp27FjneSY/tVAoFADMF8/Hx0fkaIiIiMgWBoMBgYGBls/xujD5qUX1UJePjw+THyIiIifT0JQVTngmIiIiSWHyQ0RERJLC5IeIiIgkhXN+iIicgNFoRFVVldhhEImqdevWkMvlN90Okx8iIgcmCAJ0Oh3Onz8vdihEDsHX1xcajeam9uFj8kNE5MCqEx+VSgVPT09uvEqSJQgCysvLUVpaCgDw9/e/4baY/BAROSij0WhJfNq2bSt2OESi8/DwAACUlpZCpVLd8BAYJzwTETmo6jk+np6eIkdC5Diqfx5uZg4ckx8iIgfHoS6iq+zx88Bhr+ZiMgIndgMXSwBvNRA0FHC5+RnrRERE1Dii9vwkJiZi0KBBUCgUUKlUiI2NRUFBgVWdiIgIyGQyq8fjjz9eb7uCIOC5556Dv78/PDw8EBkZiaNHjzblW6lffhqwJhRYdy+weZr565pQczkRERE1K1GTn6ysLGi1WuzduxcZGRmoqqpCVFQUysrKrOo9+uijKC4utjxWrVpVb7urVq3C66+/jrVr1yI7OxteXl6Ijo5GRUVFU76d2uWnAZsmA4bT1uWGYnM5EyAiohsWFxeH2NhYy3FERAQSEhJuqk17tEGOTdRhr/T0dKvjlJQUqFQqHDx4EMOGDbOUe3p6QqPR2NSmIAhYs2YNnn32WYwZMwYAsH79eqjVanz++eeYMGGC/d5AQ0xGIH0+AKG2SAHIgPQFQM+RHAIjoiZjNAnYV3QWpRcqoFK4Y3CwH+QuTTuPKC4uDuvWrQNg3piuU6dOmDx5Mp555hm0atV0Hz2fffYZWrdubVPdzMxM3HXXXTh37hx8fX1vqA1yTg4150ev1wMA/Pz8rMo/+ugjbNiwARqNBqNGjcKiRYvqXP1QVFQEnU6HyMhIS5lSqcSQIUOwZ8+eWpOfyspKVFZWWo4NBoM93o55js/1PT5WBMDwh7le8D/s85pERNdIzyvG0i/zUay/2vPtr3TH4lEhiAm98X1SbBETE4Pk5GRUVlbi66+/hlarRevWrbFw4UKrepcvX4arq6tdXvP6zw+x2iDH5jCrvUwmExISEhAeHo7Q0FBL+UMPPYQNGzZg586dWLhwIT788ENMmjSpznZ0Oh0AQK1WW5Wr1WrLueslJiZCqVRaHoGBgXZ4RzBPbrZnPSKiRkjPK8aMDTlWiQ8A6PQVmLEhB+l5xU36+m5ubtBoNAgKCsKMGTMQGRmJtLQ0y1DVCy+8gICAAPTo0QMAcOrUKYwfPx6+vr7w8/PDmDFjcPz4cUt7RqMRc+bMga+vL9q2bYt58+ZBEKx71q8fsqqsrMT8+fMRGBgINzc3dO3aFf/5z39w/Phx3HXXXQCANm3aQCaTIS4urtY2zp07h8mTJ6NNmzbw9PTE8OHDreaRpqSkwNfXF1u3bkWvXr3g7e2NmJgYFBdfvb6ZmZkYPHgwvLy84Ovri/DwcJw4ccJOV5oay2GSH61Wi7y8PHzyySdW5dOnT0d0dDR69+6NiRMnYv369UhNTUVhYaHdXnvhwoXQ6/WWx6lTp+zTsLe64TqNqUdEZCOjScDSL/PrHHQHgKVf5sNoqq1G0/Dw8MDly5cBANu3b0dBQQEyMjKwZcsWVFVVITo6GgqFAt9//z127dplSSKqn7N69WqkpKTggw8+wA8//ICzZ88iNTW13tecPHkyPv74Y7z++us4cuQI3nnnHXh7eyMwMBCbN28GABQUFKC4uBivvfZarW3ExcXhwIEDSEtLw549eyAIAkaMGGG1z0x5eTlefvllfPjhh/juu+9w8uRJzJ07FwBw5coVxMbG4s4778RPP/2EPXv2YPr06dzCQEQOMewVHx+PLVu24LvvvkPHjh3rrTtkyBAAwLFjx9ClS5ca56vnBpWUlFhtfV1SUoLbbrut1jbd3Nzg5uZ2g9HXI2go4BNgntxc668gmfl80FD7vzYRSdq+orM1enyuJQAo1ldgX9FZhHVp2t2jBUHA9u3bsXXrVsycORN//vknvLy88P7771uGuzZs2ACTyYT333/fkhQkJyfD19cXmZmZiIqKwpo1a7Bw4ULcd999AIC1a9di69atdb7ur7/+ik2bNiEjI8MyFeKWW26xnK8e3lKpVFZzfq519OhRpKWlYdeuXRg61Py7+qOPPkJgYCA+//xzjBs3DoB5w721a9daPpfi4+Px/PPPAzBPpdDr9bj33nst53v16tX4C0l2I2rPjyAIiI+PR2pqKnbs2IHg4OAGn5Obmwug7nt6BAcHQ6PRYPv27ZYyg8GA7OxshIWF2SVum7nIgZiVfx9cn+H/fRyzgpOdicjuSi/YtrrV1no3YsuWLfD29oa7uzuGDx+OBx54AEuWLAEA9O7d22qez48//ohjx45BoVDA29sb3t7e8PPzQ0VFBQoLC6HX61FcXGz5AxgAWrVqhYEDB9b5+rm5uZDL5bjzzjtv+D0cOXIErVq1snrdtm3bokePHjhy5IilzNPT0+oPcn9/f8s9qPz8/BAXF4fo6GiMGjUKr732mtWQGDU/UZMfrVaLDRs2YOPGjVAoFNDpdNDpdLh06RIAoLCwEMuWLcPBgwdx/PhxpKWlYfLkyRg2bBj69Oljaadnz56Wrk+ZTIaEhAQsX74caWlpOHz4MCZPnoyAgACr5ZDNJmQ0MH494HNdsuYTYC4PGd38MRFRi6dSuNu13o246667kJubi6NHj+LSpUtYt24dvLy8AMDytdrFixcxYMAA5ObmWj1+/fVXPPTQQzf0+tX3gWoO168Ok8lkVvORkpOTsWfPHgwdOhSffvopunfvjr179zZbfGRN1GGvpKQkAObJZddKTk5GXFwcXF1dsW3bNqxZswZlZWUIDAzE/fffj2effdaqfkFBgWWlGADMmzcPZWVlmD59Os6fP4877rgD6enpcHdvuh/yeoWMNi9n5w7PRNRMBgf7wV/pDp2+oq5Bd2iU5mXvTcXLywtdu3a1qW7//v3x6aefQqVSwcfHp9Y6/v7+yM7OtmyFcuXKFRw8eBD9+/evtX7v3r1hMpmQlZVltQK4WnXPk9ForDOuXr164cqVK8jOzrYMe505cwYFBQUICQmx6b1V69evH/r164eFCxciLCwMGzduxO23396oNsg+RE1+rp+lf73AwEBkZWU1uh2ZTIbnn3/eMt7qEFzkXM5ORM1G7iLD4lEhmLEhBzJYzzqsHoRfPCqkyff7sdXEiRPx0ksvYcyYMXj++efRsWNHnDhxAp999hnmzZuHjh07YtasWVixYgW6deuGnj174pVXXsH58+frbLNz586YMmUKpk6ditdffx19+/bFiRMnUFpaivHjxyMoKAgymQxbtmzBiBEj4OHhAW9vb6s2unXrhjFjxuDRRx/FO++8A4VCgQULFqBDhw6WveQaUlRUhHfffRejR49GQEAACgoKcPToUUyePPlmLhndBIdZ7UVERPYVE+qPpEn9oVFa93prlO5ImtS/yff5aQxPT09899136NSpE+677z706tUL06ZNQ0VFhaUn6KmnnsLDDz+MKVOmICwsDAqFAmPHjq233aSkJPzrX//CE088gZ49e+LRRx+13EWgQ4cOWLp0KRYsWAC1Wo34+Pha20hOTsaAAQNw7733IiwsDIIg4Ouvv7Z5I0RPT0/88ssvuP/++9G9e3dMnz4dWq0Wjz32WCOuENmTTGio+0WCDAYDlEol9Hp9nd2vRERNraKiAkVFRQgODr6pYXsxdngmair1/VzY+vntEEvdiYio6chdZE2+nJ3ImXDYi4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDRET0tyVLluC2224TOwxEREQgISFB7DBaLCY/RERkdzqdDrNmzULXrl3h7u4OtVqN8PBwJCUloby8XOzwblhmZiZkMlm99xQTsz2yDXd4JiJq6UxG4MRu4GIJ4K0Ggoaab7bcRH777TeEh4fD19cXL774Inr37g03NzccPnwY7777Ljp06IDRo0fX+tyqqiqb75nlyC5fvmy5azw5Hvb8EBG1ZPlpwJpQYN29wOZp5q9rQs3lTeSJJ55Aq1atcODAAYwfPx69evXCLbfcgjFjxuCrr77CqFGjLHVlMhmSkpIwevRoeHl54YUXXgBgviFply5d4Orqih49euDDDz+0POf48eOQyWTIzc21lJ0/fx4ymQyZmZkArvaobN++HQMHDoSnpyeGDh2KgoICq1hXrFgBtVoNhUJhuZFqXY4fP4677roLANCmTRvIZDLExcUBMA9TxcfHIyEhAe3atUN0dHSDcdbXHgCYTCbMmzcPfn5+0Gg0WLJkia3fAmoAkx8iopYqPw3YNBkwnLYuNxSby5sgATpz5gy+/fZbaLVaeHl51VpHJrO+qeqSJUswduxYHD58GFOnTkVqaipmzZqFp556Cnl5eXjsscfwyCOPYOfOnY2O5//+7/+wevVqHDhwAK1atcLUqVMt5zZt2oQlS5bgxRdfxIEDB+Dv74+33367zrYCAwOxefNmAEBBQQGKi4vx2muvWc6vW7cOrq6u2LVrF9auXdtgbLa05+XlhezsbKxatQrPP/88MjIyGn0NqCYOexERtUQmI5A+H4BQy0kBgAxIXwD0HGnXIbBjx45BEAT06NHDqrxdu3aWXhWtVouVK1dazj300EN45JFHLMcPPvgg4uLi8MQTTwAA5syZg7179+Lll1+29JTY6oUXXsCdd94JAFiwYAFGjhyJiooKuLu7Y82aNZg2bRqmTZsGAFi+fDm2bdtWZ++PXC6Hn58fAEClUsHX19fqfLdu3bBq1SrL8fHjx+uNraH2+vTpg8WLF1vafvPNN7F9+3bcc889Nr13qht7foiIWqITu2v2+FgRAMMf5nrNYN++fcjNzcWtt96KyspKq3MDBw60Oj5y5AjCw8OtysLDw3HkyJFGv26fPn0s//b39wcAlJaWWl5nyJAhVvXDwsIa/RrVBgwYcMPPrc21sQPm+Ktjp5vDnh8iopboYol969moa9eukMlkNebW3HLLLQAADw+PGs+pa3isLi4u5r/bBeFqr1ZVVVWtda+dPF093GYymRr1era6/n00Js7aXD/xWyaTNVnsUsOeHyKilshbbd96Nmrbti3uuecevPnmmygrK7uhNnr16oVdu3ZZle3atQshISEAgPbt2wMAiouLLeevnVTcmNfJzs62Ktu7d2+9z6lewWU0Ghts35Y4G9Me2Q97foiIWqKgoYBPgHlyc63zfmTm80FD7f7Sb7/9NsLDwzFw4EAsWbIEffr0gYuLC/bv349ffvmlweGhp59+GuPHj0e/fv0QGRmJL7/8Ep999hm2bdsGwNx7dPvtt2PFihUIDg5GaWkpnn322UbHOWvWLMTFxWHgwIEIDw/HRx99hJ9//tnSS1WboKAgyGQybNmyBSNGjICHhwe8vb1rrWtLnI1pj+yHPT9ERC2RixyIqZ5ULLvu5N/HMSuaZL+fLl264NChQ4iMjMTChQvRt29fDBw4EG+88Qbmzp2LZcuW1fv82NhYvPbaa3j55Zdx66234p133kFycjIiIiIsdT744ANcuXIFAwYMQEJCApYvX97oOB944AEsWrQI8+bNw4ABA3DixAnMmDGj3ud06NABS5cuxYIFC6BWqxEfH19v/YbibGx7ZB8y4drBSAIAGAwGKJVK6PV6+Pj4iB0OEUlURUUFioqKEBwcDHd39xtrJD/NvOrr2snPPh3MiU9I7RsNEjmy+n4ubP385rAXEVFLFjLavJy9GXd4JnJ0TH6IiFo6FzkQ/A+xoyByGJzzQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiKqg06nwz333AMvLy/4+vqKHY7dZGZmQiaT4fz586LGsWTJEtx2223N/rpMfoiIyK7i4uIgk8nw+OOP1zin1Wohk8kQFxfX/IHdgFdffRXFxcXIzc3Fr7/+KnY4zUomk+Hzzz932PZuBpMfIqIWzmgyYr9uP77+7Wvs1+2H0WRs8tcMDAzEJ598gkuXLlnKKioqsHHjRnTq1KnJX99eCgsLMWDAAHTr1g0qlcpu7V6+fNlubYnJWd8Hkx8iohZs24ltiN4cjalbp2L+9/MxdetURG+OxrYT25r0dfv374/AwEB89tlnlrLPPvsMnTp1Qr9+/azqmkwmJCYmIjg4GB4eHujbty/+97//Wc4bjUZMmzbNcr5Hjx547bXXrNqIi4tDbGwsXn75Zfj7+6Nt27bQarWoqqqqN86kpCR06dIFrq6u6NGjBz788EPLuc6dO2Pz5s1Yv359vb1VV65cwZNPPglfX1+0bdsW8+fPx5QpUxAbG2upExERgfj4eCQkJKBdu3aIjo4GAGRlZWHw4MFwc3ODv78/FixYgCtXrljFsGbNGqvXu+2227BkyRLLsUwmw/vvv4+xY8fC09MT3bp1Q1pamtVzvv76a3Tv3h0eHh646667cPz48XqvS+fOnQEAY8eOhUwmsxxXD1O9//77VjcWbSjOutqr9uGHH6Jz585QKpWYMGECLly4UG98N4vJDxFRC7XtxDbMyZyDkvISq/LS8lLMyZzT5AnQ1KlTkZycbDn+4IMP8Mgjj9Sol5iYiPXr12Pt2rX4+eefMXv2bEyaNAlZWVkAzMlRx44d8d///hf5+fl47rnn8Mwzz2DTpk1W7ezcuROFhYXYuXMn1q1bh5SUFKSkpNQZX2pqKmbNmoWnnnoKeXl5eOyxx/DII49g586dAID9+/cjJiYG48ePR3FxcY2Eq9rKlSvx0UcfITk5Gbt27YLBYKh1eGfdunVwdXXFrl27sHbtWvzxxx8YMWIEBg0ahB9//BFJSUn4z3/+g+XLlzd0aWtYunQpxo8fj59++gkjRozAxIkTcfbsWQDAqVOncN9992HUqFHIzc3Fv//9byxYsKDe9vbv3w8ASE5ORnFxseUYAI4dO4bNmzfjs88+Q25urk3x1ddeYWEhPv/8c2zZsgVbtmxBVlYWVqxY0Zi333gC1aDX6wUAgl6vFzsUIpKwS5cuCfn5+cKlS5ca/dwrxivC3ZvuFkJTQmt99E7pLURuihSuGK/YPe4pU6YIY8aMEUpLSwU3Nzfh+PHjwvHjxwV3d3fhzz//FMaMGSNMmTJFEARBqKioEDw9PYXdu3dbtTFt2jThwQcfrPM1tFqtcP/991u9ZlBQkHDlytX3M27cOOGBBx6os42hQ4cKjz76qFXZuHHjhBEjRliOr421Lmq1WnjppZcsx1euXBE6deokjBkzxlJ25513Cv369bN63jPPPCP06NFDMJlMlrK33npL8Pb2FoxGoyAIghAUFCS8+uqrVs/r27evsHjxYssxAOHZZ5+1HF+8eFEAIHzzzTeCIAjCwoULhZCQEKs25s+fLwAQzp07V+f7AiCkpqZalS1evFho3bq1UFpaalVua5y1tefp6SkYDAZL2dNPPy0MGTKkzrjq+7mw9fObd3UnImqBckpzavT4XEuAAF25DjmlORikGdQkMbRv3x4jR45ESkoKBEHAyJEj0a5dO6s6x44dQ3l5Oe655x6r8suXL1sNj7311lv44IMPcPLkSVy6dAmXL1+usUro1ltvhVwutxz7+/vj8OHDdcZ35MgRTJ8+3aosPDy8zh6e2uj1epSUlGDw4MGWMrlcjgEDBsBkMlnVHTBgQI3XDwsLg0wms3r9ixcv4vfff2/U3Kg+ffpY/u3l5QUfHx+UlpZaXmfIkCFW9cPCwmxu+3pBQUFo3779DT//ep07d4ZCobAc+/v7W2JvKkx+iIhaoD/L/7RrvRs1depUxMfHAzAnMNe7ePEiAOCrr75Chw4drM65ubkBAD755BPMnTsXq1evRlhYGBQKBV566SVkZ2db1W/durXVsUwmq5GAiMnLy6vRz3FxcYG50+Sq2uYxNed7r+192BpnbcT4vnHODxFRC9Te07a/zG2td6NiYmJw+fJlVFVVWSb5XiskJARubm44efIkunbtavUIDAwEAOzatQtDhw7FE088gX79+qFr164oLCy86dh69eqFXbt2WZXt2rULISEhNrehVCqhVqut5rAYjUbk5OTY9Pp79uyxShp27doFhUKBjh07AjD3nhUXF1vOGwwGFBUV2Rxf9evs27fPqmzv3r0NPq9169YwGm1bGWhLnI1pr6kx+aGrTEag6Hvg8P/MX5thOSwRNY3+qv5Qe6ohg6zW8zLIoPHUoL+qf5PGIZfLceTIEeTn51sNSVVTKBSYO3cuZs+ejXXr1qGwsBA5OTl44403sG7dOgBAt27dcODAAWzduhW//vorFi1aZJVs3Kinn34aKSkpSEpKwtGjR/HKK6/gs88+w9y5cxvVzsyZM5GYmIgvvvgCBQUFmDVrFs6dO2c1nFWbJ554AqdOncLMmTPxyy+/4IsvvsDixYsxZ84cuLiYP57/+c9/4sMPP8T333+Pw4cPY8qUKbVex/o8/vjjOHr0KJ5++mkUFBRg48aN9U4Er9a5c2ds374dOp0O586dq7euLXE2pr2mxuSHzPLTgDWhwLp7gc3TzF/XhJrLicjpyF3kWDDYvKLn+gSo+nj+4PmQuzTug/RG+Pj4wMfHp87zy5Ytw6JFi5CYmIhevXohJiYGX331FYKDgwEAjz32GO677z488MADGDJkCM6cOYMnnnjipuOKjY3Fa6+9hpdffhm33nor3nnnHSQnJyMiIqJR7cyfPx8PPvggJk+ejLCwMHh7eyM6OtqyDLwuHTp0wNdff419+/ahb9++ePzxxzFt2jQ8++yzljoLFy7EnXfeiXvvvRcjR45EbGwsunTp0qj4OnXqhM2bN+Pzzz9H3759sXbtWrz44osNPm/16tXIyMhAYGBgje0JrmdLnI1pr6nJhOsH6QgGgwFKpRJ6vb7eH9gWIz8N2DQZwPX/Ff7+hTl+PRAyurmjIpK8iooKFBUVWe2n0ljbTmzDin0rrCY/azw1mD94PiKDIu0VKl3DZDKhV69eGD9+PJYtWyZ2OC1OfT8Xtn5+c8Kz1JmMQPp81Ex88HeZDEhfAPQcCTTDX4hEZF+RQZG4K/Au5JTm4M/yP9Hesz36q/o3S4+PVJw4cQLffvst7rzzTlRWVuLNN99EUVERHnroIbFDozqIOuyVmJiIQYMGQaFQQKVSITY2FgUFBbXWFQQBw4cPt+neINX3lbn2ERMT0wTvoAU4sRswnK6nggAY/jDXIyKnJHeRY5BmEEbcMgKDNIOY+NiZi4sLUlJSMGjQIISHh+Pw4cPYtm0bevXqJXZoVAdRe36ysrKg1WoxaNAgXLlyBc888wyioqKQn59fYyndmjVrGpw8dq2YmBirnUWrl0zSdS7WvQ/IDdUjIpKYwMDAGqvGyLGJmvykp6dbHaekpEClUuHgwYMYNmyYpTw3NxerV6/GgQMH4O/vb1Pbbm5u0Gg0NtWtrKxEZWWl5dhgMNj0vBbBW23fekRERA7OoVZ76fV6AICfn5+lrLy8HA899BDeeustm5MZAMjMzIRKpUKPHj0wY8YMnDlzps66iYmJUCqVlkf13hKSEDQU8AkA6lgOC8gAnw7mekQkCq5LIbrKHj8PDpP8mEwmJCQkIDw8HKGhoZby2bNnY+jQoRgzZozNbcXExGD9+vXYvn07Vq5ciaysLAwfPrzOzZUWLlwIvV5veZw6deqm34/TcJEDMSv/Prg+Afr7OGYFJzsTiaB659vy8nKRIyGyE0EAKi8A5WfNX28gkan+ebh+Z+jGcJjVXlqtFnl5efjhhx8sZWlpadixYwcOHTrUqLYmTJhg+Xfv3r3Rp08fdOnSBZmZmbj77rtr1Hdzc5P2nKCQ0ebl7OnzrSc/+wSYEx8ucycShVwuh6+vr+U+R56eno2a+0jkUCoMwAUdIFy5WiZrBSg0gHvD28oIgoDy8nKUlpbC19e30Zs9Xsshkp/4+Hhs2bIF3333nWVLbwDYsWMHCgsL4evra1X//vvvxz/+8Q9kZmba1P4tt9yCdu3a4dixY7UmPwRzgtNzpHlV18US8xyfoKHs8SESWfVwf1Pf6JGoSVWVA2V/1XGyGPBqB7T2tKkpX1/fRk2DqY2oyY8gCJg5cyZSU1ORmZlp2c2z2oIFC/Dvf//bqqx379549dVXMWrUKJtf5/fff8eZM2dsniwtWS5yIPgfYkdBRNeQyWTw9/eHSqWy+UaRRA7FZATWjQLK6krgZYCXCpiS1uAf3K1bt76pHp9qoiY/Wq0WGzduxBdffAGFQgGdTgfAfKM4Dw8PaDSaWrO7Tp06WSVKPXv2RGJiIsaOHYuLFy9i6dKluP/++6HRaFBYWIh58+aha9eutd5Uj4jIGcjlcrv80idqdkXfAyUH669z8SRQktNsf4CLOuE5KSkJer0eERER8Pf3tzw+/fTTRrVTUFBgWSkml8vx008/YfTo0ejevTumTZuGAQMG4Pvvv5f2vB4iIiIxOOB+cqIPe9njOdeWeXh4YOvWrTcVFxEREdmJA+4n5zBL3YmIiKgFcsD95Jj8EBERUdNxwP3kmPwQERFR06reT87nulXXPgHm8mbeT84h9vkhIiKiFs6B9pNj8kNERETNw0H2k+OwFxEREUkKkx8iIiKSFA57ERHdKJPRIeYvEFHjMPkhIroR+WlA+nzAcPpqmU+AeUlvM69cIaLG4bAXEVFj5acBmyZbJz4AYCg2l+eniRMXEdmEyQ8RUWOYjOYeH9R2e56/y9IXmOsRkUNi8kNE1Bgndtfs8bEiAIY/zPWIyCEx+SEiagwHvEM1ETUOkx8iosZwwDtUE1HjMPkhImoMB7xDNRE1DpMfIqLGcMA7VBNR4zD5ISJqLAe7QzURNQ43OSQiuhEOdIdqImocJj9ERDfKQe5QTUSNw2EvIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJiqjJT2JiIgYNGgSFQgGVSoXY2FgUFBTUWlcQBAwfPhwymQyff/55ve0KgoDnnnsO/v7+8PDwQGRkJI4ePdoE74CIiIicjajJT1ZWFrRaLfbu3YuMjAxUVVUhKioKZWVlNequWbMGMpnMpnZXrVqF119/HWvXrkV2dja8vLwQHR2NiooKe78FIiIicjIyQRAEsYOo9ueff0KlUiErKwvDhg2zlOfm5uLee+/FgQMH4O/vj9TUVMTGxtbahiAICAgIwFNPPYW5c+cCAPR6PdRqNVJSUjBhwoQG4zAYDFAqldDr9fDx8bHLeyMiIqKmZevnt0PN+dHr9QAAPz8/S1l5eTkeeughvPXWW9BoNA22UVRUBJ1Oh8jISEuZUqnEkCFDsGfPnlqfU1lZCYPBYPUgIiKilslhkh+TyYSEhASEh4cjNDTUUj579mwMHToUY8aMsakdnU4HAFCr1VblarXacu56iYmJUCqVlkdgYOANvgsiIiJydK3EDqCaVqtFXl4efvjhB0tZWloaduzYgUOHDjXpay9cuBBz5syxHBsMBiZARERELZRD9PzEx8djy5Yt2LlzJzp27Ggp37FjBwoLC+Hr64tWrVqhVStzrnb//fcjIiKi1raqh8ZKSkqsyktKSuocNnNzc4OPj4/Vg4iIiFomUZMfQRAQHx+P1NRU7NixA8HBwVbnFyxYgJ9++gm5ubmWBwC8+uqrSE5OrrXN4OBgaDQabN++3VJmMBiQnZ2NsLCwJnsvRERE5BxEHfbSarXYuHEjvvjiCygUCsucHKVSCQ8PD2g0mlp7azp16mSVKPXs2ROJiYkYO3YsZDIZEhISsHz5cnTr1g3BwcFYtGgRAgIC6lwhRkRERNIhavKTlJQEADWGsJKTkxEXF2dzOwUFBZaVYgAwb948lJWVYfr06Th//jzuuOMOpKenw93d3R5hExERkRNzqH1+HAX3+SEiInI+TrnPDxEREVFTY/JDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJaSV2AEREJHEmI3BiN3CxBPBWA0FDARe52FFRC8bkh4iIxJOfBqTPBwynr5b5BAAxK4GQ0eLFRS0ah72IiEgc+WnApsnWiQ8AGIrN5flp4sTlrExGoOh74PD/zF9NRrEjcljs+SEiouZnMpp7fCDUclIAIAPSFwA9R3IIzBbsQWsU9vwQEVHzO7G7Zo+PFQEw/GGuR/VjD1qjMfkhIqLmd7HEvvWkqsEeNJh70DgEZoXJDzkXjmkTtQzeavvWkyr2oN0QzvlpJkaTETmlOfiz/E+092yP/qr+kDvYOLbDx5ifBmP6fORcPoM/5XK0NxrR37Ut5A42pu3w1xGM0V4Y400IGmqek2IohhECctzdrv5cV1RCDpn5fNBQsSMF4MDX8ZqeMSNQy3WsWU9MjnIdmfw0g20ntmHFvhUoKb/6n0/tqcaCwQsQGRQpYmRXOXyM+WnYtuUxrGjri5JWV/8SVF+5ggVbHkMk4BAJkMNfRzBGe2GMN8lFDsSsvObn+urHkfrKFSw4cx6RMSscYrKzQ1/Hv3vGtnl6YEXbNrVcx3OILL/kED1ojnQdZYIg1DZQKGkGgwFKpRJ6vR4+Pj431da2E9swJ3MOhOvGY2WQAQBeiXhF9B8eh4/RZMS2t3tjjreLOUKZzHJK9vd/31cumhD5xGFRf1E6/HUEY7QXxmgf5hhnQxCEmj/XMhleiXjVQWJ04OvI349WbP385pyfJmQ0GbFi34oa32wAlrKV+1bCKOK8FaeI8fgPWOEh1PjBBgDh7+OVHgKMx39o/uD+5hTXkTHaBWO0j6sxoo6fa5kDxejA1xHACr829f9+bOsHMWdHOuJ1FDX5SUxMxKBBg6BQKKBSqRAbG4uCggKrOo899hi6dOkCDw8PtG/fHmPGjMEvv/xSb7txcXGQyWRWj5iYmKZ8K7XKKc2x6t67ngABunIdckpzmjEqa04Ro26/uSv3uh/saoJMBl2rVsjR7W/myK5yiuvIGO2CMdoHY7SPnNIclFQZ6v/9eFkvfowOdh1vKvmpqKjAunXr8Pbbb+Po0aONfn5WVha0Wi327t2LjIwMVFVVISoqCmVlZZY6AwYMQHJyMo4cOYKtW7dCEARERUXBaKw/Q4yJiUFxcbHl8fHHHzc6vpv1Z/mfdq3XFJwiRrlt/01trdcUnOI6Mka7YIz2wRjtgzHeGJsnPM+ZMwdVVVV44403AACXL19GWFgYfv75Z3h6emLevHnIyMhAWFiYzS+enp5udZySkgKVSoWDBw9i2LBhAIDp06dbznfu3BnLly9H3759cfz4cXTp0qXOtt3c3KDRaGyKo7KyEpWVlZZjg8Fg83uoT3vP9nat1xScIsbAocAvybbVE4lTXEfGaBeM0T4Yo30wxhtj85/K3377Le655x7L8UcffYQTJ07g6NGjOHfuHMaNG4fly5ffVDB6vR4A4OfnV+v5srIyJCcnIzg4GIGBgfW2lZmZCZVKhR49emDGjBk4c+ZMnXUTExOhVCotj4batlV/VX+oPdWWCV3Xk0EGjacG/VX97fJ6N8IpYtQMgrq1j2Xy3vVkggCNqxL9NYOaObKrnOI6Mka7YIz2wRjtgzHeGJuTn5MnTyIkJMRy/O233+Jf//oXgoKCIJPJMGvWLBw6dOiGAzGZTEhISEB4eDhCQ0Otzr399tvw9vaGt7c3vvnmG2RkZMDV1bXOtmJiYrB+/Xps374dK1euRFZWFoYPH17nUNnChQuh1+stj1OnTt3w+7iW3EWOBYMXAECNb3r18fzB80XdK8JpYgxfCshkNRKg6lUh84cuET9GZ7iOjPGmMUb7YIz2wRhvjM3Jj4uLC65dFb93717cfvvtlmNfX1+cO3fuhgPRarXIy8vDJ598UuPcxIkTcejQIWRlZaF79+4YP348Kioq6mxrwoQJGD16NHr37o3Y2Fhs2bIF+/fvR2ZmZq313dzc4OPjY/Wwl8igSLwS8QpUniqrcrWnWvwlkn9znhhfhcrLeihT7aVxiOWwgDNdR8Z4sxijfTBG+2CMjWfzPj9hYWEYN24c5syZg59//hl9+vTBsWPHEBwcDMA8eXnKlCk4fvx4o4OIj4/HF198ge+++87SXl0uX76MNm3a4P3338eDDz5o82u0b98ey5cvx2OPPdZgXXvu81PNUXa1rA9jtA/GaB+M0T4Yo30wRvto6hht/fy2ecLzvHnzMGHCBHz11Vf4+eefMWLECKtE5euvv8bgwYMbFaQgCJg5cyZSU1ORmZnZYOJT/RxBEKwmKDfk999/x5kzZ+Dv79+o+OxJ7iLHIBHnpNiCMdoHY7QPxmgfjNE+GKN9OEqMNg97jR07Fl9//TX69OmD2bNn49NPP7U67+npiSeeeKJRL67VarFhwwZs3LgRCoUCOp0OOp0Oly5dAgD89ttvSExMxMGDB3Hy5Ens3r0b48aNg4eHB0aMGGFpp2fPnkhNTQUAXLx4EU8//TT27t2L48ePY/v27RgzZgy6du2K6OjoRsVHRERELY/Nw17PP/885s6dC09PT/u9eB2bMiUnJyMuLg6nT5/Gv//9bxw8eBDnzp2DWq3GsGHD8Nxzz6FHjx5W7VQ/59KlS4iNjcWhQ4dw/vx5BAQEICoqCsuWLYNabdu9TZpi2IuIiJyYyWi+M/rFEvN9soKGOsR9x8iarZ/fNic/crkcxcXFUKlUDVd2ckx+iIjIIj8NSJ8PGE5fLfMJAGJWOsQNlekqu9/bi/c/JSIiyclPAzZNtk58AMBQbC7PTxMnLropjbofQF3DVERERC2OyWju8anlhpyWsvQF5nrkVGxe7QUA3bt3bzABOnv27E0FRERE5BBO7K7Z42NFAAx/mOsF/6PZwqKb16jkZ+nSpVAqlU0VCxERkeO4WPedyG+oHjmMRiU/EyZMkMSEZyIiInjbtkLY5nrkMGye88P5PkREJClBQ82ruuq4IScgA3w6mOuRU+FqLyIiotq4yM3L2QHUTID+Po5Zwf1+nJDNyY/JZOKQFxERSUvIaGD8esDnutsj+QSYy7nPj1Nq1JwfIiIiyQkZDfQcyR2eWxAmP0RERA1xkXM5ewvSqE0OiYiIiJwdkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUmKqMlPYmIiBg0aBIVCAZVKhdjYWBQUFFjVeeyxx9ClSxd4eHigffv2GDNmDH755Zd62xUEAc899xz8/f3h4eGByMhIHD16tCnfChERETkJUZOfrKwsaLVa7N27FxkZGaiqqkJUVBTKysosdQYMGIDk5GQcOXIEW7duhSAIiIqKgtForLPdVatW4fXXX8fatWuRnZ0NLy8vREdHo6KiojneFhERETkwmSAIgthBVPvzzz+hUqmQlZWFYcOG1Vrnp59+Qt++fXHs2DF06dKlxnlBEBAQEICnnnoKc+fOBQDo9Xqo1WqkpKRgwoQJDcZhMBigVCqh1+vh4+Nzc2+KiIiImoWtn98ONedHr9cDAPz8/Go9X1ZWhuTkZAQHByMwMLDWOkVFRdDpdIiMjLSUKZVKDBkyBHv27Kn1OZWVlTAYDFYPIiIiapkcJvkxmUxISEhAeHg4QkNDrc69/fbb8Pb2hre3N7755htkZGTA1dW11nZ0Oh0AQK1WW5Wr1WrLueslJiZCqVRaHnUlVkREROT8HCb50Wq1yMvLwyeffFLj3MSJE3Ho0CFkZWWhe/fuGD9+vF3n7yxcuBB6vd7yOHXqlN3aJiIiIsfSSuwAACA+Ph5btmzBd999h44dO9Y4X90j061bN9x+++1o06YNUlNT8eCDD9aoq9FoAAAlJSXw9/e3lJeUlOC2226r9fXd3Nzg5uZmnzdDREREDk3Unh9BEBAfH4/U1FTs2LEDwcHBNj1HEARUVlbWej44OBgajQbbt2+3lBkMBmRnZyMsLMxusRMREZFzEjX50Wq12LBhAzZu3AiFQgGdTgedTodLly4BAH777TckJibi4MGDOHnyJHbv3o1x48bBw8MDI0aMsLTTs2dPpKamAgBkMhkSEhKwfPlypKWl4fDhw5g8eTICAgIQGxsrxtskIiIiByLqsFdSUhIAICIiwqo8OTkZcXFxcHd3x/fff481a9bg3LlzUKvVGDZsGHbv3g2VSmWpX1BQYFkpBgDz5s1DWVkZpk+fjvPnz+OOO+5Aeno63N3dm+V9ERERkeNyqH1+HAX3+SEiInI+TrnPDxEREVFTc4jVXlJgNAnYV3QWpRcqoFK4Y3CwH+QuMrHDIiIikhwmP80gPa8YS7/MR7H+6t5E/kp3LB4VgphQ/3qeSURERPbGYa8mlp5XjBkbcqwSHwDQ6SswY0MO0vOKRYqMiIhImpj8NCGjScDSL/NR24zy6rKlX+bDaOKccyIioubC5KcJ7Ss6W6PH51oCgGJ9BfYVnW2+oIiIiCSOyU8TKr1g2/3HbK1HREREN4/JTxNSKWzbVNHWekRERHTzmPw0ocHBfvBXuqOuBe0ymFd9DQ72a86wiIiIJI3JTxOSu8iweFQIANRIgKqPF48K4X4/REREzYjJTxOLCfVH0qT+0Cith7Y0SnckTerPfX6IiIiaGTc5bAYxof64J0TDHZ6lwmQETuwGLpYA3mogaCjgIhc7KiIi+huTn2Yid5EhrEtbscOgppafBqTPBwynr5b5BAAxK4GQ0eLFRUREFhz2IrKX/DRg02TrxAcADMXm8vw0ceIiIiIrTH6I7MFkNPf41Lefd/oCcz0iIhIVkx8iezixu2aPjxUBMPxhrkdERKJi8kNkDxdL7FuPiIiaDJMfInvwVtu3HhERNRkmP0T2EDTUvKqrvv28fTqY6xERkaiY/BDZg4vcvJwdQJ37ecescJj9fowmAXsKz+CL3D+wp/AMjKbaJmoTEbVM3OeHyF5CRgPj19exz88Kh9nnJz2vGEu/zEexvsJS5q90x+JRIQ6147jRJHBjUCJqEjJBEPgn33UMBgOUSiX0ej18fHzEDoecjQPv8JyeV4wZG3JqLMivTikc5ZYrzpKgEZFjsfXzm8NeRPbmIgeC/wH0/pf5q4MkPkaTgKVf5te3ExGWfpkv+hBYdYJ2beIDADp9BWZsyEF6XrFIkRFRS8Hkh8jOHHU+zb6iszUSimsJAIr1FdhXdLb5grrOtQmaC0y43SUfo11243aXfMhgAuAYCVo1R/1eE1H9OOeHyI4cebim9ELdic+N1GsK1QlatMs+LG69HgGyq4nYacEPS6smY6t+MPYVnRX9XnmO/L0movqx54fIThx9uEalcLdrvaZQesGc+CS1XgMNrHugNDiLpNZrEO2yT9QEDXD87zUR1Y/JD5EdOMN8msHBfvBXute3ExH8leZVVWJRebXG4tbrAQDXL+yqPl7c+kOovFo3c2RXOcP3mojqx+SHyA6cYT6N3EWGxaNCANS5ExEWjwoRdTn5YPkvCJCdrZH4VHORAQGyMxgs/6V5A7uGM3yviah+TH6I7MAZ5tMAQEyoP5Im9YdGaT20pVG6O8Qyd3lZqV3rNQVn+V4TUd044ZnIDpxhPk21mFB/3BOiccwNBJ3gHmnO9L0motox+SGyg+r5NDp9Ra1zQWQw966IOZ/mWnIXmeirpWpVfY80QzFQ15X0CRD1HmnO9r0mopo47EVkB84wn8YpOME90vi9JnJ+TH6I7MTR59M4jep7pPlcd718AszlDnCPNH6viZwb7+1VC97bi24Gb8hpJw58j7Rq/F4TORZbP78554fIzhx2Po2zqb5HmgPj95rIOXHYi4iIiCSFyQ8RERFJCoe9iIiIWgDOQbMdkx8iIiInl55XjKVf5lvdesVf6Y7Fo0K4+rAWHPYiIiJyYul5xZixIafGPed0+grM2JCD9LxikSKryWgSsKfwDL7I/QN7Cs+IdgNg9vwQERE5KaNJwNIv82vdbVyAeePNpV/m454QjehDYI7UO8WeHyIpMhmBou+Bw/8zfzUZxY6IiG7AvqKzNXp8riUAKNZXYF/R2eYLqhaO1jvFnh8iqclPA9LnA4bTV8t8Asy3lXCA3ZOJyHalF+pOfG6kXlNwxN4pUXt+EhMTMWjQICgUCqhUKsTGxqKgoMBy/uzZs5g5cyZ69OgBDw8PdOrUCU8++ST0en297cbFxUEmk1k9YmJimvrtEDm+/DRg02TrxAcw30h002TzeSJyGiqFe8OVGlGvKThi75SoyU9WVha0Wi327t2LjIwMVFVVISoqCmVlZQCA06dP4/Tp03j55ZeRl5eHlJQUpKenY9q0aQ22HRMTg+LiYsvj448/buq3Q+TYTEZzj0+df38BSF/AITAiJzI42A/+SvcaN9mtJoN5Xs3gYL/mDMuKI/ZOiTrslZ6ebnWckpIClUqFgwcPYtiwYQgNDcXmzZst57t06YIXXngBkyZNwpUrV9CqVd3hu7m5QaPRNFnsRE7nxO6aPT5WBMDwh7meg99WgojM5C4yLB4VghkbciCD9Z821QnR4lEhok52dsTeKYea8Fw9nOXnV3eGWn2zsvoSHwDIzMyESqVCjx49MGPGDJw5c6bOupWVlTAYDFYPohbnYol96xFJiKMs0a5NTKg/kib1h0ZpnTxolO5ImtRf9H1+HLF3ymEmPJtMJiQkJCA8PByhoaG11vnrr7+wbNkyTJ8+vd62YmJicN999yE4OBiFhYV45plnMHz4cOzZswdyec27QicmJmLp0qV2eR9EDstbbd96RBLhSEu06xIT6o97QjQOucOzI/ZOyQRBcIj0dcaMGfjmm2/www8/oGPHjjXOGwwG3HPPPfDz80NaWhpat25tc9u//fYbunTpgm3btuHuu++ucb6yshKVlZVWrxUYGGjpZSJqEUxGYE2oeXJzrfN+ZOZVXwmHzXdUJyLLEu3rf2KqP6YdoWfFWTRHEmkwGKBUKhv8/HaInp/4+Hhs2bIF3333Xa2Jz4ULFxATEwOFQoHU1NRGJT4AcMstt6Bdu3Y4duxYrcmPm5sb3Nzcbjh+IqfgIjcvZ980Gajr76+YFUx8iP7miEu0nZkj9U6JOudHEATEx8cjNTUVO3bsQHBwcI06BoMBUVFRcHV1RVpaGtzdGz8h6vfff8eZM2fg78/snCQuZDQwfj3gc93Pgk+AuZz7/BBZOOISbWcnd5EhrEtbjLmtA8K6tBUtaRS150er1WLjxo344osvoFAooNPpAABKpRIeHh6WxKe8vBwbNmywmozcvn17y/ydnj17IjExEWPHjsXFixexdOlS3H///dBoNCgsLMS8efPQtWtXREdHi/ZeiRxGyGig50jzqq6LJeY5PkFD2eNDdB1HXKJN9iFq8pOUlAQAiIiIsCpPTk5GXFwccnJykJ2dDQDo2rWrVZ2ioiJ07twZAFBQUGBZKSaXy/HTTz9h3bp1OH/+PAICAhAVFYVly5ZxaIuomoucy9mJGuCIS7TJPkRNfhqaax0REdFgnevb8fDwwNatW286NiIikrbqJdo6fUVdSwSgEXkDQboxDrXPDxERkaOoXqINoMYeNY6ygSDdGCY/REREdXD0DQTpxjjEUnciIiJH5UhLtMk+mPwQERE1oHqJNrUMHPYiIiIiSWHPDzkVo0lg1zMREd0UJj/kNJzh5oJEROT4OOxFTqH65oLXbzWv01dgxoYcpOcVixQZERE5GyY/5PAaurkgYL65oNHU8IaYRERETH7I4fHmgkREZE9Mfsjh8eaCRERkT0x+yOHx5oJERGRPTH7I4VXfXLCuBe0ymFd98eaCRERkCyY/5PB4c0EiIrInJj/kFHhzQSIishduckhOgzcXJGqZuHM7NTcmP+RUeHNBopaFO7eTGDjsRUREouDO7SQWJj9ERNTsuHM7iYnJDxERNTvu3E5i4pwfsuCkQyJqLty5ncTE5IcAcNIhETUv7txOYuKwF3HSIRE1O+7cTmJi8iNxnHRIRGLgzu0kJiY/EsdJh0QkFu7cTmLhnB+J46RDIhITd24nMTD5kThOOiQisXHndmpuHPaSOE46JCIiqWHyI3GcdEhERFLD5Ic46ZCIiCSFc34IACcdEhGRdDD5IQtOOiQiIingsBcRERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUkRNfhITEzFo0CAoFAqoVCrExsaioKDAcv7s2bOYOXMmevToAQ8PD3Tq1AlPPvkk9Hp9ve0KgoDnnnsO/v7+8PDwQGRkJI4ePdrUb4eIiIicgKjJT1ZWFrRaLfbu3YuMjAxUVVUhKioKZWVlAIDTp0/j9OnTePnll5GXl4eUlBSkp6dj2rRp9ba7atUqvP7661i7di2ys7Ph5eWF6OhoVFRUNMfbIiIiIgcmEwRBEDuIan/++SdUKhWysrIwbNiwWuv897//xaRJk1BWVoZWrVrVOC8IAgICAvDUU09h7ty5AAC9Xg+1Wo2UlBRMmDChxnMqKytRWVlpOTYYDAgMDIRer4ePj4+d3h0RERE1JYPBAKVS2eDnt0PN+akezvLz86u3jo+PT62JDwAUFRVBp9MhMjLSUqZUKjFkyBDs2bOn1uckJiZCqVRaHoGBgTfxLoiIHIjJCBR9Dxz+n/mrySh2RESiqz2DEIHJZEJCQgLCw8MRGhpaa52//voLy5Ytw/Tp0+tsR6fTAQDUarVVuVqttpy73sKFCzFnzhzLcXXPDxGRU8tPA9LnA4bTV8t8AoCYlUDIaPHiIhKZwyQ/Wq0WeXl5+OGHH2o9bzAYMHLkSISEhGDJkiV2fW03Nze4ubnZtU0iIlHlpwGbJgO4bmaDodhcPn49EyCSLIcY9oqPj8eWLVuwc+dOdOzYscb5CxcuICYmBgqFAqmpqWjdunWdbWk0GgBASUmJVXlJSYnlHBFRi2Yymnt8rk98gKtl6Qs4BEaSJWryIwgC4uPjkZqaih07diA4OLhGHYPBgKioKLi6uiItLQ3u7u71thkcHAyNRoPt27dbtZGdnY2wsDC7vwciIodzYrf1UFcNAmD4w1yPSIJETX60Wi02bNiAjRs3QqFQQKfTQafT4dKlSwCuJj5lZWX4z3/+A4PBYKljNF79i6Vnz55ITU0FAMhkMiQkJGD58uVIS0vD4cOHMXnyZAQEBCA2NlaMt0lE1LwuljRcpzH1iFoYUef8JCUlAQAiIiKsypOTkxEXF4ecnBxkZ2cDALp27WpVp6ioCJ07dwYAFBQUWG18OG/ePJSVlWH69Ok4f/487rjjDqSnpzfYa0RE1CJ4qxuu05h6RC2MQ+3z4yhs3SeAiMghmYy49FII3Mp1cJHVcloAKj018Hg6H3CRN398RE3EKff5ISKim2eEC5ZWTQZgTnSuVX28tGoyjPwIIIni/3wiohZmX9FZfHLxNsyoSoAO1pvG6tAWM6oS8MnF27Cv6KxIERKJy2H2+SEiIvsovWC+j+FW02BkVA7EYJdfoMJ5lMIX+0w9Yfr7797qekRSw+SHiKiFUSmuLu4wwQV7TSEN1iOSEg57ERG1MIOD/eCvdEctc50BADIA/kp3DA6u+z6KRC0Zkx8iohZG7iLD4lHm3p7rE6Dq48WjQiCvbSkYkQQw+SEiaoFiQv2RNKk/NErroS2N0h1Jk/ojJtRfpMiIxMc5P0RELVRMqD/uCdFgX9FZlF6ogEphHupijw9JHZMfIqIWTO4iQ1iXtmKHQeRQOOxFREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksIdnmshCAIAwGAwiBwJERER2ar6c7v6c7wuTH5qceHCBQBAYGCgyJEQERFRY124cAFKpbLO8zKhofRIgkwmE06fPg2FQgGZzH43ADQYDAgMDMSpU6fg4+Njt3alhtfRPngd7YPX0T54He1D6tdREARcuHABAQEBcHGpe2YPe35q4eLigo4dOzZZ+z4+PpL8T2lvvI72wetoH7yO9sHraB9Svo719fhU44RnIiIikhQmP0RERCQpTH6akZubGxYvXgw3NzexQ3FqvI72wetoH7yO9sHraB+8jrbhhGciIiKSFPb8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyU8zeuutt9C5c2e4u7tjyJAh2Ldvn9ghOZXExEQMGjQICoUCKpUKsbGxKCgoEDssp7dixQrIZDIkJCSIHYrT+eOPPzBp0iS0bdsWHh4e6N27Nw4cOCB2WE7FaDRi0aJFCA4OhoeHB7p06YJly5Y1eG8mqfvuu+8watQoBAQEQCaT4fPPP7c6LwgCnnvuOfj7+8PDwwORkZE4evSoOME6ICY/zeTTTz/FnDlzsHjxYuTk5KBv376Ijo5GaWmp2KE5jaysLGi1WuzduxcZGRmoqqpCVFQUysrKxA7Nae3fvx/vvPMO+vTpI3YoTufcuXMIDw9H69at8c033yA/Px+rV69GmzZtxA7NqaxcuRJJSUl48803ceTIEaxcuRKrVq3CG2+8IXZoDq2srAx9+/bFW2+9Vev5VatW4fXXX8fatWuRnZ0NLy8vREdHo6KiopkjdVACNYvBgwcLWq3Wcmw0GoWAgAAhMTFRxKicW2lpqQBAyMrKEjsUp3ThwgWhW7duQkZGhnDnnXcKs2bNEjskpzJ//nzhjjvuEDsMpzdy5Ehh6tSpVmX33XefMHHiRJEicj4AhNTUVMuxyWQSNBqN8NJLL1nKzp8/L7i5uQkff/yxCBE6Hvb8NIPLly/j4MGDiIyMtJS5uLggMjISe/bsETEy56bX6wEAfn5+IkfinLRaLUaOHGn1/5Jsl5aWhoEDB2LcuHFQqVTo168f3nvvPbHDcjpDhw7F9u3b8euvvwIAfvzxR/zwww8YPny4yJE5r6KiIuh0OqufbaVSiSFDhvAz52+8sWkz+Ouvv2A0GqFWq63K1Wo1fvnlF5Gicm4mkwkJCQkIDw9HaGio2OE4nU8++QQ5OTnYv3+/2KE4rd9++w1JSUmYM2cOnnnmGezfvx9PPvkkXF1dMWXKFLHDcxoLFiyAwWBAz549IZfLYTQa8cILL2DixIlih+a0dDodANT6mVN9TuqY/JBT0mq1yMvLww8//CB2KE7n1KlTmDVrFjIyMuDu7i52OE7LZDJh4MCBePHFFwEA/fr1Q15eHtauXcvkpxE2bdqEjz76CBs3bsStt96K3NxcJCQkICAggNeRmgyHvZpBu3btIJfLUVJSYlVeUlICjUYjUlTOKz4+Hlu2bMHOnTvRsWNHscNxOgcPHkRpaSn69++PVq1aoVWrVsjKysLrr7+OVq1awWg0ih2iU/D390dISIhVWa9evXDy5EmRInJOTz/9NBYsWIAJEyagd+/eePjhhzF79mwkJiaKHZrTqv5c4WdO3Zj8NANXV1cMGDAA27dvt5SZTCZs374dYWFhIkbmXARBQHx8PFJTU7Fjxw4EBweLHZJTuvvuu3H48GHk5uZaHgMHDsTEiRORm5sLuVwudohOITw8vMZWC7/++iuCgoJEisg5lZeXw8XF+qNILpfDZDKJFJHzCw4OhkajsfrMMRgMyM7O5mfO3zjs1UzmzJmDKVOmYODAgRg8eDDWrFmDsrIyPPLII2KH5jS0Wi02btyIL774AgqFwjJ2rVQq4eHhIXJ0zkOhUNSYJ+Xl5YW2bdty/lQjzJ49G0OHDsWLL76I8ePHY9++fXj33Xfx7rvvih2aUxk1ahReeOEFdOrUCbfeeisOHTqEV155BVOnThU7NId28eJFHDt2zHJcVFSE3Nxc+Pn5oVOnTkhISMDy5cvRrVs3BAcHY9GiRQgICEBsbKx4QTsSsZebSckbb7whdOrUSXB1dRUGDx4s7N27V+yQnAqAWh/Jyclih+b0uNT9xnz55ZdCaGio4ObmJvTs2VN49913xQ7J6RgMBmHWrFlCp06dBHd3d+GWW24R/u///k+orKwUOzSHtnPnzlp/H06ZMkUQBPNy90WLFglqtVpwc3MT7r77bqGgoEDcoB2ITBC4jSYRERFJB+f8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EJHkxMXFcZt/Iglj8kNETSIuLg4ymazGIyYmRuzQ8NprryElJUXsMAAAMpkMn3/+udhhEEkKb2xKRE0mJiYGycnJVmVubm4iRQMYjUbIZDIolUrRYiAi8bHnh4iajJubGzQajdWjTZs2yMzMhKurK77//ntL3VWrVkGlUqGkpAQAEBERgfj4eMTHx0OpVKJdu3ZYtGgRrr0dYWVlJebOnYsOHTrAy8sLQ4YMQWZmpuV8SkoKfH19kZaWhpCQELi5ueHkyZM1hr0iIiIwc+ZMJCQkoE2bNlCr1XjvvfdQVlaGRx55BAqFAl27dsU333xj9f7y8vIwfPhweHt7Q61W4+GHH8Zff/1l1e6TTz6JefPmwc/PDxqNBkuWLLGc79y5MwBg7NixkMlklmMialpMfoio2UVERCAhIQEPP/ww9Ho9Dh06hEWLFuH999+HWq221Fu3bh1atWqFffv24bXXXsMrr7yC999/33I+Pj4ee/bswSeffIKffvoJ48aNQ0xMDI4ePWqpU15ejpUrV+L999/Hzz//DJVKVWtM69atQ7t27bBv3z7MnDkTM2bMwLhx4zB06FDk5OQgKioKDz/8MMrLywEA58+fxz//+U/069cPBw4cQHp6OkpKSjB+/Pga7Xp5eSE7OxurVq3C888/j4yMDADA/v37AQDJyckoLi62HBNRExP5rvJE1EJNmTJFkMvlgpeXl9XjhRdeEARBECorK4XbbrtNGD9+vBASEiI8+uijVs+/8847hV69egkmk8lSNn/+fKFXr16CIAjCiRMnBLlcLvzxxx9Wz7v77ruFhQsXCoIgCMnJyQIAITc3t0ZsY8aMsXqtO+64w3J85coVwcvLS3j44YctZcXFxQIAYc+ePYIgCMKyZcuEqKgoq3ZPnTolABAKCgpqbVcQBGHQoEHC/PnzLccAhNTU1DquIhE1Bc75IaImc9dddyEpKcmqzM/PDwDg6uqKjz76CH369EFQUBBeffXVGs+//fbbIZPJLMdhYWFYvXo1jEYjDh8+DKPRiO7du1s9p7KyEm3btrUcu7q6ok+fPg3Gem0duVyOtm3bonfv3pay6h6p0tJSAMCPP/6InTt3wtvbu0ZbhYWFlriuf21/f39LG0QkDiY/RNRkvLy80LVr1zrP7969GwBw9uxZnD17Fl5eXja3ffHiRcjlchw8eBByudzq3LUJiYeHh1UCVZfWrVtbHctkMquy6jZMJpPl9UeNGoWVK1fWaMvf37/edqvbICJxMPkhIlEUFhZi9uzZeO+99/Dpp59iypQp2LZtG1xcrk5FzM7OtnrO3r170a1bN8jlcvTr1w9GoxGlpaX4xz/+0dzho3///ti8eTM6d+6MVq1u/Fdp69atYTQa7RgZETWEE56JqMlUVlZCp9NZPf766y8YjUZMmjQJ0dHReOSRR5CcnIyffvoJq1evtnr+yZMnMWfOHBQUFODjjz/GG2+8gVmzZgEAunfvjokTJ2Ly5Mn47LPPUFRUhH379iExMRFfffVVk783rVaLs2fP4sEHH8T+/ftRWFiIrVu34pFHHmlUMtO5c2ds374dOp0O586da8KIiagae36IqMmkp6dbDQEBQI8ePfDQQw/hxIkT2LJlCwDzMNG7776LBx98EFFRUejbty8AYPLkybh06RIGDx4MuVyOWbNmYfr06Za2kpOTsXz5cjz11FP4448/0K5dO9x+++249957m/y9BQQEYNeuXZg/fz6ioqJQWVmJoKAgxMTEWPVeNWT16tWYM2cO3nvvPXTo0AHHjx9vuqCJCAAgE4RrNs0gInIQERERuO2227BmzRqxQyGiFobDXkRERCQpTH6IiIhIUjjsRURERJLCnh8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUnK/wMIYnLu+oe3BgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -954,10 +1942,13 @@ "source": [ "ground_truth = test_y_torch.squeeze().numpy()\n", "\n", + "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", + "\n", "fig = plt.figure()\n", "instances = np.arange(len(np.concatenate(predictions)))\n", "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions\")\n", "plt.scatter(instances, ground_truth, label=\"Ground truth\")\n", + "plt.scatter(instances, [ground_truth.mean()] * len(instances), label=\"Mean of ground truth\")\n", "plt.xlabel(\"Experiment\")\n", "plt.ylabel(\"TS\")\n", "plt.legend()\n", @@ -986,7 +1977,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -1022,7 +2013,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -1067,12 +2058,12 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeZklEQVR4nO3deZzN5fvH8dcxzAzDjH0fS4XIGpKUkCyVkkL2LX31HWVJmMoWZYsIKUL5lhQZ+kkka0n2sSc7MfbMhmFmzu+Pu5ljYpjhzHzO8n4+Hp+Hzznnc865mJpznfu+7uu22e12OyIiIiIeIovVAYiIiIg4k5IbERER8ShKbkRERMSjKLkRERERj6LkRkRERDyKkhsRERHxKEpuRERExKNktTqAzJaYmMjJkyfJlSsXNpvN6nBEREQkDex2O9HR0RQtWpQsWW49NuN1yc3JkycJDg62OgwRERG5A8ePH6d48eK3vMbrkptcuXIB5h8nMDDQ4mhEREQkLaKioggODk7+HL8Vr0tukqaiAgMDldyIiIi4mbSUlKigWERERDyKkhsRERHxKEpuRERExKN4Xc2NiIh4voSEBK5du2Z1GJJOvr6+t13mnRZKbkRExGPY7XZOnTrFxYsXrQ5F7kCWLFkoXbo0vr6+d/U6Sm5ERMRjJCU2BQsWJEeOHGrW6kaSmuxGRERQokSJu/rZKbkRERGPkJCQkJzY5MuXz+pw5A4UKFCAkydPEh8fT7Zs2e74dVRQLCIiHiGpxiZHjhwWRyJ3Kmk6KiEh4a5eR8mNiIh4FE1FuS9n/eyU3IiIiIhHUXIjIiIiHkXJjYiIiAcpVaoUEyZMsPw1rKTVUiLXi4mBHDnACU2kRETSol69elStWtVpycSmTZsICAhwymu5K/0GF0kSFgZ588Jrr1kdiYhICna7nfj4+DRdW6BAAa9fMabkRgTgjz+gY0e4dg2mToUdO6yOSEScKDY29ePKlbRfe/ny7a9Nj86dO7NmzRomTpyIzWbDZrNx5MgRVq9ejc1m48cff6R69er4+fnx66+/cvDgQZ577jkKFSpEzpw5qVmzJj///HOK1/z3lJLNZuOzzz7j+eefJ0eOHJQpU4bvv/8+XXEeO3aM5557jpw5cxIYGEirVq04ffp08uPbt2+nfv365MqVi8DAQKpXr87mzZsBOHr0KM2aNSNPnjwEBATwwAMPsGTJkvT9Q6WTkhuR6Gh4/nkzJZU1K9jt8NZbVkclIk6UM2fqxwsvpLy2YMHUr23aNOW1pUrdeE16TJw4kdq1a9O9e3ciIiKIiIggODg4+fGBAwcyatQo9u7dS+XKlYmJieGpp55ixYoVbNu2jSZNmtCsWTOOHTt2y/cZNmwYrVq1YseOHTz11FO0a9eOCxcupCnGxMREnnvuOS5cuMCaNWtYvnw5hw4donXr1snXtGvXjuLFi7Np0ya2bNnCwIEDk5vwhYSEEBcXx9q1a9m5cyejR48mZ3r/odJJNTfi3ex26NrVjNwUKwZz50K9evDDD7B2LdSta3WEIuLBgoKC8PX1JUeOHBQuXPiGx999912efPLJ5Nt58+alSpUqybeHDx9OWFgY33//PT179kz1fTp37kybNm0AeP/99/noo4/YuHEjTZo0uW2MK1asYOfOnRw+fDg58Zo9ezYPPPAAmzZtombNmhw7dow333yT+++/H4AyZcokP//YsWO88MILVKpUCYB77rnntu95tzRyI95t3DiYPx+yZTN/PvoodO9uHhswwCQ/IuL2YmJSP777LuW1Z86kfu2PP6a89siRG69xpho1avzr7xFDv379KF++PLlz5yZnzpzs3bv3tiM3lStXTj4PCAggMDCQM2fOpCmGvXv3EhwcnGJEqUKFCuTOnZu9e/cC0LdvX15++WUaNmzIqFGjOHjwYPK1r7/+OiNGjKBOnToMGTKEHZkw7W9pcjNy5Ehq1qxJrly5KFiwIM2bN2ffvn1pfv7cuXOx2Ww0b94844IUz7VqlUlgACZOhIcfNueDB5sVU7//DosWWRefiDhNQEDqh79/2q/Nnv321zo37pQv2K9fP8LCwnj//ff55ZdfCA8Pp1KlSly9evWWr/PvfZpsNhuJiYlOi3Po0KHs3r2bp59+mpUrV1KhQgXCwsIAePnllzl06BAdOnRg586d1KhRg0mTJjntvW/G0uRmzZo1hISE8Pvvv7N8+XKuXbtGo0aNiE1DRdaRI0fo168fjz32WCZEKh7nr7+gdWtITDSFxD16OB4rUgR69zbnb70FaVyhICJyJ3x9fdO8l9K6devo3Lkzzz//PJUqVaJw4cIcOXIkQ+MrX748x48f5/jx48n37dmzh4sXL1KhQoXk+8qWLUufPn346aefaNGiBbNmzUp+LDg4mB49erBgwQLeeOMNpk+fnqExW5rcLF26lM6dO/PAAw9QpUoVPv/8c44dO8aWLVtu+byEhATatWvHsGHDMmXuTjxMXBy8+CKcPQtVq8Inn8C/9zPp398sC9+7F774wpIwRcQ7lCpVig0bNnDkyBHOnTt3yxGVMmXKsGDBAsLDw9m+fTtt27Z16gjMzTRs2JBKlSrRrl07tm7dysaNG+nYsSOPP/44NWrU4PLly/Ts2ZPVq1dz9OhR1q1bx6ZNmyhfvjwAvXv3ZtmyZRw+fJitW7eyatWq5McyikvV3ERGRgKmYOpW3n33XQoWLEi3bt1u+5pxcXFERUWlOMTL9ekDGzZAnjxmsv3f48wAQUHw9tvmfMiQG9d/iog4Sb9+/fDx8aFChQoUKFDglvUz48ePJ0+ePDzyyCM0a9aMxo0b8+CDD2ZofDabjUWLFpEnTx7q1q1Lw4YNueeee/jmm28A8PHx4fz583Ts2JGyZcvSqlUrmjZtyrBhwwAzIBESEkL58uVp0qQJZcuW5eOPP87YmO1216iYTExM5Nlnn+XixYv8+uuvqV7366+/8tJLLxEeHk7+/Pnp3LkzFy9eZOHChTe9fujQocn/wNeLjIwkMDDQWeGLu/jiC+jc2YzU/PDDjes6r3flCpQtC8ePw5gx8OabmRamiKTflStXOHz4MKVLl8b/34U04hZu9TOMiooiKCgoTZ/fLjNyExISwq5du5g7d26q10RHR9OhQwemT59O/vz50/S6oaGhREZGJh/XzxmKl9m2zVFbM3TorRMbMFWGw4eb8/ffh7//ztDwRETEOVyiz03Pnj1ZvHgxa9eupXjx4qled/DgQY4cOUKzZs2S70uaa8yaNSv79u3j3nvvTfEcPz8//Pz8MiZwcR8XLkCLFmY05umn4Z130va89u3hgw9g1y4YPRpGjcrYOEVE5K5ZOnJjt9vp2bMnYWFhrFy5ktKlS9/y+vvvv5+dO3cSHh6efDz77LPUr1+f8PDwFGvwRZIlJEC7dqYhxT33wP/+l/aNMX18zKgNmOXiJ05kWJgiIuIclo7chISEMGfOHBYtWkSuXLk4deoUYDo2Zv+nyLNjx44UK1aMkSNH4u/vT8WKFVO8Ru7cuQFuuF8k2bvvwtKlpnB4wQJTSJwezzwDderAunUwbBhMm5YxcYqIiFNYOnIzdepUIiMjqVevHkWKFEk+kiqwwbRtjoiIsDBKcWuLF5vkBkxScl3b8jSz2cyUFMCMGWarBhERcVmWjtykZaHW6tWrb/n4559/7pxgxPMcOGBqZgB69nSc34k6deDZZ+H7780S8X/3axcREZfhMqulRJzq0iVTQBwZCY88YvaQulvvv29qdRYsMFsziIiIS1JyI57HbodXXoGdO6FQIZg3D3x97/51H3gAOnUy5wMHalNNEREXpeRGPM+UKfDVV2al07ffQtGiznvtYcPAzw/WrDFFyiIibqxevXr0TtpLz4MouRHPsm6d2V4BYOxYqFvXua8fHGzqd8CM3mTwni4i4vkyIsHo3LkzzZs3d+pruhMlN+I5Tp2Cli3NLt6tWzt29na20FCz99SOHTBnTsa8h4iI3DElN+IZrl2DVq0gIsLUxnz22Y07fTtLvnwwYIA5HzTI7DIuInIHOnfuzJo1a5g4cSI2mw2bzcaRI0cA2LVrF02bNiVnzpwUKlSIDh06cO7cueTnzp8/n0qVKpE9e3by5ctHw4YNiY2NZejQoXzxxRcsWrQo+TVvt/I4yd9//03Hjh3JkycPOXLkoGnTpuzfvz/58aNHj9KsWTPy5MlDQEAADzzwAEuWLEl+brt27ShQoADZs2enTJkyzJo1y2n/VunhEtsviNy1/v3hl18gMNCsZsqZM2Pfr1cvmDTJdD3+9FN4/fWMfT8RuTN2u1k9mdly5EjTF6yJEyfy559/UrFiRd79pydXgQIFuHjxIg0aNODll1/mww8/5PLlywwYMIBWrVqxcuVKIiIiaNOmDWPGjOH5558nOjqaX375BbvdTr9+/di7dy9RUVHJyUXevHnTFHbnzp3Zv38/33//PYGBgQwYMICnnnqKPXv2kC1bNkJCQrh69Spr164lICCAPXv2kPOf37eDBg1iz549/Pjjj+TPn58DBw5w+fLlO/wHvDtKbsT9zZ0LEyaY89mzzU7eGS1HDrP55n/+YzbX7NzZJFYi4louXcr4Lzs3ExMDAQG3vSwoKAhfX19y5MhB4cKFk++fPHky1apV4/2k7V+AmTNnEhwczJ9//klMTAzx8fG0aNGCkiVLAlCpUqXka7Nnz05cXFyK17ydpKRm3bp1PPLIIwB89dVXBAcHs3DhQlq2bMmxY8d44YUXkt/rnnvuSX7+sWPHqFatGjVq1ACgVKlSaX5vZ9O0lLi3XbugWzdzHhoKzz2Xee/dtatJpM6dc04fHRGRf2zfvp1Vq1aRM2fO5OP+++8HzCbSVapU4YknnqBSpUq0bNmS6dOn8/fff9/Ve+7du5esWbNSq1at5Pvy5ctHuXLl2Lt3LwCvv/46I0aMoE6dOgwZMoQdO3YkX/vqq68yd+5cqlatSv/+/fntt9/uKp67oeRG3FdkpGnUd+kSNGxoRlAyU9as8N575nzcODh9OnPfX0RuL0cOM4qS2UeOHHcVdkxMDM2aNUuxUXR4eDj79++nbt26+Pj4sHz5cn788UcqVKjApEmTKFeuHIcPH3bSP9zNvfzyyxw6dIgOHTqwc+dOatSowaRJkwBo2rQpR48epU+fPpw8eZInnniCfv36ZWg8qVFyI+4pMdE01Nu/H0qUgK+/Nn1tMtsLL0DNmhAbCyNGZP77i8it2Wxmeiizj3QsaPD19SUhISHFfQ8++CC7d++mVKlS3HfffSmOgH+mu2w2G3Xq1GHYsGFs27YNX19fwsLCUn3N2ylfvjzx8fFs2LAh+b7z58+zb98+KlSokHxfcHAwPXr0YMGCBbzxxhtMnz49+bECBQrQqVMnvvzySyZMmMA0izYaVnIj7mnUKFi0yDTU++47yJ/fmjiu31Tzk0/g4EFr4hARt1WqVCk2bNjAkSNHOHfuHImJiYSEhHDhwgXatGnDpk2bOHjwIMuWLaNLly4kJCSwYcMG3n//fTZv3syxY8dYsGABZ8+epXz58smvuWPHDvbt28e5c+e4du3abeMoU6YMzz33HN27d+fXX39l+/bttG/fnmLFivHcP1P+vXv3ZtmyZRw+fJitW7eyatWq5PccPHgwixYt4sCBA+zevZvFixcnP5bZlNyI+/npJ3jnHXM+ZQr8U7xmmfr1oXFj019n0CBrYxERt9OvXz98fHyoUKECBQoU4NixYxQtWpR169aRkJBAo0aNqFSpEr179yZ37txkyZKFwMBA1q5dy1NPPUXZsmV55513GDduHE2bNgWge/fulCtXjho1alCgQAHWrVuXplhmzZpF9erVeeaZZ6hduzZ2u50lS5aQLVs2ABISEggJCaF8+fI0adKEsmXL8vHHHwNmtCg0NJTKlSsnT53NnTs3Y/7RbsNmT8vW3B4kKiqKoKAgIiMjCdTqFvdz9ChUrw7nz8PLL8N1w6GW2rYNHnzQnG/dCtWqWRuPiBe6cuUKhw8fpnTp0vj7+1sdjtyBW/0M0/P5rZEbcR9Xrpgal/PnzWjNP0VsLqFaNWjb1pwPHGhtLCIiXk7JjbiPnj1hyxbTIXj+fHC1b2bDh0O2bGbabOVKq6MREfFaSm7EPUyfDjNmQJYspmnfP02rXMo995imfmC2Z/CuGV8REZeh5EZc36ZNjp2433vP9LRxVYMGmW6omzeb0SUREcl0Sm7EtZ09a+psrl6F5s0dG1a6qoIF4Y03zPnbb5sNPUUkU3nZOhmP4qyfnZIbcV3x8dCmDRw/brY5+PzzjNvp25neeAMKFDANBmfOtDoaEa+RtFz5khUbZYpTXL16FQCfu2zKqo0zxXUNGgQrVphunwsWQFCQ1RGlTa5cpg9Pr14wbBi0b5+mDfRE5O74+PiQO3duzpw5A0COHDmwucMXIgEgMTGRs2fPkiNHDrJmvbv0RMmNuKawMNOFGEwh8QMPWBtPev3nP2an8sOHYeJEeOstqyMS8QpJu2AnJTjiXrJkyUKJEiXuOilVEz9xPfv2mf2aoqOhTx8YP97qiO7MV1+ZUZvAQDh0yCxhF5FMkZCQkKYtB8S1+Pr6kiXLzStm0vP5reRGXEtMDNSqBXv2QN268PPPpneMO0pMNF2Lt283dTgffGB1RCKu78MPYflyKFoUgoNvPDTF67WU3NyCkhsXZrdD69Ywb575xbZ1KxQqZHVUd2fpUmjaFHx9HTuYi8jN/fwzPPnkra/Jk+fmSU/SUby42VBXPE56Pr9VcyOu48MPTWKTLZv5090TGzAbatarB6tXw5AhMGuW1RGJuKboaLNfHECLFlClilkpef0RHQ1//22OHTtSf62CBW+dABUtCndZsCquTSM34hpWrzbN+RISYPJkCAmxOiLn2bABHn7YdFfevh0qVrQ6IhHXExICH38MpUrBzp2mGea/RUbemPD8+7hy5fbvlSULFCly6wSoUCFznbgMTUvdgpIbF3TihKlNOXPGFODOnu0e/WzS48UX4bvvoFkz+P57q6MRcS1r1pgRTjBTU088cWevY7ebjXVvlvT89Zfjz7QUGmfLBsWK3ToBypfP835XuTAlN7eg5MbFXL0Kjz8Ov/9uhqF/+w1y5LA6Kufbt88sZ09IgF9+gUcftToiEddw6RJUrgwHD8Irr8Cnn2bs+yUmmi9Stxr9OXnSXHc7/v63Tn6Cg92nP5cbUHJzC0puXEzSUHTu3GY/pnvvtTqijPPKK2YD0Dp1TIKjb3wipt3DhAkmEdi1y7ROsFp8PERE3DoBOn06ba+VK5cpcr5VAqQVYGmi5OYWlNy4kNmzoVMnc754MTz9tLXxZLQTJ+C++0xNwPffmykqEW+2bh089piZTlq61BTgu4u4OPP/9K0SoAsX0vZaWgGWJkpubkHJjYsID4fatc0H/ZAhMHSo1RFljtBQ03n5gQdMcfFd7p8i4rYuX4aqVeHPP6FLF8/chy021lHrk9oRHZ2219IKMCU3t6LkxgX8/TdUr262Jmja1IzaeMuqhIsX4Z57zL/BrFnQubPVEYlYo39/GDvWrFravduMXngjrQBLMyU3t6DkxmKJiWY6ZskSKF3a1NnkzWt1VJlr7Fjziz042Hxr9fe3OiKRzLVhAzzyiPl9oCnaW7vVCrCk48QJr1gBpuTmFpTcWGzYMDMF5e8P69ebYWlvc/kylC1rhqs/+MBszSDiLeLiTOuHPXugXTv48kurI3J/iYmmwPlWCVBEhNuvAFNycwtKbiy0ZAk884z5JvLFF9Cxo9URWWfmTOjWzYxaHTqk5aLiPd5+G95/30yR7N6tDWUzS3y8WeJ+s94/brICTMnNLSi5scjBg1Cjhqk5+e9/YcoUqyOyVny86e2xdy+89Ra8957VEYlkvC1bzMa4CQmmqWWLFlZHJNdz5gqwYsXM9U6c4lJycwtKbixw6ZKZX9++3WxDsGaN2UjS2y1aBM2bQ/bscOCAWe0g4qmuXjVfcHbuhFat4JtvrI5I7kRaV4CVKWNqCp1IG2eK67DboUcPk9gULAjz5yuxSfLssybp++03ePdd+OQTqyMSyTjvv28Sm/z5zf5x4p4CAqBcOXOkJjLSrAi1kPuuCRP3MHUq/O9/pp/LN9+YoUoxbDbT8wbgs8+c/i1HxGVs3+6Yep08GQoUsDYeyVhBQWYDVAspuZGMs3499O5tzkePdmyMJw6PPWY6MyckwDvvWB2NiPNdu2aa9MXHw/PPmykpkQym5EYyxqlTZifsa9egZUvo29fqiFzXyJFmFGfePNi0yepoRJxrzBjYts2sDPz4Y5ftoSKeRcmNON+1a9C6tVl2WL48zJihX2i3UqkSdOhgzgcONHVKIp5g925TTwYwcSIULmxtPOI1LE1uRo4cSc2aNcmVKxcFCxakefPm7Nu375bPmT59Oo899hh58uQhT548NGzYkI0bN2ZSxJImAwfC2rWmF0JYmPlTbu3dd02h9cqVsHy51dGI3L34eDMddfWq6W/Vrp3VEYkXsTS5WbNmDSEhIfz+++8sX76ca9eu0ahRI2JjY1N9zurVq2nTpg2rVq1i/fr1BAcH06hRI06cOJGJkUuqvv0Wxo835198ceuKenEoWRJCQsz5gAFp6yQq4srGjzfTrEFBZiWgRm8lE7lUn5uzZ89SsGBB1qxZQ926ddP0nISEBPLkycPkyZPpmIaOt+pzk4F27zYNumJjzQd00kogSZtz5+DeeyEqCubMgTZtrI5I5M7s2wdVqpimcDNnmhEckbuUns9vl6q5iYyMBCBvOjZSvHTpEteuXUv1OXFxcURFRaU4JANERppuo7Gx8MQTMGKE1RG5n/z54c03zfk775jhfBF3k5AAXbuaxKZxY+18L5ZwmeQmMTGR3r17U6dOHSpWrJjm5w0YMICiRYvSsGHDmz4+cuRIgoKCko/g4GBnhSxJ7HbzC+zPP82eIl9/DVnVH/KO9Olj9tw5dAimTbM6GpH0mzTJNKbMlQumT9d0lFjCZZKbkJAQdu3axdy5c9P8nFGjRjF37lzCwsLw9/e/6TWhoaFERkYmH8ePH3dWyJJk9GhYuNAUxH73nRp03Y2AABgyxJwPHw4xMdbGI5IeBw6YvdLA7HivL5NiEZdIbnr27MnixYtZtWoVxYsXT9NzPvjgA0aNGsVPP/1E5cqVU73Oz8+PwMDAFIc40c8/m11+wXQerVnT2ng8wcsvw333wZkzjuJsEVeXmGh2ur982UxNd+9udUTixSxNbux2Oz179iQsLIyVK1dSunTpND1vzJgxDB8+nKVLl1KjRo0MjlJSdeyYKXpNTDRz7C+/bHVEniFbNkfN0tixJskRcXVTp5oWEAEBmo4Sy1ma3ISEhPDll18yZ84ccuXKxalTpzh16hSXL19OvqZjx46EhoYm3x49ejSDBg1i5syZlCpVKvk5MRq+z1xXrsALL5gVPtWrw5Qp+mXmTC1bmn/XmBjHnjwirurwYbNCEswqyTR+URXJKJYmN1OnTiUyMpJ69epRpEiR5OObb75JvubYsWNERESkeM7Vq1d58cUXUzzngw8+sOKv4L1efx02bzYt1efPh1RqnuQOZcniWEo/dar58BBxRXa7mYKKjYW6deG//7U6IhHX6nOTGdTnxglmzDBTUDYbLF0KjRpZHZHnevJJU9fUvr3ZXV3E1UybBv/5D2TPDjt2mHoxkQzgtn1uxA1s3uzopDtihBKbjJY0evPVV7B9u7WxiPzbsWPQr585f+89JTbiMpTcSNqdO2fqbOLi4NlnzR5SkrGqVzebkNrtcF3tmYjl7HZ45RWIjobatc1UtYiLUHIjaZOQYFZGHTtmvp3Nnm3qQiTjjRhhmiL++COsXm11NCLG55/DsmXg52e2WPDxsToikWT6dJK0GTzY1H7kyGF2+g4Ksjoi73HffeYbMpgVKd5VJieu6MQJ000bzI72999vbTwi/6LkRm5v0SJ4/31zPmMGpGN7DHGSQYNMYrlxo0kuRaxit0OPHmY/uZo1oW9fqyMSuYGSG7m1P/+EpN3We/eGl16yNByvVbiw40PkrbcgPt7aeMR7ffUVLF5stluZNUv7yIlLUnIjqYuJMTt9R0XBY4/BmDFWR+Td3nwT8uWDffvMh4pIZjt1ylE4PHgwPPCAtfGIpELJjdyc3W562ezeDUWKwLffmm0BxDqBgfDOO+Z86FC4dMnScMTL2O2mQd/ff0O1atC/v9URiaRKyY3c3MSJ8M03Zsh53jwzLSLWe/VVKFkSTp6ESZOsjka8ybffmnqvrFnNyKG+7IgLU3IjN1q71tGYa/x4qFPH2njEwc/PrE4B0+DvwgVr4xHvcPYs9Oxpzt9+G6pUsTYekdtQciMpnTwJrVqZvjbt2jl+oYnraNcOKlWCixcdHYxFMtJrr5kmnpUrm4J2ERen5EYcrl41u1GfPm0+PD/9VDt9uyIfHxg50pxPmgR//WVtPOLZwsLMFLWPj5mO8vW1OiKR21JyIw5vvAG//WYa9C1YAAEBVkckqXnqKbOC7coVU1wskhHOnzd1XmAaSD74oLXxiKSRkhsxvvwSJk92nGsDPNdms8Ho0eZ81izYs8faeMQz9e5tRnLLlzeNJEXchJIbMbtNJ7X3HzQInnnG2ngkbWrXhubNITHRFHmKONPixeaLTpYsJoH297c6IpE0U3Lj7f7+2zTqu3wZmjSBIUOsjkjS4/33zYfPwoWwfr3V0YinuHgR/vMfc963L9SqZWk4Iuml5MabJSaarRUOHYJSpUxbde3s617Kl4cuXcy5NtUUZ+nb16ycLFvW0XpAxI0oufFmI0aYoWd/f1NAnDev1RHJnRg61PwMf/kFliyxOhpxd0uXmmkomw1mzoTs2a2OSCTdlNx4qx9/dKyymTrVtFMX91S8uOlDAhAaanoUidyJqCjo3t2cv/66GniK21Jy440OHTKN4Ox26NEDOne2OiK5WwMHQu7csHMnzJljdTTirt580/RNuuceeO89q6MRuWNKbrzN5cvwwgumkLhWLZgwweqIxBny5jUJDpgVb3Fx1sYj7mfFCpg2zZzPmKE+V+LWlNx4E7vdNOQKD4cCBWD+fLNXkXiG116DokXh6FEz1SiSVjEx8PLL5vy//4V69SwNR+RuKbnxJp98Al98YZYOf/ONqdUQz5Ejh6OOasQIiIy0NBxxIwMHwpEjZsf5pOaQIm5MyY23+P136NXLnI8aBfXrWxuPZIwuXaBcOdM2/4MPrI5G3MGaNTBlijn/7DPImdPaeEScQMmNNzh9Gl58Ea5dM3/262d1RJJRsmY1jf0Axo+HU6esjUdc26VL0K2bOe/eHRo2tDYeESdRcuPp4uPhpZfgxAm4/37Tt0I7fXu25583xeKXLsHw4VZHI67s7bfh4EEzRT12rNXRiDiNkhtPFxoKq1eboeawMMiVy+qIJKNdv6nmtGlw4IC18YhrWrcOJk4059OnQ1CQtfGIOJGSG082b56j7uLzz83IjXiHxx+Hpk3NyN0771gdjbiay5eha1ezgrJzZ7OvnIgHUXLjqfbudew59OabpreNeJeRI80ozjffwJYtVkcjrmTIEPjzTyhSxNRmiXgYJTeeKCrK1F3ExppVUUkFpuJdqlSBtm3NeVKDP5GNG2HcOHP+6aeQJ4+18YhkACU3nsZuNyM2+/aZIsG5c80KGvFOw4dDtmzw88/mEO8WF2d+PyQmmi1YmjWzOiKRDKHkxtOMHWt2+Pb1NR2ICxa0OiKxUunSpis1mNGbxERr4xFrDR8Oe/aY3wtJxcQiHkjJjSdZscKsjgL46COzHFjk7bfNarktW0zCK95p61bTwBPg448hXz5r4xHJQEpuPMXx46afTWKiWf3wyitWRySuomBBU1QOJtG5ds3aeCTzXb1qpqMSEqBlSy0wEI+n5MYTxMWZzsPnzsGDD5pvZWrUJ9fr29ckOQcOmBb74l1GjoQdOyB/fpg82epoRDKckhtP0KuXWQGRNy989x1kz251ROJqcuaEQYPM+bBhZhdo8Q47dpiNVAEmTVIdnngFJTfubtYss5zTZoM5c6BUKasjElf1yitwzz1mr7EJE6yORjLDtWtmOio+Hpo3h9atrY5IJFMouXFnW7c6VsK8+y40bmxtPOLafH0d3+DHjDHTmOLZxo41vyfy5IGpUzVdLV5DyY27On8eWrQw9TbNmsFbb1kdkbiD1q2hWjWIjlZzR0+3e7eZggSz7LtwYWvjEclESm7cUUKC6Tx79Cjcdx/Mng1Z9KOUNMiSxRSXAkyZYv4bEs8TH2/2jrp6FZ5+Gtq3tzoikUylT0R3NHQo/PSTKRxesABy57Y6InEnjRpBgwbmg2/wYKujkYzw4YdmkUFQkKMmT8SLKLlxN99/76ib+OwzqFTJ2njE/dhsjmZu//sf7NxpbTziXPv2OVbGjR8PxYpZG4+IBZTcuJP9+6FDB3P++uuOTRFF0qtmTdMbyW5XvZYnSUgw01FxcWaBQZcuVkckYglLk5uRI0dSs2ZNcuXKRcGCBWnevDn79u277fPmzZvH/fffj7+/P5UqVWLJkiWZEK3FYmNNAXFUFNSpY1ZBiNyN994DHx9YvBh++cXqaMQZJk2C336DXLlg2jRNR4nXsjS5WbNmDSEhIfz+++8sX76ca9eu0ahRI2JjY1N9zm+//UabNm3o1q0b27Zto3nz5jRv3pxdu3ZlYuSZzG6H7t1h1y6z4mHePLOsV+RulC0LL79szgcMMP+difs6cMAxCjd2LJQoYW08Ihay2e2u8xvt7NmzFCxYkDVr1lC3bt2bXtO6dWtiY2NZvHhx8n0PP/wwVatW5ZNPPrnte0RFRREUFERkZCSBgYFOiz1DffSR6UKcNSusWgWPPmp1ROIpTp40K+4uX4aFC+G556yOSO5EYiLUrw9r15pi8Z9/1qiNeJz0fH67VM1NZGQkAHnz5k31mvXr19OwYcMU9zVu3Jj169ff9Pq4uDiioqJSHG7l11/hjTfM+QcfKLER5ypaFPr0MeehoWYJsbifqVNNYhMQYBYaKLERL+cyyU1iYiK9e/emTp06VKxYMdXrTp06RaFChVLcV6hQIU6dOnXT60eOHElQUFDyERwc7NS4M1REhNnBNz4e2rQxRcQizta/v9mXbO9e0zNJ3MuRI2ZaEcwquNKlLQ1HxBW4THITEhLCrl27mDt3rlNfNzQ0lMjIyOTj+PHjTn39DHPtGrRqBadOQcWKMH26vo1JxggKctRqDBlipqjEPSTV48XGwmOPwX//a3VEIi7BJZKbnj17snjxYlatWkXx4sVveW3hwoU5ffp0ivtOnz5N4VRai/v5+REYGJjicAv9+pkpqcBA06gvIMDqiMSThYRAcDD89RdMnmx1NJJWn31m6mv8/WHGDHUqF/mHpf8n2O12evbsSVhYGCtXrqR0GoZTa9euzYoVK1Lct3z5cmrXrp1RYWa+OXNMETGYJmtlylgbj3g+f3+z+SqY7RkuXrQ0HEmD48cd9XjvvaffEyLXsTS5CQkJ4csvv2TOnDnkypWLU6dOcerUKS5fNyzesWNHQkNDk2/36tWLpUuXMm7cOP744w+GDh3K5s2b6dmzpxV/BefbudMMMwO8/TY8+6y18Yj36NABHngA/v4bRo+2Ohq5FbsdXnnFbIBau7ZZTSkiySxNbqZOnUpkZCT16tWjSJEiycc333yTfM2xY8eIiIhIvv3II48wZ84cpk2bRpUqVZg/fz4LFy68ZRGy27h40TTqu3TJ7P+TtKOvSGbw8XHsFD5xIpw4YW08krovvoClS8HPD2bOND87EUnmUn1uMoPL9rlJTITmzeH//g9KloQtWyBfPqujEm9jt5vC1HXrzAjitGlWRyT/dvKkGWG7eNGsjkpaKSXi4dy2z41Xe/99k9j4+ZkCYiU2YgWbzTElNXOm2YRRXIfdDj16mMSmZk1HzY2IpKDkxhUsWwaDB5vzqVPhwQetjUe8W5060KyZ2YTx7betjkauN2eO+RKULZtJPrNmtToiEZek5MZqR46Y3b2TCgS1i6+4gvffN8uKv/sONmywOhoB0/MqqZHn4MGm/5WI3JSSGytdvgwvvAAXLpgh5qTl3yJWq1gROnY05wMHalNNq9ntphfRhQtQrZrqbERuQ8mNVZJ+WW3dCvnzm2/Ifn5WRyXiMGyY+W9y9WozdSrWmTfP1OJlzQqzZplpKRFJlZIbq0ybZn5JZckC33xjusOKuJISJSCpf9TAgWZFn2S+s2fNFyEw22RUqWJtPCJuQMmNFTZsgNdeM+cjR0KDBtbGI5Ka0FCzBcj27fD111ZH451eew3OnYNKlVTgLZJGSm4y25kz8OKLZmPMFi3gzTetjkgkdfnyOeo73nkH4uKsjcfbhIWZkV0fHzPS6+trdUQibkHJTWaKj4eXXjKbE5YrZ35ZaadvcXW9ekHhwmZl36efWh2N9zh/Hl591Zz37w/Vq1sbj4gbUXKTmd5+G1atMjt8L1hghvtFXF1AAAwdas5HjDD7GUnG690bTp+G8uUdfbBEJE2U3GSW776DMWPM+axZUKGCtfGIpEfXrmbX6bNnYdw4q6PxfIsXw5dfmgUHs2aZXdtFJM2U3GSGP/6Azp3Neb9+0LKlpeGIpFu2bPDee+Z83DgzoiAZ4+JF+M9/zHnfvlCrlqXhiLgjJTcZLToann8eYmKgXj2zOkrEHb34omk2GRNjpqckY7zxhtkcs0wZePddq6MRcUtKbjKS3W6G8//4A4oVg7lztReMuC+bzexCDaaw+NAha+PxRMuWmT2jbDbzZ/bsVkck4paU3GSkceNg/nwzpD9/PhQqZHVEInenQQNo1Mi0Mhg0yOpoPEtUFHTvbs5few0efdTaeETcmJKbjLJqlaM/yMSJ8PDD1sYj4ixJozdz5sC2bdbG4kn694fjx+Gee8zGpSJyx5TcZIS//oLWrU27+k6doEcPqyMScZ5q1aBNG3MeGmptLJ5i5UpHD6EZM8zyexG5Y0punC0uzhRenj0LVavC1Klq1CeeZ/hwUz+2bJn5YJY7FxMD3bqZ81dfNQsPROSuKLlxtj59zN5RefKY3jYqCBRPdO+9juXKAwea4nm5M6GhpvtzyZIwerTV0Yh4BCU3zvTFF46Rmq++MnPnIp5q0CAzfbJpk0nkJf3WroXJk8359OmQK5e18Yh4CCU3zrJtm6O2ZuhQaNrU0nBEMlyhQqYnC5itReLjrY3H3Vy6ZFpFALz8Mjz5pLXxiHgQJTfOUrSoWRH19NNm92QRb/DGG5A/P/z5p+nLImn3zjtw8CAULw4ffGB1NCIeRcmNsxQqBMuXw9dfm/1gRLxBYKCj383QoWY0Qm7vt99gwgRzPm0aBAVZGo6Ip9GnsDNlzao5c/E+//kPlCoFERGmp5Pc2uXLZjrKbjetIjSFLeJ0Sm5E5O74+Zml4WBW+5w/b208rm7oUNi3D4oUgQ8/tDoaEY+k5EZE7l7btlClCkRGanPYW9m40VFf88knpmWEiDidkhsRuXtZsjiSmsmT4dgxa+NxRXFx0KWL6Vzeti08+6zVEYl4LCU3IuIcTZrA44+bD/GhQ62OxvUMHw579kDBgvDRR1ZHI+LRlNyIiHPYbI5NNb/4AnbvtjYeV7J1q+Pf5uOPIV8+a+MR8XDpSm7OnDlzy8fj4+PZuHHjXQUkIm7s4YehRQsz9fLWW1ZH4xquXjXTUQkJ0LIlvPCC1RGJeLx0JTdFihRJkeBUqlSJ48ePJ98+f/48tWvXdl50IuJ+3nvP1OB8/z2sW2d1NNYbORJ27DCjNUlbLYhIhkpXcmP/1+Z4R44c4dq1a7e8RkS8zP33O7YV8PZNNXfsgBEjzPmkSabeRkQynNNrbmw2m7NfUkTczdCh4O8Pv/4KixdbHY014uNNkhcfD889By+9ZHVEIl5DBcUi4nzFikGvXuY8NNTUm3ibsWNhyxbTy2bqVFNwLSKZIl3Jjc1mIzo6mqioKCIjI7HZbMTExBAVFZV8iIgAMGAA5M5tVk19+aXV0WSuPXscy+EnTDDdiEUk09js6SiSyZIlS4ppJ7vdftPbCS78LS0qKoqgoCAiIyMJDAy0OhwRzzZ2LPTvD8HBZudwf3+rI8p4CQlQpw5s2ABPPWWm5TRqI3LX0vP5nTU9L7xq1aq7CkxEvEzPnqZh3fHjpr9L375WR5TxPvzQJDaBgfDpp0psRCyQrpEbT6CRG5FMNmMGvPwy5M0Lhw5BUJDVEWWcP/80e2xduQKffQbdulkdkYjHSM/nd7pqbuLj44mLi0tx3+nTpxk2bBj9+/fn119/TX+0IuLZOnUyy8MvXIAxY6yOJuMkJJjVUVeuQKNGjuXwIpLp0pXcdO/enddffz35dnR0NDVr1mTKlCksW7aM+vXrs2TJEqcHKSJuLGtWx6aaH34IERHWxpNRJk82TQtz5oTp0zUdJWKhdCU369at44XrWofPnj2bhIQE9u/fz/bt2+nbty9jx451epAi4uaeew5q14bLl+Hdd62OxvkOHjRL3sEUUZcoYW08Il4uXcnNiRMnKFOmTPLtFStW8MILLxD0zxx6p06d2K3N8kTk367fVHP6dFOb4ikSE01tzeXLUL8+vPKK1RGJeL10JTf+/v5cvnw5+fbvv/9OrVq1UjweExPjvOhExHPUrQtPP21qU955x+ponOeTT2DNGsiRwxQRZ1FvVBGrpev/wqpVq/K///0PgF9++YXTp0/ToEGD5McPHjxI0aJFnRuhiHiOkSPNKM68ebB5s9XR3L0jR0wfHzAjU/fcY2k4ImKkK7kZPHgwEydO5N5776Vx48Z07tyZItd13gwLC6NOnTppfr21a9fSrFkzihYtis1mY+HChbd9zldffUWVKlXIkSMHRYoUoWvXrpw/fz49fw0RsUqlStC+vTkfMMC9N9W026F7d4iNhcceg5AQqyMSkX+kK7l5/PHH2bJlC6+//jqzZs1i+vTpKR6vWrUqffr0SfPrxcbGUqVKFaZMmZKm69etW0fHjh3p1q0bu3fvZt68eWzcuJHu3bun568hIlZ6913w9YWVK2H5cqujuXOffQY//2y6Ls+YoekoERfiMk38bDYbYWFhNG/ePNVrPvjgA6ZOncrBgweT75s0aRKjR4/mr7/+uulz4uLiUvTmiYqKIjg4WE38RKzUp4/Zc6laNTM95W6JwfHj8MADEB0N48Z5R+dlEYtl2PYLa9euTdN1devWTc/Lplnt2rV56623WLJkCU2bNuXMmTPMnz+fp556KtXnjBw5kmHDhmVIPCJyh95+24x2bNsG334LL71kdURpZ7ebFVHR0WZ5e9Lu5yLiMu5448zUnnanG2emZeQGYN68eXTt2pUrV64QHx9Ps2bN+O6778iWLdtNr9fIjYiLGjECBg0yRbh795qpKnfw+efQpQv4+UF4uOm+LCIZLsO2X8iTJw/BwcEMGjSI/fv38/fff99wXLhw4a6Cv5U9e/bQq1cvBg8ezJYtW1i6dClHjhyhR48eqT7Hz8+PwMDAFIeIuIA+faBQIbPf1L/q91zWyZMmboChQ5XYiLiodCU3ERERjB49mvXr11OpUiW6devGb7/9RmBgIEFBQclHRhk5ciR16tThzTffpHLlyjRu3JiPP/6YmTNnEuGpLd1FPFVAAAwebM7ffRdcvUeW3Q6vvgoXL0KNGtCvn9URiUgq0pXc+Pr60rp1a5YtW8Yff/xB5cqV6dmzJ8HBwbz99tvEx8dnVJwAXLp0iSz/Kjz08fEBUp8mExEX1r073HsvnDkD48dbHc2tff01fP89ZMsGs2aZPbNExCXd8RKFEiVKMHjwYH7++WfKli3LqFGjiIqKStdrxMTEEB4eTnh4OACHDx8mPDycY8eOARAaGkrHjh2Tr2/WrBkLFixg6tSpHDp0iHXr1vH666/z0EMPqXmgiDvKlg3ee8+cjx0LZ89aG09qTp+G114z54MGQcWK1sYjIrd0R8lNXFwcc+bMoWHDhlSsWJH8+fPzww8/kDdv3nS9zubNm6lWrRrVqlUDoG/fvlSrVo3B/wxVR0REJCc6AJ07d2b8+PFMnjyZihUr0rJlS8qVK8eCBQvu5K8hIq6gZUt48EEzLZWU6LiakBC4cAGqVoWBA62ORkRuI12rpTZu3MisWbOYO3cupUqVokuXLrRv3z7dSY2V0lNtLSKZZPlyaNTIjOTs2welS1sdkcO8edCqlZmG2rTJJDgikunS8/md7qXgJUqUoFOnTlSvXj3V65599tm0R5vJlNyIuKgnnzQdf9u3h3/2sLPc2bOmWd/Zs2Y66t13rY5IxGtlaHJzO3fa5yazKLkRcVFbtphVSDab6R9TubLVEUGbNjB3rqmx2bLFfXrxiHigDOtzk5iYeNsjOjr6roIXES9VvbqZ/rHbITTU6mhg4UKT2Pj4mNVRSmxE3IbTNnSJi4tj/Pjx3HPPPc56SRHxNiNGmNqWJUtgzRrr4rhwAZKag775phlREhG3ka7kJi4ujtDQUGrUqMEjjzzCwoULAZg5cyalS5fmww8/TNeu4CIiKZQpY3rfAAwYYEZxrNC7t1n+Xb48DBliTQwicsfSVXMzYMAAPv30Uxo2bMhvv/3G2bNn6dKlC7///jtvvfUWLVu2TG6q56pUcyPi4k6dMo39Ll2CBQvg+ecz9/1/+AGeecbsVL5uHTz8cOa+v4jcVIbV3MybN4/Zs2czf/58fvrpJxISEoiPj2f79u289NJLLp/YiIgbKFzYsX9TaChkcOfzFC5eNDt+g4lBiY2IW0pXcvPXX38lLwGvWLEifn5+9OnTJ3mncBERp3jzTciXz/S8+fzzzHvfN94wm2OWKQPDh2fe+4qIU6UruUlISMD3uhUDWbNmJWfOnE4PSkS8XFAQvP22OR86FC5fzvj3XLYMZs40S9FnzoTs2TP+PUUkQ6Rr5ze73U7nzp3x8/MD4MqVK/To0YOAgIAU12k7BBG5a6++ChMmwLFjMGkS9O+fce8VFeUoZH7tNXj00Yx7LxHJcOkqKO7SpUuarps1a9YdB5TRVFAs4kZmz4ZOnSB3bjh0CPLkyZj36dEDPv0U7rkHduyAf31hExHrZViHYk+g5EbEjSQkmL2cdu0yIzejRzv/PVauhCeecJzXr+/89xCRu5Zhq6VERDKVjw+MHGnOP/oI/vrLua8fEwPdupnzHj2U2Ih4CCU3IuLann4aHnsMrlwxxcXO9NZbcOQIlCgBY8Y497VFxDJKbkTEtdlsjumoWbNg717nvO4vv5hCZYDp0yFXLue8rohYTsmNiLi+2rXhuecgMdGxRPxuXLoEXbua827doFGju39NEXEZSm5ExD28/77ZEiEsDNavv7vXGjQIDhyAYsVg3DjnxCciLkPJjYi4hwoVoHNncz5w4J1vqrl+PXz4oTmfNs00DBQRj6LkRkTcx9Ch4OcHa9fCjz+m//lXrpjpKLsdOnaEp55yeogiYj0lNyLiPoKDTQdhMKM3CQnpe/7QofDHH2ZzzqTRGxHxOEpuRMS9hIaaqaSdO2HOnLQ/b9MmGDvWnH/yCeTNmzHxiYjllNyIiHvJm9eM2oApDI6Lu/1z4uKgSxez2qpNG7PySkQ8lpIbEXE/r78ORYvC0aNmFOZ2RoyA3buhYEHT6VhEPJqSGxFxPzlyOLoVjxhhdvVOzbZtji0cpkyB/PkzPDwRsZaSGxFxT126QLlycO4cfPDBza+5etVcl5AAL75oDhHxeEpuRMQ9Zc0K771nzsePh1Onbrxm1CjYvh3y5TOjNiLiFZTciIj7atECHnoIYmNh+PCUj+3caaaswOwhVbBg5scnIpZQciMi7uv6TTWnTTNbKgDEx5vpqGvXzMqol16yLkYRyXRKbkTEvdWrB02amIRm0CBz39ixsGUL5M4NU6eaJEhEvIaSGxFxf0mroebOhS+/dKykmjABihSxKioRsYiSGxFxf1WrQrt25rxDB7NKqmlTs3+UiHgdJTfi9c6dM6UZSc6ehb17rYtH7tDw4ZAtmzkPDDQ1OJqOEvFKSm7EK8XHww8/wAsvmEa3S5ea++126NYNqlc3jW/tdmvjlHQoXRrefNMkNJMnQ/HiVkckIhZRciNe5Y8/YMAAKFECnnkGFiwwozZr1pjHY2PNNkSXL8Orr8Lzz5uRHXETI0bA+fNmakpEvJaSG/EKUVFQuzaULw9jxkBEhOnC37u36fGW1OA2Z0748UfTE87XFxYtgkqVYPlyS8OXtLLZIE8eq6MQEYspuRGPlJiYsm4mMBCuXAEfH2jWzIzYnDgBH34IlSunfG6WLNCnD2zYYJKhU6egUSN44420bUAtIiLWUnIjHuXIEbMK+N57oUYNiI52PDZjBvz1F3z/vZlu8vW99WtVrQqbN5vpKTAJ0ZUrGRS4iIg4TVarAxC5W5cumcRj5kxYtcpxf2CgmXJ69FFz+8EH0//aOXLAxx+bVcX580NQkLk/qdBYi3FERFyPkhtxa0uWQJs2pqYGTLLRoIHpvP/88yY5cYZmzVLe/uQTU5szYwYUKOCc9xAREedQciNuJSICLl40tTBgin2jo80q4M6doVMnKFkyY2OIioK33jJxVK4MX3xhanJERMQ1qOZGXN7Vq/Ddd2bpdnAw9O3reCw4GLZuNfslDh6c8YkNmOmu1auhQgVTbNy4sYlJxcYiIq5ByY24rPBw6NXLNNl78UXTdC8hwfSiub6jcNWqZoVTZqpSxRQbh4SY2x9+CLVqwZ49mRuHiIjcSMmNuKRu3aBaNfjoI9OTrUgRGDjQNOFbu9bRZd9K2bObRrj/93+m2Hj7dpPgnD9vdWQiIt7N0uRm7dq1NGvWjKJFi2Kz2Vi4cOFtnxMXF8fbb79NyZIl8fPzo1SpUsycOTPjg5UMEx9vCoMvXHDcV7u2SWCSRmyOHTMbP5crZ12cqXnmGdi500xP9esH+fJZHZGIiHeztKA4NjaWKlWq0LVrV1q0aJGm57Rq1YrTp08zY8YM7rvvPiIiIkhMTMzgSCUj/PknzJoFs2fDyZNmlOa118xjbdua1U7ukigULmwStOv3otqzxyRlTZpYF5eIiDeyNLlp2rQpTZs2TfP1S5cuZc2aNRw6dIi8efMCUKpUqVs+Jy4ujrjrKj2jktYMiyWiouDbb01S89tvjvvz5TP1NEly5HDeMu7Mcn3dT1ycSdC2bzd1Q6NGgb+/dbGJiHgTt6q5+f7776lRowZjxoyhWLFilC1bln79+nH58uVUnzNy5EiCgoKSj+Dg4EyMWK536ZLZsLJ7d5PYZMkCTz9tVkKdPGn2efIUdjs89pg5nzjR1OLs3m1tTCIi3sKtkptDhw7x66+/smvXLsLCwpgwYQLz58/nv//9b6rPCQ0NJTIyMvk4fvx4Jkbs3Y4eNV2Dk+TIAfXrw/33w+jRZiuExYuhRYvbb4Xgbvz9YdIk8/crUAB27DDbQUyZknLqSkREnM9mt7vGr1qbzUZYWBjNmzdP9ZpGjRrxyy+/cOrUKYL+6YO/YMECXnzxRWJjY8mePftt3ycqKoqgoCAiIyMJDAx0Vvjyj8uXzVYIs2bBypXmg/zAAbPXE5hpqVy5vGvbgtOnTcfkH380t59+Gr76yrGVg4iI3F56Pr/dauSmSJEiFCtWLDmxAShfvjx2u52//vrLwsi8m91udtDu0cMU1rZvDytWmPsbNEi5eWVgoHclNgCFCpkVXxMngp+f6WwcEGB1VCIinsuttl+oU6cO8+bNIyYmhpw5cwLw559/kiVLFooXL25xdN5r4UIztZSkVCnHVgi3qff2GjYbvP66mZbLlQuy/vN/XlycSQJVbCwi4jyWjtzExMQQHh5OeHg4AIcPHyY8PJxjx44Bpl6mY8eOyde3bduWfPny0aVLF/bs2cPatWt588036dq1a5qmpOTuXb0KYWHmSNK4sWmy16GDmYo6eBCGDFFiczOVKqX8dxk4EB56CHbtsiwkERGPY+nIzebNm6lfv37y7b7/bBrUqVMnPv/8cyIiIpITHYCcOXOyfPlyXnvtNWrUqEG+fPlo1aoVI0aMyPTYvc2OHaaO5ssv4dw5UxTcvLkZkciRwxQPu0LXYHdy8SJ8/bWpyalRAz74wGzn4G3TdiIizuYyBcWZRQXFaXfhAsyZY5KarVsd9xcpAh07wtChmk65W6dPQ9eupgEgwFNPmRVmhQpZG5eIiKvx2IJiyVy9epmOwVu33rgVgprSOUehQma5+EcfmWLjJUugcmVHsiMiIumn5EYAsxVCaCjs3eu4r2NHs+P2xImmyd68eWZkIatblaG7PpvNJJGbN0PFinDmjOlufPGi1ZGJiLgnfUx5sehox1YI69aZ+65dM7UfAA0bwrZt1sXnbSpWhE2bYMAAePhhyJ3b6ohERNyTkhsvY7fD2rUmoZk3z2yJAGYrhCZNTF+aJCpszXz+/mak7HrLlsG+fWZ0Rz8TEZHbU3LjZa5dM7Uz586Z2+XKme65HTpA0aLWxiY3unDB9As6fdp0OP78cxUbi4jcjmpuPNjly2a1U/v2kJho7vP1NZ2Ekzav3LvXTIMosXFNefLAoEFmRGfpUtMn54cfrI5KRMS1aSm4h7HbYeNGM+00dy5ERpr7V6xIOeUk7mX3bmjTBnbuNLdDQmDsWFDvShHxFloK7oXOnjUfdhUrmmLUTz81iU3JkjB4sJl+Evf1wAMmae3Vy9yeMsU0/ktKXkVExEE1Nx7izz+hf39z7u8PL7xgamnq1zfFwuL+/P1hwgRT+N25M1Svrp3FRURuRsmNG9q500w7BQTA8OHmvkcegdatzdRT69b60PNkTZqY7TCub6J49iwkJJhd2UVEvJ1qbtzEhQtmH6JZs2DLFnNf7twQEaFOwd7ObodnnjE9cmbONOciIp5GNTceZM0aMxJTpAj07GkSm2zZoEUL+N//1C1Y4Px5+OsvM3rTrJn57+TyZaujEhGxjpIbF7dsmekifPWq2XNowgQ4cQK++858Q1dyI/nzw4YN0KePuZ1UbLxjh7VxiYhYRcmNi4iONlMKjz2Wso9Jly6OEZvwcLNapkABy8IUF+XvD+PHm144hQvDnj1Qs6ZJhpN6HImIeAvV3FjIbodffnFshRAba+5/4QWYP9/S0MSNnT0L3brB//0f3HMPbN8OOXNaHZWIyN1Jz+e3JjUsEB8Po0aZVvoHDzruL1PGjNR07GhZaOIBChSARYtMr6OqVZXYiIj3UXKTSRITHf1mfHzMSM3Bg+aDp3Vrk9Q88og2RhTnsNnMNhvXmzLFdDr+4APIkcOauEREMoOSmwxkt8PmzWba6f/+z+zjlDOn+eAZMgRiYswUVECA1ZGKpztzBt5806yiWr3atBWoUsXqqEREMoYKijPA6dMwbpzZ5PChh2DqVLNUd+FCxzUtWpjpJyU2khkKFjT//RUubJLshx6CDz9UsbGIeCYlN070xx/QvDkULw79+pkpAH9/aNsWli83f4pYpVEj09362WdNa4G+faFpU9MIUkTEkyi5caIcOeD7703B8EMPwSefmA+Or76Chg21x5NYL39+M4LzySdmR/GffjJ7VMXEWB2ZiIjzqObGiUqUMFNQjz0GFSpYHY3Izdls8J//QN26ZjTxxRe1okpEPIv63Ih4sbg40+Xax8fc3rPH3FetmrVxiYj8m/aWEpE08fNzJDZXrpi2BLVqmYJ4FRuLiLtSciMigElu7r0Xrl0zBfFNmsDJk1ZHJSKSfkpuRASA3LkhLMx0Ns6e3azwq1zZdDsWEXEnSm5EJJnNBq+8Alu3mrqb8+dNe4MePczIjoiIO1ByIyI3uP9+WL/eTE+BafyXLZu1MYmIpJWWgovITfn5wdix0LgxlC3rKDy+etWssFLfJhFxVfr1JCK31LCh6eGUpF8/k/Co2FhEXJWSGxFJs5MnYcYM+Plns3fa9fuliYi4CiU3IpJmRYvCli3w4INw4QI8/7zpdhwba3VkIiIOSm5EJF2Sio379zerq6ZNM/tTbd1qdWQiIoaSGxFJN19fGD3aTE8VLQr79pkdxi9ftjoyERGtlhKRu9CgAezYAd27w0svmeZ/IiJWU3IjInclXz747jszRZVk2TK4dMnU5IiIZDZNS4nIXbs+sTlzBjp2hBYtTLdjFRuLSGZTciMiTpU7N3TubBKe6dPNyqotW6yOSkS8iZIbEXGq64uNixWDP/+E2rVhzBhITLQ6OhHxBkpuRCRDNGgA27eb6alr12DAAHjySW3AKSIZT8mNiGSYfPlg/nz47DPIkQNKlgR/f6ujEhFPp9VSIpKhbDbo1g3q1oUiRRz3nz9vNufMmdO62ETEM2nkRkQyRZkyjkTGbocOHUyx8ebN1sYlIp7H0uRm7dq1NGvWjKJFi2Kz2ViYjl341q1bR9asWalatWqGxSciGeOvv0zzv/37TbHx6NGQkGB1VCLiKSxNbmJjY6lSpQpTpkxJ1/MuXrxIx44deeKJJzIoMhHJSMHBJrl58UWIj4eBA6FhQ5P0iIjcLUuTm6ZNmzJixAieT2cb0x49etC2bVtq166dQZGJSEbLmxe+/RZmzICAAFi9GipXNt2ORUTuhtvV3MyaNYtDhw4xZMiQNF0fFxdHVFRUikNEXIPNBl27wrZtUKMG/P23GcWJi7M6MhFxZ26V3Ozfv5+BAwfy5ZdfkjVr2hZ6jRw5kqCgoOQjODg4g6MUkfQqUwZ++w3eegvmzDGrqERE7pTbJDcJCQm0bduWYcOGUbZs2TQ/LzQ0lMjIyOTj+PHjGRiliNypbNngvfegZk3HfVOmwKhRKjYWkfRxmz430dHRbN68mW3bttGzZ08AEhMTsdvtZM2alZ9++okGDRrc8Dw/Pz/89DVQxO0cOQJvvGGmqJYtg9mzTSGyiMjtuM3ITWBgIDt37iQ8PDz56NGjB+XKlSM8PJxatWpZHaKIOFHJkjB1qqPYuEoV0+1YROR2LB25iYmJ4cCBA8m3Dx8+THh4OHnz5qVEiRKEhoZy4sQJZs+eTZYsWahYsWKK5xcsWBB/f/8b7hcR92ezQZcu8Nhj0LYtbNoELVua+z76SJ2NRSR1lo7cbN68mWrVqlGtWjUA+vbtS7Vq1Rg8eDAAERERHDt2zMoQRcRi990H69bB22+bhGfWLHjoIbh61erIRMRV2ex2u93qIDJTVFQUQUFBREZGEhgYaHU4IpIOa9dC+/bw6qsQGmp1NCKSmdLz+e02BcUiInXrms7GuXI57vvjD1OXo2JjEUniNgXFIiIAuXODj485v3wZXnjBdDaeN8/SsETEhSi5ERG39fffprD44kVo1coUG0dHWx2ViFhNNTci4tauXYNhw+D998FuhxIloGpVM3U1Y4aj2/GyZaZ3Ts6cNz+CgyGLvu6JuKz0fH4ruRERj7B2LXToANcvsIyPd0xhtW5tNupMTWQkJP1K6NPHbOCZWiI0ZoyZHgOzkuvgwZSP58rlOM+XT0mTiDOooFhEvE7durBzJyxdaqapLl92JDZglo9fuwYxMSmP6GjzZ0CA49pTp+BWO7WMHu04nz0bpk1L/dqjR81oEsCIEfC//6WeNL31FhQqZK7dvh3270+ZKF1/5MhhlsaLyI00ciMi8i/Hj8Pp0zcmQknHgAFmLyyACRNMQpWUJF1/XLoE589D3rzm2ldfhU8+Sf19Dx+GUqXMef/+MHZs6tfu2AGVKpnzqVNNgvXvBCgpMXr1Vcdqsv37zXGzhCkgIGVCKOJKNHIjInIXgoPTvrS8d29z3ExCQsopqQEDTLflmyVM0dFmCitJyZKmO/O/R5hiYszj13doPnoUwsNTj7FVK8ffZ9480xAxNb/8Ao8+as7nzoVJk26caks62rWD0qXNtX/9BQcO3DxpyqpPGslk+k9ORCSD/HsUpFQpx8jM7YSEmOPfEhPNlFv27I77uneH+vVvTIKSjiJFHNcWKADVq9+YWCUmmsevn547cgR++y31GB97zJHcLFoE/+xpfAN/f1i4EBo3NreXLoVx41Kfnnv4YahT53b/QiKpU3IjIuJGsmRJmYAA3HuvOdKie3dzXM9uN7uvR0c7CqUBXnwRypVLfXru+tGtnDmhfPmUCVZ8vHnsyhXHqjUw028//5x6jP/7nyO5uXzZTAFq9EfSQzU3IiLidHa72f8rKREqWNAx2rR/P2zcmPr03CefOKbdxoyB8eOhTRszDVa9ugqpvZWWgt+CkhsREfdRvz6sXu24Xa6cSXLatYN77rEsLLFAej6/1X1BRERc1k8/wf/9H7z0khn52bcPBg8203ANG5oRIpF/U3IjIiIuK1s2eOYZ+Pprszz/iy/gySdN7VGBAimnqH74wSy/F9G0lIiIuJ2ICJPIJBVS794NFSuaWp0WLcy0VYMGKkT2JJqWEhERj1akSMoVYidPmmXpMTGma3TjxmY1V58+sGWLpq+8jZIbERFxe08+afb4WrcO/vtf0xDx1CnTQbpGDbNxqngPTUuJiIjHuXrVFCN/+aVjc1NfX/PYzJmm906rVpA/v7VxStppKfgtKLkREfEu8fGO2hu73UxnHT5s7mvSBNq3h2bNzGak4rpUcyMiIvKP64uKr10z20RUq2aSnsWLzTLzQoWgc2dYs8ayMMWJlNyIiIjX8PWFvn1h61azwuqtt8x+XzExZpn5V185rrXbVYjsrpTciIiIV6pQAd57Dw4dgl9/hR49zOhNkg0b4IEHzDWHD1sWptwB1dyIiIjcRK9e8NFHjtt16pj+Oa1amdVYkrlUcyMiInKXhg+HWbPgiSdMJ+SkZeaFC8Ozz8K5c1ZHKKlRciMiInITgYFmmurnn+H4cfjgA0ch8tatkCeP49r9+yEhwbJQ5V80LSUiIpIOe/bAsWNmGTmYZKdYMfDxgbZtzdRV1aop972Su6dpKRERkQxSoYIjsQEzanPtmtnvatw4ePBBs8/V++/DkSOWhenVlNyIiIjchfLlTWKzcCG8+CL4+ZnRnbffNvtdXV+ULJlDyY2IiMhd8vOD556DefPg9GmYMcPsSm6zwaOPOq7bts1cc/mydbF6AyU3IiIiThQUBF27wooV8Ndfpgg5ycSJZil54cLmmpUrVYicEZTciIiIZJCiRVMWFpcpAyVKQFSUY5l5iRLw5psQHq6OyM6i1VIiIiKZKDHRdET+6iv49lu4eNHcX7Ys/PGHVlmlRqulREREXFSWLFC3Lnz6KZw6BWFhphC5WzdHYnPlCjRtaq65cMHaeN2RRm5ERERczPz50LKlOc+WDZ56Ctq3h2eeAX9/a2OzikZuRERE3FidOjBmDFSpYnroLFpkkp1ChcwIz4EDVkfo2pTciIiIuJgiRRxFxjt2wIABEBxsCpFnzjR1O0kuXbIsTJel5EZERMSFVaoEo0aZbserV5sNPcuWdTzeoYO5ZvRosy2EqObG6nBERETu2JUrZqoqKspx3+OPm/2tXnwx5eae7k41NyIiIl7A39+M6EyfDvXqmfvWrIFXXjGNAkNDrYzOOkpuRERE3FiePPDyy7BqlZmWGj3aTFNdvQoFCzqui4oy01rX1+t4KiU3IiIiHiI4GPr3N0XIO3ZAx46Ox777DurXh5IlTYHyjh3WxZnRlNyIiIh4oEqVIF8+x+3ISLPv1V9/OZaZV65sRnqOH7cuzoyggmIREREvceUKLFkCX34JP/xgpq4AfHxMt+T8+a2N71bcpqB47dq1NGvWjKJFi2Kz2Vi4cOEtr1+wYAFPPvkkBQoUIDAwkNq1a7Ns2bLMCVZERMTN+ftDixawYIFJZqZNM6ur6tdPmdgMH262hYiLsy7Wu2FpchMbG0uVKlWYMmVKmq5fu3YtTz75JEuWLGHLli3Ur1+fZs2asW3btgyOVERExLPkyQPdu5si4x9+cNwfEQFDh5okqHBhs/JqzRr3KkR2mWkpm81GWFgYzZs3T9fzHnjgAVq3bs3gwYPTdL2mpURERFJ36hSMHw9z5sCJE477g4OhbVvo2jVlE8HM4jbTUncrMTGR6Oho8ubNm+o1cXFxREVFpThERETk5goXNgXHR4/CypUmmQkMNEXHo0fD2rWOa11jeORGbp3cfPDBB8TExNCqVatUrxk5ciRBQUHJR3BwcCZGKCIi4p58fEwtzowZcPo0zJsHL7xgOh8nmTIFGjQw11y8aFmoN3Dbaak5c+bQvXt3Fi1aRMOGDVO9Li4ujrjrKqKioqIIDg7WtJSIiMhdevhh2LDBnPv5wTPPQPv28PTTkC2bc98rPdNSWZ371plj7ty5vPzyy8ybN++WiQ2An58ffn5+mRSZiIiI9/jmG/j6a7O0fPdu0yhwyRIz0uPs5CY93C65+frrr+natStz587l6aeftjocERERr1WyJAwc6Oh4/OWXEB8PuXJZG5elyU1MTAwHDhxIvn348GHCw8PJmzcvJUqUIDQ0lBMnTjB79mzATEV16tSJiRMnUqtWLU6dOgVA9uzZCQoKsuTvICIi4u1sNtPxuEoVqyMxLC0o3rx5M9WqVaNatWoA9O3bl2rVqiUv646IiODYsWPJ10+bNo34+HhCQkIoUqRI8tGrVy9L4hcRERHX4zIFxZlFfW5ERETcj9f0uRERERH5NyU3IiIi4lGU3IiIiIhHUXIjIiIiHkXJjYiIiHgUJTciIiLiUZTciIiIiEdRciMiIiIeRcmNiIiIeBQlNyIiIuJRlNyIiIiIR1FyIyIiIh4lq9UBZLakfUKjoqIsjkRERETSKulzOy37fXtdchMdHQ1AcHCwxZGIiIhIekVHRxMUFHTLa2z2tKRAHiQxMZGTJ0+SK1cubDabU187KiqK4OBgjh8/ftvt2MU16Wfo3vTzc3/6Gbq/jPoZ2u12oqOjKVq0KFmy3LqqxutGbrJkyULx4sUz9D0CAwP1P6Wb08/Qvenn5/70M3R/GfEzvN2ITRIVFIuIiIhHUXIjIiIiHkXJjRP5+fkxZMgQ/Pz8rA5F7pB+hu5NPz/3p5+h+3OFn6HXFRSLiIiIZ9PIjYiIiHgUJTciIiLiUZTciIiIiEdRciMiIiIeRcmNk0yZMoVSpUrh7+9PrVq12Lhxo9UhSTqsXbuWZs2aUbRoUWw2GwsXLrQ6JEmHkSNHUrNmTXLlykXBggVp3rw5+/btszosSYepU6dSuXLl5MZvtWvX5scff7Q6LLlDo0aNwmaz0bt3b0veX8mNE3zzzTf07duXIUOGsHXrVqpUqULjxo05c+aM1aFJGsXGxlKlShWmTJlidShyB9asWUNISAi///47y5cv59q1azRq1IjY2FirQ5M0Kl68OKNGjWLLli1s3ryZBg0a8Nxzz7F7926rQ5N02rRpE59++imVK1e2LAYtBXeCWrVqUbNmTSZPngyY/auCg4N57bXXGDhwoMXRSXrZbDbCwsJo3ry51aHIHTp79iwFCxZkzZo11K1b1+pw5A7lzZuXsWPH0q1bN6tDkTSKiYnhwQcf5OOPP2bEiBFUrVqVCRMmZHocGrm5S1evXmXLli00bNgw+b4sWbLQsGFD1q9fb2FkIt4rMjISMB+O4n4SEhKYO3cusbGx1K5d2+pwJB1CQkJ4+umnU3wmWsHrNs50tnPnzpGQkEChQoVS3F+oUCH++OMPi6IS8V6JiYn07t2bOnXqULFiRavDkXTYuXMntWvX5sqVK+TMmZOwsDAqVKhgdViSRnPnzmXr1q1s2rTJ6lCU3IiIZwkJCWHXrl38+uuvVoci6VSuXDnCw8OJjIxk/vz5dOrUiTVr1ijBcQPHjx+nV69eLF++HH9/f6vDUXJzt/Lnz4+Pjw+nT59Ocf/p06cpXLiwRVGJeKeePXuyePFi1q5dS/Hixa0OR9LJ19eX++67D4Dq1auzadMmJk6cyKeffmpxZHI7W7Zs4cyZMzz44IPJ9yUkJLB27VomT55MXFwcPj4+mRaPam7ukq+vL9WrV2fFihXJ9yUmJrJixQrNFYtkErvdTs+ePQkLC2PlypWULl3a6pDECRITE4mLi7M6DEmDJ554gp07dxIeHp581KhRg3bt2hEeHp6piQ1o5MYp+vbtS6dOnahRowYPPfQQEyZMIDY2li5dulgdmqRRTEwMBw4cSL59+PBhwsPDyZs3LyVKlLAwMkmLkJAQ5syZw6JFi8iVKxenTp0CICgoiOzZs1scnaRFaGgoTZs2pUSJEkRHRzNnzhxWr17NsmXLrA5N0iBXrlw31LgFBASQL18+S2rflNw4QevWrTl79iyDBw/m1KlTVK1alaVLl95QZCyua/PmzdSvXz/5dt++fQHo1KkTn3/+uUVRSVpNnToVgHr16qW4f9asWXTu3DnzA5J0O3PmDB07diQiIoKgoCAqV67MsmXLePLJJ60OTdyQ+tyIiIiIR1HNjYiIiHgUJTciIiLiUZTciIiIiEdRciMiIiIeRcmNiIiIeBQlNyIiIuJRlNyIiIiIR1FyIyIiIh5FyY2IeJzOnTvTvHlzq8MQEYsouRGRO9K5c2dsNtsNR5MmTawOjYkTJ7rMthk2m42FCxdaHYaIV9HeUiJyx5o0acKsWbNS3Ofn52dRNJCQkIDNZiMoKMiyGETEehq5EZE75ufnR+HChVMcefLkYfXq1fj6+vLLL78kXztmzBgKFizI6dOnAbPJZc+ePenZsydBQUHkz5+fQYMGcf12d3FxcfTr149ixYoREBBArVq1WL16dfLjn3/+Oblz5+b777+nQoUK+Pn5cezYsRumperVq8drr71G7969yZMnD4UKFWL69OnExsbSpUsXcuXKxX333cePP/6Y4u+3a9cumjZtSs6cOSlUqBAdOnTg3LlzKV739ddfp3///uTNm5fChQszdOjQ5MdLlSoFwPPPP4/NZku+LSIZS8mNiDhdvXr16N27Nx06dCAyMpJt27YxaNAgPvvsMwoVKpR83RdffEHWrFnZuHEjEydOZPz48Xz22WfJj/fs2ZP169czd+5cduzYQcuWLWnSpAn79+9PvubSpUuMHj2azz77jN27d1OwYMGbxvTFF1+QP39+Nm7cyGuvvcarr75Ky5YteeSRR9i6dSuNGjWiQ4cOXLp0CYCLFy/SoEEDqlWrxubNm1m6dCmnT5+mVatWN7xuQEAAGzZsYMyYMbz77rssX74cgE2bNgFmd/KIiIjk2yKSwewiInegU6dOdh8fH3tAQECK47333rPb7XZ7XFycvWrVqvZWrVrZK1SoYO/evXuK5z/++OP28uXL2xMTE5PvGzBggL18+fJ2u91uP3r0qN3Hx8d+4sSJFM974okn7KGhoXa73W6fNWuWHbCHh4ffENtzzz2X4r0effTR5Nvx8fH2gIAAe4cOHZLvi4iIsAP29evX2+12u3348OH2Ro0apXjd48eP2wH7vn37bvq6drvdXrNmTfuAAQOSbwP2sLCwVP4VRSQjqOZGRO5Y/fr1mTp1aor78ubNC4Cvry9fffUVlStXpmTJknz44Yc3PP/hhx/GZrMl365duzbjxo0jISGBnTt3kpCQQNmyZVM8Jy4ujnz58iXf9vX1pXLlyreN9fprfHx8yJcvH5UqVUq+L2lE6cyZMwBs376dVatWkTNnzhte6+DBg8lx/fu9ixQpkvwaImINJTcicscCAgK47777Un38t99+A+DChQtcuHCBgICANL92TEwMPj4+bNmyBR8fnxSPXZ9wZM+ePUWClJps2bKluG2z2VLcl/QaiYmJye/frFkzRo8efcNrFSlS5Javm/QaImINJTcikiEOHjxInz59mD59Ot988w2dOnXi559/JksWR6nfhg0bUjzn999/p0yZMvj4+FCtWjUSEhI4c+YMjz32WGaHz4MPPsh3331HqVKlyJr1zn9VZsuWjYSEBCdGJiK3o4JiEbljcXFxnDp1KsVx7tw5EhISaN++PY0bN6ZLly7MmjWLHTt2MG7cuBTPP3bsGH379mXfvn18/fXXTJo0iV69egFQtmxZ2rVrR8eOHVmwYAGHDx9m48aNjBw5kh9++CHD/24hISFcuHCBNm3asGnTJg4ePMiyZcvo0qVLupKVUqVKsWLFCk6dOsXff/+dgRGLSBKN3IjIHVu6dGmKKRqAcuXK0bZtW44ePcrixYsBM40zbdo02rRpQ6NGjahSpQoAHTt25PLlyzz00EP4+PjQq1cvXnnlleTXmjVrFiNGjOCNN97gxIkT5M+fn4cffphnnnkmw/9uRYsWZd26dQwYMIBGjRoRFxdHyZIladKkSYrRp9sZN24cffv2Zfr06RQrVowjR45kXNAiAoDNbr+uqYSISCapV68eVatWZcKECVaHIiIeRtNSIiIi4lGU3IiIiIhH0bSUiIiIeBSN3IiIiIhHUXIjIiIiHkXJjYiIiHgUJTciIiLiUZTciIiIiEdRciMiIiIeRcmNiIiIeBQlNyIiIuJR/h/Lx2/D+skS7QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV6ElEQVR4nO3de3zO9f/H8ce1sWFszueJcgg5k9Svg5JDJaovHeQUikYOyaFyiggp53NIKZWcihxyjOQ8OeY0Joch2WxjbPv8/ni3E8PGts91XXveb7fr1uf6XJ/r2mtbruu599FhWZaFiIiIiJvwsLsAERERkbSkcCMiIiJuReFGRERE3IrCjYiIiLgVhRsRERFxKwo3IiIi4lYUbkRERMStZLG7gIwWGxvLqVOnyJUrFw6Hw+5yREREJAUsy+LSpUsULVoUD49bt81kunBz6tQp/P397S5DRERE7sCJEycoXrz4La/JdOEmV65cgPnh+Pr62lyNiIiIpERYWBj+/v7xn+O3kunCTVxXlK+vr8KNiIiIi0nJkBINKBYRERG3onAjIiIibkXhRkRERNxKphtzk1IxMTFcu3bN7jIklbJmzYqnp6fdZYiIiI0Ubq5jWRZnzpzh4sWLdpcidyh37twULlxY6xiJiGRSCjfXiQs2BQsWJEeOHPqAdCGWZREZGcnZs2cBKFKkiM0ViYiIHRRuEomJiYkPNvny5bO7HLkD2bNnB+Ds2bMULFhQXVQiIpmQBhQnEjfGJkeOHDZXIncj7venMVMiIpmTwk0y1BXl2vT7ExHJ3BRuRERExK0o3IiIiIhbUbiRZJUsWZLRo0fb/hoiIiKppdlSbuKJJ56gatWqaRYmtm7dio+PT5q8loiIZCKrV8NDD4GNk3PUcpOJWJZFdHR0iq4tUKCAZo2JiEjqHDoEzzwDlSrB6dO2laFwk0IRETe/XbmS8msvX07ZtanRpk0b1q1bx5gxY3A4HDgcDo4dO8batWtxOBz88ssv1KhRA29vbzZs2MCRI0do0qQJhQoVImfOnNSqVYtff/01yWte36XkcDiYPn06L7zwAjly5KBMmTIsXrw4VXUGBwfTpEkTcubMia+vL82bNyckJCT+8V27dlG3bl1y5cqFr68vNWrUYNu2bQAcP36cxo0bkydPHnx8fKhYsSJLly5N3Q9KRETST2wsdOgAUVFQujQULmxbKQo3KZQz581vL72U9NqCBW9+baNGSa8tWTL561JjzJgx1KlThw4dOnD69GlOnz6Nv79//ON9+vThk08+Yf/+/VSuXJnw8HCeeeYZVq1axc6dO2nYsCGNGzcmODj4ll9n0KBBNG/enD///JNnnnmGFi1acOHChRTVGBsbS5MmTbhw4QLr1q1j5cqVHD16lJdffjn+mhYtWlC8eHG2bt3K9u3b6dOnD1mzZgUgICCAqKgo1q9fz+7duxk+fDg5U/uDEhGR9PPFF7BunemOmjwZbFyWQ2Nu3ICfnx9eXl7kyJGDwskk5Y8++oinn346/n7evHmpUqVK/P3BgwezYMECFi9eTOfOnW/6ddq0acOrr74KwNChQxk7dixbtmyhYcOGt61x1apV7N69m6CgoPjgNXv2bCpWrMjWrVupVasWwcHBvPfee9x///0AlClTJv75wcHBvPTSS1SqVAmAe++997ZfU0REMsipU/Dee+Z4yBAoVcrWchRuUig8/OaPXb/C/39bGyXL47q2smPH7rikFKtZs2aS++Hh4QwcOJAlS5Zw+vRpoqOjuXz58m1bbipXrhx/7OPjg6+vb/w+Trezf/9+/P39k7QoVahQgdy5c7N//35q1apFjx49aN++PV999RX16tWjWbNm3HfffQC88847dOrUiRUrVlCvXj1eeumlJPWIiIiNunSB0FCoVQveecfuatQtlVI+Pje/ZcuW8mv/2/rottembe1JX7Bnz54sWLCAoUOH8ttvvxEYGEilSpW4evXqLV8nrosojsPhIDY2Ns3qHDhwIHv37uXZZ59l9erVVKhQgQULFgDQvn17jh49SsuWLdm9ezc1a9Zk3Lhxafa1RUTkDs2fb25ZssD06Tf+xW8DhRs34eXlRUxMTIqu3bhxI23atOGFF16gUqVKFC5cmGPp3IRUvnx5Tpw4wYkTJ+LP7du3j4sXL1KhQoX4c2XLlqV79+6sWLGCF198kZkzZ8Y/5u/vT8eOHZk/fz7vvvsu06ZNS9eaRUTkNi5ehLjhDL17g5O0qCvcuImSJUuyefNmjh07xvnz52/ZolKmTBnmz59PYGAgu3bt4rXXXkvTFpjk1KtXj0qVKtGiRQt27NjBli1baNWqFY8//jg1a9bk8uXLdO7cmbVr13L8+HE2btzI1q1bKV++PADdunVj+fLlBAUFsWPHDtasWRP/mIiI2KRXLzPlu2xZ+PBDu6uJp3DjJnr27ImnpycVKlSgQIECtxw/89lnn5EnTx4efvhhGjduTIMGDahevXq61udwOFi0aBF58uThscceo169etx777189913AHh6evLPP//QqlUrypYtS/PmzWnUqBGDBg0CICYmhoCAAMqXL0/Dhg0pW7YsEydOTNeaRUTkFtauhbgW9GnTbhyjYSOHZVmW3UVkpLCwMPz8/AgNDcXX1zfJY1euXCEoKIhSpUqRzYl+SZI6+j2KiKSzy5ehShWzaN9bb5mp3+nsVp/f11PLjYiIiKTO4MEm2BQtCsOH213NDRRuREREJOV27YIRI8zxxIng52dvPclQuBEREZGUiY6Gdu0gJgb+9z9o0sTuipKlcCMiIiIpM2YMbN8OuXODE681pnAjIiIit3f0KPTrZ44//dTWjTFvR+FGREREbs2yzKyoy5ehbl144w27K7olhRsRERG5tdmz4ddfzVo2U6fauuN3SijciIiIyM2FhED37uZ40CAoXdreelJA4Ubu2hNPPEG3bt3sLkNERNJD167w779QrRr06GF3NSmicOMm0iNgtGnThqZNm6bpa4qIiAv56Sf47juz0/f06WbnbxegcCMiIiI3CguDt982xz16QDrvQZiWFG7cQJs2bVi3bh1jxozB4XDgcDg4duwYAHv27KFRo0bkzJmTQoUK0bJlS86fPx//3Hnz5lGpUiWyZ89Ovnz5qFevHhEREQwcOJAvv/ySRYsWxb/m2rVrU1TPv//+S6tWrciTJw85cuSgUaNGHDp0KP7x48eP07hxY/LkyYOPjw8VK1Zk6dKl8c9t0aIFBQoUIHv27JQpU4aZM2em2c9KRERS6P334e+/4b77YOBAu6tJFddoX7KTZUFkpD1fO0eOFI1IHzNmDAcPHuSBBx7go48+AqBAgQJcvHiRJ598kvbt2/P5559z+fJlevfuTfPmzVm9ejWnT5/m1VdfZcSIEbzwwgtcunSJ3377Dcuy6NmzJ/v37ycsLCw+XOTNmzdFZbdp04ZDhw6xePFifH196d27N8888wz79u0ja9asBAQEcPXqVdavX4+Pjw/79u0jZ86cAPTr1499+/bxyy+/kD9/fg4fPszly5fv8AcoIiJ3ZONGs7UCmNlROXLYW08qKdzcTmQk/PfBm+HCw8HH57aX+fn54eXlRY4cOSicaFGl8ePHU61aNYYOHRp/bsaMGfj7+3Pw4EHCw8OJjo7mxRdf5J577gGgUqVK8ddmz56dqKioJK95O3GhZuPGjTz88MMAzJkzB39/fxYuXEizZs0IDg7mpZdeiv9a9957b/zzg4ODqVatGjVr1gSgZMmSKf7aIiKSBqKioEMH88f9G2/Ak0/aXVGqqVvKje3atYs1a9aQM2fO+Nv9998PwJEjR6hSpQpPPfUUlSpVolmzZkybNo1///33rr7m/v37yZIlC7Vr144/ly9fPsqVK8f+/fsBeOeddxgyZAiPPPIIAwYM4M8//4y/tlOnTsydO5eqVavSq1cvfv/997uqR0REUmnoUNi/HwoVgpEj7a7mjijc3E6OHKYFxY7bXTYDhoeH07hxYwIDA5PcDh06xGOPPYanpycrV67kl19+oUKFCowbN45y5coRFBSURj+85LVv356jR4/SsmVLdu/eTc2aNRn33x4ljRo14vjx43Tv3p1Tp07x1FNP0bNnz3StR0RE/rNnDwwbZo7HjYMUDkdwNgo3t+NwmK4hO26pWAHSy8uLmJiYJOeqV6/O3r17KVmyJKVLl05y8/mvu8vhcPDII48waNAgdu7ciZeXFwsWLLjpa95O+fLliY6OZvPmzfHn/vnnH/766y8qVKgQf87f35+OHTsyf/583n33XaZNmxb/WIECBWjdujVff/01o0ePZurUqamqQURE7kBMDLRvD9euwfPPm12/XZTCjZsoWbIkmzdv5tixY5w/f57Y2FgCAgK4cOECr776Klu3buXIkSMsX76ctm3bEhMTw+bNmxk6dCjbtm0jODiY+fPnc+7cOcqXLx//mn/++Sd//fUX58+f59q1a7eto0yZMjRp0oQOHTqwYcMGdu3axeuvv06xYsVo0qQJAN26dWP58uUEBQWxY8cO1qxZE/81+/fvz6JFizh8+DB79+7l559/jn9MRETS0cSJsHkz+PqaYyffYuFWFG7cRM+ePfH09KRChQoUKFCA4OBgihYtysaNG4mJiaF+/fpUqlSJbt26kTt3bjw8PPD19WX9+vU888wzlC1blg8//JBRo0bRqFEjADp06EC5cuWoWbMmBQoUYOPGjSmqZebMmdSoUYPnnnuOOnXqYFkWS5cuJWvWrADExMQQEBBA+fLladiwIWXLlmXif6Pyvby86Nu3L5UrV47vOps7d276/NBERMQ4fhz69jXHw4dDsWL21nOXHJZlWXYXkZHCwsLw8/MjNDQUX1/fJI9duXKFoKAgSpUqRbZs2WyqUO6Wfo8iIqlgWfDss/DLL/B//wfr1oGH87V93Orz+3rOV72IiIhknG+/NcHGywumTXPKYJNatn4H69evp3HjxhQtWhSHw8HChQtv+5yoqCg++OAD7rnnHry9vSlZsiQzZsxI/2JFRETczfnzZmNMgH794L/lQlydrYv4RUREUKVKFd544w1efPHFFD2nefPmhISE8MUXX1C6dGlOnz5NbGxsOlcqIiLihnr0MAGnUiXo1cvuatKMreGmUaNG8YNXU2LZsmWsW7eOo0ePxm8FoBVsRURE7sCyZfDVV2ZW1PTpplvKTbhUx9rixYupWbMmI0aMoFixYpQtW5aePXvecu+hqKgowsLCktxuJ5ONsXY7+v2JiNxGeDh07GiOu3aFBx+0t5405lJ7Sx09epQNGzaQLVs2FixYwPnz53n77bf5559/brpz9LBhwxg0aFCKXj9uqnJkZCTZs2dPs7olY0X+t9Fp3O9TRESu06+fmf59zz0weLDd1aQ5p5kK7nA4WLBgAU2bNr3pNfXr1+e3337jzJkz+Pn5ATB//nz+97//ERERkWwgiYqKIioqKv5+WFgY/v7+N51Kdvr0aS5evEjBggXJkSMHDhdexCizsSyLyMhIzp49S+7cuSlSpIjdJYmIOJ/Nm6FOHTMF/JdfoGFDuytKkdRMBXeplpsiRYpQrFix+GADZrl/y7L4+++/KVOmzA3P8fb2xtvbO8VfI24H7LNnz959wWKL3Llzp2oncxGRTOPq1YQdv19/3WWCTWq5VLh55JFH+OGHHwgPDydnzpwAHDx4EA8PD4oXL54mX8PhcFCkSBEKFiyYou0GxLlkzZoVT09Pu8sQEXFOI0fC7t2QPz98/rnd1aQbW8NNeHg4hw8fjr8fFBREYGAgefPmpUSJEvTt25eTJ08ye/ZsAF577TUGDx5M27ZtGTRoEOfPn+e9997jjTfeSPMxMp6envqQFBER93HgAHz0kTkeM8YEHDdl62ypbdu2Ua1aNapVqwZAjx49qFatGv379wfM+Jfg4OD463PmzMnKlSu5ePEiNWvWpEWLFjRu3JixY8faUr+IiIhLiI013VFXr0KjRvDqq3ZXlK6cZkBxRknNgCQRERG3MHkydOoEPj6wd6+ZJeVitLeUiIiIGCdPJqw+PHSoSwab1FK4ERERcVeWBW+/DZcuwUMPQUCA3RVlCIUbERERdzVvHixeDFmzmi0WMslEGYUbERERd3ThAnTubI779oWKFe2tJwMp3IiIiLij996Ds2fh/vvh/fftriZDKdyIiIi4m1WrYMaMhB2/U7FSvztQuBEREXEnkZHw1lvm+O234ZFH7K3HBgo3IiIi7mTgQDhyBIoXN1O/MyGFGxEREXexYweMGmWOJ02CTLpYrcKNiIiIO7h2Ddq1M1stvPwyPPec3RXZRuFGRETEHXz+OQQGQp48ZmPMTEzhRkRExNUdPgwDBpjjzz+HQoXsrcdmCjciIiKuzLLgzTfhyhWoVw9atbK7Itsp3IiIiLiyGTNgzRrInh2mTDFr22RyCjciIiKu6vRp6NnTHA8eDPfea289TkLhRkRExFW98w5cvAg1akDXrnZX4zQUbkRERFzRwoVm129PT7PFQpYsdlfkNBRuREREXE1oKAQEmONevaBqVVvLcTYKNyIiIq6md284dQrKlIF+/eyuxuko3IiIiLiS9evNrCiAadPMLClJQuFGRETEVVy5Ah06mOMOHeDxx+2tx0kp3IiIiLiKIUPg4EEoUgRGjLC7GqelcCMiIuIK/vwThg83xxMmQO7ctpbjzBRuREREnF1MDLRvD9HR8OKL8MILdlfk1BRuREREnN3YsbB1K/j5wbhxdlfj9BRuREREnFlQEHz4oTkeORKKFrW3HhegcCMiIuKsLAs6doTISDMzql07uytyCQo3IiIizurrr2HFCvD2NmvaeOhjOyX0UxIREXFGZ89Ct27meOBAsxqxpIjCjYiIiDPq1g0uXIAqVeDdd+2uxqUo3IiIiDibJUvg229NN9T06ZA1q90VuRSFGxEREWdy6RJ06mSOu3eHmjXtrccFKdyIiIg4kw8+gBMn4N574aOP7K7GJSnciIiIOItNm2D8eHM8ZQrkyGFvPS5K4UZERMQZREWZLRYsC9q0gXr17K7IZSnciIiIOINPPoF9+6BgQfj0U7urcWkKNyIiInbbtw8+/tgcjx0L+fLZW4+LU7gRERGxU2ys6Y66dg2eew6aN7e7IpencCMiImKnSZPMQOJcucyxw2F3RS5P4UZERMQuwcHQp485/uQTKF7c3nrchMKNiIiIHSzLLNYXHg4PP2x2/5Y0oXAjIiJih+++g6VLwctLO36nMf0kRUREMto//8A775jjDz6AChXsrcfNKNyIiIhktHffhXPnoGLFhDE3kmYUbkRERDLSihXw5ZdmVtT06aZbStKUwo2IiEhGiYiAt94yx126wEMP2VuPm1K4ERERySj9+8OxY1CiBAwZYnc1bkvhRkREJCNs3QqjR5vjyZPNon2SLhRuRERE0tu1a2aLhdhYaNECGjWyuyK3pnAjIiKS3j79FP7802yI+fnndlfj9mwNN+vXr6dx48YULVoUh8PBwoULU/zcjRs3kiVLFqpWrZpu9YmIiNy1v/6CQYPM8ejRUKCAreVkBraGm4iICKpUqcKECRNS9byLFy/SqlUrnnrqqXSqTEREJA3ExsKbb0JUFDRoYLqkJN1lsfOLN2rUiEZ30O/YsWNHXnvtNTw9PVPV2iMiIpKhpk+H9evBx8cMItaO3xnC5cbczJw5k6NHjzJgwIAUXR8VFUVYWFiSm4iISLo7dQree88cf/wxlCxpazmZiUuFm0OHDtGnTx++/vprsmRJWaPTsGHD8PPzi7/5+/unc5UiIiJA584QFgYPPmiOJcO4TLiJiYnhtddeY9CgQZQtWzbFz+vbty+hoaHxtxMnTqRjlSIiIsCPP8KCBZAli+ma8vS0u6JMxdYxN6lx6dIltm3bxs6dO+n8XwKOjY3FsiyyZMnCihUrePLJJ294nre3N97e3hldroiIZFb//pvQUtOnD1SqZG89mZDLhBtfX192796d5NzEiRNZvXo18+bNo1SpUjZVJiIikkivXnDmDJQrBx98YHc1mZKt4SY8PJzDhw/H3w8KCiIwMJC8efNSokQJ+vbty8mTJ5k9ezYeHh488MADSZ5fsGBBsmXLdsN5ERERW6xZY7qhAKZNg2zZ7K0nk7I13Gzbto26devG3+/RowcArVu3ZtasWZw+fZrg4GC7yhMREUm5y5fNmjYAnTrBo4/aW08m5rAsy7K7iIwUFhaGn58foaGh+Pr62l2OiIi4iz59YPhwKFYM9u4FPz+7K3Irqfn8dpnZUiIiIk5r506zfxTAxIkKNjZTuBEREbkb0dFmx++YGGjWDJ5/3u6KMj2FGxERkbsxejTs2AF58sDYsXZXIyjciIiI3LkjR6B/f3M8ahQULmxvPQIo3IiIiNwZy4K33jKzpJ58Etq0sbsi+Y/CjYiIyJ2YNQtWrTJr2Uydqh2/nYjCjYiISGqdOQPvvmuOP/oI7rvP3nokCYUbERGR1Ora1ewhVb06dO9udzVyHYUbERGR1Fi8GL7/3uz0PX262flbnIrCjYiISEqFhcHbb5vjnj2hWjV765FkKdyIiIikVJ8+cPKkGWMzYIDd1chNKNyIiIikxIYNMGmSOZ42DbJnt7ceuSmFGxERkdu5cgU6dDDH7dpB3br21iO3pHAjIiJyO0OHwoEDZgXikSPtrkZuQ+FGRETkVnbvhmHDzPH48WYPKXFqCjciIiI3ExNjuqOio6FpU3jxRbsrkhRQuBEREbmZ8eNh82bw9TXH2mLBJSjciIiIJOfYMfjgA3M8YgQUK2ZrOZJyCjciIiLXsyzo2BEiIuCxxxJmSolLULgRERG53jffwPLl4O1tdvz20MelK9FvS0REJLFz58zGmAD9+0O5cvbWI6mmcCMiIpJY9+7wzz9QqRK8957d1cgdULgRERGJ88svMGeO6YaaPh2yZrW7IrkDCjciIiIA4eFmEDGYbqkHH7S3HrljCjciIiIAH34IwcFQsiQMHmx3NXIXFG5EREQ2b4axY83xlCng42NvPXJXFG5ERCRzu3oV2rc3a9u0agX169tdkdwlhRsREcnchg+HPXugQAH47DO7q5E0oHAjIiKZ1/79MGSIOR4zBvLls7ceSRMKNyIikjnFxpptFa5ehWefhVdesbsiSSMKNyIikjlNmQIbN0LOnDBxonb8diMKNyIikvn8/Tf07m2Ohw2DEiXsrUfSlMKNiIhkLpYFnTrBpUtQp445FreicCMiIpnLDz/Azz+brRWmTQNPT7srkjSmcCMiIpnHhQvQpYs5fv99qFjR3nokXSjciIhI5tGzJ5w9CxUqQN++dlcj6UThRkREModff4WZM82sqOnTwdvb7ooknSjciIiI+4uMhLfeMscBAWYgsbgthRsREXF/AwbA0aNQvDgMHWp3NZLOFG5ERMS9bd+esGfU5MmQK5e99Ui6U7gRERH3de2a2fE7NhZefdVssyBuT+FGRETc12efQWAg5M0Lo0fbXY1kEIUbERFxT4cOwcCB5vjzz6FgQVvLkYyjcCMiIu4nbsfvK1fg6aehZUu7K5IMpHAjIiLuZ8YMWLcOcuQwu39rx+9MReFGRETcy+nTZiVigCFDoFQpe+uRDKdwIyIi7qVLFwgNhVq14J137K5GbKBwIyIi7mPBAvjxR8iSRTt+Z2IKNyIi4h4uXjRbKwD06gVVqthajthH4UZERNxD795mvE3ZstCvn93ViI1SFW7Onj17y8ejo6PZsmVLil9v/fr1NG7cmKJFi+JwOFi4cOEtr58/fz5PP/00BQoUwNfXlzp16rB8+fIUfz0REXFT69bB1KnmeNo0yJbN3nrEVqkKN0WKFEkScCpVqsSJEyfi7//zzz/UScVOqxEREVSpUoUJEyak6Pr169fz9NNPs3TpUrZv307dunVp3LgxO3fuTPk3ISIi7uXKFbOmDZidvx97zN56xHZZUnOxZVlJ7h87doxr167d8ppbadSoEY0aNUrx9aOvWzp76NChLFq0iJ9++olq1aql+HVERMSNDB5sViMuUgSGD7e7GnECqQo3KeHIwIWSYmNjuXTpEnnz5r3pNVFRUURFRcXfDwsLy4jSREQkI+zaBSNGmOOJE8HPz956xCm49IDiTz/9lPDwcJo3b37Ta4YNG4afn1/8zd/fPwMrFBGRdBMdbXb8jo6Gl16Cpk3trkicRKrCjcPh4NKlS4SFhREaGorD4SA8PJywsLD4W0b55ptvGDRoEN9//z0Fb7EZWt++fQkNDY2/JR4jJCIiLmzsWNi2DXLnhnHj7K5GnEiqx9yULVs2yf3EY10sy8qQbqm5c+fSvn17fvjhB+rVq3fLa729vfH29k73mkREJAMdPQoffmiOP/3UjLcR+U+qws2aNWvSq44U+/bbb3njjTeYO3cuzz77rN3liIhIRrMs6NgRLl+GunXhjTfsrkicTKrCzeOPP56mXzw8PJzDhw/H3w8KCiIwMJC8efNSokQJ+vbty8mTJ5k9ezZguqJat27NmDFjqF27NmfOnAEge/bs+GkQmYhI5jB7Nqxcaday0Y7fkoxUjbmJjo5OMvMIICQkhEGDBtGrVy82bNiQqi++bds2qlWrFt+11aNHD6pVq0b//v0BOH36NMHBwfHXT506lejoaAICAihSpEj8rWvXrqn6uiIi4qJCQqB7d3M8cCCUKWNrOeKcHFYqFqZp27YtXl5eTJkyBYBLly5RsWJFrly5QpEiRdi3bx+LFi3imWeeSbeC71ZYWBh+fn6Ehobi6+trdzkiIpIar74Kc+dC1aqwZQtkzWp3RZJBUvP5naqWm40bN/LSSy/F3589ezYxMTEcOnSIXbt20aNHD0aOHHlnVYuIiNzKzz+bYOPpCV98oWAjN5WqcHPy5EnKJGoCXLVqFS+99FL8eJfWrVuzd+/etK1QRETk0iXo1Mkc9+gB1avbW484tVSFm2zZsnH58uX4+3/88Qe1a9dO8nh4eHjaVSciIgLQty/8/Tfce68ZayNyC6kKN1WrVuWrr74C4LfffiMkJIQnn3wy/vEjR45QtGjRtK1QREQyt40bzdYKYHb+zpHD3nrE6aVqKnj//v1p1KgR33//PadPn6ZNmzYUSbRw0oIFC3jkkUfSvEgREcmkoqLMjt+WBW3bwlNP2V2RuIBUr3Ozfft2VqxYQeHChWnWrFmSx6tWrcqDDz6YpgWKiEgmNmwY7N8PhQqZlYhFUiBVU8HdgaaCi4i4iL17oVo1uHYNvv8ervuDWjKX1Hx+p6rlZv369Sm67rHHHkvNy4qIiCQVE2N2/L52DZ5/Hv73P7srEheSqnDzxBNPxG+MebMGH4fDQUxMzN1XJiIimdfEifDHH5ArF0yYoC0WJFVSFW7y5MlDrly5aNOmDS1btiR//vzpVZeIiGRWwcFm6jfA8OFQvLi99YjLSdVU8NOnTzN8+HA2bdpEpUqVaNeuHb///ju+vr74+fnF30RERO6IZZnF+iIi4P/+D956y+6KxAWlKtx4eXnx8ssvs3z5cg4cOEDlypXp3Lkz/v7+fPDBB0RHR6dXnSIikhl89RUsXQpeXjBtGnik6mNKBEhluEmsRIkS9O/fn19//ZWyZcvyySefEBYWlpa1iYhIZhAdDQsWwBNPQOvW5ly/fnD//baWJa7rjsJNVFQU33zzDfXq1eOBBx4gf/78LFmyhLx586Z1fSIi4q4uXICRI6F0aXjxRVi3zmyK2bYt9Opld3XiwlI1oHjLli3MnDmTuXPnUrJkSdq2bcv333+vUCMiIim3dy+MGwezZ0PcfoX58pnxNZ06aQCx3LVULeLn4eFBiRIlaN26NTVq1Ljpdc8//3yaFJcetIifiIgNYmLMWJoxY2DVqoTzVapA167wyiuQPbt99YnTS83nd6rDze04+zo3CjciIhno4kWYORPGj4ejR805Dw944QV45x149FGtYSMpkm4rFMfGxt72msjIyNS8pIiIuKMDB0ygmTXLTOsGyJPHbIL59ttwzz22lifuLc3m2EVFRfHZZ59x7733ptVLioiIK4mNhV9+gYYNoXx5s7JwRARUrAhTp8Lff5tF+RRsJJ2lKtxERUXRt29fatasycMPP8zChQsBmDFjBqVKleLzzz+ne/fu6VGniIg4q0uXzADh+++HZ56B5ctNV1OTJmZ8ze7dpsUmRw67K5VMIlXdUv3792fKlCnUq1eP33//nWbNmtG2bVv++OMPPvvsM5o1a4anp2d61SoiIs7k8GHT9TRjhgk4AH5+0K4dBASAWvLFJqkKNz/88AOzZ8/m+eefZ8+ePVSuXJno6Gh27doVv6GmiIi4McuCX381s56WLjX3wbTavPMOtGwJOXPaW6NkeqkKN3///Xf8FPAHHngAb29vunfvrmAjIuLuwsPN1gjjxsH+/Qnnn33WhJp69bRVgjiNVIWbmJgYvLy8Ep6cJQs5ldBFRNxXUJAZGDx9OoSGmnO5cplVhDt3hjJl7K1PJBmpCjeWZdGmTRu8vb0BuHLlCh07dsTHxyfJdfPnz0+7CkVEJGNZFqxda7qeFi9O6HoqXRq6dIE2bUDrhIkTS1W4aR23odl/Xn/99TQtRkREbBQZCXPmwNixsGdPwvkGDUzXU8OG6noSl5CqcDNz5sz0qkNEROwSHAwTJ8K0aWYzSwAfH7NDd5cu2p1bXE6qwo2IiLgJy4ING0zX04IFZgE+gFKlTKBp2xZy57a1RJE7pXAjIpKZXLkC335rup4CAxPOP/WU6Xp69lnQemXi4hRuREQyg5MnYdIkmDIFzp8357JnN+vSdOkCDzxgb30iaUjhRkTEXVkWbNpkWml+/BGio835EiXMNO527SBvXntrFEkHCjciIu4mKgq+/96Emm3bEs4//rjpenr+eciit39xX/q/W0TEXZw5A5Mnm1tIiDnn7Q0tWpiup6pVbS1PJKMo3IiIuLqtW82sp++/h2vXzLlixeDtt+HNNyF/fnvrE8lgCjciIq7o6lUzjmbsWPjjj4TzDz8MXbvCCy9A1qz21SdiI4UbERFXcvYsTJ1qFt07fdqc8/KCV14xXU81a9pbn4gTULgREXEFO3earqdvvzWtNgCFC0OnTvDWW1CokL31iTgRhRsREWcVHW1WDx471qwmHOfBB03X0//+Z1ptRCQJhRsREWdz/jxMnw4TJsDff5tzWbJA8+ZmKnft2vbWJ+LkFG5ERJzFn3+aVpo5c8w2CQAFCkDHjuZWtKi99Ym4CIUbERE7xcTA4sUm1Kxdm3C+enXT9dS8OWTLZlt5Iq5I4UZExA7//gtffAHjx8Px4+acpye89JLpenr4YXA47K1RxEUp3IiIZKR9+0wrzVdfQWSkOZcvn1ls7+23oXhxe+sTcQMKNyIi6S0mBpYuNaHm118TzleubLqeXn3V7NAtImlC4UZEJL2EhsLMmTBuHBw9as55eEDTpqbr6bHH1PUkkg4UbkRE0tpff5lAM2sWRESYc7lzQ4cOpuupZEkbixNxfwo3IiJpITYWli83XU/LliWcr1jRtNK0aAE+PvbVJ5KJKNyIiNyNS5fgyy9NS83Bg+acwwGNG5tQ8+ST6noSyWAKNyIid+LwYTONe8YME3AAfH2hXTsICID77rO3PpFMTOFGRCSlLMvMdho7FpYsMfcBypUzO3K3bg05c9pbo4go3IiI3FZEhFmXZuxY2L8/4fwzz5iup6efNrOgRMQp2Pqvcf369TRu3JiiRYvicDhYuHDhbZ+zdu1aqlevjre3N6VLl2bWrFnpXqeIZFLHjkHPnmZhvU6dTLDJmdO00vz1l2m9adBAwUbEydj6LzIiIoIqVaowYcKEFF0fFBTEs88+S926dQkMDKRbt260b9+e5cuXp3OlIpJpWBasWQMvvGDGzYwaBRcvQunSMGYMnDxpWnDKlrW7UhG5CVu7pRo1akSjRo1SfP3kyZMpVaoUo0aNAqB8+fJs2LCBzz//nAYNGiT7nKioKKKiouLvh4WF3V3RIuKeIiPhm29McNm9O+F8/fqm66lRI7XQiLgIl/qXumnTJurVq5fkXIMGDdi0adNNnzNs2DD8/Pzib/7+/uldpoi4khMnoE8f8Pc3i+zt3g05cphuqL17zdo1zz6rYCPiQlzqX+uZM2coVKhQknOFChUiLCyMy5cvJ/ucvn37EhoaGn87ceJERpQqIs7MsuC336BZMyhVCoYPhwsXzMrBo0bB33/DxIlQoYLdlYrIHXD72VLe3t54e3vbXYaIOIMrV2DuXNP1tHNnwvknnzRdT889B56e9tUnImnCpcJN4cKFCQkJSXIuJCQEX19fsmtHXRG5mZMnYdIkmDIFzp8357Jlg5YtzcynSpXsrU9E0pRLhZs6deqwdOnSJOdWrlxJnTp1bKpIRJyWZcEff5hWmnnzIDranPf3NysIt28P+fLZW6OIpAtbw014eDiHDx+Ovx8UFERgYCB58+alRIkS9O3bl5MnTzJ79mwAOnbsyPjx4+nVqxdvvPEGq1ev5vvvv2fJkiV2fQsi4myiouCHH0yo2bo14fyjj0LXrtCkCWRxqb/rRCSVbP0Xvm3bNurWrRt/v0ePHgC0bt2aWbNmcfr0aYKDg+MfL1WqFEuWLKF79+6MGTOG4sWLM3369JtOAxeRTObHH02rTFz3tbc3vPaa6XqqVs3e2kQkwzgsK25zlMwhLCwMPz8/QkND8fX1tbscEUkr33xjxtDExkLRoibkdOgABQrYXZmIpIHUfH6rbVZEXN/XX5tNK2Nj4Y03YPJkyJrV7qpExCYutc6NiMgNZs+GVq1MsGnfHqZNU7ARyeQUbkTEdX35JbRpY2ZGvfmmmeqtlYRFMj29C4iIa5oxA9q2NcGmUyezjo2CjYigcCMirmj6dGjXzgSbgACYMEHBRkTi6d1ARFzL1KlmFhSYKd7jxoHDYW9NIuJUFG5ExHVMngxvvWWOu3aFMWMUbETkBgo3IuIaJk40Y2sAuneHzz9XsBGRZCnciIjzGz/ejK0B6NkTRo1SsBGRm1K4ERHnNmaMGVsD0KsXjBihYCMit6RwIyLO6/PPoVs3c9y3L3zyiYKNiNyWwo2IOKdRo+C/zXT54AP4+GMFGxFJEYUbEXE+I0easTUA/fvD4MEKNiKSYgo3IuJcPvnEjK0BGDgQBg1SsBGRVFG4ERHnMXSoGVsDJtQMGGBvPSLikhRuRMQ5DB5sxtYADBliuqNERO6Awo2I2G/QoIQwM3RoQsgREbkDWewuQEQyMcsy42o++sjcHz48YbyNiMgdUrgREXtYlmmtGTLE3E88Q0pE5C4o3IhIxrMs+PBD0wUFSde0ERG5Swo3IpKxLMvMiBo+3NxPvAqxiEgaULgRkYxjWdC7t+mCAhg7NmHfKBGRNKJwIyIZw7LMmJrPPjP3E+/0LSKShhRuRCT9WZYZUzN6tLk/cSJ06mRrSSLivhRuRCR9WZYZUzN2rLk/eTK89ZatJYmIe1O4EZH0Y1nwzjumCwpg6lTo0MHemkTE7SnciEj6iI2Fzp1h0iSz8eX06fDGG3ZXJSKZgMKNiKS92Fh4+22YMsUEmxkzoE0bu6sSkUxC4UZE0lZsLHTsCNOmmWAzaxa0amV3VSKSiSjciEjaiY2FN9+EL74ADw/48kt4/XW7qxKRTEbhRkTSRkyMGSw8c6YJNl99Ba+9ZndVIpIJKdyIyN2LiYF27UxLjYcHzJkDr7xid1Uikkkp3IjI3YmJgbZtTUuNpyd88w00b253VSKSiSnciMidi46G1q1NoPH0hLlz4X//s7sqEcnkFG5EgGvX4ORJOHUKfHygUCHInx+y6F/IzUVHm1lQ335rflDffQcvvmh3VSIiCjfi/iwL/v0XgoMTbk2bQvHi5vEJE8zG1JaV9HkOhwk4M2fCs8+ac3v2wM8/Q+HCJgDF3QoWhKxZM/Tbsld0tJkF9d13Jtj88IP5oYqIOAGFG3F5UVHw998mYOTKZc4tX242nz5xwoSZiIikz7nnnoRwky+fCTZeXlCsmLn2/Hkzq/ncOciePeF5v/8OffsmX0fevGY87XPPmfu7d8NPPyUNQXE3b++0/RlkqGvXoEULE2iyZjX/bdLE7qpEROIp3IjLOHgQli41YSUutAQHw5kz5vHFi6FxY3N88SKsWJH0+QULQokS5pY7d8L5556D06fN4x4e5lxMjAk4ISFw770J1953n+mJCQlJuJ09a66/cAFy5Ei4dtMm+OCD5L8XPz/4+uuEIPTnn6b+5IJQ4nBlu2vX4NVX4ccfTRqcNy/hhy4i4iQUbsRWUVFw/HjSsJL4NmYMNGxort2xA7p3T/51smc3gSZOnTpmxf+4MFO8+M1DQs6c5paYp2dCuEjsqafMLbHYWBNsQkJMi1Cc0qXNjgPXB6Fr1yA01IztibNpE/Trl3x9uXKZ8bpxQSgwEBYtSj4IXf99pKmrV8307gULTLCZPz+hv05ExIko3Ei6iY01H+bXB5YWLaBWLXPNggWmIeBmjhxJOK5QAZo1SwgsiW/58pkxMnFKlDCzkzOCh4cZm5M/f9LzTz5pbonFjf8JCTE1xilTxiwTkzgIhYSY8HfpUkJ3G5ggNHBg8rXkyGGGwcQFoZ07YeHC5INQrlxJf2a3dPWqmd69aJHpU1uwABo1SuGTRUQylsKN3LHw8IQWl/vvT2i1WL3aLFR74oRppbhemTIJ4aZECdOCUaKEef71oaVixYTnVa4M33+f/t9XenI4zNicvHmTnr9ZEAoLMyEnbnwQmJ91hw43BqHLlyEy8sYg9NFHydeSLZsZLhMXhHbsMI0xNwSh3FHkfrMZjp9+MsFm0SJo0ODufxgiIulE4UaSFRNjJsTEDXw9cADGj09ofTlxwnTFxBk/HgICzHG2bHD0qDn28ICiRZMGlmrVEp5Xp45pmUhxC0Im4nCYsTl+fknP161rbtcLDzchp0iRhHMVKpg9LK8PQuHhcOUK+PomXPvHH/Dxx0lf04sofuQlnmMJMV7Z8Fy8COrXZ9s2M+wmuRahvHkTxi6JiNhB4SYTu3jRzP65foBucLCZfTR6dEJguXDBTJm+np+fCSyJx7NUrgzr15vzRYveeoq0Qk3aSW7s0BNPmNv1IiNNyClcOOFcxYrm9x0XgP49fYVRx16kfvQvRJKdI58splL9egBs3gyffJJ8HVmymF6ruBahLVtuHoTy5TPjm0RE0pLCjRu6ds0sRpdcaGnZEl5+2Vy3b9+tx4MGBycclyljpkAnboHx97+xVQHMB+yjj6bt9yRpK0cOKFUq6bnHHzc3wDTrNG0Kh5djZc/OpS9+pnTThH6zBx4wawNd3yL077+mxS9PnoTX3bwZRoxIvg4PD9PLFReENm82XWXJBaECBbSoooikjN4qXIxlmRaXxIGlWjV4+GHz+Nat8NBDZjBvcipWTAg3JUtC1arJD9AtUSLpX/UFCsDQoen4jYnzuHzZrFuzciXkyIFjyRIKXdf8kyQIJXL1qhlEnnhwdZUq0K3bjUEobi2hxEFoyxYYNSr5shwOM10+Lgj98YcZg3V9CCpa1PxXrYIimZfCjZO5etVsA+Dtbd6kwYxfefvthJaY8PCkz+nVKyHcFCliPjCyZjUtK9cHlriBvGBef+fOjPm+xEVERppg8+uvZqT30qXw2GMpfrqXV9LBz2CentxLXLtmFknMly/hXLVq8O67Nwahc+fM/9eJB2Jv2QKff558HQUKwOzZCcsIXL1q/k0o8IhkDgo3NrlwwSzilniAbnCwWUzOskxgGT7cXOvlZVbcTaxAgYTAUqFCwvmiRU2XVKFCGtQpqRQZaRbkW73a9C0uXZqu/YtZsyYE+Dj/93/mdr24RRUTL75YvTq8917SEHTmjGk5Oncuacvj9Onw/vsmPFWrZp5bvTqUK6cxPyLuSOEmDUWHRhB01ifZsS7BwaY7aNAgc21kJHTtmvzrZMtm1jeJU6SIeXOOmyrt73/zBek8PJLOlhFJkYgI09+zdq0JNsuWwSOP2F1VvLhFFRO7WRC6fNnsAZZ4GYGdO83CiWvXmluc7NlNt9lXX5lFF0XEPTgs6/rtAt1bWFgYfn5+hIaG4pt4Huzdio7mWsWqzD9YkfcZylHuu+GSV14xGyiD+Uv01VeT7zrKn1/N55KBwsPNyPL1680iOcuWJfRzuolr12D/frOWT9wtMDBhz7HQ0IRp8X36mK074lp3qlc3MwATb60hIhkvNZ/fCjdpZd06rLp1cVgWV8nKkhKdWP9YP/KWzR8fWkqXNmFGxGlcumSCzW+/mU/35cvNiPRMICYGDh82oSfxhuZPPAHr1iW91sPDLJ5YvTpMnepk+32JZBKp+fx2ilEZEyZMoGTJkmTLlo3atWuzZcuWW14/evRoypUrR/bs2fH396d79+5cuXIlg6q9iccfxxEYiNWwIV5c44XgsXy++D76ZRlG6+aXqVtXwUaczKVLZguF334zc/pXrsw0wQZMV1e5ckmDDZid3X/80Wx62qiR6Q6LjTVLJ6xYYbqN47z9ttmV4pNPzGPnzmXotyAiN2PZbO7cuZaXl5c1Y8YMa+/evVaHDh2s3LlzWyEhIcleP2fOHMvb29uaM2eOFRQUZC1fvtwqUqSI1b179xR9vdDQUAuwQkND0/LbSGrlSsuqVs2yzNhgyype3LJmzrSs6Oj0+5oiqREaalkPP2z+/8yd27K2bLG7Iqd26pRl/fyzZX39ddLzxYol/DOPu/n7W9bzz1vWiBH21CrirlLz+W17t1Tt2rWpVasW48ePByA2NhZ/f3+6dOlCnz59bri+c+fO7N+/n1WrVsWfe/fdd9m8eTMbNmy44fqoqCiiEo3ODQsLw9/fP+27pa4XG2sG2Lz/fsJqeJUqmdXMGjTQoBqxT2iomSP9xx9mkZmVK6FGDburcjmWBatWJR3Hc+hQwuOPPAKJ35I6dDCzHOPG8ZQqpbcBkdRITbeUrbOlrl69yvbt2+nbt2/8OQ8PD+rVq8emTZuSfc7DDz/M119/zZYtW3jwwQc5evQoS5cupWXLlsleP2zYMAbFTVHKSB4eZvvrl14y+xYMGQK7d5t27qeeMiGnevWMr0syt4sXTbjessUEm19/1f+Hd8jhgHr1zC1OWBjs2mWCTuL1eyIi4IsvTCCK4+dnfvTVqpm3hGeeybjaRdydrS03p06dolixYvz+++/UqVMn/nyvXr1Yt24dmzdvTvZ5Y8eOpWfPnliWRXR0NB07dmTSpEnJXmtby831LlwwS/yOG2dWFAMTfoYMMUsFi6S3ixehfn2zjHXevCbYJN7FVNJNeDjMmZPQwvPnnwlvAwCtWpmxPmC2r3j3XTNFvXp1s46Vl5c9dYs4E5dpubkTa9euZejQoUycOJHatWtz+PBhunbtyuDBg+nXr98N13t7e+Mdt7W1nfLmhU8/hc6d4cMPzTvdnDlmI5133jHdV4nXoRdJS//+C08/Ddu3myaFVavMp6dkiJw54a23Eu5fu2YGKO/YYdbgSbyC84EDMHZswn0vL9OjHdedVbeuGQgtIjdna8vN1atXyZEjB/PmzaNpoikLrVu35uLFiyxatOiG5zz66KM89NBDjBw5Mv7c119/zZtvvkl4eDget1mWN92mgqfW9u1mGeLVq839PHnM9IyAgKTTMUTu1oULJtjs2GEWUVq1yizcIk4pKAgmTkxo5bl4MenjH30EcX/HhYSYoX3Vq5t94ux8SxNJby4zFdzLy4saNWokGRwcGxvLqlWrknRTJRYZGXlDgPH8b/10m8dGp06NGqZb4JdfzJ9l//4LPXuaxTTmzLn5zpciqfHPP2ZAx44dZjTrmjUKNk6uVCkYOdJk0AsXzN5y8+aZxt1GjZKur7hpE3TvbjYx9fODsmXNSujDh5tx4qGh9n0fIrZKx1lbKTJ37lzL29vbmjVrlrVv3z7rzTfftHLnzm2dOXPGsizLatmypdWnT5/46wcMGGDlypXL+vbbb62jR49aK1assO677z6refPmKfp6GTIVPLWioy1rxoyk80qrVbOsX3+1uzJxZefOWVaVKub/p4IFLWvPHrsrkjS2Zo1lNWlipp9fPyUdLOubbxKuPXLEsn76ybJOnrSs2Fi7Kha5c6n5/LZ9zM3LL7/MuXPn6N+/P2fOnKFq1aosW7aMQv9tJBMcHJykpebDDz/E4XDw4YcfcvLkSQoUKEDjxo35+OOP7foW7p6nJ7Rta/7kGjMGhg0zHfH16pkpu8OH669tSZ1z50yLze7dZhW61auT7rAqbuGJJ8wNzMaiO3cmnZqeeCLc/Plmo1GAggWTbi9RvbqZ16Cp6eIubF/nJqM5zZibWzl3zsyimjjRTJ1wOKB1axg8GIoXt7s6cXZnz5pgs2eP2Rp7zRrT3SmZ2qRJZlWK/fuT7/XesgVq1TLHhw+bt54yZbRrujgP7S11Cy4RbuIcPmwGGX//vbmfLRt062Z29vPzs7U0cVIhIfDkk2YqTpEiJthoao0kEhlpGvQSt/AcOGCGZ8XNZejYEaZMAR8fM1C5WrWEFp4KFSBrVlu/BcmkFG5uwaXCTZzNm0178m+/mfv58kH//uYdSAtgSJwzZ0yw2b8fihUzwaZMGburEhcQHQ1ZEg1S6NABvvnGBKHreXubxuVcucz9v/82b0naTFTSm8LNLbhkuAEzPvCnn6B3b/NnFsC995rxOc2aqbM8szt92gSbAwdM1+WaNWYbepE7FBMDBw8mtO7EjefJk8dMV49Trx6sXWtadBK38FStmhCARNKCws0tuGy4iRMdDTNmwIAB5i91gAcfNHNHE68EJpnHqVNmZbeDB83W82vWwH332V2VuCHLMq02BQsmnCtfPuHvrcQcDqhd20xXjxMZCTlypH+d4p5cZp0buQNZssCbb5od+gYNMp3iW7aYhS6ef96MtZDM4+RJM13m4EEoUcL8Ca1gI+nE4UgabMC85fz9NyxeDAMHQpMmJmNbllmZObGKFc2srBdfNPMjliwxjY4iaU0tN64uJMSEnKlTTTuyhwe0a2fOFSlid3WSnv7+27TYHD4M99xjgo32KRMnce6cWV05btjXxYtmF5rkPnEKF4bXXoNRoxLOxcaatzOROGq5yUwKFTJTxvfsgaZNzTvCtGlmvMWAAXDpkt0VSnoIDjatdYcPm0Czbp2CjTiVAgWSjmfPndssxL52LXz2Gbz+umnJ8fAwPeyJBy9HRJhWnypVzPJfAwbA3LkQGJj8IGeR66nlxt1s2GBmVv3xh7lfsKBpK27fXvM33cXx46bFJijIDCpfs8Z0SYm4oMhIs0t6rlwm7IAZvJx4AcLEHA6za3rc9oJXr5pxPfffb97uNLfCfWlA8S24fbgB0+47f75ZD+fwYXOubFn45BPTuqN//a7r2DETbI4dM2Nr1qwxAxxE3EhMjPlf/MCBpLf9+816PCNGJKy2vGeP2Z4PzEyu++83t/LlzX9r1ICiRW37ViQNKdzcQqYIN3GuXTNjcQYNMh3gYHbdGzky6e574hqCgkywOX7cdDuuWaMVqyXTOX/edGXlzWvub9hgFnAPCkp+PM/HH5tNR8EMU5syJSEAlSt346BncV4KN7eQqcJNnLAwE2hGjYLLl825l16CoUNNi444v6NHTbAJDja/s9WrzUJ9IgKYt7ZDhxJaeOJaez76CBo3NtcsXmxmcyXm75/Q0vP66wlbUIjzUbi5hUwZbuKcPGnG38yYYQYeZ8kCb71lVju+fn6nOI8jR8x077//Nn9qrl6tdnaRO7B1K0yfnhB8zp5N+vjcuWYAM8CqVabFJ657K+6/996r4Yt2Ubi5hUwdbuLs3WvG4/z8s7mfM6dZ+bh7d7NujjiPQ4dMi83Jk+addfVqTfEXSSMXLiQd0/PWWwnLRH32mRm4fL2sWU2v8KRJZsIimMZxgMz6kZJRFG5uQeEmkTVrzKi87dvN/SJFTBtumzZJN5oRexw8aILNqVNmbfvVq83UfxFJdydOmG39ru/mipuKvm2bGawMMG4cvPOO6Sm+fkDz/febhlbN47h7Cje3oHBzndhYs+v4++8nbBhTsSIMHw7PPKN/kXb56y8TbE6fNr+PVasUbERsFhtreocPHIBHH03YLLRXr4Sp6cnZuDFhDseOHWYm2P33mxYg7X2ccgo3t6BwcxNRUaaddfBg01YLZpzHiBEaYZfR9u83m2CeOWPmuP76q8ZEiTi5ixdvnLp+4IBZjePs2YTZXd27w+jR5tjT03SDJW7pefFFdW/djMLNLSjc3MbFi2Y9nNGjTeABeOUVM5/y3nvtrCxz2LfPBJuQEKhc2QSbAgXsrkpE7tDVq0lbZz791DSW798P4eE3Xh8SkvC3zNSpZlXmuO6t++83qz9k1m0pFG5uQeEmhYKDoV8/+Oors3hE1qwQEAAffgj58tldnXvasweeesr8mVe1KqxcCfnz212ViKQDyzLD6RKP6TlxAhYuTBgN0LhxwryPODlyJASdadMSdlm3LPcfRaBwcwsKN6kUGGhmUq1YYe77+UHfvmb0XFyHs9y93btNsDl3DqpVM8FGIVIkU1u8OOmg5kOHIDraPJYrF4SGJgSaZs1ubOWJ6+qK6xJzdQo3t6Bwc4dWrDCj5nbtMveLF4chQ8yqV56e9tbm6v780wSb8+fN9IsVK9zn3UhE0sy1a2bex/79ZhPSNm0SHqtQwZxPzj33mOfFBaHAQLORaYkSrtXFpXBzCwo3dyE2FubMgQ8+MO2nYMaFjBgBDRrYW5urCgyEevXMhjk1a5pgkyeP3VWJiIs5ffrGfbjiurqqVDFvNXGqVDF/U2XPbtYFTdzaU6FCwl5dzkbh5hYUbtLAlSswdqzZviE01Jx7+mkTcqpWtbU0l7Jzpwk2Fy6YGWkrVpg/p0RE0kh4uOntLlXK3LcsqF3bNMJfvXrj9RUqmHVe43z2mekCi+vmsnMYoMLNLSjcpKF//jGzqMaPN+2lDofppho82LSDys1t324C4b//mnea5cvNeCYRkQwQHZ105/W4lp7774cvvjDXWJaZlp54Vle+fAlB55FHknaNpTeFm1tQuEkHQUGmq+rbb819b28z4LhvX3WxJGfbNhNsLl6EOnVg2TItbCEiTufyZbO+a1z4OX486eONG5tBz2CC0KOPmtWYK1SAAQPSfvaWws0tKNyko23bzHYOa9ea+3nymKnjAQEm8IjZue/pp0133sMPwy+/KNiIiEuIjDS7wsS18pQtCy1amMdCQqBwYXNcsmTCgvdpSeHmFhRu0pllmQ/sXr0SOm5LljTjc15+2bWG5qe1zZuhfn2zy97//R8sXWo6s0VEXFxkpPm79sAB8zbfrVvafw2Fm1tQuMkgMTEwaxb0729WqgIzzXnkSLNnUmazaZOZUXbpkmm7XbrU7MYuIiIpkprP70z8Z7SkK09PaNfOtGEOGWJaKLZvN1sLPPusWY03s/j994Rg8/jjCjYiIulM4UbSl4+PGWx8+DB07gxZspgP9ypVTPg5edLuCtPXhg0JwaZuXViyRMFGRCSdKdxIxihYEMaNMxtD/u9/ZkHAGTOgTBkTfsLC7K4w7a1fDw0bmnmUTz1lNonx8bG7KhERt6dwIxmrTBn44QfTVfPII2au4dChcN99Zr2c5FaVckXr1kGjRhARYWZH/fRTwg53IiKSrhRuxB516sBvv5ktcMuVM/sqdekCFSvCvHlm1pWrWrMGnnnGTB+oXx8WLdImoyIiGUjhRuzjcECTJmZw8eTJUKiQGZvTrJkJPxs22F1h6q1aZQZMR0aaLikFGxGRDKdwI/bLkgXeegsOHTLLWubIYdaEefRRaNrULJzgCn79FZ57znS1PfMMLFgA2bLZXZWISKajcCPOI1cuGDjQtN689ZaZTr5oETzwAHTqBGfO2F3hza1YYdYiv3LFBJz58xVsRERsonAjzqdIEdNNtXu36baKiTH3S5eGQYOS7uLmDJYtg+efN8Hm+efNmCFtNyEiYhuFG3Fe5cubAcfr15udsyMiTMtO6dIwZYrZ1tZuS5eaABYVZbrQfvhBwUZExGYKN+L8Hn3UbF/w/fdmynhICHTsCJUqmW4ru2ZW/fwzvPCCmb7+4oumPi8ve2oREZF4CjfiGhwOM4tq3z4YOxby5zcDjZs2hccegz/+yNh6fvrJBJqrV+Gll2DuXMiaNWNrEBGRZCnciGvx8jLr4Rw+DO+/bwbtbthgpo43a2ZmXKW3RYtMoLl2zXzNb79VsBERcSIKN+Ka/Pzg449NmHnjDdOyM28eVKgA77wD586lz9ddsMBsH3HtGrzyCnzzjYKNiIiTUbgR11a8OHzxBezaZbY7iI42e1jdd5/Z1iEyMu2+1o8/QvPm5mu89hp89ZVZo0dERJyKwo24h0qVzMylX3+F6tXNLtwffGD2spoxw0wnvxs//AAvv2yCzeuvw+zZCjYiIk5K4Ubcy1NPwdatMGcO3HMPnDoF7dpB1aom/NzJzKrvvoNXXzUBqWVLmDXLLDAoIiJOSeFG3I+Hh+k2+usvGDUK8uQx+1c9+6wJP9u3p/y1vv3WvFZMDLRpAzNnKtiIiDg5hRtxX97e0KMHHDkC771n7q9ZAzVrQosWEBR06+fPmWO6oGJjzaDlL75QsBERcQEKN+L+8uSBESNMS87rr5tz33wD998P774LFy7c+JyvvoJWrUywad8epk0zLUIiIuL09G4tmcc995jQsmOH6Z66ehU++8zMrBo50uwNBfDll9C6tQk2b75ptnpQsBERcRl6x5bMp1o1WLnSbHhZuTJcvAi9ekG5ctC9O7RtawYed+wIkyYp2IiIuBi9a0vm5HBAgwamFWfWLLNeTnAwjB5tgs3bb8PEiQo2IiIuyCneuSdMmEDJkiXJli0btWvXZsuWLbe8/uLFiwQEBFCkSBG8vb0pW7YsS5cuzaBqxa14epouqIMH4ZNPoEQJ6N0bxo83AUhERFyO7auQfffdd/To0YPJkydTu3ZtRo8eTYMGDfjrr78oWLDgDddfvXqVp59+moIFCzJv3jyKFSvG8ePHyZ07d8YXL+4je3YTanr3trsSERG5Sw7LupNVzdJO7dq1qVWrFuPHjwcgNjYWf39/unTpQp8+fW64fvLkyYwcOZIDBw6Q9Q729AkLC8PPz4/Q0FB8fX3vun4RERFJf6n5/La1W+rq1ats376devXqxZ/z8PCgXr16bNq0KdnnLF68mDp16hAQEEChQoV44IEHGDp0KDE3WV4/KiqKsLCwJDcRERFxX7aGm/PnzxMTE0OhQoWSnC9UqBBnzpxJ9jlHjx5l3rx5xMTEsHTpUvr168eoUaMYMmRIstcPGzYMPz+/+Ju/v3+afx8iIiLiPJxiQHFqxMbGUrBgQaZOnUqNGjV4+eWX+eCDD5g8eXKy1/ft25fQ0ND424kTJzK4YhEREclItg4ozp8/P56enoSEhCQ5HxISQuHChZN9TpEiRciaNSueiZbBL1++PGfOnOHq1at4eXklud7b2xtvb++0L15ERESckq0tN15eXtSoUYNVq1bFn4uNjWXVqlXUqVMn2ec88sgjHD58mNjY2PhzBw8epEiRIjcEGxEREcl8bO+W6tGjB9OmTePLL79k//79dOrUiYiICNq2bQtAq1at6Nu3b/z1nTp14sKFC3Tt2pWDBw+yZMkShg4dSkBAgF3fgoiIiDgR29e5efnllzl37hz9+/fnzJkzVK1alWXLlsUPMg4ODsYj0Sqx/v7+LF++nO7du1O5cmWKFStG165d6a31SURERAQnWOcmo2mdGxEREdfjMuvciIiIiKQ1hRsRERFxKwo3IiIi4lYUbkRERMStKNyIiIiIW7F9KnhGi5scpg00RUREXEfc53ZKJnlnunBz6dIlAG2gKSIi4oIuXbqEn5/fLa/JdOvcxMbGcurUKXLlyoXD4UjT1w4LC8Pf358TJ05oDR0Xpd+ha9Pvz/Xpd+j60ut3aFkWly5domjRokkW901Opmu58fDwoHjx4un6NXx9ffWP0sXpd+ja9Ptzffodur70+B3ersUmjgYUi4iIiFtRuBERERG3onCThry9vRkwYADe3t52lyJ3SL9D16bfn+vT79D1OcPvMNMNKBYRERH3ppYbERERcSsKNyIiIuJWFG5ERETErSjciIiIiFtRuEkjEyZMoGTJkmTLlo3atWuzZcsWu0uSVFi/fj2NGzemaNGiOBwOFi5caHdJkgrDhg2jVq1a5MqVi4IFC9K0aVP++usvu8uSVJg0aRKVK1eOX/itTp06/PLLL3aXJXfok08+weFw0K1bN1u+vsJNGvjuu+/o0aMHAwYMYMeOHVSpUoUGDRpw9uxZu0uTFIqIiKBKlSpMmDDB7lLkDqxbt46AgAD++OMPVq5cybVr16hfvz4RERF2lyYpVLx4cT755BO2b9/Otm3bePLJJ2nSpAl79+61uzRJpa1btzJlyhQqV65sWw2aCp4GateuTa1atRg/fjxg9q/y9/enS5cu9OnTx+bqJLUcDgcLFiygadOmdpcid+jcuXMULFiQdevW8dhjj9ldjtyhvHnzMnLkSNq1a2d3KZJC4eHhVK9enYkTJzJkyBCqVq3K6NGjM7wOtdzcpatXr7J9+3bq1asXf87Dw4N69eqxadMmGysTybxCQ0MB8+EoricmJoa5c+cSERFBnTp17C5HUiEgIIBnn302yWeiHTLdxplp7fz588TExFCoUKEk5wsVKsSBAwdsqkok84qNjaVbt2488sgjPPDAA3aXI6mwe/du6tSpw5UrV8iZMycLFiygQoUKdpclKTR37lx27NjB1q1b7S5F4UZE3EtAQAB79uxhw4YNdpciqVSuXDkCAwMJDQ1l3rx5tG7dmnXr1inguIATJ07QtWtXVq5cSbZs2ewuR+HmbuXPnx9PT09CQkKSnA8JCaFw4cI2VSWSOXXu3Jmff/6Z9evXU7x4cbvLkVTy8vKidOnSANSoUYOtW7cyZswYpkyZYnNlcjvbt2/n7NmzVK9ePf5cTEwM69evZ/z48URFReHp6Zlh9WjMzV3y8vKiRo0arFq1Kv5cbGwsq1atUl+xSAaxLIvOnTuzYMECVq9eTalSpewuSdJAbGwsUVFRdpchKfDUU0+xe/duAgMD4281a9akRYsWBAYGZmiwAbXcpIkePXrQunVratasyYMPPsjo0aOJiIigbdu2dpcmKRQeHs7hw4fj7wcFBREYGEjevHkpUaKEjZVJSgQEBPDNN9+waNEicuXKxZkzZwDw8/Mje/bsNlcnKdG3b18aNWpEiRIluHTpEt988w1r165l+fLldpcmKZArV64bxrj5+PiQL18+W8a+KdykgZdffplz587Rv39/zpw5Q9WqVVm2bNkNg4zFeW3bto26devG3+/RowcArVu3ZtasWTZVJSk1adIkAJ544okk52fOnEmbNm0yviBJtbNnz9KqVStOnz6Nn58flStXZvny5Tz99NN2lyYuSOvciIiIiFvRmBsRERFxKwo3IiIi4lYUbkRERMStKNyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsRcTtt2rShadOmdpchIjZRuBGRO9KmTRscDscNt4YNG9pdGmPGjHGabTMcDgcLFy60uwyRTEV7S4nIHWvYsCEzZ85Mcs7b29umaiAmJgaHw4Gfn59tNYiI/dRyIyJ3zNvbm8KFCye55cmTh7Vr1+Ll5cVvv/0Wf+2IESMoWLAgISEhgNnksnPnznTu3Bk/Pz/y589Pv379SLzdXVRUFD179qRYsWL4+PhQu3Zt1q5dG//4rFmzyJ07N4sXL6ZChQp4e3sTHBx8Q7fUE088QZcuXejWrRt58uShUKFCTJs2jYiICNq2bUuuXLkoXbo0v/zyS5Lvb8+ePTRq1IicOXNSqFAhWrZsyfnz55O87jvvvEOvXr3ImzcvhQsXZuDAgfGPlyxZEoAXXngBh8MRf19E0pfCjYikuSeeeIJu3brRsmVLQkND2blzJ/369WP69OkUKlQo/rovv/ySLFmysGXLFsaMGcNnn33G9OnT4x/v3LkzmzZtYu7cufz55580a9aMhg0bcujQofhrIiMjGT58ONOnT2fv3r0ULFgw2Zq+/PJL8ufPz5YtW+jSpQudOnWiWbNmPPzww+zYsYP69evTsmVLIiMjAbh48SJPPvkk1apVY9u2bSxbtoyQkBCaN29+w+v6+PiwefNmRowYwUcffcTKlSsB2Lp1K2B2Jz99+nT8fRFJZ5aIyB1o3bq15enpafn4+CS5ffzxx5ZlWVZUVJRVtWpVq3nz5laFChWsDh06JHn+448/bpUvX96KjY2NP9e7d2+rfPnylmVZ1vHjxy1PT0/r5MmTSZ731FNPWX379rUsy7JmzpxpAVZgYOANtTVp0iTJ1/q///u/+PvR0dGWj4+P1bJly/hzp0+ftgBr06ZNlmVZ1uDBg6369esned0TJ05YgPXXX38l+7qWZVm1atWyevfuHX8fsBYsWHCTn6KIpAeNuRGRO1a3bl0mTZqU5FzevHkB8PLyYs6cOVSuXJl77rmHzz///IbnP/TQQzgcjvj7derUYdSoUcTExLB7925iYmIoW7ZskudERUWRL1+++PteXl5Urlz5trUmvsbT05N8+fJRqVKl+HNxLUpnz54FYNeuXaxZs4acOXPe8FpHjhyJr+v6r12kSJH41xAReyjciMgd8/HxoXTp0jd9/PfffwfgwoULXLhwAR8fnxS/dnh4OJ6enmzfvh1PT88kjyUOHNmzZ08SkG4ma9asSe47HI4k5+JeIzY2Nv7rN27cmOHDh9/wWkWKFLnl68a9hojYQ+FGRNLFkSNH6N69O9OmTeO7776jdevW/Prrr3h4JAz127x5c5Ln/PHHH5QpUwZPT0+qVatGTEwMZ8+e5dFHH83o8qlevTo//vgjJUuWJEuWO3+rzJo1KzExMWlYmYjcjgYUi8gdi4qK4syZM0lu58+fJyYmhtdff50GDRrQtm1bZs6cyZ9//smoUaOSPD84OJgePXrw119/8e233zJu3Di6du0KQNmyZWnRogWtWrVi/vz5BAUFsWXLFoYNG8aSJUvS/XsLCAjgwoULvPrqq2zdupUjR46wfPly2rZtm6qwUrJkSVatWsWZM2f4999/07FiEYmjlhsRuWPLli1L0kUDUK5cOV577TWOHz/Ozz//DJhunKlTp/Lqq69Sv359qlSpAkCrVq24fPkyDz74IJ6ennTt2pU333wz/rVmzpzJkCFDePfddzl58iT58+fnoYce4rnnnkv3761o0aJs3LiR3r17U79+faKiorjnnnto2LBhktan2xk1ahQ9evRg2rRpFCtWjGPHjqVf0SICgMOyEi0qISKSQZ544gmqVq3K6NGj7S5FRNyMuqVERETErSjciIiIiFtRt5SIiIi4FbXciIiIiFtRuBERERG3onAjIiIibkXhRkRERNyKwo2IiIi4FYUbERERcSsKNyIiIuJWFG5ERETErfw/Ib37BekjVmgAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1104,7 +2095,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -1124,20 +2115,20 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE of LSTM forecasts is 2.875\n", - "The MSE of baseline ridge forecasts is 2.603\n" + "The MSE of LSTM forecasts is 1.786\n", + "The MSE of baseline ridge forecasts is 1.795\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLAElEQVR4nO3de1hU1f4/8PdmlMtwGURhBhQRpRRSUkAUrYQTClaGZVqpKepPzbQ09CvQTfGSWGraTe14BCsrrdTUPBiQaCqKSqSmkni4eOGW5hASqDP79wcxOXIRFGYzM+/X88zj2XvW3vszc0jerrX22oIoiiKIiIiIzJCF1AUQERERSYVBiIiIiMwWgxARERGZLQYhIiIiMlsMQkRERGS2GISIiIjIbDEIERERkdlqI3UBrZ1Wq8WlS5dgb28PQRCkLoeIiIgaQRRF/Pnnn3Bzc4OFRf39PgxCd3Dp0iW4u7tLXQYRERHdhfPnz6NTp071vs8gdAf29vYAqr9IBwcHiashIiKixigrK4O7u7vu93h9GITuoGY4zMHBgUGIiIjIyNxpWgsnSxMREZHZYhAiIiIis8UgRERERGaLc4SaiUajwY0bN6Qug6iWtm3bQiaTSV0GEVGrxCB0j0RRRFFREa5evSp1KUT1cnR0hEql4lpYRES3YRC6RzUhyMXFBXK5nL9oqFURRREVFRUoKSkBALi6ukpcERFR68IgdA80Go0uBLVv317qcojqZGNjAwAoKSmBi4sLh8mIiG7BydL3oGZOkFwul7gSoobV/IxyHhsRkT4GoWbA4TBq7fgzSkRUNw6NERER3UKjFZGRewUlf1bCxd4agZ5OkFnwHxOmikGIiIjob0knCxG34xQK1ZW6fa4Ka8wb5oPwnrzZwBRxaIxaVGRkJIYPH67bDg4OxqxZs+7pnM1xDiKi2yWdLMS0zzP1QhAAFKkrMe3zTCSdLJSoMmpJDEKtgEYrIv3cZXyXdRHp5y5DoxVb/JqRkZEQBAGCIMDS0hJeXl5YsGABbt682aLX3bJlCxYuXNiotmlpaRAEodYaTU05R0uZP38+evfuXe/7ubm5GD16NNzc3GBtbY1OnTohIiICZ86cQWJiou67r++Vl5eH+fPnQxAEhIeH1zr/u+++C0EQEBwc3HIfksiMaLQi4nacQl1/+9bsi9txyiB/P5NhcWhMYlJ2w4aHhyMhIQFVVVXYtWsXpk+fjrZt2yI2Nlav3fXr12Fpadks13RycmoV52hJN27cwODBg9G9e3ds2bIFrq6uuHDhAv773//i6tWrePbZZ/XCzdNPP42ePXtiwYIFun3Ozs4Aqtf92bNnDy5cuIBOnTrp3l+/fj06d+5suA9FZOIycq/U6gm6lQigUF2JjNwrCOrG5VJMCXuEJCR1N6yVlRVUKhU8PDwwbdo0hIaGYvv27brhrMWLF8PNzQ3du3cHAJw/fx6jRo2Co6MjnJycEBERgby8PN35NBoNoqKi4OjoiPbt22Pu3LkQRf1/Pd0+rFVVVYXo6Gi4u7vDysoKXl5e+M9//oO8vDyEhIQAANq1awdBEBAZGVnnOf744w+MGzcO7dq1g1wux9ChQ3H27Fnd+4mJiXB0dMTu3bvh7e0NOzs7hIeHo7Dwn+83LS0NgYGBsLW1haOjIwYOHIj8/Py7+l5//fVXnDt3Dh9//DH69+8PDw8PDBw4EIsWLUL//v1hY2MDlUqle1laWkIul+vtq1nrx8XFBUOGDMGGDRt05z948CB+//13PP7443dVHxHVVvJn/SHobtqR8WAQkkhr7Ia1sbHB9evXAQCpqanIzs5GcnIydu7ciRs3biAsLAz29vb46aefcODAAV2gqDlm+fLlSExMxPr167F//35cuXIFW7dubfCa48aNw5dffon3338fp0+fxtq1a2FnZwd3d3d8++23AIDs7GwUFhZi1apVdZ4jMjISR48exfbt25Geng5RFPHYY4/prZlTUVGBZcuW4bPPPsO+fftQUFCAOXPmAABu3ryJ4cOHY9CgQTh+/DjS09MxZcqUu77l3NnZGRYWFvjmm2+g0Wju6hy3mjhxIhITE3Xb69evx5gxY5qtl46IABd762ZtR8aDQ2MSaU3dsKIoIjU1Fbt378bLL7+M0tJS2NraYt26dbpftp9//jm0Wi3WrVunCwgJCQlwdHREWloahgwZgpUrVyI2NhZPP/00AGDNmjXYvXt3vdf97bffsHnzZiQnJyM0NBQA0LVrV937NUNgLi4ucHR0rPMcZ8+exfbt23HgwAEMGDAAALBx40a4u7tj27ZtGDlyJIDq4ao1a9agW7duAIAZM2bohqLKysqgVqvxxBNP6N739vZu+hf5t44dO+L999/H3LlzERcXh4CAAISEhGDMmDF6n6+xnnjiCbz44ovYt28f/P39sXnzZuzfvx/r16+/6xqJSF+gpxNcFdYoUlfW+Q9UAYBKUX0rPZkW9ghJpDV0w+7cuRN2dnawtrbG0KFD8eyzz2L+/PkAgF69eun1OPzyyy/IycmBvb097OzsYGdnBycnJ1RWVuLcuXNQq9UoLCxEv379dMe0adMGAQEB9V4/KysLMpkMgwYNuuvPcPr0abRp00bvuu3bt0f37t1x+vRp3T65XK4LOUD13Jua5285OTkhMjISYWFhGDZsGFatWqUbNisoKNB9Xjs7O7z99tuNqmv69OkoKirCxo0bERQUhK+//hoPPPAAkpOTm/wZ27Zti7FjxyIhIQFff/017r//fvj6+jb5PERUP5mFgHnDfABUh55b1WzPG+bD9YRMEHuEJNIaumFDQkKwevVqWFpaws3NDW3a/PPjYGtrq9e2vLwc/v7+2LhxY63z1EzsbaqaZ2AZQtu2bfW2BUHQm7+UkJCAV155BUlJSdi0aRPeeOMNJCcnIyAgAFlZWbp2TZmobW9vj2HDhmHYsGFYtGgRwsLCsGjRIgwePLjJ9U+cOBH9+vXDyZMnMXHixCYfT0R3Ft7TFavH+tW6gUXFdYRMGoOQRFpDN6ytrS28vLwa1dbPzw+bNm2Ci4sLHBwc6mzj6uqKw4cP45FHHgFQPffm2LFj8PPzq7N9r169oNVqsXfvXt3Q2K1qeqQammfj7e2Nmzdv4vDhw7qhscuXLyM7Oxs+Pj6N+mw1+vTpgz59+iA2NhZBQUH44osv0L9//0Z/Rw0RBAE9evTAwYMH7+r4Bx54AA888ACOHz+O0aNH33M9RFS38J6uGOyj4srSZoRDYxIxtm7YMWPGoEOHDoiIiMBPP/2E3NxcpKWl4ZVXXsGFCxcAADNnzkR8fDy2bduGM2fO4KWXXqq1BtCtunTpgvHjx2PixInYtm2b7pybN28GAHh4eEAQBOzcuROlpaUoLy+vdY777rsPERERmDx5Mvbv349ffvkFY8eORceOHREREdGoz5abm4vY2Fikp6cjPz8fP/zwA86ePXvHeUJ//fUXsrKy9F7nzp1DVlYWIiIi8M033+DUqVPIycnBf/7zH6xfv77RNdXlxx9/RGFhYb3zpYioecgsBAR1a4+I3h0R1K19q/l7mFoGg5CEarphVQr94S+Vwhqrx/q1qm5YuVyOffv2oXPnznj66afh7e2NSZMmobKyUtdDNHv2bLzwwgsYP348goKCYG9vj6eeeqrB865evRrPPPMMXnrpJfTo0QOTJ0/GtWvXAFRPOo6Li0NMTAyUSiVmzJhR5zkSEhLg7++PJ554AkFBQRBFEbt27ao1HNbQZztz5gxGjBiB+++/H1OmTMH06dMxderUBo/77bffdL1INa+pU6eiU6dO6NKlC+Li4tCvXz/4+flh1apViIuLw+uvv96omupSc2s/ERE1H0G8faEX0lNWVgaFQgG1Wl1rSKiyshK5ubnw9PSEtfXdz+XhA/6opTXXzyoRkbFo6Pf3rThHqBWo6YYlIiIiw2IQIiIyEuw9Jmp+DEJEREZAyucSEpkyTpYmImrlpH4uIZEpYxAiImrFWuNzCYlMCYMQEVEr1pTnEhJR0zEIERG1Yq3huYREpoxBiIioFWsNzyUkMmUMQtSiIiMjMXz4cN12cHAwZs2adU/nbI5zGIogCNi2bVu97+fl5UEQBL0HuxLdqua5hPXdJC+g+u6xlnwuIZEpYxAyU5GRkRAEAYIgwNLSEl5eXliwYAFu3rzZotfdsmULFi5c2Ki2aWlpEASh1vPKmnKOljJ//nzd9yeTyeDu7o4pU6bgyhX9eRqFhYUYOnSoRFWSKTC25xISGRsGodZAqwFyfwJOfFP9p7b+p603p/DwcBQWFuLs2bOYPXs25s+fj3fffbdWu+vXrzfbNZ2cnGBvby/5OZrDAw88gMLCQhQUFCAhIQFJSUmYNm2aXhuVSgUrKyuJKiRTYUzPJSQyNgxCUju1HVjZE9jwBPDtpOo/V/as3t/CrKysoFKp4OHhgWnTpiE0NBTbt2/XDWctXrwYbm5u6N69OwDg/PnzGDVqFBwdHeHk5ISIiAjk5eXpzqfRaBAVFQVHR0e0b98ec+fOxe2Psrt9WKuqqgrR0dFwd3eHlZUVvLy88J///Ad5eXkICQkBALRr1w6CICAyMrLOc/zxxx8YN24c2rVrB7lcjqFDh+Ls2bO69xMTE+Ho6Ijdu3fD29sbdnZ2uhBYIy0tDYGBgboHmw4cOBD5+fkNfn9t2rSBSqVCx44dERoaipEjRyI5OVmvze1DYxkZGejTpw+sra0REBCAn3/+udZ5t2/fjvvuuw/W1tYICQnBhg0bavWM7d+/Hw8//DBsbGzg7u6OV155RfewWjJN4T1dsT/6X/hycn+seq43vpzcH/uj/8UQRHSPjCoI7du3D8OGDYObm9sd517USEtLg5+fn+6XbGJiYovX2WintgObxwFll/T3lxVW7zdAGLqVjY2NrvcnNTUV2dnZSE5Oxs6dO3Hjxg2EhYXB3t4eP/30Ew4cOKALFDXHLF++HImJiVi/fj3279+PK1euYOvWrQ1ec9y4cfjyyy/x/vvv4/Tp01i7di3s7Ozg7u6Ob7/9FgCQnZ2NwsJCrFq1qs5zREZG4ujRo9i+fTvS09MhiiIee+wx3LhxQ9emoqICy5Ytw2effYZ9+/ahoKAAc+bMAQDcvHkTw4cPx6BBg3D8+HGkp6djypQpEITGDzXk5eVh9+7dsLS0rLdNeXk5nnjiCfj4+ODYsWOYP3++roYaubm5eOaZZzB8+HD88ssvmDp1aq0n1p87dw7h4eEYMWIEjh8/jk2bNmH//v2YMWNGo+sl41TzXMKI3h0R1K09h8OImoNoRHbt2iW+/vrr4pYtW0QA4tatWxts/7///U+Uy+ViVFSUeOrUKfGDDz4QZTKZmJSU1OhrqtVqEYCoVqtrvffXX3+Jp06dEv/666+mfhRR1NwUxeU9RHGeQz0vhSgu965u1wLGjx8vRkREiKIoilqtVkxOThatrKzEOXPmiOPHjxeVSqVYVVWla//ZZ5+J3bt3F7VarW5fVVWVaGNjI+7evVsURVF0dXUV33nnHd37N27cEDt16qS7jiiK4qBBg8SZM2eKoiiK2dnZIgAxOTm5zhr37NkjAhD/+OMPvf23nuO3334TAYgHDhzQvf/777+LNjY24ubNm0VRFMWEhAQRgJiTk6Nr89FHH4lKpVIURVG8fPmyCEBMS0trxDdXbd68eaKFhYVoa2srWltbi6hezkVcsWKFXrtbf07Xrl0rtm/fXu/nZfXq1SIA8eeffxZFURSjo6PFnj176p3j9ddf1/seJk2aJE6ZMkWvzU8//SRaWFjU+7N4Tz+rRERGqKHf37cyqmeNDR06tEkTT9esWQNPT08sX74cAODt7Y39+/fjvffeQ1hYWJ3HVFVVoaqqSrddVlZ2b0XXJ/9g7Z4gPSJQdrG6nefDLVLCzp07YWdnhxs3bkCr1WL06NGYP38+pk+fjl69eun1bvzyyy/IycmpNTensrIS586dg1qtRmFhIfr166d7r02bNggICKg1PFYjKysLMpkMgwYNuuvPcPr0abRp00bvuu3bt0f37t1x+vRp3T65XI5u3brptl1dXVFSUgKges5RZGQkwsLCMHjwYISGhmLUqFFwdXVFQUEBfHx8dMe99tpreO211wAA3bt3x/bt21FZWYnPP/8cWVlZePnllxus1dfXF9bW/8zzCAoK0muTnZ2Nvn376u0LDAzU2/7ll19w/PhxbNy4UbdPFEVotVrk5ubC29u7/i+MjJpGq0FmSSZKK0rhLHeGn4sfZBYyqcsiMmpGFYSaKj09HaGhoXr7wsLCGrz1esmSJYiLi2vhygCUFzdvu7sQEhKC1atXw9LSEm5ubmjT5p8fB1tbW/0yysvh7++v98u3hrOz811d38bG5q6Ouxtt27bV2xYEQS+gJSQk4JVXXkFSUhI2bdqEN954A8nJyQgICNC7td3J6Z9blGvutgOA+Ph4PP7444iLi2vxO9rKy8sxdepUvPLKK7Xe69y5c4tem6STkp+C+Ix4FFf883eCUq5ETGAMQj1CGziSiBpiVHOEmqqoqAhKpVJvn1KpRFlZGf766686j4mNjYVarda9zp8/3zLF2Snv3KYp7e6Cra0tvLy80LlzZ70QVBc/Pz+cPXsWLi4u8PLy0nspFAooFAq4urri8OHDumNu3ryJY8eO1XvOXr16QavVYu/evXW+X9MjpdHUfxedt7c3bt68qXfdy5cvIzs7W68npzH69OmD2NhYHDx4ED179sQXX3yBNm3a6H3WW4PQ7d544w0sW7YMly7V3dPn7e2N48ePo7LynxWADx06pNeme/fuOHr0qN6+I0eO6G37+fnh1KlTtf5/8PLyanCOEhmvlPwURKVF6YUgACipKEFUWhRS8lMkqozI+Jl0ELobVlZWcHBw0Hu1CI8BgIMbaq8MUkMAHDpWt2sFxowZgw4dOiAiIgI//fQTcnNzkZaWhldeeQUXLlwAAMycORPx8fHYtm0bzpw5g5deeqnWGkC36tKlC8aPH4+JEydi27ZtunNu3rwZAODh4QFBELBz506UlpaivLy81jnuu+8+REREYPLkydi/fz9++eUXjB07Fh07dkRERESjPltubi5iY2ORnp6O/Px8/PDDDzh79myTh5iCgoLg6+uLt99+u873R48eDUEQMHnyZJw6dQq7du3CsmXL9NpMnToVZ86cQXR0NH777Tds3rxZN8G/ZvJ2dHQ0Dh48iBkzZiArKwtnz57Fd999x8nSJkqj1SA+Ix5iHY9drdm3NGMpNAZadoPI1Jh0EFKpVCgu1v8XVHFxMRwcHAw6LFMnCxkQvvTvjXqWSQuPr27XCsjlcuzbtw+dO3fG008/DW9vb0yaNAmVlZW6sDh79my88MILGD9+PIKCgmBvb4+nnnqqwfOuXr0azzzzDF566SX06NEDkydP1t0G3rFjR8TFxSEmJgZKpbLeX/QJCQnw9/fHE088gaCgIIiiiF27dtUaDmvos505cwYjRozA/fffjylTpmD69OmYOnVqE76haq+++irWrVtXZ0+inZ0dduzYgRMnTqBPnz54/fXXsXTpUr02np6e+Oabb7Blyxb4+vpi9erVurvGatYj8vX1xd69e/Hbb7/h4YcfRp8+ffDWW2/Bzc2tyfVS65dZklmrJ+hWIkQUVRQhsyTTgFURmQ5BrG8maysnCAK2bt2q9/iG20VHR2PXrl04ceKEbt/o0aNx5coVJCUlNeo6ZWVlUCgUUKvVtXqHKisrkZubC09PT70JsE1yajuQFK0/cdqhY3UI8nny7s5JJmXx4sVYs2bNPQ3TNsvPKkli1/92Ifqn6Du2W/rwUjzW9TEDVERkHBr6/X0ro5osXV5ejpycHN12bm4usrKy4OTkhM6dOyM2NhYXL17Ep59+CgB48cUX8eGHH2Lu3LmYOHEifvzxR2zevBnff/+9VB+hNp8ngR6PV98dVl5cPSfIY0Cr6Qkiw/v444/Rt29ftG/fHgcOHMC7777LYS8z5ixv3M0IjW1HRPqMKggdPXpUt9owAERFRQEAxo8fj8TERN3jDmp4enri+++/x6uvvopVq1ahU6dOWLduXb23zkvGQtZit8iT8Tl79iwWLVqEK1euoHPnzpg9ezZiY2OlLosk4ufiB6VciZKKkjrnCQkQoJQr4efiJ0F1RMbPaIfGDKXFh8aIDIA/q8at5q4xAHphSPh7PuGK4BW8hZ7oNo0dGjPpydJERKYg1CMUK4JXwEXuordfKVcyBBHdI6MaGiMiMlehHqEIcQ/hytJEzYxBiIjISMgsZOir6nvnhkTUaBwaIyIiIrPFIERERERmi0GIiIiIzBaDEBmV+fPno3fv3lKXgeDgYMyaNUvqMoiI6B4xCJmpoqIizJw5E15eXrC2toZSqcTAgQOxevVqVFRUSF3eXUtLS4MgCA0+7FXK8xERUevCu8ZaAY1WY9BbYv/3v/9h4MCBcHR0xNtvv41evXrBysoKJ06cwCeffIKOHTviySfrfs7ZjRs3Gv0w09bs+vXrsLS0lLoMIiKSGHuEJJaSn4Kwb8MwcfdERP8UjYm7JyLs2zCk5Ke02DVfeukltGnTBkePHsWoUaPg7e2Nrl27IiIiAt9//z2GDRumaysIAlavXo0nn3wStra2WLx4MYDqp8Z369YNlpaW6N69Oz777DPdMXl5eRAEAVlZWbp9V69ehSAISEtLA/BPT0tqaioCAgIgl8sxYMAAZGdn69UaHx8PpVIJe3t73dPu65OXl6d7BEu7du0gCAIiIyMBVA9lzZgxA7NmzUKHDh0QFhZ2xzobOh8AaLVazJ07F05OTlCpVJg/f35j/y8gIqJWgkFIQjXL5hdXFOvtL6koQVRaVIuEocuXL+OHH37A9OnTYWtrW2cbQRD0tufPn4+nnnoKJ06cwMSJE7F161bMnDkTs2fPxsmTJzF16lRMmDABe/bsaXI9r7/+OpYvX46jR4+iTZs2mDhxou69zZs3Y/78+Xj77bdx9OhRuLq64uOPP673XO7u7vj2228BANnZ2SgsLMSqVat072/YsAGWlpY4cOAA1qxZc8faGnM+W1tbHD58GO+88w4WLFiA5OTkJn8HREQkHQ6NSUSj1SA+I77OhyiKECFAwNKMpQhxD2nWYbKcnByIooju3bvr7e/QoYOut2X69OlYunSp7r3Ro0djwoQJuu3nn38ekZGReOmllwBUP/z20KFDWLZsmd5DcRtj8eLFGDRoEAAgJiYGjz/+OCorK2FtbY2VK1di0qRJmDRpEgBg0aJFSElJqbdXSCaTwcnJCQDg4uICR0dHvffvu+8+vPPOO7rtvLy8Bmu70/l8fX0xb9483bk//PBDpKamYvDgwY367EREJD32CEkksySzVk/QrUSIKKooQmZJpkHqycjIQFZWFh544AFUVVXpvRcQEKC3ffr0aQwcOFBv38CBA3H69OkmX9fX11f3v11dXQEAJSUluuv069dPr31QUFCTr1HD39//ro+ty621A9X119RORETGgT1CEimtKG3Wdo3l5eUFQRBqzcXp2rUrAMDGxqbWMfUNodXHwqI6X4viP71dN27cqLPtrROva4bktFptk67XWLd/jqbUWZfbJ40LgtBitRMRUctgj5BEnOXOzdqusdq3b4/Bgwfjww8/xLVr1+7qHN7e3jhw4IDevgMHDsDHxwcA4OxcXXNhYaHu/VsnJDflOocPH9bbd+jQoQaPqbkTTKPR3PH8jamzKecjIiLjwx4hifi5+EEpV6KkoqTOeUICBCjlSvi5+DX7tT/++GMMHDgQAQEBmD9/Pnx9fWFhYYEjR47gzJkzdxxC+r//+z+MGjUKffr0QWhoKHbs2IEtW7YgJaV6creNjQ369++P+Ph4eHp6oqSkBG+88UaT65w5cyYiIyMREBCAgQMHYuPGjfj11191vVd18fDwgCAI2LlzJx577DHY2NjAzs6uzraNqbMp5yMiIuPDHiGJyCxkiAmMAVAdem5Vsx0dGN0i6wl169YNP//8M0JDQxEbG4sHH3wQAQEB+OCDDzBnzhwsXLiwweOHDx+OVatWYdmyZXjggQewdu1aJCQkIDg4WNdm/fr1uHnzJvz9/TFr1iwsWrSoyXU+++yzePPNNzF37lz4+/sjPz8f06ZNa/CYjh07Ii4uDjExMVAqlZgxY0aD7e9UZ1PPR0RExkUQb50gQbWUlZVBoVBArVbDwcFB773Kykrk5ubC09MT1tbWd3X+lPwUxGfE602cVslViA6MRqhH6D3VTlSjOX5WiYiMSUO/v2/FoTGJhXqEIsQ9xKArSxMREVE1BqFWQGYhQ19VX6nLICIiMjucI0RERERmi0GIiIiIzBaDUDPgfHNq7fgzSkRUNwahe1CzsnBFRYXElRA1rOZn9PbVsImIzB0nS98DmUwGR0dH3fOl5HJ5rSe3E0lJFEVUVFSgpKQEjo6OkMl4NyIR0a0YhO6RSqUCAD5sk1o1R0dH3c8qERH9g0HoHgmCAFdXV7i4uDTpgZ1EhtK2bVv2BBER1YNBqJnIZDL+siEiIjIynCxNREREZotBiIiIiMwWgxARERGZLQYhIiIiMlsMQkRERGS2GISIiIjIbDEIERERkdkyuiD00UcfoUuXLrC2tka/fv2QkZFRb9vExEQIgqD3sra2NmC1RERE1JoZVRDatGkToqKiMG/ePGRmZuLBBx9EWFhYg4+3cHBwQGFhoe6Vn59vwIqJiIioNTOqILRixQpMnjwZEyZMgI+PD9asWQO5XI7169fXe4wgCFCpVLqXUqls8BpVVVUoKyvTexEREZFpMpogdP36dRw7dgyhoaG6fRYWFggNDUV6enq9x5WXl8PDwwPu7u6IiIjAr7/+2uB1lixZAoVCoXu5u7s322cgIiKi1sVogtDvv/8OjUZTq0dHqVSiqKiozmO6d++O9evX47vvvsPnn38OrVaLAQMG4MKFC/VeJzY2Fmq1Wvc6f/58s34OIiIiaj1M+qGrQUFBCAoK0m0PGDAA3t7eWLt2LRYuXFjnMVZWVrCysjJUiURERCQho+kR6tChA2QyGYqLi/X2FxcXQ6VSNeocbdu2RZ8+fZCTk9MSJRIREZGRMZogZGlpCX9/f6Smpur2abVapKam6vX6NESj0eDEiRNwdXVtqTKJiIjIiBjV0FhUVBTGjx+PgIAABAYGYuXKlbh27RomTJgAABg3bhw6duyIJUuWAAAWLFiA/v37w8vLC1evXsW7776L/Px8/L//9/+k/BhERETUShhVEHr22WdRWlqKt956C0VFRejduzeSkpJ0E6gLCgpgYfFPJ9cff/yByZMno6ioCO3atYO/vz8OHjwIHx8fqT4CERERtSKCKIqi1EW0ZmVlZVAoFFCr1XBwcJC6HCIiImqExv7+Npo5QkRERETNjUGIiIiIzBaDEBEREZktBiEiIiIyWwxCREREZLYYhIiIiMhsMQgRERGR2WIQIiIiIrPFIERERERmi0GIiIiIzBaDEBEREZktBiEiIiIyWwxCREREZLYYhIiIiMhsMQgRERGR2WIQIiIiIrPFIERERERmi0GIiIiIzFYbqQsgIiJqVbQaIP8gUF4M2CkBjwGAhUzqqqiFMAgRERHVOLUdSIoGyi79s8/BDQhfCvg8KV1d1GI4NEZERARUh6DN4/RDEACUFVbvP7VdmrqoRTEIERERaTXVPUEQ63jz731JMdXtyKQwCBEREeUfrN0TpEcEyi5WtyOTwiBERERUXty87choMAgRERHZKZu3HRkNBiEiIiKPAdV3h0Gop4EAOHSsbkcmhUFICloNkPsTcOKb6j85+Y6ISFoWsupb5AHUDkN/b4fHcz0hE8R1hAyNa1QQEbVOPk8Coz6t5+/oeP4d3cw0Wg0ySzJRWlEKZ7kz/Fz8IJMgaAqiKNZ1ryD9raysDAqFAmq1Gg4ODvd2spo1Kmrdnvn3vzZGfcr/0IiIpMaVpVtcSn4K4jPiUVzxz+RzpVyJmMAYhHqENss1Gvv7m0HoDpotCGk1wMqeDdyeKVT/q2PWCf4HR0REJislPwVRaVEQb+sUEP7uFFgRvKJZwlBjf39zjpChcI0KIiIycxqtBvEZ8bVCEADdvqUZS6Ex4NxZBiFD4RoVRERk5jJLMvWGw24nQkRRRREySzINVhODkKFwjQoiIjJzpRWlzdquOTAIGQrXqCAiIjPnLHdu1nbNgUHIULhGBRERmTk/Fz8o5UrdxOjbCRCgkqvg5+JnsJqMLgh99NFH6NKlC6ytrdGvXz9kZGQ02P7rr79Gjx49YG1tjV69emHXrl0GqrQONWtUOLjq73dw463zRERk8mQWMsQExgBArTBUsx0dGG3Q9YSMKght2rQJUVFRmDdvHjIzM/Hggw8iLCwMJSUldbY/ePAgnn/+eUyaNAk///wzhg8fjuHDh+PkyZMGrvwWPk8Cs04C43cCI/5T/eesEwxBRERkFkI9QrEieAVc5C56+5VyZbPdOt8URrWOUL9+/dC3b198+OGHAACtVgt3d3e8/PLLiImJqdX+2WefxbVr17Bz507dvv79+6N3795Ys2ZNndeoqqpCVVWVbrusrAzu7u7Ns6AiERERAWj5laVNbh2h69ev49ixYwgN/ScpWlhYIDQ0FOnp6XUek56ertceAMLCwuptDwBLliyBQqHQvdzd3ZvnAxAREZGODEDfvyrx2LUK9P2rElLNkDWaZ439/vvv0Gg0UCr1by9XKpU4c+ZMnccUFRXV2b6oqKje68TGxiIqKkq3XdMjRERERM2kFT1302iCkKFYWVnByspK6jKIiIhMU33P3SwrrN5v4JuHjGZorEOHDpDJZCgu1l+Rsri4GCqVqs5jVCpVk9oTERFRC9JqqnuC6njEhm5fUkx1OwMxmiBkaWkJf39/pKam6vZptVqkpqYiKCiozmOCgoL02gNAcnJyve2JiIioBbXC524a1dBYVFQUxo8fj4CAAAQGBmLlypW4du0aJkyYAAAYN24cOnbsiCVLlgAAZs6ciUGDBmH58uV4/PHH8dVXX+Ho0aP45JNPpPwYRERE5qkVPnfTqILQs88+i9LSUrz11lsoKipC7969kZSUpJsQXVBQAAuLfzq5BgwYgC+++AJvvPEGXnvtNdx3333Ytm0bevbsKdVHICIiMl+t8LmbRrWOkBQauw4BERER3YFWA6zsWT0xus55QkL13WOzTtzzI6dMbh0hIiIiMnKt8LmbDEJERERkOK3suZtGNUeIiIiITIDPk0CPx6vvDisvrp4T5DHAoD1BNRiEiIiIyPAsZIDnw1JXwaExIiIiMl8MQkRERGS2GISIiIjIbDEIERERkdliECIiIiKzxSBEREREZou3zxPRPdNoNcgsyURpRSmc5c7wc/GDTIL1QIiImopBiIjuSUp+CuIz4lFc8c/TopVyJWICYxDqESphZUREd8ahMSK6ayn5KYhKi9ILQQBQUlGCqLQopOSnSFQZEVHjMAgR0V3RaDWIz4iHWMcTpGv2Lc1YCo1WY+jSiIgajUGIiO5KZklmrZ6gW4kQUVRRhMySTANWRUTUNAxCRHRXSitKm7UdEZEUGISI6K44y52btR0RkRQYhIjorvi5+EEpV0KAUOf7AgSo5Cr4ufgZuDIiosZjECKiuyKzkCEmMAYAaoWhmu3owGiuJ0RErRqDEBHdtVCPUKwIXgEXuYvefqVciRXBK7iOEBG1elxQkYjuSahHKELcQ7iyNBEZJQYhIrpnMgsZ+qr6Sl0GEVGTcWiMiIiIzBaDEBEREZktBiEiIiIyWwxCREREZLYYhIiIiMhsMQgRERGR2WIQIiIiIrPFIERERERmi0GIiIiIzBaDEBEREZktBiEiIiIyWwxCREREZLYYhIiIiMhsGU0QunLlCsaMGQMHBwc4Ojpi0qRJKC8vb/CY4OBgCIKg93rxxRcNVDERERG1dm2kLqCxxowZg8LCQiQnJ+PGjRuYMGECpkyZgi+++KLB4yZPnowFCxbotuVyeUuXSkREREbinoJQZWUlNm3ahGvXrmHw4MG47777mqsuPadPn0ZSUhKOHDmCgIAAAMAHH3yAxx57DMuWLYObm1u9x8rlcqhUqhapi4iIiIxbo4fGoqKi8PLLL+u2r1+/jqCgIEyePBmvvfYa+vTpg/T09BYpMj09HY6OjroQBAChoaGwsLDA4cOHGzx248aN6NChA3r27InY2FhUVFQ02L6qqgplZWV6LyIiIjJNjQ5CP/zwAwYPHqzb3rhxI/Lz83H27Fn88ccfGDlyJBYtWtQiRRYVFcHFxUVvX5s2beDk5ISioqJ6jxs9ejQ+//xz7NmzB7Gxsfjss88wduzYBq+1ZMkSKBQK3cvd3b1ZPgMRERG1Po0OQgUFBfDx8dFt//DDD3jmmWfg4eEBQRAwc+ZM/Pzzz026eExMTK3JzLe/zpw506Rz3mrKlCkICwtDr169MGbMGHz66afYunUrzp07V+8xsbGxUKvVutf58+fv+vpERETUujV6jpCFhQVEUdRtHzp0CG+++aZu29HREX/88UeTLj579mxERkY22KZr165QqVQoKSnR23/z5k1cuXKlSfN/+vXrBwDIyclBt27d6mxjZWUFKyurRp+TiIiIjFejg5C3tzd27NiBqKgo/PrrrygoKEBISIju/fz8fCiVyiZd3NnZGc7OzndsFxQUhKtXr+LYsWPw9/cHAPz444/QarW6cNMYWVlZAABXV9cm1UlERESmqdFDY3PnzkVsbCweffRRPProo3jsscfg6empe3/Xrl0IDAxskSK9vb0RHh6OyZMnIyMjAwcOHMCMGTPw3HPP6e4Yu3jxInr06IGMjAwAwLlz57Bw4UIcO3YMeXl52L59O8aNG4dHHnkEvr6+LVInERERGZdGB6GnnnoKu3btgq+vL1599VVs2rRJ7325XI6XXnqp2QussXHjRvTo0UMXwh566CF88sknuvdv3LiB7Oxs3V1hlpaWSElJwZAhQ9CjRw/Mnj0bI0aMwI4dO1qsRiIiIjIugnjrxJ8GLFiwAHPmzDG7BQnLysqgUCigVqvh4OAgdTlERETUCI39/d3oHqG4uLg7PtKCiIiIyJg0Ogg1suOIiIiIyGg06aGrgiC0VB1EREREBtekZ43df//9dwxDV65cuaeCiIiIiAylSUEoLi4OCoWipWohIiIiM6HRisjIvYKSPyvhYm+NQE8nyCwMP/LUpCD03HPP1XrmFxEREVFTJJ0sRNyOUyhUV+r2uSqsMW+YD8J7GnbR40bPEeL8ICIiIrpXSScLMe3zTL0QBABF6kpM+zwTSScLDVoP7xojIiIig9BoRcTtOIW6EkXNvrgdp6DRGi5zNDoIabVaDosRERHRXcvIvVKrJ+hWIoBCdSUycg1341WT5ggREZGEtBog/yBQXgzYKQGPAYCFTOqqiBqt5M/6Q9DdtGsODEJERMbg1HYgKRoou/TPPgc3IHwp4POkdHURNYGLvXWztmsOTVpQkYiIJHBqO7B5nH4IAoCywur9p7ZLUxdREwV6OsFVYY36br8SUH33WKCnk8FqYhAiImrNtJrqnqCGppcmxVS3I2rlZBYC5g3zAYBaYahme94wH4OuJ8QgRETUmuUfrN0TpEcEyi5WtyMyAuE9XbF6rB9UCv3hL5XCGqvH+hl8HSHOESIias3Ki5u3HVErEN7TFYN9VMa3sjQRERmYnbJ52xG1EjILAUHd2ktdBofGiIhaNY8B1XeHNTS91KFjdTsiajIGISKi1sxCVn2LPIB6p5eGx3M9IaK7xCBERNTa+TwJjPoUcLhtEqmDW/V+riNEdNc4R4iIyBj4PAn0eJwrSxM1MwYhIiJjYSEDPB+Wugoik8KhMSIiIjJbDEJERERkthiEiIiIyGwxCBEREZHZYhAiIiIis8UgRERERGaLQYiIiIjMFoMQERERmS0GISIiIjJbDEJERERkthiEiIiIyGwxCBEREZHZYhAiIiIis8UgRERERGbLaILQ4sWLMWDAAMjlcjg6OjbqGFEU8dZbb8HV1RU2NjYIDQ3F2bNnW7ZQIiIiMhpGE4SuX7+OkSNHYtq0aY0+5p133sH777+PNWvW4PDhw7C1tUVYWBgqKytbsFIiIiIyFoIoiqLURTRFYmIiZs2ahatXrzbYThRFuLm5Yfbs2ZgzZw4AQK1WQ6lUIjExEc8991yjrldWVgaFQgG1Wg0HB4d7LZ+IiIgMoLG/v42mR6ipcnNzUVRUhNDQUN0+hUKBfv36IT09vd7jqqqqUFZWpvciIiIi02SyQaioqAgAoFQq9fYrlUrde3VZsmQJFAqF7uXu7t6idRIREZF0JA1CMTExEAShwdeZM2cMWlNsbCzUarXudf78eYNen4iIiAynjZQXnz17NiIjIxts07Vr17s6t0qlAgAUFxfD1dVVt7+4uBi9e/eu9zgrKytYWVnd1TWJiIjIuEgahJydneHs7Nwi5/b09IRKpUJqaqou+JSVleHw4cNNuvOMiIiITJfRzBEqKChAVlYWCgoKoNFokJWVhaysLJSXl+va9OjRA1u3bgUACIKAWbNmYdGiRdi+fTtOnDiBcePGwc3NDcOHD5foU1TTaEWkn7uM77IuIv3cZWi0RnXjHhERkcmQtEeoKd566y1s2LBBt92nTx8AwJ49exAcHAwAyM7Ohlqt1rWZO3curl27hilTpuDq1at46KGHkJSUBGtra4PWfqukk4WI23EKhep/1jJyVVhj3jAfhPd0beBIIiIiam5Gt46QoTXnOkJJJwsx7fNM3P6FC3//uXqsH8MQERFRMzD7dYRaG41WRNyOU7VCEADdvrgdpzhMRkREZEAMQgaSkXtFbzjsdiKAQnUlMnKvGK4oIiIiM8cgZCAlfzbu+WaNbUdERET3jkHIQFzsGzdBu7HtiIiI6N4xCBlIoKcTXBXWuonRtxNQffdYoKeTIcsiIiIyawxCBiKzEDBvmA8A1ApDNdvzhvlAZlFfVCIiIqLmxiBkQOE9XbF6rB9UCv3hL5XCmrfOExERScBoFlQ0FeE9XTHYR4WM3Cso+bMSLvbVw2HsCSIiIjI8BiEJyCwEBHVrL3UZREREZo9DY0RERGS2GISIiIjIbDEIERERkdliECIiIiKzxSBEREREZotBiIiIiMwWgxARERGZLQYhIiIiMlsMQkRERGS2GISIiIjIbDEIERERkdnis8bItGk1QP5BoLwYsFMCHgMAC5nUVRERUSvBIESm69R2ICkaKLv0zz4HNyB8KeDzpHR1ERFRq8GhMTJNp7YDm8fphyAAKCus3n9quzR1ERFRq8IgRKZHq6nuCYJYx5t/70uKqW5HRERmjUGITE/+wdo9QXpEoOxidTsiIjJrDEJkesqLm7cdERGZLAYhMj12yuZtR0REJotBiEyPx4Dqu8Mg1NNAABw6VrcjIiKzxiBEpsdCVn2LPIDaYejv7fB4ridEREQMQmSifJ4ERn0KOLjq73dwq97PdYSIiAhcUJFMmc+TQI/HubI0ERHVi0GITJuFDPB8WOoqiIiolWIQIqJ7x2e6EZGRYhAionvDZ7oRkRHjZGkiunt8phsRGTmjCUKLFy/GgAEDIJfL4ejo2KhjIiMjIQiC3is8PLxlCyUyF3ymGxGZAKMJQtevX8fIkSMxbdq0Jh0XHh6OwsJC3evLL79soQqJzAyf6UZEJsBo5gjFxcUBABITE5t0nJWVFVQqVQtURGTm+Ew3IjIBRtMjdLfS0tLg4uKC7t27Y9q0abh8+XKD7auqqlBWVqb3IqI68JluRGQCTDoIhYeH49NPP0VqaiqWLl2KvXv3YujQodBo6p+zsGTJEigUCt3L3d3dgBUTGRE+042ITICkQSgmJqbWZObbX2fOnLnr8z/33HN48skn0atXLwwfPhw7d+7EkSNHkJaWVu8xsbGxUKvVutf58+fv+vpEJo3PdCMiEyDpHKHZs2cjMjKywTZdu3Zttut17doVHTp0QE5ODh599NE621hZWcHKyqrZrklk0mqe6VbnOkLxXEeIiFo9SYOQs7MznJ2dDXa9Cxcu4PLly3B1db1zYyJqHD7TjYiMmNHMESooKEBWVhYKCgqg0WiQlZWFrKwslJeX69r06NEDW7duBQCUl5fj//7v/3Do0CHk5eUhNTUVERER8PLyQlhYmFQfg8g01TzTrdcz1X8yBBGRkTCa2+ffeustbNiwQbfdp08fAMCePXsQHBwMAMjOzoZarQYAyGQyHD9+HBs2bMDVq1fh5uaGIUOGYOHChRz6MiMarQaZJZkorSiFs9wZfi5+kPGXNBER/U0QRbGuZWHpb2VlZVAoFFCr1XBwcJC6HGqClPwUxGfEo7jin3VslHIlYgJjEOoRKmFlRETU0hr7+9tohsaImiIlPwVRaVF6IQgASipKEJUWhZT8FIkqIyKi1oRBiEyORqtBfEY8xDqegVWzb2nGUmj4DCwiIrPHIEQmJ7Mks1ZP0K1EiCiqKEJmSaYBqyIiotaIQYhMTmlFabO2IyIi08UgRCbHWd64taka246IiEwXgxCZHD8XPyjlSgj1PANLgACVXAU/Fz8DV0ZERK0NgxCZHJmFDDGBMQBQKwzVbEcHRnM9ISIiYhAi0xTqEYoVwSvgInfR26+UK7EieAXXESIiIgBGtLI0UVOFeoQixD2EK0sTEVG9GITIpMksZOir6it1GURE1EpxaIyIiIjMFoMQERERmS0GISIiIjJbDEJERERkthiEiIiIyGwxCBEREZHZYhAiIiIis8UgRERERGaLQYiIiIjMFoMQERERmS0GISIiIjJbDEJERERkthiEiIiIyGwxCBEREZHZYhAiIiIis8UgRERERGaLQYiIiIjMFoMQERERmS0GISIiIjJbDEJERERkthiEiIiIyGwxCBEREZHZYhAiIiIis8UgRERERGaLQYiIiIjMllEEoby8PEyaNAmenp6wsbFBt27dMG/ePFy/fr3B4yorKzF9+nS0b98ednZ2GDFiBIqLiw1UNREREbV2RhGEzpw5A61Wi7Vr1+LXX3/Fe++9hzVr1uC1115r8LhXX30VO3bswNdff429e/fi0qVLePrppw1UNREREbV2giiKotRF3I13330Xq1evxv/+978631er1XB2dsYXX3yBZ555BkB1oPL29kZ6ejr69+/fqOuUlZVBoVBArVbDwcGh2eonIiKiltPY399G0SNUF7VaDScnp3rfP3bsGG7cuIHQ0FDdvh49eqBz585IT0+v97iqqiqUlZXpvYiIiMg0GWUQysnJwQcffICpU6fW26aoqAiWlpZwdHTU269UKlFUVFTvcUuWLIFCodC93N3dm6tsIiIiamUkDUIxMTEQBKHB15kzZ/SOuXjxIsLDwzFy5EhMnjy52WuKjY2FWq3Wvc6fP9/s1yAiIqLWoY2UF589ezYiIyMbbNO1a1fd/7506RJCQkIwYMAAfPLJJw0ep1KpcP36dVy9elWvV6i4uBgqlare46ysrGBlZdWo+omIyPRotBpklmSitKIUznJn+Ln4QWYhk7osaiGSBiFnZ2c4Ozs3qu3FixcREhICf39/JCQkwMKi4c4sf39/tG3bFqmpqRgxYgQAIDs7GwUFBQgKCrrn2omIyPSk5KcgPiMexRX/LLWilCsRExiDUI/QBo4kY2UUc4QuXryI4OBgdO7cGcuWLUNpaSmKior05vpcvHgRPXr0QEZGBgBAoVBg0qRJiIqKwp49e3Ds2DFMmDABQUFBjb5jjIiIzEdKfgqi0qL0QhAAlFSUICotCin5KRJVRi1J0h6hxkpOTkZOTg5ycnLQqVMnvfdq7v6/ceMGsrOzUVFRoXvvvffeg4WFBUaMGIGqqiqEhYXh448/NmjtRETU+mm0GsRnxENE7RVlRIgQIGBpxlKEuIdwmMzEGO06QobCdYSI7kyjFZGRewUlf1bCxd4agZ5OkFkIUpdF1GhHio5g4u6Jd2y3Pmw9+qr6GqAiuleN/f1tFD1CRNR6JZ0sRNyOUyhUV+r2uSqsMW+YD8J7ukpYGVHjlVaUNms7Mh5GMUeIiFqnpJOFmPZ5pl4IAoAidSWmfZ6JpJOFElVG1DTO8sbduNPYdmQ8GISI6K5otCLidpyqY0YFdPvidpyCRsvRd2r9/Fz8oJQrIaDuIV0BAlRyFfxc/AxcGbU0BiEyaRqtiPRzl/Fd1kWkn7vMX8rNKCP3Sq2eoFuJAArVlcjIvWK4oojuksxChpjAGACoFYZqtqMDozlR2gRxjhCZLM5daVklf9Yfgu6mHZHUQj1CsSJ4RZ3rCEUHRnMdIRPFIEQmqWbuyu39PzVzV1aP9WMYukcu9tbN2o6oNQj1CEWIewhXljYjDEJkcu40d0VA9dyVwT4q3uJ9DwI9neCqsEaRurLO71oAoFJU30pPZExkFjLeIm9GOEeITA7nrhiGzELAvGE+AFBremnN9rxhPgybRNSqMQiRyeHcFcMJ7+mK1WP9oFLoD3+pFNYcfiQio8ChMTI5nLtiWOE9XTHYR8WVpYnIKDEIkcnh3BXDk1kICOrWXuoyiIiajENjZHI4d4WIiBqLQYhMEueuEBFRY3BojEwW564QEdGdMAiRSePcFSIiagiHxoiIiMhsMQgRERGR2WIQIiIiIrPFIERERERmi0GIiIiIzBaDEBEREZktBiEiIiIyWwxCREREZLa4oKIENFoNMksyUVpRCme5M/xc/CCzkEldFhERkdlhEDKwlPwUxGfEo7iiWLdPKVciJjAGoR6hElZGRERkfjg0ZkAp+SmISovSC0EAUFJRgqi0KKTkp0hUGRERkXliEDIQjVaD+Ix4iBBrvVezb2nGUmi0GkOXRkREZLYYhAwksySzVk/QrUSIKKooQmZJpgGrIiIiMm8MQgZSWlHarO2IiIjo3jEIGYiz3LlZ2xEREdG9YxAyED8XPyjlSggQ6nxfgACVXAU/Fz8DV0ZERGS+GIQMRGYhQ0xgDADUCkM129GB0VxPiIiIyIAYhAwo1CMUK4JXwEXuordfKVdiRfAKriNERERkYFxQ0cBCPUIR4h7ClaWJiIhaAQYhCcgsZOir6it1GURERGbPKIbG8vLyMGnSJHh6esLGxgbdunXDvHnzcP369QaPCw4OhiAIeq8XX3zRQFUTERFRa2cUPUJnzpyBVqvF2rVr4eXlhZMnT2Ly5Mm4du0ali1b1uCxkydPxoIFC3Tbcrm8pcslIiIiI2EUQSg8PBzh4eG67a5duyI7OxurV6++YxCSy+VQqVQtXSIREREZIaMYGquLWq2Gk5PTHdtt3LgRHTp0QM+ePREbG4uKiooG21dVVaGsrEzvRURERKbJKHqEbpeTk4MPPvjgjr1Bo0ePhoeHB9zc3HD8+HFER0cjOzsbW7ZsqfeYJUuWIC4urrlLJiIiolZIEEWx9uPQDSQmJgZLly5tsM3p06fRo0cP3fbFixcxaNAgBAcHY926dU263o8//ohHH30UOTk56NatW51tqqqqUFVVpdsuKyuDu7s71Go1HBwcmnQ9IiIikkZZWRkUCsUdf39LGoRKS0tx+fLlBtt07doVlpaWAIBLly4hODgY/fv3R2JiIiwsmjayd+3aNdjZ2SEpKQlhYWGNOqaxXyQRERG1Ho39/S3p0JizszOcnRv3kNGLFy8iJCQE/v7+SEhIaHIIAoCsrCwAgKura5OPJSIiItNjFJOlL168iODgYHTu3BnLli1DaWkpioqKUFRUpNemR48eyMjIAACcO3cOCxcuxLFjx5CXl4ft27dj3LhxeOSRR+Dr6yvVRyEiIqJWxCgmSycnJyMnJwc5OTno1KmT3ns1I3s3btxAdna27q4wS0tLpKSkYOXKlbh27Rrc3d0xYsQIvPHGG026ds35efcYERGR8aj5vX2nGUCSzhEyBhcuXIC7u7vUZRAREdFdOH/+fK1OlFsxCN2BVqvFpUuXYG9vD0EQmu28NXejnT9/npOwWxi/a8Pg92wY/J4Ng9+zYbTk9yyKIv7880+4ubk1OK/YKIbGpGRhYdFgkrxXDg4O/I/MQPhdGwa/Z8Pg92wY/J4No6W+Z4VCccc2RjFZmoiIiKglMAgRERGR2WIQkoiVlRXmzZsHKysrqUsxefyuDYPfs2HwezYMfs+G0Rq+Z06WJiIiIrPFHiEiIiIyWwxCREREZLYYhIiIiMhsMQgRERGR2WIQkshHH32ELl26wNraGv369dM9LJaaz759+zBs2DC4ublBEARs27ZN6pJMzpIlS9C3b1/Y29vDxcUFw4cPR3Z2ttRlmaTVq1fD19dXt/BcUFAQ/vvf/0pdlkmLj4+HIAiYNWuW1KWYnPnz50MQBL1Xjx49JKmFQUgCmzZtQlRUFObNm4fMzEw8+OCDCAsLQ0lJidSlmZRr167hwQcfxEcffSR1KSZr7969mD59Og4dOoTk5GTcuHEDQ4YMwbVr16QuzeR06tQJ8fHxOHbsGI4ePYp//etfiIiIwK+//ip1aSbpyJEjWLt2LXx9faUuxWQ98MADKCws1L32798vSR28fV4C/fr1Q9++ffHhhx8CqH6embu7O15++WXExMRIXJ1pEgQBW7duxfDhw6UuxaSVlpbCxcUFe/fuxSOPPCJ1OSbPyckJ7777LiZNmiR1KSalvLwcfn5++Pjjj7Fo0SL07t0bK1eulLoskzJ//nxs27YNWVlZUpfCHiFDu379Oo4dO4bQ0FDdPgsLC4SGhiI9PV3CyojunVqtBlD9C5pajkajwVdffYVr164hKChI6nJMzvTp0/H444/r/T1Nze/s2bNwc3ND165dMWbMGBQUFEhSBx+6amC///47NBoNlEql3n6lUokzZ85IVBXRvdNqtZg1axYGDhyInj17Sl2OSTpx4gSCgoJQWVkJOzs7bN26FT4+PlKXZVK++uorZGZm4siRI1KXYtL69euHxMREdO/eHYWFhYiLi8PDDz+MkydPwt7e3qC1MAgRUbOYPn06Tp48Kdk4vzno3r07srKyoFar8c0332D8+PHYu3cvw1AzOX/+PGbOnInk5GRYW1tLXY5JGzp0qO5/+/r6ol+/fvDw8MDmzZsNPtTLIGRgHTp0gEwmQ3Fxsd7+4uJiqFQqiaoiujczZszAzp07sW/fPnTq1EnqckyWpaUlvLy8AAD+/v44cuQIVq1ahbVr10pcmWk4duwYSkpK4Ofnp9un0Wiwb98+fPjhh6iqqoJMJpOwQtPl6OiI+++/Hzk5OQa/NucIGZilpSX8/f2Rmpqq26fVapGamsqxfjI6oihixowZ2Lp1K3788Ud4enpKXZJZ0Wq1qKqqkroMk/Hoo4/ixIkTyMrK0r0CAgIwZswYZGVlMQS1oPLycpw7dw6urq4GvzZ7hCQQFRWF8ePHIyAgAIGBgVi5ciWuXbuGCRMmSF2aSSkvL9f710Vubi6ysrLg5OSEzp07S1iZ6Zg+fTq++OILfPfdd7C3t0dRUREAQKFQwMbGRuLqTEtsbCyGDh2Kzp07488//8QXX3yBtLQ07N69W+rSTIa9vX2t+W22trZo37495701szlz5mDYsGHw8PDApUuXMG/ePMhkMjz//PMGr4VBSALPPvssSktL8dZbb6GoqAi9e/dGUlJSrQnUdG+OHj2KkJAQ3XZUVBQAYPz48UhMTJSoKtOyevVqAEBwcLDe/oSEBERGRhq+IBNWUlKCcePGobCwEAqFAr6+vti9ezcGDx4sdWlETXbhwgU8//zzuHz5MpydnfHQQw/h0KFDcHZ2NngtXEeIiIiIzBbnCBEREZHZYhAiIiIis8UgRERERGaLQYiIiIjMFoMQERERmS0GISIiIjJbDEJERERkthiEiIiIyGwxCBGRWYuMjMTw4cOlLoOIJMIgREQtLjIyEoIg1HqFh4dLXRpWrVrVah65IggCtm3bJnUZRGaFzxojIoMIDw9HQkKC3j4rKyuJqgE0Gg0EQYBCoZCsBiKSHnuEiMggrKysoFKp9F7t2rVDWloaLC0t8dNPP+navvPOO3BxcUFxcTGA6oe6zpgxAzNmzIBCoUCHDh3w5ptv4tZHJVZVVWHOnDno2LEjbG1t0a9fP6SlpeneT0xMhKOjI7Zv3w4fHx9YWVmhoKCg1tBYcHAwXn75ZcyaNQvt2rWDUqnEv//9b1y7dg0TJkyAvb09vLy88N///lfv8508eRJDhw6FnZ0dlEolXnjhBfz+++96533llVcwd+5cODk5QaVSYf78+br3u3TpAgB46qmnIAiCbpuIWhaDEBFJKjg4GLNmzcILL7wAtVqNn3/+GW+++SbWrVsHpVKpa7dhwwa0adMGGRkZWLVqFVasWIF169bp3p8xYwbS09Px1Vdf4fjx4xg5ciTCw8Nx9uxZXZuKigosXboU69atw6+//goXF5c6a9qwYQM6dOiAjIwMvPzyy5g2bRpGjhyJAQMGIDMzE0OGDMELL7yAiooKAMDVq1fxr3/9C3369MHRo0eRlJSE4uJijBo1qtZ5bW1tcfjwYbzzzjtYsGABkpOTAQBHjhwBACQkJKCwsFC3TUQtTCQiamHjx48XZTKZaGtrq/davHixKIqiWFVVJfbu3VscNWqU6OPjI06ePFnv+EGDBone3t6iVqvV7YuOjha9vb1FURTF/Px8USaTiRcvXtQ77tFHHxVjY2NFURTFhIQEEYCYlZVVq7aIiAi9az300EO67Zs3b4q2trbiCy+8oNtXWFgoAhDT09NFURTFhQsXikOGDNE77/nz50UAYnZ2dp3nFUVR7Nu3rxgdHa3bBiBu3bq1nm+RiFoC5wgRkUGEhIRg9erVevucnJwAAJaWlti4cSN8fX3h4eGB9957r9bx/fv3hyAIuu2goCAsX74cGo0GJ06cgEajwf333693TFVVFdq3b6/btrS0hK+v7x1rvbWNTCZD+/bt0atXL92+mp6qkpISAMAvv/yCPXv2wM7Orta5zp07p6vr9mu7urrqzkFE0mAQIiKDsLW1hZeXV73vHzx4EABw5coVXLlyBba2to0+d3l5OWQyGY4dOwaZTKb33q3hxMbGRi9M1adt27Z624Ig6O2rOYdWq9Vdf9iwYVi6dGmtc7m6ujZ43ppzEJE0GISISHLnzp3Dq6++in//+9/YtGkTxo8fj5SUFFhY/DON8fDhw3rHHDp0CPfddx9kMhn69OkDjUaDkpISPPzww4YuH35+fvj222/RpUsXtGlz93+ttm3bFhqNphkrI6I74WRpIjKIqqoqFBUV6b1+//13aDQajB07FmFhYZgwYQISEhJw/PhxLF++XO/4goICREVFITs7G19++SU++OADzJw5EwBw//33Y8yYMRg3bhy2bNmC3NxcZGRkYMmSJfj+++9b/LNNnz4dV65cwfPPP48jR47g3Llz2L17NyZMmNCkYNOlSxekpqaiqKgIf/zxRwtWTEQ12CNERAaRlJSkN0wEAN27d8fo0aORn5+PnTt3AqgeSvrkk0/w/PPPY8iQIXjwwQcBAOPGjcNff/2FwMBAyGQyzJw5E1OmTNGdKyEhAYsWLcLs2bNx8eJFdOjQAf3798cTTzzR4p/Nzc0NBw4cQHR0NIYMGYKqqip4eHggPDxcr1frTpYvX46oqCj8+9//RseOHZGXl9dyRRMRAEAQxVsW4iAiaoWCg4PRu3dvrFy5UupSiMjEcGiMiIiIzBaDEBEREZktDo0RERGR2WKPEBEREZktBiEiIiIyWwxCREREZLYYhIiIiMhsMQgRERGR2WIQIiIiIrPFIERERERmi0GIiIiIzNb/BwRYHZqC65JaAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXVElEQVR4nO3de1xUdf4/8NdhkPtN1JkBRSTxhmiJiqFluCFgecEst9KU7JeugUroV7SbUhrqmqu2G1YmtKuWboWRWxheQPGCt0hNJSRETRDzMqMQiDPn9wcxOTIg4DBnhnk9H4956DnnM595nwGd93yugiiKIoiIiIisiI3UARARERGZGhMgIiIisjpMgIiIiMjqMAEiIiIiq8MEiIiIiKwOEyAiIiKyOkyAiIiIyOrYSh2AOdJqtbh48SJcXV0hCILU4RAREVEjiKKIGzduwNvbGzY2DbfxMAEy4OLFi/Dx8ZE6DCIiImqG8+fPo1OnTg2WYQJkgKurK4CaN9DNzU3iaIiIiKgx1Go1fHx8dJ/jDWECZEBtt5ebmxsTICIiIgvTmOErHARNREREVocJEBEREVkdJkBERERkdZgAERERkdVhAkRERERWhwkQERERWR0mQERERGR1mAARERGR1WECRERERFaHK0GbklYDFO8Dbl4CXBSA72DARiZ1VERERFZH0hagpKQkDBw4EK6urpDL5YiKikJ+fr5emdDQUAiCoPf429/+1mC9oijirbfegpeXFxwdHREWFoaCgoKWvJV7O5kOrAwEPh0JfPlSzZ8rA2vOExERkUlJmgBlZ2cjJiYGBw4cQGZmJqqrqxEeHo7y8nK9ci+//DJKSkp0j2XLljVY77Jly7B69WqsWbMGubm5cHZ2RkREBCorK1vydup3Mh3YPAlQX9Q/ry6pOc8kiIiIyKQk7QLLyMjQO05NTYVcLseRI0cwdOhQ3XknJycolcpG1SmKIlauXIk33ngDY8aMAQD8+9//hkKhwJYtW/Dss88a7wYaQ6sBMhIAiAYuigAEIGMe0PNJdocRERGZiFkNglapVAAAT09PvfMbNmxA+/btERgYiPnz56OioqLeOoqKilBaWoqwsDDdOXd3dwwaNAj79+83+Jyqqiqo1Wq9h9EU76vb8qNHBNS/1pQjIiIikzCbQdBarRZxcXEYMmQIAgMDdeeff/55+Pr6wtvbG8eOHUNCQgLy8/Px1VdfGayntLQUAKBQKPTOKxQK3bW7JSUlITEx0Uh3cpebl4xbjoiIiO6b2SRAMTExOHHiBHJycvTOT506Vff3Pn36wMvLC48//jgKCwvRtWtXo7z2/PnzER8frztWq9Xw8fExSt1wUdy7TFPKERER0X0ziy6w2NhYbN26Fbt27UKnTp0aLDto0CAAwJkzZwxerx0rdOmSfovKpUuX6h1HZG9vDzc3N72H0fgOBty8AQj1FBAAt4415YiIiMgkJE2ARFFEbGws0tLSsHPnTvj5+d3zOXl5eQAALy8vg9f9/PygVCqxY8cO3Tm1Wo3c3FyEhIQYJe4msZEBkUv/OLg7CfrjOHIJB0ATERGZkKQJUExMDNavX4+NGzfC1dUVpaWlKC0txe+//w4AKCwsxDvvvIMjR47g7NmzSE9Px6RJkzB06FD07dtXV0/Pnj2RlpYGABAEAXFxcVi0aBHS09Nx/PhxTJo0Cd7e3oiKipLiNoGA0cD4fwNudyVtbt415wNGSxMXERGRlZJ0DFBycjKAmsUO75SSkoLo6GjY2dlh+/btWLlyJcrLy+Hj44Nx48bhjTfe0Cufn5+vm0EGAHPnzkV5eTmmTp2K69ev45FHHkFGRgYcHBxa/J7qFTC6Zqo7V4ImIiKSnCCKoqEFaqyaWq2Gu7s7VCqVcccDERERUYtpyue3WQyCJiIiIjIlJkBERERkdZgAERERkdVhAkRERERWhwkQERERWR0mQERERGR1mAARERGR1WECRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVocJEBEREVkdJkBERERkdZgAERERkdVhAkRERERWhwkQERERWR0mQERERGR1mAARERGR1WECRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVocJEBEREVkdJkBERERkdZgAERERkdVhAkRERERWhwkQERERWR0mQERERGR1mAARERGR1bGVOgAyM1oNULwPuHkJcFEAvoMBG5nUURERERkVEyD608l0ICMBUF/885ybNxC5FAgYLV1cRERERsYuMKpxMh3YPEk/+QEAdUnN+ZPp0sRFRETUApgAUU23V0YCANHAxT/OZcyrKUdERNQKSJoAJSUlYeDAgXB1dYVcLkdUVBTy8/MNlhVFESNGjIAgCNiyZUuD9UZHR0MQBL1HZGRkC9xBK1G8r27Ljx4RUP9aU46IiKgVkDQBys7ORkxMDA4cOIDMzExUV1cjPDwc5eXldcquXLkSgiA0uu7IyEiUlJToHp999pkxQ29dbl4ybjkiIiIzJ+kg6IyMDL3j1NRUyOVyHDlyBEOHDtWdz8vLw3vvvYfDhw/Dy8urUXXb29tDqVQaNd5Wy0Vh3HJERERmzqzGAKlUKgCAp6en7lxFRQWef/55/Otf/2pSQpOVlQW5XI4ePXpg+vTpuHLlSr1lq6qqoFar9R5WxXdwzWwv1NfCJgBuHWvKERERNZdWAxTtAY5/UfOnhGNLzWYavFarRVxcHIYMGYLAwEDd+VdffRWDBw/GmDFjGl1XZGQknnrqKfj5+aGwsBCvvfYaRowYgf3790Mmq7umTVJSEhITE41yHxbJRlYz1X3zJNQkQXcOhv4jKYpcwvWAiIio+cxsqRVBFEVDU39Mbvr06fjuu++Qk5ODTp06AQDS09Mxe/Zs/PDDD3BxcQEACIKAtLQ0REVFNbruX375BV27dsX27dvx+OOP17leVVWFqqoq3bFarYaPjw9UKhXc3Nzu78YsicFfzo41yQ/XASIiouaqXWqlzmzjP75kj/+3UT5n1Go13N3dG/X5bRYtQLGxsdi6dSt2796tS34AYOfOnSgsLISHh4de+XHjxuHRRx9FVlZWo+p/4IEH0L59e5w5c8ZgAmRvbw97e/v7uYXWIWA00PNJrgRNRETGc8+lVoSapVZ6PmnSzxtJEyBRFDFjxgykpaUhKysLfn5+etfnzZuH//f//p/euT59+uAf//gHRo0a1ejXuXDhAq5cudLoAdRWzUYG+D0qdRRERNRaNGWpFRN+/kiaAMXExGDjxo34+uuv4erqitLSUgCAu7s7HB0doVQqDQ587ty5s16y1LNnTyQlJWHs2LG4efMmEhMTMW7cOCiVShQWFmLu3Lnw9/dHRESEye6NiIiIYLZLrUg6Cyw5ORkqlQqhoaHw8vLSPTZt2tSkevLz83UzyGQyGY4dO4bRo0eje/fueOmll9C/f3/s2bOH3VxERESmZqZLrUjeBWaM59x5ztHREdu2bbuvuIiIiMhIapdaUZfA8Dggoea6iZdaMat1gIiIiKiVqV1qBUDd9eakW2qFCRARERG1rIDRNVPd3e6ajOTmbbQp8E1lFtPgiYiIqJUzs6VWmAARERGRaZjRUitMgIiI7odWYzbfaImo8ZgAERE1l5ntbUREjcdB0EREzVG7t9HdK9yqS2rOn0yXJi4iahQmQERETXXPvY1Qs7eRVmPKqIioCZgAERE1VVP2NiIis8QEiIioqcx0byMiajwmQERETWWmexsRUeMxASIiaqravY3qLOtfSwDcOpp8byMiajwmQERETWWmexsRUeMxASIiag4z3NuIiBqPCyESETWXme1tRESNxwSIiOh+mNHeRkTUeOwCIyIiIqvDBIiIiIisDhMgIiIisjpMgIiIiMjqMAEiIiIiq8MEiIiIiKwOEyAiIiKyOkyAiIiIyOowASIiIiKrwwSIiIiIrA4TICIiIrI6TICIiIjI6jABIiIiIqvDBIiIiIisDhMgIiIisjpMgIiIiMjqMAEiIiIiq8MEiIiIiKyOpAlQUlISBg4cCFdXV8jlckRFRSE/P99gWVEUMWLECAiCgC1btjRYryiKeOutt+Dl5QVHR0eEhYWhoKCgBe6AiIiILJGkCVB2djZiYmJw4MABZGZmorq6GuHh4SgvL69TduXKlRAEoVH1Llu2DKtXr8aaNWuQm5sLZ2dnREREoLKy0ti3QERERBZIEEVRlDqIWpcvX4ZcLkd2djaGDh2qO5+Xl4eRI0fi8OHD8PLyQlpaGqKiogzWIYoivL29MXv2bMyZMwcAoFKpoFAokJqaimefffaecajVari7u0OlUsHNzc0o90ZEREQtqymf32Y1BkilUgEAPD09decqKirw/PPP41//+heUSuU96ygqKkJpaSnCwsJ059zd3TFo0CDs37/f4HOqqqqgVqv1HkRERNR6mU0CpNVqERcXhyFDhiAwMFB3/tVXX8XgwYMxZsyYRtVTWloKAFAoFHrnFQqF7trdkpKS4O7urnv4+Pg08y6IiIjIEthKHUCtmJgYnDhxAjk5Obpz6enp2LlzJ3744YcWfe358+cjPj5ed6xWq5kEERERtWJm0QIUGxuLrVu3YteuXejUqZPu/M6dO1FYWAgPDw/Y2trC1rYmXxs3bhxCQ0MN1lXbTXbp0iW985cuXaq3C83e3h5ubm56DyIiImq9JE2ARFFEbGws0tLSsHPnTvj5+eldnzdvHo4dO4a8vDzdAwD+8Y9/ICUlxWCdfn5+UCqV2LFjh+6cWq1Gbm4uQkJCWuxeiIiIyHJI2gUWExODjRs34uuvv4arq6tujI67uzscHR2hVCoNttp07txZL1nq2bMnkpKSMHbsWAiCgLi4OCxatAjdunWDn58f3nzzTXh7e9c7c4yIiIisi6QJUHJyMgDU6c5KSUlBdHR0o+vJz8/XzSADgLlz56K8vBxTp07F9evX8cgjjyAjIwMODg7GCJuIiIgsnFmtA2QuuA4QERGR5bHYdYCIiIiITIEJEBEREVkdJkBERERkdZgAERERkdVhAkRERERWhwkQERERWR0mQERERGR1mAARERGR1WECRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVocJEBEREVkdJkBERERkdZgAERERkdVhAkRERERWhwkQERERWR0mQERERGR1mAARERGR1WECRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVsdW6gCIiIig1QDF+4CblwAXBeA7GLCRSR0VtWJMgIiISFon04GMBEB98c9zbt5A5FIgYLR0cVGrxi4wIiKSzsl0YPMk/eQHANQlNedPpksTF7V6TICIiEgaWk1Nyw9EAxf/OJcxr6Yc3ZtWAxTtAY5/UfMn37cGsQuMiIikUbyvbsuPHhFQ/1pTzu9Rk4VlkdiN2GRsASIiImncvGTcctaK3YjNwgSILA+beYlaBxeFcctZI3YjNhu7wMiysJmXqPXwHVzz71ddAsMf4ELNdd/Bpo7McrAbsdnYAkSWg828RK2LjazmywsAQLjr4h/HkUu4HlBD2I3YbEyAyDKwmZeodQoYDYz/N+DmpX/ezbvmPFt2G8ZuxGaTNAFKSkrCwIED4erqCrlcjqioKOTn5+uVmTZtGrp27QpHR0d06NABY8aMwenTpxusNzo6GoIg6D0iIyNb8laopTWlmZeILEvAaCDuBDB5KzDuk5o/444z+WmM2m7EOi1otQTArSO7EQ2QNAHKzs5GTEwMDhw4gMzMTFRXVyM8PBzl5eW6Mv3790dKSgpOnTqFbdu2QRRFhIeHQ6Np+Jt+ZGQkSkpKdI/PPvuspW+HWhKbeYlaNxtZzRiVPk/X/Mlur8ZhN2KzSToIOiMjQ+84NTUVcrkcR44cwdChQwEAU6dO1V3v0qULFi1ahAcffBBnz55F165d663b3t4eSqWyUXFUVVWhqqpKd6xWq5tyG2QKbOYlIjKsthvR4ASRJWxJq4dZzQJTqVQAAE9PT4PXy8vLkZKSAj8/P/j4+DRYV1ZWFuRyOdq2bYu//OUvWLRoEdq1a2ewbFJSEhITE+8veGpZnC1CZkqj1eBo2VFcrriMDk4dECQPgozftsnUAkYDPZ/khrJNIIiiaOjTxOS0Wi1Gjx6N69evIycnR+/aBx98gLlz56K8vBw9evTA//73vwZbfz7//HM4OTnBz88PhYWFeO211+Di4oL9+/dDJqv7y2CoBcjHxwcqlQpubm7Gu0m6P7WzwADoJ0F/NPNywCSZ2Pbi7VhycAkuVfzZ9apwUmBe8DyE+YZJGBmRdVKr1XB3d2/U57fZJEDTp0/Hd999h5ycHHTq1EnvmkqlQllZGUpKSrB8+XL8+uuv2Lt3LxwcHBpV9y+//IKuXbti+/btePzxx+9ZvilvIJmYwXWAOrKZl0xue/F2xGfFQ7yrRVL4IyFfEbqCSRCRiVlcAhQbG4uvv/4au3fvhp+fX4Nlb926hbZt22Lt2rV47rnnGv0aHTp0wKJFizBt2rR7lmUCZOa0GjbzkqQ0Wg0ivozQa/m5kwABCicFMsZlsDuMyISa8vkt6RggURQxY8YMpKWlISsr657JT+1zRFHU67K6lwsXLuDKlSvw8vK6d+EWxLECRlI7W4RIIkfLjtab/ACACBGlFaU4WnYUA5UDTRgZETWWpAlQTEwMNm7ciK+//hqurq4oLS0FALi7u8PR0RG//PILNm3ahPDwcHTo0AEXLlzAkiVL4OjoiCeeeEJXT8+ePZGUlISxY8fi5s2bSExMxLhx46BUKlFYWIi5c+fC398fERERUt0qxwoQtSKXKy4btRxZALY8tzqSJkDJyckAgNDQUL3zKSkpiI6OhoODA/bs2YOVK1fi2rVrUCgUGDp0KPbt2we5XK4rn5+fr5tBJpPJcOzYMXz66ae4fv06vL29ER4ejnfeeQf29vYmu7c71TdWoKyiDPFZ8RwrQGRhOjh1MGo5MnPcg7BVMosxQObGmGOAOFaAqPWp/XddVlFW54sNwH/XrYpu9undP2fOPjVHTfn85l5gLawpYwWIyDLIbGSYFzwPwJ+zvmrVHicEJzD5sXTcg7BVYwLUwjhWgKh1CvMNw4rQFZA7yfXOK5wU7NZuLbgHYatmVitBt0YcK0DUeoX5hmGYzzDO7mytuAdhq8YEqIUFyYOgcFLcc6xAkDxIguiI6H7JbGSc6t5acQ/CVo1dYC2MYwWIiCxU7R6EdXZZryXUrETPPQgtEhMgE+BYASIiC2Qjq5nqDqBuEvTHceQSrgdkoTgN3oCW2gqDK0ETEVkg7kFoMSxuLzBzw73AiIhID1eCtggWsxcYERGRReAehK0OxwARERGR1WECRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVocJEBEREVkdJkBERERkde5rIcTKykps2rQJ5eXlGD58OLp162asuIiIiIhaTKMToPj4eFRXV+P9998HANy6dQshISH46aef4OTkhLlz5yIzMxMhISEtFiwRERGRMTS6C+z777/H8OHDdccbNmxAcXExCgoKcO3aNTzzzDNYtGhRiwRJREREZEyNToDOnTuHgIAA3fH333+Pp59+Gr6+vhAEAbNmzcIPP/zQIkESERERGVOjEyAbGxvcuXH8gQMH8PDDD+uOPTw8cO3aNeNGR0RERNQCGp0A9erVC9988w0A4KeffsK5c+cwbNgw3fXi4mIoFArjR0hERERkZI0eBD137lw8++yz+N///oeffvoJTzzxBPz8/HTXv/32WwQHB7dIkERERETG1OgWoLFjx+Lbb79F37598eqrr2LTpk16152cnPDKK68YPUAiIiIiYxPEOwf2NODtt9/GnDlz4OTk1NIxSU6tVsPd3R0qlQpubm5Sh0NERESN0JTP70a3ACUmJuLmzZv3HRwRERGR1BqdADWyoYiIiIjI7DVpLzBBEFoqDiIiIiKTadJeYN27d79nEnT16tX7CoiIiIiopTUpAUpMTIS7u3tLxUJERERkEk1KgJ599lnI5fKWioWIiIjIJBo9Bojjf4iIiKi14CwwIiIisjqNToC0Wq3Ru7+SkpIwcOBAuLq6Qi6XIyoqCvn5+Xplpk2bhq5du8LR0REdOnTAmDFjcPr06QbrFUURb731Fry8vODo6IiwsDAUFBQYNXYiIiKyXE2aBm9s2dnZiImJwYEDB5CZmYnq6mqEh4ejvLxcV6Z///5ISUnBqVOnsG3bNoiiiPDwcGg0mnrrXbZsGVavXo01a9YgNzcXzs7OiIiIQGVlpSlui4iIiMxco7fCMIXLly9DLpcjOzsbQ4cONVjm2LFjePDBB3HmzBl07dq1znVRFOHt7Y3Zs2djzpw5AACVSgWFQoHU1FQ8++yz94yDW2GYN41Wg6NlR3G54jI6OHVAkDwIMhuZ1GEREZHEmvL53aRZYC1NpVIBADw9PQ1eLy8vR0pKCvz8/ODj42OwTFFREUpLSxEWFqY75+7ujkGDBmH//v0GE6CqqipUVVXpjtVq9f3cBrWg7cXbseTgElyquKQ7p3BSYF7wPIT5hjXwTCLrxS8NRHVJ2gV2J61Wi7i4OAwZMgSBgYF61z744AO4uLjAxcUF3333HTIzM2FnZ2ewntLSUgCAQqHQO69QKHTX7paUlAR3d3fdo77kiqS1vXg74rPi9ZIfACirKEN8Vjy2F2+XKDIi87W9eDsivozAlG1TkLAnAVO2TUHElxH890JWz2wSoJiYGJw4cQKff/55nWsTJkzADz/8gOzsbHTv3h3jx4836nie+fPnQ6VS6R7nz583Wt1kHBqtBksOLoGIuj22teeWHlwKjbb+sWFE1oZfGojqZxYJUGxsLLZu3Ypdu3ahU6dOda67u7ujW7duGDp0KL744gucPn0aaWlpButSKpUAgEuX9P/BX7p0SXftbvb29nBzc9N7kHk5Wna0zn/idxIhorSiFEfLjpowKiLzxS8NRA2TNAESRRGxsbFIS0vDzp074efn16jniKKoN2bnTn5+flAqldixY4funFqtRm5uLkJCQowWO5nW5YrLRi1H1NrxSwNRwyRNgGJiYrB+/Xps3LgRrq6uKC0tRWlpKX7//XcAwC+//IKkpCQcOXIE586dw759+/DMM8/A0dERTzzxhK6enj176lqEBEFAXFwcFi1ahPT0dBw/fhyTJk2Ct7c3oqKipLhNMoIOTh2MWo6oteOXBqKGSToLLDk5GQAQGhqqdz4lJQXR0dFwcHDAnj17sHLlSly7dg0KhQJDhw7Fvn379BZlzM/P180gA4C5c+eivLwcU6dOxfXr1/HII48gIyMDDg4OJrkvMr4geRAUTgqUVZQZbNIXIEDhpECQPEiC6IjMD780EDXMrNYBMhcttQ6QRiviYNFVlN2ohNzVAcF+npDZcI+1xqod0AlALwkSUPMerghdwanwRH/QaDWI+DLinl8aMsZlcEo8tRoWuw5Qa5ZxogSJ35xEierP2Wte7g5YMCoAkYFeEkZmOcJ8w7AidIXBdYASghOY/BDdQWYjw7zgeYjPiocAweCXhoTgBCY/ZLXYAmSAsVuAMk6UYPr6o3W+g9W2/SRPDGIS1ARc1I2o8QwtHqp0UvJLA7VKTfn8ZgJkgDETII1WxCNLd+q1/NxJAKB0d0BOwl/YHUZELYJfGshasAvMjBwsulpv8gMAIoASVSUOFl1FSNd2pguMiKyGzEaGgcqBUodBZFbMYiHE1qzsRuNWrG5sOSIiIrp/TIBamNy1cVPvG1uOiIiI7h8ToBYW7OcJL3cH1De6R0DNbLBgP09ThkVERGTVmAC1MJmNgAWjAgCgThJUe7xgVAAHQLc2Wg1QtAc4/kXNn9xviYjIrHAQtAlEBnoheWJQnXWAlGa4DhBnixjByXQgIwFQX/zznJs3ELkUCBgtXVxERKTDafAGWOtK0IbWC1E4KTAveB7XC2msk+nA5klAfas+jf83kyAiohbCdYDuU0slQOasdpuJu5fM5zYTTaDVACsD9Vt+9Ag1LUFxxwG2qhERGV1TPr85Boig0Wqw5OASg/sF1Z5benApNBzH0rDifQ0kPwAgAupfa8oREZGkmAARjpYd1ev2upsIEaUVpThadtSEUVmgm/W/h80qR0RELYYJEOFyxWWjlrNaLgrjliMiohbDWWCEDk4djFrOavkOrhnjoy5B3UHQgG4MkO9gU0dmkLkPyiciaklMgAhB8iAonBQoqygzOA5IgACFkwJB8iAJorMgNrKaqe6bJ6Fm1ted7+UfiUXkErMYAJ1xoqTOsgxeZrksA5M0ImoZnAVmgDXPAgOglwRxFlgzGFwHqGNN8mMGU+AzTpRg+vqj9U3UR/LEILNIgiwlSSMi88Fp8PfJGhMgwPA6QEonJRKCE5j8NJHm9m2czt2G36/9Cse2HdFzUARkttI3uGq0Ih5ZulMvqbiTgJoFOnMS/iJpS4ulJGkAW6mIzElTPr+l/x+ZzEaYbxiG+QzjStD36c+WCwDoCADw2p1tFi0XB4uu1pv8ADWddiWqShwsuoqQru1MF9gdNFoRid+chAjABloE25yGHNdRBg8c1PaECBskfnMSwwOUkicabKUislxMgEiPzEaGgcqBUodhsepruShVVWL6+qOSt1yU3ag/+WlOuZZQm6RF2BzEgjb/hrdwVXftouiJxOpJ2KYKljRJA8z/Z01EDeM0eCIjubPl4m615xK/OQmNVrpeZ7mrg1HLtYSyGzXJT3KblVDiqt41Ja4iuc1KRNgclDRJs4SfNRE1jAkQkZE0pXtJKsF+nvByd0B9HUcCarpwgv08TRmWHrlzGyxo828AwN09XLXHC9r8B3LnNiaO7E+W8LMmooYxASIyEkvoXpLZCFgwKgAA6iRBtccLRgVIOrYmWHYa3sLVOslPLRsB8BauIFh22rSB3cESftZE1DAmQERGYgndSwAQGeiF5IlBULrrx6F0dzCLcSuy8jKjlmsJlvKzJqL6cRA0kZHUdi+VqirrWwcaSom7l2pFBnpheIDSPKdvW8CWIpb0syYiw9gCRGQkltC9dCeZjYCQru0w5qGOCOnazmzi0m0p0tBIJbeOkm4pYmk/ayKqiwkQkRGZe/eSRajdUgRAvemFGWwpwp81kWXjStAGWOtK0GQ8XB3YCMx8S5Fa/FkTmQ9uhXGfmAARmQmtBijeB9y8VDPmx3ew5C0/RGS+uBUGEbUONjLA71GpoyCyCGyNbBomQERERBaO+9I1HQdBExERWbDafenuXp28dl+6jBMlEkVWl0YrYn/hFXyd9yv2F16RdLsYtgARWSsLGF+j0WpwtOwoLldcRgenDgiSB0FmZjESSele+9IJqNmXbniAUvLuMHNrpWICRGSNDM6w8q6Zfm4mM6y2F2/HkoNLcKniku6cwkmBecHzEOYbJmFkZI3MNRlvyr50IV3bmS6wu9S2Ut2dqNW2UkmxdAQTICJrczId2DwJuPu/InVJzfnx/5Y8CdpevB3xWfEQ74qxrKIM8VnxWBG6gkkQmYw5J+OWsC+dubZSSToGKCkpCQMHDoSrqyvkcjmioqKQn5+vu3716lXMmDEDPXr0gKOjIzp37oyZM2dCpVI1WG90dDQEQdB7REZGtvTtEJk/raam5afe/4oAZMyrKScRjVaDJQeX1El+AOjOLT24FBoJYyTrUZuM35n8AH8m49uLt0sUWQ1L2JeuKa1UpiRpApSdnY2YmBgcOHAAmZmZqK6uRnh4OMrLywEAFy9exMWLF7F8+XKcOHECqampyMjIwEsvvXTPuiMjI1FSUqJ7fPbZZy19O0Tmr3iffrdXHSKg/rWmnESOlh2t82FzJxEiSitKcbTsqAmjImtkCcl47b50DWwcAy+J96Uz11YqSbvAMjIy9I5TU1Mhl8tx5MgRDB06FIGBgfjyyy9117t27YrFixdj4sSJuH37Nmxt6w/f3t4eSqWyUXFUVVWhqqpKd6xWq5t4J0QW4mb9iUWzyrWAyxWXjVqOqLmakowPVA40YWR/qt2Xbvr6oxCg37ZrLvvSmWsrlVlNg6/t2vL0rD9TrV3dsaHkBwCysrIgl8vRo0cPTJ8+HVeuXKm3bFJSEtzd3XUPHx+f5t0AkbmzgJ3WOzh1MGo5ouaylGTc3PelM9dWKrPZCkOr1WL06NG4fv06cnJyDJb57bff0L9/f0ycOBGLFy+ut67PP/8cTk5O8PPzQ2FhIV577TW4uLhg//79kMnqjto31ALk4+PDrTCo9dFqgJWBNQOeDY4DEmpmg8Udl2xKvEarQcSXESirKDPY9SBAgMJJgYxxGWYxC4dar0OlhzBl25R7llsXsU6yFqA7mfNK0LWzwADDrVTGStQsci+w6dOn47vvvkNOTg46depU57parcbw4cPh6emJ9PR0tGnTptF1//LLL+jatSu2b9+Oxx9//J7luRcYtWq6WWCAwf+KzGgWGAC9JEj4I0bOAiNTuHX7Ngb8exi0NtchGMgjRBGw0Xjg8ORdsLtHrwSZZh0gi9sLLDY2Flu3bsXu3bsNJj83btxAZGQkXF1dkZaW1qTkBwAeeOABtG/fHmfOnGlUAkTUqgWMrklyDK4DZB47rYf5hmFF6AqDU48TghOY/JBJHClWoaJkJBw6rocoQi8Jqm06qCgdiSPFKknX2LEUkYFeGB6gNJtWKkkTIFEUMWPGDKSlpSErKwt+fn51yqjVakRERMDe3h7p6elwcGj6IKkLFy7gypUr8PLifihEAGqSnJ5PmvVK0GG+YRjmM8wsF58j61B2oxK3bwSi8teJsFd8A6HNn0uwiLfdUXVpFG7fCJR0jR1LI7MRzCZZlDQBiomJwcaNG/H111/D1dUVpaWlAAB3d3c4OjpCrVYjPDwcFRUVWL9+PdRqtW6GVocOHXTjeXr27ImkpCSMHTsWN2/eRGJiIsaNGwelUonCwkLMnTsX/v7+iIiIkOxeicyOBey0LrORmcXYCrJOtbOSbt8IxO0bAZA5FUGwvQHxtis0FX6onUck5Ro71HySJkDJyckAgNDQUL3zKSkpiI6OxtGjR5GbmwsA8Pf31ytTVFSELl26AADy8/N1M8hkMhmOHTuGTz/9FNevX4e3tzfCw8PxzjvvwN7evmVviIiImsUct5qonb1UqqqECBtoKrrqXRdQM9NKyjV2qPnMZhC0OeEgaCIi0zHnrSZMNXuJjKMpn99mtQ4QERFZF3PfasLc19ih5mMLkAFsASIianm1az7Vt9qyOa35ZM5r7NCfLG4aPFFT8D8iotbBEraaqGVOs5fIOJgAkUUxxUJaRGQalrLVBLVOHANEFqN2MOKdyQ8AlKoqMX39UWScKJEoMiJqDu77RlJiAkQWQaMVkfjNSYO7V9WeS/zmJDRaDmkjshRB8iAonBS6LU7uJkCA0kmJIHmQiSMja8AEiCzCwaKrdVp+7iQCKFFV4mDRVdMFRUT3RWYjw7zgeQBQJwmqPU4ITpB8ADS1TkyAyCI0dql5LklPZFlq932TO8n1ziucFNz0lloUB0GTRWjsUvNckp7I8nDfN5ICEyCyCPpL0tfFJemJLBv3fSNTYxcYWQSZjYAFowIAoM5wydrjBaMCuB4QkYXSaEXsL7yCr/N+xf7CK5zQQC2OLUBkMWqXpL97HSAl1wEismhc34ukwK0wDOBWGOaNK0ETtR6163vd/UHEzUapObgVBrVqXJKeqHW41/peAmrW9xoeoOSXHDI6jgEiPeyHJyJT4fpeJCW2AJEO++GJyJS4vhdJiS1ABID7bBGR6XF9L5ISEyDiPltEJIna9b3qG90joKYVmut7UUtgAkTsh7dSGq0Gh0oP4dtfvsWh0kPQaDVSh0RWhut7kZQ4BojYD98CNFqNWS/rv714O5YcXIJLFZd05xROCswLnse9l8ikuL4XSYUJELEf3sjMPbnYXrwd8VnxEO/q9CyrKEN8Vjw3oCSTiwz0wvAAJdf3IpNiFxixH96IapOLO5Mf4M/kYnvxdokiq6HRarDk4JI6yQ8A3bmlB5eyO4xMrnZ9rzEPdURI13ZMfqjFMQEi9sMbiSUkF0fLjtZJzu4kQkRpRSmOlh01YVRERKbHBIgA/NkPr3TX7+ZSujtwKfpGsoTk4nLFZaOWIyKyVBwDRDrsh78/lpBcdHDqYNRyRESWigkQ6eE+W81nCclFkDwICicFyirKDHbVCRCgcFIgSB4kQXRERKbDLjAiI6lNLoR6hpMLEKB0UkqaXMhsZJgXPE8Xz51qjxOCE8xqyj4RUUtgAkRkJJaSXIT5hmFF6ArIneR65xVOCk6BJyKrIYiiyP0N7qJWq+Hu7g6VSgU3NzepwyELY2gdIKWTEgnBCWaVXJj7Yo1ERE3VlM9vJkAGMAGi+8XkgojI9Jry+c1B0EQtQGYjw0DlQKnDICKienAMEBEREVkdtgARERGRSZjT8AAmQERERNTizG2jaEm7wJKSkjBw4EC4urpCLpcjKioK+fn5uutXr17FjBkz0KNHDzg6OqJz586YOXMmVCpVg/WKooi33noLXl5ecHR0RFhYGAoKClr6doiIiMgAc9woWtIEKDs7GzExMThw4AAyMzNRXV2N8PBwlJeXAwAuXryIixcvYvny5Thx4gRSU1ORkZGBl156qcF6ly1bhtWrV2PNmjXIzc2Fs7MzIiIiUFlZaYrbIiIioj+Y60bRZjUN/vLly5DL5cjOzsbQoUMNlvnvf/+LiRMnory8HLa2dXvwRFGEt7c3Zs+ejTlz5gAAVCoVFAoFUlNT8eyzz94zDk6DJyIiMo5DpYcwZduUe5ZbF7HuvmfPNuXz26xmgdV2bXl6ejZYxs3NzWDyAwBFRUUoLS1FWNif/Ynu7u4YNGgQ9u/fb/A5VVVVUKvVeg8iolZDqwGK9gDHv6j508TftMm6metG0WYzCFqr1SIuLg5DhgxBYGCgwTK//fYb3nnnHUydOrXeekpLSwEACoVC77xCodBdu1tSUhISExObGTkRkRk7mQ5kJADqi3+ec/MGIpcCAaOli4ushrluFG02LUAxMTE4ceIEPv/8c4PX1Wo1nnzySQQEBGDhwoVGfe358+dDpVLpHufPnzdq/UREkjiZDmyepJ/8AIC6pOb8yXRp4iKrYq4bRZtFAhQbG4utW7di165d6NSpU53rN27cQGRkJFxdXZGWloY2bdrUW5dSqQQAXLqkP9L80qVLumt3s7e3h5ubm96DiMiiaTU1LT8GBp7qzmXMY3cYtThz3Sha0gRIFEXExsYiLS0NO3fuhJ+fX50yarUa4eHhsLOzQ3p6OhwcHBqs08/PD0qlEjt27NCrIzc3FyEhIUa/ByIis1S8r27Ljx4RUP9aU46ohYX5hmFF6ArIneR65xVOCqwIXSHJOkCSjgGKiYnBxo0b8fXXX8PV1VU3Rsfd3R2Ojo665KeiogLr16/XG6DcoUMHyGQ12WLPnj2RlJSEsWPHQhAExMXFYdGiRejWrRv8/Pzw5ptvwtvbG1FRUVLdKhGRad28dO8yTSlHdJ/CfMMwzGcYV4IGgOTkZABAaGio3vmUlBRER0fj6NGjyM3NBQD4+/vrlSkqKkKXLl0AAPn5+XqLI86dOxfl5eWYOnUqrl+/jkceeQQZGRn3bD1qKo1Gg+rqaqPWSWQMbdq00X1BICvlorh3maaUIzICc9oo2qzWATIX91pHQBRFlJaW4vr166YPjqiRPDw8oFQqIQiGBx5S66a5fRu/LeqODuIV2Bj4FdCKQJnQDh3e+BmyepYVIbI0TVkHiL/1zVCb/Mjlcjg5OfEDhsyKKIqoqKhAWVkZAMDLy0viiEgKB4tVSL31ApLbrIRWhF4SpP3ja++CWy8guliFkK7tpAmSSEJMgJpIo9Hokp927fifBpknR0dHAEBZWRnkcjm7w6xQ2Y1KbNMGY3p1HBa0+Te8cVV3rRTtkFj9ArZpg/HEDW4RRNaJCVAT1Y75cXJykjgSoobV/o5WV1czAbJCcteaMY/btMHIrBqAYJvTkOM6yuCBg9qe0P4xCbi2HJG1YQLUTOz2InPH31HrFuznCS93B5SqKqGFDQ5oA/SuCwCU7g4I9qt/6yGi1swsFkIkIiLjktkIWDCqJum5OxWuPV4wKgAyQyOkiawAEyAyuujoaL01l0JDQxEXF3dfdRqjDiJrExnoheSJQVC663dzKd0dkDwxCJGBHCBP1osJkBWJjo6GIAgQBAF2dnbw9/fH22+/jdu3b7fo63711Vd45513GlU2KysLgiDUWWKgKXW0lIULF+Khhx6q93pRURGef/55eHt7w8HBAZ06dcKYMWNw+vRppKam6t77+h5nz57FwoULIQgCIiMj69T/97//HYIg1Fk3i6ghkYFeyEn4Cz57+WGsevYhfPbyw8hJ+AuTH7J6HAMkEY1WxMGiqyi7UQm5a00/vCmaoiMjI5GSkoKqqip8++23iImJQZs2bTB//ny9crdu3YKdnZ1RXtPT8/7HGBijjpZUXV2N4cOHo0ePHvjqq6/g5eWFCxcu4LvvvsP169fx17/+VS+peeqppxAYGIi3335bd65Dh5qdkL28vLBr1y5cuHBBb2+8devWoXPnzqa7KWo1ZDYCp7oT3YUtQBLIOFGCR5buxHMfH8Csz/Pw3McH8MjSncg4UdLir21vbw+lUglfX19Mnz4dYWFhSE9P13VbLV68GN7e3ujRowcA4Pz58xg/fjw8PDzg6emJMWPG4OzZs7r6NBoN4uPj4eHhgXbt2mHu3Lm4e23Nu7uvqqqqkJCQAB8fH9jb28Pf3x+ffPIJzp49i2HDhgEA2rZtC0EQEB0dbbCOa9euYdKkSWjbti2cnJwwYsQIFBQU6K6npqbCw8MD27ZtQ69eveDi4oLIyEiUlPz5HmdlZSE4OBjOzs7w8PDAkCFDUFxc3Kz39aeffkJhYSE++OADPPzww/D19cWQIUOwaNEiPPzww3B0dIRSqdQ97Ozs4OTkpHeudqaWXC5HeHg4Pv30U139+/btw2+//YYnn3yyWfEREZE+JkAmlnGiBNPXH0WJSn/tjVJVJaavP2qSJOhOjo6OuHXrFgBgx44dyM/PR2ZmJrZu3Yrq6mpERETA1dUVe/bswd69e3WJRO1z3nvvPaSmpmLdunXIycnB1atXkZaW1uBrTpo0CZ999hlWr16NU6dO4cMPP4SLiwt8fHzw5ZdfAqjZ3qSkpASrVq0yWEd0dDQOHz6M9PR07N+/H6Io4oknntDbmqSiogLLly/Hf/7zH+zevRvnzp3DnDlzAAC3b99GVFQUHnvsMRw7dgz79+/H1KlTmz1zqkOHDrCxscEXX3wBjeb+d9eeMmUKUlNTdcfr1q3DhAkTjNYqR0Rk7dgFZkIarYjEb07C0N4jImpmZiR+cxLDA5Qt3h0miiJ27NiBbdu2YcaMGbh8+TKcnZ2xdu1a3Yfs+vXrodVqsXbtWl1ikJKSAg8PD2RlZSE8PBwrV67E/Pnz8dRTTwEA1qxZg23bttX7uj///DM2b96MzMxMhIXV7P77wAMP6K7XdnXJ5XJ4eHgYrKOgoADp6enYu3cvBg8eDADYsGEDfHx8sGXLFjzzzDMAarql1qxZg65duwIAYmNjdV1OarUaKpUKI0eO1F3v1atX09/IP3Ts2BGrV6/G3LlzkZiYiAEDBmDYsGGYMGGC3v011siRI/G3v/0Nu3fvRv/+/bF582bk5ORg3bp1zY6RiIj+xBYgEzpYdLVOy8+dRAAlqkocLLpab5n7tXXrVri4uMDBwQEjRozAX//6VyxcuBAA0KdPH70Whh9//BFnzpyBq6srXFxc4OLiAk9PT1RWVqKwsBAqlQolJSUYNGiQ7jm2trYYMGBAva+fl5cHmUyGxx57rNn3cOrUKdja2uq9brt27dCjRw+cOnVKd87JyUmX3AA1Y2tqt4fw9PREdHQ0IiIiMGrUKKxatUrXPXbu3Dnd/bq4uODdd99tVFwxMTEoLS3Fhg0bEBISgv/+97/o3bs3MjMzm3yPbdq0wcSJE5GSkoL//ve/6N69O/r27dvkeoiIyDC2AJlQWSOXnG9sueYYNmwYkpOTYWdnB29vb9jesQmis7OzXtmbN2+if//+2LBhQ516agfsNlXtFg2m0KZNG71jQRD0xielpKRg5syZyMjIwKZNm/DGG28gMzMTAwYMQF5enq5cUwZgu7q6YtSoURg1ahQWLVqEiIgILFq0CMOHD29y/FOmTMGgQYNw4sQJTJkypcnPJyKi+rEFyIQau+R8Sy5N7+zsDH9/f3Tu3Fkv+TEkKCgIBQUFkMvl8Pf313u4u7vD3d0dXl5eyM3N1T3n9u3bOHLkSL119unTB1qtFtnZ2Qav17ZANTSOplevXrh9+7be6165cgX5+fkICAio93mG9OvXD/Pnz8e+ffsQGBiIjRs3wtbWVu9emzsDTRAE9OzZE+Xl5c16fu/evdG7d2+cOHECzz//fLPqICIiw5gAmVDt0vT1je4RAHiZ0dL0EyZMQPv27TFmzBjs2bMHRUVFyMrKwsyZM3HhwgUAwKxZs7BkyRJs2bIFp0+fxiuvvFJnDZ87denSBZMnT8aUKVOwZcsWXZ2bN28GAPj6+kIQBGzduhWXL1/GzZs369TRrVs3jBkzBi+//DJycnLw448/YuLEiejYsSPGjBnTqHsrKirC/PnzsX//fhQXF+P7779HQUHBPccB/f7778jLy9N7FBYWIi8vD2PGjMEXX3yBkydP4syZM/jkk0+wbt26RsdkyM6dO1FSUlLveCgiImoeJkAmZGlL0zs5OWH37t3o3LkznnrqKfTq1QsvvfQSKisr4ebmBgCYPXs2XnjhBUyePBkhISFwdXXF2LFjG6w3OTkZTz/9NF555RX07NkTL7/8sq6VpGPHjkhMTMS8efOgUCgQGxtrsI6UlBT0798fI0eOREhICERRxLffflun26uhezt9+jTGjRuH7t27Y+rUqYiJicG0adMafN7PP/+Mfv366T2mTZuGTp06oUuXLkhMTMSgQYMQFBSEVatWITExEa+//nqjYjKkdoo+EREZlyDevWgLQa1Ww93dHSqVSvdBX6uyshJFRUXw8/ODg0PzuqoyTpQg8ZuTegOivdwdsGBUAFdnJaMxxu8qEZElaejz+24cBC2ByEAvDA9QSrISNBERETEBkgyXpiciIpIOxwARERGR1WECRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVocJEBEREVkdJkBk9hYuXIiHHnpI6jAQGhqKuLg4qcMgIiIjYAJkRUpLSzFr1iz4+/vDwcEBCoUCQ4YMQXJyMioqKqQOr9mysrIgCEKDm7BKWR8REZkfrgQtFa0GKN4H3LwEuCgA38GAjazFXu6XX37BkCFD4OHhgXfffRd9+vSBvb09jh8/jo8++ggdO3bE6NGjDT63urq60ZuMmrNbt27Bzs5O6jCIiMgMsAVICifTgZWBwKcjgS9fqvlzZWDN+RbyyiuvwNbWFocPH8b48ePRq1cvPPDAAxgzZgz+97//YdSoUbqygiAgOTkZo0ePhrOzMxYvXgygZhf3rl27ws7ODj169MB//vMf3XPOnj0LQRCQl5enO3f9+nUIgoCsrCwAf7as7NixAwMGDICTkxMGDx6M/Px8vViXLFkChUIBV1dX3e7z9Tl79iyGDRsGAGjbti0EQUB0dDSAmi6r2NhYxMXFoX379oiIiLhnnA3VBwBarRZz586Fp6cnlEolFi5c2NgfARERmREmQKZ2Mh3YPAlQX9Q/ry6pOd8CSdCVK1fw/fffIyYmBs7OzgbLCIL+RqwLFy7E2LFjcfz4cUyZMgVpaWmYNWsWZs+ejRMnTmDatGl48cUXsWvXribH8/rrr+O9997D4cOHYWtriylTpuiubd68GQsXLsS7776Lw4cPw8vLCx988EG9dfn4+ODLL78EAOTn56OkpASrVq3SXf/0009hZ2eHvXv3Ys2aNfeMrTH1OTs7Izc3F8uWLcPbb7+NzMzMJr8HREQkLXaBmZJWA2QkABANXBQBCEDGPKDnk0btDjtz5gxEUUSPHj30zrdv317XuhITE4OlS5fqrj3//PN48cUXdcfPPfccoqOj8corrwAA4uPjceDAASxfvlzXYtJYixcvxmOPPQYAmDdvHp588klUVlbCwcEBK1euxEsvvYSXXnoJALBo0SJs37693lYgmUwGT09PAIBcLoeHh4fe9W7dumHZsmW647NnzzYY273q69u3LxYsWKCr+5///Cd27NiB4cOHN+reiYjIPLAFyJSK99Vt+dEjAupfa8qZwMGDB5GXl4fevXujqqpK79qAAQP0jk+dOoUhQ4bonRsyZAhOnTrV5Nft27ev7u9eXl4AgLKyMt3rDBo0SK98SEhIk1+jVv/+/Zv9XEPujB2oib82diIishxsATKlm5eMW66R/P39IQhCnbE2DzzwAADA0dGxznPq6yqrj41NTS4tin+2blVXVxsse+eA6tquN61W26TXa6y776MpcRpy92BwQRBaLHYiImo5bAEyJReFccs1Urt27TB8+HD885//RHl5ebPq6NWrF/bu3at3bu/evQgICAAAdOjQAQBQUlKiu37nQOOmvE5ubq7euQMHDjT4nNqZXRqN5p71NybOptRHRESWSdIEKCkpCQMHDoSrqyvkcjmioqLqtFJ89NFHCA0NhZubW6PXZlm4cCEEQdB79OzZs4Xuogl8BwNu3gCEegoIgFvHmnJG9sEHH+D27dsYMGAANm3ahFOnTiE/Px/r16/H6dOnIZM1PObo//7v/5Camork5GQUFBRgxYoV+OqrrzBnzhwANa1IDz/8MJYsWYJTp04hOzsbb7zxRpPjnDVrFtatW4eUlBT8/PPPWLBgAX766acGn+Pr6wtBELB161ZcvnwZN2/erLdsY+JsSn1ERGSZJE2AsrOzERMTgwMHDiAzMxPV1dUIDw/Xa6WoqKhAZGQkXnvttSbV3bt3b5SUlOgeOTk5xg6/6WxkQGTtQOO7k6A/jiOXtMh6QF27dsUPP/yAsLAwzJ8/Hw8++CAGDBiA999/H3PmzME777zT4POjoqKwatUqLF++HL1798aHH36IlJQUhIaG6sqsW7cOt2/fRv/+/REXF4dFixY1Oc6//vWvePPNNzF37lz0798fxcXFmD59eoPP6dixIxITEzFv3jwoFArExsY2WP5ecTa1PiIisjyCeOdgCIldvnwZcrkc2dnZGDp0qN61rKwsDBs2DNeuXaszM+duCxcuxJYtWxrdBVNVVaU3CFitVsPHxwcqlQpubm56ZSsrK1FUVAQ/Pz84ODg0qv46TqbXzAa7c0C0W8ea5CfA8GKERE1llN9VIiILolar4e7ubvDz+25mNQhapVIBgG4a8v0oKCiAt7c3HBwcEBISgqSkJHTu3Nlg2aSkJCQmJt73azZawOiaqe4mXAmaiIiI/mQ2g6C1Wi3i4uIwZMgQBAYG3lddgwYNQmpqKjIyMpCcnIyioiI8+uijuHHjhsHy8+fPh0ql0j3Onz9/X6/fKDYywO9RoM/TNX8y+SEiIjIZs2kBiomJwYkTJ4wyVmfEiBG6v/ft2xeDBg2Cr68vNm/erFtg70729vawt7e/79clIiIiy2AWCVBsbCy2bt2K3bt3o1OnTkav38PDA927d8eZM2eMXjcRERFZHkm7wERRRGxsLNLS0rBz5074+fm1yOvcvHkThYWFulWHiYiIyLpJmgDFxMRg/fr12LhxI1xdXVFaWorS0lL8/vvvujKlpaXIy8vTtd4cP34ceXl5uHr1qq7M448/jn/+85+64zlz5iA7Oxtnz57Fvn37MHbsWMhkMjz33HOmuzkiIiIyW5ImQMnJyVCpVAgNDYWXl5fusWnTJl2ZNWvWoF+/fnj55ZcBAEOHDkW/fv2Qnv7nrumFhYX47bffdMcXLlzAc889hx49emD8+PFo164dDhw4oFsFmIiIiKybWa0DZC4aWkeAa6uQpeDvKhFZm6asA2Q20+CJiIiITIUJEBlddHQ0oqKidMehoaGIi4u7rzqNUYepCIKALVu21Hv97NmzEAShWZvFEhGRcTABsiLR0dG6zWHt7Ozg7++Pt99+G7dv327R1/3qq6/uuddYraysLIOb3jaljpZy5ya7MpkMPj4+mDp1qt6AfKBmp/k716IiIiLzYxbrAFkjjVaDo2VHcbniMjo4dUCQPAgyE6wGHRkZiZSUFFRVVeHbb79FTEwM2rRpg/nz5+uVu3XrFuzs7IzymsbY2sQYdRhD7969sX37dmg0Gpw6dQpTpkyBSqXSG7ivVColjJCIiBqDLUAS2F68HRFfRmDKtilI2JOAKdumIOLLCGwv3t7ir21vbw+lUglfX19Mnz4dYWFhSE9P13VbLV68GN7e3ujRowcA4Pz58xg/fjw8PDzg6emJMWPG4OzZs7r6NBoN4uPj4eHhgXbt2mHu3Lm4e1z93d1XVVVVSEhIgI+PD+zt7eHv749PPvkEZ8+exbBhwwAAbdu2hSAIiI6ONljHtWvXMGnSJLRt2xZOTk4YMWIECgoKdNdTU1Ph4eGBbdu2oVevXnBxcUFkZCRKSkp0ZbKyshAcHAxnZ2d4eHhgyJAhKC4ubvD9s7W1hVKpRMeOHREWFoZnnnkGmZmZemXu7gI7ePAg+vXrBwcHBwwYMAA//PBDnXrT09PRrVs3ODg4YNiwYfj000/rtITl5OTg0UcfhaOjI3x8fDBz5kyUl5c3GC8RERnGBMjEthdvR3xWPC5VXNI7X1ZRhviseJMkQXdydHTErVu3AAA7duxAfn4+MjMzsXXrVlRXVyMiIgKurq7Ys2cP9u7dq0skap/z3nvvITU1FevWrUNOTg6uXr2KtLS0Bl9z0qRJ+Oyzz7B69WqcOnUKH374IVxcXODj44Mvv/wSAJCfn4+SkhKsWrXKYB3R0dE4fPgw0tPTsX//foiiiCeeeALV1dW6MhUVFVi+fDn+85//YPfu3Th37hzmzJkDALh9+zaioqLw2GOP4dixY9i/fz+mTp0KQRAa/d6dPXsW27Zta7Cl7ObNmxg5ciQCAgJw5MgRLFy4UBdDraKiIjz99NOIiorCjz/+iGnTpuH111/XK1NYWIjIyEiMGzcOx44dw6ZNm5CTk4PY2NhGx0tErZtGq8Gh0kP49pdvcaj0EDRajdQhmTV2gZmQRqvBkoNLIKLuygMiRAgQsPTgUgzzGdbi3WGiKGLHjh3Ytm0bZsyYgcuXL8PZ2Rlr167VfaCvX78eWq0Wa9eu1SUGKSkp8PDwQFZWFsLDw7Fy5UrMnz8fTz31FICadZu2bdtW7+v+/PPP2Lx5MzIzMxEWFgYAeOCBB3TXa7u65HI5PDw8DNZRUFCA9PR07N27F4MHDwYAbNiwAT4+PtiyZQueeeYZAEB1dTXWrFmDrl27AqjZcuXtt98GUDNVUqVSYeTIkbrrvXr1uuf7dvz4cbi4uECj0aCyshIAsGLFinrLb9y4EVqtFp988gkcHBzQu3dvXLhwAdOnT9eV+fDDD9GjRw/8/e9/BwD06NEDJ06cwOLFi3VlkpKSMGHCBF0rWLdu3bB69Wo89thjSE5O5jR3Iiu3vXg7lhxcovflWuGkwLzgeQjzDZMwMvPFFiATOlp2tE7Lz51EiCitKMXRsqMtFsPWrVvh4uICBwcHjBgxAn/961+xcOFCAECfPn30WjN+/PFHnDlzBq6urnBxcYGLiws8PT1RWVmJwsJCqFQqlJSUYNCgQbrn2NraYsCAAfW+fl5eHmQyGR577LFm38OpU6dga2ur97rt2rVDjx49cOrUKd05JycnXXIDAF5eXigrKwNQk2hFR0cjIiICo0aNwqpVq3TdY+fOndPdr4uLC959911dHT169EBeXh4OHTqEhIQEREREYMaMGQ3G2rdvX70EJSQkRK9Mfn4+Bg4cqHcuODhY7/jHH39EamqqXlwRERHQarUoKiq653tGRK2XufUsWAq2AJnQ5YrLRi3XHMOGDUNycjLs7Ozg7e0NW9s/fwWcnZ31yt68eRP9+/fHhg0b6tTT3FW1HR0dm/W85mjTpo3esSAIeuOTUlJSMHPmTGRkZGDTpk144403kJmZiQEDBuhNUb9zAHbt7DkAWLJkCZ588kkkJia2+Ay1mzdvYtq0aZg5c2ada507d27R1yYi82VOPQuWhi1AJtTBqXFJQ2PLNYezszP8/f3RuXNnveTHkKCgIBQUFEAul8Pf31/v4e7uDnd3d3h5eSE3N1f3nNu3b+PIkSP11tmnTx9otVpkZ2cbvF7bAqXR1N933atXL9y+fVvvda9cuYL8/HwEBAQ0eE9369evH+bPn499+/YhMDAQGzduhK2trd69NjQD7Y033sDy5ctx8eLFemM9duyYrrsMAA4cOKBXpkePHjh8+LDeuUOHDukdBwUF4eTJk3V+Dv7+/kabrUdElsccehYsFRMgEwqSB0HhpIAAwwNtBQhQOikRJA8ycWSGTZgwAe3bt8eYMWOwZ88eFBUVISsrCzNnzsSFCxcAALNmzcKSJUuwZcsWnD59Gq+88kqdNXzu1KVLF0yePBlTpkzBli1bdHVu3rwZAODr6wtBELB161ZcvnwZN2/erFNHt27dMGbMGLz88svIycnBjz/+iIkTJ6Jjx44YM2ZMo+6tqKgI8+fPx/79+1FcXIzvv/8eBQUFjRoHdKeQkBD07dtXr5vsTs8//zwEQcDLL7+MkydP4ttvv8Xy5cv1ykybNg2nT59GQkKCboxUamoqAOjGXiUkJGDfvn2IjY1FXl4eCgoK8PXXX3MQNJGVM4eeBUvFBMiEZDYyzAueBwB1kqDa44TgBLNppnRycsLu3bvRuXNnPPXUU+jVqxdeeuklVFZW6vZYmT17Nl544QVMnjwZISEhcHV1xdixYxusNzk5GU8//TReeeUV9OzZEy+//LJuOnfHjh2RmJiIefPmQaFQ1PsBn5KSgv79+2PkyJEICQmBKIr49ttv63R7NXRvp0+fxrhx49C9e3dMnToVMTExmDZtWhPeoRqvvvoq1q5di/Pnz9e55uLigm+++QbHjx9Hv3798Prrr2Pp0qV6Zfz8/PDFF1/gq6++Qt++fZGcnKybBWZvbw8A6Nu3L7Kzs/Hzzz/j0UcfRb9+/fDWW2/B29u7yfESUethDj0LloqboRrQ0puhGhqtr3RSIiE4gaP1CQCwePFirFmzxmBS1VjcDJWo9dNoNYj4MgJlFWUGxwEJEKBwUiBjXIbZfLluSU3ZDJWDoCUQ5huGYT7DJFkJmszTBx98gIEDB6Jdu3bYu3cv/v73v7N7i4juqbZnIT4rHgIEvSTIHHsWzAkTIInIbGQYqBx474JkFQoKCrBo0SJcvXoVnTt3xuzZs+tsT0JEZEiYbxhWhK4wuA4Qexbqxy4wA1q6C4zIFPi7SmRdpNpj0pywC4yIiMjKsGehaTgLrJnYcEbmjr+jRET1YwLURLXTrCsqKiSOhKhhtb+jjV0agIjImrALrIlkMhk8PDx0e0o5OTk1aQdxopYmiiIqKipQVlYGDw8PyGTWNQaAiKgxmAA1g1KpBABdEkRkjjw8PHS/q0REpI8JUDMIggAvLy/I5XJUV1dLHQ5RHW3atGHLDxFRA5gA3QeZTMYPGSIiIgvEQdBERERkdZgAERERkdVhAkRERERWh2OADKhdQE6tVkscCRERETVW7ed2YxaCZQJkwI0bNwAAPj4+EkdCRERETXXjxg24u7s3WIaboRqg1Wpx8eJFuLq6Gn2RQ7VaDR8fH5w/f/6eG7VR/fg+GgffR+Pg+2gcfB/vn7W/h6Io4saNG/D29oaNTcOjfNgCZICNjQ06derUoq/h5uZmlb+cxsb30Tj4PhoH30fj4Pt4/6z5PbxXy08tDoImIiIiq8MEiIiIiKwOEyATs7e3x4IFC2Bvby91KBaN76Nx8H00Dr6PxsH38f7xPWw8DoImIiIiq8MWICIiIrI6TICIiIjI6jABIiIiIqvDBIiIiIisDhMgE/rXv/6FLl26wMHBAYMGDcLBgwelDsmiJCUlYeDAgXB1dYVcLkdUVBTy8/OlDsviLVmyBIIgIC4uTupQLM6vv/6KiRMnol27dnB0dESfPn1w+PBhqcOyKBqNBm+++Sb8/Pzg6OiIrl274p133mnUXk7WbPfu3Rg1ahS8vb0hCAK2bNmid10URbz11lvw8vKCo6MjwsLCUFBQIE2wZooJkIls2rQJ8fHxWLBgAY4ePYoHH3wQERERKCsrkzo0i5GdnY2YmBgcOHAAmZmZqK6uRnh4OMrLy6UOzWIdOnQIH374Ifr27St1KBbn2rVrGDJkCNq0aYPvvvsOJ0+exHvvvYe2bdtKHZpFWbp0KZKTk/HPf/4Tp06dwtKlS7Fs2TK8//77Uodm1srLy/Hggw/iX//6l8Hry5Ytw+rVq7FmzRrk5ubC2dkZERERqKysNHGkZkwkkwgODhZjYmJ0xxqNRvT29haTkpIkjMqylZWViQDE7OxsqUOxSDdu3BC7desmZmZmio899pg4a9YsqUOyKAkJCeIjjzwidRgW78knnxSnTJmid+6pp54SJ0yYIFFElgeAmJaWpjvWarWiUqkU//73v+vOXb9+XbS3txc/++wzCSI0T2wBMoFbt27hyJEjCAsL052zsbFBWFgY9u/fL2Fklk2lUgEAPD09JY7EMsXExODJJ5/U+72kxktPT8eAAQPwzDPPQC6Xo1+/fvj444+lDsviDB48GDt27MDPP/8MAPjxxx+Rk5ODESNGSByZ5SoqKkJpaanev213d3cMGjSInzl34GaoJvDbb79Bo9FAoVDonVcoFDh9+rREUVk2rVaLuLg4DBkyBIGBgVKHY3E+//xzHD16FIcOHZI6FIv1yy+/IDk5GfHx8Xjttddw6NAhzJw5E3Z2dpg8ebLU4VmMefPmQa1Wo2fPnpDJZNBoNFi8eDEmTJggdWgWq7S0FAAMfubUXiMmQGShYmJicOLECeTk5EgdisU5f/48Zs2ahczMTDg4OEgdjsXSarUYMGAA3n33XQBAv379cOLECaxZs4YJUBNs3rwZGzZswMaNG9G7d2/k5eUhLi4O3t7efB+pRbELzATat28PmUyGS5cu6Z2/dOkSlEqlRFFZrtjYWGzduhW7du1Cp06dpA7H4hw5cgRlZWUICgqCra0tbG1tkZ2djdWrV8PW1hYajUbqEC2Cl5cXAgIC9M716tUL586dkygiy/R///d/mDdvHp599ln06dMHL7zwAl599VUkJSVJHZrFqv1c4WdOw5gAmYCdnR369++PHTt26M5ptVrs2LEDISEhEkZmWURRRGxsLNLS0rBz5074+flJHZJFevzxx3H8+HHk5eXpHgMGDMCECROQl5cHmUwmdYgWYciQIXWWYfj555/h6+srUUSWqaKiAjY2+h9FMpkMWq1Woogsn5+fH5RKpd5njlqtRm5uLj9z7sAuMBOJj4/H5MmTMWDAAAQHB2PlypUoLy/Hiy++KHVoFiMmJgYbN27E119/DVdXV11ftru7OxwdHSWOznK4urrWGTfl7OyMdu3acTxVE7z66qsYPHgw3n33XYwfPx4HDx7ERx99hI8++kjq0CzKqFGjsHjxYnTu3Bm9e/fGDz/8gBUrVmDKlClSh2bWbt68iTNnzuiOi4qKkJeXB09PT3Tu3BlxcXFYtGgRunXrBj8/P7z55pvw9vZGVFSUdEGbG6mnoVmT999/X+zcubNoZ2cnBgcHiwcOHJA6JIsCwOAjJSVF6tAsHqfBN88333wjBgYGivb29mLPnj3Fjz76SOqQLI5arRZnzZoldu7cWXRwcBAfeOAB8fXXXxerqqqkDs2s7dq1y+D/h5MnTxZFsWYq/JtvvikqFArR3t5efPzxx8X8/HxpgzYzgihyuU0iIiKyLhwDRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVocJEBEREVkdJkBERERkdZgAERERkdVhAkREVic6OppbAhBZOSZARNQioqOjIQhCnUdkZKTUoWHVqlVITU2VOgwAgCAI2LJli9RhEFkdboZKRC0mMjISKSkpeufs7e0ligbQaDQQBAHu7u6SxUBE5oEtQETUYuzt7aFUKvUebdu2RVZWFuzs7LBnzx5d2WXLlkEul+PSpUsAgNDQUMTGxiI2Nhbu7u5o37493nzzTdy5fWFVVRXmzJmDjh07wtnZGYMGDUJWVpbuempqKjw8PJCeno6AgADY29vj3LlzdbrAQkNDMWPGDMTFxaFt27ZQKBT4+OOPUV5ejhdffBGurq7w9/fHd999p3d/J06cwIgRI+Di4gKFQoEXXngBv/32m169M2fOxNy5c+Hp6QmlUomFCxfqrnfp0gUAMHbsWAiCoDsmopbHBIiITC40NBRxcXF44YUXoFKp8MMPP+DNN9/E2rVroVAodOU+/fRT2Nra4uDBg1i1ahVWrFiBtWvX6q7HxsZi//79+Pzzz3Hs2DE888wziIyMREFBga5MRUUFli5dirVr1+Knn36CXC43GNOnn36K9u3b4+DBg5gxYwamT5+OZ555BoMHD8bRo0cRHh6OF154ARUVFQCA69ev4y9/+Qv69euHw4cPIyMjA5cuXcL48ePr1Ovs7Izc3FwsW7YMb7/9NjIzMwEAhw4dAgCkpKSgpKREd0xEJiDxbvRE1EpNnjxZlMlkorOzs95j8eLFoiiKYlVVlfjQQw+J48ePFwMCAsSXX35Z7/mPPfaY2KtXL1Gr1erOJSQkiL169RJFURSLi4tFmUwm/vrrr3rPe/zxx8X58+eLoiiKKSkpIgAxLy+vTmxjxozRe61HHnlEd3z79m3R2dlZfOGFF3TnSkpKRADi/v37RVEUxXfeeUcMDw/Xq/f8+fMiADE/P99gvaIoigMHDhQTEhJ0xwDEtLS0et5FImopHANERC1m2LBhSE5O1jvn6ekJALCzs8OGDRvQt29f+Pr64h//+Eed5z/88MMQBEF3HBISgvfeew8ajQbHjx+HRqNB9+7d9Z5TVVWFdu3a6Y7t7OzQt2/fe8Z6ZxmZTIZ27dqhT58+unO1LVNlZWUAgB9//BG7du2Ci4tLnboKCwt1cd392l5eXro6iEg6TICIqMU4OzvD39+/3uv79u0DAFy9ehVXr16Fs7Nzo+u+efMmZDIZjhw5AplMpnftzqTE0dFRL4mqT5s2bfSOBUHQO1dbh1ar1b3+qFGjsHTp0jp1eXl5NVhvbR1EJB0mQEQkicLCQrz66qv4+OOPsWnTJkyePBnbt2+Hjc2fQxNzc3P1nnPgwAF069YNMpkM/fr1g0ajQVlZGR599FFTh4+goCB8+eWX6NKlC2xtm/9faZs2baDRaIwYGRE1BgdBE1GLqaqqQmlpqd7jt99+g0ajwcSJExEREYEXX3wRKSkpOHbsGN577z295587dw7x8fHIz8/HZ599hvfffx+zZs0CAHTv3h0TJkzApEmT8NVXX6GoqAgHDx5EUlIS/ve//7X4vcXExODq1at47rnncOjQIRQWFmLbtm148cUXm5TQdOnSBTt27EBpaSmuXbvWghET0Z3YAkRELSYjI0OvOwgAevTogeeffx7FxcXYunUrgJouo48++gjPPfccwsPD8eCDDwIAJk2ahN9//x3BwcGQyWSYNWsWpk6dqqsrJSUFixYtwuzZs/Hrr7+iffv2ePjhhzFy5MgWvzdvb2/s3bsXCQkJCA8PR1VVFXx9fREZGanXinUv7733HuLj4/Hxxx+jY8eOOHv2bMsFTUQ6gijesagGEZGZCA0NxUMPPYSVK1dKHQoRtULsAiMiIiKrwwSIiIiIrA67wIiIiMjqsAWIiIiIrA4TICIiIrI6TICIiIjI6jABIiIiIqvDBIiIiIisDhMgIiIisjpMgIiIiMjqMAEiIiIiq/P/AcrzK5VaQiC8AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1156,13 +2147,20 @@ "\n", "fig = plt.figure()\n", "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", - "plt.scatter(instances, predictions_baseline, label=\"Predictions-Ridge\")\n", "plt.scatter(instances, ground_truth, label=\"Ground truth\")\n", + "plt.scatter(instances, predictions_baseline, label=\"Predictions-Ridge\")\n", "plt.xlabel(\"Experiment\")\n", "plt.ylabel(\"TS\")\n", "plt.legend()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From 76915cd81771af2d55736ad8b716ba06e553d4d9 Mon Sep 17 00:00:00 2001 From: Yang Date: Thu, 29 Jun 2023 13:02:12 +0200 Subject: [PATCH 08/13] resize images in the notebook --- README.md | 4 +++- assets/concept_test_case.png | Bin 0 -> 1127991 bytes workflow/comp_pred_ridge_and_LSTM.ipynb | 8 ++++++++ workflow/pred_temperature_LSTM.ipynb | 16 +++++++++++++--- workflow/pred_temperature_autoencoder.ipynb | 12 ++++++++++-- workflow/pred_temperature_ridge.ipynb | 10 +++++++++- workflow/pred_temperature_transformer.ipynb | 12 ++++++++++-- 7 files changed, 53 insertions(+), 9 deletions(-) create mode 100644 assets/concept_test_case.png diff --git a/README.md b/README.md index 0810a3e..0a5d57f 100644 --- a/README.md +++ b/README.md @@ -2,6 +2,8 @@ ## Recipe for building and executing your workflow with `s2spy` suite. This repo provides several tutorial notebooks showing how [`s2spy`](https://github.com/AI4S2S/s2spy) and [`lilio`](https://github.com/AI4S2S/lilio) can faciliate your data-driven (sub)seasonal (S2S) forecasts workflow. +usecase + ## Basic workflow Here is an example of a basic data-driven S2S forecasts workflow for regression modelling with [`s2spy`](https://github.com/AI4S2S/s2spy) and [`lilio`](https://github.com/AI4S2S/lilio). @@ -27,7 +29,7 @@ Similarly, you can adapt this recipe to your deep learning workflow with a few c ## Tutorial notebooks -The tutorial notebooks include a case study in which we attempt to predict surface temperature over US using the SST over Pacific. We use processed ERA5 fields to perform data-driven forecasts. More details about the data can be found in this [README.md](./data/README.md). +The tutorial notebooks include a case study in which we attempt to predict surface temperature over US using the SST over Pacific. We use processed ERA5 fields to perform data-driven forecasts. More details about the data can be found in this [README.md](./data/README.md). Before playing with these notebooks, please make sure that you have all the dependent packages installed. You can simply install the dependencies by go to this repo and run the following command: ```sh diff --git a/assets/concept_test_case.png b/assets/concept_test_case.png new file mode 100644 index 0000000000000000000000000000000000000000..9cf8b4c9fb369da3ff4f382d57effd8b02c85e6f GIT binary patch literal 1127991 zcmY(qcUaQ@_y3QesE9d2LoIUVNDcSGH1{YIQ&UO9ora@S(n=Et?!cKl6`Yw{EG@;o z%^W$()KYVnv&_ubkJtPC{(i3O_Xii_;^O(_aeJKeJm-Gy&p1m9V@`-51ONbVnwl6` z0RSwFm%vdrAmd5*ycrYYi7CL!SPxJ&a(0dJhS~GVwJQKXEs5jU`QNXy`0RI%58eFjsc3PTaZ&;qOng4~aGx=aPG;sez2h(*0tnj@}tk9*I>F^|` zNLeE>1-7NQEASWqLim)dR`|Wdt;~=VGPB-k-fRcnxtG2{FEH9%DqKG%w=0~6ZK_vx zCUf7togdp-ep|7=?#uplN%ouD^U$zAO-~*@-)k$akWhKx_$GMg)9Zk#>f1UYyGy&f zyN!3Js+`_>Uk*LmFE)Qxb?f#0&FNYcUhdNERvi12!)<5PZzq5M44YW)d~8HLIe9F? zdg|;#!=vNFdr`Rj(~=ej5sO1vO84$ZnBM!jX>Ve#I+U;d=+rsQE-{Kk9xE53;i@V| zz9(7C*dk9;f~uR_g5Qc*H0W~;Pj)uR)?1iRteC$cj$Pb|Ehze*D|XNvY#fR{ng9unUg z5>l^4I(|`-=}oy0o@FbRZ%LlVlG}xaQD7wAH1zht4L)@N=0DtS&O-QpEE}PJRNsXN z_?5KFOqt}gt}UNB0M*-oLU22W5L~SS+jUiV`vL8Oxq<(Ky0UfNh~bRZ$5?DvcMljD}~QEh;U?5arG|& zd6zT)U=vcJX5v$Qnp_0nz?y1<3V$?(<%azXB?Byjjg@EjK@Z4g}fp z2gk`y7S|%(17`qbjos4aC!=()sZHUidQ-(;SxCWyT=ZL)wJrwt3dg85V<1Q%XRJbx zJuS_lfJs*gjE~_kLg_7$n;yc1cczq2EN1SbAdKzR9@%v(3;y^vRMAR4=-mt5rOd7D zJXbi)e{%7?yv4t;**F-mg;03ITCW;&C!=LMs}WtH!iSs$qp-*;V318P6pKURNk9wj z#U+tLTT%p2Db4h1R9`Pem}55I1hQ4}i}B&I4$C_UD zL5Et^IhP^GAmTh=TEDFXq1k7)>PjB;aaV zmR8(3c`h35M3|nDy_+@R<)IXNQQ*3RhACnGO^8xynH+{z#yQ#15g|C+xGa624sE%w zVB*I$&YSDwvFbp%&f43_y(c^9S~1k(o1WhA$0J|ET7QEFoYD~nlsG7B}LR63TL@9}Z>p~7zA#M#+Zl5#yy~sN^=lDmei}UiNLOrmt8JYXa zxgMy_keojsWO=S;-@~tV_@Gq=CYqG%-&Q-FB5HjYH?QX?p<8fTxelZL`U8X;sH0=L z!0D3y7cg*FYl3M#)U3*W36f}vP&EVhj6^Qp*n+qzt8d6q9!9=I>~l-s63KKw z8{_M7@do?Kcfdz-g5Dv5g>$Ak=!HOfHMn$cTVDS!RZ@ao38aL)nf=|~+XG-fw%_j=E( zx8P-ilv#;Qbb)tRSgXZRdMZ!O81(%8GfwP4rkMrDbM@kT#@bTE|(y02rhXTCpH z?4cB_W3(Zmr+CZz>PRDSlAhUN{~hz7ula#OTOCTPfoaoJ3k{2t;G_QaQ#m%tVMZu? za?JTPXzotnE9_kJzkE~L$qGCB*6I!+8XIjTrk*ngO{-!$cI2JvQU~;jBuVeT&>lR^ zoOycHDkZDy+I5*}NoB98T>P}E(MFw~| zgQ|FTnIjZN&3qd~#50X&#qhK`H|@z#U|}e^oo(`iapQJVn`-|s1lAni))Qrjc`m@I zo#?q=xEwF?#8QsM9S(=TNTWdi4^Zmyu{jbb*HILwe(_VVR-;XEC0XqZVn`G@> zv>dURyrklNK4DG|eG&lvr}UqzY3N91O_V)66SV!y8LCG-f1@RuDk3CDxjQVJF5U-h zdDaoRth}dm$Tx^o>&rM3X|e1aDS*YhyDeN&HRa47A>B5tyCa5xs<4){^7&3U8S%Yd zuHY{7Gl@;(2`@B1#t*KpYb76f^w+>#jNBJw9ZB3;RE4Elcem|V@`;53_ru1Y>{~U{ z@tj6cM%b3n;z0c3q47NV1_o1;6>U6?-N0Cg4sW9lIO(=VN^L#&Rk z)#QZN!GU?_BE!iu2jr0|*6Z4)nK0l?FigtNz2w6}t@5s`?S;0FA2o^;Bl`7h@~&nE z(i6cmK{-sa)t48TgtpAUq+&S`s3YU8QCPWm%U7|u_n3}wCfzD@5FcO1Wh1%!$pE8y zx_2@?MNpj+>>t4+Sk#eua7_~&l6g@{W({gY%X*HbeRPteEN;$55bEa&yB4asRke}S zbs_D>gy%l|81)*tCAnxJsE#j+wm*zZG!_99v?1UXz;Qf_uAOF2!XudVIs(F#G5)E1 zXUZrb5*MQIX4UwLXxMV!mvtFtkSEkeuA&~0&=&s?7Ho@xRIH-Qg2)#UEOER;ah!F5 z)B8%h;2uz_@S=&-1TJ@gA3g3ipee(}9F3GbjuiHU*lc`O+yF>h z9Y_Z4Y|MWdy-780|K4{INouvXJ;yZ@G*)J1@mf|uj#J!Yj(l$DDv}F8b+qW&I?rNS zJSZh?6HEtx#!jdq8@oQ;YB5+`M5`dyc9F77!o8I6sBbLVkh&@TTD4HvKwn(x>_w$U zaA|S!`Fh3Qf1H9X1=`&T3oR}{m5`JxG&7}euTj>Ay!3aG0}Hhc?pWRFU0ae~+ZGfK zSVG;uSERRUJoI?nxX_kEwwzGE9)3D;l$)=o(r-+m??&BB*~f8+@4g&}B)iG@%SCQH z`Kg{#3Wpb?l30n>q2m|DP(B_*$)pO*x|L037_7li)*lK~G2qu%{}v1j4>9xPx8sUl z8Unk%%2lbU5|n-)g=B!V_I?6cSnJNZ#Og& z->A>jho-*uE&afTTYK!x7WUa#&Fhi0-GR11;F=p$*Vif zCFvP_^#R{TPE3csd=V{WUW$Lu64wpN@e1PY2iCZo(7#Jwmt8?~qSog3QSEd6xtnn8Ph0;8I<9P z40@ErSkQJ&i&+uj4lRcYN}Ic4&$`FtRgnn1sY2?U+(9jt-y9J}R2BUJlbw2ri7}(F ziKUMm5!+MbxUGcb_9mWKm>sDadbI?uuM38wBW}wD@j}BZGHBCoj4}f)78#?rVAcb@ z{yKoiS6a+YoY_QNxc(fe71MJ@PxXyhh(H9QzllAK;ag2|lTF?E`G^31<#J`D4tq@{<%n#YXa<@~tzX^HMcDrS}f_{5@Ll+>ria>7Rf z(*8pgNp;U(U#2qi4Od|PN^Qqlndgb~GJvMl^keM?ic+Bn2tm%rnW*+l%EYn91Zigm zndkW`LYI$*0vlL#=Z7+&q54()M8#xtJ**_0Ha$YWN@Z9amxG5Z&l z^u26+C~!%^fQL@5y~GCp=iFt;mZl|vH#z15Z@P?Z5MtU25B2~s+R`ii@BT;)4G%ND zaBxCJDNH0hm+=;eFE0Hrqh}UT|1x^~o)m#GER23&8OvLyf&^@Lnv0X?LNufWmnzO8i8KyR zI(axmk`!TIo56~J>x}z_5#KIp@dAh;-IM|$ zMVTxagtXHUg-!>py*V2rpeu@d5S^NNvqkRi>28|FR$U11+%lG;G>ueY@ly5t=H1Ul z%sOSR-)^=(Eo|B}c>Qgdq3^^wB0Ytd2r&{3Lx@>`p?0!JJH?E$8^2dCYb78Irru4Szy8mPbf_aIh6d_t|VzCu*82WHFR z10?vIaF8-n_)9;^JG}Gk>c?M7RG@UxB> z7*t7>X3zFUpl8|5f1r=s>N7!{?(ZYpTT{so>NzMOXg|^ncB__b?z$lg`0|_S)A^=u zoOzm@g;l?+-56-}+=4SJw%`jhK(#)3ns;&`S@5&et$?D6xAK@XlfUuv$Ls9W7*?H3 zCQEsmB8%wS=Q@q$bQ3I6N!!Dxw=)%vZF(W5x@nfZP*sJl{Lvxr>Hc(mKlMD3Id1YX|D zG>fc4Ax9H&NV(rJil~bKC(l(e>w24DP}BQK$+!`Cpkn4N+{h7Fto%N%(D3rp@bOV8 zizpm+uq(2^TR`M`Bf#x6KW~qs=}d0(y+6k7pKj{sJBEe6xC#X~jwvu_SZjj*2U`^i z6&Q|RzXb(6^gWX58=G=mbQxb5d6Q;LxG`ZujS0Pr#E+jx)F~{tE>nan&Npd2hT(qa z-i>v~)d9BQn@1&AF^MKo?=D03Cycs@mj?56Ajup|1qSm*&$rgEwj6=H%&o0GaC6$U zQ<);;(r?;T&-%8hTKPlL`gpfE9>NYCM|gvt>N%WpJE#hSRdjPJR{h#si%oHyOz)2z zh9VKs564O+D{fI!dTR_$0X%N1YXLwuGlXF#nHvS|Vk(RutPX=Yc&}_y=>3tbLjb8W zm@FVu{x3B4j$dyY9DAlxj97cI+`q+f?zoJ;d0%t1-2>5vIQ}1-%Sy7zud?DiKYoF^ zTphc5_kEMHE6uGzc|AvhDqBwi*7%99>_`O;b8DVK>vi;A@Cut_i!&e`aEA8+7M$r9 z#YqBnxBsAg2VWvsI_OL5f`FxG)*7@U6D?rmf2l-04Q9qGi7mDFgPvcrbMLUbAf0nV zO*v*fyz3Jw6FnaGoKZ=(3{%L5X%jvmA*h}Y`=x4sRYZu0hGCKcE(!;4S@Yb}RlP7V zZtjl6LUBv>@q#3v0_xzj(a$n}!6V)Jm-Ej_5%l+-El2ZJC%Ut|eCYz12c(xEkG?=4 zMi8fuIciJ>?m1E>MgYxDY_ZA4z7|Xw(^?vuQPV0&fBxxvz?K%mG6?TL25_2VfaiEo zkH$-`Jw{W!Mz`*+A|DBn{d(ASB)E6cwp@my&IgWhSg?+EsyLn-kU zKi}I2gc{$q*NEPxC{CxbDaTj%<>Cb<5jJgXHhI{=-H0rS2n}__5-8 zsf2h+cItEV+oB;UhkGUY;B6*V(=8}xl`G`=^_avSwKV~F( z@33Kzg?^jwxNJRKpzsEHFlAN{2$il8OfGBAh_GpWjo-O>A;loWFnEr9X1a<%P(tM$ z(+8j>R`som%*X|~Xc(K{PpMUZ5u{)O0ax#E*h^W^D(7P#2rg(t`{8hder&x;gY zIS1FYOHuP<*c*y#vwPYQRHlZ4-Gyl@Cj=5&N3YqTo__MI%Y8wi8O#~ha>%0RV!7#q zV1Z*8%}S5w;;aga zUL@QoA@teDu>! zt5+AN-ln|Ih)j*WBGlGS;^w2Y^4u2cZDg{%)Y3ZBSbWtQ&yJ*a_OOxSS;x5D*>81* z0EAC_eNSr#1S=<@jst-@KPUwnG7{{Gx8)cbaRWo36*)6PyEsb1gr+*aIz!{YEmo|s-dPQo830CZt1>h$;)b}vGvN&*??08n4`IkNtzXdFwWo!r80j`7T!h7z z@}{Dy7@O`_<#?PP$E@UOA2r1pLf8_7i!v9ap0~?thuyW+vH*ZSTbU5H0gMw4qxe7CFuU=X97(*=j?Kphk!xJ*3@$NsW7mA=(D7 zDwfBH-zaGDz0W7;Q3VokvAQdGBMgZ%Tdykf1 za(Q5_+@<4v&ZN&-L^Y&S_un&)=fg6_ig;8;ema`N1N*7^O`95``W#N{R! zl-#1%Kw#4fcbtQ{2voO5v95@BhxEy?zNy|XFU=oY_C>-=iwmbFwgcIbf1tA6zz2Ry z%fDQc0ikL_8Pnv>gyN_f{H7?hlS{;E2sgAbUN z_IBJ@J|Qr1ZO7t7g$vgNG)g_kib~$@D<<;5H6ksB4p{57E)1>==hzt3+l4p^nG*w# zKo`hYB%=cY0>UI}Yulq1(oS)49v7=7h>}>ZzG9N~J7X#W)t_Ig8?-eUg5P=+hJ41E zZ%n}7bNQeq;8n$U49Jk_aP0@XW}XIL;D@#ugkBqQ5N+9fs$cL1b!c-X9L!trkvi7z zk=RxpZw0eZgTUK#k*4?XXYo^2ju)Bb!X3@Fr)|!8gqgOxi5I+atgnhEhn-i#BH7fa z9B~5aj_|N=eH0-+yUF8><4ubgs4AC*`Qedi+XtKMhcg4^S=)Uq5$wuRm5;!H9c6Ct z^%O@4)5I#*+3$Rm!0c4U?28(}l)m9e97NOQ%+gdIN z{TGu!uE^)81}s}#Z5I)u1WjfOxdX^ZuxNo>?p#z#ZYCJNx^)aB6j%9W4m*nEGh|oA z4kUSg9gXEK09A;UoG4*sjICVgfkPDfb>8c1U4oZIk@-u`wgttP0j{bWTy3oq*q>ay9X3H z$yigOp2up^P~znExBM60joTlCjF{<|5zTDPA<`AYwMt1Vj3RW+ z_du#o^eoBt1`yXj<8vkK8wu#pf&|L7!vkHabk^M1&Xa(qb&T?=oq7Fw)5D)=@*rKB z>>zkJW0h%`ekNzTA*;m%Lhu}vIs?#Z&s4Z0t&=$jo==|X?zb&SRKBitFV(n^8!W&M zI?X}6-OH%)$VmoHh~ql$0)lt1k@vT5|JakRYGrhMhX#UWEzPy3+-(v6{1=+eZltSd zDbg!TDdyJf_fS70s=%hU3XOaHg01rjLs}V2c|NyBZZBafl|aovk2EfF@+v(Uj$)iH zRCTS-LgqiLx#;#3<)4Nq2(9AOP@?5w9tv{M&a($^3W0T{Byrl1BBU%3g5e>n4GBzq zI*&!QV7U7`FP`4MC@c{DAUgKfS1=bb_vAgRDirj4-MIbnALA>*Q+yh5A8p9Ak*4{g zHUyqB)erO^d*^3+%Kv#AnV~)brJbiF_JSExyX}GqkwoJHm`c11WJ^(#1taLYLWsJ_ z5`x#t<0I*XlAi?wz+A{u{}~Mdyf(yi%hKbYl7&@gZY#cb=1*YTWaoZ=<)F;-`mA~P z;pK7y;8Kh+LdGQIT-AhIUj*mB&=TclI+6#0bX}LSh&c-2%@LX|J<6MSMbabXaJ+vN z&26Y;T9@kC4<`XD0(k?TeXYzNAv%*}r8g3sy}rX{ki>v=gq@&yw+S8aLdL6v-p@VV zHf$&MiH1C`+vnogvFvyri0L3CV`i6=t5Uzh?lg5MUz7=mR#>XDNfYAM4@1v@b;9lJ zxp!+W-oU`yWxuM`uT88T8jD)f$f=S@-hgh!j-hw&Tzg#Y9y*+jlS9^j-Gm8F({MAQ z8ErC_JLb(kA63J$$A4@(FTY-*+qeD%41|F zZ)MXhjqmJ|;)q<@Vfp$~=YVQ&3(pEe>w~}kG?fu^>%Z+fzE5X-%Y|rB!d*&yDj{2k z#bRQKgn=4NwVO4YjvmxU<>K>to}BiYsAt{JgMz&;Bp<0R=f9~&0XDrx`u#P-JOx^p zzk?Fn=ck6fV6j(zHap`b1*`(Av4BL2q!WOQBF8tkDW94X=}IYcO#K`(_o+W65W5pT zod0Ocs-#L`7e(oK8)nj-^!Pwg>2}x?% z_jE@!rUFc_t$JtG1R#;TlUgc|aqK7`>L+}_v>X_tzYFOKMDJsi!EYREe5H4fE@=G& zQ}ptnIobo91}MT}c2Tpdj@a<_#IJYR_C3uk>JB&qP%eL8NgIrXwcsYtE@l8SIzm3Z zsNybtQxrbj^aM6K*7I)UlFUc$Nm7OE*mC(*AL(jmfwrudJv&nBd5K5FTofTW^DY}@ zdy=Gg5Rt{uA99Z_+)}HE7`{|qopVj;?{QHN1#4>c*K>X!4X8rnlst8S!RsVfhaD+5 zNkHKbAV!HalkxiF<+zYm<3a5@$VZe;w8G!I?Qg)L5xT@BQ?zS^%I-AD1PK3S)XBir@v-L(pb4XVk=Mk z*R1P4Qt~NlL7xnoR9czQPG)b&V!6)K@<$^h&+`CLtsJ$( zC=bkv?;mlGNlN(A>0K#g+Vubepkn0CCqrAGbD;#HF4f}sbMw)64JkPGWm% zmZ~EkmWFR13>G&vycmS#{J9k>MBksZGzzmYR6HCs@w7Hdfj57>8Rz`$zQ|v<(HoAr zr=0i&8oSi@koJXlBE6ibUGC~P`Ftg#WpY#MhB+srb68z2kBgXkDl zfcJ2t<6Do~z+F(EM3>LVB{Cw!eUTl^UH`~ZUlT|1*N4#LB6%0_(t*0DP(GK7F*@3c zkhCgQ{8{g%F4KPUupfP#tYu z@VaE=`4n;F>wnSLnWtfu^cGQFeSI@>-9y)vNW{HSuyBF^vF(1>SU*=dx%LQc;)%>v z2zWY@6Ed33DV^dSKIsNQ@06V)ZT2r1_mR=USA90sO}=!Qnj*u@G20_*(HV-oR}=m5 zaw%`CP1$rJc`?TwoGzNDSmhwXHf%mjeW$R}=2Kv>unrRxQE^KrOwi!}u+P6%S{EWJ z;thv!pi;TD(GTQcGPbNguK+A)@iJwDi_=i#QnEnK1RQ>>V!H@IKMGB#zd!cwoiM{y zLx%@~;G_wV z4gfcI;(5Sz#Wa0(@yJw%NJ6{3gv1xqHYuoH^YhsvyIrag&=tIKQUF{Km?{@cUM0bb zzuxF9k z1rNm<5+w7ERk(*FM8G{YgYxKz;q8u)*yQ9JY{Qwqy;c^Di}{JND^(As0Ct*TfT+al zeH5}DsPe*%*mz0AOlmucEJD$ZnLa3M3Rb^2z?V2b#{b4+*SJiB`LtMW9$;q92^h6~ zG3Gy98y}qYKm*G4?r`YhF}ystUkP9j1r8;u~nB&5HGB=t>xe3J1C|xSC2fkWP)yy2dx@|qXOUYdf3BS+EqO^ zRC;!VO|QEMw|s!^!Tz*>Q)J#w(gQlP1*R3d*7cWmCbShbr@*?C&Kz912y-QYmXd$o zp3!enABMy@$MSu-QJZl4(HyU;YPfHrMg@@^mfu6i(o1U;d}T(Srq^JPdR<^p3hA zjrQW(L;kcbCSF+-*>EbpCX(7dQ>&XKL4(vvn?Bzc+UtaP#-y)a}Pd<~F+{zwcsmLh1Q^#<<0pE#uKG4E{RyW7%2G7b!c6^uMdw@Gm3(|6|lx{5`p_S=vnzP;p8K<+|!;YD9{d?WGhrB4?%e zBNGaR4ntpJ>C=E)7SNTlu?tJZD9C=`@8ZmEQei(fafL5(?`LSIK%{|&7EAWU(*JTf zy20S04cTY(MtA)7q}Y@_?@UN>%Uu=dT~N0DbQ-PR`7JIgUtZ&14sJsKe-5QeDGeve z)1d}fcGqyGGiC4o8dKU>Nf8=cos5;{&Q}V#Kf~*yai^DCvEl{a#U2v{En&v2_Xdwg zc?dig7y9*ihopY(fpPQka`e@2``2FWNKFWAMTmr9kPvx;rgY&aBm=Cys**yL$LhNGy*eKp~<6Jw%9^W9Tp0eya}DBNhBKqZ^w ze!0=MGa#Oc$+u1Be7VP)5~-IL)J8SCG*uJMgI<~Wsd(HyFUCo9GCdc93VJ7kf65tN zAy$s({2OYPdua!48D{Nude<}*R+0Vwjf?;1RzEkX*9ICJh~d1jukxNhZXzZeXBe*8 zYp96+$#YxVl#=_C&3K2N^J`ze6iHF%48`#wvOC`H|FD3?&kcS0^y%q2ElUk>?y*Y4 zbCd4<4e7351@6I8$+1dp5*6e?7n5*<+*9SZ(g3H0DU@!?Ab#!UDGwCNO3d@o-nK3t zai8G4P}_BhIrI6#ch)y9{dBC8ogMd!dK&jYS@*GxNcCJc8QK7sN-O@y1vKkhFEwrMjA_`0 zyaLP@uqp%9LBy#u2GHLw`>)r?97;4UMg8asA&+uh5|cmyg71uSTjR1R6^?v;AU{=Q zGdXdQ!qF7;D_<>HL{!-=)nH<^?iiqXR$6?hO3u7q0t#mFwjgLy&bDMg1){$u>!BwG zs4Q9$ah1jZ)$DlH3LskhvPp#P6aZRm! zQt^dccxTZrikEUY56<+-uhWUx{N^jFZx)qBG}5mkXX=!^FL`t*i>t!lu8&{~L}uMe z1rR!RZ&R{O=8TFVEspHp25TA;2vE+3&53>Q!3?=2_D!PsONO`wkTu;>N_PC`G+o|H zvW&a_LZ3;xZis~9Iwp!pvaWJjTWm5Hafnum>eG`%!VxBGvDVLAm?nxeL^xH4T}%!8 zu1~HTGs!AUCd5C#PY5c%ztB>)Q)UPOgo$^A9231gDd?eOIcaOirCoOaBQ2xsIA zlgh8OX!3p5flK5YPAyShdWxeiWn~{xkQC8}7`(uDe_X_1p03VrQnLvK zS~GW6i%fTUCpZOpB1gG>>c*j@^Oa7f*WBj5-?AiV+$I(~LfuR}XUgaH(czvTkX_2G zr)bN`X>v*maM~)i_+QNQ-2t0180&%GnTNo3F%WdD0hq{eUwq={ z${Sb|$1=*P8XK|=Mk9BAyoQ)zc&7x4zn_}idV&@pWqD$>Xivb9_)`PgP#N%`f51HE=kQ3Rd#0g$g!f1vB#$-!0a=2O!41)LEl+4|-ok+z8^?T;xI+m81 zR;}#u<;=4x4!koe^_BjMVRw#U>xkrIFbGsbI9*A#Y4_rn=K)2=d#5p7Palf{#4hvn z)wn5>Ghdw1HwRD{E~eTvy-L-R_MvJ!G_Q0ozmBK$P}iL^T-wcU7D^6(13@g_ExP(5 zN1#-kD%hSa6YsnGS2Qj5cG`W**FpK5I=*4o-|r?!fVen2&PC}G9V2<3Y_Yf|mh9XB zVvP_Wp|Lt5{Fs7PKstE9HN}|IU$?T?UOa>0i`q#&7ZBpCp1!i$Zo&I#o1)7 zE(0)E;sxZY$S@504J-Sxb;V@}mS3Ft70nQ@rte-X2odkaa=$~)d|n;^80Tf7tC{Y4 zhIfm4Zk*8G7f!9fUu*t(kMgc&LZz*&?#>y9NG!bXY0Jqgz31D;gd_t^H2fj#=z)6s zUMauQ|4{2bfC_ui?hox2smPoTXB8TO3(|t&G^BN1yVpwZ!efEr9@K0Hw^a*y$|(%k z!Pu=jt_PF_V|Jqg+ccJ(V#mR*u3Pi6K0yrBv*$<=j+iltj|)tFwrgb_s}%BlWquOys=;I(cC!79o=evE5M;q$gk*a&(?=yRr0@I z*TcF=sWBqwN{gjT2z5eo?5o-KkgI!)yF6A>c5g;YwA&D_BrwQU(*Pi0}w7DN{P(St85+<=4o>=G^L)!9Oo7zQy0a|Nb)uuIt;RW46@u5E^fscoXKkj z*zY>S6w54fhDz7M`J{Nld&SOC0ZnuggI5CiC8Xn!F;rxzYF><70awaw^9Xc?J%!N6 z&H_A>%=i$IU?pv2=u2SeN$cn&DdJ^w>H2O(bZP5iazv?t3hVS(Zg`+fue|uIsaDCq z5gT{S8(ZJ*_gzW0k=n@8Dm&X9mxZ;!Fk{Jvu@|ZG;1q_zVfLjwVJv8VAYqiBcg?`r z?ypoI!)0f3C=w!*>ht|66PD;K2@Y|0h+x`AQk~wbA;1pS={W!F-wNabZuc&~gkf@; zMQz{ROKoAqZ|6x7)nnRBx>C6l&km&w?mqa54qtqBF0xP)K%{P>qeaSpSBdoHJKO8? z1X-vUUZ52w1_ty{zZy?Hm_yx47>dO^2+&6Xj%3KmtBU{ ztMg%`RsQaGqXxO_&nGnh-nKU}&@~+gl{`rF6+xVfDt9xBu(#OAIgZT?;lA(iFk@(c z+dA6O8kGpv`{EPC!oDp4K#~D3o`xZzC@_e=LwCjAu&SIhzu$(&qzx-aHZ!&jdeAan9(gJ8ukhb5rN3O$Qm3 zw%6Fmx|yqz1{ubDEF~VOB-r<-rk|U|7G&-=wRW-4seSK7t?x63Sm$TMuHp6(JJ_nl zE-mAVz{HoDb7Yfe$9ChUFBgS25gpTGq9VZbYS+FHcxFo~%4MgNoHV1DJYiO781JRr#6t-ej`vs1JN7@Mw7EC1B_+~6 zDL*jfQ&(v>9FxH0t0n1uCVgbw$PzZtm(e_aGeI?8)U;qi#XvpM;doA7>4|yE9fb*} zkz;Ft5OFglB$vz#qgYb;i}$gQ&$hh!tZUjTI7DuS;>XOGY%zSg-966_ksgS031DYu z+`zTbh9lyKNsBF&*)00vtSoL5@lu>; z!A^+*-$DZm4|W0jOC~emcgRzDnV+tZey&I6+?cnX>Mi^Eucw!)It@%nVc85hAHA=y zYJP>?r{9F@u{S}|=52#9lifVPJEC}85)Qa;*0zhb)RI8OsWG6=1do}92Ux>Y51K&_ zMa4>WTE!Lvhwo&dYY!b&Tedwa;M*QkT!prsqp8q(gA9|Umu}$9=>aBlRHtn%IRmh> zUrz_WfMAX@1d?FDRUt%;pq*$rqum3*T(DTl9st;N8^p0WYq`A7SA;i@3tT&OKHB#T z>4P(k`D?k8{gNWtZdS1@-GadWRno=^OcH37;59nV+{j_NEqtN}MJ#{(vbi~A1O-QT zO+_u4cJUWwWkjvLbZ^OHLqruRM)^1Yn|BbHORH#l+ZVL(Bz=BMaj&T%fgjXPQ{TJc zzMUx{b2gLJ34fenbFIx0ldiO!DH~T?yuF*!Yt&tGO|JCB-9$4m|eFQbb*V_O6<|Tzy(+ZF`p(PoyP|oI!4v6{7duwbwTi6~LaO zIhL~wuv~{HI*V?te&%|t++5L53XMv6Xz<~Y*kQg^foBs4g<Tbw4hZXT`_cQ%+Cm9|R%h6hB~p?BeFjh4xxoIe z+IyPoiS2YFxPZpGAJu@Z1QU9co*E&|e!fXf);LZv9T#M2d=_4bF+Kl=_ix=H*t zH-R<}0YiFS1ETQ+h?CkTcs0JLTi2#e!Tj3QsdLWu>fL(Heq%G;m2a7PxPdpG2$JQJ zIozh2j_Ca>lC2NRqvK*yC)U>s4Bva$&tup1Ljx+U*?Wgp(66|U9=+KBx9#?qafezu z%;(wj2mH!7Ut(awP%T12mBwWao{&k;9U6d(zvX_1=Bzn$i*?8XDm7uBWC?M-USu;8>@)muUpHc=@hm0(lik%v>0z%Kwln~z z!G(`yZvpWg0Pq4EG&fOpC}r0$9qYRJ`~uGNq=?ut)Rnd{uB`HA>H~BFk>qWhPq! zuUGhk0I#JQ;78rzDL2^QDsg*CEnBPC1dc7+r?$2ij3u4f zm$FQ-e<4SZyC)dTmhq)n2QmR1)pe^&n&l{nfzttJ30Ddo*LKy%s|;||y3_1NlCvGj zotAbR3~-YDbyBpwx@a2BvS`}b6$B5ZTq(-Nu`#b2+^J7%;_XV2OolQ1%2GGB)IN+S zf+;faT}^}IZs6&6WquA0>fwQD<~M&AO+!lO)5+$-<@n+KP(l`oMtJFRldH6)S+n%}n-_EMd4Ke+85b2xQ)37rws89BJm+AW%XE6j zP(J6)=rYgu@f_afvX;b%UW4TQN16h31<`sf8-vN5L-$mN$dx@1EWv&e5!VlaSq(6ga*S4;IV?)U!h<99D zmV>rrKXO6QB|`#aiqd!bY6}!RjDdnW<8Mb|4z5}2Y}D&N*{^uiJ*v<+dWplKrQP<| z@crD&nP|BeG1aco9mG8=^~N3gA$r*EijBTe{Cn;E{-1$%3{{X`-?l}s_c@cFI2loDc06QlBffckATb?9HlR%so9oTb0Og{O=ak-#4KxjJtuE z^rfel8xv{Cd#d{AdQtZ*&ZeLnV2dXf**3m*>nZIYYImfhAnzm(&vO#eo)w01J zFO<}`cArHIchXVjIeWI9-`9;7i7MwVraTof|C@C#m@(IddLTnQQ*BLXiS(wFm%qRE zI@7M&%NWR;<4}owQ}kH-jAN58<%_PLTKx`-TWT{?J~_`TyB$!34$SRw)Uk z(}8qKNrwsu8{H`_0@B?|^Sj=k?|uKx1IDi7it{>N$MHOy{TG591Lr2h=De4BP2{hB zF5I9FmM5b|7Ty8rwXQE!Na)bxDF=yN{7(h2Y4(`(*>Q0@O6klfZ6Nr9c9@p#U`@E1dYM{3rR9g{n+j1NqdMA8&kaL*AHvb)Dx= zNN&i8KPph%*gx#C2I8YUlpuvsV*BJDfiDRIi?}Awd#9~U#-g=IkOy-`w=P`1nxOf2!LFq7kb7B{aSIm2U->kv*7 zzm$$V74^)eXXLzhs=m1WbXq=XjX<2c#qs(9^`k!AQyxBpcRNwzf%TvgfEKa3-{bpX z$?kZHNL*f{;?_pgJkhCy1f!SqkcUFj#xnw4mxs_*58@4hs0WB&lUh#~8nIWOeoAu2 z=izC#Fpy2+Cz?{|47MHtfm8$MlX`^BvVd@L;SwKNy(^m`q@coet|5lVF>PK7oD3nU zbQ(0K!eP+NQm%Gb^<0uG?^8RVo^&*urz>p@<_pDZc+x67<29+Rp$hUH9DQ%50fP>L zt}uBY815+YKUP{S^l;asQH-|N%ExQf7E_t|WB2o`F#eI}q<2`m`8&MD9V-L0F{$6Y z@Y22aGl`&(dA?^1A=IRWwm$>I;;oId1*|OFl!$<7^5nfO!O=d7$h9oOl3;Z}tAOV~lmJ<2plmdlmOiyw3O^v2il2=o$Wmi( z(rZF_kwkQr-bo~a8(x1qS6$>HG* zle4Gf3*$bRGqm`xiF~lf6NbQIG|Du+GwYMuD00}BE^?R~h(mH`9v_-Vwv|X26eMyI zSPH{qmDz0sUoiQd721BN>Fh0b>w(*=v0JzpOE+`DK-&J|b03v{1JRE_B8fOsl`eNEk3hHrKnsvz*ot`XP&Uk5SJx5`^hm>hvKluyjE~@WL^i!5n0iD93c7? z9LlzZ9 zYr)9~AhHuJ;nN?;I!5jHptD#LLD9?;#8ds&pv$XbEVP|2RJtgG*B7NhXJ1_wbDvW2o6^S5z}bP7 z&7h~wi1$ObrVG!uQ5#~sD|c84c{;OUCFF7M6w?x>3rVNNs5Kdd?&HQLx6~f8g_WWY zHVSz0neC=jg)&ntf)C=69n=5Qe8DSE$ncK#LXfo+TaZx!>+hF~s4)F3f7-MAS}8%~ z>a7OIWz;va{9CK<31cZtrkRvQ7BR3|Aw)j+yQS6jT$8v03Fic*>KVOc$%pKmZ4qKY zgkTtkzeH)iniHQVC_Ci05Tnqe%^Zt5&{b%J-mc2z$-2oQ44_8fRk>&t&YzvPheu}f zaN@U?x*U$=N4|D4_JR=@RYp4?l-W3;%-`nPBU&jn(ULRI2K5kUGp|jm4~dHyb;`Xn z^pr0Sc3!1bmrxDpDHH~M$?%SNS>ANvMK@g{?p(+zIrAvuRK`mAN%3%(sn8bxl0+svQ_0#K^g4v?>I`xOU@YrN3wqhl%G8j*Ef;Da^IyOsp& zCKm>e-0h+d+&rTjQXnlr9?2?m;wuurg}|Z$PS<%S@Xsce^m6puj;rLvOBzplLH79mMz=44oW3rfd%xM^h@M ze-~s4o3&qa{3!)$*OMtwnv@cA2LnTno^RLri!){J?G;Z!&gS~hMb1#@>8%2SQe#j`Otki%O6xys=(wAO$o#^L$bjqr&c}X!N@@VXSAYR^E{p#pkF0OL z&c}9vtUS*A5dRaqtlB2iEbiUYWu6~EO$)C`Etgr(@$OgFc-RVcKU-y-wyb{?9uKuF zP7vpdC2pU5IrpanBk9}9!w6CWmua&paQ#nV!VgZJ`RM*CK;B&aZ=3lb5;l>+4Db0u zz__sia`-hoU4ps`@w%GK!$46K}fxEB)MKb7Q9A})FuR9YI zeA4lhKBe3n7dOnx9AsT`xBlQKpqtsvZw1nM<=4C_{Z$i>NxoSAe@ewPzY;toW1Jzc zss3c|cu;#+vC^yk`(IKH2LfugciNVVXZ^YqS2|3)uij-LY6Bg#-Ns@qlhlTYTFp_i%sP@@y zI#>jW#uv0_=(70sSCq)jXPZ(T^()2OTiB*1r1T_aQk(v=Mcw&UHZqJClq<=nJ~nxB z#&pSs`m{S~%1+nAHV}*=@M8o-5ryS19)4<3tMdD6EP zA8*3Hcy=TU%*2916lDkdq|VBiqM_p2ngQaejG#n#v)~o9ZD3Ep;d_rH*}8S;sI{XL zgnOXEl)k?PMk3IGnVsknL1c0zO64ne>s#E*TVg*aq*@i#uG;Qayrb{sylZnX7iJCk zXNZ26w5D;Aa@zLR$8m87{4-#<|qN7>X!)#`}= zIou>8biZex(!h(Rrl=L!bdczIQVzfCKEx6JMhM5GHx&6y{`N{b%u{Bbao7H*;Zi<@ z1y9HtXr6L)dR2nWFLG;hj6P&Rn5UgOCob0aMnl~jf9zaIL!%Z0o+5%`OKU?{J~^a9 z1JpSr*KNAoN@Rg$9lKp}-H>>ml5k(5c+lDzzs%sZ)9DX<> zg}8tc68wV9J)F@mLQsu;@sPLf6tD^cpyBq9db6OKA;B?4Hztwyiw(bhvamq3F_r*n z+V4*tkZn!br=i-jU5AB2nMymrO7vYq+ZflwPT}0ap&e&?bi>LEVZ6j%}P`WYuNNpu!M5#Bot*a4D;DKxhV#;O~2u zvQ)ZK;)Y&EjWDu^y-ftaBt;Py$$6x!!80X@u+9-{5tXU*qujqzB%FP6dn{oXU6cnqS4QNWe20X@&IiIm`B&aw{QM2+0V ze?niMPs-LDf+2=Jo*KviZGr^#$rM-!132sLPr9Rv9*93fL{0oni+lKOuh&oq{Y;=Lb~JwIP8ht8{z-SP@Kp4Y zO(+Ss6D+*kj=>%a`0@z+Bu;mroej^xgwj2F;+VYCLdYU}%zS0RBk6#0Ub=EXh;w-} zHk{cnIePXvbqF%B)Y2lwRJE&GKFK|3TImG@RF-yVQrdgx?oYOn`T`^0KSs%^n5tcZ zWarCwfO&7XENH-?RTb(!R3YQ`(rdF)wBlxMD(Z&icrg5rxSY~SX6!{j?ApfQL!%(c zv3O{Pm2h2)uqFzUYMMhoN1lxysOc$mLMh2Y7O&3EW#9l%rpI-i`=3 zx=;ucu!9Ewlu#90u{jao=vVKcR9DOBm4z=1mTZ<+ zaG&pr`SKP#RK;ic*4U$%huI66_naN9WWJKMJ>ZG3SgJ`4_JZIegB~KtkHplsFvrew z4O)T_b!cSyRiCxAs~=&XeQ!jJ(61`O=PBBnK@f#ZBo-tyQ~EhZKJ9V2yJ6EbMwl5& zkf&G2CwaX6e>(%|reqjdaFs#H`rr9oG4~b49V~qpY;7;q#Re%)C(>p3& zmt92$lR>h5hUG61#A$TfLfi!gt~HK&1V*q9CP)2aKOXH}vh(@XJWKIhHhXudx%GCr z=$FxZR}w3F#>1rK1zwR-;= zI{4Sxk=Z3b%869%9&pBoQRJ(BN-8ZTPWV>bJI*L2Id}vHi9-iV6jUY^{qCERSiC|V zKoJ2E>h;NKqtx6=n=mdWd_!`aJ_*GAD*sb7DJq3)W*J4mi6C!-tdS7smzwxVing`94oq4q=JTqg6$b2VBnHc zi})Q3h&+Hi?qQxy?XnbEFSd8@>=%ZVc5alCE%Q~+Vy^BZa^J-*jquk^7;hQ!rrLl| zNMPbL!SqMt^TbBqz5l&)-_>ED)eQR;WzFYqptM_z^$nf;zgI!ayoGkRM=OQT=K|Xd+C-v*=k2m%XXk|VC#FdDl zhF^ER;{LL%ndPpDLYE3>3W>9H+tJ5nt62tj6@)Wf@=AYUAv86xi@F(`aL?+i;BMSz-jFl<8d&HFWW; zkZf2zwNbFQ1t4QgBVQ3N$!*N?6?+xSU!eZLm+j@HR9%*TzFLRJ`B1Y7#~o zep4c*+&DYZC3dF0^VFhO*KLYAXuL{pTkRQe(P{-*_o z8Vf?;n4~}w%#RbUDAeclJE<*?5y4P2Dq8zq(+h)=@Od=2Fw~&oq;1=a{N1`$>dmlr zo!jk6AZBq!m+lmfvk5|_?=4!ZOQ95gI2F=>MKXj$R*F9WmMQsPUYz3CzNTiKFjtVn zVR}r1>^$-yF}8RjL^}iz(>%+?sZ7sBk!kQ~+WMH-IO-{2{4;@dCMqnNer|Y7NY%Dk z|8xbR=>?+Fi)7XNyr`#zqq&qnFzy229{21?gMPc9-SnHOE_9ml3AqWTI&}Y{ZyL^o z0gZhs95;uqJ?|J)Qy_=dMn})yw=4Gf`__KbeKSEeq;?Vyabe)8Txiqe?0}z$OtgDR z!FB(aR1t^|qmMS6ZfjR8^S-YBLZL5|1UFV7;!|nLb9;6eU8qw3qcVBzfdOmKhhfb;zU`IU8YM|aJ#}Mto0BA=s=!H;1wpzGl#0m^?-;t@ zm3lnH(ebQMX@|PkFAiv)Yyn@wozxCGqZB@SK=OjEdw?=bjf8MaUuKMC->!&CiqU(5 z5RwG@ONmzfGsNroE-Q9On;sw_5viH@3|Dbt4}QN$Zd6@3DQXGE%_;Tpsn9uWVh2*y z-t@<+xP@(p_?6m=y}e_o(eQ~nWVFKlj9(14{B2ds5p6ocG%wrr!Au@4D~Nzb*NAVW zoBd+cm=2#WWizx?U-c37J$vMJEqzImP*>4%{?fyZj+$B!GLLT*%c!`(y#=(#b=46o z#p<%Y9yR18Y9tWth%Rau7nQ<;$5WO&`9YulQ#edU8Rf6#98yY5=)@N%H{!D2D0b0T z%oL}j9E`X?gGS<1FhH0BJB~lzoacrmy{qXP0TUaGGvX1#<8)fX#orn!dlkdhgaNLo z*iX4PE!4p?d1_lw?acuYv=9g2=AN2CqFv)Tqu!W&yiAr?>7vVT?{l+J|6Dhkvtn5lv}5ZOa1vX7eNvG-DcY%6kkBO3RvOi2hImWXO97}8B{d#_!} zZjggHLXSLN0t|!^5}gSkp9uq9B=pq$K?T*3IrLK6U`~<_d3DEfLFzy6Dg(nDS%7kN z5Iy?UPM5GfHAmrw_g9#ORA+I-_fFZWFAaJQH0Zl6PU5Zbv<4yld%w zD?w~|QEvWqE9c^zJdi^qK_4FSbOi~qpEn4nRAxu|qb}^HFhHI4NJ9n01AUCnGl(*E zGEkWuvHXV46C~7=i+w0$BQpbTa@l$%)Tn#~7P2QY(wqk=gV{8s6=!HDM&{qGKL#CP zoc(RdRNgI&P-efr-Dun05ybK*p;)(=n{XI)XcOwH+JtjAKzgxjLV)mh_z zFtQjL((`~}(!vYoD)GZrkSAD!sZZlYvBE;0P_2fm(TeCgy@4p-n&(#Jxt zY8yI0IYJK5fL}0(SyPSvqwqop8wZn``ebORhB(ZXX;$eO=Fwju));)Kt`fBUo}kua zi3j$@63!TIN<1@99&X~TCB8!aOxKlr+7NJnDL~ARk+bQb$0RwEY!gAR0EdQ^A}Got zrbn$wOgd~@2t}UIFZ{#>Cn&N?;NDh+Bk=y>na7?u|J{}i|A}|MY%gD_h^8Qqd5&4B zCVql`zsQK5H@cpUr+t(IkCH2+btl4+QZO=`h%T{_R&ik(oG>jWVYfb%`6H_#v&2$9G21M@VanLh%VLrG-aDCxttpzcb5Km4kCZxJ=Z z8Vs7X>00dO2|HEu))W&A78Mtq(GG@&*6@DHwS7j0V|)6S;gDB?4Bpg)qwLSBbC#_m zQx#lw__GNJkN=30t8nmfwIOAhIAOlSmWHf@!w}4h( z**zl*K!9AnP!vD&Q1k^+@;m)Sv8@5!$&UYte8D@72Fn=*R7LLo63qc8%~J=NX`?DA zA>u`*Ic6vNf`fU*s|?Q`L)`x%7`2VguhQDByz9(5#`zA8bClTKQXYDNXAY!Y7@2?@ zo4YK!&rW{`fdz58RB`Fu!}oC3(9L1|T|r&o$^bNFXC_3&airbcs5(;P&-U-1MFg9v z14vB6gAsiFPsm6c{V3LGDAUP9rv^cEBTqaU0sC{Do>b&+fK*DxSHLKt_1JZvOWh2! z@r8`$^d^D>=}JV94)+ZXKp_nAbj)9l6DA@YL)JyYl z#Tz=!C4aX&a*~X;#cn^nQ4U0{f7#*Y)qW=rA7QR+3fCkK@E2cBW73SAh$xV0`;I_< z&C+033sR6|pMLJQ0d*f2UUZn0P)#!KwBEwivVt<}@B@g=4) z7Z9u_aa2wtFK?Km0>OmHkt?}S9DacD zH=f{0+cT`v;~huibuBB-q=7!+kytGhm)_1QA^86_$IkqjqUW)fdet=h!PGl6`hiD& zp(i-_RLHD-&smCEa&z;<@jBc`_SJ8bC+$f*1dp{t0yf#MH9ph8qvNVyn`>xf6@GuA zL#GgD60ULjeJC0iSG)bw`5Uxn^mEZ%Te0z#YsS1?I=&At}cT>>XoPjxyX)9?wR?DTsm?0$XeU66x0ZiSzF1>H# zj?Ev`a=AU5d`}*J<7zc2k>O(cs!7Tcr1yqaVuW`em|s=deb^!@I9|;auky>=Tuy7E zm~F~K)oPYXv?_XQhZMEUZ=nZ03as~i`|jU9mCU9{rb-86ST>T zn%NA6Osbg2<)a&Dv$SF6)Ib=go%uhd1|z{ zu@_YtwX%>fn1W%iW}@4GCGG+Y06jRf+}vc$j6LxV(>Ek3sWDvewDo)yeFf{;(}g0c z)ir*)SQAt=Pvj$Z`}P3`{P|Z!xD5GCo8h|L$0^tOCZKViw8T@Q?=U6hl<>s#c6rh2 zn)e%KS}~sJWXZNl5tirIqUL=h?EMRQsb(*p_h05m@cw7BWYZwlnCWP*Uima|uTq;Sq6y zI&A}!ysNSmRiIe2%b2Lj$2*oN*`NgsN~Wt&lVM)J3K+*vwvF5W`BWEpA;PFewxIAa zxJ2mh3tGbqBk%q`JK`_!_+^^=2v2s}KRn?|0T7m~05RX<`?9Or-Ogo>`8U{pC47#| zqew7sJVF-W>Ng9Y;qWhYvauc$a2JKwdtaw^&szf=cUxaOA7&$~4wU2eZi^`P&ztsV zu0&Ym&h}ZY-nK8#N$tqJUi%p#z~K5zDFjMqy{&8K^LQX~wXSRq>UTlTOUYeHmUC4hY<&=V9$Qd#|3njq zPoHJ=7oI*?nK5KWsyX;ij#%07hfvfEhKo^Dq66q2Ku2~T*&FLLibn@<+m%=lw5tcZ zyMM+cEzM2|m}_vSx|ErdVuxp3mNp#;%Ue2wG=4YsRdEi~q>uZ+3(Se!R4d*#Nk8ti zGRO8swLZ+E)HX+#dQeim`}jz<=y}xyZyzR@wVZ3MV;tIL^=T{2vABYjJQNG%!y)%Y2sdLzFxK0XB=n6X2*C!6XU4SZlDIl)$Z z?iI}r_;`BEMLXDglvQGQtvkxzS{0gTJrk#!NVQx+b!XE=DrNj~u7tINc}oND&c9TmCrNP4-8^zt z;x=3_9~I94P&ESQjD0#07kuGRI2w|D15g@}PZ&xXOfU?sILkxc53eZme1Q%(QH{u-jc%d#KI=0dyAV18slVv8)oX+R z?f}O%1_%rimx51Y)Pn&2ZQtInB}SNZ*s|3BC%B8vrOO?Slh*h>b?y+HuBP!o%aMFZBBLI_7)9JW%1Q@Avxbx(Z=IhgkmA8BS zpHO)JCsZVg&Dw?>QUtFw{p71c1%X@vW3V@RSkE4q^?MsO+Gp;w6E5LK(Q3JQA0%KZ z{J~Z{`_!sP~F4AsEOWnr!HEL5H6&$V26O(9gw@ zUgIsZzP46MIyMq3d;x3d5>{?>Kr-?<8?Y&lZHdA5E}q4ks-m0-vf8+BB@7Ee(i z$@aW0%}nCae$p56K;fK)3GF!ajUef(8VVV(D<4RpeY@b*dX0$IM#;VwYtxLGSgbyo zGnini@wwPH1JRpTmOjc^o2Dxpmh;&o5Xk7hc7H!@i~eSsErSYpMg7gX^a zdC`^1#yw&2uhdPh`t85pQ47bo?^6%n?(8enofx*>oP2E!yph{CzruB=wA@y=FWj`8 z@4xwTCh)s*x5ZrWM!IYS>)oDK17CW`-jP#a65@P= zralyxp7>o!sZ*HH$9*3r`hZ5WU6?0d(5#Q!*=}h#BGOmWR}7Y5-e%s%V%^`eg!l`L7OHCzu}=Y|14rdRcLAc0>` ze*4mHrRR-7x%sGhEWdCCz6a;KWrQ@~hVgSSb|Zo#RRX`p1}M5Xp1Uv*vxdjebnO9F zhV5U}NX8*=)w1ZE|8KS2HY%`fPEj~4zQ){U`78719q*ao=Uuixr4k)j2|fN3juX~5 z2P^U(2Ut}7b}J8u6hFkkOFd_5JW@+@*KVxu7qFj zFtGE@%swN7zX8}^go2V#poxGksDg_qa6I-NL_Z7hV)rdrOOc)SrEN68W-xgH)3+nw zfWqpmf10Bls>UL0JipMf7kFv}PytB;<;1vEg?zQ(+6UiA2$?V_(Su`kqTV3fKwJh( zzC*0q!$yFGO#h?weCLq&%>MWdF*mZR;orlUghYsmKL>ugkVjVdQz1qysZ^2=5Dn9= z#$4SajaHH-atX;MQWWaVG0m|y{#N*j+yO)T1siR!L@Re*saWe&7yB=&7c#-78*+!G zW(-af&HCUb)a(^M2OpPYS)Xt&<^YHuqSZ$O4dpux!Ci}RV>HuUW=ABZB8An4#m_H@ z#5=>XBvvcGER0&5A7tQb0Pp85u)v=?W9ANenz7UCzAn5_bv@y8MDynK;;6H~NIUz7 z=jztS7gH3havp!%3dI>JTz`A{_U{$`;1SMhe&yd@QP?fD_n_ge*Bnlq*@spB<>uC} z--Ycw!`V%qrz96X58n1Hw8hKanJM(x-LkeH`x1$&w~$KDEe_Cmq{XSFV+O}$ zK;g~-r{L*w#U*vvX%T+sXEzIC`3|;bc&0)CK&gDdg z9tdk!Qc);o+HJ&De);;#h-g=G@*p|AJ~q*n17PrdB>axwIe9n}wj|ZTov0=~N7=dH zx-KA+h(-H*?%1`15VIfOK^s)Wj`Yh&SxN;vw^VC{W-hoXhXI!h9ge)NrcFhfvU|F~ zx}Lpj!82hx0CRc0x%7HhdHX<*6AC{#p?R!>Fqb&+Fq7T>trV~{X5An$#j2bXlYySe zceks4DAeI^(NsMBy5UKtJ$SVS}gcKJnlo=|m93x|k z-~LO+O!i%XfUK+EXqs{)*K`I_8}_KMdl9w2L6TaQcQ?TPuXvB-PWTERvhAhiysUYP ztK=#$>edWMg9D%JT-vT2G~YPr7Qs60nv(rKnm?`QH7f4ilFehZzzy zT0y%~-TR^YIe>Gfw(V^>R)Z_8cVZRN+{@H(ce98hSSd|mN{gFnN;*}t!^6)vzZmxA zz;UTUgS`le!5%)OxilgqmAYCqPA!;)CGnl%Jb=Nk(DDya)B7j*Jm4je7FY*vazO5U zgvl(pdy$8ZLP@L=k46 zOq(DAyOXc$IFjZ^2^?_f)0B8#etC$U@s!}yiU?Makaz@lGeTikf>fP&CleQIRaJiT z4v*VP=`;cEqi~Hmop)wTgc~)+!eOO%a=b?(9~x!~%;6Ciwe0&nr40#W>)qzW`l6kJ z6&w14yY*B9Ktu%an5JuM3TQ+z4wRorzZCm{`E}e&*@m6AI$#v zS25Fcv)Jhq;MwoL{kL+)=Ws^eG0W1Vas4oc?0u|d^Q)Ok>_mTx#OzBw=@wZ-&dQtV z(pv+@*%v0SO4ZL*{X8^c|{iOoFUsNP;UnoGY~X??R1ce6n8c4ltvX74>kz~G!z^M(KM!tF>f>&5g^ z;KfK*;7vkiYt`XNoI=CxoBiKctPL5L)iI8(J25)`^KX3KZWDR?_YTkB&M2H>*Kfu= z+-4=O*F}xFebAdd31p7)zm4PWO?&JfJ!%!;5w^6DetUIzY95;TJ(l&Dh}{tH^=s0;sn9c>KArXOtNmWiGjB>igt zwZ^WQdxH{Y{7|!BP z)469xdUq;lyk=WXbt)R3feL<=@UY0-n#B31yyka)$~f>fC^ie<^H1CEn4qMdgtfirF{iA4VRgHlf~u8_Y3V#2REJAoV( zuFQ>(qqWhK!o;A?#tTTd_doaH0ZIB@goir+E8oeBpU$(QHPa3nqD{wPO^MhTWxohH zd73y}P?07GK(x5y0#+~=rnjAKCQO(LT>yW+xuiyj0r})yVre|Yn3SZOKhOkT#K8tL|J4;#nI7qMl0X`*B3NXxN`^{lf42nhy?3x~ zs~IwzaS~tDdjPxO2j19JuZfZ}Ih!zIMneTJd=7Zk6O{6su`8mUio(i|8o*x*-4$HH zepQFO*@HSkl!)y1{W-OVPBr&5QYi6RQk|Qi8AyMIE@17O_mbS{4l;e5qz%9SW6|e` zF;V|A$`z|bQn3lbq8Y?QhUM$uQVW(WFYaAqA^hHm`G~N-nvZ*@Vj=!IwB0!8sf7Ni z5^I?HbX!=wBWITWH@uwP2R~jDZ$3@bf~JLC!~>hQbCz$-v;K zxdEWcny}mTm;c`Q7>`i-FHJ}JB;rmogG;yd|1>k~#t_DFV81LSEUwf= zk(*fDiAs9UNwnf%7Fo)x{kms-g=xZ#%FmZO5RbdsgFUa*IfQgs#lZZUK3|2}n4YGvl(NYTI)%R{ zK=?LJ5|e}N>I4#^y-7S)ubvOxwoA^KWo5Y9cDL9v`>;IlKAaUl29|5q`=9;SS4k( zY4AOTMdRPa3;#H0nQ!Y?r#}9k<8N5!{;ssm)DwwRST!CEb$bVR&Lw=OF@DhK`Y)Ge zy~48fFkAdGb0^44hwh~8of+4O!0>R1ouT{It;eu@5xv(#@bnm?f?ow0i@f!*+}Q&} z@aq>F5scEU%{DK+NxcW371nN7on;E*X&bakyEJHKMWhZ94_3w|SmJ=zdo02IvzuikoR(bjFnd{mYwY}%3-NLs$P1$ER zO;Y~r@^4x$b2%#g7Z3Q@G-QO%Dp~|<>0zlR*eXwwbv9L2DNgTSxh_zL49{Hc`em+Jyj~acUv`%iAACc z|MHVN5*foGI^hqUyb?;?or@b+8Uzc)L5Ljt&VR6Hdu`9W|} zUsFBv&RW9RFy%Ys2t?e?*H_Zprc-3XV(u)?oVwWdB1b8Mfy-Oy1%tAX*Owg-hb}vQ zqEge10i4QVs1&5Shtg$ol=V_}?8?VF5ObOc>SV_Sk3-{?{5t>q?2>i(`g&JZD?pYc z#101RLK_XKpJl(NOdMT+$e^M&Ep!&gZkWF}kqyt=p&k|{1d-qS%D*EvOa1#LFO5PN zR1;#is%&Ny=J1;K=qLSVMwmh{;BqO@cqE4E=M#vjj4n!Kvc-juP~_Y7_rW2m(mbG6 z{?Y_k0H<@f_17%m)wk<&Un0La#WjH7XS_`fOBbc#Gy0oy!&`Ms27nvx5;+9)3nQ8r zLQl7++D!o9y{J6Xd`$Tky(ECO=x{1DNO}~9t{utlK7k}HGkO+)NdxR zETAPBq5T!qhAyl?PaVo%PSaz{caH)DsYBX}PR%vuqArGWzPIvW&1cJjM=`xCu+zcX zddDzdvk+_M^p)O!y2hC^fNEaBmQmQh000h#hz>7rx#K|&z_4Ozrb|T6HdXpDNEIL!22G|EvnAX=liJ z|Lt1~Yu9nH1onpg^{XXG?oOuv+wFwQ?D_ibl~tbgxaQj>tzn^zx4!L`Sro{|Rb`z4 zg}Q+KHwukQA#uYCx4-_pXIYSJ_4EsPe$KJ|*H!-2;rDq*$sL8;(U{A<0M9*am;goj zg3p3SQ=C=P&94d?*16Xwxmxe{tiA^BwnVYMb@->&aM$w9$`ICl)#+)Qb8+c$1; zJlqak$68&+c!>mVckTP_oJ{@jpP#zwN(#Kq>TJD^^{RY(IVs16%>-vxFuNkdJ zI=@@@==P^C>M1PFPO|;>bZ)LZvd_nL-r_1N&Kv*jT>P;L*tyU8^yMYv6&jG|I?+6VOH(u{GpzQ>C9;8bsFG|tuadg`;MO#3yxnX zLwuK_@5y-|T$-@u@BXy$5I8vgcgja8v(`(VeWw&le84UGGnJ=ay&&FzK2De=;2O8s zO$CwxDUe4u!l`uftwbTz&d`!32f7}&$0RTimwzX;9-Ty`Y7k%%M%%N<@S*PsojXhD z(VzEIcwGP5^E3m@b@48pJO}(Yl3#x2v0lz*`YWJj;-B;lOMY`;QDl4KwYo!1L}W)FCx`fEf%v_O8L zDoQsGczfMBn&JXCNEubJPh-&4;WsHMtl`0-K@DROgMzj$Q@r97*2MNy?2__%FmD;I$jL9CRK&K@Uz7W4 zlP*2NZNQcI-U?m}?7hy>@_x@tkh)L~a!@DIkE)8OvD*lbezoagie3~w_V{mGsJh`# znMiXzV&`Icyaow)oCaUAROX{Y%?@`_EZRLypBHsuXl(n~5d7ciU=HQ@;rB2w!t((2HuVBd{q0OCS|b{Ozq4h7Oq zq&e8qu0?@moW5q$qcJMQUZ8fSe$KOrV$;zBS^SaEgh#gd!t`=VLnBv5Nf8;uGLJsS zI%oMBNU;#MYb{3v`=a3zpl1x`s))zdP67A9@i>v^|4Ltw>?fb&dh|7KN0Pcl>j7n1 z2n}Y1-AxNIEgFN&JWiD-Yvs$pT z@4!{sChA*RxY=B>dN@4CysdqaF{aj#L025aH0C%B-VSF(bFl;`n$-j|8fu4V>}VK= z@EU!zfoe9*!(z&EQAfhQASFdJjGBoVSwchU3 z^L%A_?LN47PfcX_o@JJtr}g-6@fY;k8QMKzv|cjW(PXm7Iy#3^dGJzlFVwB@Yy-a z9ZwOlIAxZis=VJfHI{27Gf{Ye5stKcu1&OW=IK8VV#$9|ZafdWeo5JuU&@2I-T`wg zy`&^;OC=|=|2yF-?{{dW@Z+S9V(-m_f49}&3&-2O^hy6~`S(_bzdPN&JKjny{5TL| z{dFy}UU{8)N#Wn_Htavl(cSv5yw`(N|mqQ%c z$Di+6y&Nt{3EbFVX!V+V!6JKI*!q37^0upM>cQ*3P5bkgZc{9`xpBe)qs&u*=a&?> zNksqL?S>ig1ou@-J%oH9s0DphM);<-rfzq~}DaHE^2;Ln6}W{f}RiP2V} zm=pTNn?F4~<3-h-$?E8%eJi?@1o%&=GD z0|zviZgqSP{#x@D9nInb8nQ~aD<`UFy_EJR;^Za4S7%FVIvc?}_Zh>-KFhfAiuR@Q zz?5mzTX_d?E9Jo$P&iir$h&pk+n&UMcuE-5u%H`^bg^e{q4f>_>9E9@P}N^?H=$Ru;n^G9v9;1e7`J8oP3S$eY&sm84$K>YdulR#bUZt20dxh+hX}z zai&tR|Hsr>MnxHR{eEa96_5@kq(eZuq(-D96p#+-2I*mFq)P!wX%T4zsTmriyJ6_= zjv40M&-1Qx-t&bo^MSRleXo68`@i@8{j>G1qG2?i%rD!pBkC4ndVWUN4?g8~^$f+! zgU!W7=awwZfuBPS^T&64)%jj|S!M?UX6e5+YIGTXA+^(lxfE7_y#h{ADnjKpu^08v z3oSpfc7p1&STnDP+ZI2s9edJF_H2n+-~Z!~)QB9AdoQ6&WC5Z^9$u;c`IK7MwDuaf zKSn7%a7m#zKzptW+QEdQwApKbpaxkt19QniQA7M%A|PDlUlz6Di$o&GFk(`yScY$N zyk{IiD(tDTKvx_?I8oOzwSfI2!ALIA#@hkv^rRVTd!_1IcJZSdtsRNEZ*1w$jhaET zKr5ZvnMJDEnS-5$%xmucvd>bKIM(suKdOc*mS$TyV>lnHfDLN|2a`qv=3qtiO=L3Q z_))b17(T;J>$>?Z>pg^fN8RwNGu0V8`Fs_yK*V2FRGpK7E5>}!%-j#luU)X2P!|ly;`p-u^1g7W0}tlRe2fc>C+oi@rPS7D zqj_8NwW&oaUQrvQ8h%>_BtQRRbXWpYNhKy-APq6}7}4m_`)xqNXLSc~9pN`x5`cRz zEL+BaM-HU|PTRikJ9yC>*PeG3&|S;cc)4wlZ-QrzVb`a;nb%n#^(CMi9aFcVHcTe9 zRo5HgC>ws4d4K1niiwc}{f|wqpO3#g;0>EDKp*ZD_OGO2mnV19+eZ-l`-s*OuWX}- z74mb?UQ^~|4qme=6ljjJ0rt0{_v=ip`*_Ru25{KDP@vre6pfZTkA(USF#!n6 zn?=*53sFSvu}h27e%Z0?)hCzb8#dYNwg#BPzzk}75#h6dG=(lr$le_Nf!Cd0nEEYc zj6hLaGv(qn4%cg!+$ojS4#i=C<%=&x-ytsAmuib#vNA@~ei&z%5$5P{H>LVC{X`uw zW4QjC^IB3K!oK=`W1RS=fg!A&bKqvL%D{czqU*(apR)i*SY-95IkWpOiqG>RBZ+){ z1q|;V6X8lz>nE1p<^?Hw(G7um06a~B-~d^yyF~k7(vLp_%hD)WDHfbR`9b%MW^|ybg(^it z6)C{0nK(>~6AkPD{A#F;cpk;nHn^_lD?y^c6ys^pSvD~9oIiWMLjX(2YC~A~@p!Be z!kz{9Ew#^AGkmq=vQHlhU{N6rn+KDa{L!pVS-H7X0J>O$sOxd*XR|iP-F&5dmy@hE zf-!7~=e*p#j&mIR?sb0}2s^R(fsIT#GFIFMx!wiL3Npn*VAN;dSm5C!3a5t+p!Oo1D%~! zs*SKsaQJJ(zN*+dz<0IBEDBBP z%d4YbHvK(5zl*S+DT#+jisz?B}v;;X92l)l!&DTmZW9ak-2(1 z_kUv@)wIS0sihNQ31{P2_@I0TAB67wmFl5s`F_w-i+t&*yOEE=738 z@)857znwKZUg{`WQyXvM37m^f5F{m?15_CKn^%vMtv4(jSRyV~v_hT>s8poV zzyKh(;V=oW6sw9f!LQIR76vHIACf^z!zSIikH9XS`9S|mLy?WAAx2_k>3l?_nPd&w z@_l!5WEj*|qMd&=wB^pypR#4UcC1vlCn(AX?Kk=j4GUYVun7V>nKqWMMF0GkdN9U_ z6C)0k7kH`XRaop?Df11wBQs=Ety?)40Y6w=6{IXST_~zf8 zcr9Czarwnqe@QtKKiivmWoXJ^Sw69^$dU6!>-UF3`6m6jd2^AEA}fyo%2n3H*=kWi z$*}P}+#jcUlT;u%EmfF4UP|xtO7P5QOy)Q|UE9rT+mo$+^8J~3}x*SK?o0};s z3_qUK$-Ls_;pJz9pL7*N7D#dys_r)ygC|lGej{puH?d_Vsk6B2*3IUA=5_9z-^#`o zg#8#|-#c&IOKSYr4_(_VQ)3Nu zDG5Uiw{7bSUb&4epLhFF4%dM`L$K!D+0(A!bxl5c$URs@s@nC;TZFIGW-0g;dqvAp zu)0g2PvH4@kxj!PFz?lI)+i)d?{aSVQ_n{B0iian_D!${gXYKp&O$u&yR~NzX1+6B zFT6-M!=T-OqrsQ2IIvC1#|!aU-OzMuy16`Fx?~{DMM{$L0Gi5G>sC9tDYE#p>0M@~ z$%ElJ^l~N#RezuMaMXHla#~M}2t>g2TD=z>WCBj!Umu{8MaysZt`CshE+6kdU(*L( z_6`TO8#bUD8;>E;zi)knTbIdZYF+kz)6T0SF>)0+T_p96T4VaxqRw|=e3Ihhj+|DeLD?U zvLKAC3w+I-RDx<87b-F{&j=wEkgs)Q{+i1p9VTk+^lvI;e+olN*{VV<>AdEmLpG>z zh!kecSSqcx$HgrGDRZt;fXl}VMe#{lDbMwx-E_p^YmRO9Y+z|ngC_d@Rfliis4^`` zLdNSYh>QM_wHZ7GTh}-|vv!EPXA~h9Vs7-5ahJ%e$_*RRK{4I%E0H4IoI80IxES~f$bjYU}fbs(Xop!&B9rX=KQ$8Z2w;DIh? z_pm#{H2*7mkghL)KB6HbCBo1SUES8hnIkHVn{8WJ$9ti&Eaj{!ZL_d9@|${4>P!%S zCvJQDB~KEy3}5YlPQ#xu8&&F$Na1Fee6vK3w+Jo_Gy25U7Doe-@$aooF4S3;cXZg3 z7*W`QReA4aNaa)>37kBB(agKFuKA0jdGe!$PtUZh zeSLW@rF6@1B8tvvyVf8(Ym~!2WQYC;YoQ*`Foza{R>-t2#-bhrmnSVNn*Hq4Frb z$PedC|5r?)?#aQ?Hx40dg2S`g^~&v6Zzoo|o0PnQ{VCd-^niib!S$65%)mUr{ScU+ zH>U1+znU~`rne;)GDaWh_5K7T1Y(XN{!sx;6iBUW&S$JFjzzz^PujJlDKW$MW*<9S z;m0N#@u5hb(c`Qvl6(Fj!%q)lg!?JI{?+uM#0hZS6!)_g`DhJVcd>ic9>L_>|HzfT z@Ph_~ur27h90he?;QK^g7Zwqs)uFbJ>@GQO9<%kxz7s<8^S*%}t^g9o?TVxCXdSbS zpT9+9ud2yNUP>5oTkwvKPAu+V3etH(#)MN!Y-l`R7+s^vi|a^~fzzSTp}$8bYlTO} z3+%7sTt}A&1IRQe^u<%5whhw|Hd8w5*5arBO;MJ03v#S#M`Y)->NMKVV_!;|5$ru_ zfkiq#+vT$T$&1T|n-j=z_mM*FY3GPKJT(3EN4TPc!x@dw)Nr<}ul4QD9Je7=!lAgA z+e}{V!ZlBJs}E#5c)~v(P_}oFJ=x$?4b$Zo2fK+17CcR!WAVU;zPSN9s#N5XkNNJ} z{2|zjskQ3*=B()uOp*m_@#-D-SRi4L@^_k8+bzc%hHlJ-N6sA1H+njEuKnvyp-SU3 zfm-Y*{UPkV&TYLrxr1Cwx2{*0N0RcInu=8;+dN_nNlX^qZEs5td*e-kmrvUqZzR8q zl>=F#luyETtyP3fB3lPhvP*{0pmEfy-OVWU8VrQ|e|RI@d@$X}Gf*j@I&YUdtu0NifYG&~8>J3+b;N<-&lrkTwvO0llAL8NGlX_QBtpRTK{CB!< zg=arKLNYuax9S$MBsA0@>>q={$ICyG{r94h$ru@dn7?znX7sx?6lpnwNSb<}lk@`3 zj=7=RD^#$DMtr4EEr){bQD zRjL~k+*M#Yj_~Wu$TO$ZjYl(h_H(!;MFtC(fr3(@ z0Dub8CNn9g`BC)9UUu>nP`=K8nqN(WFT`q5qWF7Go9@tkT9Y-kW>Pb1(2UC>olq~t zt90JXOz7M@fXK1F$?`LG?Q2|8E}=ie*<6l-KgAFk!1Myy*2o!3)!f%wCF_HMvH{vRl@M*~>hSA5h zmShh5;Xs?M$hm%_q?dQ|kzL(EM)3Dn{d|GA3B2n7Z@4zC{lo4`xX?u{R`M5JuP6Yj zDo0@RrF)u}O~H^FNLp_Ml+zN=03e{1%>r3po7t>=)GrPoeC(jkHXcb=EH$lc+D?cZ zfKVb=0H}nHwVgwz)USurJFiS;6H)s2E7@K1_wVN zF>i6?1+n)Gy+;x$BF6YSW9N#rOFu!l85F##fo%Bf4YEz}?mfR{!5;P9BH$F$@yb-; ztaB$hHWnDjyZk6LIshZgvL5JoQsbN0 z@IQyos8(c~o#APA*$;XHKTtMv(tJ8AM?2}Y!#b5XKK5hT_S{?g#upeYnVvq9X7~a5 zcn}^Q?%C||Ln^g{b>;W#d&BMUr`oP#4ETsty0%lj1SMaT)EcUZ`T+|!8|h0+b? zmMph1+IDe`I@JEvO)9V>FE7WVHXY6h@kn^Gm!TJnPy7j@a} z%^)KS-=57V_rGG0gx~kwLVEf6=_TM0bZKiZ-|q!4TXd8vFjEJ$SkGzg<#%54KLc`l z{gEVUG8HA6nkved#Nb+g!!;t^TTU;w-R=QQGMD$x>f`27%k>~DXM8sR$- z^V|HM-5Yq{eo1$gW8Cbshhkcg@V2`B9=@*WDA^Q<5QiR1*93eX$U6tvY{pGqs8R-S z?%Zel^Q6s&CHPU!HYHPzufMR}?>@Il z;AL2bTnuV1)jljNH=a5msxP^hPX-aq$87^p4^&#~X`@R3dJTBLSIh+5j5aK`?i(JN z_zdBBx32Nh!R`xsO>Q5IO;OXIDb92LHvLVCziudmo(e+Tp&r_j~3;T3jfK`hvk3PTw)R2JUwCkINP*YdKL_G9I+x@g5y5DZM9Jzf9p@@cF((3wl%&r@nTO;!-hG@{XDm#&0MeyuuIR=$=u zg5!*gCy|U3(;M4s?4v~w){9bJNI@bZSNE=QvUNO4a33yz!`m*9rsV$*OD-guZ1rdC z#U#`a`3kXuw^K;#CMZxfbg6Dagly~ZWsMeR3+8=aD52V`*vKK42QRlf+Q5gC1Gf*BcMB(VgPgMyYzaW}?A~T8iy~+zUou5vg0WVWL zT|`}(XTM54MaJ}Zu6GEl;A60gi3pr^fN&lkspYw_5q8P=-DQ~VlnS^ zOf#Q}om&};!}d<=TPYp?O3^*>dCe*vBKB2a#e5b!=$o;LjqtnerX|vSBX*y__wB=H>#%w;UP*6;pyLkw=b2-8 zm=n(;a&9KRMn%Sh_;-x;?nAW&KRve~JtzyBic?B-vK<9#pC@ku&2-Y&?oK&j& zqlWM-YC}J^#l$yu?P5#P5&P_lkC3eGGgeEFhxxPh4L-;cBzFMj-Jc2*P4S^scR`U$ zUzoOc=oEUxgz!07atLC1TiAkz1vp9w0LRn?%qXz^N(66pJ#~I^_UkALjDSLk9|RF> zTN)*yqkIIn#`PL0C7$_%Voy6<9z`_PKlA;MxRzqy^{=f>WJc8B4g;gYKFUJlQG)qg z>l)A=b(A9L67X3Q#^1u2&dpK``3&>YIu*KeW63e48~|e6WNCr3yjmdV>x)uSjodeM z)YgxenSqMH4Riy8BoeyRsyHGjK4T63H_8|*g)QY@@xw&%Id%^U;XiTRd5;r!Dz$6ZR6-4jJV)7)vt(kogjLc{1+62U4(ew|J$0iDHfw;*5qU9d<$|ab&qMBL%)`iaR4qD1E}znAv-M4`-u7(etuS z#xy5uG}zL{n^6KDaC!HAvur@G;z-)vYrSLqU(5^%W3%hQC!l@02-zDCb-3ou(qH!T zxdkqk?F17)ztzd$TD>ijTz|)-*&HD~5r&V;p02*TXO|`3*?#WZb8(TCQcZ_lTb5}u z_4fxZm6FKW)q!IZ=*22(n`zPGfl9VzvlA#T+*ig884;HUt1;)je7SJH!@bLYvN%RE z(Dk4uJ`}6?j7FES-CX-Zc57Nz#h0Sm6>~N8Hf(0t2=*|W7b7d{eYvpQaI$xOhMhNLWl zsKotpk&y~iW~ef0fb`S8#hi=9U0}he{0Y;6T8C8gR5mgRdh>`tbSM%y7$1bw z#c4Wduzs{jh)B}an*r`Fo3XIx7=0qMyaV!bXV#I%>ieQ4xn>at&*sy|rgN=_&A36z zfm2g_=Z?xlzjL$X3(sS_KXm@vvAP%G^(QG35PpspK8%w!OnV8kk-g|5pKxq=A;3ek z6n)Y?jTFEQC~&nO5R~i!@`ixV#w%)!{(%*WVKh+DKVND(<%s18A29saABCuBKPsqS zcvI!-5m@^Z|J=jN-twf*P;3~mFYancA%kFvh~c=uh%oC(G;iP)5`YF>xN>=21Vb}y zw0|=-XnbJS0-n+lnWQcTx9g;o^*6v)(B4p$!{brkZtK*d6M@wB!K~ZrqWZB^->?CP zxg%;tui{w{^~p~H;d5{LH~pC(l?6Pmh0=%rvV%HY&>T0loS;zL8|P<*13g;+q~I$D zS%Ho~k07xETyEeco$bEipA$oQLE0>{aM2R;?q}A>El+*nw3pTvJ{IZLu+w!HQESzp z)tMB0oEjS9daMvUfbgBy@^JEtgHaWUv=i`%kHz|d{_N-_;@GYmKigl;^C6#e&l~mE zAT>N_V~C{rsD}_xZrZIeVpsKy4+Tf8CkNf+1Xa!{4axk!Ti)6=gnLF~i7tVI_- z&3@7s6z0X!tnRW(kK=5&qR=Q$tnaDXB+<48NQE zbgr{iX#!+6Cv$4F9aDJq|D5)Jkm3(X4dpNK5*ct!s=pPGA}6F${=+ZUCUomP5cH$i z`5kZ*$mn#6wz=cz>P-2_5>&{!3Lijg)*8i3&qBV3A1*bgG5ztPc*X>R+kY-RuYE6i z>cuFKpNQX}%14S$_sp{&I}()daU-xXE%$u7#hL6P<^F@y_&{ikfZT-@_~{{V}$p`!C1;Rzfn`u{>pb_ zFrTA|Sj%x=X$n<^RIS@}Pqym$y+(O10#Cfb$8$d?CDV(+KLFJMBj28J0lwFs?xo&T zZw7JilZ!v$o!dF{ExqoC@dZEwciH=H96WR6=XF0OT~Z;{ikbzKd6_!rk@2%B>E7Yi z`#f}76B;yulo-Y`HTFMrI9|Ry@^ezHXH~6n7yQ(puQ<+Z$Mr5LA2WsHEk$UXT8Lsi zwj3xl3xjz(3)c;|%?!6~V>e1V+hbT9nhiriQ1Z}*Bz#<7$o`mzZppCWdzUHkZDr^_fK=aV?HyO%HVq%HU4Gd+eAi!^ zkbsr>x|{YMc!2%NBy7CuHDvx)?mvWv&PW-at1TR`yt1@G+>eJ&v5+z`w7ObOIW;%C zEG}2qLMyBT?ADJW3XH#*25xOnKls>L`%NyFqg={86l?fN8gMftCbVkc#Ugbz3{Fld z>)+O8B%~Y4yswfW3Z}~i0nr-}K8$RE3CI~|>PU8`cmu-v=g?#7t;a2Ph)N?kdWrNi>~grcVHt6` zKErUUmv;1U+dTg;qUwcS`2&XDq)s!5tv8y&8xCie$ZZ@Q;O=@043SN_G<;AGn~?=z zC^NFM?6$^geg_mU?tLeQ&MuWre9>6$xJ3AbFg{OzOC7%|BcAj}(Hg=JmI zPtv=UT(^wLmCX&Z0?ZAPRfXH<$}ReamDJK7*Q<+pfU%aj&SF2bbNGZ96xIH~HnT?r zlc%z%_N(Y;OCRjH!gT$>O1lR^>C5 zeg;F((Qe_BwuX2@wT>50a0DSiuUV4ja5NVfaA6ec|5^>gDe5c6GxjeieY>$c$1 zz~?X$rq*GCdi9A0Qut{7j@B$`t0FuDEMp`$9pDdIZ9?IM1FDI@91NaUS*)OaC1*Gx zn^d)SNU5o=MXxw7ra<>|oq~g3seQVs!dz^GF{B?#xo5(pS>tNb-Bp_D-J60)KnT}F zTAP>MuW?N{h#sAV>;zS{{Qc4vE-A@MRe&$U`7yg>RXw=4tipOoc!sc+!OoX zz}x*d@C#u?YE9d^_eBHMDNU%oI3+F?4LDv*NNkNsj96w0}1*oqS zi}CqbnmgOV*UmWvA8gYxtwMvy!EK|?j*i%)kB8DY0Jy-uG(qFDx3#q4*~8(?m<3#q zg}&)orPE{8McIZFyatC7O6PgL$n&XorHbrOS}nc-BKnR(Am|WerdME$=(k|)ZK!;=0dkg0#u1u;XTu3j+V=+dk+XH08#%`iu&|EfTe zo3(N@DP(;t;Dj=C{SceZk4dhtA;fqg9P?iKtwq@EBk8iz$3jQc&$z-{>>6%vmGqLx z!pk_*8S;PhGCLCFWS(;}>FXQW?Pu;Wm>$si-5y^o=q=rKEH`yeogFN8%noWVtjIeY z-;CQgdYk=ru&wuYuXZqNsxxAw&t&-iG0VWH!ue>QDJLt7^AD+7!eGUPCQqz-8g7rZ z!-BG34<)VNiwu9|h+@il+~VH1ffzZu_a@Fmgg)ET^8!O{jK%( z@NB#%NkwCS%RmdSyPNW`j6L|L<0j+ym}oc{X!RGzBq0M=@es?R*7cYf8NF+x?ThK0 z#?_I$=W0RkE60!&U$RQZVlw;FRarKV1A(|R7R8XrcEvhH?L zvf-cghL~iR&m9^*pi2xL5Po{+{EHv2E7+AEI*Gy1oqiM?X@*97*-a%Z>7!Rm{NcBY zV=SRU6GcVcbKj>LOQT+!=6^febBEX*vkZ~DGe1g-)6qe1G78W~ z{hh~te`k){jvLEXH&7GM>gvOCQFNMzpr}abIwD+fx)bSBqS5`ERYz$iJIKil{Rdf0XARuvbYZz|>f&ZB_7@vUZR8pP{dypPRW%;O11 zkV5 zbiLPV(djsBPDD&7O}>EGx2kE_oE;rD-?Tb0ShexHlha`$oES7;IX=v}ec?+goeHqB zN}5#ZORX+3UVaFGjo$|RUL)xlw&2oRD=af$wx~&`EMY^KUTj25%TCBeXcL5$R#Z^_ zs>0*_H3R&CJNKh*XhdF)h*}6Df&dhS3Hq=s$YW1#0`9vGoR@FgLbTULvTA zy}O_-hqCof>rGu%e(k$ySpsEB%MYEkJ``su)m~4$Xkx$^&)U_2=l#a;*-%^?`|0MZ zZXsDZm0pc;KJ!pD{Xe5_DGWg-x;7h`UItuTaa59^ZnExWB@C9pvlWL7LBO5f!Wx`t z6D2P%2&v!w>X^&5JXrDcQ^+bk z+tWu%pjg3(h<9Hvh1DMMH&uE1bl1GIvhp4bLDvJbkS}CRqs2bHUM0NpOTe_i$J+6T z)iz`7=J;V3U=XCBDSjG~r@!gUWd@2B7!Fvx)cFbQ+85vUKTEEv4oO!b4i|!dF=h(8XO3TO-ban)NF>OfrFV}#FS3`wdE%PFyg<-OiBq~ zB*-6pUHJrU1-Bp1rdM@VS;23Lzdy>HP^e;+7y(N)1pR6{w-ErOlb|R^1atb8Kj)gg<>fyJ!Hr{j!<@5R*}S zj5v8aJf*{ZR5CE7qSLo&9O6AjV743hRU~K^?^-2*APR(E;E$ z$5v395O9}xUg^I}%0^7}R<36Q^#F*Q038Cb3Bwq*_c2?rXH68F{e!LbLP<3LOIu$I zzJprZ+xuzSKRFSct4dT?n{aIIPp%qw0Y(A8&WiVN>X;{9q<`_q#U5u#@>81&ZY(hn zi0aJocj(6{H*#qwl%d~SVI=C8)GJBE;_}3_sKNW01!?_T{p$oZ5;eXnb)G+0 z>chO{@k3vgty96<{VX1v<8OU!Yc}){!%5msy*nFg_Pr}N^^nVKmUCk130??!;82Af zligk}gQ=19y!ez%)89%rTj;v$`6zNi(jhZ)TcU&uP2l-?Uk9V0lRj28Yb^w?+DIIYgx9E>6@JHKFquhz;YfCgb=Kjb-bncVlUH zsg;5CN2`17RCjtV3ri?l)FhiG1MIW+OnvZ~lfVCwjPOl|?QL|qdcz0e<(6g#%b_Zn zX;SqAmxGH;be~UAoX&*KI{7zCX)!U~+tAQ)WZ&$~&g4P+))C6s^1h^>s&(}2lATue z+G-*4NakX5+fNpyKheu5=GSrbFF{KG+B>ruy*E}&y6C$yktu<`s8HxVq@5eBIy;S1 zH(i#w`e)-WQ&W8@w4nTO_OD{3Mfg&V@bnNixwP zXVQ*P!4tXnyUh~lllGnx!=94V{ul>zOU7U3`0p&$URJ6FSl>FUN<5Hy70W2NNx%wI z?%g1%so}X!Lj!svj`$ejej$s{MLEnI-G;_VLoYo?wsY(Qx1C-cH-AR6MZQ>u_@kJN z;QNC%bZC^FCd0Mbc~N99^dPHzhJo?^U_x5fZ(he=Qkj0Xw6q@#FE3YT=A;(^$FrHL zMDkK~P8#Ij1k&uD3^yLX(Rjfcqp<&`Rx&P;#HPhaOG2{yC*L)WU_+EXj-^{VhG2~% zy$kg)EDc2DpC9E%FQS8J#)^BnslH3sy}S_D=vj3BM1app zLDT{}WuuR4Ym7MQAY*zVoTwITJK^@2hFg{9{F@ElmzSms0Ven{wl^_YiSKU?Xe~ZG zdE8a^IAE5%U08*)U8qMIb{p{p@IlAH(U#B&dKULfRlE)R1%l%@k6m`JnCfb&xVVP= zKg_HWoM*(n(H0pp12|^U(6=0m--3jsFpX;9_&ap|uZeP~2%q4oW%(Es6+8h8fGlXu z|8Y?_^WBc)+F6O>2HDhXP(%3>Fr9(RLciMYVepoyxxo8nY%zLT0G)r z5iBL?p;o1j6FehJ4dE>u2mKyr>sPiac&v{dNh{i`U_$*ACjtwHtw2n?!A!o$ zMM6$9*Xb<}ehj~LJ?HLUmSSdQsW~=nLc*8ow_owq`c+bnM%(L&(+rFJQ57R@u)y#MosM;^9p^qUs4DE~-JBGpL2P5X zwa5p^>d)?r=uYJg(W?qXhLnAyFXj{}H~tfC3e3**m6{D*yj&D9q?IgLr6iON$&^k$d^ z1UkQYFraWooFpCj)e7va2?@S#JzZ^<4y9b**JN&OT~TT8C1~BSv7Qw_p#(+0_cE4$ z@y7DNtvBUK8NHW(zAF5HR>iMlkU5YM3zB!O!{ch3)pmlw=c=LpIz_Z-Efv;UBr>eKqXK zlbY*9Urhg${V|=F zIQhrEpfM+k`g7QM4F7y=y6nAi4ZB=>IpUceXtm2iI>S`^`Gh4wr1g0E7d-ISIj|^v zkq0(hM$2`&APmvqOmN^<21@qxVSB^!!qtQ*BkI<_`JubpA9|L*?NY(GOY_|*rxM8_ zQtuVdIj3$>dFX$n?b`?(YM(#T@xAHr>>dB`(nBSm?1iSr60*M85V}6yl-p#sAIWHs ztnF<=`&f?n-Yd)gtwv2qZaLd!-44-_LT;jt))^&kjy3(yy3%lEd}ne@|8Dg$s25!$ z+)tz%ChOI|TC*#kj|6}EI`G^x%Y8Ps+q;+8ZQCGA4LralU@naLJG-IZjW?ZKRXj`i zbNhx!^lpgQUf_qv!L4G*_}1pcN;;O7_bQw<+Xerq%)RttjVS>=+crv{3+9&p#KigW zli;Pp0(?3uOGQdP`9JmbnEGc1kAesTVEn&a_vfA~JSCR^RlZZV_wy3C0BKV#y?I9v zhc69DVGiHs=KL~@ek;vrDo-LqpYV4)D!i~Mu?Tn)YvmIU zn%yUqdDwX+SjG9(`=QB6kC@_;GyIp`8|6c(T<0-y$t?n>F@D&PuW~+b>$4Dk&p`Ed ztW}DjrZ>L{xG9pC(!m%nQ0)Mw5BxgoucR(!G`*iezs!p#e)hso+jW&XGL!-7iP8L# zT%G4Lb=>pu1s+-MFwJDlS{sO+pwYDxAF_S0EF$%pRN7UNm!Ym)=z&g@}tS+FF^a;+?FQpdhEIc7} zF;18Q;YnIno4t%5F1i{rjjR-LO$^7|E`}x#Q`27d8U`EGfR*!w-Nv1EH;Ohqqp}jn z{Aq3f)veXP;9-tA&P>gXT{==UYj|tbHS{S-i*NAB8}0ZHF@B%S|DEEe3(y)Qr@6Fe z2^7dhjL8XmiW%!!mK^erkAd1WY;Gc~>g{qYhXD@dkgok0K7Z4P zm^SBHj>X-R9{gc5`PQw1XMgd%6iE+dBw2q^f6OQB?V@scQKS zem;2qgi_?XBT&l`NUlM!BFotft}u(J=9>>ub~kh?XS6TVk{Hdax$vbK9vcW>NfG=4 zZpP;ZLA8y{g{lINk{8r9Z~tn^2PJje{*vJPn(x2HQuUzqhH09xWyMT60aGdKF}`SY z!~#OphvGu$K3#FAbW9gp=V@t&aEB816+WR{ex6Oni`oq>*VzuREA@)#Imeq*25AE7 zh;OCt`ZbbTH58Tj2uA|fQw~-c%oAqAd?*+I$Nv9;R7y#qYNIIjp&0+}D519J*IfWI z7!@gAJv$pZoksH5B_(mF)5m)PA>=SsVs_B8EeuXo<92rFV6M4=;pX^LUgw_?3VaM> z7M8c8S#4v+7THx*zG97MjZAWxR|J1ec4$jien<8^za@(_o|gRuj*=H#NRE>2mR|JL zD}(HdvVg{bzt!8W5Ix_|pPU2D9V^b@7)MO>9^`cMxO)=4)>KaDpQg!?#i_VGkVhYI zBYN+8D6J_6CeFEI22{a&A5A4jrC?POLZ-W8Z99X6K)t|D1!ga?QRO~_=tw4b4)gG( zrKT?UgTdCR&FrZY4-Zk=BV85??@A%AUS<}na>l)5_0_B4?mFHxV@=tR(5YH(auy*= zaAtzWaD6k*)T@z%kvL*?;#c0U)V}uE8^(K*Tqg|jPhQ3f6RFiF#9fZ?0*NhGR^o%K zm}uQQnQ{22D12N@3O)EReKhC(e*dI>xpb+3JCpW>$)2H@pk4*7fp5*Ht0vyhq|>p7 z^xTN5*28@DKca_wt@aKBpCu(krQSoPdlY7l>0mw%3*wqnCVH>#8Vyaw9`ZsF0Wegi zq2!UH;oV(N0lVyk-|54@+6L0B2A8#%gz3P;-PBsI_`svF`4m%XvEA-qIPCc35kGNm zjsIHN2x&l|$4oEdPjT~^oyI8-_G8BTMIoSZvJ}G72#8dW>6M^9WT%kR7W{m|Xv{(-9%71z=)Z%RlT9;Q*{xlr?) zLe%*&tP(|-Fv9@%-qOs?{#)vY^pLcH?#IusGs@m&l6pcfaunEInEYn2q|*+MZqM2A zc-6&Y2hfM6%xBU=?>#pK-1g~ZOP9Fu$Z|U)Nw+gI$@gw7=WmY2 z2yubpuZmw<+6#X0y)jUHtWI~%ft^s!&`#X;Yo!{<>s+*-2;OaMZfXtYaxW+ziC=xC za8_*l8WYQN5xt!;I^jxC2^vjg27fi)`^%C-!rrWiL!1mW3acOU-9Gu?%E!Z8k{f1$ znA`22#G89M+%aHDS{YfNvsT6VA%IdR%)|UCABlIj_650(*IRsY9dqBYIFJmc`1Ty6 zta$O;_tF&#N6RRe=gi;}wMy3>UOkm8$L}lp-J(vM#YsCYH_F=%6zahgpAEjfN$p7L zHn6~+7XJ1&OaK^-QZ=W3k6|E1U^kHIOOYIopRV(IJPQpEq`+3uo8wH6`QdT^6b{eY z)>1jY1Bccy3j`}<;A3)hI%U`s@(p0J%#;qrN_bAts%ByX82BG%>EK|?E50eE9qd>> zyE9BxRMC5mFw(96Mq#Vq$MW%=*65T)X0&oq+&{v>fiyrwj1>Xw z+&C9+AORHPkydG6SlE)QKmmk)ZgmO82S)me8uaqMq2P9MkP93jqMKPnS5Zb)y1M=4 zPR-91tJNWhDDF7Rr^7(Pu5bZ)Eks8kiVYV2g~+i>s5NBcn{m}wUUK@fn_}K>VX|y0 z#7;n*S>warFC^x{j+pXUlmob0(^uy7R@fGgNmmTtod1d7l#UyxIG!0bA!aI8T5&Db zm-ThF7vatC>m;ThVDzac1q0l6H)GE^1qnK21VtLF{?1QJ&(2NheB^mmM@$mSPZSrc zsUADTTX7_|xIDWh_q+ZxF}*V*Beh{w@Ocb3-rk*Gq)pnigb@6r%($Tb%%ZgTtEDAT zVTtBNajBVkgIg+r`6h6NpG^~P$sVm?$u{Kzp0yX#A!CNo9s~6uW7cmwrc!%q>MV}S zc(oy(iujRA$K|Q2>vvOqqYtU649%oRerLDavY7+91+G z&jo?BC@nub&K<0aPvr}=ni<||KSZfEH}&jq^?M&2{ar7*E19=$@Zyz12*E#9)l~<2 zS`I9}U-;;Ha0fIl4QIOY20Zx&`3lpN8c_VFAv=3cok z5@Ojfab|lIUhIPHW$tY+A7y63F049nUKQ~>I^U0Cfo0FfyB1ue&vNh&~m(W{a5;QE&KRhB4HACaF?t=F&yO@8F!y z0RTe`jhHl{hI@7q@PfOB$|aAniX0}1(`v%&1nAyrF%xopDeZXoeyI7QEXrpSN+dOE zc)JkAq3D&Yld(SZMOmX@Ju>fnSHLnpU6MZ8Ipe+8o7~vH8_e(A#XVYCc%rt5$SJ+s zODWmY1`ZX1n3dMH@6u`275-^kT3X6{{c)tHHP{s9W5=OS!&ob(uz+=Oy#_!Ybq zAU@Jh;5hZ!z6no$UBD_cga!&xIab(T9c6A?>vtHo`#L8VlW&awPg56%8$;1J znZb0^B7!KA)rCyvVk%O0xk7`Eeo;FnD8Yh>K9V2zHcA`kM=DsKRZv8o=9t1u_shrU zWpOl*K-2_SF^^L`N_P@%4jBkBK_8nuPFA9&ZvNjtG!}Ka>)NUQBskJj{g`x=UJY!8 zR$c-wF9j2m4s z{JfCLi2|vi{Xsrpf~FHho+yL4DQt9@G*vLf@G}Z`*KOnsL#) z@pyimV6T!93^R=|*vhMaRlitfKzM9?RgX(8lrai4%W!e=KqEp`c1!t2`R985tcY6o zi|i-HMWZZ!k9nb`sRP>DnB&%BXs!LdIWk0LsfB4YY1|rcH0{{n_1`qVt=zsS zF9M_$)ffewXyHZ%1ML8_*JDVISN21*9v}C}5Lc*nT#+eZx;`E!4x*&cf6VI#Hk=wj zt1LnSl&MBRW-wqIP|Fe1uHfZm%6ob1&@g?AEM?r&lE`6)#3L`AC=%x~~H@|3RuJ z9BNL8%#cbzpkrorMsb|WJkH8GImU*jx6ZY)Ah0aKCBn(w&|d3R?_1yE?&RrOTvAuo zaTA;$p5NN|XS0U(m#sUX-WBH+a>#?0*;l*yY)L};AfF1Oz00vqgzDWL4mLW=#S0Qr?i+`7IzS)mrM4}6*xfpOtw5%TUaOFrmebd)h-!k#`&djaW*3q`}JlmL= zOYSmxe5`PdHoXd!OQEPB_UyELPRSH=7Ax ze&i=hm)Hyrz%wMfhe1>7Zlki@EpEY?OA{i3&VOQhj*rdlZFB{F_4dQ{gkzSMu6E7a z)D|VKklo3>o^HIwAD{cr#g}eMCe@yAOj{%nos^u3kpEH)Ma~bImhtZf~vS z)OlFGa*A-OC2!1P(X%(tCjOblQhpuWFz1{j{;W3Pcerlgdrg@O8;kv>^G2I`{uGYh z*m+e6RTEo#+?4++e$(3@p80jn+5WhMpZ|IM-JCycr<+Zl@f8-nh9$OidzjhuG9UWH zE+YDHTPN^(rXMZvFZ!*DQLMpOt*g_D1rsy*7o*NZCeI;_I_KE1{Fp*DcPm@al*QMJ zNw&P7IC6!hGe~l!LAu^!vvj5jt$fVUsUXvYy|_#?uoS~fcrT3zj7&xGlzT88#1fV&?J@4g~>gDEFW2oim9xHhM;R8BR^ zXWm=H{hXhm(7&i6=w_`E6;axFWc$^8#gOaJoFnDkEp*Gezdsb$7m$KJ?AP~}nG_qP z4lsT7dyfXk{bUkFOIS`MEP7(}5FKB+2^SdD-WiPA4v47Y*i;{6lxa!65jl&YziKcB z4h2mmCD=xD7*G1qA7=XF>nh+AEDmgjp&ASH9)ECGOxy*+)L=;`fm5$g$xPnfQ6QZ~`Se_mD`5Sxy5}J&{@Z%NTfDDn z0dCZjOt`JJ4vae4g!1lYBGgIx0f)R7hzx?`bwR^O+pcb~Um?9aE{2A(KZ}an8&J%1 z0!LGg4Y~b`iEI$AU8L}lwO#jui*4z95v11INSk^wm`^JPL>p;&$z%~2#W^xa&5O&a zwcyLyyIRH*f+{{fK5oCK?hv(puii}%LQh&$nS~f(ae_J_1`ol^PmBvv)~WIBkf(OM z4o&#KF%U1Y0&>NlahqAJ(1`I0;LJo5g$o$#B-%zX)e`nCe@6JW!CK;bWIPNCn8;6E zo99G>hY+v65*_5G z>o4fc@QE5It}coQa@H)&3ADHCk`QHA+EzR}9u8eNy#1B29n`hotqNpra=p=N`k=z5 zx$-i-{FiT0gxfYU$o81@JX1HjoNUQyvipATR9??}@cFT>x>;1X&8yyawrZ|ZbG2{g z1;WDCu??v!j=wy7htbiI7^$M~H*Nb(H>1qnzT(^>J9}+P!&T1y3Gbb0N9Zx83$Mfq z#M{zvzV600+8gVflvv`guJ<{B<2?QuY@{r!u(l;RSe^U&QjvcIVTh&RalB4MXUioQ zy>1D9ty419apxE9s5NtUt%2E_9B4iIG*@1}mQD2R!nU7|s{Hd0KLf!Z(Rct~L9x8< zmAD?zM$p)xYC{Q<&=zpJ%lS7>j^1>B*jiO~eBkpClFdeFXW3ct<0v!ph~g}*&BlFQ zXtGJ)*<-7ygtSsf*!dZvvVTh6+?ww)_AWHmyK(zC^Q-FGlJ9L!{G_PEK|SFkyO5yg z(UJta`0+p`1~MaX8a(WlWOhB;41&D>blqUt@-TS<&ZsR zGroWA<3sj4n`m@jU-tr!|7TqzDsddO?;*&4JL~yb^^CdZaN;LDL1yK`LFwZ_#w}%+ z8IVjef1#$f4*R7;@xRUF?QhFu*Gubam&3qWmuK}O9x3U%-`p)2OXUUT8Y=FzJh9z) z``VAh@vXh&&HdcYYknYea*gjfh4e_=_3Fys#lFwnU76B(Fy`$gifzARcGtSDwRUBG zJ@z9)OGgZ4zTlWpH)a{nFTKil;wRk!--q$v0{I7K;oa;Y_Lc1Mqs)V0i5#7CK74;a zbBjc!^=o3cz`nTn>M{i=ZfaZT=RDC`#cIx@b zEA+PZ97;5I&6e&WgJlfG+SQ|mAZB^Ukk5zH_#qnn7e(1kQyJ8b>#Uq*L?~I0Ea$kk zk_=d(HSH@P159JD0OzgRrQ-+^jK$&=iS}r0GL@>&?BK_3;PWU-ugNv(|(NBB=l&H_nrc?|~nI_oa<)=Xsk9&k0qe1Y&ttr9+&G6cw z6Db;iS-))*$~z`&xJCrx_Yj~cD7Vz1=ZqqSpoTn#yc_PKwp4tVJVx(k4!XS_*Kkup zoMHl0L>mFlW30y35t0@>A!=JCYh<&W$^~J47abC4(4<+?HddDyetJY;z}X}D1{MjXZg9>EkatrVTtm-b|6G+N>{Y{2(fTVcIBtn-0 z>E}GqGCYv~6O{%8}`ZC5l7!aDtC1tD^Su;C*6L%>b}@Fg`k zJ;3JhxhOF#LA*$LrW!+efiAG9`twFlZ^TxdLx7sP#eYc7@bJoY=nB$k2>%;^_5+eG zm9rARG73cQRg&y;6NxwOj*ZrT70KkH)8U_L&$2*N)2;FmCJv9pDE0I)8u;1@2aLe#+FK;G+Ms9 z)VLXPJ5rIB&Vr#_6*c~wweqExhr2;@RkXf($GN4xx>lH1|A-_FyS$;itJB)Y#_hX} zO+kJA0w1?~UcSGVaZ7uvC^ui%w!&Q{En6g*rJ1s_iadj*fmfV=vD3KWT5~SHqAiw; zoXpp*{wDDCp9tnZivNynPEWm^ns1h18d~Qb>+vz2`G+B$(DMD(NdxkhJW;O~SpSXl zuT<4LebG6`f1ghmi}S&Ri~><)FB+bkf3KA-olavvHmI{;=Va&DP-ZPiXjL8&c~w@P z?`4nc#nekI3Od?r&HrodEN_}!Z!9deGr7z!q-{DqF3r{VJdoTcfAYedOrjM0>$hA9 zW$QrKv9<0j@q>+!XV0IVw$wT9MRdFqn48GD*6b@r4ym$Edpq$(o?PX59?$+&Vtd^B ze6RwVoMa(9hM{`Z=*KXPdB)WDf}KqP3SPDaYuU&1E8 zp2pKXLEq%!Ww+UE+aclcY4pu)ZGy6;agWfx48Vah*S!6o)@{$co@^ToJqiwK-8FrE zoYy}h1622PHlfy}-*rIYd2_>U$kAo4kpHp}viZb{*ze|Zl zWUMy~R)MiLK2lYen24!YNi3eQwN0>_M-$@Q*!>_Qq5~%;CoiBQa2J8lmo2uxK8rG} z;E1zDA(Aa(T8T=FaFP*cO`qrM&gX>Axk1c6Hlq0Y2@Jlp&tXdphsv*zoL3OXS~9~MNI~R zEt;%42>>P}%NxIl)5M*Jmtvw9V;jXgbLw7%w}D_@AC-(VT}(1+`!c7UvrGh}zYc`b zwpnEKu>C8J3q!@QT&(N=_sm85?VdCOQ% zk*IEYPtiOh)Fl<#IH>c!umg7tFfhcG26t1@&8lkBmHd$?KP2cCJz(|nh zQUQ$u0sN+KPc3>YGOKu+R_FSydUZdpNMXEe9IucTx*f?9F!jwjc67z{wXwoD2H=%E z#WoBy-CMF2rp*iio~xQRuOmm}_B1Ix&vZt|KoR4#E0zsH)oK0)VI<)2ULye z@WDj~nO_kU)Y}o0hKR(qXRzZz5nhS02(N(UL4l^OuILDW8b5(&EsHEsb(gY9H zfUPKr3MA?a<^gd=q2x&!tFUJTN!H(5ste^ROdOn2`sVKhPKc4Wc0<9Pv_Q*dD#& z1C!CK>ZwQRm(m1rwW4U*jjg{O=Be){P51ifyxni?OkWJ$n^@-O+ZuUmZFg^cR#Q9Q z*x7nrsto8++PoVHgQD6e>2B~l^g{P! z^9ev5IDK?rIa;`{47`tdT^&7lGn^i7VMnLCmwF?00vzKjyfaQmM=N5xPP?(4VbF@x zy^)3c1trT)?;ozFea%>7m1m`TZuJ;rtep!ychg3P2OIaiV{6}?p`f(8%i>#^i@K{YCr^WgHSWozWu>ZQ~;w5qu<^2ru zk;LuTMwPGi`BUz}ONYF$|6zuheOLMAx?$^;&Y9KAeM%4MZDaDk#?==|?~1Sy%L$!s zg8hYs%PiznMy3A6Uz-Q*>bm^y<8RleDB^b?Rl#wst@`^sVrExVVPCg^uJAZJazCjSdnf)_b1wQ7hx0Yy)^fCH9a(jtx*f5UTu9iBi4~SWmq60&-hESzCW+boeWjWC?`Nv zAv>4`IKnR)BWm&?nPccAS%{+>!777GMRSe5W{Belw1aU_sPRt}Ec@7j^y1=ZQ; zCBQr!A?+k_qWQn#GLI7y zOX3mrD4&9BcWzXK6_jd5$i-bh2IFx#E16CXr6$+{&+q4bQM6$?sH$gJvY2{#C9HQo7Srnn#ucuSBoZ zaRk;CCUsguxxOsS6RHvw7giVP!$WLTlET`3dK?O?=}_9$LpMzgIke{ma)%HYP`u<) z`r*N{+Phj{6!SJ>=TWM;3F&D8N->NYD`o`>B$!vMw1-AfH4?BhEV!!a{Z&YbV?|?J zAC#y5se^*hLzn<+lg6cXJ1Y(AHj0#hBZ`DwG5zgP{)is;x-%5~>8!SROZ}%=fakcp z)H;5$>3aqa5k&*8na~1<-dBLSO$)#&AMR`nc;f(W;q3qfhuqx0SGXZ61OHd}o=k^E zP$@1&`5j*L=W7Bu;y^{+no&J`ns^J4XyF`FN?E^?*t3W~ zz6Qe2OMvSRx$xqNMW6#xKLQoa3=?+WD&zyE5?UjwgHh<8Mico0HZ5d6OzK9(3CC$| zU2jb)4BuL!h^Ju zm3DFSD8%gJsWg7e)YV`2p&1>0LtHqF?{?GptMb_O_rN=Mv`IZqWRD0Q(`2f4&AwK zrXiZV!?eyBJ#Lf$Q^3{zM)URA)xpQu1Gv4nb4v)UOSFDo7Z+~YxLX;Rc&(|7Z|RA@ zY*{2ewLBxI%>12I)ES@tXDxj#zqEKDcsMw&fM79)znjzn}tv>xzbPOZud z-w9mvlC@YjpGCEVt9V-ZJ1;C3Ue8pPZ^xZv=TS{esQwKT}_{H$D^Knh*!zpdvEWN z^5l|%(&}F=JQE@M(6$fPBWJ%~wD5#m9;})r)>Q8Y9u~_cHk;PI-o;L=UDmm~ zy&Qb^_P>uBT=O#WvbX?NVk=Um->czvZ;d+YaHrmQL@!`(V4h<|5e z<${#e#94wJ!6rF*s)gWVM^2j)!zGrA$Dl(iS2$GkAD3|eadgX^oUc)6>MF0HfI;Q^ zLbo1t3lhS0=+-C^Trh_SLJEwnuD=q1s}W8>beF+fLkNFNMp4>Gbs!KtZ}FHoJ7JiQ z3MxGkE+n^Z#P8)r4J+eEa<$PJPsX`^MmLh0u%uEq@t6Y9skHQ_DG7rSz8gY!r38pf ztf8F!y2x}elm=92i)+}ORel0WZMU_WrK$FL1X)yDXP~gsI2+>!iADE*W8!K+hj$BY zH$Lqeh)w$(&WiG35Bg089Dtg9mlyW!Iyzp*Alu`MERk9o3Q-jOI9DwSOFWLT2N#|; zuiF=mHY({F+Hj$2{1bjzedwZ#W9N)KHLuT(><_{o-fP5q(6n*j`$7=mEfmTy$t>Gc zH)Rh~XQDy=p=oI`%8p~KgDEPDT_1g@H>HPG#QhM6N-8e}r(Ae|CI4kM5*240xAA%; zUAIl#&5$}}rx=coPt22Cx<%6*5zkN=9336)lEAvi8gm;dYncLE)N%R%pZQ5rG$)ds z{!^Pk9pvO25nH}I*FZ(s2h$G%;2{MWwa^MHQ%u~#Qo+s1RZRkjoR&Ey0Gzv7GH~j5 zL}^HxAiTG^0nApfd8zIAol)(*N~aGC2zb@~I5VE_@D{_=PMA=c6g5!p8kLT5@^Hsdz8UR zSASv=1}x@q+m`f&5u1zR`cs*ZKSas4W?8L{7XGwVCEt0JhsRSwQ%0kNkH8QAZK;il zzUPMgb841(2Po@>j}B6gMjaT%PYf!q#)G@HK^E~+($+svEMd0+C2%h>@FM0{o2wz| zaLZyVa1!+N1$A_Ei0vzxu}1|~m#C+q(?i{MFMj*uUnuVUPefDVle41XKov1JwUqg%ox$D3FwE`D8jc@#UV2H@>4$Mc%*V#Y$^ze3nVc z$WbrOXA_~@tjzMkMug{q+RNI5;zoAR8GeI`sNkULPAz8Y91MsH(*Q`tM9-Jq=7O33 zO^~RkUmydJ9BkAipyNFaB+v#JpRqmxJg}4~nwt!Put=(mWGs@_iY{*Y0FhlBFup;~ z@};z2{T3qz*WtsdOPg_@Om%EUid}}>bRfdE;O@wE?^wpi;QE^ z`oGO+@Tr-IAj-Q?(roqofM6acx)eGnTpv*}>M!1;g5GPK4@7JxR^?9dJ{Gm{BW~o@ zBqFi=Sod^k6IH)sv^rZqn#`&As$_p+Kk47O-co95^RF&1cXonm&Wj84=)l*zV(_`C zM8&A3>ZFbndmO&hF%`4>^-# zVb!~SQd^jF)YqC)UT<4e@I9h=o8`LmfvsV2qP2gPT+O_j#9+n_emvkZvvG9Yg-p7= zC1PmVd;7o)4K;5P_ibK}_d{MU)>^Sd7oPJOy*lr8Pwm&&-THbq@7Db`(#BVF{cCr# z-T4jM>wuWTb+4~;vmb9v-{uw7zUj}srA~f$P6g+7ZEYMZ+u4hILS7748{XbtM`+dl zRlZ0KFTF{QZjP;A1Qg+gRXqJr8g3a^lw+l|cs9LEXyHiO3M^%US6M_Ico}i;VT(3p z&v(&g`zUc-q zNKPa&z|Lw2{zgUby1qDo6Gy%l8WQ=_Wy|dyq~DA~&Rxitr+DYwMgff=I5Y5jnZ#x+ zZlR0px^hbidwFTOZgJu)eUiPxw`)^QW81a!IqT;<0fQN1|=;kbl~m-SY3HEGOf zc${*R)Ut(UMR2;Xo5<{mi2=8#zja|)zlAsvLKxx1wdaDXCxYJJH8%2t=@{kHm8g0` zyHGA%>iZHgjWSw`5_vCY2!!KNa_pOdjbI+219k>QHloO6tMMDV^ECm(!VZv6WXxoQ zZw_)(Xo$>v2CxixIJ_0!;83E*6F4;9-2$5OL%1S(J=2JA%P3YW^UYvM1vHdDgx!?` zyB~e=Fbq;eZATP8TIQknsNf~i0AvM`3Qt6qp@Pu?Yli7CuT8jMfuam@-i|aigP^Qj zX|^6Y=bV_^#&d(3w2)E3?!H1w7R#*z_GgVOyz%^T*B{EM8?vMI8?hB3C^URt_(YjB z3hn*IW{Qlc9N>Z;LK{c0!G~a_=paH)_&pYUV=Oqm%L)dNtbTd~t;hhrc?r{E1Iub2 z9sX3;0 zAERd_qYNx_Cp4cIT1Xf15Yt|wDUr;!=yfKDlqrxD4X@NU?g2}+D5tFQZ4^w{{xB0n z9~(Gptg3dJUW+a*6&~-cO3t+leCHFZ9S294m7t~I?k)8=9Z8~0dL&w1w0zyb%~6x6 z-dA81S@>hZESO^y1su)}tpNO#hZaFCuyf2Rx(|aaL=? z>xNmp!=~sHmsQ{m~HH zU~8k0Oc;(n7t+4~;#N9c`LVsWq5cy~jPw77#pRhUT;DPgb%@(;kxuYjGk%jqqJ|cA zAJ~5k99e(-^W*_gb8%6{(anju3vQd4E3x6kCF}Xw4M(H+A4bQ0olkJjVt^w>od)#?JLs}j^vDGF92*w(bg_0DapzU2!9y1ymKz7 zFn2L7ZReB_5a$2K$Gf~Fw3FFgQ)6A^-#_eztZl9|y83Gy99ew$py7H2XFX*0c z$oSrAns>buUi`bHKhGy#_t{gE!JLq!)%-|=*#=XRDL-$G}HQAk3_sl)OXEf|8V!=80u9?Y~N<& z`doIn$D^&}&NjBP=)Q40y1lR3L@A*Cv%YSCpN^8G=?>3w^a#y}=2|(w` zhz)&feP0KrV0$r(`k%mRe6io&OlH8Q;5+^(!?u$1nobzT9G=b@rRYuRBiIc~lv`K) zDmW%F*S5vsZX=ble6`yDBx7%&%En6UaGyx-BA;dLjckaBtUcz*S6<;zv( z9skSooVUcq=RSIG?>qMxRW;S9*bfzz~L=+bj zG*wm+y3ekvIuOKY=J^_^-|@DS*|v6jKZ^w%L~qW$djJjbSS3LDJoG8rzoqnzL!dFM zvEwe4W7Y4nPF~{X`G7FT=5^~|kA$z+eg7cl+dQ&xrJcd^flAxDz@Bnre5c( z##^!0r!F@D^s>F8Y;#VUL26fzb6WYbi;!dLEQdU$VqHt?UDrvYwrs(;4cl4v+f^uSiVE*JvsUDz|3*t0Gb@sAS z)0xRFsw)a51C8XP8~7;Kia@*Dl|gZqc~yzuPM{GqD=Gu|V09lLoWUADJK<>Bjo>Wm zn+)DMq$iafhjxi<6XaQURRb;3p}~g`MYKO0^7pFB>`_Pt3?d4)8HEFi_uC`5V0wBZ zum^Sb6p<(qVb6B4K1g)cR9V>cF_HOzhUv2d(E!xo4F4xxab%yWvAQe;lB0<^wFQ7q zU_*S+yav=b72)kOmO$T72Dqq_!d$wI+#=A$g6WWQWPOx>Mk``K)rb1Q1i}FVR$r4` z7%~w;C}gvO_|T*S@=K}Yh{C&@tKaP?pd7bP6|3U? z?v+8+SaUHTgTTK-(Nj`orB4tEnqNW8mqLG=O*y)+txopoYND8=wNDxOd$smLp-AL#UNB;j<>n#bnVJ?FTaKMrb}h z@na9vXk1#^MWunj(7{T0Y;<*WXN9I9tUYqXbl_DcT za|ir$@em-H0~=j00>v?$4zt%%L|KXmqYc{~PWd1hsY|8>XBWfJ9Z1GyE||!!6|$k0=?BM8 zIbo=&lV~5{4-O6_5k3GTS5l-=(tcp5wc7peNa-`Gt4U$_VxY@<_hB-HAQg~N>a`Ba zGY~$v&Pi}C%!&!0HW_?Z9-C{xSTct)!i3U;L z2bhglaaI?41^}T)spy>e_2d9;*Ao@2Nz5~UauzfGHO>tT5aLziJK3#YW8Xdc=H)OYo^UOG%9PJ2zD-78t?TD;JO3pXTbway@ zmYt?YddG_wpX81wSSMFRr~LfhrnX0Tno`pA1NnP zbIlSGP=CN$SQ`397yb2%L9f-h0BY85o&+7RcUNG^8g!e;1b zv~!fvVtqsqvpnlF66rfXJ83T{>ixJDUS)UsvUHojUG_ub+GAcmhy3+_*%C0B^DlGg zYOdqAV_IigW}dcq;jcPSYw2P6poC+oVNX{d=gO>5-HlVfSC^Fj18ffEXo(rFmtU#c zFVmlB-)_r}{N45%*FCDwO#!Pz^zmJ8v+w;&tc$_duKUHoBfqniajYiQm&XQg)%B&@ zhitsJ-N&*~%$T>H8Hl0JMR)GH;a$!CpUJgvcef(TG3!fR#_J0rXJ^e8;1_d#{v!1BZ|<>4@?)%Y1pKQ^TC!bD6l@ojLgImN72)>|6T=bRy^? zQ`lhEM*@*}VF`yY0{2v$FZz{29)KZqL(5W9W&Z#_38j#I0vU`9BPnXkbZf9mf%bU4;3*@pGzzWO~eG;4si&QY7lkukfbo*<~u~wP+`|HP(TR5E^aYkI}bGaF>waqiKx% z1R4YeB%jNYSCTZmw2(q_lEX|3l#-O+2oTl*8coOUFhP)1CBl`J;wc>w`(-cn;IJ+$ zF?m^5d38kg>yfvt31x z3VC=|g)jdio+c=es+;jPn5t4VUtne`5k=uZW;cFe#jF6lN~B*z-m{Mtg7y-yFrkpb z(YL8RG{y$f4r=&dJFyCdXtXCKq9+tV5j0qdQI) z7=c|NU}&^O^B14|7i-;xY*$Pd3vh->U(tM|jhVBvv&LQ={eS(c68hIEDFnuc19B0P zI02DZ^iicJ$yWbfv+uLKpH6$x|D9Tmv$fPP$ z*x1-_fh-82SteO?we`&qiZkarp6t~=WUDss$B+Y86@3mZzFUkBG11X6%547{F&i7* zKYYNPYrwpYebVx5v^VP%Nu!PqrB}76n}O$LLX24MxyXHKasCXW zm3W(|V~@vE%c;m~?d;{vh|9@I>4YO{X5FXX_rBIo>Ri47ZXtz+5I(+ z39N7PhTc}kF|k#cex^l__9eo0^%B2+(SA*OkBNzS?c&asL}0~8z~Ke0bhGd?vO4=i zcvQJMSL1B$!(3d;`4Q4k zBKpPoB|aR3!}WD_wN2Hd^|CoSbYkhBr^-t&pw*##GJ9bJ@~VgBt=`;B`zY7ij|Hlh zA8tvpo>TR({9);9RbpSf=PUm-_Dm%QH_Q}nTUXI)x4=#Ogh;uII`N`P{_z<-Flw13 zBd^ZFfGeTTCnJI|nwdG|Svzf}R;|AMniqIGFR^_v?0h_^k`TR!(X)QtTl>}J_Y%Ni zZ}rj*`L({VbX!?&aKBJEULxVQVa~DQG}YN-*m++ZE4Jb>l|TG;d@n!g*LZ24L+*Lr zbena*kWVRg7>@3Skqz^?>k@LE0kA1^@fn!E&rLk3yVk2nsPAevib!;ef@-I9mSlw1 z*iCMy8v~0(*i#H#8|Z=kf*XmGxu+*&(2#mbIy6X8e+9JlNvX^L1Ac}~_~%bLG!Y`s zj(f7O-}Zrj8(K?C!#Ny@kz9gzw`f@5%32`Ml{$Io(!@kZL&L|M!s_XG9|O?InbQQt z`iizs|4x`~W!NfwnU1YMN?yt>5+<=E8E{xD|w(*hOK>p90Wml3-iR zUwb=#>IqCuxCup)I}j@EMI1MHMXv;xvO)-Uo&q5PJg{W^9Pasv948hkkL}tsWMah; zxAUE^1c^JGm$@gJq(I0L0gg5p$y}Hu&w13qoj-?;lhtksJZTiZU6yr3hiCWn?LXQ7=k2A-6lWWay%EIMH`P73v<5 zzM-HBdU^{?(CDF^uCZkf>>05t!ZIE(*@AkF@X>7bwE+VY~Nm{#C#}1;+R;TWPyJeQL3(|d}vfq9Lg>H(S%v0Uek6C z7d_u1l|*(1?b;-&&~1t>{Kv;J&1e@_q3G!^(hC~@)q?3FU(IMgtB~@csTm7d#b})+ z(QOfV1+A9pD+K6%mtR1lJ5-!5jlm3olWoOD*=PfF1PZWPv`HKoa*;fe&Z{K;)F!S% zrXZ7^JX|v>bJGt;{IK2}b^uOVa+ND|j>Y51@1+{U#vS~k?70=%nzm@l9>mSp#>u`g zQrnCNac;xnAJ=@{U59ncSlSJ{W*dHkWwT6HH8hm_7hL3>pTNPrT`S5+X*LSIkqjU0 z^ui9VHFhagD=R;!rG)(1hcYmdW=Ju!7YDbz#t*+Vh}B&s`}=nsS?CRJNUL$=(5})t zbDY^99UKvpkW`i(i%tI(oc8FEUcPjV25NqO=Nz_r)SorK3pF?)BO$l%vZ}vbNFV-1 z-WMs4wZ2|`Qx$sDsms2;?0V4u`Yt!)T(Hu4KUAr2f7~s1zU^-Ns=|;|=sCSOJaR9j z%4Yo)r;B3J-N(1+(HT-pXp&r#^KXaD#!AwzjxpD_OH=(VNtiao+(IyK=T);+sp0JydMn3#zXs39?W(W1Pfbu z`a^I-2N%cZ`!&vTOyRn;Rd>~Nli!&hl^VH6*mOW-D9MR)40Z1}Izs(V8qfS)U(ftq zR`9x<%%9W@Th4+0`TOutt95t7?IvM@HD8?>&*dd?nCAK5+1gw1)9ve0gVx|m$5n-Z zroCY8#k|1jeL4om>J;Zwrhv}d=4oh`&l7r=8+bcJtS`6KcX0Xq%)`m(;kxA5|FyLh zLo4wq_Fu9NL3YhbV3fs^gHfO;`tYWidaB;9#;>|?C}1P};$j1%);*?BxVqyHg>6)M zUiyfHGVCwBA0f{^;xaP@E39XV`~9#RB6JoV{QDK|LJXxpMW#}wwx5`37~0TLJ~dfu z)GY(|PXaKr^slP>iwG5g14sOxra&ZQBPE(&-wWqkHBb@KEgzvZBOGv!`_@`!ZLuvD zE;LnMD!%mnQvp6nMct6WB0Ow=PGg*ZS_-~AyB2(iMp;}2fP9)z-akQ=3}@Qk$nau; zFOf@65^cQ80K$}S>>Yv1@X zUD++oy+6qNCGNSBGPoX$=n=6IcBlshWRBzvF2N;W?dU~@Y}7H_Hhk6-ZN3ycWdX!k zjt_*sVANas7o32L0c!cLngc5r?Y#M3}a! zt-CS~5JYVt_49v;aIqRIq^kYK{#)>(<-4>LgXwflVLUmtNp0xI)k;N-XNloLBg%N3 zXw{wZ*P~y8kBPAf1sA+ZjCrlyL9z?{QoZKR6(Mj@+E)pxSwL69Qs(PB5z&j2mZG3| zlnL;TC>l!pT47%9$(eMkl#?G~KefX4S1jgUK+9FZIUuCZ9b7azV9@;goOEKPAySqg zqUakdC}>L4Gyq^PK0^WLh!(QizMd%B$Yu_L(ALGDSm_K<*s3wFFVKAK4}_K?tJJ7W zLeyCWA!Y(0q=ZN&xageOCK05;91PGyQt;ys{J}%q6kIy>-&&%JEgRuj)sR8y!5)5` zQZBPi7GQ)l-qT#t%>26+8UMb_2~5$|GFSD*Aq?ynpfaKAX$C1aZrlJ=@d6N`y}<;f zf-x|V3o0M5k_8;nt-@88T(DZ|7$uR(-efSKCp=7Vr9((^Qpj9~MiMXfD1vPcfCz7c zrC`*;UYxMhqD2Ps>Y%!f6FCC6^0dDVO)#~eHENl^ag-Y65!?vIIK%XNxQh+pj9m1- zE5%mJY%0jp3}%>OT4&ge$szQshUOQ!b2qwTVMOWp9nUlb5A4R|#1A0dc{b$RDq!+m zV@^&yVKl>1Ig>@67?y>fv{O=*06A#QVhMtgpQEesX)KYp_9$OP-><^tCkU*Z>n>Qy zFl5l&o%|4cAlm+zoIHnRQtNfOi^cS6_beRdWI5<`PFy#m($SY_>m8eE{bHiuhpy#X z5n1P+BHXp`?XCab$@9Av#B-xwtTB8+ray(kg1a4H}yaA@~!VfGWSOA1XOKp(k#*qJR2MBAurv1 z4Ycz%fKJo#cKTGmX+B1rkJJCvdHk+ne08qfVfeOEBoj<{deC~*eSmROoS8{TdBT$W zB0ZQ&DdM%ZHia?gY)+o>c68Oj*d=)3FnN?y<7B^E`+MTS*Som31T&OtdEaKoN96r& zWCBDg9P!6CnZ+_%*1Nu~?$0Mx@m0>!j;+limM!VGb_KZpH%q?0UDw?gU9Ha-Z=Q~G zRpQ*Yq)nP#H_)X-_n7B#Xb#Vj65|<}=UsMmrd-OJBlxCed1-P@1ZGVr?tgg}AmM3u z%Mv^1^LY6WON_@6;ESk1AIrZVf5P?q^rM)x0Zj^s!>I8XKM_mM#su3LoY< zJTDd2U0Ps_%yp{y@4`u6jRSEfh(i3;X?2Aqr3Fg_3P>IQADYfGDvq}4)&qfH!6!g) zcXx;28r)qH9D+k|g1bW?KwyyI?(Q0FAb4;e-2Ln4yzBhs2Wz^kS9RZ2dtW=gx`4vb z#<>EA_XgRg5;G>Oxqh&_e<&oWQ~nS9&#}T-L-XQlr16|bw&4e|pjQf;a4;d^q6(c;;F+)KSQ(qDUs(Qe;v^cBZI$ zCKH6&>B|xbD10ZINFM?{YRU-50o9s}$2kR*_2z2m@Y}c0oYH}5Rt-~h?kI9>8tmpH z1NG=}%4kC{QlL?Yn`E1+vLzLPA|(+;bh3EJXys=G>L?!q!U{qtlI9$fW{e%_`@A9g z=JrhubH2|_`k;m5a%SdyGXkGYI?bE7xOf|yq0DM2`MJ&QtU(U+aneFo)NVil;!C~5 zBvEt_7Na)9r;H}Lh&UUx`Fs86F>AqB%s%p-S(;#LfpP7^A}M$-O159K-hOB=-DWvQ zB@6Y)-c-61fl@Ngn*+x79N5(5ru>983gMrh9%VOnmPup-**CI8tuxn6oi*d!v?1V< zicuOw4lOT&nMlHUT#I-i8izchI$7{E4lf5oVt2@>?Ay6&^N~(!!ZnzS$H#PaQJ*;H z;jfYDstml8a+|*iRlKa^vC=lTaA^6C@u7KG*frJCd39 zqKtfp>!U@U<&zl_B~<2GZ-F&&U}9S*P0BD>&t;VuG<>yI>LD%P)~$=Pi2MU%DpIw( zgq~7urEki54j2##jB`|aYle_Q)-NcNxB4AN9aA<C#ikbZ55tY5gTWpYGpfXuFgz zOC^;K00Pt=ZY@whDFmBLeqf}5Q<=|FN(hhYc0KvO=}>4tN*_4@^lKy!Uu0ZLku#N{ z{)|tZy9q<1sYn+2Ovn=2o+xro!-;2{GK*7_QZQ(r>sZ`3D79<8{rZiAApQKkQF3u5;qBQ3s~ z#GPBj`*%rG+ivg0)j>Wujkg$n{&|n>8{Y%kguPEBZc+Rm zMKz3@t=ymT6CnXQIc=r|FH9XsUHZnI{vHqAcTzk27?_w!N}Bqm0ld+_6aBt^sWCHm zcikH=WUCi}HeE?U`>!YGHDgmrD~`Hstd7z;3w^5(Z71u) zsYo)DD}UXMpfig?4`PqQiI=zU{!Oz#o8Q73A5M&Tl$jJ?kN5e*la@+;cG*|HN$7wI zDw$JHzvxW4$+BR2K)q& zmN^+O=VN96+@Et^y;g%P$g1uym8o)l>t8zfV4`NPusOgDc2a9Z7?=%YH+i<$o|TOfBFoQ!)VSh9+mv1L>4OzRP=uoI1VyiQW%H3$Y`@ zr4dA`mWY%v44eMe30h3q^sxm?DKX3_b&ja_f6Pgb&teF41R1bIh2~YOQjZQL(`fz5 zGsdPLu>+g@L$Jie?VriNTC_z~q1Y@whC`#bccXN-v$N}*#CERDRI#Hlr)3i_B(d|e z7$Gv{F-{tdkTF&`pG!UdUzdXr-R z;_k)f#|r$u)1~P_8%yuUCS}&beOg{#uK1$RtXMjdm)L2R)94Bokb!45t>sd8X;Y3i zs>=eOXrp*q+{ER-Cmx_EB97JFi9@C&S1Qu3%eo86*-C#4zwPxqol+6zn=H5!PBdWK zDAP@;12SBf%*xr7OAkaa%T25o!ApWkZ`fepZYx7$+%`?AU4~T=_{@7JD18{`@GMr~ zYCVf67}D=x@PkZV&QdZA=hs|ObL2qx?`Bo2d^42a0UF*nrtHVS(iRB$mV*HsLQz^tWowAq93aU^>b0Pjpiyk^PUumsGG$&&sjjsIs=Ut4m0DXK-*^7_NS`4= zOYV~ac)v0zb$QUc>HU{TtC4$U=+py>%9zJe{B|8TmpoLu8$Og6` z(-=J@&fxs9bb zs#uZL4w2+!=pT_SbQU9z>#6CY%w5s`@Nn61S_QPRor98*p6LU~pXW=vSGT6tyt2+e zA5DlqkdS2?{iu4H4<36%1)Xenv-B!Ya`rD2?(I~)Uk*en)}hg>F{RGgh2SI#O2`PqMM=2wds$?PY$E|^q*BGhay()FP$Zoiu#_!b;5qYR?)p~ zH9aM)@?_~bGIYar_ff@R;i2ZfhDp14(!^S%QP|^)&3^ljG_J8rB3i-9(;? z*YCSfXlj6!`0Y$(XAbK!rvO*mj_Fp=Mkrkt-Gtxf`e58axPH;(x7vqb7G*0j@9m}1 z7c^sgF;~~s9iO*dZl@>Fo^ET^U9Y<$BtmcTFfk?o8XsXs#)sVDVpn&|UjZJC7h(d# zVM`2$+Z=_gMMZ?5s39PS6kZvEG9B#Xt`PuX$^ z{fGX{(TP;=5%~-TJi+k)HEjHVK+twl3loF>O(%{9h>=+FjY{_p^>|ForEW!$_FheS z#E2v?!Vd?jtgWDRZN2Zv2YW_=l|2L^?~0^{Vi1kTxBs|9u%ZfVz(LGQIWe8>_ww)} zD+rS+_6n}6>pjS&10L0Ay}>OpU}JWQFQ+cZvB6T219V}bIczCXo7P4z02XJ1ftCZ9 ztSdc?2UAm<&2wYtx3}gAY(4q=x{c33XTvfxyDRfJiYx z+acD%G&6t%joh~xL3|QZ#BGP*fM6-Qe>#oW=lFeWuz2Szy#CH-RF#hl$mI4hrl^Ty z+zw!Bzb`0OGQK}<ENVWM>o+nT}9udIXi98eGgo7U)qbcmb?Q&9xZj_Pfp=2uS>+ z=`#criAmA~tMd3!+UuQwmV`4A7ycJcJn9Q$Gu>k1_aQPGub{PWZFkqzY2Fpd!M#x7ll-PgkS9b}`o8Z@R3ogC8PYOwuVi$NL146y9 zNk@PGlQLq?4Kvp5J---){g6l+mBck8R=q#l{QKq@B_VaFG$kv1z9pk6FSnM#bEhz> zZAbyRsuY#2k{~4pyp2yg`%n}mt>o4&A+d<>dXS|P?2+1}m@^a^Y1uNcpfs_FW1h?kafLUv8HWVzQkwuY z8V)B1QC_aM(gs!zF(Ku=rm6+H_ zLG>cW=H}A!LCv2toiJkVCAT5XE{2nw#r4)BlAIC}_x7rTK)@hJ`V9{fT=xcC(i_@b7Xs zBAuz2$O$^hTP!*Fk(jt~^Y8rOuW`Y1qrtMEFuQO|ZTsxB(24-E>OH<8APK^pt&fe5 zM}MbMk2w*qJb`(2dyPIxYV(0GtK9eWhS)}Aiod#5cv{EP$o)C-?;!plKCy&jN!{n9If2zM0Z#z@n*CC^Pe8wR+g0gL?3J1!0jRp zov4bP&E?U5+$kB{O7r>ed zqb5NyE*=pM?aV9^qKc=i2g>~}W?mgj273;w=rq z5r=2bPo%(~e0X~ZNg0AZMIa3B_Vt!=S1t|AdX}d#v{L`|BbBEG_Xe@{jl$f{hi(&* ze=li@CJ#@4dy;vZo{oU@fRm92lXkDiACpb5tGEtM9ri;GvSI$O8x!$sEqi@UC;pEP z=vMZ^XD3AQ?YFyq_>O{CW9cxj)9Xi4$L!~IT)!@t#T>dvysr9|dtk+U9!yne=jqw? zJWA5#ZF1V8#YF-gD_krIJs7>#=oE_M4U2e>v^?#;tNb4R%ZNLoMsrd$r}Cu$ZBhG` zY#Y5y&oztAxNLYjxuAGZ6G@CbQnFpXqVI+>Tr(uG^T)%W9^%&L6vbuetK~?R!=Y;+ z(LiaTuU$WO5Oz{<&iV~J=MYGpQo#&Pt`NcD!?hG~AUMMhVQd0^{R?53d~A!_&jib% zAP5kWQwmq^@@~Nfj1E%&cSU`rCYC7L6u431-;0X+WP$5Cp= z9#-9snF{GS#i-Z_QiC{wC9zv}nJx(NN!2M+MOcbw6wKsdGc_5gl!W+DFfcJj3l*ad zw8>vACkKwvUW;`MX>MWpK_L(cewU#jT^>YJlo~+U52p`Fxbk9rO+vc z8IYvw<^#Bjo>FAyIC>F{@)_NoKD5g51P;`~5!iuBEody?iGjia0kj3Lf(1RB;w@b7 z!wy4Ka#ve`V3lPizsMm`afZPtfAu?Rv1%w7x)36wNRoU(5*G*5iK3nEL`)3O8flOnO#l}!d4yC-Z!bqG zPKxC_Gf+rSUA%561<28cL@1`DJ(5b)Y$%8-Y$W(i22EVIOmSio&h~pUt3bC&%TX6JkiAF zS#Ok(nJlf=x($`o_sLrXIAhoqXjYD&urSb)ZW9>*T_{QiB@i4ML1vq}34#*Tx_q21FVj^GaiGIbIC$j~FWu7Ih_!E?K)fz{vhvue zrR+91*(Bmx88veDsg992IPf<43?j;A*veQx0He%Uq{_5%i&-`HpVBaWX_4`;zb{5- z(9V#D|1@K66WS%TKB$st_5whZatQ&uvCdQay$RAKl(8S z!3W|Rn*?1it)VrmKCjdDpznCv)P{hbBm!gd1lA&V65hywM6U$`SVL zJnBC$;u^)pXLcuU;`EgFK5w0wY8XrA`_z=pqaUE}z55V(GgiDb!N#^$KkGC2w9gvy z{E|y$K1Oe0LAAA&nw!R5H?!OjFh5H=J~8g*=~2$iGEwEH{A4c7wPUIIVoz&c!g>Ag z^|?3=ylhpEm_m%A@Ch+{fO}bazA9!>JIV;c&jr(Sc?aWMH5(3cHg@ndJxkl%i4ZCQ z#lcar;oaPqMBe;JHR(7x6B9iDVbWE#H^jDlo9o1XRrx3=+Ew!WCToaIfb(&l$RObK zrIF2{{62K-W@U-}@p1n6CHm1ehfw$Fp6SMEVevKANK(vgx2WxCP_(Az`FI}I;cRm2 zWO&glR9W(^+GbP5vEpH}sVTdr@VI`cEZ{cir0M5t?*S%kwYu)KLWjg_D4WDeY|Z%> zfG^BX9KrAueDK&WhAvv*t#U`7hNqp|0n53Xi6^H$nl`pRP`;Gx^QI(mffpzy+ z4*2G$#l-&kJ^J>Tdv1-pFqM6IYIqXnn@z|U+d1nlQ+hyOCTW|5sqDys$U!s|S63o6 zLN7O%!l1b+yZ;04CRq2bn&_HZO9NSHNh05pfl9VyTCQzB=01`I;(fBiq)>{tnL2 zVu&e{Yb`D!9HX=`l^;ry%@i48qoKxNBX*gur}13~V)&Hq@gqt}p6DJBaL>d=1m=+m zZ3C8dfCNFEXbr|AfXXq0A>fqY3`h1E=o59}SO&*&en@fk*#M5{70`Tj|3Jt^sj7el zrR8i{y|fCmn(2c4%z2biJ_0u*g3_S9)I*xVNKRmTEtQNAlm3!pNHI96+Pp{%8)1eI z4(+o;;Y^d#_ns-urz>0}K{Oh;L?wX-nS~yp$$WlC#!kR01NzBR98vXTkHw}@@kziJ zO;pC~#El*9yJbP3Gv5-n9=(1D;MH3HX%J`gYm&`Gkv~fzB_`NX>4%wOs#Sa1sv2Pb1WP9lCSI)3?9hLALRTP1p zqYxPUyp2M6Yg*s0hy`Lm$gAV`uc-?>FyP-rHt_S0l(J_AEDy>Q`gjGVSfq8 znZvvlM*Z)8{`y#)f!AwoxtD6g94Q|uvP`1QEZ^@)m=gnMU8QBO91D;=*9&Vnle*Qj zhog89C(gH!fAYJbj~IQ&B=h)4|4B!mf>YP|c|-EQYHs|u{vW0%M8p~7#z7mPN0g53 z*&3Hqxx|fSwHO3{LQ$deO}pEa9KsWcb9zx5Zd$T2`>%{hv(iBv`Z%(J#)i7o4{+Ma zVPS6%pltj6UmcyChIGlP#N&8y%%Dq4wvi&M+gW}JiTw^WDb+IdDgALDC!9A`CBVAk zdF*wwT*6IVt@4`?bP_-|nmy9k7&lm16S=t46ZEnXdH?rhG}m{0f`yoWiG$Pl9yfI2 zUt(kD$jPW!W=@s~tLJU}{YHLG;bWoSHS1M>zop`&)cm@VipuRuuZ#PbxGdkdF?WaW zB;TRYz(@3@tA^rErCC+)$|#VZZ14Ext|oN@cWCIw?On_tx1TyWT_twac56MWOv&jO z^ZvCPpZx|3175Z++M#z4@i8v+WEh3NNwpwQ_aWl`L>*P(~Y6w z|8dJ{6?VB-I;v4Nc(u=a>@V4^!Xy=OZ+N}h=*!JH7Pa~OQX3i+JywUGDj4sy_<#># zp=15D!ae&_#6G`T650OhyJO z6YQ(R``B$P8f&K$pD*Bj9g3(5>8yz!lqT-fwn)@G?$=zfkB!|b!@QqEhEt6E8OvUK zq>ifMT3&P<{3}Z9h2jm$J9J+Os;h2#=5{F%L~0#kTE=S5q-lA41Pqh&t|;)vE- zBVw41IgUmfL6k0euqgcM{0_J{8TvK<`NHX%hxa3)%b22~h(uwBQHlyn<6W7{t3=rR zPmgZ^u_>*#YZ0=}NTPoK=a~JA&_V-Er+^N9D4p=YZ(m*9&wYQ7?2nIL$j3!VrRni_(U85H4*bP8soUtiR)sJFG~;L!+!133tJ za9s~(_y|ySZFR8GgcPJL7B`aRo`g})7DtKSfZ||=F$u$5!8^jsC-%QDT&aPO7IsEu zde+~zoH@XQkyrDg76^=Z0=*eo0Q+1*9x`P)zbPeF+CHpAQBd#}=+XtO2kPYv-C4fi z^-#oamSRK^R+vkoF11!$V3CYz)aAGi88=p-59siZ48bB`-OyEDMnowi_R)Z+#SqO4 z3IsFeSD$Ud%S3j|s+FkOc*IgdWIwh_fzXmV_*rBUFO>tiLq{Ow(Xio58e%w{SHOBz zj!K`RrRddavN=}f0rlN!t}alLk&82RL$I7rgW2=09^US#B_vX!u|=H#xoW07xoih9 zw(|%c_GaV`ltPXNT{Eh+A>x}|J&=UU1Pp^-joY7A-y+ls?kdR;PpJKTt|9B<3h8Vh zMOXshzfhtu1)O>8;B!gi|6CQ@y>yGQwj(_Ke|6pFDif#V&Zys4c!3#TiA=ALqIqz_ z&rI=|961zlTM@_)-hZbTnpvd7gVIwDA-a3DTg;QA4kC1C^d-KP#!F**1*gw&anH@L zT#s&#_byyr%((1?zx>TPuVJ_@pO|3d^?V5R9&s8d zv)W)noNG*wVVLow40bX;V|%(kKD#~ZYjdEwwSIPIXj8+@FUr-WesXf`WNUjstZ(nM z+PUI)VSV}ek4Q3P6*HdnX?>wP8eIf88>vezN7S`+>n`WJi2+HMY2)!i&EX`oXRhku z4bg==S2i6c+5L?AngE(edQ}=}=5dR4{YK11Z){-@lMddAab~M^?K#sJl@+E|K+El! z^Ufmr8`<~|LKi=FN}}lqKe4G8R&)AHPxW*iSKa%1AEXujgX$Dbk_lc#CJwsVuPkKf zG+qcReTrja)_hTtRy>aL|1yRu|H{LKPb-v>Y->>G7lRR`1@W^QZ=!mXwhtF6M4q76 zxk+DjwzS$XCblbPq@!S1_&~8LFQeyDzB4K!D+FL~xet0je#MV8;@;v??i2H0dr-*`df5YB0q0h-{^$7)Wd7ABXa=nT2Ny=S9^>toIe*1Eo%c*uOkU~YuUFkHVXLIlhA*3ZC_qt z{|48V`M>?m8Sx<+QdtptvDkBZ?H_D>%=|L(t#Rv?^ziuyn&^Jv90AT^l3j1Y-HkW$YGY zG$ql|10o}F#YS3hBY6uL= z%qA(IaJngiRuDN-2a07Z6*>=WF+m^vz9$AF7uHau$)@A)8d_p{!>b~*Q56^>tHv;| zxMJVo7>^`X)g+-1h+mjH#t22n6J?_jC^p8>6eBlxc9QZbQlnNOz$FX}SN`lDIVc)kkBb5R^bQL5qm@y<-u9QTsM=){RtqbUl#h zKr_^OG~#3(9lbNUBK6@3Y+4#iNXrn~-V;``+gZ0;PY@)~%Tg-;(;M^jcpe&2cQ%@LS*X?uBWXPr?|1Kpb7n)&I2psI%sA)x%K0-ni^>L9 z@XtRaB9Nn|MBwbY& zJ{Y{A0v;ov*^^Z&JHz?#zoLs{{a17>+9Eh)X^D(raoz#OL^Zs@=I@I<8j26yIQUQ) z!zv^ps@#PRX8!iqF$E+_lg=OeXa1h;Mk<509;XX_e^LRkQJ-RhnOxH&4=4Ghi)`1$ z1NSD19KYR72JfWw7tonm;Hcigz}W18+XKRMbZLP8Q%~7rT^O}TV{?ENEY7Mk8U!c) z7G1E-##)u&^YmT<1@nWX+THC7Ju(dt#3V?c7jgUKs> z2C6k98(Y*MDk;8M3!S?Zo-v?OAfbf)YM*Q4uPd>if`vn-`lRb(@Xu=^HBaKVuNS6sxKuQfo2- zGRCSE?nO^`K%BWUdr|_))z9YlsXXdWT+-0_!pe-EBf5Mxu(MI8ZB@xs^-n*i-L&-_ zt?)%7EsRyqsM*;a)_#zNn>NHd?qSl%?>b+)79`8c#AGisTDUW3pe@6i;UwT; zb65+kZTFBqnHaVE<{d9APH2oNHl-HxmQR>)LeCZt;-F(?ebI`kVvp0Tvi(EQv_cF2 zOE>hZ3a?cj?QlK&x?_t1S2qh33tn(oqN52&*N~_xc zfLHdBHX`F@X*Q#ZZix6z8TH=B-|MjgS7$QKDk9KZyZD%nowP8qfZzAu4fe#&HTRYs zD_?dyYi|F!ttU_3tWI&?QsKh{ckWMA>_6P!6?OU;6!}~B-BgLqdutdR(6N=ZdYGJk zVDoq#Zeh!As(8LrR(?H+#(bJXXUqP&7T09lxTRAiWm@byfv)zv4Far&YIgCi%B-LZnvo(@Rkam zekv77r=gLm=T281sp(E|TbLc{rFALcwyQ82q>Q+5&FY`z9Z~20f!xsPlvZ1Dz#C~K zi1V2xVCP)1vRTKx;#fkI6&Cr1jV*LFeJq_LfGb2xt1o%QPKFL04zNjPt5}8kv3Tt0 z5~kwPU~f{2V%wtY=50K_msK)<=de!T$8Ab}5F+Fg`bQsYk;7`<_rr(6=t3O33N=6# zlIWNkVt`Gjj7-W8`dFTi|E{J$tcEUI%?6Cr-ElTBNw(ig%bakvq8(S;O{DA>n~jvA zBpm_IEF^97Kc%T1=jP6VbB{EwUy-tk+eWZQL0FGmAe|pXw@`OYUodgCZ5D${T ze1Jpa_vTmi*&p=~pUiGjYDdmY+a)H_P;O#TlD~ZN8fdb7`eoODadfSr$BMrn7y$lQ zDDf_G^c*)!HISPa_)fkoBnc1EiTktCZ4^JKJ)hdWU6-3h5y4pPpcp%FTN19yLO=1< zkEG2B%?Frvd#dP3=;|tmF|?+v!a;RW(*b2mJ$JZ3r)8{SsIToLB!Ljc!~z>3yZ~1W zVU`{nxbG}W51o4OzruxqGG|E0yN_sbCk!*G0Tuqy_?t35xYN1j0f6Tq3t=9Sg;M7e zK&T}Q`{^WVaHACU`3DJhyWK!^KicNxd}GyA;ftz(^cQlb8o)Q(10A5FFo~@FqJkTY z^j2K-Ucv>FH)s|;6>Nqy}#M)(+y2m|1B zg%PbYQT+KNN^*G4Gcw=g^kYLU8hLti`fy`1Qu}J~pz@Nb?IW^1X2Xz#5)PU&Ic|k> z`f5e6g;WA?>mriKWwff-frLj1_(6_vIvFUr-VBYx!`lRnAel7E6)3_DxpQ(N5FKyk zdbT~2#x0yDWekM$04G55l8BvHvQSHuB;EJ8oYk)!@xh5yG$pa;=F|1e9Z%_|B~g+4 ziBOP3Y;y=}>X)4ahK$e&dO_*<89R@b_hASbZKD&@Ly07yoOA~)Sx@pp*EpVN#BQ}X z$QS+6N;{G)7663K$=jexn*I9;Tf%inb<#9+1jtM@s4_`r3iuo>7{>G(^?2v9$kzP^ z0!bBvw>c$pI)V|A5jmU?SRa;4dGN^=r|&9^ovd{B{b3Q=LMsgI*_h7zF*hB#7LFgl<ti`*zvOKjrv-P;&=Qw zzHF}fr-n$#P<_W0eqVSzgL^h0i_AA{wcVehd%S&iIPIzW!%fz;;yKg(()FYK8K!!T zA}QNhFYNWu-7|Sb@&vmWc869F(HczXA9h)mzofL>pgojL?yp?_P~T&45E5N#xUFLn z*_-6`H}gK5ZA^b@Z#v}K*~xhc8qL*V&|8b~I&5rn7_$%Yt4G6NZ9_-z4*JWtW7Xw= z8vW&i^5SJ4Hieg>8^gy0BqFVyaqRCT0*Vo~M@M%XjoibR9+a+?AODM)H@N}(XM3kB z_sKwOKN#pyY~pz>zBIXOxorG--@kEri}4E6n|z-5yv*yt;_qPbN63l)A!nKJlV9t> zpk!Zwe_!QVYw>di{+G$czwQ&44gpUUMot~=hpV3MzMG95287{^0e=?mwc%VC_=+EY$A3lw#wk^y0@PQsck#1dYEL zLy{8IygxL+AX;)(GA=XCcUCLs_bM7GGB?M;*Jwc~aFze6q%?;i=_%U}E=@8$KG`Qw zK+YJ=xnuZS+6fnJF+z_4cZLlmUI$p1Akza=V9qgMHt9Y*$%IP5|E4;`(t7LXteXs^ zRcR68x)JTYIUL6lSdhoU42da8A^*;65;a#(IZte?OR$X%`Zf01wqPs44UEUSkOUn2 zEl+EUhquF7s3{P~&E5b4`pK_2JwVG@F9c4{fuMGBFe?xyV{5gS+R9w$#Q8;wIF#VK zP9pP?c_!e#iChO_gpmmXQ1KgzJ8a!}XP8<78H%DL-sB_>V@#@1P*w+Gdw<3cqGB_1 z9;S6^DtHg3IonBfWG~9i-=SjT&#*aZ3p7ot{c4H*(fB-CHmKLJVLt|$y#y@)Z|;M# z29I|y(vsV(dWL@5&h+u3~|vRq&>z|rjwE$S}Ns+K8xpN zbYZhYNoWpZhY<$9m-TAGNxu41%8=8$o5f5>-EK(Ckxp;#Jt83wxr>^lc^rrn$T8ex z)ik}K;gR4Zl%}=$67md$KZ0x+uvJ;W9t`}np|idEy?PV^`ml^&6aYj=XtihfeCvpD zgekM2TR;NzDY1YZ=;KN~^zfWfk`gFpthH#LM=MdI-b##0-vx8veB2J+sKgrY!J2Z= zI8go5F>Kby7-#y;oS}`p+37pm}9WvJ{%kvVBjdusOdJF+G&YqMz+;e3<35r~I%>^Gm?04(kic9^ZlBrd zY(^IhJThJ*5*zt9_4rIkq8*#a@*G;4XE9P9UUBf1Dil>P%3*i_1()?3RYSsTdrXl+ zeP89FMDc#O*l7UBeXIrn0b(=kvdcK_0HB&4MA>br63bl5m04sPM~P5{DwxB*XjcZb zC@XmcIYC82MIFK=X5SIQr#5f!Po|THFItqXZ#ze1KkBA~aRbv|x#ZsC+2Jq}N0BIe z5KzJ~2%dEO5ha01q3B$b;^;EY)}7CRn*R>urt$96U~@l-+9dbRR|h*IyB!IPxKER8 z6%$H2FN@C$v%aUMJ9iVzcMg9=D;hnoF_g7MJ&fZM4?<5~YJy%yQGP#V>)6eRX=i3u z6_BR}ptjSBKrSV>9@GWD))%^3AIB@DX%FtE`7phTs_kgU09Xp{T%$vQvW7N0%YrX8 z$F6lEe9Dz6bZw``BqC+Pp4Tq7d^&q4^pmS~f-XCwv$2t4f!6mHq2FZs9-l%MPon_uaDb?=9`!XWgWnWnI#&MD73#htmJpq^1D_{<-dL3G)w z#8N~bZJeCuB_HLuM_WP)@P*{uIB!ER$b(6+gLd9i_Kq!Oin}jmF7Jir;6A3dE&bcBF})Y&?yds@c#xX zosR~St4j|#NIqiTPIHe=OV@u53?^22&a70>J0A~^i5eT)_kubx|1}?FLa4g@J;%~{ z-Gyg)&)YC>J750|8em)nJe)TMc+WtsI;Q+4r>9@P{Yw_}8OT!+p8cxwXW=t|SNpng zb1OFMx1#Z9{`k0~w(-iKiSPL)n0ecpmB$jc-j^cPL` z0sy#>>-kP>l7cL9w9*<#HT|DWt+2Tiyas7dgOoZ37}0hQBFSNAa&J}Z70J5kBa3W7 zdHVYLF)`+@HnMlS zo)oW(&M;xYg$086!`pJqm~&K9KP4mOwJ0sG$2$NnED|pv@j=Th6$0ol>j^|=K+QX6 z>mPdEPQWY;Qs-a3bM$6BOqrQy4l^^14zYM&(s1v(-l9e-Qk-ish?a1JtjOoXLkwW@ zBs6%GHZqhcFm2pe8p{RcREH{&#M9{BUPBViAG1bp(F_24oI zOUiP8_^Ej@RAhkV4j*RN51juA?!V0M+cLv0iV!|9y}bH~6NKuHV&MJnx$0!VQo(EK zrIE+g_JOHMfrr^AaRUzDfh+AZcLK+>}99nO~lnI#Lt9b>?Q^XysK7zmiK zUwu$&B$DDz#a1AJ#pYa}!||!F@roZFuj$VeUV)!b#J_EPB(F~Qi_L5k36x8gsb@@a zG)A4kEczdL|0=w2CfGe*!d$&KxmuP&Tf?blG}!waC9;rkQeFqJbmWk$2Vh3TTUoMj zbHGcM-`z1`4#+0({Yd|DaQd7c1kT`lrB48cD*_$VD+_Nvt{BP|#qj54%4V!Qn#7m`Fm>t})T!9(LFM1ds@h5?xaM&9KB{()OS`o8)6^EN>`SmK`S zp8hveIJC6nJRnK7M|w=>7U`+0-dHlWSL@;YHsCul8nzC3zz?u+8?P;iakO!B3eSqM^EXtlEQ`TL4oNd@ zj)^t@Ze;Fe?v8dDiwW>>32SBkFxWphaXcb%JSm+O)6uWA`EYnb((P#9%H2_|dtU{O z{p23cJU*UU@4A<_dt+>pJ6HKqQ?pn&P^fO;Bm26rxga%Zdt0*QhuPuw%emm7ckX11 zF!Kg8{yODxg7G$&ef25zp9q-&ahLt)ZD6voH3rpT#W1d(@;Ol2)A9?CXF@ko%V}?I z|2k&)`u+`)Xr1u4lhNTH$;u{K$HJa>!yM66R;fBw**2mcMbGVpd3DRi59?o#_eP;a z+W3xaY=&J^SA{!^V|d|{#{yrUF76u8I`%5#j76p&VuK!BNmc=eYnOJbrp;f$>G~^W z3lg;D6xX7S`wKy&c49}5<&DVEkKy&UxPG$y>NqT9$W0To{%T&IJ(Vtt9k141r<6aK z{ft`a-joVs&tOu(X1p<7n9~A>nu)TS?kBcmZBHNOn6!5SdUd;pykuU|wwC86vXhPi zk3*;d((865#M6WMDV*shU?=ZQz@_G7m7(kYXrIOF!IJ}7`*HV{-G zp-EfIM!%%17FU_clHf&Un~+nvNwcla90s{GXQZH#nO>rMk!Mpq%1@l7Zyx1?FwD-NW1F) zNAs&_hma7_a&os8iy*ro5aqL7txyQbzgZoXN&|{#MxI!FtdY3IM^jd%PfjeISS7Z!>Chc2Xb=#b=^j|_rf=! zDW7QZUr>g}Qb^1|H~CzVxlSYmh-FGG5$^)Ka*5~xLu&ffpD&T|mb{9wGUuy3Sh!|? zwmx$xufhCT^ z2sRBD29*;OR`cka@m2If=;B_eYcCTTr{)Sreguc+b%r`f8PmMk<}Pw_b8gNWG%opi zoJ-iFp^JQ>-iLJ#<>O$PMp>m9y-)8Q#$U*&lFcl~JD~RvCeu}J4p{SAh{J(AeiWYK19qoP5qwH`@QWHRNXLOe9e;Cd?NAi-okdJr z9Z4!dP6M$6D0TD6dk%CYJV62sl;3BT>2gXQg+Vn~8TLpSs#i*pt+jf9=JG66QCGt% z%t&`dUB?=1&hW82&^r(A4NTY~BG4ReVP`G`=%xDUmBBrdU(l2i|Eun94)5;Y>b>&X z0!25FN11vxHU3Luq|w4cVc*Y={dZKfC}=X+EE=p2c-=sEHB5LH3lQy9%Xu#b826%9 zhv~tf0zBtQ_d#}N%kWurke9GVy4L#XiCSO^0K)M>wX{@o5|osha`k9+SNt71v zZ!Yg)N|I5F0%*Y1acZKjygwnqTycQhrkj7=t6TXcU^4&s#@SFZfcyLqs*P^Sd&;gsN+jZRR?CB%~ zQ?K>WN)q<-)cnFiY28+hvUg=cH3brK>J-(Q#`=2MStk6NYg+f7zktE;R(J~B%lP=Ek=o!(LJSAj_wn(h0p``RvGMUI{{T;h$(61c zbmg_@gP)65xefDSt~stJsScmrN*k8zIJ6DcW*5{110WD8^y4?z$CA)MDA)2~>suLx z4MxINpNG$)4Hfww8p>+`4_ImWL*Ew3&W;Lt>M_T(tE>C z=_d>$L7uM@s*CYff+_@+B9`^e8=9vr&jz8=KOn9CeS<*tbE+;Osehkn*t;P`BYa5RT#Xses<;mgLqn^)JDIx_y-gXfc~mn=ozoR-$D?^eS8u)5EGmyDF%#OF7Js|PePv+wd>oDVyr~n7YF;C44&CM|N5Ob4o1)4jt4aQ z-4Y#kx*Vr1kA16j`1!QSa&6L9cM$S8iYH>|KgIQ(jNfyhYfZn!OM3a~KTVDO>t5Br zn?K98Dn^TbFe9Qk|N5P9%v;}srBN!KcR#yoPJbgEihAF0oeFMjRIUE=Is_(TnU6xP zJ~Bv(Yk6DL_vUt*Mlk({v}J_A{v4y|@e@g#I&PME*_+IKF=K<}yuV>0C#8$s)wA}9%?Z4535=3xC0R5`|L3uP5s8cj z#k%6BQ>c`c9B_UQK;m%Sehn&gJ_82O7PW{tFLERD7-z8x&uN2m&3}(Ng?*dI{-gah zAjj-cnKFzcOLPgM!70QjAjyCwU6#Dkb@snamw7Pp{0zRfYfHR=2*4PF8O-S>>!;)%ZjXg51Vvc`Ywsw|Au&QE@M09e zm@+@m(2xd~C|ciG?$Hb?#zN9HQ?z~+pct}}`O{QSv&O+Gi7uzV{0~)@O7-Un$Xgj3 z+Z|N>xG*?tb)PH%Z&lcfvBzL!jqRP_|50ev>Wp3HPLVOVb;fDaw-P8zI$a z1BCl-Fjg4QGfKB!II^CkQn6hc#v=Rj@FoTE$-JxFOZ6WP=XW$)^7shGvDjQJc2^zB zTh*Z~^Ggdb>2q^sOPC2CQt%085_R=OpF9Xe|6vg4dmV3~>Nzy~oc>C)oReQdgO>4KDIqBf$<$e_OkR%p ziKa|C99p511h@KQ(;sFvr#!7 zz2B(3rY7bBC%MJTrlTU?*38c2ht<=^h^Bq5L;t^7!N2?*1_s?-U4@M}-7h_`wXA4M9%c*#+)@e@^1@H#M|di!0n*2lZL_SXk!; zS@?MVY;N$kIOvj3EDi3ZWW;m_s(d6zcQsc-%_p9N9qOANkdQex+4S5zy@pOILL1Wa zCnQgibB}a6*ne)Aos+6|VJo`k&UIPO)VJ(Xt;W#5JHEB#aHzG+c&@VUR*%TvGv=HK zI=1<2miIN5hGNCGFy-X5bv3>{4c~(cx*0lb-DH0CtND|;u)+vxg3@o zLe`Tat7(~;TWMc*eQ*LJ^cyb$%eFDkb|CgG>%F0D@T*<4hnnKUb#f*k+^)GYL>zltDKTwbjJFaFc5>uMH z{Q59*`Sv&1iPk?J4~0HjBxVS%MBYOtPOz)a-h0PTJ{L&22|HaU3Z%wSe9JBdEQQ`f z#T6|K2%cbYSX?$^KY@j72EOOhLR(Us#b_MMfJ-1i4&3zFbiS{-TEI9PDVzo_AG z(BVUWzhfMx30^0R2EoX9#!*86=GWLtwqu_VZ)K-Sd~L*+NT?be9-p_}{+a!R$+i zH6_WC0&O^N#?LD6)9)+j7g@ zzTRg~eQSXbqg-AYCWWXE;%X(dl)jCI)5(;o6h_Z&ckJua)QHSr&pZjYt6)eBoQk`^ zG&~qckx^s@8ki_b3hO*d)k&LrwYGT-?y00uks*$tZ5VKS_?D(^lsVC6E*ycrW& zUjP>3##gv6B9KNA32ki5eyK(rRM0SU;f(W9Xtd9`%3?9#TYHSvK*qVCKFti@ot#a5Db#wU6zX2M{gu_ zjREuRCF{!~m7#oFAR`hk_DSjoBiF6q$MjdU$59GtL4^24e_V)R+#$2rw%Kn?io`NX zHm;1MO=QNvrjF$cIEAS0#I$r+6x-i&paJstQ&xB%;WJYs(#Ct{n6dFgOj>jBSoJvb zGucEi`Wde@BK`BU5EM!&MX=<=Q_IK7(v{K7;L!x_RJ{AsFAjK{WMpgF^dbojTp1uv zFu2SE>TnFtlt&k{H{efjNSf|UVuJ>-`2ASyqay7REs0=M`Mk+01fPo>Yxk6;dD&uz zfH~i_OvICgP*n>>0AH5_VM0h5NM)cH(`~wS7%(qfX_e9S@gOnhzkZRTJVb3&W@Nsm z3BCm%XJ6zPO2#+AzexW-bWFxt<-_X7AsrX?hr_2hV&JJ6oa8sF*mO7*4$ASMbXYve zDR2M~Bn*<35wCK-z_`Yua|ZA_Y4iF?!eNJe_JfzKBZ)@RfLBc;+C-U+Y^GhoN*cUi zapLuKxrg8olwRvj>p7;9P7%3y8HjH6KCLFic=7W;$?9sARzoW{6)$uC`rlXo{99pnur_fnaI~wiH1f1_HItK2 z^|C*{`Ua`;i`JrK*sMZ8e& zS6hO)d9mJPc|QNSq3?HQwi=X@yh&8aZ&&af{;wG}>M@H|&HKl$%O+tZZ-Lu?CkBup7Olx?Iqrlr*DN6YJuYSP|2`EQukC5(kS9E}L>rw+#^ ztT;QX9G8&|mc=FCN{n_^V5IkAkkY6!RR~Z3dpFyZ(9D@y8X74_FU&HIaH5kM@!#!O z(+0s5y@R>l8MNfv5*1~V*>M&e_W-qMTquvRdG(PT(}DQ)rn(V1p)&W*jn->c&t-&LL@~gn|Y43mZIu05ULKTiGb+M_{_IgzHfOobxyhY89f^eVMmpl-a#0~RW+IrBU@_zp(yBxAIdX)tMq^Uj1AEbS;sEiOT@WaaU|7~yFKow32lVhCDIcQNP z*;$|MUItR7)#AZ*^e@tqDFuu`Ile?hulTp%(z3l{SztvjpS6jrDyusB!uT%si;`(+RdRwA@6D&?YV6+6W zG*4gblq#T4b;e*L&oc{-3t?nd1-N5EY_%3Sj>}8bUMWl0N5Lz#z=eHFuoChZbJF5W&^hZIusE4-l!es)+Z);BICS1p z5F};cRXLwDqkSCr{WAv!9Y|Ls&~Z6h)4J0rMfUrOd$hO--DC4~qA@p38B?OR>Oym> zFhuT{W6&;qSt2}ch?y1@F_gZ)jK5i_A-8Bg(O4bhZu zjuUWFMF))!Lj*U?U>#J>0qy%yC<2R-$|M#nPHa|8&2S|h_v@OiK!p${%B12jg#?q5 zUe(UCpCpcQUz$IFK(Vs+4V)V!3I}l#i~c{zhxQ%dzNl0%Na)r@WU~K`lvxRs6F3KmQfMx3DKw9l zr~()yAQCY=I?yn&`IHT&v&w*3%TVsis(+y@WR{c8puJxd%d2dUkI#v7(>4qi1vyki zQ`D1der@FBq{MVbSPSz%qTS<7sOZWr)s7%p5E{J z7@XdU(RSw-=SM5flXqJ%s=lSM|8iOWIq6Ki6n4vMqD@ z7u>gv1NS=|3TPt-os=hvxYp0is#j9(81Iwp{D?FCD$ z_aA@KA1cHe2(EZvdwzO}DU>4r&H8KTEjjWa@vC_xdV!FC!Ea~s2-t3mO2?7jwcfzo!>V28>R>s z2VXw{dL>tk2^}%nIdl*y!&i)$9dS0DsbZ132)QbBYjC`k8w%oi_tV&ne&c>{vOaOQ z&1-R{xA1jh^Jcf(=^O0C#_ywY_8fbjy}*;6E|b^wdsEm=utz@grr*WN1+jkX3!&UU z-^&j5k@d!HxmFIJ>rnecfkoGoikw!0$F0&CuY;ZHLhsGG9b1nUpO2T7%k`$?l#^{! zN5j{5ew!X2)hTSSu}^{9Id{tA+fl_~x3}Z1C6m^5AwG9@YlV011d;GnUy0JE*)BDf zaO=$b)a^y3;MGScvwr>Y#G=OA)AscHWsT5Le9L3@$K)zX&*`AlDHqqhO?7CyiF#>V zl64dRxLTe@+T1c{wG~5W%rQQ59Y?eko^jwTccssLG`9Bx84lA+=%3P5T~0}yK)d3u z-LG--JY+?^uWy0tRJ;;94H(b8zH0`QTseTBYK+4*U-tR+Qf8&?C>x<+s+V_j%<)c`ZC}t#tfYR=& zCSxTuAaakl-)$sCy}ITe?fXqGa3rk)TC=%7PVhTB`r|Sa$@~pEzOiCrSH+p(v))HT z{h8;^zg9IvFR}~C+sdjgOv03U0FbnQ)fa%T7paKHW?5-MP_KZh1H#BZgKxpo%*D9c z43t(4kQTwSl=;f(4Uq{_`83~!d?J~SmDrr<=0vFf9VHz^e)aD!MwJcD;ZGDq`X&ea zPZC~PSx1M1qC+SEVlbR~_P8FkQWVELhr?(I$`ssM;aeVuP)a*4pou2;c#p@IgEs~a zB@xC_71>~kjoK!IIiKFhRZP1+B3n={p zmza`4b+|Jp2Ro-!@24Cq%9g|;rx9TX#R8d$wF;uUNT7&fAl*hDlfxSu{95QU<`S>u zp1Yo;r4m^{v({*+X0zZcm=c2&d0NjSsLi)fIf`4x7MQ2**E7CkuVUv_fYf)_=ERmLGN@PI8 z3Wk%4rz=#qZbY@)u}I!ij;ru#07rvI1*ZyWtq*;wQY+aWeYLU2WX6=lap`t)g3B&1 zqX0x_o}!}-(_CIbjnt>vgsGEN7j1h8$l0F@GFICc?yCAhT%0m<*5@}TiFkNu9`{_{ zLp=3$)hgXOXVBxX@OQ}h$28af&M%%<;MrV_o}URZ zRlm2-9>5SA5c6BFw#Kiqwn{WLJsj<@ck`=txWHLaQ5XK_`E&8Ww^dyoxk-4V*{Nsa zhCGz+A=`@2*}_7`@xFdtH#X};$h_(zEj`esW zqU8)CLk6y(cfn=Q#X0pPA_I{vpIgIYP1D=K=6nFN` z9)+fg;$@OB9)PJk3x39~gDQ_?y&3aW=E}b_U`y0Bn`puy`Z{l8#!T!`H@|2L=OZ3~ zJW$D1u4L3DmSXHHd2N4+Ko-O^M`Hb&2_&&P|eiB z%3Z6R>W2cWb!NL;7p)vQFXHzSx?#dTZui?L3u|iJFEx#+{x|)}D6O#<{+kaTS=~Mx z?7oKr2JMH{x*yLMEswbmg9Rh>%&UKI{lNv>qm|3&8WfFPYpbine?y!q_}+})dT}ki zsLAYmF{jXlU2Vtr)_u}NZ1wT?IQHDd@!a@P z3Vm2$rUm*;DA<2jT~+R3)@B7~%pLkyoC;u$n-rw$SOYi&7LTpuSfeRc=_#ooQMINe zIrr4<85O~k>UF~H1>m-4>Zqrd-w-ms`GgFlh>>AbS}D-dhH3T=1GZ*M9O1%HQ4p}z zsbvI=06n8xC1%pr;pEdAdBt^>Z~=su)DCNYKOi1V$%yD?k}acSzKKFmfh zUxryRVI(bK8-Ya$*Q0c>p=ikqXH^y|RVDg(X>+}CMY%?EqeRD&I#WYQ3Hlh6Bedyq zC@ym>NCA-)xTd60PEv{>ck@D8o&iC<|j*x+3i@;TII-m%kRbcpuE+-5D*_cFZ0uq`p990eDg-7G3eHo@fl15V?*YMiU zGK2F6(8<;gDtx%WSVkoU|0;FqGXk+cn^hA8yUj=6L3*ipa8xe3x~(0 zFIZ;X8W$iFWiXmfJF$*J7(Z7+xH1!*Jz?w+0YvsMDL=kmhxZS0) zi-j1PNUDMflyXoCvo{h6ei^dAkhg%dff#?&{x6JB!TCq{fFIZ3l>6P7Ea3ULr0S3H zA2o6mVTLB#ura2r$rN0G^s~RwJ|4V`Nq18=*EGG~=a>ZI%Bn=ESnJIwH54J!<^~I> z>+di~SmeNj%lBfaV8j0h;wS}feMZ%hc0aL5AGyO#Ei_jp(k z3sO=wa#1muuGx!*pJP|%UQBu{!ln7l#yw<>s5?w^rYCK3{bDW*FGIe!W_YFCn|0?d zV_{;}lg?na%!9xLrxMlQ8-~0=WAG5+h^Hnx)54$3li|u#@Z&J~paVWoqCD%}wqENh zvVUpmuYdrT5U)NTd?ALaTeU$U+U?2#!A>{Qs*ThLwQnt97gW~(|3=QmhceCOM9axT zO3X6SDgG%lVa{AV&HL+27bQ5@b!k+qyma3!d;OhXXPKXEV|IbuU18No+q`hiRtHwI z+SjDv{ir5%f;&kQ+5OEdZ@cJY#q=lF`Lb@y=H#RVl)a^^J)dX6e%XeCx1w7%&$7oi z!)N7zh1;L4L@YYKdy{|m+1Wj&5%t-0daTMUKJI#zzSvCTI0zUQJhy#}Ls?od5jqH4 z{(iVhFGrBHLAKVt&7B8x=v^mskM&v9Tt+<~-y-U5GZxQymHn+|4v0PMSN$z+8ZJ62 zLt*)-s7f<4<@{NVq@*mT&iv05?GlwAed0jHr@E5n4SRz;G+g0bJn_qhl~HkLL(A|= zy}UAL{G1*(Jph`rEcPs}#m8O~OP2y40XAbL9{5g?DC5!SU$AME{RygpuwR5OXj9lY z`R)?U7cM*OUJEd@H+}Q=T{Io^R(PJvPsh8x&&LrKo4UNfV#(CS&F>43htxvO7opv@ zi>=+~gRuTrMyI$ajvsekvAz#2C5fr6%w8=HpXTq5+IN#1i&Z~6e9yvRZQVPK)`i#q z{n!&+ty%l`Ilw>e(ev|Fcysx|5nIT2Lltu|_1^EYgLAX3eWww-cKNjCT+{Jf`$>Ai zNvYZY@}VL&=l*Z(Wx4Rv1xSpz?DeEs_hW_<|8qN|VJ7SL3B{rIV{sKv$g3|y@Y4FN zwQ{lRF=<4|W%*xYE?94o*mEZrrm^rG;7izUK6k~TQQuCudCTE(*}#9Io|fSS0PipZ+wq5>!Nn2!6TmFD~DnCsk6Q z6NbLx@*^51m_&q+7B-gVj&de;dE)mj`9=WdT-rnasBrbGc&g|))kWIRal7M$Z0*&2 zjv>8VN#k#xN5NE^`pcF zQnr^&`EQVSiM$4l}^Mv|u*N=|S1uk_eA z&|nTn974SP_>4SgfqT1&FBVeN9mHxc^A(Hy%e)V=-dBFnbX2A@4O~)lB8u%HX&h2h z3JG2`u-tdBVK#2`Q!W+~CV-sCDCKLU7J4r^yw;j3Lx^B@MDSFFe&X*GP=A40Q|}zR zea8Fa8*P+?5DQRQ>&Ze)!I-9lj{9NfcI>0Xak#1>Z8(HkM=lCYA#+vory`o+ESjtq zu@=t(qE>=ZjnISPNg;_<#k`=W>`yX!IV14clET%UE}K=o`N*gzP6~p$f-rH}xU(E{6keUqsp^<0iNJ`9ZLmv4mZdFL^KoOurJPd+UrnBK?Mo!(4H5-FN_{` zJy%ksmLfdxT013L@TPni5rWp=gGtUFM$x^AVA{L33Q;3bf#hFQ4RFqojiqR4TFz?K zC8g70WjtBYhxdq;kw*vkuETti`uF{53qJI2y}En$QU2UD4*eFKoH+S=><94q`BdYYP>%j~}` zRNa(f4V6o|ley{3N?U6i@>iLAtE(CBtGhmGD;gRct(sbjYs=fs!NXh^bzK+T;~9#R z)i0~wl0ScTyko7aym)g+g-TI#**W6jxpOKx*4WfKGQDT+zx%1UG59pajP9vfdgMA* z+M1QLI84cJw(ECgX7J;cj@0JhcG`4!D}T25W@z|$|2|*ZE}8G(Iv3vXQ9I4JMByY5 zWcPa48i3o4mbyzlUu|@X4ID3o&BT&-%i+=DbhlBuIiBZ+y`+(8Q9CmJ5J408%Qf~OUK}2Up@xj`D1z$H?~n=dHyXHw zJQT<|v}b<@pMHB!e4Oo-GOhf1-=?JRcC%a%yoYk+eP4#U+;Cs7I)nLl(m>Tp*W z&`fC|zOuTNh;>-{ypCyQ@VN`9B<^vy{S0H)d0a#w?&vnTstTJBa=Q7I+n&D-yI7<5 zZuqwkmej`$33OR%ey^ z2Y+2_(DRNFsp)r@6ei^R&(u+HyRTNS^&Yf;pWRhFG5c7t$MNmf;{<CUZqgQio)w6V zyRWv`A1Bb}A3@R8-!S*nBBf>b3u0MYZn7Q;D1xNq!U1iK;Y5fY+D@sM0bt={X(a&^ z1|A!{2h$)2Bm+F4t|=O4E-qLsvs)&DeC197A6I)X_c0PIZrLq_Aj zDyE)_`9>N9T^ri zj+o`>r-8?Q`o7$~HzSw#2XCR@Dx!}58~v8o_Fq&@rxy$86u3_7r7LnLqoj0NzY8Hj z_$x5I<;QidVSk;i=WpkLb~CV_+BEg=1#rtiKCuP-Mq+C!BIst|i3e}qrv}v}@{+4( zTIi@PH9Y6ah_n)Icv5s6If807$ypzewX|n?zZ|U{!Szvq@0gmaTX_b5XKwW}>k&T8 zqzaI>{BQYgfBaw!uGmWy1d#|-NC`9v?t+Y%s{tRP-DEyY9Lw)u1#^?~Iw>^B)wS-~ z_|jV+h_49z2-u|PXc4sJf==a)mPf21ENHe;cRCo z_1DJ_j*wCwI|j&fDw&YFQpb*@(4|z0L=GH@ri`xdUww?~zZ&Xif4 zQ!zc#0cm*mQ#KvrXhO%|8n*V@R5t@8SRv(B!%2~3+WwT_`^>6P3|K`-I2dK@E^Td3 zFp+V&%P#Gd4TER2qhpG(L8#2{G~wa6>eIY80`NXA0p_FA@gy>d5pBao*&juYC031i z{9IV$Rhu(UG=ph5|3fn|mdPoJs80C?eDlNSy^*Z~59!;yffS*kJG}QG(63ag57@pSEL`s6?+7=;>fGHJ2{~4&di7tglaEP9hg+S8 zQCmYp#qVyyTC=sFCpp+zZebQx?RKZUm$e4az4|I~mW`lqoAH>|d%15ib&~^+XM_3d z_jg=OMM^r~RCTu-34JfcM?PQvz4&7vB2nM6 zsfypI&g65f1tVkef>+N)_Vi#^mz#)9&)a#*<@N4gme7iu*ExtdR*i7h&~NLE#%S7 zHqa~$rDMq7kZTyBBKwi;iYz+=tJzk%gLi2Pa&bg2j968+ytLiWvtTPFnOf31p|;Y# z!H;LJb2wp0uaqcai`uob)$y`OQsh7fcN@#~a&k7S?iOYX`sNzm4DzQ|3BE^Epy)Sz zD@i=v($2 z(~u+Pu=(cE+U$2<(jXD5&Qy)}_BKTSc`{o3>1BC8>rvg~>3fKBX}|P-0;*ltc>I;w zs@GQhxp&AX%Gq-<$7(6~=t4=gf7)xG*zlU1^B{Je5;o}muty;J z+~HNSJEzNTo!y>0ErT1nH=~f{deJ&-{wU+akFS+i;`oNYP1*<6(&8R_edAQkh468R zD_irG-fGNWMv!}e$?w{gyT-J{zFEFWAd38>M^k18J9HR}M1@vA_K&0TO4&2NIXE|@ z0Gd2NIh3N#jM9Go>g)MZX35Etiy{GzQzE9+)>kk)gUA3NqXd-7&>v$PTZhl3vK4ip zZsINT!tZtc(qrPnhM|az<}Q#zv&M-86*&_eFY(80dOF^UHj)4&8!eMeM#(3E=h_aT zyJH0|SL_z*ypn1O+c4w>CC@(c5;ERSR7mS_Y1RaR?Y+I^6lK9%X`ulSbuOjsRK;Wt zcxf$_VCDP8e%m-Sn}P^}JlLv|RoPh<=AMSam_>lanw(Df4u|y!F_Mxz>L>{)3R@@6 zk|vpJ?{f^o7}83rwTaorZhbm+uWI;?13|J762~N?b_PKH)sI#}!_rPEC|6>118S#ZAq(3m0h4NsEENi#;21ZE1>927_yxTV0!Sc)fP z_aMh6-GpEa_O(%V0FRUHmW5a=Nb`dv9+1C8XObMc4G+KmZu?f-vz;RPYu2NJdE40Em^J z$U--y;zPA$gpQVJr_e|@L-YHOPXCN(`YJbWLN5yi80{nZn|$&J!9(%T9V&VO0GgyU zivVPN5j9A`ShGQ%V;0GIr_)o-LbR>_g^*=UHEelapAh$I)T{5eUW zHtRep7v(}Bz$p=hR63v(jtx5lGG*ReJ_*|!XqLb=4z?9jv3~hN&L{D;@(Pgh^^4r> zGMog^RJpr?*I5a}r)W)~y5V~fG~k$~1Qko|IFmi^M{vp>TnT=#X$&QffLukM(N>PT zQ&AmGVcVKoY1xi)o@(2`z+U9)v2xvuNh~A|-2-@r{2jU>$)bR5Zk`D-cy_oRwpL|U zjERq&@>u&FQvhD?h6d2H1BQw_NGiCLR7-bvsj!rjWg^aXnVKE z7DSW<6e}4bhGNWo?3#SM&2=^5z|NQ&^M6$}7Un84T5=dMi$CvLi<^C)PwaOwia*;6 z!QRHR*T>T_(+@fMeY11_kfWm#JVSG#lla<-uL5m`x50R;uAi2^$x@{;q!^ zw|v1yR(nZ)3Mjv>q~gO?;2;uWcRdk*Wu1q@R(xR2IRQ8L-3<(f`h1%aEK4rZj`%Dq z9^b|`ZY?DpGV!{+3+!hnuM#5uVT|C%HMycpUzi+2jJl)d7MH*I7GzW% zb`0%wI5k9~$PYZL*l`mjXktLI47GnV;m=}u-DfeQecks|)@o>UAb`zIJ(9$Nw}4Mu zJA*MaVp>~12IA@z1i%eW3qqm}RdDoHQIR1OljMI*t*!U9dNaJRS$gjPdE-lVd+HAK zY%0HNt&WZ`Z?+u@s#mUr3AxOInDtxFH_i#Y^&8)aFYI^^@-t2~7CyIPZh8!UzesUc zcmC7|vxxjJ1f>|)U;F+wrnC~etY$dswI07qZQR$p!SAcB0AH9f45#qU-_YLs8ZOguL8_H+TUdIJQ1!j=v+-#^0OPOP||NZ zm_HPHF66Hi?tDs*&3#-;tzG)P8r0d-X12VUbA9J1|>F?Y^P3eFi{iKuRWHg}Qcgvg6+SS|u?3%`>03h>l08ENj-Uxhysd3Sni?WARB9zd z3{3p~L3$>=ckDdz%^9uUDwXP2dHn2=WPcQ@7z2>>X=m0x#08PJCB+>AL?{hSh2?esW zTT}htJ(^^)*b6ONj21wn0Rz*R5zdel6ik*id|_6K0ipp8`%Em|1@}`fKQQ2abmr_H8x?{{b#Ol4Zr6ETiW_>=P2>g4TvZ$o}c)Yx0k z3(XOV6c}iBtk|IPit5lQwIndH)OWWZIc^UV9R`Y@?x%A2ES=0PE$_^kvnlB;BQ8cN z*u##MGXrvuB>pb3ZY0D^YH<9b=dKVnYWM{1c^T{{gdtR#lpXosMIY!pJS;(i)dY?2 z{U3_8cC>(eqy#|-=v+iwvUFfWrFHt{2-6h#r$2|A%oqf)xY`9-uYG(KhD~r*!9i z6D5Lq9>tXrB9oJuF>V|r9=H!+}@fjmc;-6VEhP7o`O;In>4>^u-|O9$Qght1B$`tpL_Sl0jg{*T({cWVUv z489zL`Z4XR&huYNRd_^%m&7&Lu;R8#GT8m?HYK;UVrq!MnNoeP%mUmHL&*O0R3iXn>YnAu{71AuH=| zW3#^=J8f@U*P>@UVlM}ctTx#l|A=m=XvI1zSy?g^ZB5a$mNkgrel}+p~r8rtM;ik2-cu=bBdV%EaN`8 z_*AkMoK>#rmYGl+Rb$YK9{E!}TS+DI4m4Y0y8C(oHo;l zhGFP3C?ZG6-@Fatd|5S%a3sqhD@~hoffGqdP3<)J#Uabt%BYwhs2Z<2q7Qjy1Zt*p zL8JYO@z))S2R$a5mMaj@Mgrz|N|QzrM6f63_PP%2Q(<&p#kpQoq$K>{oit&s;E;+L zol2VJO%+RHMeWGD9#0gJ+1#@xfBG`aBrBBlS0dh0)P-UWs;Tq&Rv|t%#M}(A%9bq`b!3JrZfaAW(Ef3{W)= z54DFN1m9b(tPk!O{Wzo~2HDZ}O{j|F6qa|_>lRx<>PXtbQ5f_2se1Y%pzzC~C)yC4 zXKUS*2H;|bq)>Jq2o!yarj z1&6(Zk1*skzmNUzl|^WDpX=Cv0-vaAgaBz|rMog3o}Os)nm07kVqlNy|F$s&xaO{z zB`}o-MKS_VkxOUQFqV?PJADH<8Ms# zh);$u%DuU_sQTi`bM3bYC@^rfTl-%mA?LZ>SwK|Zaf&lU5|WgNVC?t>;T5ro%AJ#9 zyD$)PAT88@Iw@xv6y^yW^7Gu84#A5e$vWuVf{WaR3t(W$xt(aI#XgR{0dbgk_7kN7 zkuBgF^RA9{bx6HD-9pkekprj>P4g>rhE`3I2oS0V%|p8ceIcM zo@J~skHb?HO`XnO05XE!(!J8E?<^^gK^h0GU-(lQRgD-RKP0P}j7nr6o-pGNq`;tj z1D}7=mqSD_qjNowgsLjBE);^IO{PNLPbN_gdue=$hP_MkkbKVe1zIWsFk&S*!Sf+n z;wTNZ{$(BcF3z&QLRUM&-Y-UY_*k30I{AP8boH^hFR>{#akZ;(F)G+Qe!P0~PhnMp zXC3G&_kAesjX2Kz(AQ+&J!>4TA4~sG`9~Rl{de*%PfKv%*MRBVy2c`}-b*IPB9zMF z%SZonduPiN^(*>;E5d>8d&@+JR5qi3GG@$1T^0!l9DtP?m$Yk=B&Ci5akc;4gX z?rP^ae`4gd2EQgpnEmJe`ZqJIfbWV zOBs%-<9y)zqDrP1iT{J_IY8n;+;xLBWacFT+0E;OFymx zoP-JbG%cBvQ;M^+w9{lm5-mUn6kcJ$05L52Z_(pzeTp-;v-sl}yjkwmL2 z`gC*&H5H26O4C+7+yEDoB`PRMM+Tpa0w$U{$=QPYp zQSwO+1#*{HDh=6yL4x%d8a)O(p)QVZc|N~fO|8rm%)*0Rrm)^;rl*-w;=F)yZz{wv z%IIBNttW`1NFocoCo$#?$!Wp!Na)PXiCSQC5$!xj7+FC#D>$lSy`nKNU2b$YQ=W#6 z;fb&mr#P5VfRuXl7EC@<0d*LBufpnPrtcr4&_336H-ywSZ_N;+S#`bdSuF&-HN=Vv z#eMHe`@!I2sBu>HwoQ3#5@EV+pe7ER*q(JL1g}h14FA~^3mHObK5Uh7qd+<^`QOTt zg4wEDq%b{L@1L{auR-tuikIReba?`USPM@*E-zPdiU@2%d(}RHR@QnvRLa_XH#S01_%D%FNam`M}&vP7df73WFze| zQKgt$@WRHcOV8iwxIkz%&3qjTNhpQnxrjq!-N|I5S)pUcF)(J27G%jKE()3$A9pS5 zZ1sQc81IXp6Rus-S=P~5W?}iW$i%gxf@EVlpjG}!y+s08%yqi-(v!u2l3 z-SyGK-Mz^JOpjoEe{U+pn2#nbX7X^oSO4pQ6x){n#a8D_i^ktoKo5TEqL=CLN+)cE zj%;aTsYjhaxN~fZ`lb+PhX5{ z)<)O1aOn$HG#9bpO5G2Or=acO0m;mm3_D?qs`tC{n#NA<%LPNXC!_WHZ1a(*7DJVn z=9c%Yz!!;X-B{wwcIPsuZ%PZ>^IfIWce#S|jb;VMM;{r#N>^hDD|mjCJ>R8|$-PWG zoUi>}biE9!?|vN_CU__O)QL0<=sBFHzB8^qig#6g?8$KgOl^PLab_A9N&^q z&i@d0sOC9t$=H*$9_=CCd%E~MQt)-+>)M|`M!#sdCTe7;N+~IT6we)7&!HfI931s# z)fbBl(}4srOebxlVP;f*k8aW3(y!Q$&{NN}3L}y$BbI(w;xqh;UORK@3a`Sm_c@f6 zwOXsrCy8#vZDzM{O05Px9T%{z$)8ga_zxY{=ZyFnN~=qsp}QBarhk_a4vnRi&Rtf~Cyfi(^W^ zUHS?yd5-(^QQ9tisfAzi=X0J$3t)x4rrC)Fp7U$ni59}GME<-pq7 zVU4_^Owxk|cFrW&7hK8eHHpqcL;;X9$*If8%7R;EQ3_s91mB$rn?=Ooi|U-$vdS@(^fE^jYJ5qqVSn+%Ae_Jd;IhRDdU zc?0TCzhHYJN~ZjvV#V3yVcFEG3X&mL?~Rm`u|BRY{{cY}R)r@avstCXrm)EaStszR z%mO(=$X1|#ot#Wd*@*(>sGd_&51TSj7zfq_)%VgMMWFGFOmg_QA?F1;=lzHm;rfbF zgc@ZHQ>XlKtR$Ib^cxyRgUy5Gyk7>5-d@R?c7y|s_88r;vK)a83&4WqZha*Y8J)dl zJj)HBa5|Lsq(pkSnrM-RY6L-s6GD0P?5zsYq`On3q-!Wax>Fj4kZzDpY3Z(^Te@@4_uIX8_b-@h=05YD z=e?gha<%BhIjsmO;meC0rRnQdnaMPsYG(eT(+wz206T0E9LfEz&(3jOzY*7ma1bO% zB(|~HKX6d%^9965?rR|{NDl>qJ7~~}FxlO4%>_-~;@NgBiJU@e{=q<(@*}+B&!|+ z_n$jz{hmH##Dzck>NqC&JaUkA?dVKK>^seqKIu!2d+zJVTYbtFJn;o zOil(iB`zQIjg|#Sc({vfq-5wC!o$pamyef{3IQ={S*kHkRsVbPOn=rmR1hW^f#-4{_ob_Y$uh%-ba$g#FfI;fXF?4o?Lj**KB0i(Zg}YrQjl9 z?5`~5Jo$XPWmR`6;sCI9UEr!}+DuE~g^`pC|E_vkkFdTW{c0qv(V1(zDB5m0pv;pa zwB|Q7dbhK>97|L#?3#NR*2wA?DO%#Tik+VG*i@1--MZ9>g^AfzU$3R5Wt*-IZEn75 z(zSIQYtP;}iaC=Zg4&zySu!o#&L*3B@IOQ# z)G?XdHz_aze_2S28Sx_6XOHi0am(V6xvI2u_yhxfJZLUnt}hCSoLjjVwKxZ?LAAHE zq_6jwyF=}{3 zAkuaX^myOY{Q2NuPtc0bQ%5F^74|-INw`scJMzv z824QtwLBHOk8jGp+V>eVYB*|ZU2~lRTvccLvSVHjO&D{pLxFsq&v!nsZ!4><6Z&^E9Ure^cz)RQA=guk9rh5i@1NVb`xhTdRCL5Mc+6J0}5-1oIgq&*$7DA zFp9ONEy;3_m`>|PBt=PtDRZFW(7=UY7)MwjY-Ou6qem+7Gz^>BwkqN0+Y)@)`Xo_% zTB4lY#W9BX#uFtWjov|--Iwj>zvU({A|~8-Gnatwbu{FRtKVUTtZe~_D(?q_;8~SD zA?oF{N;`>tcY4E}>I14EGQ6ch5vD+C92|cley&|2^?Jis_yi)S!w`_1jZsnC!T}nC z2$cCZH+njwmSpy7{WcM;DKVE-LB&7TdCP4q~+;m6MW5+Uu|to6lTX>3W(Y? za4yt@^w2PheV6xCT!FyyN zTp*(4FM0)!#^I<7NLv+wlUi}NZK}!Q7c~wi9BRST6~o`+H1y$Y^V}vRBQ6<^1Vk%z zf!3Nru|;iU*hCL1tw{K{0cfBW75tS_X7Q86-Z6f_JMXgx#?h)C7+L?3EW zZ<(~BK;9;`{PQOX*H@YFkKcJisWc0DNT#iD=P%h$34#GqAmGe=|0S$LmsJlS8|2JX zSO~n-!eqV$r!sKvBs&o+0d)<1Wt00SbNcxfU1*hSLvh#BSqp;>loTG;v4wv<@gShO`&IXaCV9_JV+D>(vAs?#IDkE>f(l2BLy zwVv&Nzg~H=c5^aCXQura%AnsO(=RLAiqfy`SehUyJKy!AHs$1`g8=J$cCOlf-sDhv z|H*mHWcJ3;#lzIkUydgRH62&R*YzGZ!Zo#aCclz=zrJe7zFN55*9Il>3R5>;XMJS78$JNAQ-rvJd9u;ueFTZT*hxz6suro3rxC?dX8{z zWiiCKW%B}Y2rZ8V2if=P-;3+Zmphww`%3b-`$=Mms)X#S{Y)KanYJLQO4x?Hi~f_I zupM)I!f{1Ip*6QdxqqhIiOZ2G9|WG+ABv)D7JSP3HaK?M)F@5MYbAGegnX5WS|t&? zPO58{>Gc&eG0S3*0utdc6LUc_Wwb^MsL~)5w1Bjr9We=U65p6CMQ0@wEBF-qn2z8@ zu;r76VlVxNP;SlOXpFq-T&3N(e~|B?!c%82Wk-a<%ihKVGbi(!ew&*OBl@yczet}J zG?QT+#Ro<9?HD<~9_I^Lb6R{y*0fnWp;p@k*6E@?lj)s?Z4bs(M*cp%cT6gCkk`u6 zD%kI5)`6ABDvz1h$G7?~UPD_b!VABbiDMz#D?1deCcUkMqBqgYB(LMrM`F!)fJ{gI zr7=XM?Rv%%h|3S0|K~H^I&RQ$WD52WxvGS{oWHFSaXknfgWbKT=e!Jtkics8e>RbQ z8z?5I@*Vkh>%U(=AoiLVUG;dbNulcm^C1*z9_eJe&l0J;pJ*;ybMEPVecVSG(`hL! ztTA;q8_2QU^V5JD?cB`R>q9Nx)+0X@p&c(tPX+_LCfRh8Z}>41N!4*{jZLc)=M-A| zzL-b~#}+VIJDXI~X==zc?+7LuVafPOZAl}jgXs1K4u*O2#ZxxR>G7TfMpL8)w$6~& z(_Q*mkVjAMx)~zssPH04odd4BnK_fIdDI*yo05ji`dIL8H0(9sx0Uzj2d}I9xF*n= zqiN=u$gy%E;UP?^JyUq;v%8CZvfL?_D8L*DBl--l(N=u)9Fhl<#LgC(>6q(8(!3+N%Rkt08$@_t5Gh;U{k z<$g;NP>vg)MJsZ`A_G3C6aRlu`_jb*nd2>h#n5dT29tXe>X>b~x^p^oamiwP@dB1v z9`QLIf%OQg{}0(upJR?omY6Zv%W4>@?q^FEXQ(AP1`wxkFUog`wm+t1 zN0c+uM(-fUvO?5j=sF%!vZo_?ERrv{oxA%Dm;OM-b&NJu*OAv}eo}+v=)-%=n6fxo zH}f9=ng~ny|A3XZEeSooVhs3MTh^nIEyvh7EE`Bh1?#$_|3@il30l3`X@R3$@d~Wb zDJ%$W%kP^c!emldcTgCD-%UtN?D#2Bt8ZDn$A_#=R}KCiKNx6O7+&cZrSN7V#dr}4 z*N-Jn>&WvqQ&Z@h16x5q;R$5w0%Ro*ev&fi>$}V=TkBgm31c;T*H_Q|a z7TeY#h6ZZ>7wV->%GS=vA2(eUTU!K+i>zg=`6{7x1CDi|44Uo}U9;(w8_~3zv9;NZ z|BP6nKV+9%z^rq*9eL-Aucok?@PnU+Ku7IlP50z^N{nb{zoyo_HXruKMt3Z%D_#44 z?`JM5^TI1;3mFP(8m#~BPQ8BaI~%;)Ese>G4+m~2!@GVzUEQv4c*OWMAYC@sf!u}z z*mGpOOI~A&w@)?cz1DBW$WMivyn3JFAEcqz7_CjDlPxcCrTDU#+GIkX-6zBs{n|5b z%OMV(W7j^>TIBp%Uh9hEK_?Mg8QTA5TffEbCd0_81b*9ZeafJCxJ|)-U8_5n?Ztn* z)h5+%y;u)#RQGQD`*p!}a%S5G{1t3$9J@8Sr1uc1!ZUGQkmxNp^-dr94`lYiWp%>7 zFv6sE=S!`o#E_Q6E;k$oIetha>zHXs-Zts74cHeCNAtwy1Pjpv92~hiI+R!EGCuUl z!2%_>4%{`w^g^U&h}9m;@w3lx=-xCnXkY^fcq7yk`n&_qe(ciZ^?`L*POg6Fbl*8_%51)XRq6TMr#HH!G(paO`>gq_l}hH=bX3}2 zBo(K>oCjHV)Ye~O%xgk!cPol3{;eL({Y4R5JO9`EUbMw?Xa25A@a z$)&dMeg6_RyY6jeNbKvskPMjjg*t_9?e6nl<@2-TiSJ1Mj-%1pRfe+flgDkxMw7qq z^C^Y%EgP)k_;0cB<;&&V^H}zLr~QlhsmMX#JcawfKx+BR^m7$ti>e87oo;_Bw3|JD z;&Dk5>%R@$77nUne9o}3Tb|1c$CXr)D$RF(Y52S5?&}M7Z#E zooGSE-X|X|ko{}5nzUBe7oR9v{um-ezHV3cjE~SP@)te;URfb{($;n3SR+OkE4&2h zT~9`>KC5Sxz(=iFa83Bael5B_Rxu70*a4Hk1lU`YED7MM*O(1-MJ8ZP%qp)mvq-~e z>eoJ4vk1<%T4Ucq6m7p>nEN{yl`|$)93eorv8;++ZYadn|Fy& zG>F0~q}R_g4B~DpnM_#WSM#O0*h^57PcW!1V+i2l>D;q-s^gZViiM zM`}S;+LIIs@b3b}PY1^?fP8%uS2syuaH;-&SbbA*B`64-RAX4mCQM2^HHuL zCgv)sQ46%0j?u_bj@{Zi=uAmKWk{|gcq55Zf`9c0CL zY(4k-D3kLZObT|e^OoFs^k5G7Bb~f+_YZV(dR_wE14Ou6N;GL3BF_Oyl;61*nu5Xt zm{HCXD0CS`Ls1CC$>WSEBhev26m`PUSAgzEl}K7@P}`wsXae*DcZjpdDU}>X?E+o- zyn!QPdFW!o0w6Z@L6%<-Alsz=2eC`H-26I3hPctX?~7zH8!8S_2LUUe1*FGFIEdnV zKX`$hQ%u&cl~{j~GQ+VdxvE;wO#m+_QYIvN4^a{Oc%As>Nn%vWzf@mPbjaRo<&Bsp&A`?P98)b*b#4CEUn|fqK#1y0-=vF3YVca?`f=5RrKj@1d zpM$>c(HECyfCpOItvy|&4+QuBQRwN<@$hh++#V+DzekZ#X!zx3brt{f#N0|oIg7Z{ z!fJQ-XMA1pd+Z!yA##VKw(C6y8)e0BDoJew z{d2uGJa3s24KJ?qP*Qi8U0vt2T|KvpO=|4%XXjw z@0wI#!rMXn$h~v#_S!2&SV9tbfi}Rrzp^(d!=k($zGk9TaPR7s{Q8xDZ;SbEr6h=3LS-j6Vo!^%A2}Ql1B=N;` zC$Iio=0HY%jzcbsDjrwQR=S(Y?}7Bqw)-T84$rlVaaO&SS9_A14*N^%G025Ep`+)# zst06a#nQOb;b?E%-zpYmNz`vn{Z#*K-GQ(i(iQANG+DpXfMp~9%`N|$vl74$c0V5De~i7$3K<~&;C??>*x7ljbSmoe_mskQFNf^) zj)KDPbvf35T^;z?)xf5wd#a|6>pt1FZ=+d`X&xg-v5@_yPM<}JW5{!cir)VczV;!7q%?9a-w++UmV+B0M=MB|yc9fJ_-Hp_QEC zTpuDW${+n;mz=P)k<3mJ7_c~Bb2_2m8 zYt9prC#3K$RxMMT)q$7`5&*aoR0d3O_hHQY940LnpQr|Oy_CV;Cjnc>sqCrVCEmeT>OvV=HkILRdlA>avPph({0 z9uQETb!q7Wg32Pm8^!okNP(QySI!p9A~p_%>x%3N$#Rh2HR!?q@3&6=jNdZC>SLPT z6RtJ!9nGu5(tDCmP=36b_N@}M_wGuAS<+pmB^Zx!zT+IAX1ueH2#Zy7T&mTDgadqo z-&m>mo49*}7=J4KK*p9Oi0J$86cA`xmDf7Z$4!hCN2Vtp4zApA^->4`pB;ZRL{aF3 zJF0qMdJ5#XNL1V>6B1Vy5CEG;uR3s&|ZwT zRDvKD`lDa1q}S$gvL1asdcUS-q+J7PHHI|J*JH*;xn5%mUtB$mRT{yhBp*M2l|8+= zs8!mzwiltx-ZwqRCZ)f89xipF3qhi@vY6Q@dbU2-`pq);Z`S%o*|pn7j^VrzsRmdeE4vab0GSy=-)zo|MWu>1qZj= z?4W0vebzFcG1MjZ(}R_*Jgl~0sISAO0TMWRn**G!$foSa^d2&N7_cjt?rk>*!ny}s z{i-Og;8NHAJ@bM!pZ`D({bo(Z!>;X(z$ZZtTqhYSAQ6BmCqLgLS{ZHe#VZ-(B z$0nGXkmov{Jw<0eAiuX;+DcK9g|)iDmYX^*7h2bRhPQIsokvpHbnkPT9A8I!T3`Hz z)Qy|nmorp6*Ar9iA+R9XHP5bSN4>M{j9syp4i~M?hk#|^AhxU$y6EN`^*@XSNE__k z)yMR9ho@CUhu7$KN55yZ*w;VuvF+Zk%WEz->4w!jH4`O1w-P)%f z%Z^X`Elq5mo6(mJK7V5?7q8bd{P%Lk?h+}Co;uWX?s6Vi>PN&fUk*==E=XXV7g?7M zel|P1FO@fyV`H0GQ+%tRwMD1)-|u{{MK^y>D=q1&n99>vRA)m&)Ak$@(iP0G{GLXh zUjd#&rkfJIrq~4TMudYQ&T=G$)vN}U7M@+bQB?i`Cn78v_qPR%E`XTc$JV88M7fBG zj9*=Db7FTc$aT%YokOcoiNVH2jiD1JFA76w* z`51}5NlZNGN3_{Cb;Kzui7W(6*$xzT2QpGiJjkP}Ne0BOhOrOA}~f z7KKH#K}3_!T~t#<+AB$f_Hmij;l$$J`jDi4s|Y!5)XJe|rywMGA}gk>B>pVXod!qe<}*#!-wovo-iHspsm6M`dg131y&sD_Cs zC6O|e4HpB8_|Fm_!{(1O&ipBmzwr`h2NBb^CQAMh;Y(u<;11zgB155kZU=i2A~i! z5C`doQbjQ-P?~e`(DMtG~Fq`;}Vkmi#ocsUl`vd zD}>V;m>e&$5%~1bi3q1t7BiGojzT}e~y zT@nuw>-#cerUk#WILvH=LHIh!*$J5R?fBcW2s0fc}p;tQ%UPDFUKjNQh2V_})uwyG0mlni6 z3vwDlr~i_*L)!0K53JsJABJXB+QB@fJnl`o5sUdMAB?6;Pe(Dc#b#TaO7G9|O25Bp zIu+u6N!%zxHYB;V@w~|}wDcK|GMcEidVQ&dgqH2i3Sa-NiJAVP4>UdbE{qNqPWPs| zYi0@0IDeb16)DTUf3es)=O$x_f#kaUE_rSiU&zgJFvbI3sV=K+C?41D~l zHpA8t%axR@?--CZPW}s^2_Y+r%M_4-N?N6><5c5F#^Jz)?*!n6)A6CXjLs)OZsE5D z8ACEfssysMb`BCvOg%;y;;YjHtK`K+O_Y zI}9VIc4_>_FA=w-?N{pBjv1Y8E<>e_>hoBBTa8QpMoTZxC_a8pe}=t0>@#lVF3E2{ z9(VfgJF55`nuE0Ur~TMXRCF{gOF_|8qXR zqk#3aKA|IIZiG+V7Kg90gxCV%dzI!@(o3zH5NB;H1#sfAL{;Ouzjo4-iY~6Lz}8 zj{IJ`ggTs0poY)i&1rgVH6k5^u!l9`9k%PnUziQV+|Xoln2v9#9g~d;+XZ(u;9478 z$iu$yukw1~A`ndO$p?-;TPo6b1C8GruG<2tEFT5Erx2BYm-p1kviHphm^P)qs|8y1 zXk85Vxjd@5@yBLCn6gUM%x~2Vr1muQ-=<(*uFk!2@ic%*`jLXixDJUfyOY$5(#ghsS3 z*Jcj#$vf~A7(cj*6jzmBy^O2rYM25UQ({jwx4;*HK5oFSSoRZ3R!M1TEwgJ%K(jtG zc?buFy#ghgknxS{6i6Pc^h>Rhfp;(&>mM~LRQwSla<$BefW_}oU0>x)UHd@@{n;Hu zR3SoQi?U^XYAvkxaG|Um_8Wuyt#z_Vq*iQjMfd7pf*>hX5ZDV8aWTyX*V><|8a5N; z-dIaE5RQY!5y>QySycD)68?ZL~ODmMx?2ZFtc=K z9$^ynMAg7gGE?Y1M0s1-k`MHs%|Z$&W4kco9V`^I!NIL11`mKIOicvYz&kNG?U8Ztb1M;`)I^Jph;(>5qzIv&jY3K=Lapwop`ik?^|KJ4k0W@5 z(H#_`_W<}}q<$es-U2>Y?XUGUurx(z?*o`1LGbYk>rRUKy%#w$(f^M^f>s^UD7gjF znka!xi2_lS2qaMw-6OL$Rx4a_${xLIMV1O>)+00}LH3g?-1Jk>u*BKk_lE!S`>%q{ zf%ttCWjy*M9sebT3lxd^EhggClInlxO*zDphTfgX7LCy_Q44%@sDt~Ds zqU^D8)q`2Q9yeGE$z$#>Nr>isAm&Gnhf|$03zL)0zV=>{Uk}*LoZmbntZ?~o&Nf|@ z#@9Bqw6_xOY1n^#-F6KxuCT6$R$XB;g!a=PExq}tsPcN&e~|)^=MT9KsL8ZTd5n>#^ITUuLLo|+ZoSzw0%GV$+& z=jVZqp{-36TYL+ZrFdVnmy4UsR7YA62hwA+9K<@j{xk_Sl8S!z>T~TiUCp?$Gkjh> zIH_CyNIGE*8N8Y}`1_$#WWsYwYF^iE{0Y35LZO14$;IuyI668t$9g%Ovt(X=zJ1=v z%@BG@c0BZodM$2WA=GkJ{65``{qjbiYgcZO{%^td%0iJ{+@qjUqk7TD54Wk&?t`0Y zk`z6jlXY8Wy3%PS?7`Wsu|X*`boX$r*HLL%)FpZ$c~01r-_EO1w@2m1XNY^TwFBh7DA&)s@{=2g%EYCTQ ztM`wxVlSl>u$yI+wd=1wYj;OJtN&5^zSpr;KC7RaUQTY=pI2YoeCK;pUS@GT+V0bQ zUgnLo|FzsE`}>U|cDC=iRXuNL=J4M(&mTj2* zFI7EW$3-d)o%Zxla+{j2#(8+8488N&=0hV~HDUFtKZ{xl_O3Q%2?&h5D;*D5O-stl z`w*dElV+B_kmKIfBs=oXSj54cp{_dE^XQXw=9|=`rKEcWJYZBq%$eYGT zWfeMU;2<~CXt!Wlbw?zSSI-Iu@*{7evb;-E-7RX1YHr05r2VDnG8R2NfT$QpJL^kR zJN$v%4^HsYzVp@x>bC4^x!#?WQJh+H$1{@qYk$U9_2J$IvXO)N}3{VtcG8PD(8_gSHZe%2Q4&CT7~f}f*Q045FYG#b?j44*@djsvSnPR*d)^LK`|^F z@zn@SXGzD>Hy@Ph3Utu*$~a;uaAP*rD0P1W#o{r?2N}-%McDaZY&ATo_&3tvW}T2v za`M`B3ZK5-PTz-_L5lA}=$U4gvH+JAi2S_=H$QZHULe}L$Ub|h9W2t88 zItTv4d0X*DOF|@oHild^YY&re%i~~NJ-Vk1%YBz_%I5VN$*)eWcm8z>dz`ZZt8oc)f_$Z`=JfrTk z2;4TTTqPT$h1zc%!8?G=hv+^mGH2DD(mIvd*eD9noTAnPc3l-=lOiCBeM7@kQHnN1 zn(Lwft}M)q-Lr%-^S@_7vxZU2jVrllokw9RDU~zzha!N+?+?cOCYu}tH^HO^>{Xs}28o8{N!TB_iW`^C|K{TY&#HQO|b$xi-Nq_OpQu=@twIuc9q zRphJHcEk%np`@o^^0KF&h}qY_488!>9+*a4YA#ov)A2xiRcr$(Aewn_y*)70_gks+ zs(NAd!J1`H``P@hekZKo5=KrLm;Y zoHeI;*-qBQcd^d0=q4!ptDKlij0;blQjvfP%i_0f*Oc-pCVs$>w3g1bDTS)Y$>kiY zcKCWciwBoQqf=`+eqaVqUz8F&XnVogAhnU9kqjkBU}hX!X6cS;jl$_aK#8k(2TDb? z2D3sW=N%3o9`$Ws54Ve7&uiWG%1=9OB*%MZ$^5-~zWcXYTvL4reL24XwyeMi3}g$q z&m|gnR-8lkL~gUEvmfs8@%`O<%uhR=jukUw<(eT|@O>=4(`*PpEERC(l)$htO1B7QmJ z>bgeOO743^5~K5w0zLKVZClPRJ0U%Roog;N_{!evB$Yd|+=nepKh?)e)s!+2Q393| z5kj`=7pHPTg=LVw%v}Nt3o?M^qOpRO9Wou=kQ73`Q4<1{y3{=N$Ay7SbqkQjlI^xKBC; z23lyVrk8fKq(Z4z1TLsdZ7h>$5+0l(bPRKh#MK<{h}<*L;yZp8Ed$a8?sR9`A`@B| z>JO<@;XE6Or4Va2F_F=JodhxP1O0tLw+L;xWw2d2D(Oa5~@TApa|AN8V{G|z&L#z#Feh56DK~LIL2l`nk88e z0_R!ARx>cRCS7m`e`)FC^aOh&s94v4=nj}d6U0rlFbcADlF5fuC)pr~aoLP&Zq3Np zKU);1bHa9yI6_47G?@+D=aS6hi^Wr-x=D8WBayvu$C$J77krP?&4+(QSV;W$m?C_i zCW6Z{FO?ZIx?&Yb)5E1MQ;kYt^zD`!4NUbd&HW&NnIB9_FBUwcg&NTj!ax=SWlTa9 z#-O`H;%XSF8A0k4Klqq{q?Bz_Qv-T(P0(^0I#7~|_~M(af>UWDq&Uf!&>>Gx5*#5{ zvY-Sp&r7RiFsr3j?Fqoc4Uk^(z3b9a-}>M5$$F|Es31%BQ(;$8f}+{rR!>3;E<%48 zRoN8c`WV-8HCY1l=N-8M_xn&%d?6xS2!`o{%w6pz^%QDy{T7{yCx^xtLUI|RX1Wi6 z`?X%Z3;tc!#$ZTxm#>fb#AQu2p9K=PABvMgY_iBPZG-t#G7jQ#scm zAhqF3YGL!!6$gpA{7X6>;Sj@HZNj~+EkK0`M~Q3YaT7PbleeBH zMXE;>F{_a@9`STRjtt(+x2yr_-GqG!QY)aPC@VU^9RQihtE|V1>zPHdBmXc%BcEcn z@SORoi3KOX4Ce(3kd8kDti|sbV-XaWMmXJS3K;s=qa`jCA`_gn4nQLJnxg2(GGG>8 zCF%bS$KwtofQLbXXv@?qW`cZhF{auZ*WfH{8WGo`Bs<9{HPhnaZ@SEF+p@7x)i6?) zvLdOF`z{MKVIJWYZ*w=;dRlCLX~$a|Pn%y?d;-`pLcHd9i6o7)^RuZh!qD=f_Qt#` z$6~uGdy4n0&)F+0bJMfN4~aicI`UfPUN+)6U$q~WtNZDnKCUbpFNv*wIUzqGPRTP) zu|5=%^?5|WUlrlmX)=CoDr{*egwFF#@(M3<7xb$ol!Tet&eQiZ(}z~25sQAcdMce< z@}jwxRf);w<8|#Gogte}oL5p=6%_$`5SAAcw>%UZvpMyAwiRJtpl+eD?%8~tzGE7< z;p&KyGVf!EN(}+d{J?db)7*_A%1!Je=RwnnT52Eli5Ju`vG_M4B4l;7@cSPf1)H1D zo=k0HWa#sp%-bfin!WM`EOb2znK2QfkbU1GkQ@ZKkfi;fmBnLiV@#O}J@$#m6kmH2 zuvqV5a8eW;G+-MQzioxj-!sTZW};%iQDeq~Kf^Of`f<=xx3E{e2kzr?ff0~*K2<2d z<@ZP3^3{8_2%E*|^2Pi_#oBMu9!*`>Z{+inVND$3l*=_gEp1U&h-nw;9$v&!Qc(UKbvfz1Ja; z*>@L(M=B6iRN#JSJm+x~_GRm_y zPZnp;PAC=G#997wS4k?4KNl5T8!ATHeiSZP^jPQ`J{;rYJ>iW82)V-stNVw5$&Cd1 zkG{82oE*ux?hh-4QGKPH!X|170z~Fahp#}yd&VPU0o76nlGj)U1p-Gk;51)HC~-6a zeferKm`J4Ona4^;;cg_&1@|gKf!td4ZtyJ8w^56XTivbuvn$ivzybO=rjMx^TLam# zNj^b>p&+1?uM{r{gM7V!%3&~3jE6hh9PMw@oA-GJ&7WbP!NMoO_ET?nd4B%^Rq97#fl zaP!m=&+%Cb1uXhSIqG3t*_sDgF3Gbb9aom7x&?PINe;?y)kS1<4_%j-PFV@;`f>~$ zo^c7m2RL>;bgwMcg-p0`kMam5UP-DSLJXa zl$Wif{5MJ|#T#XAVh*;T@!%*hT)Ir6udq!ra)=^Rw7k5`Y@4nxXjpsg2hUb^U~{zp zJ|}HSZBdXz_#+qBq4wrE6UC4?MBmsR?4hl_*EP7^xD?a!V|T2w!)^J!P>Z*l!}adr zbw-o9kGIld>0e&=k<)rX1}FX9@nVP6ee zVT!O2k+<`+niV!Sc9mt0aT$#ThW7RqG==_m1}z_uc^i~0EiDE5Zbo9n4-vCM;7B6B z205^RZVd36*$xDrZ{p2(UyogPZyMb7_wQe>%zy6CI;mj1!7u|+85Hbhx-Z+9=5T-_;;G2f zF0-TXW~e4U?`3Uc>J?$`&P!$P_)@MI<_Ytfb2090a=CTMemQxokL6waNW!Q6d|Ba^ z(`>se%eGYicpY6Oboc@jI-C>}u)Jo2wfLpBpDgXbD%W-%n~rNwA+1lVn}&X_18lH% zhtw*=Dc2*>U`-OqTnef_%THe+A4e8km>)_M8+@%1*Fuyfak@a2U(wQcvv+W+de{)_AD zS0JoX$msGk^7Ss1@Speo)a8jG_k#X|E^|}Do5SS8q#=p%SW3ZMss}5=D7{aUYOCKT z`3#4@Oumy537p5{I5DVSEq(WEg^WYg0#-sd&}B13XuIW1Zef-l9Z)RgybyI3XTnuq zfxCHw=TBU?Uzo1lcgn{vD?9Sx-XIn`uvzZ0)|ASm|!CQ zO(gN;{foejk?eBkxGDV_MJBl^|C*~{LsVK@K*&)j1H;LVh(K@tg2fKBOyK|Hn%Y7T z4=-?J!G#|Eh@MVK`Yz?#A)~rb5md-y1gfr|{3UJ@A-vIy2bZCysYw?stja`@{Y#G( z?g83#fM^9iAQ4v1f(Iw$Nt;E?Y1<_W858|W$VOTK9EfG|%VFyJzxRJIrS;OILq|E^ z-46y9es<1OoUW9pVWvZ8m!=vAiT%McONq*a{|zUXVHjxQTn9ld39+?-%3G)cj(8)^h^$ zOooAjXLSt*dU)WN1QKsVOlB7Fq;CrlX+evP@|ajkMqZ}qav4l}v8`-*MVca{6r!f4 z?FmlqX?IF|;!L?4BBo1E4q|b2Sn_(*firQBSSQuumy?le516Z8gCTe{UVkby(-ff# zY__7r>vaMR$T2G@X8XDQHCgd}f;;}Iy4*u~eZhb#>X!^a^dmV&PG>@c+0FF!Pk#^+ z7sNdDw*6OD0e1IyCQ@u!{GFM}OXP1rO)?oSt8@LL6jYIs;~w)mx(6fA?!bj2-6{9;3W-0g-8x z$y7>3yGb|AkTCki3<{Vfe?mRXsqshEcT*+}{*4A?dSOyDpW2|{y-0>f<&6)L5s4|X z@ZzGig)W3_yh}pDKrV6h0G$FY#5|tJkdNoHe%C^L*qHW9e)TdI2eCp1Au@|S5A(Y; zHWkm4GdP*pAWbj5DQc69GTR2Y^}S?Z`Stz)n?2+^-O$9af}2g2QQ69UkB#<)Y3R2# zshS9-rIl`e=b`vFJ^(*e$V2;&8B`|6$h^t8p?I!-OldVVxX4Thr&;~sog!DG%8#yN z6D%|!XfdGVM_Q4hYVGQw1oej}8Az_lyAZ6D*z`#8gc-@2B=Lgyss))iDQkIrPZr`j zp|*(&+?YXHbuggE*-y(&I;Ig?)nOd`ldn@aqN`dY@gY+hfoS1iVd|~j9aEPUSfBUt zw1X-hH;T(GBcxSHCENK8Mn(yelb#!#Mg`Ix&s&v;eyp5J%wtMjO@4MkdGqKJWz?TE z^D19H|Hcb2l(1M7E##Gk&+ixOq27W+t^OMmq|xF^BYw=)t2p_P$xz?r+Ki6Ug<8(c zhbmM6l93tEDzCD!{dZAz7SW*ZgTjD<@<5{B(x}-mJ2UqXH}Z9UV3o2f&o6(Dj3E>M zIz1L36dmOk>@j}(S=Qy=12x#sv!9xLkB@g8g&x*oS#)0?pcIQcANF47Hex$$$Ms+K zI+~v5{F+{4MI4^$wkTeWA7Kxju`Q<+7}=hy@O0zbu}^Jc}I{J(jn5mbeJ=om$Jqe&X8CBcb~?h6_c$6c}#IWHRzM zr&+Oo4#d%KgxvUdu>>IDzVA2P`hX(zbvDo0ZQa^~8$`82ULe<7)Ea;r6yn6G)FY6S zUu_X3hv}ut&h!xXyhB3%iIby+Kpo&zGE4fT*wa{tl=cAcz z13sfkh`QeiX9yp@oI!N$Fq?nFh4TgGjecSZDT>fE?yQ~P0^%oT<9-%Q}VUwXf%F<1*YlDw8pNQ zF3#(9QbW+Vm#+P^d_dWEhL(pO4$R@=a7eXCq~JRy7FYA&>?+3rUxIPN-}#Ougn7P6 zP?9fUxw=Y2fK-Of>kcT-(8&i(Vr<=AL_)qSZHy*|xMMc6L}{9-86pYXfglmb!YWNH zP;}7z2LdB^0kkp@IpWAl<57lYL|+s$Z$rjCsg!(SS3jyycJp4`*s2cEbQ38U(>W0i zypRx}187Sqf&BQv=qsmmneHL!S@^xM1Rzv~^kawf1YH>xK2ZDicQ4LWNJ~&{ zryExgxG40$*gDIosJ^i658WU*$N*9T!jMCUbT^WsNP~1pcZYNh-7z4b(x7xGokN3k zBS<3*^_>5+-uJ`1*87n!EZFxs`|N$)*ZsTJ0ir!UbIe<_n`!{Q^W~*xLst(o+BU3b zFH)k$Z9PAr)Z&(05rGXb!5HT&^q?1^S!MWx zEOdPUuo$*S5+_E^Tp)&z1O{5y8vvaq4yxF%xd+3w#G8kQ7xc&oDeT>#JV%01tRqK; z2l6&JX^ipwauZ*A&g<-9%u#PYMh+$na;Q0JF>!Ep>#O|rNtD^=?l#x+SsV(H&%tl~ z10@c}fP7)Viuw*jb9?*O%5S!&{w;{Fz0O~0 zFmz~^5pF-s3uIXR z%`{yIdilO&VLw=8GsG5c^<7+42_n{V*Uu6Vn5h>?=d#aOA23+G(Csz7W#rRIBofG< zZ17E-y_DSJlyvxT5qetYlV{(_H}mmAZr3)oJwqdYc|y-;!R1jfp`;}6&4`JH0V=9J z(E9NBxOZR3F(f-%B?w-n+Jf_Y-oRJJA*P8vOJ3qe&W-B3<>tlH6m-I{ZsUoPny{>% z`n?}hhZtQIT%KvX#f>_X(KG%`xNe^i$u8#GelT_O6NN1iT4b**Qas@Y7g{Ns`I+K3 zZRuWaG$nk{yNFYL`c!uS66=Zr>+(%Q0ttor%H|RozzV}3q*Lpn!xDM zWqZjmyCEI7eY=&_%vbg*y5Ebw=Wa{K20HDPA6?$c4@Z_g#H+Vc+Zi?sdWv;8EgdW- zlvlNkxA|SR`LV44*7wfS&74Pv6`Ia}1#j-E!;bGvZr?w4lC*DfCwBZ3>im~F_cy3F zC-M7zwPwpd&VKQe-CLvfTaod*y@X1kL${k(fB+*~E_MN2A@1*fXa?<-`mG8cqdLV7 zoBq-HUfw3O-&+7I29{f+e~9ypBj2vCm~z6zo3QW3bjAp#^S z>n_FqoGoue(Kr0CQA8O!Bkn=v+VxJporajjDZa8;s`(6hqPg46bs=!;7Il%wh4 zMU!N$m}IOoMOH-yX?)yb9MAXLddgCx?Zb5|4#?PB!(Ly2d*;Bxly;2G|vuWVTX|!uVzC zR4;+BypsXJ$$ax?rkhY03_{16S z3pI}oGU?OspYUbf)fDVSOWZPl=1=B>aDvJti?YHr20v2%48!cF*edT78%QIWi2$b8 zC!75aEPU>MH3rv#lC_*)j5xnye#!KAO=e2XpX9vcxp_kPLj#Jtpogz!V7XC)wg$&$ zjCAkf7p=wb)tZ1qiF9IIV-&k_gY|1&mA)U6)>8F9pYCExzhf@wz_T90RaS1kDZ_7( zk`ua!p$Sq+WvT`=7$`%l<{Dn9u6q1inUp-<2#PVVWTmCKSGZCL*~yJ88v`|yP{ZMg zX}ZCe>==2M&_TA3Ivjyq`+R{q17>A21X4poX%lP6ibsdnUZ3Udiw3$qPRkxck zsPy+-f7Mzy<;rxB!xZ-xz=Y&N7}xl>VZKzV>hpg%S&&e&Xws`3MAJ4mWpacooIpy4 z2v%&;jGChVp48U^Uta<>(UBK)Mah`spP2lz$4A*>pZIr^;gT5}neu9JpKu>*1vmUu z8uTOx$qE(hufWB3R_-Y?D?CYKn^Yjj8l+GYflMF+2;Kwelp_DH=$&VZXpUq$$#C5e z91*X)XmJJ(G(Z#zeyUt#7_rW3GX#%>%8Q7+DZ)}({m%0K>JzMw2Zvlu^S@$oqZz-* z2KaDD$Bwq1q!xIp@wy^&I@8VKPrwZ+$EFYx5zTAQb%go8j^$8{5@R!su+FlwEqD`> zd52k6PSZ2IqMMFZV_o222faK!O~^NUv~Fzq*7yyf>krzX_KPgLH&?YiqB_XCANN&c zv5xGsc1Cnh)>dS#Jai|o7p+I{cTZ~fIEq_fyyWUWtr*UczH z_m{P?+Rde|b-dc{sb0L%*LLQ`hvev$WT>P!A#qxaHe=EJz;pLb(`?ai^$Ry=s;rK5 z)OL`)cS6(ct{*BrKh*iVdLLcbY+t*KPJf=-!I>zkU3mOjM&^6i#(B@yBj{4s~o7 zh3(H5D&R>sMa!W{?F5034P@EL8xyabv&K9trir*z`r??xeA)H-HW&xrU~bkxvt(5C z_PkBTN8F)5V+S6~ld^1YGB|WfWFI<@@_PGM-kkoGA8!jPbo};Y@71m(>V_HM1fNDW(+2FC(0=Ssbb>A&!J{5e+xk~s=fBeBbh2ZO>*0(ehwH~Bp|k_T z!#KBFg;4;(au}(J0dXA;%oGXX^lSv{>3eC#dYN3NfjZ+GS>My|-abVrU zkNoj9!D!(>SznvhDly{w3D(Yk3`L^{oFx$;LxiP(=z0Vbw{%(Z1(9%s_26{s{uJM@ z@!GveegpKr9krfYTDLm@9}h%=mq6D;iSkq6F+aZ`pYlI5AIexBh$UO6#RkDz?)G`8 zV%f;vQ7L~pL1!f$4GoJc?RqVrC6Mu)T%cLxl!$`}nyw}w_j*b=QV|2uox*I5^!oq= zE`%1V80C;ponR&<8vq?evZ8WhymRz~ny3)W^p0N{`D_NjXzW`R-&#y5R#FEMNmDZ} z{e}O2B^pjwex&u_MR}qObjCdzQ@=E0HP!$ag;7HNRt)(pvkFA&DRbX}Eo$Y$>EUAd z;DO+HEHVW|nXPJ5nt65yxwQbO&obYZp-i5t)+PFdXv&Y#TKMlzM!0%1dkTTR#4l^V z+Yo%1#ETtPuZ%k>ODY3r0%uf6I~J>ohPnKpseC1-BmwiA7r)q|d6>$EYN^bC6cVZQ zB=9XHSSH1%EP`o}wQu3|tCWzr<{pV=XRvDhXBq||A_I0dBcz}{ydE{u0WrDKQZm<1 z#bZwAC^Anhu?@!}q-RnHL64QE(weUaawDD+%3J(^5TG@w4BEN(5Jd01=8Z3P?t+S` zmOUaA(Rg!g1U`Cv0RWI|+G6-8AbE3;8#NgZQBg95RQRi+@bH9O+LGGOp(V_=;pP8T z=KkWEJOy2r+-ml{il&xZPHzTJ4S%Tt@BJ?ceE6e&VyG=!%*2iMeDC`&b?kOdZXmMh zX>F=}<|*K`uH^mS+|b9;6I9R{>j2xbAi{ui%nlScC^jXd7RztGPA2cpG#K*93i^Yz z^+{#;1dtmK_WaoMy!E#YBu_+t`$wCBW#1~d-@CyL6yNOZtiG;p*On&t8g#+i>vLq? znkCw^IE~k&l#ugLzISO+i3}Oe1Ju;i1%~w=+o+@VfB?f`d%^TMp4l0|4;ZIAGd*0_ z(dc}M`Z`omX}|PN3-yLKj_4~wGRM}&$^N*&&hE&@-oD!Dpy~@dbCa!~g;8vQqGIL2 zl5dpJsyO)!QKKUxfLZS-tV4Zkd4^-vg79-!n<^_8OrQC}?aV<_*s-4eH+ixanZu+v z`q7u)a;8#`{mnN^eyh25UG@Dxf99HMqqAyH_jl5pIv$DuRlRR#Hh-mPs4{!8r7t8T zxvy^r2$ z^3iZDpQ}loII8uL}sy!hOLtw6*Xlx6&>y2@$Des204j(yd@TcF#oiRksTox_8%WUfToQ)>M=`CgJT2`<(#5Qgj31 z8e#cv)2{tBt=Wt2c)R^+H6*0mt+wb8vXx3h%D&X^v}tgnlt>X*D9A5aii|}^n5ihD z(|Mssj*?;JsJPKG^}UJRdr?>Qi=Vl^5J(@;62?<%bhrvy2<0)7G0*x#A9{NX$7a-puWp~4uyY6JvW*Kp;NZ2;>6EdZAG5jmh#8BA*8rrVR zPf6|xD8k$hX0#VPCA{%*NoRA<5`M2=_JcbOWFX1*WfGrN+v9}MUR&kN$6~^$9l!kq z=L~Z$F};_-ryLSnD#bg5m7Vy{u%iuJj2c|1yUBrxMS{s(VeaF)=x}$k{P~YMlcX{z z%d>GpJqDZzCFlE&34ST;WsXEBt-g0sdCHz)sHdlQ2A)&e z4ILsQB&az60vV^_$Ra#lw#DbRgfQev`a?^-r&kBC*~zE+zknh z7NNspQjTCVL@k!MBfk~V5=T-YTD*c>p)Zud&n#S%Ag?G|^cYV7EA;99-Os&rD9kNwm9oin<6pCgOHZV8b8a==?BMSD670aM>~WS$WQc+i zsO94>M1V?gt)VaxxBr@rTl4IgeBIcl9!{%Fk*_)TA#Dz)K(p1Q^v56U*wN*EtqJR@ z_x!Ms{~i>A`mq{&+*rMYjUEFPFe8mHmP#)?0aN%dsTPN_#Jv|SK-tQ{P&0cITl}*) zT>pEnCV9m9O(MD%sSY%jRbfg-lX$+go97vWfdl4PLqNGA!|qU}hU>^bd7p=pB+M@d z!MY3NtcD04s_qy)hM(%hhyLE46-=xrCH z*TcZI#wBWe`-&_P{ar2)X`S4z1ghup0NTIQz|!ToC}dgZ=tdEh?d9~TfL;dhJqwt6 zP8uPb@D{J^aM6hk4PTm|_g7g?Ou`fGvH$Q5U?hJ)$&;cf(R5Scm{5^h86Q9tm+Ar# z3-mZJ)j>t@!a*?h5ECPl{7Zjk+jIG3_tn*))JWc|3L?j z;|!QOkTYA5zZXlB7N$?Ze1@Y-hBt0g$>if!X0PK(5Sj5xL#Yw%HOEJOr{xy%G!nz& zBrZ~)VT0CM=}H!H_0}nRB;bIe<2kcM=^=mZP&qgr*9h{99kda~X*hrVjAQR~?EIG_ z0J1$3@1c&sFq)fR6c85R)%R8Pje4mLsXBO-{YsUy%F*U{T}*soadLTDe0urM?rn5S z`pV)ClCHqH`j5>Kl&0_iHCsLl_ww*?UNUZMYC}}b8NEd<7?H;ylgjgb4+dEZa>eTq zVc+I|1e6#e9la@_u?h?1bJ;?nv0P}39NgUXvNHCcO#Uq{E!8kgvQ7;RA%oH|zqHrY zskW59Suom`B2$%LgeXDXCC)N;KiqQ2Aj_{_fZ%ARs}yr9~^V_i$N z!$og1{0+Sk75Ilp;k;=BoF`A$S#&&)Mmxyz#o%2WnIOx;uWtEPNFzA$i-GIQWF>=I zk@NJJ4yZ^8Z}dc^MRKCnmo+{;Tq)7Qbb~nNri#I={R(-nuRi_JiGka9fL~;fGstW3 zpi}g4mV~?Q_@02)`*zaHKX9;)gvMv-Rbt!bQ9s8$lJeif6gf3XTge@#q;OF4rt{6F zIM>aZ*_-z5lN`zBwQtR|E~D0(9e*?*&O=G)ylz_)+m1L_UmZK%8f(qXF3-I6y+ZOI zX;bAXNxj_9F`s%u2aVGU;A=bxo#5Xtm0zGxAEvO|`qrGTOYsjj?^}$Z`Yb7E)DACp zRv1|<#yhkH2XgXmTiIFHYGGoT_S@Qx@T6u|=*Bh~Zm5FhvFhMX1iNlYH6yrBX;5zwYlp%=yX;Ijrw*UmbOX)W@}-{M}GA;+au^uJx|iNDbZSntV%tg0u?Ovf395+y%4(c zJ+?+BcE-|Y+w_Cs33QIc*s(kG&6Sp13&g5aGNih)J;6i{S6Zw_PW~ZZhgAA=HI0=H zzmJ@Ty=6nCS1P0WjCR1gQSv(+Wv)8h+_gyAhC^El%j}W40U&NfuhjW>yf^Q*e9a(E zT8H$`n64=oyO>=vUx~_;_6<0|O{Rg$@WgCN`SMIFdl{7 zC$4Uh%#x=Rtcr?cB9bPsNc%NyM~g)Wz;MNXR*Q5VDoS(C1Nq)HoBRU!<>3vgl^>&; ze`bJc2rMg3Qkuf8xVYk4{266Fg9#;82`o?_l&$$W11tcG%dZk+#rR#03>6vF#EuA3D)9_%kg-wnR3e&0t9XZQ!5?v|XI>cfTGP~f6u{=%h)@NEB+4un zkAM?qb)DYRBT5ZCr7<>bvcHw7Vv@9e;u!q-nG?)p7EGb))U|I+3@Kqd*#sLQ()qh_ zE9BFWLZX4jA`lMW(BELr48W}7YF-=CK3_s#u=SzeiWu*MvaLeO|5HL0eQs{N@+g~y zDXszjtmwJ9`1l>`#DB3H_h_kGzZJW248`zY zJ&^AenC#^D$TZL|H&h0OV5qJlQY7A`aFw8!4j`u_kwSYEYlGQ~sP1(n-R8{Aa>dt+ zYC+9$wYlc2biItG`Y)Ac%R9&*xc1USi<#l_&n*?%+fVK346 zJbUiC{oj#uP^(Gg{j-+azpb~p>jJs2T`yhS-`5m*sPKw@U*Is@{JAzV&9*GElkcEP zF{1g%#DTxHoni7|*m-Ff+VR(;`nG-bRvh)UdBtv@f@|Lp^(48dgV{}Ia5u+V=ouZ0 zQPv{XPLI00empS)H-723rj|(86;*zUy#_8$T8W-#u4j?W^xnWHmJP#<>g$1u#QWYG z&Hr^u=Xgy?=H6aMX$Ec7?~0x76X+iY_Vqf89$t;-cHTK_d_RwxbDlpR%O215e9WMb zY`pF9^Lhn5eBUi+I^Q>Kl$48$9{;Ue)(BiH;POTVu&g|4Qixp&l}mV>qmU%{l8H(J zDKv2t2z9tc_NxdWMkRw$t7r5f4!uNV%&==eC-&uTf6( zagkn}Yw48jOCx9$?*!GPi9P>N`S?-pbAc%?G=(QL>m?K(lD7ej-w?R+X}_ujRsoe69*4JZ`@JRja#oD7j%FbV*sMAp*%Q_&rFg1cEu1 z%8KTK#uAP3q>;U93}#=<*T&3;3=TgmGC!}45zOf0)--N$b|(j3KaPFF6C}Xh!&kjB zDsiP#FFHlIfFvn{-fNpY~?>Eoe% zNWt`xGk>L4pQrXxL5B{01~pa4F@8^D7ggIbRZ=)EB6%fFf+k32^k2FWh`zMc84{z2 zMy@*Mnar7AirE`sS<>zBd^>|BI;XHUNjpOFUrC{48DLnRkoAUzg9jl1VV5vYFHbJt z;cX26Yi7~73Z47ab1fy`bY$~}mTAG)vos0(Hee$Tu{a}5m^=t-RtzyfHm@O$4wXFs z1D*%4jmndT@S_nHdV^i5IJZj#AMO&-Hy_Ux%_!2I256DlpLxn%jFq8+LpZkC#<%6q zmVS_u*%BJXw{l2nvz&!k5Ch~8t@j}1@?uh_ict4|k z6GmGbJLe-xN@}`4N7Ocl&)KWK(9qF2?o+<2M=ZAL>djsKUUY2;)LeNtCBP#xGmUI% zYzpuna@0flb;XMNopj^q6^RB|OunG0Ie>*gb*#fn4ACcqY(E1Rxi>RhuTg!qB_#ni zHihNo7iD#&e%a|^8&fpTFUStB3B=?`#S;|rM*eabHjOxURtFr}pN|K6Eqly0w;wqI zC$G+{*3R2j)eNo(xYRrK=-79x+Kr@T+1#JQd7f%9Nxgqjmh`i7oY3IrG$k=5b=)e$ zXy@O`oAv{}>cGpY#}ksr*B5-_VpAz9>*t)5=R3->XQAdb*@^1B3F%s2HdqqjhX)z7 z6jg_|9Aq^YtI}4A%+PsGxds(YC-)j}Qg2a;V}0JOf%fT) zg)z`=vYD&p$>3SK5S{CAC#TPKSh>ViLa!5QP5EEoUU=(D$G8=p3Xlnud`)qGBNl2 zMM>1^$y}82zsc0&$GtXoduo*+ng)YVQ6?3>9TphP#0zCAN~r7Yqm~z)sc*U!>I986 z`337FP4w7ll(VrZmGm5$pf&@hVR=-riY#oGL9n5;hG9W9to9~dIoLLZN-F0`p zFTFQXg{~R+fxYy4_*p(E-T~N67wOf{Q4;b(y4$pP~}opDk@q0 zBn3w*QG(!<--jv zmKdhXMri@i*}u>MQ{wJV3RU5qHdG=&C;KECD&T~Er69|79E@}zueS|cnuOc+RQAHJ z5?7?V4kG5DK{%iuAbQ<9Qq8j9G?I_aOiKS+8(Zq#&uYmebPG3y9M{)~@e4Ty?D30u z_0A`N$^ci_q{HQ7Hf~okWldJ{)SwN4_kv20bP%I}G1czMBIkL`GdC1dq&~d7%b}S} z%*RwrfXL0g&MoC8H6pnq;_Wj*kOoGP6m3MX73(aY2E*ZVkhcPetcc8>H3=kpQznyQ z^GCH?iXaOt`kFtfh`e}B{nQ&Z1`8!kiRm-KhY!T26N1Jidl7{pgp7;y-DFl>_1lYM z2-7rOP1;CSUw4Hs%bHwo>0>3S2blGhI%FKO#rfPB@0;1UWk!nK2}g7cQ+W2pL@2XM z3d|n~Gi1y!OZUhjA2eVzuu)?JZLQKp3Jq0|sfS;TL<K10(0^(*#RCbtMg;#>3dxUz zE>)WStHqn<(Rl01mgHSLV^FoAPYcmhC*aFF%(V<$qLD)FK=uE(0u1kH!$Fj&9m?`2 z!T+ZMb(X9((|Ko-RSs-S(eLqxCTHZJ=}Zkk;C6@_#woirxD84>zS{==qFsDsGdO@p z=LH=|n`2sHW3tAc(U7XGTeDTssQ|#puJ0n5+b-~;^{YhGeode*UIdsl+UX?#zPMg_f4vR+I`I_gj==->je@ z5fQPw`@eDHhM|S$&nbx;x6!u48Z1;Yq6D`-qitDsSC z8$Y8118)a8Z>d*Kuq7k!nVP^&mWr91$!y{0v1$DIgfrVs!J4ablSz7EI8wr$EaDx! zck>)rVY5{m7xmFw{X6hTMN9ymL~c2P6ndj4e8NB(`B=^hLW#q%6>kBvoBfGk@BkbVjNOpD;)MH zJtg!GW)&KJWivnY>4 zGm?pZAyz7oA?~x4(ody6$O(G4wo&fjMrO!IR1+rMf{bYo-J-CCfl8{+3u@UU-K@G; zUm{e$5q?kXm^C;9J=n!Ml5Y|HNtNmku&H~n)_eSUS9HfDulI$ig_i3!;zWdE*qOHA zA-&nl{vY7^uDEb&Qw4_+pMWoA;}tT(l8_)VN(t##uF!B!D)@Nfs5ZV8!o+q!BKU2d8(pu>=(BFll)nG~NB7&_I zxv(BiY9dO|KkJT-X|wedM9QVTUy!){lw`&hgZBTahjdB?u~gqcO?KO_*JT=&%tV6- z`qDL0)%60D_F7^HnlZgWWh~#@hff*knbK*tbvOUB?p6UHVaVIQ4BJ945phu3do_#UQ&#VYVpOU&G}LKwGq)+Z|$UK^w?F{ zmMB*5VBw5+GqSNb^GERYw}AX<->EXSEOSMVm(69B=j0f#!HMMx+tu2TZ`$qp-5{bRfgm?k?#wN)L%t=l5&tQlUZxj^x!VFb=B{Gq(Dr0LG%B~ zr1^e-Z#F18GeP6ao=Zm?vD_M(tp70dR!>Y}X&Og$=OCr3m`-ASFf(MeMu>+E8tig@)@$?)JY$x7%k@yH4gqS(TTt(1piA z{7KdTx=--;s^4t;`ReuXDxJ^27$F+p%~uK8cWLYefty8hL7UkkICs8hOT<48J)&0b z#!6m37MQ&MH@Yfum0w_Vo~7gbILDso^qsNX?O5YK*6Y&jtz@dA^&QV2h*q@k2x^3_12IyMNB=kvpck(zAesdkh& zR8wo88WNOk5eA#TXHv;PCc(M}oD2iL-!S}oryevBT7+I06D8?GlycTjFcSH963=9D z?o6@w?Wp!a9mUP?=ajRqO>4zUgR|hH>WcS2g-P?}FG8n>7da|72 zT7l!ka90;>)YB4g<>dwxm7el7B`=kOO)pgu5*Db0&87-;fV5JGmxNW(DNWP;Gce!r zdOxuPCxh9U9n- zexAc>0qor2#q&s>y<{GcFOpSOG+NAu>5^ZbD?(b3P|z?d(xBLGq0TA^Ur2!eJ;L3W zy9?xikUOg+{lP32^Gh~UN@ww>HgS4|JKjHd`gJaU{zw73dKw7^{d394_xP|# zR}QpIrdO3>3?6+t&rnvH03N?YusW<%8O~+q35d3gejlNkK>9MNV1vGvyd+7`85PrH zG)}!4J_dILgB`FG&Ipc+y{6JbCH0_SfmvOyy6sCsVc5Tv&aA+*m3XA*31#^GuCQ zFhyO{1N6S<5Kve@Tj_n;JMGck?xazyq+v4bDpTAASkLCPkYHd?8>Yr;xFI6FdvHLP zD~zafR5e6h(5D;2lra;AeV=4ofsmX<(7!L7v8-qV6VlPqtc@E63-)UoH?j!4`>)2| zFm>umh|+)}f9g-g$zi>_!L@<2WFnp*OFWRL6JcyHUpXEmQ0e{Txhb$Qei#Vm(8Nnr zD>qJTj4zh*!g@`MgSH1V8~Jk9r-V;upX@IlP)jKWCK5KSICyk;{*Y=&ep@2C&p@zN zGIN+!1{-vVn-ls3R^P!NJ+qNcP19UfGFh@bCdbdre zS0yOipm8hO#1Y2UeDIBu^S(T|&mTCWrav%PmN=Vwj};?3J<{7tTg<#I-M!r%9*~WJ zb)N1{UzR8Ew(tMaENoG@`5F2t9#1S1Au=k?86+G&;h;Ca_x#IdqU4IE6R#!z{2L<=@-xeifk>g5qLc)>ueQFQB@eVac-{U^ zs^nc&Qb^FO@r)X(V8oTrjZCp+y41<9>wc*?Oh1fZ(X=_2Po*I-yQ!K()D1Uxv&JQlgz;iI*`yO!4sM1@94225@i2>UH|nlzuNW=LEn zmj6EYDqndF3Y7Tx_}Fprd5NO)c);*syTS0`^f0Q!?GorP6|hUVT?icC&y*JYuG`Ct zTJ;{d9QVID_+cV$J+wsJ{+FQq_f>bvOCk4*A8w_yl$Fy}QoRcU^+PN-y1oKp3njCMVdg86 z!qxYV)6ylT(^NP|8D`bosP!!eRAedSH+3og5SrRk`AqNy>k!!SF2t6qmyVv(Ymj{mH*T0@d_mv)s|Du15ET4k2;E&TwW*w7PVM7OXe%P4?C zP6>9S#?59aHFtkch-&hdhMj&)#p-n38tNnskB^tx4S5>W5~Xem*da7mOH-%8UHrZ9 z)F`bB^)Czp)aB1eU$)Ab4M+9pXs;)oG-*pRr{R)EETB(aJPB)IZ9wjbO% z%iJiBdfGQ-JIH2O*jDVqHVdw2HagqFbKFK0Cf!Z`(7j4mWw0vCB4pBf@jN9kFl6Cv zBV1OMF`^&TMCEc;2OaEqx+aTLNYXU_Cz4L&-FDZXur}070^qMp4~d$3lF7~Y>IEl) zuk7R}BV5!0UL!72aHPG)Ku>dCs`7;y_$(GFjSB9KSnJ%0Ygtu;8n%7vwgzaGN5A6Fg;x$2o(3R$q*Mo4viSCz&yRZ;r4<_66y!?Qfs zVXuG&+eSiJNJ{n$@5pMC*I3l9fsYP~0Z~7Rvc=B|)W&iidLrNXUtwYY6*lxO(vVi? z4ql3p{|ixbV-m{zQj=|xnJ5vSZ$9_ljRgdHyik^t*1i5Z#4w_LpvK%C9`d?wFM${) zLt6PPg=JZb$)!g`e!q@YL$ky^g=*M8F_-$O zT!u5*uJqtSG3!82S1ex)n~+7;Ve!{Q!BB??Wz%y`ro?z@-1N@t`G_%@gdBIC!L$-dT&I#wxedM1DF38?=}mGXBhiJ36n9)=fl0tyDXH2b8y0} z2h5OqD#&kb*wL5#tkYHDu^toajgu6=!G)!^!;<&tAIPi z&>4Bmj}oi|Tx`jH3qqyts!MK+RbsGk+%1fruXz7-B+>OrRn>OORWX`Bv*rk;R6u z>ZX?#7U8c|5d(ciqsr%UR@}cGdFx2+cqL(I`8|}-+|^-7a-{n~XmngKJ5H%Yp+Go> zH`PhLyLsfG2#=LFe!~G?nf%XJQDREyE=;WJ(l+$#mY=oY5}#hgsW-W(12blg#dp=M z;iScH%CvXSKJ10PFGhN5wE*c&S?S{+_Pt&u#(uqi>IPFPR{Wv`PT-^-wPjP zKD^VB5b1$6p7)>2QbgaKcz-H|`J{12l&w#{5Xb2admd+EmlEUl3!q-(TGA1TS)N3_ z{ho}_&3g#OBOy;@Nkr=%EEGI4PohYHP3(j}!5fr?$cRr1QTiZ-1Yx5PHAMXn(_EP( z8x6?aN9iL{g(gYNy*So@61f*6`prI2dhjstGzLsGU+CDG=1-g{(J(ty;F-End0)g! zs+vM)KZT$rGBY^jUvO@n5Y}p!@TQ3`AjsE_H&hzslI@a$)JLD>Y!vPtS3{ zD&@AdgWurN7SMzc-t|-<@k3hRY;C|)I`Yt{p5QZ58&p*cf$Y_Wi+Su*6PAi^pEMgmKj z4y&g`ec-O6aR^`RA>qi?5oU}yU-|_9FhFi;Svr^|OAmV|D_mNRcAOQ-o<#=JQBeBg z8;Wo~*p?=f`X)vjj!mW!NhLqY%|`dMF5(Y%qU{QY_NB_Fz#VPSlVKM&OVYHa*w8J_ zRkiN8HgqnmB}Ij%9K~;Yr1tPXT;#;*@jLt;uOprmcCnJIXy*g}3`i4{bmyR&{Xtnl zN6=FGuWhBaX!I@`BgP??3BI6_HQ7cMhHNBDBA|7MVk9cIvZ}2Bw;6{Dor9UrK$-z#sZOGmJ3_mh-_?LiB?dk@K_3NPsf@|_T`LxeO;|V!I&NeMFr6oAdyRmi12Z(x{cYJ+%De#TYWS-_MHO^!1tAJ+U*8Y zn6J>oKKth(bSP*&arsn?*hvC?Ek{Jo8!BJS?3Z&A8{ln!SAX;Vqx^o5+g&k5`&nA` zU2Nxd?0?G22;aE7u4S#FM1Kq!!cMoc$x>M3qI6J$lq9ffKZkf?up$K8V2pt_*LTAv zWU`Q?fgwx4{+Z#khAxLiH64!bxQ5Wtr#Wcc0rVU6%gD(Ep} zSN*=P(XI2cHLIX=Ejg&w6G%_FIJwoxKBIdhak^r0jGCElJQiK=NX(VkW`8q|8WYeA zI@@|hEM`5lJJ$YK?)Bw*jOe`69kpyCvD-mH>o%3am3y`Q)aho6bk2X{cT}hQ-)XP= zJ1@!3hkXsY)efY|EK(?9FU}a@oDV+8dAM%aZv4kv#wS{6F|<$3hH`-yv48>_U#P>~icc;W1V8+MAP2{4-r5oy@TiHzqABx9l4;T^FGRYF z30s^@RD|csYKBnB5Rx(9emb=W8+75<9vlsusrH{SA?*Dalgczue7x*dVdpxkSw5BfRd(lqV*lK zYSxyS+QB0r73aJ??21!eVEM-@ZY=RZA@!MYPiQ6*J23>3fnHj1&?BYR@-F=?su$s+ zu$Z<3d!jv{Bzuhp8y?$?4mYc3GyBE*?+gF6yfV!P%_=r+qe&qJe$a50^8(;-m9bV3 zx#Pap4&LQh#oOe@GHC;pA$qcmP^4TD)(%S_|1UO75j4ztA9KD5vaT_HJqv|lMjGtM zcvh9G5mOB78a)+qMkbKT8vp3&d0bHlDomt*9Ijqur2nOyFId`pr7V|gOC%~u0kxxC z+5xr9$q0pR0|Md?m}2?t7_ zfNQrFZzlEXt?h0oMOc)E9?pK2AX!+rLzqdeDcYaJojq&f9P3FT*imDpbGll$41!Pk zgFrt-p@j8@?>#=$@;0D^h79$JaTeTTxeK&ZuL3upMdu1)Fn}D?exa*$7TEPiHL5t&5{QR?STf0zS zMwS?4rtaf%P!c{avP-+W^u`So4F!L5`#4*ay->>Y>I>#VPJ zZY|jFJ3A15rj{07|4>A1w96CkQ3W0R&Hp?dI2uQ|XF^Dwo%eB0x?b;7Jn|9f^Ydpc zPB+yy|0tQh9{bx7Ig3mKe(J1UKHg6*OK-~d;Jgp(b)+$h=cK-sOGw~vxEwL6^L244 zEb(fv^Kh#G_Uc6<>gYcQ`zE?mNF5Y`cus4P3qHZA@93Deg4HTN=PrH8&$jKTjVqj# zlcmzo5SD(#z<@>PM`M?6tXD@3sRemAbgO}D7<8GEK@V*{=POrD%~^jN=Zx=wR^IJ@ z?p%W-m1gmFizeCCh71O*p4`Pls@|enC|sCFpVHgAja*-qhAYTYq`KvRO|r@4EG6Sm z`@!oYW$H`ym}wA1=7KYy&{GS}V7m>L9N!tNPgEgW#D4(yuSlY+^i{|%{~y2A02#HKrwTtq17Vn1^eRga|63$ih}99| z31mQN`;^~XEG&_Q@qy5DyVAfsCZ(B=9)rnDuu4N1MjNQP*uzZ`*`*eL!3n|kk241=$$D>t zwbMsakBGIjVFQJd8u_{H9KQzW^w(k~C9>ZkxxSk2<+ni#NU@_BmS@{HvMX?(`V|>$1E-Xjo5RpJ=zk~v)y!&$- zm;JoH_<)jjV4?ZCMwM4Tb^ulO$Fi5W=lT^#{o zEwt1oR!Z}F52}F5LVLd;xr#qs{Q7y{26wox9({uH`bQv%3pr<7gO%RQAB;p zcqtPHk=-?0w&iQ75jgc-pKu6XYWs*0(Q0}xYz}^s3^V${mY(_FLJgEMzPimUx-y4a z{6>HdmwA}|fDWJIqlFQEIOTc4)w@90VTXOU z1*j(5_qrQ%BRSS4kWN_jN>=CMqfvmxk^?&%=-gK;xta4ba_KrFDP{~>I%7HHrj=18Ttj^s3TxOvw zVYJlilPZv0sQ{6wrV5WG>`Ef$4*(0xlxONvxubL^^2F9YMLjrHc|B|O`b_-6lYQX` z`cTXo%fHr>@lg63nc@4piw=dQ=jOt~HC!(Lb?a5D6fu%HME-tQ^esw~ z>nR${SLm#E-=&a?_mpetM*47w3cn|CMvg3NCKiI%^gxrl8fS2Akh=iBNP<+<; z7=(VzQNsDc(Wx{2F;&#Jn`+mc#(I1G4Sgy z#b)VnrJfnO-3_U}{CQO--*8JJYkF|Bmm!E*CV1 z?EUI_EPwRDW(kua#@(^uJo{TZ#L!*mm4?R7h?*yFF|Q2|^BJYb3>o(^S_-ito&y`l zS!RIZr@m`1&$nqi4B`@2b1d=hc4<@)^+}k?6xK*=swp96#(^&KGB-RVQ3Ubo2OVw~ zk%M4FRP4zqa(c%8N`(waZ6{U=_vEaXQ3rnSjD=%)FZ-0;(pz1Q*0j!lbgzF%pY5bN z0^y!)r`nMO6N_w+@gJz^piGR3YjNQ-KMEUk1VgpqJnIwcFN5rsIbp0g@$wp=R{nV< zu6L`W@~aM|UUfgJUq;&*)itSpgIGY7lb7kXe>YT4(sn3}|lqlN^n4(SPNc3l%#bm88R@Jai4igb;yqc04Y?xI1@RYF! zWWby&c7q*79A(A{>aCx2Q}*5D8~fOCQh2aDNmVOu)ORQnO}!1lOW7&2;Dmi~9;W{6 zr7T?!Jb~?q^kqS)=s_MlvqO5cK}DwSm8&F;CVhTtH{p=T)2ve4WjgG{rA_QZcV!oe z1hzLY7Y-HL#;24iNY@lzcz`Me?HD{G3)@NO+H@iDSR=#6a$6i-2q@F6VDr}-I4u`4rbwALSV@yrh$g{@?bN4AB3X7G7m`N{`bpTlX+JF%!@SH2cBPvbO18e}b ztxtb1*~{+x$1a+*QeRtxY{M;rE`}7O^;eZSM1`5bRK^?04lV9I{+tCj29BM&Y}h!* zFR=iyI9&*dE<5zUov?9WUv`p_rL4^U*oFqbECS0}o0c!XADdc35SU?y8*XgGhRrZP zrHZg}bIwNh@HBObuiyjsLe03aahDfyx#4kfUy=q*UQtXDi=s9Akt!6_mDf@#fF~c5 zeVj|X@ri2&P;kt!K{zixgw0a<*o3J!-POTm&fffZqRE~AZ2@d9SRK#QJ_nd1BrPU1 zhND5F&VDM>?g;=?uyzSOg>AeWn}5fGL!S#asQoOwmL(NK5^bDrR+DFYC$7OR46qr@ z*k6KjRteUEn}9wXj8GyI3ly77Il9B>FsZJo?Sb1($V$fOe2xdE!G}j;y>%{`!CfJ| zS{q%e81*Nd1=hYI$1o70S@!vq>Kl(=Ad)uX`f)T>ZdN)~kr_iw{nQ+;w&Ajoe3FSt z_Hml?!&~3gxUM|=WE>CTj|t%vZjZ@29!E?5%i7l}dXGxx+QOYnb!}lI0VnZv7tgy1 z#;o^&*G~F`*Bg5c%2MtyT0$|{)uZ|R*}0tfjlr6Mx`>-V-f3bS2OsZMlvtk z80`YlM#K(i?1RqE@{kCGs}-`hHmlR*E?lvB46wV z&4}k z?!cO~tqQ?o(c&{<+(xuuWT(Gmhzd{n2|tt>Xmmr8XQ7KoHgpTsk1ZyDh@kbj+RFjPb^Cda*o12? zJ%uF1DMw+2EB!G>34n!xUx$rVS^`}`HU!q4{LFQl8hR`gf-^Uc=rlk*wqJHQd`H9c zdq1ZDJnP?-7}JaP01|=i;wsu*qN*H>Mc< z$iJnlB-sPE!({mpCwAg=ceQIK7|uXS&juWX)WbU8ri(>=amYG?ju^|?JykPwx~Op! zvP(as6%Wo*ciCc3$BMM$h<>my`>LR6_)G&fWbm-(=ynDX zybe(0umL~4h>L)CPTf(I7E0V48gueWJzQJvsFWQF#rjN_gs2q4YrtIP9EBIfXkcgR zDDge*D}1~iYjXSR8a9YUtBlk1i(>dnMKA`c1yINwAwBST1?M?q_KN+}G0GnJ=MS89 zDY@wVkL~8Gs;T?)Ocis;qqoVgr)g?(XNry~ftWongB=Z2887yz1}*8O>dZ zPKT{$kz6?08Zi1PV?9b+@R{iP?`s(OV0Ga<1sn2k?rGq+%aORMQ=bhhbv%&At5*YRjW#EjNLs8i#?;-#|0p}|$I*GkbtCZqP7UGEal%i(s0?^1N2tPsj?4fOdwGb; zY{6w8m)mHZp&#t3$S^#pAN6q|Hctm$Oz{!cGZ;D;M=bw6qsMkwEAH31)>kpNhaHF0 zg^2-B8LjC#Y^?L9 z;0q4{rV_4^XC{?@YU~{S#uj2}+%0o07foj+!4scX@Dokg`D=jSR zkuR)5LR4-Pe_x{&_&S0;Z@%F1$u2BPKJc(uCOF@nsbtj1ob_vHYFyKcc+u{W8!H`H zJpCfaR-tZJ*buu!eJ0TUgux_>o0nTx3LIk(B6oKql8@_2XDb)@K^n2(C~=ouPbRaT z{QLFNZ-Za2Ti2N0{A;@aNZ(kGLLTC!>z~d2SE*U8y9e97R8A;nFU}rwik{l=V=xDgzJ^vL5wDjg3v+BoX-zjjciaY^z zuNmW&=fE4KxiJOup0N5UsffTh3B9X=;~)z?P?oyVFb(V z`S)jX*ArXN%Y%1in4Y8N&=X8~_1({_rOSgf0&CgZsW_`Mp@Bb`u_d{)6@a1W$Gf;4 z*?ApuGrVKdfjLs)7Q*~Jdqvj1nv#^~bJLLzy?WJgb^H3U{B3;w-@Td26!a44*#i@q zxSd?|TiY^2sHsUA&zp4!Z^w7)RBn*)hHGRNb(y~-is#lA#F0hu?GB*&8PiYr^Z$Mv zj#Oe*paJWSZknKGRj z&4`;8&4v+iD zB+KXyS*Q*u^Rn^xq=X~9=iko(xQPlUB8{@(%fbuwhk^+n?=!H?2u=wYL-ln)^uYr# zX+{tYL#&AkyZ+fG#-a1aQ1S@AExwpq1u_0h)LM#Qx%Yy*oiGh z*kW?D{Fz(F4m^6)Zu(lmI9_lggG5YuOp5@d%OuGR>eC)Je@+}A-sPrQn#LD$Vq9K&sI(jQAU;bRo3P&i zC(QAk!>s4Z5j_+sY|NG=7?Sql7lJk4Q@I$Y07jh^>ADaTr|>XAht0_RxQa+=T#-4@ zmCj(i-uGj1-zW7uU&Xki^=f%4)91uN?7gYafsWJRAr8-gcVl$2vJRz|)#-b9>aswe zePy+&DNMpxHiw>!EYM$p6xYDVxl?UzVU;)BtFI745D9Hzz+b%DnPRfqX z)=O|@XQ566Z;X!imZVV3w3=i-4CI_uyRtRWma0s6p9d^>S}cvPv66^{WB$v+vrFSP(}in=}v zx0xxR2}Kj4BB*_EWX3M)Y0L^ue2A!zF9HssrdHKXe0-sDvuh56ArBoHMo2^vJMhX< zt2K`5Ul4##^m7v2Ol{d&rFZ{Ghot}9j{`5{K z;`eO{&c^-oRGSeMd#>*GqS^>iU^0{MJg?B=_TU_{oif__3&MFi#vG>58o#u?%~ZMc zWApYQ^WyZ(vxSlIf|Z|D=+~&`X5Sze%danO)6?9x_Sy3h%XJ!-GVdU*O*I+nWE=)M zgENAeo|-GJZd>#Pu1HTO2NJyF5<9|)52LwK|9<}qyX}s1RpTO2h~qnIVduiJf2H#3ur9) zHVZeI8g~RkbXLBG!UdNMwr>F(;mN}m9)Be^y4Hiqv87=teVK3J18s)Aw}O z)lht$Z&RZ^?qSPAu3aC6%#eM|^Ab83nT98!5Mk*+2Q38hC~?nV<a_<-@v}F+P-goO*xew8v+2t62r%^$XMis?z=W*Wi4c-b$w5?+AEvFH`Q3{9AZiK z^0ik7k3y57ADPGQ_Ws|6x!;pdM2+uC$z8YeZIVjS<#}l3Z(g`%llWniQURVKjt=!R zghYk%CuR5Jd;o4QOwTE^Aw9(s00)H{oda=$dm2t6|2^Y@@-S=3xsR{w>)B7st6OED zr{8w+?sVG7V8g)rIAKqW+kjf+T+KQPAS-ba6Cat%mM1_BP3@oi&6xbxuHv&kN|^JsPU=}oy}N@YADAJRmz=xrZQOi_X);jk%L zqZM4b(PS4I7hc@hB1SjoOJz1XM>9Vgb*;~b;u-f>D&nt+i`D?($_E`X za(|v}nUo8?DRI_+^0z9cP&VxP%qYjQ&}jetcI5b+?$An7}m%JLTO1#5H@6x|0$iNS4D|6Tl^$-7G54JWPMy6J#6>M;>1GeE>oAfXSLrh(qs)hF(! z_+r`j6t;UK1*GfGT&9{E@H`VF{4CI&U<`)hqwidJ-*7iiHbpTznbv2x@E)1Ur}lV( zcLMo>Tgh0gB=|;PsBPxt8{$mtA=-B~#ZZo+rxFYij`0*JiHZBw&*8%8+Im$W4iIc4 ziGyEBiKaEQB~e+h+hrJ2V*$bZrhTyEcvDlYWMuG4}}#@WFxvQ3om52Z$~l|LB<3Gtq{4r*x3vZPz~{ zq9pD+@>FN7^V9dj*~Uy-rZOvO*ng;_?y}hp`AbV3PM(Ne@u4taV?%@v8^vED%s>k@ zSiPlJ7#F*=Us^7$uah=)jwp$OQj!4-O+}6t3&3F&55g&&j-hN=HQuQYyO7sCT=G;ydQ}qsHvDu8?!82(P>aJ6@=V z%aEqJ(Ki^sqy{_b=<-UErlx^Mr`;8Ut2BNzXx>z(T(kc_JFA^AO}G7Sd?3)UVki$( zPc3p=?p)VfVoyzpV4%SlUI7-6Q}yE^cxoCi%2Z7grZd<5w4qNdM}jRxQ>K70E>Qq2$h>#x?yI;;zVmx!w zL7g6t%ZlIO+!=7`O2`(N>0q!#h@+xx#%aD$$_rW6>+wiXtxcZizgva9jo?N3ufu*c ztV?j#siv9;i$=di7+Gu58-nmTtnBEqv0(Oj1w(dl60QAc07Z-zD`QG3g-oTffWT%m zE2C*p1Dz+8g7+M6eYWJLfx&(iO&FU`V?;)|uVJRHKhy8|9Ard5S0s`J?j!dYA{Ex` z3gs6Q7y&Q;Ahv`ymr3>m4mvTcRAMcH`O>NS;47c`tZLVS=C7yDw=KwmjEcQkFPD$s z8=5M<5x`$h^ndwAh2}EPbqz! zOFsjCNw&eOsW4^_NzJKV!RKF-J-4E7q^rzoS6>z0+IZ-9+4-U!H%1v1*+T@;$Q7Y%Sc0@;%jbcGFr4mr!-9XvtTJ z94Nw0&MG2bMJR6bQzWtg)dT(_8lh7UF}3ZbOwQ7SQ_f?n-&Fwu6Kp*>8VjxxNm_3f zLiIpJp*3Vhm%qzFtiasjl}zWAb8&i!+d5&)-0Rr1@_TGQR>p|Tl(uEux16B? z`3BGYVl}zRlK^WV=s{9zw_4Yyy5T0&Oo3em3Kg(z$OBR8tF=8iClKNY*_-9ndESsq{>-q&^#A{DwR0`#SyzgUU$@~nIdLCT+OYi z3d9YtxcEyJI{@^+7K?S-Sz)-ZI$;Wmbs|*}5E!E`A#Fel3Shl&X+lU8pZm@*bhzQ5P+1; z_RhlQZer@7CQSaHErGM0q?oG804gvQC?_GqZ(_5u_K(GKl894+l_NR1MQ6EX-Z;@ zeZ&URlF>o{(|2h$V2YGZ+JpK_Fg4kKH5AnqV0{(m|Je@HyiIwsh8~>AIciOu`P1xS z>}qQ-T>8x#E_*>d&K-l{A*2o`iSA%erf2t1QZMy?2b>neB?G{e6dXnor7)olXy&z) zHN|dYX99czfD6e-iQ!lR>(qOlU6>c^HV#%zpXHKkyhhTjoP{rDwuyQ2no zf4Jbjt9>y=RiDZKyk+<**vHi5)ti5@qCNnY)I;D{d_NTNOlDRZCmj*~dT~OUVc4 zuHN<|o!iLClob=dv5MSl{8*{`Tdp3%P@qxfX|Q`-`ioU)W&>PXU!G~qOJ3*l)-^Lg z6kAyIJ=;6G1Fo7B9?WrnY~X4Yhxyc-Q-@;;Z(_3cHw&yH0evQE+yTxo? zEnyC*G=7=;E#qB;UHy8Kln=XIq5_Z@(uv@k*9IXs-H<|g_XS(2iMxTce>=WvE)_+u<*y>pN?r z)3fCwAgd7`vc}z$+P>42h}#MO0Cff_6#UvglsTx&WzP~^`rhi8H`v!7d)lyzQT;}4 z#0gca1wRCGUszY-q(~ooP(R!s9&YQe&46DD8Ec zDyeM{mU{P52+wO9upJGyR)Y1R)+(BSk0IbaI}I5=mnAwZAdeR<)tI~aQuciTGGN$3 zGVE8Lx;amJ%or8dhODFwac8LylDpi3wudsiEb;WPC)+}qCzGHvP0ToR_!ojgQCJ;Z z7hlTq^=-G1mj^y2*9d(h203n-c&aqji5pZT9ddLzbTTah%>%Rz=-9EkN_zxMRak3C zpHrn-BD1JMpHPMMiAnZDFf_0Da!T&MEp?|biAd&wbK#PuscguhMQZX0OxCl@pGkFI zvf27TI^C5g$@8whZWvf$%gwx~*#UA~R@ad19A!+NoPmvgxt>qhP2Q#`>k5ca=Uxb& zJrthfcVu0$1%(HeGj!u@8pyIy^uOh<2z*$KZf@oOpQYsm>J7YGPHX#eY=B)AMK=R? z0|v-nd>_j#JujDX&z6PFfkPiw49v~mNItzg5~74Mh~o7Xmzd+eKJ@f zRf4#u-io+j0lOzkH7nf%x`T-Yy+es0_ znku?%dJG^2$7vEE>u3a_IP+Df%blli8AZYd*5Nuh10nj_6_-4bq9>EWd|Q|LF1^QzHASDG zICH51h4}}!2P$$c;Yz^JcFXoJ(27|0QP(Nw_pU)i=TDRP0NgsGnDVZgq&zrghgsja zJUtBfL<@6lD?@GtB0h84_l$6=w~wAT*?||o7@4(#kd$vC9pCCQQXRRHnfGBD&+d;GBxMLRBqg%$9OFtt zqByV`d`ZvAlCE_H%)eDtRF@VNRfe6#7U+AJ<=Gm|uul=YAzliv7sO z(0D9IVz0jNc3<%Oe(JrS;JWt!6P;wPGG&i^fAS5u^icw%9FR=H3kQVXYt-dptK`~m8NxSaOPtAtz)Nzjo1y?%8ca<*n8ee)-*V?E;EAK@Er zDfttxXHf6c$`kpp;{#_o7xd zR}N2#Y?_PA>j%H*ink%c>;#LzvJ6jE1p>=S_4qK!c+&R2reDrE&{1;bwr!|?w0j4B zl53)V^&VoSBSX{&8j?^ISQI>7iB!uFrH7+lPL;0P zfl7CE8HnNq5+p<3aZeQs6y!Oq8(Zq_-;e7k4V;o1_`j@g9@Wi#i4AQO6rBqc(mi;C zOO5lz=OW^L_j#{*@UyZ8mv#>IBDbDyToo;#+MIb&m?mi%R-)MK2Dyf(@4-f)sMQG}@`7R841h-!Sj?f|dSIE- z#~X|cqHIJeA-#~e!e}WQ{4gi3<$1xF*4EFLJx>#-9ix|$+kj>liGl;xIK7m_-MtUM z&dNi8l1kDHKc*b7zTJdZB)OLdBdkU=METtXE|P!%gVX2a830qSq8TJALUoYjD|L&%XDj@?(rTScRWlo-z>2~$5 znj78CGHWYUmCYux%q{ZK^`N*H%NZUq2fFlkbB&n#U7U_vT4?xL+3$7J>;>cGEZ!_g zez@#H|1n%>djDHaPayxms_l$)Z&C7`>_OID(e_58fZy4BJ%LI+&)=c-rwxG^E4_)mmXq#gZUDB`*AD_H_ z;culjY#hndn1cFAW$?P7;Iob)JgEC$`6GS9bD^8{pql9C1_5*PBt~+zyuWf8==Jl# z8KJ{p;a!o<9k&OF4#f8<{VV5OGTCibwjsV}CMGl@(h%tCTMp2Fz|-ydV$#uv*RA%O zqaOopdAf);L-g7H5LhOM)J7AJ{+-jK*Noyda693~QCGRLxt4N8m#!8zp5t6*R0nVL z##3FLWTnuz#QjKCp3zK4rUiHeJs_ixS{nSAA{U0G74SksjcB5FI`i$Q&6xv_5@FeH zFs+I0p$_kJc0*!ZxM~!4_*N>H4ktn~zqbdHve}u7^qPl6`zP1-ct1LqzuI#?u{wrBZ)vtPOZuM{~~R5$hKN9yC09msjnV;3DY-yA>@CY|t)Gl$W&;uD`v ztGurxu2#?Adgk|nUNkS4`{SsJND@R3wvjD(9k zQJ;ZJRJ!c}Sk_y+NcW%eIZ0F*TKH+7WcZGj)b_g4Tkd%VA9HO+5#eNK8U?4u@Y*A@ z;va6iqJ8D!K*K_N1kow;7se_b8v7hvQQ+Zb%bAK@`9cGzNX?AYCWn&Kd4n2aC?h?| z8C)E4&_X`doKQ!)>JeEfzt zF0Eh{c8E6b77`+R^2V0;oyiKy{!?FhTB0}uee6^^g(56~*dahGLreX%p2NfsUCvG# zt-&s_0Z~<#Q{wvxgCEL7C#wUxaPgN^0b+qg__niba`|r|2UhXYWew$T`m1cZ{*u|) zS9&SHOJO{`JH|dX#o{ZMWFqg}xnR&+tq2TY;lfn}SqkEZJ9|TVarzajWHfadFxpN5 z%9Q;zsu|oz>D;P}0y~UJCjVR|<$i;jdI!l6}Y@L6fwbk<$6R%&4q?x;esE#WvN+J3;b)Cu?)5)oCva~x`t z5C*`q`931ll;v==5>f#Gf)#~j9n%Mw0rKncfRysTRX(gIU2b*snH-{O9Qq5PYigL} z?Gdlo(G|pl9A?8@B>X)B; z|MD|B%G(sV0TXE_`tq19Gu|%v;uFvcf~8Z-%bcEL!tQMr2wy_j8+o+#=#ab=4s$>g zPPIBs3t6|)gZpWeTg(QGwHOYY=3^(L$venNX_P}KE3IcOEP-*1ix;Pu-S#5AwvgL* zrqg8L2Ywe1UhK1Yy1Bh@al0tn_uG3o`@-elU&hZ>=8eToh{}rUcJGk0mJb;c?$3Ts zn^y0+xw$evns2c4)X{K$=BaX0XMzYD_0jTE@$=j%{8G^DVfCh2;8CcrlSzn?hSySO z9>Pzh1W}!Qqz(O|Ok z>VNwoBP(g4uLfFik_v;nJx|*GH;k6r4-4);UQUPIolh?PI$f_d%FOqh{c`b0a^=fS zX7GCSknp$@|Kv_v#Qs^H#=l}|zf9TfxW3yc`(3}h#=UeqLPQpF*-##5 zkaHAM|5tAFgIeK}tvj0~$s{P#=~D>SdU<3Dg#s72ktZRoXv-sKr@k@o3}e>Uh&|l(wM001X!f7kvP+a(rp*dM!ovd*j|3H^|n~6eC-SQ5IU) zangigN^mFO2X8N`JP~8+?e>^i=m{#CDh(U4R?7?B5oa5Sb$&h|`eTkM(#>3-oP3P=gv0$(vy-z|vX()UAQ7<^E zcbYQEgcIMyVT7x?EJX+Fs?KpFJbnV9`0CHYm4rwF@^@+aP*792!f&c~xahP2@rH*l zW{f;e>9Qi*j|i1`QXm`Pd5$MQ`ka9mX{HTCG?n0=Mj6 zdtSt)>lUDL4x*oX`EVD#-l_rNhKj#^U#7`Tl9DRAe5MWLJQsV3l(K?gG>PEQygB+| zY9105LdG(*4`kcqdWR%4DesW%`a0Ef6&F#oS|_r5%#_-P0mI!Yp4a^!?f>g`*)^ssNZ5gTl2Ke} z6-~$;G%NC@F%kD;JngJa>Vec0`G605X880L@%z|`<)#Bk+6qSLp2Nt}k3##fr|E~{ z!308ho>=f?g2#Rv2v*crY9Hvj3Eo(2Q2mqt*2-Z70WuH>{)4>(o?0~%RkhW;=x-cP z*YqgJwoT6N{}<00IE0+1?24^t0~kLYB^h;ZNI>@%j9i(!5oFO-_%~jSl9$=2&C&g< zi9ziofNpgML%YbeZHGIPgEkz?Xu;sAfG?tewy#9A%h#1XFP-(Ydr-Ni{P^rqWxfQS${@K5Ur*sP zz^72iZ4?2|LpW@N(G>YYvsYY!QE;CBm@sqZQ-T2=V_|tx2V1jpXYbyi$l3z`dLh4D z7HW~a$Tq)uw@7CY9JHbEC~VJ9%v~XP^`LA?W{>!~D)z424$wH-W38Y4E|Cmg5gihWrwfp~^;FiCdf5rUS>%i@^Wd(cVdPw>L zPjlt8R45I_rWUWsF7^njD9^=IpLjib7Gs=q=!;+fvQ2cxnK{CCu-s|eU%tdti#YdS z>JFA{K>XYwhc?nCQkJ-f29lWs7%g8-!uUs zj?{o5HdU}Tt#6u_48(xswOd{xs9BG9-qR_Xt~*8~2LT6%VRu)+@o#t;yX-vn+BB>I z%=TYg1jVkU_6RC*-**x8A#b^=n0B4r9u2$VS(_rb8JRJz4E{oq590 zIzDJe+*3nABz3s;UOhu05~Nz=184!5&N{fTRE?92L)Z%K48oBQJo=>O zGAF-|7iRt0H(o;%1D^6G}IM;drzbS{fcVbAAT`1zP7+qWg(ICcm zD88)EQ8dWj9;H62oOpiX5 zd51Y(kRV-KdU&_dAizLHZ_9vgvn!8td2vU@8Bz{w1R%*aE%b+hskn+AXnI_DxQJRo z)1fqeYG%vRs`LTHf|oe}lKVD-GkTs0GI*GtwF2HI3g^lpEh8lB_8lT8^kBsWd?26H zz+5_6L9SwbNn#9XZ^L;+Zh;tJADS%eq~ziXqFIw0_k=I?Vx@=K8_oz-8~2{fTy{#(Q3hL7yiQg3<-O&A0ai})|0V2(K4 zZ~O(_hFWxzaRcy^61&cNs`2_U9W2(y!#!}Rt2Qgg3Vx_F{~e$S3lm1I6J++OXN%U^ zzz?NKLjyv3hP1MI@;nZ(;mKLl=CBWCin6vYnuTf9mMu(_Q3|z~WMK7JT{ETD{f!Wv zsrdN+hN5`cr?gh`>h{FKu_nA|$T*cbJn+Kg^>!#R`U_>kE_$|%0glJ|RX~{R0o|)l z3tM`F1GDf?nI`p|;nR+HkL>ckLB9Z<9obnIU_KYMN9J_`@AHwsycMZV{daQ`XM>~~HYxS})AT>GsNfLOhH z$(D<*V@Z=HEKI*Qy?E(6g$k-x@>=Y_%V{~&-&ox}s{lZ=xw)IUeVT*(-<3>lB+t_C z^3fH$i<|tFdwYA&zRPbvoYxr+qq2NwjKVeOTc|mGU)i#|>!u@HqR3bxF3btvU5y*f zbiRkv`-{Yl@<(w>hD)SbwOlFNQ<=QFk}(@(Dqq;VP=0Mr z&k##~X0Pbw$+vIk3+_Nbdf~b(pu=?XG&>CPm9%>Uz(u5uO3e|Siksf67e>fpUqz`- z2Lm0MKGDz0F*5kANURdP@rxKJxZ+v$-+u=?+f2br-py9$+rx#{XLDV23YWj#3-7LF zUSqZw2JVldErklNN1qA4*>5Hj#Kckk`x-Ky^P1WJfZ_ExW?Q5ggQ9A_LG_6E5aeT8&Xp}K)_o$ZiJ;~c#m-S_8x#)tw`=W-|Cus`Ut)SaCRA@_o@ zz|L3v-Bd1v6}u1vk4)D;LGyBfc@e^INFEsnNyjWJt!fD*@vt)y#rI<8Mj{@Gw$h2? zJars;@)?Ja6oa9h?5uGt&XeNIBc_Xto=SH@K%UEB3hEY(fI6|5H|zl|7iS1-KTJ>W z{ReZdPGh$U6d%5irb(%rA0mR1VpLd-FY9GfF=t)+dBPd)@+?7Ap;c);HPlk@jZ(+s zAN-O_k8TaWoG8X#bn~|I%xu&nd30nHJXBc2TZ{+J&3~}ZPx3~90!tE{FoaXIQ3@NH zIlr5SL5dm0K=x~?y+h5bKf*N(b$sO9F%CVSQn}(iXdO%)o3&BS$D*gI5yM^f#A*4% zNIu@1sz-qtX~$i4-oU?EN2TG-P1=>c5eJoedCUL}a8W>Y!SC=*ZW)VZ1H~Fym5Z$V zb~`%*P@jNre>gUN*bf1Ny|Ei3jZP+C+{55KDi)L@gs+mdUuk#IOTQu{ zt#kaSi8X6KBS8NKEb-VJk!qo>y>;;u`%d4h7P6=6sVZgbfRZ*ndiX zq|Ef`1;k^*v!?{)50MzkTNxp|p8s9vm>*s!!8|ZVCIa_UhK_VDWjsHk%}x%Bx`GT} z;k%|YB%tZ}d1R>GC-X0SQzzgT1FI@dl{$sm2gBsbi8~5-p2`I1+SVD(`>HuE%^-+|l>~*d zc{K05vm(3awcmmppz2MGW`a7zxR3GaW9dPmn(?@GM4xOJXEGk16&C8t(G6-9L4uFG zNkF;IB2Tdx9da!)jQvB6ckM{lv#cUkvM9L09N#~|>UuuaPVB)H+3~{XJVat!HP8&1 z;u>Bucy4$phIc^V8B~dP3=tk3k(QlL4OV>}+nBz^ph7BQhtn%b9EN|ETY0==n4RuX zvz<(%E>-?4>eLjXUp+%^;L^q4RpD&nxz^vFQuV&AV(*FNqEwUrsc*(T!t}0sHp$|< zytHYVYrd7I)osWv4u^fNWP>j-IQSg=A^~~5S(Rhr9?bo4;mzUc1JC2dxzE3UG*%S_ zx;S{8T~|ePtpM}V`+uUXzBZMAZ>jQ?2b(0T3dbDLUw>k(t)%sY1hJ!B-X8PiK8K6) z-XO&!V+TM}40`{EtGA4b@(sJbhmQXsHMBGcg91ZHIWS1~&>#p5EhS1hfRuz%(hWm1 zq%;U3-6_3RvPNa;w$Z^y9?4y{t|NO<8S{%0`t3h{`REI;!jG|!myz&eva5$!5{9t zLtbINsv7(a=pIu*L2tmxlo54UKpUWXJ5_##^Jt{Ta^q38f*$f&Tu);_k|GT42TaLP z(>=yjsE)gvw!1UWO5dyp=QwY7tNVJ98FKXJUpM#;oAY$7M{}ppa_aGoqX!A|8JWyK z-!AzWL!t7-TK>|ik`BIx(Gv%M`EC+OSm6hsj`l1rYX>6zWxU5#$v<5TUg&-N;@%OI zGVIXN;LW)=B26E`0-Tsm;LbstiWy0DghQgi$27w zSN>Id{Y%+N#_zOlh}HC>XUOi_UuV*OG}Wu)CKBO(G2CZ3WIU)P|C*7ENzHOMZ;l~! z0kuIr{DV~GJ-fZq!(;vmyh&1ZT?pnI--7zmmfxA}(m3^u%YBU1UW6qLc^d^6*hRV3 zyXiW{S`luadtXDBJ?efc%$F*A-cp1w1GNt!8bk;t{5`9k3UX z@tR-hB%QZPdB|IiV$ZniW`{Uodr!#0a`HS6-EB9+sQ)9kE2Z#LUkc-E*)?Q{Rg{1U z3Dah&Ru_d3^tO2}?9;6(9gLEyCQjuctn_@9md1!>y5gog)Sn_I$*>RmIO{H?I*vrp z1!4*~86TN^1RNYir{>;{2rEdsf=>*?hBm+SEv7W;yEl=hI_Jd|6=wJ36l@mAPIi7| z=hF{6jGk5s8sJ4K-BW$mbLR`KTC+0tq*n>`*e}o)CO=%fI7xH!0&ds}@>CKp7rA5} zrx*Qs_V3=iFFIu(PG2MuJ!mzvAF8bWpQ?jv-m*|2&~zzmWv{RG_~}v}bL(fJYc z9Pr;p1N>iy)>qQyiHSHd39K>H{3B@GS(TK95cvY?-2w2sf?=qZMt6~UhY4s-iKPS zUnX~w;kNAR;4)xwqO#jIH6qpmT2tiOi>-_`*~6v>yPlnk@LjE|d`o+dvRSnaIWUjC z#I{1F$If&=z`Gzt=)TFi<68PeNEVkddN&rP&;v_!?Oy+-wV=NpyKfVl@}R%xoA`Tn z{U*r$CNxSeqmmj>tJ_Tat?4)(5^2>JDCy0sG>SC1L+Qb{1*f8(1@5JquNjkiYL@#C9U02J(3NRFS-)m);h#R^=7v?6qlxFq;LOdRb6M1Y$sO;RD!h{!Y2PnOauO>qHb2@NE}d-->!{X@H2Ti}tl4=cJ-Kwd zJ~$YUS(ZRi4&*!J-5Yy8_)4yhaAmD}zvri;MYl>Q}e=nz3 zkH=m9z-cQU&}Ng?zo@7OyuqQodO=b-!Gt#$kT)6qjH}XRa$`zRpPo3xX-d!2fsPZK zuyAk2M9=e?=Lzi`G|m8QalK4;^Bc%7m^bWv`XVf|A4Cpewa`&;gmRJpGm$QKhW=*( zG%hCI%4{VEIQ+oMoItl)2#IY6PKC6gPd~SGZ~Se142OXoYhQyTcdieG53`>hPKw__ z>NcL)XBFx`^8lMR2f_MOCzm^N$iZfV8BkJLsc`*V8n^KH*{5!Bo8bV$nY};y$6xpS z#@1X0wsav4;Ngpe#xUMz;@=EY?oy~yrMcfJf0Sgh$}-u)p}x zHqnOva){|)i{F>wB7d7u+rL;f)35TKSgy7&CjEUzj#!}l?Y0%{kjm|5vYWUCFo!&Z`Dw~r z4aveqNx@8az;L5OY0YWV&Dyblo#|b%->+E3tp`>^sc=2vTb{`zWKuQP)j>5xf#30a z6IPNt*UaQeSmNVu6lYk0hN}BkRAYFh3TsQ>F14CD2ZEW~gDLoN_P3|VPKq?DNuyX; zxK{=9oIdYqls0UulHl~8XnyeM>^L4NRT#*4V>mF{W*~JW))5=ThXlJF-~mk`DL$G9 zHgpr>WhkMLMJ`T4guLTBobx13PE*q=sK_3%9PVP!_%;s?rhWTR-&2fN-cxaDpsbo} z32FXEu8{T%?Z`z2+UE=Uz)B}fo}<#0xCJ6nfA2R0Y@WC)N&eg7nL-d$8FgH>W$(Le zlv0q&?hR21XVk17AjocgMvx!isJ}C< zl|la?mC+FBwFoA`s|TCS0xPa=!Ia`m+RHfD`N`7(-Tmq3D5Rq0&^JrJTE5VG8`FRa zbKhu{G3hqLr)}T$PPc#Ijp8ObxG0XDlMLU6E-{~1UB`+Tx$uaxT~_z_=~qcDXXoo0 zJp2dnllZ}|9MaqfE}GD1=6YP6lHRW(B8a9TfqjW$wxyIw`M5D+UAmTG^Jhuaka7obOg78k!r1F;G;+YQAX-RdAa7fNAJX>T>}GV8EvqFxz>*-6 zT~Ig}a$-cp@YrA4O+#4pDr))omH_g&NtnQ&#lm)qPGn5H;=oJyth}u6QMg%H{2bMM z$^-l0o+B(v!$03Zcd%lyD4Kz)pVXR$h5a$T-55qQfqMh`M>fyt-ouRdBeKPEaKj#} zen)H5fRpszj@+f+LAgH~K6;KwNAu6icX38nd}T^Eaq%@;K)EiU{#;Hhj6XJOZ2daW z*H-2_UNiMFI+v1$3=pQje{U3TtgG1DPe8x&a4yfSuLNibW_mv}xy$A`v%UteEqt9g zsW8#Iq%Xv;AIp@S{0;kFcG3hTQU9t?L=I9qE}PZ8-WGnehR_*t*hXK7t@Tv7Q&lIq z^8Jc^J(?+bpx%uft81O( z=)&_d!l-3=T$z=>V3xUI*O_IH{D2)Yio`R47rn^hF<5;VI}up<_0;6r9|WxMe*0(c z)eH&PXTBzsb_k_j<|YYugRM|Lq+lbAQNV*5O+ zqi+U%r!C)iv=8NtbxvW~GJ(Ri1^zAys9~RIm1c?0}Pm zvIXDcRnAY|i<9=qn~o%MW{)k-wiX9-(~KuM$5RRO{Y}F4%r=|xXX=VG&yj~O@bsAF zt(O=ag?{D85XX9{@n2)M>;=g6hOax9sQbw|v%DOL8Nf~S*MvCNly-ayUk0;&Uz6kQ zIGz%a@PI6@omu>Wq+(oT(67WGASnTcE=urk1 zNctbT9l|uY2bC1awY+h7RZVrXT1Ym)&Om`qI9RU^_^^kx`{ZSVo*o{-Ladnp@2nM# zQceNouzVEOl8?X`n5^#`_=i1H^PDDDNy`KVN|hWQOTu6TlVuVMIuH_n6V3A_Tj9E9 zwd^4U2*Zlk1)^qAZMJcQ+8%D4ki=VgT`VEN#{q6#I*vSlNJ#o=%b4J+cR4{4(aBL zG$rCPF@O&QmN@1*{d^vVZ(?P90(6$VCJl*ubCuEwAW#8mXLBJ=y+hAD#5oLtI|JBy zp|J}PCQkHJVfzPm7DNG*&%aM&8|awOy*>^}=5f(stnUTF*PAo9h3x~e5cVqm{z5j| zD1-rZj;n-sxm(1DKTY9lr54#xcU*i2H4wwTGd%~h5%4Cqdx?Y^_w;7}9Q@F7ya5F@UeSM5b#?Na!T-=)I1F^Zv--^ z;@j0bXCsD7sv(V$sKWTcHn4K9*oZ}QQAO~Z^87CWeokYDQzJ6F z>ZLygKb5ku%-1!P)Hb^2_@Z8UYpN=_$Zsv2J}R~Qb6Gg#RQiM0J-@M~y5bAgHK)+G zs_ComD|A7<@8^=HdV8Dl!ZK{_mrCDP<;S~Bo4c$B6{8n93!l!}OYuqs9BD9WWQ6pH zk+8yYx1wfIoLm`R7|dTUnsh>sL*BH!l)3%N+A*fiNMfaKQfp}8{N!kFO)#J-JAEic zkem=t?9ar&t~jB^pG-*$8-$;FTVP|9#qD9rj0fnPI5wSqFtWl%zo;}ei_0@t6G@L- z8xy3NE=uxe$o#a%sP!<(A0+~~C0g)JXbN3-i!}!@3VBIJ$r9@GTMus%<{Tv47A&mV zmk+)$-T{Ahy@d>zow@quIpOIHyj_=u9obT7fWJ;Y}U(xzs zmOG>%ny>Xz;C@q_>I*krLxMg9mrisDpMG1tJEu-P#OG7hwgiOVC|-00vwU!&s~R9A zns^nJ=D&9fey`t%-g4nvz}cQ+JqJc^q-erY3CG&QU*Bgwu(G$wvVfay1}h!5f;-u9 zA|~HGCACoHki>Hb=jowhN1Hg=e{G2Y7i0(|x-z-q{?^q`jE z+8K|WOSRZW120ncu;nG_94B@)CJ?4m=DKBR1KRkZQ-rISyNqOF_=w*&y=hqn!C26; zWThlhn)pn-?R(rA-=DP3ND!NgpuFav{tu92eD
TvAZvd)HH|8Y z=gFGia6FV=8Y9Z7p@ic6%70e!op*jT2p^{Tr63X{zt9hhcAEw9(k+uvAnOWgM~iLg zhLg`F$(}_?Boq^uw?H5@H|jX;L!Eoz7lJs`z@Y&lGz=BH9wRim6BVBHx}iO#8drlf{O;)b-w@~c`$1ugeI^wpQ1hCrbU1N z7nZ8l0py9OS=^9%FrSun2Yqu|ukCv5_HtaxWGR&U88>~f!S%r^2?YY=&(bt_lC;13 zDxSICBYp$=jZZrHn87qiL%*o~cjbqTxSLQj()5JMcd-^Zj0Y-NMiX;tc=AhtpV&qZ zbjWWzw*a`#=qU+%${p*_j&9^eoa~1Pw;U6EW?sEB9rr_Fl;(!VL>z;8;iKxSM6j@S> z>9@cjyHP8;e}@DYT+~JNw`Qrc&rT>IXOhBrp40;nZ}$cuO|7^Dp1)o2f=VDHIw0|` zDzTW4pPt4TsNw+AW&f#zkxhYsI&Qu;1kNRI3Sbw;jt#x4!8%%Oh>{}u0_tLcI&>a& zh6m+v>?iI2|0z%37REvw@N3-989=FizjXCMrL=OEm?uedpD$KMdnjl%A)LC1Oq7|r z&%itKcKiR#^(PdP_s^F)(EG%Ve9ZFH!OBdwC?Qe?)sP5ju?7b~GWgLj`sud%_mU=n z>Drka5)5!Ut1&p~;><{{oc;EDiS6U#y2Oc!Pp)PQ`nMw8-(CU!1{c4fup-)pw$r~s zqnM!Pbg^xA&P3}rB@#&}&Ld#RX6{sb{rT$yObP@G{F0l0gI~B!)K`-y!{@wc* zM=Fodz~tUB3G$y^J`;Uh@Gbe;G$%5EBpCwqQ}P|YuwHcwh0uE^(>p|ZNJi_b z#~oRdj&=R;TJleCJ*jZ*xmy=+y8z}_?%hDVd$1dzc>Ng!`s1Yyn0f0y<|wTDh#2_Kba8I6etd)4oG$I?tf&_DC;oZ#Rak9#I4!(XPD6yK}*M|PGy-uMENM;k|}YQ#sXeF*jg-EdvBQ=H}i%}1C)WJFw-gR!t} zaXP!&hZbkfXE1G*c!vY?SLugDT?ws)Q!i?jOCsSg^?^Jk|1dL{&Dc{i5|^3J6olEb zT)P@VA8a@D*#vR_3yh)17V3`(ra%#)N?LKd4#b?!2i9!imXDP%^braNFSMkx<1m4R zQt)T|?X&%^-=Ic=qKdqHeVBNwD`L=o)RLO|0B#)Ccy&fXhyEQ>3Cy(=@;#zBUfq!$ zR{Smo^Y(ga`~ke|I(DF+^UJHU2_X+bGA< z5K=W1q(uzE>TL?%TG`OC1a|_c@60$(`*wN6$t6Fu62`JeA;{q03){QjJrO9(NPR2aV9eY6MgD2u#pnB?aC;H72Q72QtD!`o62A zU0*(^+%4$Dd&Ss(4YYcL^g=`?$eNsaaXR(XFI^)RVD*lxYgQ23P7zcU0~G-UUqjq; z@H47ZKT2EGi*vnv9zrSpv}NU-J%gnFvA>9;S0d9+SCIqSLw`3PP1l_0`_40$z_{|>W& zy=aCmUPALCcu92u#>GjsR`6+8kqgH(`e_@*jJvkHoT-F-|2JweAo2qx%;;Cj5Ck-7 zTypK_q$C?DLmoToPd($7!ukEdTtJedpISbSmt|?|ts722i6o?O&;O=Hjwb;nEyS-^q+d{&i+Wf|LYhFJ|!Z-*jI!+p)xNc;!PG_t@ks) z2vNncZ%5!LcSl9YO;MfF1VuU%2QXb`tzfyj)q`06%=q0%oqb67 zCJCFg&^w#OMuMnFY4&z?O8M-ZM$-Hm$gInJ=_APIE~yIBLL zPApYg=Zd}46Aj8y74g*xUEGkPz3zv0k9s&su*#(t*QD%56eJ^b83;koA6R z1?^_4P2lROz;q2OOt?ebJuk9_&%_RkyP3az(?$pjH@{N!8=0L5pmzAtY2dWYnEYL| z;mxVXF__=P{BlRt>F1mB5+}!A}n3+;iQvknc`B_MdlP zezN!R+Fe?*{VmIrE_RA|-+PGlhm|e5Dz{I*cK#b(v;9tI47vG6-+OUJfr9NEDH$`& z)_x)dbQ&H9p)hTCH+u*9^RB>x>z6w+{8QWQrCaxU5ZCIy<;OPqx!nv%c#VzV^|z$8 zLP5VR8l&eOCBOfrMBwjP{m~5OojVz`45RVIE%2gFoK1^ow`UHMZJ(|Mn<`354%oeZ zXG)Rf@}Ds<1(;{pj5)b(!&fwD+Ap+{j#7F*yzxYBQrrK!ipawa{xXQ*#;hW!?W`_=&5$v?0G@RQWKo=-Q#|* z{^I&Taz}zudkY z^pB<~jIKjH8?F<=P-qOi4=CrxH%Y3lnE z)A)eP^s4aG#csJ}=|;TpA;IEsY1Fube!R`A^?A!Kb;d9B;j^Qx9;=dCaeABrOaKGwQ7G6ma_7vubt_Iwy=i*n;?|Ue<8NkLkbb5cV`-ZITHaLShk+`{%$677jAVir zpFdepqQG27!p7&^5a(C}CEG#T&E{#4CaDt9Ip#3f&eqL)`QRVX!AfBq04eAPd0VOc!QdF(duMB(^M4*TyCPS3 zbcOkt#uD(biJW&=3k@o4NX@IQLO)6PhtcxTpWC&OvS)Q-RW?;lp<`cIw%HQN{Jj{!S;P#>M; zwEd&f>5t3aFXP5s_pQPD|582~KU?_Ab252k4(9~#{kK0RC;q8Y6et$34EN*vt4Hr9yzb3y-_bbt~+ z?0F0NHH@DAACKl{VhFhajIJw@7S~ol1(?UMNcu?yV6)VU8^N=d3b?(-yC)&L`0~r2 zhNICZD;L1s+-60^fH+X0!B}9+pIAnW)JPwH*&Y@uD4+u zObh3Prc15bfZgm>FV&{AJXL!vZVaz)ff?ZeAsOZxl?j>XT4bNgQOj}ZEJ*`vW!MIK z7r8b^D~tRT|8aH??0EjngQS}8S9h34YhwUN4?nq$baG(?_&$#0n5HUbN_p__aF8? zdV-7y{%t6_WzBuO1Ti>g@Kq>2f`y-?qly$WyV$TrVBkBVSs6D8F}7gF`%DLw5AP>_76$q z`8K1i4^ab3)D^7C%F1x=tEd{}Myt>>=ILN?8P4?_iq1WiJX4PZUp_4s&0GzNBO+W> zCG6OW=kd0wecVy|t8_wFiP!^0!$ww+l7`oF^5Qmd5D_lNdy;|iU4A>`SaXlWa{WoA&qR2*0FE)#& z(!!IDJ>0-#%qr;MMO?BQp`aikGK;Q^SN$3cv(@b%1-_r-78wAYG|$>GMbRNs z?$}~Z5-KP_pfXsm4oHdZOwRDFR35Ut;}Ja$E$OpF=G+E)!?>IXE_rjkb1vObE6prg zy(L&OJ_lunNJ+%9Zod#{g{W2`^|>U7(t(eH1#cF}EU4;9-~gCyok+FMVpi68c#v#d zSh&QSecc>*Fd@<(<`3Pp+)p%VSksLqAmKiZ?6ZRsMa8w^ELP7uhj~~rw68+b^c&u= zOXq5njyWs4Jrh>!3A1EF2GJisUqESGoZ$1oX8~LoNcVqUlI+F@!T^wqB6V`D#C1@7 zqOpnq`tOwxs17ZDH>yv>8A-+wOr7NBmg%PQN~s}lk*x5*oi7ON_rr4VD842#A@JV| zVcN6!g62exFTX^AZ}zq@kSIO~krdC|Hd=h|DE_dGmq^1wVt_Lcjs&5EiM3MT7Xx-q z@9dil=2{{2gmU1+crtke6T(yxV6oV>>Bk8Ue^$pKtn~o8FWB$5SMgEg<{f%H)L!7? z2xe`HvN5Lluuz&iPz;)o6+RxJHYR3Sp5lO!9YBUSPXTyjao(?n2?mjZK)QP<;HYs` zY@cw2Ptm?3OClV55X@RJkKe0Q0VP}-XERh%Ns>Y&zr)@S-UXhyT%sx-Am8v}pGiG~ zsf0YIm1ck7DukUM|NWK;`UVPk;-E;~>(nJ?ks$Ph5Ry@0E5knXT$-IS-o}_)Rxxv{ zU;;*Mcg3Yk5Caw3!i(Y#0-{Q8&WU()=}eY6Cjjm(VI7biM;EZ6o}|bf zzS|1sk(D8EhJ}0SN>Vz+#wn%7^NQmU@O0@{AvUxA|s%`B`7{t*s011TtGzOWw@X*p70O!3)KbnAXxvbbT)gU0>;%59;`vxx}~5 zQ0W1ZIQutZgSGatHt!nSbAep|@91y7Zt>3cdejp$zlrQaph zKsGSG0s&S_lZ{cC(TU;w+;lgu-!l7U84=iYBeP|0PAUU#fFGOXe?zlC0h`0Vi1{ar zyUU+*&JU0c!qLJuuT#foAtQ0KrE*-4+cmzPrpLA(wCBVRed*SwN8}VDAwBqXy zLR~MWV_Q$=`u2>c?r!Fs9*jAm0U_cgy7V$KW%T?{aHPN2%5Wr$so!nal(J??({+#{ zEBrFdbmPa(P3238yWf&~(o3J*v7>jp&-DDI9eOF>Jd$)ie3$Qk_r1;Rc(HEEEL-Ai z=^?ffeMTv6j&L7I5%gXjequK$T(=f5r^a2m&i`eQ(aZEwJn(xxZfA+c|TxOxwgRw$n;^=ap-W(qPu0*hk zPpl1VAu*x1N&!q`ymvHL(-VB#vTklL`N779xO^80Fi?B&7fG^bBU_;hY)WUMJhFYx)^iVSLWN`xb+&yS-9185j+^8E3f_Xz9YKqK^4fIpU1F z^x2D0+g9Hg0v!Oq<3X2*Fe*Zhj|fo;41st6&@P{=0u3-3j7X|%O7V3$jTZtLprzm1 z#i&MQlfGNwq13ZJ3Gb>?M)Ie;%MI$R?}3F1#Y=M;4yZ2xk&%Q^fL9W(!5x8+&!H?G z49X5TvKazJ5~^diGB7HGKg8#2x$2*j3PJ_$_Glu3b_WqYJx?JwmPGAm_cTUfZ}G8s zQKD*v=@S01--~Y*k9$PaI&IkGbR> zD``M(P|}XACI^5{8PDr;JTob}B|!p6neA=fx}6fq6QI;x@qN|?P&E;{J{W{Erj<++8;%ZsBp8-1t;uXFw&iS@8BfWtMuzr= zES4XEiuH)8unNnfiskFLFy~+nf=iOWDbiKA6uA9zeg*~xUc@|y^-e$6LtS6KO#6!V z^fa4`r*X39H>q_yY4$caaml)=rTzY0+{O9jPTCh6m#f~^!pE9_vZP(+<)@q&O{FgB z9$7TzHr4yS@-VY@cd_0mZEjFBC@bBW1-_~--z%RK`MBtvweJIQH8ZDxh4ycGG$+7) z@+f6;Z_9oI5R$Yo6Pvlo*;)ni4C5#7JNCF71L!rr69?%9yGx2}AALh-k{kHtS<7>-2T zcq|eRiVbgaFAa}p6@w);A z3udiX^Ly(z9XU4hU7T>10Nhs|E)=Fp-g@hRA0ys`BqEgZ#b@8VXfE|4R1vWQXLuG> ze-*wp={h_ywlJFIa-dKT5pcX$iFP{)G8*-H1*{kDKfV~;Qoq|ND*QQ84rF)<-kT#< z3I;^(rHSq(+ZzJN2Hzt6`rAJMwsGWy9B5Q4sC5lkAEMKGvf1+GW2@iqGoF!~5ziR^ z_0I#1{4daZagEP!7nd8ak4vpzqR**;HU)CQCgtYQkM~aak^yq&(BDbxnEsW45}1Kt zoE$wNw&eHhy{h}2yGAbs$F6PFor{%WLEl)}LH(KoBIS8zX?s)T{ff0bpe(sq7_TbHAiE5EbLst{(IiAs#zZg$$aw13IQAYk!Da)E-ezB0 zde0M;P2Gkg7@^-#V5liglAz_a+DWNqbj;_6LObHV?bNHJkeU>w8Bds0;WN=Oc@H?$ z)J55hP@{N4pnXG&>B3mOpjdWhm-O`{I+Y~u;etFjfTtfH?+ztaa5ClyZ=taAdYQmW z6gW9aF`E5H1&{m0<3$`EMRF84UYMY&0BE=Pepw_6Lqc^QFeu3_avKm=b-MT49()(q zM~OuOlBOFsWd=2dr!uDbLqW10gwR$uvd<9??CvF8RW%Ey2GwySZDd{+p$5k_X3wJ& zQI1d-{G-I#L=%)+xm)~GayZZhM(~J85X4aU@bZBxUrla%)UhUnD+*g$F&GJ_cLrJq z%1JHh$1{J#S*le*<<2(&geCk!2q;zrCAUIZ!Q`e>$(#C$qj)X3N-$grPnsBGUz`VY z^!Asrtp*qlmY_i_j)7XTx~@9d8MMX3fL|cRy&)op?Dup4?)Ex0Y~tKwRq4_DQ7|81 zH|5U_0`dpRAc$5*l-l~!(coAZtidf_j$K%Z9zK%1Xpr(KIkuKtEuU8zH&!5A_fcCE z2DP8~O#{R8)+b5UdxlWxMgEMw=k6{i%P5dGP#_$^fKqAX_<$;K{Iwj-4+d+*zYf%c z*tM<0q325^D*+uTxZuz&`Sc=^eG=qXE}+(yOZnsM`AptEed<=V0v=8gVB)Zy^#FG# ze$?qHY$uT=jA9fr)m(tP^Bw+BQOboNhR5Sp%*QU{(iQ+5#%W6C_c}7x0=@6?)iy=2}D2@2P+8VE;?1w*ZJy zN)D>L_^ZkNpKojEBq946-y8yGajgG2NAMtpA{a*-j80XvKQz3@(eVN7-OTl*&Ay<9 zdjyj6DChX5`MQIf6~4U=1Qia?u)oE>HXLOs|90Cg=xaTkW5CW!pY6Uky1Oot7(5z_I|tP zb1$@dUlEGq32F-`+}FAol*|x{+r+EJ?aQ0%jCd9$1~hwIxh`xrtOF z6;ddPQ%-CC!`aWNO^kW%5*O)yQ~>YA0cUo;F8bOdf)@-0m84mp61C?a(4aUz?_2lFK3NyXXZsaVuAO9UDy;6*5{8d@5?LvU)br@{I2 z5F(APnWSK%jdfLT?fMx$ay|I?fY|0L@?nilgoR=eRK&NN69{(j&`X0*VI>Anh64Kt z%hh?dbh< z9|diphgQ*lUyf6eED~jk+Dy@r(gUgJ1uxa@ql%(+LOwsAk(y;-L({lz8I9jt3diU0V&u)NN&0zmk zr*<6gQixRMSc)dnT9WWY=*ifL!r~q>a3*E7ruh_^Wp3vwuwjiy--=F%BV8aE#udsu**{jR zF&x*7hWkE@i-)99EsNuMl`^IGMVb3!& zc-DmOp>k+gLW};-A+p7zg4VwBF>GZ_+CoD!mfw!5mfFn)RL~_#Bd?j+08H>WqB0iKAk^RODPXyq_^Q5X~|oIxqHMNOpP%BC}d=VSj9aY?4aZ3<4oErIv4p6Pz;^=KCbqHv@Mj|h+g z1kS7Ms?j~|W7*O^4VF{w$)}`o{foz|QSVirXXZ&TlgO(9R_5mQ;xat0<;po=l!+Y7WudD$Be13zUw zC;KxHCO7@^;|YJ3=gt=?Uv-Q34WBw%J92v)Fu!j*a>uJLPh9GEfaDjMn5c`h^PfL| zS+`jYzxM;YS$~mAlb^HSCg#N@#9W{Gshe)eQfHgM9TtVAwKV6V&~H0J{g=p1-mt`{Q4RZh4O@(&4-?DsG9D43#@S zk-UxSANsr+uWtUYF#KQKOJ%Ql=Tou&)!YKOIU`0h%NW0^?GRgx)MiJbmb%8#c-`%t+fFr2IjZ> z9m$6eazfv@9SVlt0#(0b2_BMP4eNWT<(0(0?H#sVyOe{6VJ;?b&oo$ zwErqO>RElFu;f>l=Vyhe& zwSAWN9JR%l>+1K(pRU?pH%foDG22>5s?S+7{WDe9+5!6=WX>Agy$Nk zI^xy!pGLvo`%7I9%w;_Pwwa6GG{#I_uQy0$OI(QAD|&HEDONoVEWuhO$=i=B^>JPi z4?DO&jn&4& zQ}DvfFzXK8Nlkz2@!L^{E`ZTo+ZG@AQUGf)jiilqA_EN?jP+9K3EK?TA|HoR7B*`i zz*?S9)2o_gnj36>>> zujZ(()5AdT&!RJPPqSalAVN^7bCPHnLx{6`{7s}XiPD%65cL2vkdJy*DL3ixcbNyC z`_p+iQF2PSwOC!>dP@nw*I3Y%W>?i^mlWM0GW@zog9ZAi+Iycqvq+1MKK@%g))Ocn z(6yU|%kjo$cLWo)Zo)ba-rs)|K7o(aoC9n2I2Mrf(g7Xt=;9P^ZZn(AFBUJuDMdu|obg-yASD4|}Qq(!Gsy(p6rDr$f=cY`Z zfDt(`u5&$RTVfdJWF9HvZay@UlR(5!@YhGA@to_^S;Bi%766x0RU8EEEZVQjwHBhm zR8bVtKU!LtIFO_Ld8*i|Yw=Axg$Z}?0&A8gStqsBW2ZF_5S#CbM}@ zsKSHRDpu%e;5@FW)>@R24mtN_JgZ&om3e_F&z%u z9zpCR6?t_ZEz?Z~H8PZm2@XZj`>UUeq~5KNOB%=V>YU#J)n&23`jPdR|5*(b9;G{Y z$h*B})BlcL{oGc(2buJhSbkibzUzZ7U zKU1f0_B=&yYXP_7zqAj>gg#755`I6mcfJsM9}ZPK;f0&g$harJz0!^}Ykk{P;wo+$ z32^iQ|3H1-wS{G88&K*1#$RLAkJTd0>RcHi3bX+g_}{4IHMwu-0>#8bDV633>%S40 z+uX-HU*@E)Qa(AFnCt!gCN(`V{&V(mRj%hs7joFFsp#0ZzPiwNq`64h?vZ(IL$&XV za)0@&ZO@9bpY?D_r-NTTWwZtrj?RA$JNciFf18>|v^oBXn2KhW#zT%iTOY%A9vS2X zxrMH3ta2vh%LYh&vNwjg*rY%jy9b1xG^ zz4B1LCE|WgXTmnIJM5g{IGCj1S=vvF0BJeWXuw-WP}?HG4EECw?c#}5#`CV?j_iDl zBg>(wb!JmNSkg@Fe*vU-`#EEXQ(kIb1nk7PobJxJ`b=h&->x8TIa!>qflXRJl!qyp zC9j5{S(C@VkEV@V4>`gUuH}4CJWFjUCgoaxPod4BVa|VzOg}xs`92E^v^R`sFT396 zELiZoV@(fnJQSWl+u*m<@*a746LpskTWOzsknOvW2Lv_NLUxJ(ME99SdiC`PqIG$Y zXua+1LwMi3%toZWhV*hTHm1q@$A=kA1}q)0D|u8SE4_yyQ@JCh<-Y`L0|1q6Moik2%T?cc5B<>=6U z?IYKzK;9_g|H#Ud@ zqeqGYnbBZYT*QG<3;SJRNPR&q-?@J^%cTO8U_8gNN>P;-GpEkt~g&tx!Q(3*G4Ah&IU*)R!(*I=(KgoFDZESDRU0OQeQc4LioyZ2>UXOt)HSi6XtCTG)Tls^D#>rCw zt~G02DIUjazDO!`759)AAUQ{Ll4pCM1{?L(IMUY!nMi|`sR7lwU!;HiDTlTfef+-b zk!~zU$~$g@qbJVokZq>6dyA?}l9~YZM{mw1oM)~;77!=&HSq#h=rUNIO{=*pK!0j1 zF`$}pavc6ymUFquWhG)FczHBv4vS<#Sd-ICBy@F(%j*|Q>8q{z2z+bF1Q+x^TlgD0?K1m((JwAR=Fu4Gt z6~n!%`;Qv_H9=1CQi-PERoz8*+Ji5TYTQXX9JVfi_=o8wzUvu)=5&w&UJEHg63!B= z1Ac)hGMu6_qmn(;*EOOO97{O(kd|DdCPPXc7UqG%&4>9-MrVp^ z>B#X3hVG_N(ZeDhFY0~pNl4Mt0hVuxsoRov4AC9~rNzJ&G@UW}`_UV~Ym`f@NW+(76wjO1kZAk=jamx2)@b@qYg-D?JKOprF7ZxSyD3 z&7gcUG)=)wOSx<#Re%T7ZjClwp3BuC7RPi#fX9xKbnF5LtqwRR*M zGw-h6$SfV8UEP`>Su>Sse`cKme!lVhIeX=ex%v-EmCG2#SA8FMUIg*fr9>^J;Sc>; zhSyXxf27f#aic?DDVg<-*xvI-Z|BR*wK=b-m%snK8T;xvD;HD#%r#Z|B3Bv zmF?TP(Qyk&(L=>#ZB#Go7=X%>v`>DzI?PbOd^e!;u1&%$@yDEq4QA;x!N zjpusj7~67_k2QO}vxnIaEweAb%vKJ#O=zq<-vO#5R-HEPj+9;fk8B&Wy#AE;vHGls z@pInDn--l$!?Nr@I|u)NM7?)7o9`Po9+VnUszy+&C{=qF(I~Z=+PiA+Rcgel*jhD$ z+Ot;GUPbNL)Lyk}@4Z(9zvuJ)9q;@8%i%em+*jQ9b)VNcdJ67$6R5?RZVfg#LCViA z$*f0agZCbb^E9yF+vUJmiAR3zx8zS~YAz5!ZV@q_kK{hw>r;V!BF)5 zDS0$S*j}zJ-v)uyi;90(ExcN&MTgQ;rQ1yi#tJI4-&bQg}_qD<)!>J9t zNLK5B1VX9B(pMLm4ydd{%-@G5`*fUR3M_5%P0&gq@_U7V6XGFcVI+Xj-~zCIH@_8KdCvW1ph z#gd_`KG*8el=GwIZW5YgmYG@62UiNM*O5!)4I33WCgfj~m(s33QEDyKKJIVzqiiIH zkowcvzgDDbFD6Uqg@m5$=`p;f<0AJ8K&;eF22?q-PQ6@YM8pm!cr)SfnsTHr1pQTb zHRcUIfd||1a~2ojN`?esIX5j>?w_cenETiMQ>fX=eG=L{9T-C=JHt(eRd@ar0#`Ru z|0bCeP;O@1(~~?h{FueimW@|Qu{-M%V|#4ljEyc2VV~qZ#>*W4ubSDwXN#+7u7gd) zSGAtU;Y>a0k7ZNDu9}*tvM>1kR3XHhGKtH3#q%ySwrGY>6ny*Oi!UK>U~zy3x+Y7q zG)AQ^iqV|kqqC2s;V~#%Q5_@^uv^NS)2+cBA>Lv?Y3%>8Zdx`w>T7FGEXJ(2XF++{ zEww>IY(d1Ywesxwq?2)_-A-{x(K;rw!F6cBgGcYT+v(#$gI~+^9z2g1garJ0>mAK~ zta#rEIV~OY%zE${HGjBD;h9D3XT0>d!jza-(G;gOIZv!JG&rSK0JOM)zP}&l$}O+g zE5h=CK+KsJ6mM(BqqYGaKsH_P*dw7E?5P%#!CEUy=eK;+@K`7LPaj%sEnQjSU)l|) zh4f)M$(0-TqxWwP0K47;Kfe~M0p!1zm=V;u&k$<pX;b{6mJwJh{jbOXou#g|oPi zmd<`r9@^?Sq47JS0jc_7#sm%}pE{NedCIu_=x}g*JUCgtdkNlnLSB-H%a6l|Q{fOK zs@S#M8E$T3gG)x+RviL`Ebs0AtGGFU9d^RJ4``5Q12i``b;e$Eb(43!k}uCgRp&7g z-^!YIYb;fz*5C)%r@D8mzjpYV%-5V6ui8}qy|}1-(6Snt`0sL=frA(ipjf2}8 z58vb5A>{8VfrORU?acAwXqBpm<*MbONhWmg=q~gL|^UmAMyT~-}Vq62aQaRZOVC4bjE^%O!42-%7dMZ8;O4a(v zR@a~~uU*-nhXuVIIB9x&u$v4}9r6>UU)spogXW1+3rPnjdPWnuXVZA_Ym-C|2 zzvb`i6ED#+KIhj5JLG-q!8-a<4u3TpCIC4-cUelJl?A}KsDfN827cG|4K13QrJUh_ z87jEm){o{fyYD=ZNNrrU(46-Ly_|AeSJVB4<%prw=1-=SpEOC3~|&KR1+9}6PYDy zcYUjEFlsKET@B6z47`_b}yJ&rz*n$7mq_mFoC zfEpvaf2x%$D5cb?sY`tETT(ITNj~-uu0#Jq3P zq2948*0ABCcuu&+wr^0%heOn1zS(mk;b`vB!f)UGb;lKwgwiIT^X$EbbBBL5_Onq^ z1|GY|*It0~Vy#Gw$FPaWp|_A{r#7l=w%)q?a(=FDEdz`5He=i7_wv{0gjO6+VW}#J z^ra1l^@<`}E;`JQ?HPM`Zv?{enf^Go*H4!9j{Jk(8t{^34toOS4d-0;9I;Z-)*5n0uAqw(&5QKIgDf0)%oOB~SQr1#`= z)?+;ON={An1gQyrg7TXDj;+*+WbuaJ_#rf?f2+>yH`az0jkt(#f~}p@-u_iG_WJWN z^LnSM6oxtRxEu0#kN6iabUUP^>t}_jzjMXt!Y;4q?+!ccc~dK{E>L&>ENi(v|HLr) zEG6qQc^{PwNvwShcQQOrb8SA_l1zY|#qnjHbT-^}nY(p7DuSz;DIy8O@B(2 z_j?JuCh{Qo7H5U9*-pj^k?mxEnW3Qf^$DAZAN#oD;CKRI)`!}(ett|URqtX596!$ckq0;3tbS6?X z{8*XM@4TWJe>RFAPlEf0#SB0MEuVh{mC}QQMoRU9c}N4eV)I-GT3)@q_1Q~pJR_BV zBIlk`j8(IO_!NY^Ipg}BUYjH-{O50XHP6t^XlYzLIyTnw_RsCCTTj_MLfJs zd}$(H1#5NwueYV|0dw1`{>)cn76#f`G#)w#r_Rj{A>B0$KXv6*pV#CbxA)=d)QU^~rC`DO zo#*g3N~N^21ws!M0%CDZFLzS)+$)Z>URtkR21S$i0Q;O}F|hKl%4xm2>5LYekdziI zPw$$}BMDeTD4rFL{fbvX0+jB^Ha3$cX+42@Nxy)cR)3QfDz}loA)Y`4FV?(NL7dxdRw}H&NNm(UCj?3Dc44@ zS&8PpAIx@E@pR97)RMdhd`iOjp%=mI8gJ)J^<3zn72r^l-uEOC8f^+3e?IJDNuJ*A zZA4=U$QqwqjZmzD`WdU@wrEv*1BEws*U*!*GRpIniy<5cn3!f*5anKJ|3;%Q;?{m}tQM9JJQ*PTJb z*)D{k-&jPvy;zxEgJtJT34GEaQ`~Q@(Q+rTWV+I>DYMtdm$P2lLQ`%Qhycq=AXWwF zx%QMHVC|$ZN=1Izv0%>V&sGhm_N+OsRDt&({iEzBbX4(~RW&EZ&aL>c6Cs!o_O~VU zvXyM`cK@?+CsKw!0+5@a$aARO#att+u=aQHaS6VC#fP7l3>O0^T|Yk)^8rg`;K4ox+4@2$3U-i>5$_b;{U8eaJhGDe2_b3ZKtl@7*y5et?Y^^S!)OHM-j=Ygxq8UAVo^VdVQ)#N!5Q zKLlI*DtU{UQpL{E>NZ|A^1VEnQq6RqOEdOak?Z^GbY8RXrBc_}975Nr!{Eo!^L^}D z^hVx+t%myCdM(My*&7(jP+5l?+~_S5(3+#+i}%wBT%jG=`dOJ6UQn%AD`4}39K@2~ z_HNX+);=_tKpvxDm;sIAilxh7#CzKK{%1r~PB_~eyL^xmf%O)s|MUxm5mRWW+XV#k zG@TtfQ*$pNvBLTIKwh?uvCZ0aL1l%qiVQQU_s(1sK^br?f z3kQ2j8kZJUBZ*XSJB;&KizoQAiMq=}G>RM@9i`%bIwjX>oRjtxFEv>-Kv3{WT-5y% z!@wgn>yi@4*{gTzE{FL&)l3_R+&=2_V14Vf@*)S|8J)KP-ui9XjphU5iHfpeBr|5S z?kPET98ON|@n00Ey&pgS?~6&B$ImrPq3zqQGy6PE#o_V_zjCDQ5uT3NrGPF?Y}}zH zi7F@t&Eois#Xpva5kv6Eo(Q*M%tdzxSJ zC;>}WcpMb#Is8|w93x+DiU00RN00(H0a7`Lk}=f~K)k#HrlBTQVV7PIii)e2DpcUw zOD6nImo{BK+51{=Akx0(U#Ki;Jhy?3yVW+3{FactI(LlMDj?5%JOKkeRkri==l5Kc zWH@ntjB7h4P!e=+CAbxDc&W|&Cz-6QMc6rr2_N2dm&$}6*0cDTX7JlL1~SLWpK=Qh zM_QH61gqmHTrTxi3R@!c!!LoR*2eT5wjx(!)31K{{oGI(!g{jC-KO#0Xw#q)Lsm zwhalMG_Nbv?Juc{KQ{NT*ss%67NB?ZpXN1nXoyg+Uf4n5zLTgBxCEA*`oaHQaT@sl zS@3K^MobszMMog!LC#y}nhIdn^6i_B@6yOA1W&D9v9`mkNlH?8fL(^tUznhgTL6uh z+OVc^>aAT>NdEU}jwKjep(XIQ%(&L|AY+7ngy&z~b=T}h>A!OG>68Ii>XPYl%MF0V zt6My~djIfPWVRNiTC7)fRhkS4&*opc&VQZQ5!;)W{MctmV#TNDHJL^QK%9CN-ebjH z@cp!=Pv?PD9{ulX9Q*scPbVo>U9c%D-2X+UV($Dn~t1g&tJ{lrMt?j83^M z;AxxtO=Vg9Y+MudV)@I$-OYmEWjoWY|9vQkqn)fr3~<72fA%w6G-TLzJvVn&Daj?R zj7OvTd865o)&RB-v2 zD$KC98qTqF_9n4|IJof^vvZwjBDH6$niKg>1r%x7P7;@{ekX8J6|&n+Hu7#icc|57uLnimYx9%wJyL79C(B z#Xen5p$xA(+WDmRjGK>w#e7$H`3A759)8<$2Q8RLYr`WNr|TX$hy*;C*K!oGO}nJ?pLK?))r z34Uan)qjE#_drZ&zHW;%L1UJacEBr^8I3)WNbp?w^8#+O>jZj?!?{A{F)`(n^5&x? z(p9U9dqUCH-?OcQlOCTER=^3$-L@i1T$dbRZ? z3xcw3)v(0q^ENF5I<+V9EBB7*Jzt3EATGThs3l_vG?Ou)_8w8ZNhP~@Sy_BhJCY!N zOo*Z~&k#8;4T0A{nuTJad+b+=58+x%hcz$OG(^}hS>VB6=M=IKBY;sWUQ#I?t~L!- zP^J}L2E^V(W%pFFN=kXynjTF9UFazo{| z&*kyIL-kFGy)F;F|B1EAUn^(iUi`ydf67r@5P}Um|Q2D9&M9>oW z_8qBexwO}b`A$bzR;CJ>jBi!M=PV+SrEZ`!iw0ibPbXOkMWFIM)%ay;j71=9R8I4jwZ=84TVzEY6b<%&Gi)mOnkBbR z6!*~JYarW{v?3RQ#6vpJLaRamG<2#494fO~4JV2%tkPb%l-w*_$>JiNdD38+{@Pxb z*X+`(pFzRhRHvHj(En)izNZi)zrv!pHXmM4BhbH>hrfaK5l03f7*bjftB@PxdPTmJt6d?&XJqWKG`XXRT%JSajSMOcacmp{Q-iYw?WK zz-x>aCTdU_am%h}29}q-v5J2YDxsa8VD_$!)87nk`zxrbxE++hT~mWJR)@R3kd>1}vpZzXBUr*XgEk8v4 zUJN7&RNkA_3U#pFt9g6Y2na2_PIH(d_xSFP`INF>eShEdR-{Cblnm{3ckTqgh_HsT z4)Lpq&set#TyVRTZex^T{M(1a1$cz<>(R0=x^C%HXO zqaSRr-4ar1KE}5;^1W>7_gqh&^j(h9_H%BFxAt8cguT3iC;t02JhT|z+`O2#VR+XC zcY^J^dH|LSx=7poE@Q7V@!I}(?+vZAJymF_;Gne{n;rl6uo(y`|E-a==6zL9|DUf( zeXHWWn3AxRQ{HG12;oh+pNQn=mC_xi{BVaxH85s>RoLM^Bc&glq4$JbhHvYAULyRV z13-8`&rKJ%+`Nsr2Rcq`3iRI8gRxsqj07$>$uqs7Kj&-Oso6LjA986L>7z}iO1~wW z7=UcjnFW^ij>pN>WxNaCb;%~_Ee^tkOwY?^V#l&}PgFK5>a7K)yW&!X=zwNOQ<9nI=G)dPC=y-K@RtXg3g#SaHQ+z z)CcZv-%|CF{oN8CpU7*n_H||o*|kE2zIMQ46xWWp#&D9?4Usy$IE`|O=1FuGg5^ug zug$vi=KXyPTr&PSJR^S_*L)_5uxAH&z4}w`TP;mk+ii{UlZs3 zb21{*#Q+-(MQe@)9R2s`(RoI+fY7!9s!ou$?ICXarwb;0$Jg;l`NH!pdZf8OY0i`n z^}-lRX0PO{Df6Tl^rE;${B_9V8fJ0Z@Nz-R5n7?^1}x{|Ly~`9wom&3m=aeq?qEHK z*|s(%a$wgqu7Vv*J7>gi0-j4S1r7TRnf>{{1^6?r)WGn~k_mtM5&tL3)ioGe;Z*~O z+uR&9?#LJ<05(x?7qQ{g8I>50&Z9QX*d7YQ0wYA^$dO6WPt*S`{BL@OZe|1C&Xg;0 zd_k^-QdioS#DafB&T`OoLka=+IcULN?iw#(NqXm;H)0B_cfCv@UsL{DSu$F( zj|qkBhOHTQES78fTxI4z=tcY>yAxZU5SP9S2r8wl z5e>gRd*cS6pM&q2^f2q)r(ByO&AAtp$=|Ls8MuzgQAa~bSLg5+v`i5E2;Y@goH@G* zK=jS3EaP!>=2dd0*I^LT?&Kob%`jQhj^V)*dAkOA4hk{@?hq_=?p+V>V|r_CJ&Kcz zi^lwxs+l2^)rgZJSZ2iG>l7)*>N#6tCtW$4BeYxcd&U&L#zPq>nI{^L+|2yKDS%p$ zia(;6<=5_!y;}JF@9!5byTmXw#y8lZJ8Zhgd~Z%9;)t-84Q=vMhU4y3^^S7tEn`yX zZ>Y9uZRjQe1s0U>6AWP?{>Uq(Ye61l>WK>GHk9i4K5Mt6{z8QXEQER$-|ga-DK&2( zI$%(JWNmb|bl`J-KjUy6CACzJYC6sFz#b{-wk!vhL03-sS{8HrZWn*6w(KvL!FHrF zy)HKPFUMH0$N6+!sxT+X`t~`zhG2u?C8-ws5Z|qn_A0EMi<`CJlj)(*b zEDkuM^P68XEig(je#!V|vGu)*eD^kP`zBr^59_UGeen9NV!$5_A}M2Vkh(i<0Tr&S z^wJ;G?|VbM;(4WZZ*t8^to`c}60pLo!ig0m@?1%Ixdi!!NENE1pQSr9yff)2U zZE0|w4tc*Q(_#)fOqAV$QFOghl7w-(-8F^hk#y|q7o=O40*3}EF<>Tqeuvw)%;fRx zwC=qX-jCI$1ur}4YTVi>3~pNGx!OYWa@po46<$#Xf34Q`)VBE@8k`%jyZ!aGR{jcS z{1D%>7-)1v^chdJL#VX2-d`pN2gOUI15uIsZqk{;i?_b4s&@V+Ki3D-i-_^^xorY? zTGkYBe#;YCIRE*Q8KA$gNTkT-9O|qTLh{hlm3V5b!m1TDia3i5YvCPQqQ1vV$& z3dPu2e6I`-<_ab6r_~Yw$bH1mmMNR>6kchh)%5V&J%FOVHqW7O2Y+r>$c2vX9{aaG zLN9W>{X$#vv(iQj7sKg1gL|^^_P(PML6Q~muAck%m*`o+RXUYAxD7Bv+w|>G3vc~d z5B^2q&+SQkkX7~H0C3k~>3ADd4b=4c!oRbXrLwnhB~q0JY#P_{);MUJ{+)HlV*V>n z-yo$3+OQHMNxHW6$1jPg0KhX0!>L&4bXXJdiU&-^J@W(HJW-#4VTeB zYlxV}=Ks~y!VJ>JPQ`mpuErgx6k!%;AxIj3_1u78Lp~|s0SRhJOYO)Fit9-9%1kL? zwm&-Kp*F&?J3) zIIR3lZxC~s6}KLlaWrq3beySkz6y<;MU=g7@txc!YKcxPp`AnF!^Hp?x5o6klxM|9 zEOM{ecYPVZ?=Kukc8+d)zc)uQ2f@lda`P|8bd9MQ(x`lK@pQ{UuV=xjEce+C-C$Fp z+|Y!UtJIdQ{5gOhg*qR)dAUTSx(WMpf6)aFxTiizuayp*;|Q>oU(T@Nc{s(E=mJ@mxuKM>)v8`ivlw$AiL zG*q;92f4FChyP0cEFO@%8>+XuTI*t$+Rpo76wkT_P6olTfuRI_)N3n zGroHYEl1yFVYlXG^_SfbZWhO2m(?4eHoIst+;4VZEr&dr>9^Trek+GV1E0j=8a9kT|S}vYlk1|5!zHxL5r%S-db2T(SoUVSm=S*&U{<>(U|6orOubp!& zjP=*^M8p|I@I^MLi2mK5c51=2koR-732T8CLgY`;4%4&k6wNOU{^(J|RYGI<*}x{j z?Y!0w!Vqlh(-rv=bV5dR$Zi7Z^iFKaz2SwODD?yl-EeuYO;7Hoe_S{bpIuOFL1W?L zeWX>P;5+qZ$mU1$G26q#K0;0U0Y$K73d?6_M4t(?S5z`*eqN@(Jv#8dw3glUx*6%5 z|0}Z(ebT@N!cuKIuATTqjMBh7|NM1AHq_gfau>k%qHQvP4IpJ&;ni>2DIQ>S;pYiC zE1|5M?Tq-`YO70JjwSl>{sqc(vZxvM98WT_ZJnB9~7Kp*#40|qMj6O(^u~H11~7q(1%tQ7HP+3yRDE# z5Q*Xjiu-~pLWI4lqNsJ}T+VVwd<)`NYmU0#)CeZxZ%^Uzw`Ul@Od_-zh*x>0< zWzO5ih*1IV=L3om3WDPd?{;cy2Su>@|7!N)P~nxLpaZ);+t6RJ^pp7P+x{?1d^;Lor~6)EZF8Z_0*{%Y}a{C#m2J-^}) zf+q(#YKBls0?zk_?$2D>v%V}pBatzvq;&U3;jRJCP>knU1fZ6<$yyD!VnhRD8baVu z?@yA+pAZzKYRx`u6CgmWm=p4qPYb5Uo9wgub9jN_(*rWV5)A^FPxQw!Cj73KOd(e% z8?M=fWCS>Fe;+5Ej`!kvIk?OJc?_-yK`(N5jyKbyt=|0PDlc)k^@PYbgs$wL|8)e( z8-(TwF+ln?Cg;c3#kd0${78N|wzr{hE}lw^*V7KV_N@GR()NKy!}RNF8A;RQy>m#p zp^ifnaaidb_O_gpEgtL{Hbtt%vy(DMSRrmMF)IWqJlmDerzhz<|CMjyh40|9 zh~&lFe{LJt5MWF)Re$nB5*Tn*Sx%?$jBS*>Z?u~=tV#fWa1uou{vo->#NlFIpF{^! z0QK9#g!GAhn6JCWr2d!_Fkd>Kdj!`hRzKck;?Hn+M3o>oI`-&^h|(zsiqW?`kLulI z-gx#*o--)aa)T{ljD3d|q1@?m?h;(kWT?Z=%J%(kIi{|qV2ZD)G=}_=S088qB2N2K z+1Tcv)jST)2ofjJk0TgX9k?&G`3m4j$#J02*l{Kd(X!!pcw>EU2 zts2B&M8*>DMt24qP7^wZe1`Jx*5?u%w}W&WS7j%CkI&;)*5-r%MXl zGpOukeyUyQY7yjslx<=WpIBqrGrD38KgKZ&Dm!T}x2$1*!_5ds_*EM`U!|BGxqf=4 zptKqlyMQy&zp_c>%#j|>xuggY6zoUy@6!hv|CU~?e6EZ@G!RjD4vF`WFE4VD&c|#~ z1%dhb227xaqK1LFf2jSp-*Ys~X{ZE5hZK!SD%&YtI}wdP7Gf_n7t2+nY^O#ZyUoXD zIb#7JHuNhSne8N`*k`k*o&WUS{96L;LcB+Cda?+1{&%5yu>tIrls(bx4UBYxKd4m& ze=P%Z6|Yvvp9)~C6`*i`8xPV#?hvP^F`>{J%aYqHu*hyErdItnV=kZ^C6gC0lA~Vg z%OU4y{Q5qzTG?Zq2z_yoN!sZSp5v4-4-C>jObr!rE)Q_TVdG=$CkDs{T2_16Y}yHN zl+SbAun;YEA7ElKT=8z%`h_t8yCE0EQ`to9($X~7c>c5jOpuEk0{=?u=)~i1GtFqw z5J#`5VWZn?l3)@$W9F&&d{_jnqn_}!gepjx%7scGA}YvlTOmM5)OEwG=<6!Q&LA_+ z)6hphHvf^L;4TxTa;h>B;! z*C!f20Sv?XPub$HIKiMFLtPH3WE4ATgN#8GXw>gf5lW4 z%jdRW+kluC4N?w+%_|4|Zu;rjT5`fL31Yj?d6>?GsZoF7oRH7EQ=H9!Z2`+jikCyo z5@GwJ?GtiWu^-{p)(0Ky6-2Q2*4*zKY$l#|OS-oH0XFK$$b&kc^RIdKqE7#s?XOZC z>1+4&>r5SX&JC+*xSMY2g=$fI=?$I(*bzT@&z*mrI{-*4+NFpoZIpndZ_ zZ_}v;tR(VQz#JyIa2P6fFS=**#xl8lpV~3O0qK<Y>?<0Ad~62uFDR zJ;&jq)k(c1-+Lp*R3rxuHV*D?5B$b+7~KI|$pz1qNU=G$F`%)=FZm5PLzXt3&xG^V zZ?300HSg8TmNp*0X-G6iUUkwKV|Q9^cSdhIjj{M>Kw(!RR8wEN+H3iAezYo=$3GU;%F#iI07u6zCTM<}1r3i=^pFhZ*5|E+DdJy2*a7OPNpN!k)~h zljGpxpC;2u7d+Er`l_w((dx!uPz z#?G$j&GlTxcMg3>^<>o4JCPs$5i)mzDl(b+j($3zL0TQkeGq&?EYYI zWbbq{^}{iz{@>>hfg3G&Ph$D2hZl=|5HG0YvigXurcWM#2)@&McP>`!j9*433t4B& zJP(lumErrYjNb!~<*Oz}85?lVMS9XfPL*GjOT*>K2&Y8`zL(sUpucxe(;{fm;DD(1 zsMT6Ef-LscuMtr`q64`3WB&I56jE!{s_1!WT5$&DfPQ)F<9N zrK%k5`N?A=E5F|yGWpf#hLfLeisJkBU|?%bFmbVyN*zqN=lR2GT%L*f-gg@N3`zWK zv}XgQ$vkq?drwSJFNwb0$qB2_!nqnH4=PD7XnTQKy(n_9Uigcyt>M@5LY^zjVtCu< z8m*UpzD0KwXP@B`_pMI&DR~pJ+RdJsGP89pa*V#{LE%CiV{-2ki9+t1!Y2?bw&Cyk zMOrwbmMU2+8deL;p1%_32gp`~Nsa+TS|YjQNj&03iLK_;_FF?K3*S(I?>km3q>uXo zMI9aVC2aCDK?wMgNt}6f;x`4dilZt?o2}R4Pvrv;REj*#1AHB&HH5#erLH&$RrzDA z046CtGmc>@(6<^w<@5th%N-QQ@j=Z1-k`6JK`nf^2y^( z91EVmtLFS_ocXXYyMd)lPwAVrmWVXnm)h5rLkc(`@tdWB?Y(YeIT?RiQU{{NGCV64 zZ7pX0bd_m5n`eB`YW@VbzX|; zhh8-;vV$WlcVZ6#v_39T;1gx&*Zy|q99G11hen&UVtlJ={8G-}SA?qZoQo*{F&cRF zMd5ohGBP~tSoheaN+N3j4+Dh?SsCQHBBC9X6z*u*o|#*qBkfY4Pa0tevZLUfP5W^%WS&21s31dVGDS zz!M}>qq#-F39BwmBxw6my;@9{*pO=G+s5K2yqoD1z%He9j%9QL@CyUsC)U@cXKD$y|^?rjw-Z%g8yHt3CEVx-HpT z?_9N*(d8J+-#lNy;cDoZM&Dnm6bkthp5T_S)0MT#gC`)-7sUHr2tBJ7TH}a zToG-Of``^;F|r@TfBU;(RjCmy($-?))} z6k^?ShskHW8u7bCPw;u)P52!TqF!E%KS!QL(lqXw8{e(u@JcOb7a?!qmiXX+z!+*GQ*X%mvV{WTbR7z23S{`FVo znSP-A{TA=AXwLa9qeK;jH%bqqsW|x^ckj(=A({>C$`azN-S9O5T)<+eyT@Mkvy|PR zo&DYm5=Cf=zBw(H^2t&+x|iRxr>0Z3MrJp5O`=q{lmB9K+j_4?EGu4nS z-YM}B1xtIZ18y!WK|GLbs`lMH@Rdr^VcKQu>k3l!HXd4=J+9%OJ~EWEeY7AY7859e zV>SE!+QORx89^z+VT({dGobyAMk80UJ zC#|ZC9Bcw@M<0&l zeASDGPGcm1;Up+Ad8)~c z&467-Ys6Mh`w(-iCSs_7T{Mz{laIngzVKhsgQlRauJbNDMSmS@=HQNJ(aLrqn-JA1 zJw-M_T<51?APnQTYXR}?gY=Q|aQ!CUFzFjzLhv1PDoY1-sl5RKm7j+w=llCM6>$8%R)awYS6k}hf5SdTgs}Xy~|IxS#qX~?L z_GhCHZDM%dyqLD#$5k9yv<96>T29jv1UVQGOq(Eje>x>-6n!y86UL;xLPeO=OVHjp zG2ve*yN>!RBM7u99!hI;Yehmp!iTWs9A=tELlwnfFkERV4^P^xRD+6WH?Lb2DEOg? z$S||?Z+5nK4N~L$t3>J!ks+^fdw<%dp{wDZb^#YxoLbd}CILP8f(}Opf|Sd=XH(vF z+Hzj*L69vB$$jX()Ujgu3m%_46mCIu4OcLMqQ1>a8Enpv;FEhm^3{p7Ss!bfV{{x+ zSL~gVK+y=ZtbxYtLwg3ie(Kbu*SOZ4RVbOQ$NF;+MnvS3P!|?#-Z#UA-D5H)e8swL zg7gcFdil;x==~r{?4O4aAyTs#EyaLntml`F+Iv4O)HMztnIvn8!oW8Xq1+SfB<~>c ze?K7!1Q=?i%LV^@uzK`OQQZXFu8H3B_Lz0x zb*yrg;Mw3Nl{|~~z5HZSd49au?sBb^{fz^NTTm-XUvBqU(5??KIq&*UVhh9Mz_#<} z0Ad6gh8^qSci}OL(=*#7OtQ5b4m9TNqq~dte9}+oSv$Y=S;MZUFK;5^vRfY3`#F1T zA~<*(!xe+_gxvSR>`9h5mw=D&POWe#(`5h?^MBSncc}|lD}y(hPfZI;d1PhB%@Ef< zUta=LWlY_5FbA}??4JU3`QZ&m$jx7oYwg|ca^pHA9t`+B5{<{WNaF&>+)Rm9Szh>D z_NpR}mBr?Q)e_@WQ@Pk;<3LK0Sx#G9?xGP(NYRCr^iMHiqrvy+LG`&3^7lLR185PQ zj`ISy%T=Y4tGx=3kBc=KF_mO@moQ^s{O7lCZS30WI`n(JY^eDNwQzRSBEIHY_IuM_ z)$d><(;aKsaun)n>~&6)@$r;n!Rx46)pJbl;AYjm!tjyDCC9`3!6hnKFs~{8^YSaKn1s+MiL?SE&705t#$z*SgAm z>y78Z`T3P*L^^!|Fk)Qb9v@e4CIBFrkh4d4vyFEEok9fa*6vHtCHsl4o(Bx6(j%q? zU40&*a3ugSVh_z2$o*)aNAn~3t2li@Xr~%&Lof|ENfh#=m7mk~IMw+(3KvhK2`o#U z7t;zdabEstah6Omcr3^ra?Q%@PYGK8kmzOwFJUFqAS|eyd~1La{eu~3W+`X_g*lW5 zn1&{@fRKF{A-7bBiF|D-BY>kb&-!zyE_waC_hdjMy1bMriL;HuAyg@}3s(q?Oe(B0 zKm@z}wXVSOqoE0H`O2wX1IAmWKwW1 zbbb7OaFD64qLSst{pStbxq<2`AP`DECXy+?d7>*ynx?S0cm|j7J}_yTn2ows=K*M*IE#Yq5U*y=^>tf)ag7nVb`D->&>b9(Gpz?^Hqs(7D z3EnnP3cg-rlJDEL1U5D%qhh>eK31541W?|egNBc03VB0Gp1#TBe;sJ5_VgyS2F)6W z-%pNj@*FS2v?nkUOwjUexubp2S}icQ5dg;8@Aw~>>?4${Rd~FjWukkGgd8XKOqn~{ zL5dbZqz?PH^q@-y<6w75fg_I{6K=9Yb!HJVuK(2)V3w!_5Yql~x5J)&>y91srN7}B zrf@6S`tI2wcJ+FMLEY3OVUJEwUEGt4?023iE&VYuBO-5zaIsE-N!q`s?IN_5tMW$E?xUWIxJ@|2ogXmD4=~BAR{|vCp`-BA|61=% z1d{YN@$T4|w*~8B(9ZmLSyI_v(Tk$=suATyV>%)ne@8>2y$La zAv8u_Yw<{z%#U5PcY7^2VoEo$Er3$*zhrxxaezmsCl*n!oZ(h@?yK?g$WUF1Wqwnr zAkV#v!Sw=kn%t_tAi)O*i6!hpt=JxPi*;7AeTP^&;kf(AhxDA@62R+V z4S#9gjyHtI95V-s%wPt&Tl$zPc@Leh28s623zG#2mD9q4GO{#+RcKw2OEu&*v&>G% zJ^QqXh9=TqVTnJ_A2dYlf<7c}JfM;ZgZQ4ieJ9f{BQe=C`>g^9lw$rrn!duJss4?3 z)Ch<00+LcnN{y}&0urK>APu9Xl}2QMln6+NQc}{LlB2u3ySrfwxX0hU_YZ)5k8TA`$JKSEV?34g6b;6RsNl{fNSsXohf0A*T@`>9pqov#P@<)Ak`nkIZs)C=VG zZM=f(1WOKsCdYDvY~LYfPR;^&3?VOxz?yEs+*EEkbfndJIkGxva3Yd1{y&n=!Y3$c z|M&lhyRU}#jyLMvSii;G`sC>X46!Z&`jZp&|3>qX&}5ij^ZUoz19YoB;Z@Gd)FLnP zm@cN>)Q;FaR`ml~H>w$ornLyntUuO5g2j%lE=<+9$ zp2?5=&?;GLCPwo}t4A6c$AmT*U>JmI25jEQmn$a6SHt9;nr*}uQVRgX^+v8ah6d&% zgwNG*O+eqahq_wp1FPdz?g@oJKwGg7A9(l!3{ES%(k2lj1_t|LDT0E~$%Dwl&H??y z#Ku)+VHM*Bo3r?odP`0Ne*48;8i$mNj*`Wdu7i2zJ+6czn%iBjilgL4)5YkjvjqFu zT4&S2=nLidjwux$0|)%^#j~}y)l|w&ZhM7qGn=ucP!jTO-=8QO(s(-7A53!T3wiar z47@jduj1Zn4|RSK^Ul!C{^F|aL)1^)Fgu$y?b?Xk$9NdSp57G&Sf(qDJ0Fhc>X$MQ zSV>3j&9`@_fT}i(iXW;ejzw4Q#qv=TX`U%kg;!A&&wHk*r`=f5E!}!Fx77S-cDwoe zx$(oEPvg#?B;P%sY?F6nIgftZY}tNno#x6kE}}%y``tPCOt;Z(Y8M!Wm9RDc&AR-QqVh{2clA9%tbf zGHBn0p&;7=24hm!DDZ4x_^iOtjs*iy6C%vSLFBcfEAKvPtZ#kkU1m!2WRUNAcxYJEG|nkfrTuFMeF1Z#)Wp*lOo6`n;%}>VCR)e||j#JDR64 z{&J|jga%T^cqG=GRlTpQ0QqsK&++#wW4EbZV~PD}Gf5}FWB0j-{o(VRvr6;k-=ik; zmi6WhwmiVLJ4+@5k)ncCM&-L!iV6mv>5T52PxQSHWJ$ag%csVd#>L3QzbLZJe1PXN zO;Dj5-S&j)NxR_Mi-QG&%YcpM&tEx-*?^gY;@5Igsf$n0`MxhZ@R9VRJ zCL6!?C_`%)sIySFg7fCT>b+`3fw(kWdo3^bmSOAnO@}AT>c0#6){-!Ko<}-S=>PPv zc^vf8$U9P*Gm#AiAfBcm@(&dD1b&Pgqr!A6Cu|=*$~kc+xmD~^nz%GG%UK`5=`WQw zGd_9@FH6O?i?ifYhOnHrxNL{+S5jH0RWerrE^beXHBP79 zPKI^6esOhVoT^}Lwh!q#GS33XAGqqo%AL-ZV%8%dtsiCF?li6N7(q>+ zZND;GitSldjc2@Aefcf_{hE6LurCp_wTHx*C%hA@mMiDSd*@nI+P+3Y4WaZ<3Xiwg zdE#ea^UM~m3Hs6B!b?n$;GGtM83<$vY%2`LR0D7^-+R|*F}RudmMTy>1XMFxBaoia zXTg%lVm3~gP8qarpn54Pi0*EX!MQ96T>GjiDFQQ}TeZ<*n?|ZCTO3fU=~SuV9r0?@ zu1VcwE^nQCdz0;glOT|3WO9>y&tOFI7_dD#94mJXnOPt1l7x`U_dxpEGk4u1zuWa3 z>O^Ti0wpONV1v3XLUJmQM;k$0Cc%}A@>w2#c};~4x+pF9lpU4d1^jH|M;@mh+aR9kf`9s2vc?DE1~&h$_`hYgL+vRQ393moU&}nd99N91Z8ED4c2XGTlI>(9|3)0zX|>WH#4% z)vsIr={|Zyzkg?Rlkj(pMxnvqc_KI+4^@3}fQ)%od*b=LbKH)whOIKu4b_2VsH+ns z;9>xuU4hKUimG|8(3LgqOS!Sj9U&6JPt@>H>_l2jPr~ZMFZ~UTQ=LCqmM`RrVSvw{ zF2&G&4G5Av%sKL>J7=gcUZ61e=*Nbo6rsQr!&SGnO3j3E?2Kvf<)otr(f*vS1-b~> z}}aOlGbz(vFJ2{Bg}PsM_LR!UA0B*TmbUBfk$aR zm*K34%lNl63Q~$1%JQb49ZyNk`d;c|eyCN(M9LPexOV0>UdTB=#g;8FCPmdC4^jz0wV)4pcTd7pPKBE{rZWO7>#;Pn7dDb$>!$_=JF`#t91$PcFy zeEC~0$dKQ1hHzooPk;zarywdq7#R9YX(j#x4$A~d1Q$4r%@l95&?^w@cw88bw&9$g zRGblRCWnCzv0xv)*?8zGbo9&V*A-gc0n#*i=slpO($l18n%&BT!Ui{Y196Ls^SJo% zkROLk%eg=IMms5McGuHA`LHa|7CE4#D#310M?GCkMj3!b36r>hRZqhXcGGp_CoG;* z8JS)jG)WTNhvm|oj*?EN{rBz>CzDjxBNhtTvDnS>i~Bc97X+~!L|%!6%haPtCHd=E zac{r2i*H%velvpGJGE4pH-0nh6d7;sTSa+oDM-3kTBkPv374veoGzv|nKadZELuw- zk7>|7_DuXegOyh^p=a4h&(M9uEgJ)USTT0c2hV9YucvSuNquW{bgQQ2!Z)tF*7<%~vETYa=jN?iH{l{2wKZAgSQe!$U!vzZR z*k9%4JEmE0iOhe7fGgJrIzM|_*W%yHjUL_tF53hR%}2Y`rd`2DBLXWjpL@ur9q0p5 zZ9dBY2BNcsVq$YYyAOq)djS#%aXQtDKB(@XxTdU}-z%B@- znyKpz@%cH|R6(%PbfTM+#E#kM1rCn83&J-y9zj+OO(&`V)#-v2(y)2T$56HLFsaZ& z5@e_Hc~@!Wlse2U8wnzUAFFB6+m(6FPP7r&P4&z3T>xecdK`b_XHZIyqL2I=*{r3v z@p|mbXR>tt3h6SZ3{;kxXT3u3-0~z!x}2eqhCNy(F3dI}Y1OU);_irm6emWqQ;NY5 z-Fj0>?l8l9?&fKdkmyIX8K5lwr!~a7z%!xN&VFZT+tH7O!-9Cx<(I_}{J0z2koS~o zQ1&t1ea7ekR09lGDhq}Qn%;2PKHX^zzT^!$>n?fDTNY_h%c$BR zXJIaf$Eeb2Za$kPp>W1?D_JWv{_j(xKQw46)n{nA!8EBOnx)zi!Rb2JbL~eg%_*r{ zv^2ttXU)VK6P|l!#(32q4_F+RO*o7d?bm~YUAC@0D+7yI8;iyz?Pn`od+5s6LS zh@FIWpNFG|yTke;uzYT?2;)W0^V~G*QH(B2w?eYI!$cg+Bn$U)W(_hTs(+sLqZDB0ww)e%C%#^$Kmjs`jjD&6QsMM`S zHp4a|t&-3EdFroU4oMtX894(_;ggxJ=KaF0G|vI$p}&Vd^k+Y%V3(&-5~mqUURzzp zpB4c%0sx#Mc4$lfu6Ig(+3HX*L`=O?Z8%M#Ft||m@i`TpTD<5ws=q|r9!@uyjMG!s zg=3Eiea>PX3Y1c1F6eVM&%>VJ{US3xSlq-urlxW=**(-oG#QUvVSt|18X7uXz15V! zJ{EyOJv!OP(*~p7GD;)-H7hC21?C9@tRr#WaOx?pAfeT{(X_yOp;)5Bf0XrB?Zp(a zEsAd<(hVz5g~SaQ(J6whCOcy4k9c+>za`=wydOk@+lcmyI@*4ZQ3g<%{`bo@Pl`l6 z@STVZ&Z!6Yi_%tCeRw5&de_IhRCA4OVEyE!2Di8rGy;=KKIdti;f7+%whK$i(DuE~ zrFt$lnCikWM=ppne>rb1u9M-9+(pdzN+zh^jGZTm3F_u&^G`gVfCN@os-1Ru8=SAa z29$naz3#&Zi#y&m4AKvIZUIzzHX-)V?@n*7y}ow;&No{Xy^g@loXdSc!`c)uBxiqU zkp`?`;Pv#3RS?TEK9RAi`9?ol_>4dzi;v(w37Ot}TXXbHA} zJ!w2JT%AA>OnDbMsy^rmsAIFFnRc+@zc*?M!%-l(Qm5~F*O>hq|H#LBB2pMBC9++} z!~J%G!l&Wi`FYV0>KDmyXk`^JV2^*%Sjcl7OgKNdN*+Oni`$u-mOK5VRaR;ahE~l4 z!2#3W%NWu%2eni%IFYlB8P{?;Bi;~|#l=JULGdWfu2v&{?|9h+~kwb1Y%J|>R zf3ro&euP2v9@lJ?Xn&|Ir_33!H`XDE-{-9zzVEiko5RcuFS?(?RTiAJNMdA9NTE+u z@Pkl^Z{+Ux4(4H}nvc_`B%{=S$3TQ;EOn{Ne-9XI+B5!dY9u|F{f>F+fPZ-(b7C)y za^%$A9$Fg6fj!E;|DgUYe3Jm%?404-!82DM&b^4A^o1@q3W-tq@f!on+P}TtGbv1VRfS zC`e+58qRnOkr^ttDvN72wQim$Cy!Vd3d2r4)50S1$B)M*rfMQ8oa)GFOd)|0J8R#l zY-8CJ#r4qMWpyGVX;m8LcE{}4($Fer);~fEI+UAJ1?}TO*@pjUcpSn`R#aRJQ zMT)4;d8qpZiWafQt@rn2vYukmr3=kmAhaaue3Kt8o=~(P=`}JNN8^SXXt2Ird^_hB zaX{Vk@e2YJ6T2Vyh+-ab%Y~pr@%!&{=hXCG9?S{Z)o%GvYCBH-f-z?e0F6y@U3DoC zXeAs3p$nQR&erEJaHWkn`8o7uvkS4`)pT^*G!&r`l;-viuQY*pD4s$nIPy_KyPfMH z0w1_D_u}9yFl6MxpC$Oy&)exF3lH~KN5*Uy%eYe4=(8b;Z|@ioiI|U8Os2S%?IP1q z<2jMn7q^kYuy!B>LJGYCL{3}MDsp}CAt%E;Dt|J#ZFn?!X-}*Hkix>>%M0+m?e>kl z4yyjSJ=l-_dFem{kGr`Md5`jJ`a}lM#kT!~sqttTcu+O#le6ZoBcuAsxp~s<8~QsA zdI}z@yKvRH>Vx@8&)db21%2Ux`Rbeakj69C%XvQDlkkub9%J`gE4mvZE85fkcl0N9 zeRS7fE9gA8Zi#H`$E!`j(W6(N`*Rm- z(@Fok64V|kpitl+Gj=<%S3s=psd}CT<`}weInw)FJXuO?GCA1x-eo`RVfKajTi$;j zRINT$IAwV-b3he714#s6Z1Wv^E#RqFy`V&*-PVqVt2zQ}Dkr*oi1D7&f@FV_p)C`Y z_CF}@GEkN)+PM8j+5yx*9Fu0_wY@y9pCUS#3z6cvqHk9cg0-^N<3M} z%KY8n)d;2+Atpm1{ss=Y@kUAWV6h zMoU3;_9`ZMG+Dn!oF13+dvw#F%|pY{fG${Re}46tvLTSn>0 zo_yfk*BtvaNf0Z0ie>T%g^X1l+7MDG z_l^i~bUlkIdtM#e&HY7{Lwq1Vlz`MJh72%wCKd!cZ{F!LRVFsh`y&)LColR_6 zq}G6cR|QLw7xzXTDKCYUxKu0&_gx>4cL*$!SCNPAfG9D|;@Ol4m9pW!N-w64)qTlC z*z96Csvv>pB4h+P+$QZTSO*i_5I~cIzMbiNzTH!Ub|7Fsp8T$UtFrCO^CG&Z`ql;W4?A-!@K4%|QRs zfYcd}_v70@KZ0S({7E@=1o$)3xzctj-&f|XNn43{cmlC;E#Xizexh>5cLk1Us_96V zHy^mD)~)qs+jnV522RxB-AReRB7;pjt#^R1HdC`Up6B3tD9H%qIPDmSJgB&JE1?hc z`h9h$?i>6xexf5r&%?^(F}pgn9)I~`2 zq*#hAQ^(9MZB^O=zvd8Wh;`eM$60>43!~oEq?5fJ&M$p97-4tQu9FVhYSEZ6(!%qK zJo;6S+T2l|bf8PCaao9-$Yiy-_(S{Xz1>{7v+2NOqu7eV5g^v82~*|N`RlziYagoZ zs9XN|7Iol7Q8ZiWbaz=a=WhKtqlZP~@cu6|=_7J(ol1{$)luQtKifTF-0c$d_|N8O z!FLW7_tP4MZ2nHl0|FH(PjkqvLy0fVxiVvvJI~S{(Dw<`!IJ0cL|>M%s1Wj)Z1f(n zmZvYgx?H8}x{k=jtl7mxG#gVchL!wU=1jwE64AB~5{r#N|Eyz@fMKF;>F$sN%<#OLu$G~^!0O^EvEus{b*JE+e(QP2F^ zp)QSEdQ~E2sedg>2#T(Qh42`v#C%}rX?V>d9Ql6dqlf*kZ|<{wCFy{C+IZ_;#+M>AcC-QtGT> zj-t?@`O^Y$i*QpxP+l<7qmMU&aw{q7-UTt12cxR`Vx1-0C?v6@rhRRHF{zCD6G_`i zPR4G-7YMfqs}imq0U;$YEK#@k&` zOtZ+P#roxiR4Fm$csCD@YJP^rSPywOu~vBg<*F%OWygo@oU14P?+W~^29w!|!-7C| zl@dw6)|xQFzOrgP;fBs)zj0XP4|-pzr9IGsJ;{xQeCm`BY`9TmTJ$W!5BAGD3$2ns zJYP=r+S4D;n;TYaOM-csfqapdz$zW?O-8Bp(nwW8mK*HZN<~;o@FsnHUDvIC)RCiE zUB5qW$+w^AC*#yOCt(N>Y}$R89{CN#xKF_T-8eyHk4~mzvKY&UjFU0&gSK#b&NT0Y z{N2&2lGQdpGsGF~M2H60H}MW@*jB$0s)DS%z$|47S>ls!dw>7hY?#vqAZ^O=4-Ms% z60mDY^T<`O60^oxScpJYtR(#~AVN`ya2EJXH5{{RHW1d+c7>JHobr~CV8(j&1nfz2 zF+v2BzX!seJzt#@iw30cYA@KUC|hD$k3szY)z<1qWv1KTy>=Wkr=w=dUDyB8trYZ^ z{W$(T4U~6)fI&4hv<(w8 zIy`B9j5T$z=+IiFG69bt`}211NL~mv$w2Z>pofv3i>qX!23%*Jx)b34?^32m5hh zAW5trJ0W~fPE_6&^W;al0|gHA^*3f~1*%I`>$GN}MrD_mKJ!)gVO-8j<=cBD)W%=N zgT#$tLJxxUji=|gfO7TrZUC3ab5}hWc5qGaF``T4arvqF<}%`baU?C4pCk9u@9YvV@7R`PLAv)D?xwvm|q zU3?Ko!qV9hI~BLT?J{k;(cOp<9muh=H{F6+CX~humBwNnr;uHUA`8QAy_D;k z=;5)VHDcBw&t_fIQLZ43Pc=1mY`ohOl z=xjSE%v|T|!Gk)IAtga8eAgHLHDth-w=W5?m7zg*%E>I)s;~0?xJZiN^LFaot88g` zZ&_2_TH^2tau`HHT^YD7rK(_ttd!m#@C(U97?}AeKiv51_I{JA!^;*2Y_s1{mIar9 zs7PReTLPOS%80jgCXO~l$9vGxn&prDlUGDZ??j}c9Pq5{tz3G%P@Hi+M5*rgL=w{dKD3B21O&Mp$9p_Rt1HUVmE%074`d3# zjKMUawG3@-8z!U=q})x?t+S~lvz5;kK%iss6b9K#5A%M3l)s))u!Uyr|IinsMfyKw zEd7pjX=BGy)7J;trMpT`f4(H#lA-Y@fkBz01C7ZmHzrQ;BiDRl_Vc4@7Thu9HJ#YaEBQ~&c* zK^8u|sxT*xON0n2{x@y{Pqwb1WdM?qAvl4a&q%DZMt~}@3cJYvxR~p!+_7yJEl^L0 z%A6+AlHWl*@sVNlsf3pQ3>BB)y*hI4Q09-b%NMvguTPLP?0^Ru^qXIX@*EGlLN3?P zwQ3(=tJHXuWCC*3e!Bo{+p>Si!Pl0=jku^gAfnu56VQ4=qjU&_-HB185ltiSNn??! zTm!%yH$X04H_TsSb6*gj_F-DGXFgU8K2G%k*EYq575?C&#crvxI6eanTQ@r#mPH-n9& zH3J6djU=E=q0tQWwMu!);R?&6^Q)k~yXqU`(q7f2>^(P?v}U)vO9_DL*DG__nm%lF zA21yFYc({vAWp8j|5Lc^Y&K-UcwQWFkXmFsTeUaI%+E7jz4@!rEVR=-?6CbuS!0q= z#69OT9$whqRK)!tRZxb9OPUAh8JDP54%U8gAlGu;P-&&bB<=-Y{z3u}c{nI?*3bVh zJF$YbOV=tT@GTw_U5E>E^djGnStbdJ5Kdje9(c^0$szM5WP871nO5xKW-HC76`%FG z=W{=A*YL;dm0+(7XhLHJzd5c@9X=sKxg%NbMyLQuu z?ji79aq0<;E_@JI-LI}D5a>N> zv(YzLp{y>;3q>9wiN$Z4YvXG@_UGm5mBE<{&3^hR4RWv{s4r- z`1_p~2G8g66wivwgs{RLq%=SBI~^>M&y=c@n|L$o!V5EqbNrb;w$& z#mqbQwPST8{?oI2fOIjNQNReJr(u$+Mq@8qePEZ;dcG6$p!t`XFuyzP)J2GMFX^wL zAG*Aa2tjve{fH5uoiU}XRD-z~WtTkE;@A){0uzY0GANPF&5=ncYexJvE|jf0D3*=t zrasuvtUN`;zZ9T}kX^%{*7DR1v6S0J?W~WV^ZMSbN@x7TcmUfKRLGPb@m zFK9PiMu*}HBEA-1s>9pWCP0z|fGREUO2G(Ny5T}3oL>N~s+0tB-MA1J?zLc_IMA_s?=R}Y*fRcln_8QpH8KJtC&WAQhcDT0UTxee3fNbH!HBYzWE z9%dq;=4gPom&)3hP(q}p8_ERmb7I(xFE8ad^1Wvvk=IHZ>+A%{7k!kE8yzkh#_m^y z;n=V6Ku#zhVZr$GsX% z2m;K9DYym~*Z5cp*FuQx`r-#@gdOW$H^1v!6&;Himzs`+b?j}HOuL*_0&-JFy;9RX z!kPj7GQ^k7R#)eQ@cV*hV-zY(e5Zy*Bp$EKq?Km;XZ<$M{!>c^-VgpnV^v_{ZvJFT1f7y-g33KD*<*p3mi_pt_pdcu zjMc+lHaKQ+u}3Rl_4{TKa%s&zqYc|F)qTxGECr>cl7aU=p`qfA`)HqMV~>sH+XZ=p z#Y=aQe&EJ25S^N(w@Eb{nA}R;u_-K$v%_N2WRq!Sbx=2=ns-rfIA6Q{+)F6A;l7yS z$k6qASKPRKpN40y_83dq0daR7lzC+*ifCKlNtwQ098i|3Y*Ss0EAcs_a(rl_FuGo* zNVzRdFh+N4`=Bv~Bu^-eZ<|;f?gNay&Vui++xvXZ-cq1<`<5QQKWe`0bFAAQNLakA zd{^Stfm?FDM%w(bGhtJ5rxfrXAr>R<+kVpjMRc|wdfhL=dfD@cdNs}NPNr?Xy?|)# z$s?Y4)>eMr?Em>^c!<)--7eg8>MhTz{rj?2k0!=7NkbfmQ0|G0RpCwuIBiFx1&3dY=ci)WtR7CU( zW|`4`@G|m^8Nd%Cm%M`kHdsJD8ccBmsJA>AcD8r~f!cJKQ#Caex*RX-XE1#e>0e;w z;huPgi_N2bu{yJr3D;>Q%hdtjjjRIXN$CVY4ujq&XsV~p5b)M0Ga(RP6+t5AjEYE1{mfgT&7aZjSA8u%17siXUZv>RbKdV)zN(yTxdY&@pCuEWGm8L`Q>>ItZJp?34F@{(9 z!sy(PB{V?SXLpT;+_so0e_tPo-0#JeeHGXAsTBmTU{Ym}K|nDBwq^gC#uPN&kSf;n zkw7-I`;uR|XL{v+Z7$4I!_0E%TY-XW29oW4JUvbW}yR==T_GVL-i zi5s9!{a6XZi}N?RX3PB~@|f~})3tM@NpCqGj1q3hJ_d$+T=gGIqCu5<&8KI1Z)U_N zGeqnIh1(HCQUr>~VQ`E#H&YdN%7ve?2jPwmt{%!7MCW0H$Lu!qZ-Tl#5KV%tm!h!9 z^Rt9si~$uwa=s$yh8nJ<&ub>#GH*npglAJ}hA9~Rhp z_qnXW1%1hiKszXVRW_eMWhfpzFCwDdF) zq|U2Bom#&Ee&>;(R|Rf^y5-gvn+tR92Tf*|`E!`3_W!!Z9)EtY`0IV z7|v`N(?P+Nw~pXR^E(PW;^t#Kn%qCt|B>L!a+Vg=zin5w8YyshAO$p)>m4!a_1rgshE^lzQKNSHt;F`m>j;m=x0=? ze3c3GS}0FAC1GzAo)Qxsl=5w{;btBx7(+K4;DaErUuO$n$V4W*hD@E7^K?pM6U*|( zkF5d+|BFCqtg2DgF^XH+x8(Vi36k0gMZYBxlGmULlEd6HfA)O+lkhP=XU?u8UZH5K z#N)7ZsY)dRID4tl$zDEVe#_EOJ(4p3j=LgYt5_5J z?iDf_%6Ix`OI2vVa)VR}t8F>GBKVm!)^FKZ0iS?GTJl-*Hxo;_qL8i=;MMdx4qx;O z86H&bLLC$-Y?1+@&g~Tmo5hJBY}!x$B|mZ8MicROpR)ghiHqzrLy~6=)Yf!$16X-; z8!5jQ-mfdRum0B|w0!evH>pVJx|z@qj0QL-N=$qff4GV=H2B$fdmvAel5z848&K>5 zgBqW9OG){Q@h2@7`Wbr}gR*nHNlEXryF>n4L$&rT9_k2}q?a%utF;+`c0FGMvMZ*% zmZdcz2#onF8Fzjwvqt$6)?f!oC+IrWhm7FgwNG5Jut?4Kp^O}$!-c?4GHpU-o<#i@ zv03W@6Ts3zI7$(S3``X0iw{~74k zqO!YQlFCc@29{A)S4B^L4T-_ZJWI-NOK!HrID=E<${_kE4Jg2Wt7KQRgx6n}v0zH) zV}trV8Dg`qzJ-c7pEgG>+G;irEo+H_&2JV02;d-y0ekxO!cs^VT*GzAB>f z%TKpLo%1*eAT_e_yoj`5vD#vA{b-KMO4Ux>%Csv_oV>|llH$Q;VgI>X5zO=UG={~k z(P!e|q0|J$!CIZtWY;<3bCP=Y7%1o>^62!UKSA|19qHys?$WFHw9fHdJC@ucD^wn~ z>FLf|mc$QFo5k*weO!CBhG1*TJ{L_x53L-7Uv6%UJzI3A9$M7XJQhFEKa6GaELB^X zPEAWZuz;LZsqTXKE(ZEH&57;6K%j;DWCq#bSX=gbyd74^J!nrf3%t71^p_|l(|OB$ z=~EZ2BBvk$a*k?|cCt+c7azmBGBUQzKx`i8gUGkP&RgG^Noa=5=Z>gkU^q{H;L=!j zzjXUbW%KDxJU9uwf*y}m5Ix7FfWOf}`ol$7!AX^l~!a7{F z4$YP`)ULd1+rrD1U2RgDt>DS(dQI-3e(ZGeO%VINA{HkCqS3ZTLuY4)$lsM7GNhDW z5gdr@gKIJn!sE}+khb6CaXt*vLyDM%93eK!=F=I$=`>ZLh*`>Trxwzgo?Q?~$0vI8 zD03Ngp`QDY0fYunN(G|x;b(o~0^b$Y$*Kj~JC}Cc4XG9g`F#yxg3Y@uvI?2`D^ZGF zowBS+W5uSAa`GDnddqCvJA1$}DvYMe?LAn_;~&;O5sCq?Bo3|ny*Q5eziqIPEzI&` z^TZqO+>P7wSfpe)btb4gFwCN^nkw&o>g}@67VfC+9Orc-if@>g)GAYyW|tO zE)W1il>1r89)LLy0pM}{Sp6e6{OVGjG91t3^OxwH%4uqlk%LXv&w)(k^50LU`CwM3 ze=hCI2{Y#~3m>pcL!!#)2=eAEbt%tjC{4|rfl5$+SEXxl+qVq93XSnQHRd#mvG{Mm z2xS-*F7V0@1_~0t@&!kH#Ue4{R@TpqjqxvX%uv%3oC#B3B09{BEQ+UdqZ1-*y~%qu z_`gB=b~yI1t7#~gz3y9z=finDs|-?g{0qJXHa!mjUnpHy$kjg1=w^%3k%b2e>@V&q zU<3^)#ZjFCTk*J3-zK_cSkJT`V5h&<|7?QshPu~8a zP2tN2T51`F_|>Q&Ax@8ZNTC!w_UJ~^$ok@PO4kxI5;_`_>hU=RzX3C4VKIerAYdzQ zcZVcMkEH}b*SBJ?p|8Y<8Cr-QU*p06i3P4OWAeQ4`^BBThFh8pa70c)udz*s)mHph z0hVSe+CITAeC%n_J_wm49C06iC%#!&=RNp+V9m?n=U?=X8II}$x;vs~esYJzMvuN# zt)!Z;gGT4W-6u3%fSbSZ^Vu~3v;y|fht7pi$E3gaKm#<@5(>a;78_9UK8cj|ANEGq zy0o9x+jsPYI$Y0{#VLf9NV+cc*Blyp?$7Qh*ri_75%L=W@0jA3#okAgq9t?nEAO}` zMlJfZ3n?3mzMVfeU1`PH%}`K}d9Co!iQ_%RO{iX?>wKP-@a=mYdA!~fNf>TK)6GG? zMk;{nO-Ms47J5qzVUUWC?0N)Nid&`ZRG`L+&y;w3ER48jI;S+|X4PTMFHIC2tL6Sh zsAoSi+tGPcXaomol^*cH=m;>D8GE=WMlC?U17g7WA2nKYe`@7?L984n&cM*n(^aZ_ zNdg~pc2`i<^Rh}?Yx575S5IY$NC+!0(2DE6nkF@CI`xxlP?S|J@sDuT{S=)F>mE<9 zc-nfiNe(xAQHQDC8oSi1>JY<(BSY`r_CeB12QkaL6dog~16P{O)ap+yWu*EMhTdJu z)dQXr?U!SnQ(v|X6A);G&zE^dpU?BM#usI`5__?@jm!OAjl2F*=jcqttvxH?WQDD| z|7bXlSoEIZS3xCgrMmagNFmPJ(jHQ$zFecEV4D>sB1fUB9viwmBBvRRr1#sUdBNF| z!;X3Q7u6PBSzhS;W7zCL?}>B1cCB;S__M3G3~%f|6}kmCS>q-7<=6@d5Tsi%vX)+9 zS)%2)@PdT=Sxt^jalYybfr9!bH}-ci%}VFekF~3GE}p6XVNQH~pm8Xv^SxtjP_5(g z&sSWi`#kl;f6oJO+v4piMo(P|aAfpWcNRZa4E#hV@NXo1rRUEB`^evE^AIIcX>>Cr zzRQR$4KHpqy14H9K`!eN*aoFehMNwESnQiU?~NZxKR$=-MzmxSA>rrKPc||m;dcM( zqDlRw=*mwrUv)T!yoMjV(lL}Ipl(Gn5Nj-nmDI&DT3;m_HbVJUUBu!seB;JET_s|B z+Lr%&W}p~=BZL>U6+nM}=KeMBg*Nc@(|_DSLW5))*iL779#!2i-;eo7xK5?@#7w9U zhyM$iSVFO|M9L!~$Q_W(+S>rQ6yM=FR&(%d<^kCQ*cD`hkw5faV=f<=yDDW2Mx|AF zWysfqo%-WXgm?K!;fabB@k9IWIp7h!;0w*(aQIS{lB!@=KR)h5&Swd0)kBv=#|iL z%g_C81H1V#HcUNcIP(^4k7yQ2elJ#Y^5`KLffwJDKh zACKtK;MQLez*z4;vk~`~V?Yh6sVCAZqRimA1zsQIncu%sjAa)bG*>$mEnjb68)OT< zlXzhB2t@P&CpYgIzX!5EQYK3Unj^<RT2)L(u0(sm||t!en1=xPU>WPIY>QM6GoXNSS~~fQxyafijg;^3E_qB@&U} z`$|fRQl>wC+9q!${n(CWG~S(7;{Q+aQ0yh}r(@Egyzt@E0KHZC<=z`;W9!!tkrlIH z$MEQW~4oxY-@jBd%mj(?C&UehZT8__!=8Ykseh3Oq)FV_&15S>tCxcjPhOvW( z@>elHQT1EcDlo%45{5q~G;Lc2y)|8u+mQnBj24xNa$ zQ_kKm2s#dox&nfq`D*iv>lEkrL%MY)3zv;y9kw+C#%10+bt$&hDsR%7?+-m~$%}vL zG^2loaIxAapB4WVZg8_3Q1W`;=xusdMrvktU~qkCs6Ui8ed*U&uq0WwCXuw&U4Jt@z;9e_a+t)zQoPV)@rPa}=2Tvl#mw&95sNN`!(Ps&Ec;ANME0j% z`w^WjfRaF~G4c#S6WgMBLlAukkp`nY?otPdt=lUx2K5#8sIsOL<*c-L%#%>A`BxaS zrUl2`piCJNGY&6hrgKe?HV1uho9JfPK*$uab8?x9qECJDjbPCWo6vofC75nq@G3IP zIGYX_N|S`!Nj;apN|^_8dLu5^c9Y~XAZr+}v!o{eUdNQ3w%LG2$bpW2PON%mw6Tw9 zsp_GCU;!c~~7>6!JT60gbA zIioVKvA?8qDz%%%p+4sp^pfi{Id=(D#+OJR^l?N3Kydopbr5}N=}{FuY<)Nhy1H9Y zr@vmiLhMFF+?>BtZ9L4{OSo^{ll(Hib%-i*H$=3vHr;2L6*nxSX4)gwmv$jhhtjy( zSDNctm6|JVp1X6$Zp0PV43bp_^i&N(JeDsIc@801KUD)Ok?W={;g!wC+-hv# zQb^2z83^x4vOtDA74@g4aqQZ#0dwz*Y#9{77}Q|oFj{u|jzU$r@&Y?Oi+Qr>QqP6j;AM0rzvNIb|~dt)GrgZt`pb#dem?lqm6(qvcF#8egYe3nYl)jmcH= zyQ}?Zlc{)v7I^M!qGl50vz+G7Gs!__TFR*)3+qz-*SKK@e$eUD?&&IC{Zsc^izt-% zJ=?j0u&fSm(dDB4&;T$GJZ4to8M~%BWAV#YJHJow z@lpv^!ix5}qR?GH`g`3Ats-*evc@mlg^M=A;@-aJ{?=0x4X;GgpV61zRQ4LS8+a9R+|MD=o3c zWsKH&l6$Gv%WmTpsd&Uv-KMPap@?N)|5V}Miz9b##M)wbm)$R~(d+!PPIB7nl|$L9 zLP^uUec)r9P^dsF?)sgM`l+X7hlf6TPHT@?I(g=6*Y|1n9GDz$PDiA8L}>hkz|8D*!1A`%_p*jDmTEHJ>Y7Nhe}Qbq_c%`k6or;eiQ;5pW~hZqP{ zI--9sVL3r;dFMs~8g-RVa%|CSoUfibFH*=KSkL(+x!^rQz%%C2civY?uIJf%t+xSg z*q=2x8DHc)LHCBXTd%AxoGo4Dwym%%3SRtzt*w5pKDNU-iCu3w=}w-(H1b_|pJCZ< zeRA88!?E+{?LLA7^HG>?^^JV|rM<&z10nk@5V>vl`-T6w42+1&L4NaB>gC*c;CY;l z{H1)M;{ryxt>*E0zNhQh`p)Bf979L${OBCpu?q_VxN3oxtyJ6HDm|#1;=PxFk?45* zkj<>E(wp3t=H77~htfpR-rCl@=t!OMA0g(_t+CPkr#%7cRZe=-@P=5Cd-2eQO?NI3>D72+*J) z1A{UJZ|SiXFA3p^g&N!n5o&`Mg10`@(ZsjI-Qe_N?zgjvA7wOs5|3(6LtheLIBE`q z^8a)|*<&}U`i=SU0h+l;h|-c5$ECwdZ2^JB$4%9sEAof@pb0?Ejt8k+>%!mWK~D6* zL6i=ataZQ?tshKJp}}h~gftwtPOsH1r?ukCDer@n(pZIoI^3m=B7qVQq59QMn2S<^ zW#i(zzq%sC#h>H8$}!PgcH?1?3&-N4)|Ewrz7D~F@!iE8fpMagy|dc3fgfrBn+0$k zv!Dlv0Yu>hE~(-*lDW6S0%IYxR*f4*)G_6@CFH4%oOlrq*TSqj2FsS z*v&|Y)^$Eo%eWd4;&EAaE}CaB@0p;*DkSMcy==flT*1X+B>#VF!dp_48McAB3fjN1 z^OL6c{EjEb3n)q}428j~ZaFSjk_}ptqW*LH9O2RfYjz|x41f%Gume*pV)=Wmgwg^5RvE7d{3z1IcuXy zl$vX8QDx6sZzgSt`mw+=aZL(tr3+@%SAHJ^Bi~LJAVF@V5G4cBaN66u0BWKQPGHMR z4hp&1X@-$O>&wlkKs8{v)y_LPvG z8X#n257|TpHe{p3OKikd-7)J@MwP?3lUt6*VwF}3orERUw1`^ETmJfM1nTd(=I z?N)Vo!l&2gXrk^VN<|@D3ARy_!Xg~9KQr=ztzO21J0%X82}F=YJ3_=#ST#j_6Ll$@ zDbX_g0MBmqqAf7tmunXCvx2lf;B&2XIA8SeNd(w7jcq@0B9;!UOPIDj09#)OV^{42 z^p>VgPQCZNshm+>4N;~;NI(_~bZY8c8TjjSRzc%FVN`AYx7W3CG^fGwrRJ{XJiWzY zugCzV{B~T$grI5KXTdT9h80@0Y)NuzU1p$HLjT!iUFV;;h&3Hx!F2{J6YKRmWz4nf zt(IdYzb`zN8W0^;TXw!HaBT25?60*nWVX5P+uT1*)!g*7aOX7nEuTO)?u)`ni=!*~ zeR^8m6;B^8p%MTVMMxIj%pz1zUv-fD%GwKIC_7Plrsha2I4y#wD^XHBQZ#|K7pMUamR3cT8k@ z44E`-M58MyT=SS59{<=vzv;2vQ>^;J|Bno*nY z`U&kkS@r$+g022-*V=Ezb-p()oQxP!z1t^)-y3c269f&T!fq?8{_8Ez<$C+AUri?X zRu&9uoUgnaSv}4|1z!DZAE!E87mvc8k6?=Lv6A3nh~?Ua=Y{{S4U6|GG3#RpPtMzA zhu4DIx?i_Z=Ihah@5q#r??p0e`(cAH-_x{z^TWNC-}Cqe-}AO*>qW$r(FZbe(k}}| z%OAd08q^nRYBTBseEbxub`Pq}dwX`0m=WiBVhyu6Ph!Jn(cd}OSiEe(1ucj~nL-upLZn#FP2`g!5tI@t-`WwRNi5cH^(zWUfD(52KM~0YfHDV(tpikt zipwW!t9*Kf#b=N$l6IY&T#~a@N>^fz6mLt4h_vDsl9;-K>GRzfh`Zk5j3|m%1@2PW zW}nG>teWI0T;U!>cGpbD3%9HK-=PNRhq+3{hcHGli_%O+V7>@N6^*V$!ESv*k1gAP z=Gl>4m$=JkXoGAPq24?2tg5B0D>-$I9A$^2N~R=|6B74Fx>PKkMai+QxXs-wa1ylbVevxTFSQ2Mu^J%KI}gkyU8ZHWUji2+I)M>t-c@ zLzRnSwjJbKT9eH706S7$xZDcDJO;oLxyyz;yzk5bT@}o>wS`#Sn>Vna7U5Xtk7OPn zm|;odh-e^@W0>pr6=n+y2=ogFOh+Mu`V+{FpRy2R;~|88&;R+C29U4}sgOjuE$g5b zVt)$uyO%6Lg3@0RV+%6>U#XmBx!z}vkDod^?~B15#`LM}Y9&a>g7i24`2&N1I1wRvFkCF?EF|!f6kUix8 zMgaZp&x*gq%eVhFNj9MarxZei?2n9#tg-DEdjqhQqG+jUl}xytTaveB8p(c{jN*#J3P zxX^YSiGp#-ne_y2QtcvRSL@FQH5#ASU~Z+#wAb;m$n_TQo{~@YPb;LK*4e9fM$2zv zH`)&it~BTrZH4?!TD4ePxB3L;vzlzy(pFMPIN1D#8zd?>1aInbc3=RqR{N3NH&I@l zFul)SQ+mf@$VMB#m+`OQLSxcMhbDdWB+TiZJurHH3n}KehorHjpy+HsR0^>Q~Q?0#77e|wIWeH&`}_9|xNyT8Qq z`J`aP|1J1aY?I0TM8|bzkMPyq5S63`$N_!3M1!5~MZ>O9Yvr@AS~}ZOgUSXjvEhvd z(DqPUdanm}M8`k$a*G=VSu(-8mTPm|5=DMDnRQ!wbr;b}-#8N2*oZ~EUX#KF!qf)H zTn(sUP8f=XC|ARSh8jWHF{Ef*@R3Vc}hbldqwn8Hia}n zFm6sa11na-MrYAGGC~hOGC#6}?mvY@>u>NPdgi6N!qwk~>6Img;w31s1JV(Ylq?aa z0a&VkXcYYfkzQ;~NFp2sGXoaRGdH!f&I zAy$+cLYLR59gNzl*kCVbDc93tQUBX-8SyuX3KSLM(hL7DKh?aY8F?Zu&%2NN@M!iH z&grl=Z3aK<&0n`(FK766}!4}L&6JUMXQ>N z5!k;g~U#yCyLwuuMM1oB6;- zLk$1T(^JTfJaAP5OSa1#j$ig+F0VJ8KTek!ON8R_YrfpUdZlZ9%AdPEIz3?K-9A|G zs4#IZBa?aAglv_@PlM5zAP^Fr*ao4=9{NOhLFrz%ktI_!e6mGd-6si;nt$|{(gZb$ z=%c9CLk`w|)DxEXFh!yq{b*p{k^8B>ReH?A)%L|!D@yS)c$()22_n~etu-%doFGMw9AO=ne&Uk z1S2QD&y8BEZZ2o$LI!0kGMh{S0M;nTokOv!KXdHX5ArDxwU6Fu#s@;f0yDoz%6Skm zg%9+AAHuHVlOm(h+xK8v3s04-01*PVaKV(Cg-#$FN_>nlba@{3w#mDV_D}?`LC2w? z?qj1#vq~+H&+jsI57;K{?A=tEs#TwBCij6swfwfv<2 zq#h%n0oTmNZ`dXt1qht*_6)PLA%h(p$Ops%lL8Blnm>ubIRSo@AxXZ`ij6#X+6F)M zA&5l~ZSVe-;>QG=TE#JoQGrJYm4^n^zE%VF#e=RgG%8|kxNWm)ef~|?uNZ{sS+HE~ zxZN!F=FJK4oG#W|+fIy15aU;V;DDW|zEj7futh4}4&O?nZfE?Fc6-~iM{i9sw(64t zA-RoK_a(gn%~t<~{z&(70lz7&SFe>-tqYwe=$-RMi}_wt#zCw7#WHNx&hK-yU{v+( zyhTe<*m$ozOtH*s<#@%g^|rrbt>u1~E3#6b?`dK_dVG{wx7K1VhBV)MpYV9%avp5+ zbh=c#1UxmK1VTccc(=}+j-$wy(_zwhtosBWw%zGg*;ezK5P*aDiS|7}z^N(}t2&5W zuM$Cz3%a30H;2uE8PssDQ~Q1$J2p)a$xo{(zcI34A;-xjXdnSx4blq19_N&!&Lpcw z2d@D-kJ$@F}T#>470)4S;DJ)g;gvuJ6^I zoqVxe`xnWsJ}XPweyJ8{c)l z@LOo)`t204|2g8tzgzSfRSCf{kh{!Q^MaUoE3==XKdoBj{z*11;PR6upCE{)wk`YN z&hzQ^=<*qZ%EEVthqD)2aecCmWzvZWP|QCcTKRTRTxv5qZ^nT>yF4b7%LkVS0eBEW z0nZrAC0AHtxlJN|r5>Rxi{zeje_XCNLX=e>&V2+;!oui32$?`5O4C>X{(IDz#rGJE z%g)1bZ4JBxB_Rte5K7Qi2;g!M4SZW%^xirpC!Ty1C+Puv*9GeQB?mn!Sb}gaZnaTK zZ|8owSG{ZjJU3HD8XVQhse2}4ngR~(JVIu9Kg3!mnlVT^2A4y5wypJ$X zPI#AEK4GXh9yS8wK-YhdfyL|aF3$|0UzpKv`huyMuK!oSP)ynm3|*&4CxpA46&xE% z14y+O|1Br`3$-CrV2S#}<@D8}iIr=8WK9y4&r3L*|I#{hzDV9}_-EiZ>wQ7)BN?FnHzfLDYXttN|C%?62m>Tz?BGqNL=B5pKbq9w2bh&P z5HfXn5Y}m!*1rENv%kf5+U{B;ecPqVwZ>4pv>^~r-)-c*-%G!MWo7I6{A1&|ZnfP-?^$h%p>xmel3c?oyWLXWoLz|+8fVmJ}-`Hv(isioX5YLxX930!Go=P(eLaE-AYB!n8tXW_IoY} zIp5j&H#$!V%ufhAoBR!HEa$bI<9W4T8HJgaulmEQC!)&vTvu9Q8o;^1iTztxv@_;P z`+ffJ^UppjtuWpDwqIf9_1l_3wdw(1XOm=i6j* z@6O0^?^EL(|J&c=zKdwF|N3~cZ&C@!UT59O{&j4;q!p98FBxTeoe>KQooTJ##`k?% zXwslA$+HKEQQp-i%!#`BAsB9qrWZ};IxJ5cY#)^miZHKERuXn#Z@gJS8xJp34PTdYJDh}5e6Uv!+b z8OWU7M`1VlJ##jEAWr^-+03X??m22$8L>3uetQ720D<|Mm&}w1OF#C^tw53PGS57)}BU@O~dS3KM-eRg2B*G zdJgahlrvbzrC+W5*Ku=w)|#{+#g-BYRWW{|hd2;K5+S(@g{ic`S$0f1nJ=r0e;)oQ zsT=wkq+X}e&AI^FYpn`t)LRLeb@Qc71wrcU8DcLXNzw)zq53t4n7VET5+T% z@L=*$sV-GXO33h($VlF0k4Qw`m-Tc|XDEo)4VIihtdT{y3ENbK4cM{1ijEL1VrA!0 zM&vHSzlZ^1czwAXK>>6+Qd8PJJg#CeiU0G(}bOrlk2rT6Q(d3

ZzgG&5Ool&5rl5HW6JqEaST*%60kN1MnN-ehJ8UaZi|leUY^%2g zaxHwvvF++-zk}6!cUJANw_NYL&>Mw#LQt{ZVB2#pF|r?1>G^lQiFKp> zHr2ppy~FvDK>$kH@zmhI*mQX3-I&wv`TDJ8-q+D*4>hBx!^h-qWnuMhSph93WAWST z(~-kc^(DH%L5D@pX%Fo^EYtAy+lghnugU2yX{2Gj?@*Yezu3Rs4vb~j55&a24*dgC zzBh++hHIPZwsQ4g$vp*ptH#D!jKhAjO`%Ez$+dui*n&{rB8>03D}p@=cJIWrTjB&x zo|jzpn8-$jv;>)J(Y+Q$DL$wpf@`hiRCRvHbkv?}!}W?5Dd6?=bx!^aeh5w`DBHoX zb&CW%9PJttvwZUxLe<*?%tm7`eXs7d<)$}|EN997%y9<$7y6wfjHU|4O?~+Zf1@{X zu@Nq0w8(dnyz?oB$jEg#^r$jt(d&FY>)=BFsekPxW~2W8HayGne9dbf+7x!7PK?M;FF^TEH@(>Bb{x7`$vI(hmm5uli91^X4t@UT&iu1w zEQf|ut`ICt1ilUd9aoQZI`Wk%A^Fykp79OWZpee<_J9}?nO>aRhd7Xzs5t<-0Bb~7(sLVJnf5|)2tw#KX+zTgBc zV#Cd1wOAJg;(SJOy#g%m;SQP(F;vomJFCLk8FM;ZYJ$ScbDFgb1fNYzPu#X*(HH9} z0nEkaP?HwL&_aFKu-`@Xl8^{GZH%L5Ao$9u{E0|x?ueXmd!k~+nJmN!xzjB zENR73_|zpuV6F=O(X{YgzOwqVdc1MtEV?fOw6GNdOyQ~0!2vv+ywUG9KG91@oC&

7q97_o{A)U^Da&Eqha*^9C#Mpd$ulWYx37HQ)cJN?o zcOLB$q(CoqF9P#iZjSJIFwKxa`S0!afvCg-KNL(l$<(i3CW5A z5X2Q8GollQ=)u5kqWPe;kccN-r049uB{#u7`^!oY)TEziBIOdND^_T6bpyk;#jzfp zQqtwe7F?(yp2celS;X|VLKV<(pY|AqKmn){3BKbzN&wCA^V z-!3LX7oMsQhKO(v$%L5`%L;Qph17-f&d`rY4Q(U%1tGS0WT=fLVq#wpY|qU1K*&0W=f+p^l#g|FG_^w$o48&Ur zlG_5fj;C!E^|y@c{EL)imf@aF5d&+gZ3*SD3q?VV#;78TW6p3F*Fm85VZMA7&ksz! zeeX{)1LE8HMy2M12eQIWLfwaXEA&N#w+X)q^n=WCxa8|_5 zAmnYpc57INQis+DylfM9?AwotQCqh)Zc~8|BC+yA;sQQ_P$XgImz@MpZP5v^ zZ*|-1;fp#l8i$lDCX+T4wB;Pmm|4R}rZRcWnNmFxx#(~TBI$CXt3SPQAmt2Z6(%BO zdc5~i0{0g`yF0rdw|+1^uQ6_GH^_>NHh=SQ4t0tcPKMr}TT+!e?}QnM=vWuS=c7x# ztxSQ#>7B9M(pL_$0LipPUGePJ;@Y2InZ1vR$TR{MP3K^kZ$d8iGuFg~T}7+V-+=;} zm2P8{OjahqQZ!opQtNXuz=F(C=&dV?T69!{!I@~qDOX!{1&8dcz3;rhZ8-0{iZCwj zE;Or{&R=>oZW`XAm0}p4?}kxYUGFiew4zgpJ^`d{$0~aVLr?fPLMO}RJ^S;1-fRD| z@*+nyHCZB97SUwcdFALy=2tpcCz-h@mGy<74ZRyU1$`8{Lx6oCnyvQg5FcDs@-CY; z0zy0@>L(iTZxBlS*d%8M7z<2zMNr7L|k%X=DQ$v%)?TZEf#e9HD8u-m_ zGAq3N>p9>1-iRS!e}CWk)VjU!JaEy&bmWoLZpQqTxAQS4UMtQPwjmc4hPGOU`hI-2 zL!1RR=^W%*Ijf;DPW>t)EI`kd8;;lh@t7aDIGmlfRTH99j~n9*DIFS*6l4Vw^7+}8 z`0NarNp2fA3;H4LyFoWX{pDXlAhauZ_2NpSkOijV4$vH1wXLDD1- zIYO~Q0N6BkQA3I1&TF&M8KTNhL2mc?KtcH zj*5(^@GO`_Hld3MC3K6_zaB3QOvIpH{&D(ns@AyiqF`o(#(Vehd*R=4v%~IPwA$aU z`v9{?)zi+i4R{Qsf7~DqN0yE~k1}XIBL7Vt*R`p4a0<9~O(VY5E+^(U;C}S`8aNZ2 zJTFO6!^tmm<~-Rs7&rVY=U-p56rW8ETZ2NS!NsC0v)rq* z!DSs=k+GZ-XaSb)uoxn))m@qJ3d0m#tbH?rI9!$k{;Q7_%Wo~Rqe6>1WYpjE(@J)) z$UV1OUNCz`&O*F|FFBQ9P#a%kLUPnrF@RLy>B)$$jS}Dnmo>l|1&?d1IxD8F%@Ykh zYjx_V;U|J_?~iwREyrutv~KTzwIPCmL~I?Hicsr!vK+O-rhLb}pm2gQzPno<$(JV{c7;$T}%PFd| z+fgH!B7QN|_vN6_u}Gh|RN0sG5_0-k+pomi;Dq8|;hnlSUMPg;ILW;cwY`cAsokko zZEpW(-7-;G7n9d+vj5W#NGFm#_@qX%UiljL4QTVWIMJA6a>#iN?MzUvObwZGEgJ(L zW*CePeg6g#js17tPp`FJ!8ms{{tbqT6m_{&6yKp;QQ&=?PP@zjg3 zn0vC2{fvdAj2I02OfqxxT2@is(dc**Ntk0k)tVuus#D|yvDKt4z{ERP#~I9~T-6GS z7Na97ChTZmU@-FRenQAL9ZtS&YV2=;*R=y^(0~a_!0U7e7gQ@ua=F#LxS2Qro`Dz^ zg>ERYh3}nz0+0*!?;QX&ek*YQO(UMzL4=_DLqXmlci@qD9_3M>Ug}_(ts79t-&zjQ zZ|hnvrAQIkBMm7z9UEd@FTUUuvgVYlmBVqYav6&(W6s7?rQ5mUSZLCCWZZEyXDH-V zDT_qWbeur*6{%sff=J`YWP^Gn3UN8xR&T2c20sFk=#3-V%e)Yiq@IK&iN@7{I0Vzx zEVUY2m9v)5TXRK>mvQ}^Kw=7%}t51L7A|dTROf zU(7Lws>3{;l+>yNB=*&43n;K~engS=Spp?}SEmjuerqS7wvl~h#w#Hn7zXfmYv6vI&-5(cGk{)t-Ak4bjkuTBdUMJD^ zT8FBSgT*|X>Q;T^W&0C*Nx;7YI7U-+_U*^%h2~I_Dfq&ay2oN{GHFCH?D0a!2i1%M zJn2KM9AZx)?EYK*b9z=oY49|1R1vdELMy|Uvd=MntC4%``_v;5ObRopIeI@Sc$FmH z$jfhb`Tqt;)eXsTSz{pLA<5=sm{$M9HsS?pu+|r9!QI}Jo0=F z`qyE%{N#M&_h$3&BP+SkcjQ%;h**VX#=G-B(&R#aS_I(VuXb2FHs=m5{%iu&9KxBp zDJ=HW9KX1;0$G>;wv+md=mbO zvi%3N^&y*I<(n5X(;sSUzk3cvotFIfdiJpyOB6otTK2YrG8AQ|3BCwt;F2$zGoO`{ znUro913+*x{PFBp!b=EQ`?B5?MZ7!U48!#X$@Y%uKS!EgX@<#%gKRi*Ou?i6jM$+l zyl&Va875y}Dnm(=HF8^}Oc<@oxRsCZ?3-s_zzTHe^itr={&Xc>OMBye+^O^zF$%iR ztBXR6`S&TJM#(UL3+i%jSpzA=6h8B!B-UsvWio^>O)SFT5cDsWRqv}(cP<6ga=zv_Ikmy#=QumS zL)dw~G`2)X<9<3N`H|rB;^$81na@p=rm27yKjCfIO^eJ`3%A=cwTu_y8*SU04%9-o zC!#w?ieA-1nXOL-vn$|VNuTfgaC~l}qZV47Dm+!W3gm+Z#y8gRsmaWZf@=WVmMl-- zO5_{*BtHR~kKp6xtGstvBH19e;3FymqS{;;dq7y4$zsMU^vt)Umd&j;i~p+A8umO! zDYxV&29i2LeT>7^?7l7#jWh0RL|VL5s05|Qy7iP2nFg-4UM$Mo1uW?Bdbm!rvu!tP z;GpeQow3=27u75GtD$7VmEF_%%{^wKEA~F?Wb^>+{^%{X+W4LHXM-gEv1~ufct)V( zPp71b?U1^ickp*1#feSCLGOj~xj#K(S(*j0KU*b5o4_rka)|?(bl<(R-zA|HRjya* zC!UT%(+Y&)Vzn)J3?}liIwTn6IWp1bq3QT;X_5yFyI#n`|0(WEkM^1=MDAO~WrRt* z4G^ostCIQXhXMU+tnjL7(Ch)uE~bwZ9);{ARgleQ3LWg_b5mi(c8DKZe41=aPMSYD z5paWs-F>GI@p=91A&hMVp%xIxxUxGbMcKx z#Vru3CA#Xv#VF?tgBox_O_+YBQWu>pI>YXmT_8skxc3GS)3l3Elu?jll7+054RJTi9wd zBMrlFrP97;=)CI>Idph>HAkThJWj89$OSpjK;ECaB zN4xK9HJiBh{p`4B;VIjB>Kd!O1in$_mu8eC z5ugq>#7BE1BAJe{7;`&Rj7oTaL`n2Yelp#KLJh-%ijH?UDlLun1%`rb2#NkFB`L49 z3{NJ@nPRxL0lj0J-35PpQhwvW5|2Tp-=Ab|AIpW;FN0lwTqA<_kIIxE|3yRxxjV$4 z7jE7uXSMtdN*qQ!QM7)m-W03YHp~)Pz0Eb^@q26vKX+KDUln<+F z-h)6KBcWt^9je+MerWs+38>I7v~BDfOctM=8|fEBU!Ll5XY*~@;7DWjM(g7*F%Y+j zitPn#q!Xj`$4e$w=JLLi(F##z;uaJZ#K;}I!J}kgzh<#Fz9Jj_W-LTffRFlyc(*@c zm>x_OzT#no#bCum{ETU3y-c1IO;KaTuCz3vsFOd@MiXsS28Bh9D!k)*5);d1pZ(Hq z>(~S56-Jrr@c0+ln|ncbvY05du$(w*v>lMidObfo28Git+oVlryU^cHu!{OtKpP%tv_tyX90`L>O@!%3`xq0&f#w&S zwZyC`4x?0Zx7)4k0$|CJ@`a}O46*SYj9kdW)eE^xwX2Gkhm$Ib(+_A9IS z=hqr^L~M`IQ=`ktt!(8NzxgWTsG2&~iuYn<2fQq<1qaNPDpQ{VmIq!G+&6CFab5S zryfh#X})e_nZ8zdg}wWBWHJYKME!0Vy)|S{tG`;E;F$^8V45aDg1G;KrNtk18|#x! zOO`L+o zzQXjF492KB6hf~N%WV2=HZ6-VBLL^KI^VlNF`Fy0j?rj7bhJ%oTPjU73mB?YQ8zsSHS6BO~>mC_(lv##t;0_NN$hcwpN!*9VhB&jU2H<9X33)A6(^W!Db_O3Q1)cV4 z_TPfEp5E_GxVkosVG^$=-Nm`1q@UTZMi< zAiJPnHXKyRi!m&S#7>oMGUOoCX{_RkGMLkg!wa=ak(W2bLJY{-VY{Ke$3kN|Aed?Ukw1z7i|yb9RT!nVyq`{9bY z+0(7Jrq7+UX7Gvs(oZ9?$3D8Z>qsm%>DT)y;!j@Vq)$QP>C&C8V*i5m{r`?+wXC1! z+qJZP*_QQgk@|W3`^j~8;un^t_(6_lfzrd{OV6ABP+)MwQG6~p>)uN8#({)_4e~~Y z5ZonORG^aLR6JrnQ$n3MJ)qn9Gv+r?dfR^$s5}(L( zqIi6an2d@QIDlHvTPT^uHh(R zdCm5U|vyf3BlU_j^~3f5`QEds^&@o$>{f-oX@2${ku{rh8~SE^^cXVY?u&wMLQ zM^AePaE81ttUJ51Z{o?~$q}&}Kb?4S?lFju=pL>5^MzoFc3Ck85#Riw#lMHMb-35y zdty#vb-lr|8z^(DgRTSL99YBqE&EYPCK%$gHhugUuu=QAxy?RhRQ$PCR?zL)g6VAU zX2x5Q{vTRFb%dNRBl6mB=`~=`SL{^3eSXnM8f&Do*jsB5U%|5%>_MjMd@T_a@HQlF z?zEVer~ET2DnIlBCGoB=&*ScYUiGZUQ?Ou&TG$j{Z(GH7;cV48<8c);^ZZh1(>~AF zuK0d^o?K`A)%~Vw{*s$6BIEjCno8u|5N0y+{-5G6Plc~C$BW9aMUBca34;%)*8oxH zVv*Jo{JgdG?!$%#WknML`}@ZzA2c1M0PY~Kw32%rd;?wAu=ijF^xL<_1$$V0Qgo z+BxB(jYgF})Ci0Sp;LnkUPwm1tK`3jnPj{Mluj4TRi-I?EwJ5)?A@{`Ft3c67fMdw zSS9+-#h;JtJkC`NOkrsAcHt2N_*fE0(WtJYC4accZYmmZ3|oKZ@$dqTpLI8meGhDd zFhK3uK+gOjEJys@=L!nxR)5wrS#h32m@Ksyr$y(;=d*I8%4r1aZs;Pr8p^I)2);sC zJOCPeJwGaX^WQ+n&;%fDuHHJ`-R(nvEPHZO!vmmn6HfsUGEqR!%TeqD0sqRo2RJrd z_m30iI5NPKK;#|vJ|?@-C(nO=!N*;7HFQ>6H2*kBE)6Y)417ym!X|268~+&-w>qUUf(U zqzU&@F6i!J+tEJYp^=Fa@06HaEG+{n6ydt!?kE?2p28sSZkx~PmyH+ji8RYU3Evg! zhWazd!If9!F8f+kTeRXYPn|_L`~0 zKOktqc!5z{9AE1eMIf^Lts6O(3WO0V;!c%)hGdjW;W2^IM;Pj{rQ424nu#A*&ZoZi z3_si-cHzjR+d^X~eU@4j26XlbJ%bsE5sDh_Dtw!=~^$Kas~vp*hIhTFLypE630lR~~r z)sHK_t0M+dij?&f^~9wst6aJCyc$BjV|se@QhY*(i^;kAKuWvk4ErtLaj?SyQK?QJ zwxNS#Aw>Dhf9!oATfThM9(ROXQVUDQawu{JkFJ}`DU&_HL%X2_YuX}j*UZ8}mCjk& zb=3TrtD|coct99F-NYi=7*glC_bJ4JZ}a3xNff0xv~&^U7G}?@ZCSs*#2o3KvQiHV zgV6kSN_2HhVV;0>3^o`L5eI_WcEj6P>W>o*!pYO5Y%s?E{xjfWNvk>wvgOPxQHWV( z5*8-TML4D>QwP}N>^tB{+eFk|A$cXQTO_NgWkd;HP_vnS%nh7&x&DJI-TJq(n5UUm z%>V3fTNCstBJ^h(fK1@q)V$YS8-*6PHtm1^Ap);s0s$KvB`701v}xLj2;DjepVP_=NYB38R);bV_7dif`f8@-c5F)zP>XdU1vMD>w6P-5-#mv^mb}f&U~Dh0Gq#3%d}`!NV|kyDLjg0 zW=rA~Nd?v$Aibq->%Y>6hOTzkkX6HSdp7ymBXgy<%$n)wp#Tm2RxaG8(s{1p5rZDI zTE(u)Ts_3@Se8kHU$3}9vbbej#zfwsM1;vD$pEzu0d5LqT$s@8SyFdq-4tE)Q~iCK zPg^m>Ors6u$ps$6>PsXmX=#wm>p>Y$-YqK*;m>WyepKsx!iZ=sl?@F&vgUBYXj43> zpejlX5r$3#5xBv6htfuv6-)mfjP#ioxGww18lagyhSn{RWl*!Sz^T_hMKiL(OCLUN zhwcRM?o65joL<7EdUiHu9=<--Y#PazYt|YIxc0B}0NyO=V4K4}y|v#tE5YMezq_f# z>`g1tR!R;_5>PO{^pUtr4W^L`j78;HayYxyyktn(z$~dR&MG!tU0bXLG9Q7}jtw3I z8%j3|8WDqa!OIk(P=w4K``b&;Eiv~!73x7~Yguph4^*&atjxt2>IWQ3w7y<8Atc@# zCOS6Z?sc()4kf@kxcG2;zPXtO1R(O6d+ss{dedV#Qf?8A5RIk^Wbm_x2}1b#a+nZg zNAake>?a2(7!1^X@si3QnNbuIoL_rBahe0YK{np@V88*TftqR;70$LdFMaUE{T_KA zALMP)#euc{w_x||Np`ASy8Vk{MmpV-<_$=?^>qK-bn$dk)BmAki8`Rp_WC^kaWYsx z_~7WU`&Gx|A=YBhSZqW;2l?}0iQk=(*B5eVlzG@ zFH9xQqNl$q-}^XOT%ewcXTdS&VKm3aYyd__(|C@XDCax9s;lddprChCpBKS(iB8vQmwR8&Xsa~sY*VY#MM$|Ff%SoNVg(doi^pUGDd~Si3!DI1Ke4FaJ6;J^ykh+J1m; z4)=0-qOIy`|8C;a_UFB$>BB~o5IXnSF-f)AW^JI$FJv5`B#Y88HvVzak9{QKC9&(7 z`RV-_Z*j$3;YAvGA{h!J-gu&Ubtx9gPGyt(oE<%lAt3OXIfn5@AKYpY#e{@&QT&+; zj;r>#Te{RBGv$KRztZpdI8zk(zSDatU2>+oXND)q{~m4|-gRwiYddZF8&U7KKmRB{ z+)$9B$g_VbtrFukEDgm%amf)}cx~JR5Aa%yC^Hq$T1Je{fLRnUV>OxGyw z?cOJ@a!3b`^%#~iaakd4&(@fm9F}a@bl!%MJ6!Dm^BA`Vjcd1L1Dhrs0JIQdQ zfKq;RU65b~#Jgkx(Z=*X9P|hb$`Fk<-cXBYqD^I{on-xLmrYgnL`Pjt9@xaAWc<`1 zYe+?ur~ob>rlrFeEo%?pLkDMr6?)@LR&*cS2MV)_jEQNYE*i$+a7i&yI1#wY`V%#c zo{i4->_kYEnU09)Do-Y8!toQTf~djx^F3$zSZty>{4kg#tuW9Dazl8_dBibAiBj2yDv z@75#3x~@CW8QgA^-SX)(0r!Wj@Ct&Q#=jc>Pju z!^*)`Mz86Ef*d65)6;k{gl`f=#`g-El|J%^>OcYl5Zi>+*W7SSo? z8wAEE{}TNy1+DnUqtzz1K2!^$uQFv!fubi$@>)@>ak41{_ykc9<71+*(^wQ`bEhOy zC)Jxriw{;8dJUk5(Dw5%gYi$5`Hn3jt`A~`S;yS8eZn>N@wN7We8AualfB&mzr0C#3W(&S1=vqw+IZNN2G!A7l|=a#g@KVAi8k zEFTfh7EE{+U03;V_v$}?raoOA#sitx#a15>ovmt7-WhNls>e|}(>ja6zz)PdlsO~e zNXfDCX$C~!KB zFP%JS*7sxhH+eHh>GN+&|6Ckq50AaezXg4n5O7I6;kWNQQpI&OATcxEM`(*vJp18Y z{haHyxZk%caUMLe<8O8EUx{7TL@Rf!J)W)42cw_voVCr|)8*^7C_im?N0MzueGaIY zn3OjAJEtS!=`lCsf_f}z++3)3LM6{^Y^$Jn#JX?5FcsE{P_J=UTX!ln1F1s*NVXB(>01>A?Ed=wS!i2`tbez z;o#c=CQ~3nD3i0>nAc_;rRam-YcQ-I_}>SO{ufKhpSaCKi~;>MHLO#O$#(^nq1f8k8e|L$aypF8M2 z{1C`DrZcna4Rr&lRn7mFcd#4LfN!`gp1vr}lw50kl6+-NOPHs!*7DzsN zQqE;>ufnS%k~o#AECl1~B3sljYbOsRXDCQ`R5M{_H1ANKMLW**fh0j5b0sm=36)Yx z8+|w;ud0$k*r;ZP8RTTU$V9x48V@WOgSwn}w0H|N=-M2mrWhkz`B&235zVu|xR#9|Y;`!ItLWljH$_yCll7VuqX?JdI~lpIfr4 zc>hwgDlJ^Llt2)f6me{*EFx#1n{B=Mi^m`Nw_a98v;k~SKlVdk30^`!`PM%nM6HUN zW-#B_?>^2--V%)*6ThCojv&wa-^x)y?#g$}Vr)1v+vAJ%pFPaPl&_}WB=Q$cO@#op zl+tpJ5e@V9rwW!EBN1y+chnCC+|5*)SulvY-|%Eo8)7*!8Q-^biu@UFV6b0Krnumy z3o!3=F94JHow#S`bpc=^0C)F+{{u}JIh)}SF#;5SEn(^a2=6qsZ=~J_vRBXu{Fb)^ zj66pWOIBH)$P1C9hVl33Ke~E=+sMRsr+-;;YQ)CipD^4cYx&_AH{huf04lM+T4u_u z+zOLkvk-W!p9CsAv=KsnVUH4qIW216KNJY8t9f$(aO^}Pe$Kq0nwFW&iahCrU`QD2 z2QzC$l??U;$SfIVi!66smEHRunpbkED%^i9t+d^X58>{s#0+V%1}fA7FP-0B?Edtf61H{{A8UO>?yj}L?i9V_(Ca4zk^eAAR$S1!O&>L@ zgG#~%Gpld(S7wO9I5SAWSxg-7%E8UB41caN(%4ZRZ>s}scpfu1)Zib;zdrUTy)b_u z0l`2dX)_vu-A6KMt+E^2^STIz-bX?gO0iqR$f(<>?!e_%%y6xSiD6|?HEsz#hs~nf zS$uDOGZdHLyFHY)8$lTl*fo(3=M7FB1ce3-SJ#iE-+$9e2M*=VfYbr#|DE%I?Ihgj zM7Y>eQQM4OHw2{69UI@N5c2!yGSAJIKD?CFn2-9&S=;ElIS=%`%dSV)6Gn~UF5YV` zE`*67E}9UT8o76qd==3k5iP;8*knkZV-EW|zMN)!Q8`9-Y+h%p1omXu`2tHji@7dJ zn>DH1XlT@MHl^f&)7lpuR8Z9v6o-p4+e$9QQ#U->%f5c*GW{IjU8IpstO&4srFV_* z)_i2hN0sKGj>RJKEpCh1&ndYCxT0v@p^a`ps`TzeszfNf6lpX5gSSA$?lw#@zRtJn z{Gj>Gzp~p821#A#9d=89E)87tEB(AP(qGiN8~)=^-Za{eP_Cje^Zx!?Ls;Uxtx7~t z>b|dqu=Qr?YoOA(ht_vH>9Z%d9=<=Dzb((_^p$54Cez5-S8ZHcG zlPGoLRovUm6#+fOU%zw+J5@yz>K_;;fu!;lD6zP+DmOrJG74l~n@vnIM1oPTG+ym@ z+poVtfeTY;eY2zDvXsV7WThlrvlghgolm*iSF!!`jiPBofF|mW?f(D;LHfQ^z*4g3 zm}*!BZkkg;!^IOfQ)qUX7ghih4w}&Pu_r*#_UG$SdBx)HoC^UhA0PAxTr4RCje!XQ zAtqTkT#z?~Y_Lz=cnKsfO7!y0aWV*SlqIkjQaS*_afHd()08_6Ow)X7IQkSYwgnIj z9~}6qfv{Quw+bOyXXLZP9rN{H3Z^QMETDyk!^1c{=^-$Hzy3=>X!ey~3IwsZ(6clI zqNk*xXC`-orHaLi#!X$^@V)UhAL?H1&R#mwJ*vNbTphy4f4R2H-|iW_+nH}3e8p#b z*JyKSt&g91W9S#X+?gDt6|-heTeE7}%HJ>8V6_I4*U z)f(yCv;^+@x?E3wE)f~P zk&9-@k|^2(KLm-e)NFW40RjV@^(RQ;FN(NY1ycsdNEQwoPhG@r<$pWMss=;uT$rV` zBMVw;M6d0%0%1{a{Yd0b^DyUFd@IM9W^Uw;!=$S?TU*_kGG79>Ul$V^%C* zRrJsPXbica}Oj5wYFz(VoH0wQ^n${Xmj)7e5Ik*! zDa-6HS)sCDnG)<8UzW~;%A3OHD+^^*G(oj$jO7AHEJ2+ju%LE1^%a|fkIh2Zo@S#> zZ7yS3(+B~IrN+;ygCU%=Ckm)^^|nk1rw%e>2s&X;mKQuZ&XUq;`Eb^_QUcFEu*{4S zXHULqp%GRzQ|G}kw(l_2Uph!yO$9uy)_i(`tQAlQ^@ItWoU-#(0lumVjZz(a96(8# zMrd^-V=G^Qi)XaDi@MPT-!u|`O9OT zM@;?2Weh6ojD3-9wI*UkXBOZC?mjRqafTx zClk1*4)`;}%|_F^T2P_~Eg*@DEpQQa3RaO!r(m;^7s2Mr!tE}{Ni4{G4UP;5mZVQF z9B`WKuM$}TD^MIgrAdQoo;h^{UTCL)&_D$tUZw;Dn5hN>0xyX(3%xmIYzBK_ugfsHef7CIe8m2OGXL>T7TmfYN|N z&ymtoBv3T;rrdK5SVAL6NdjavxL5_qo|ok54O5N^l!zg`&aeuT0Fw**;HUzP5i}Y! zOp~lEl$$<$7;}slKpMtyWXIA{P6@)o&EvuaR%zvE!LY32>{Xdtq z_*LBw-#z2Ge?Ozt3IDA2>)$)4@$OeNJLLX02j12CzIS^3_U5;mb?A4)OP?S8T-T`! zDz1OIbIq4}tXNs%iG0eHuRKBq85uzxS^@$o7m_IpA*@ms`{HA0swQe{337>d`CE*E zWPM+Qk`#?61A04~W5Cjs;L}8ADMV4sV&o)5X3Px3a%I*A@{C}K-iVoRAwh#onUl|~ z*d|X<$lxzD*^`$iGxi*rC2qc3$oUi#GWY_g2}uz{&lEmAH0}f>3EYi10%XsU-l}l) zR&5Q0>kN7Ejm%4|;BX9r(23|7SWm1}fJ~VI1R10FmS6)s zbxYAa(Z&QCGJy)Rx_Qd(A9^X^mZbQGjKc4ZsLSrrH+DU@{NEW?e|W^<*K|7c%8n=29rCw3 zx_9VXI>6KCEFCjr<%lUOCeBQGSE=u!g$ougn6qZ}s=mW#wroHCy!(6XbK%ElKQiWs z8+u&!NauMAeXdIJCA&My7lk)FYY+l}94+CA8f-#yqp9tW3c zjVPrXwwBM$o3UFs;ru7Yx|g$YBS%|9q7|{kn2@Wv8@zitD2+rMEnWE3co%U>OF9+^ zj6osb)~^474A9gM*vslq)lu+O7WZ}Gv_nWj(9E#suIKR-!p%ONiN+ff4Uz`B_VO_#`RzU_C_?S|B)V(Dow>Q=P*;HQqb-u`wsy)@T2VKdyGyz@u*J zanVy_FMpzM{kH~ItXQ*T@!CJ;XH+cr72!ZFvrS7DFDib)V(H4&L&wkgp!3*veHOgl zVO;xOv%3tbc;mAPuXdVOEnh{`2CJJQ zSW*^=Xl!JWUtb{5%gBZ*2s1@cH&K*AO}NOE862<|m;dT4`Q|i=#hw`^S}8>^)rRRv z(X%PSq2UJ~AP@xQh%F^!XDNL(7X=574iQY zM_FvT)!ol*1)s64q>+y7q+`?74FN48a0HSI9D1@4>_vB4M3i942vc$7j%|K{#*Z!+ z6y^}DA|Mb0aS?W0Ir;%8FM>pJkTjgAnxbb3I5Kb?Hkfc2s|-EDxG^K7ua*}L5a~ce zL%9gt?Xu$dSXnYvaP^0*{`72Y5S~a1iln;v)JsYokmUY{3)@`YU|Q8{J0E#N*V3Qi zKmUU>9vXAuqXR$gQTp1PG5vr1rC<=g#Y=&nz^438So>1Q&|2iBiAiN+|-JDG=x*1H?0Rv!^-yz`1ZY;>Cc#AVLN+gH1u+ zsvXHjh|4khJejFm>5o8LNI@Z{jxll^vjN3w<#^0=(uGDO2}qbMn5Uc}6R?k2(ulx@ zOA3)YB74I$$rF^D-iIo`z(7BC?AXL508fn=Kr>v>eMHe_5PUZ5MbB9QVhC!a9H9QjiJBjH)Qmzisj=MEblaAR-cJW+V`E%Z^E3(OV{+7 zuyoEcC!_Q?)~2wAQpj4M#PYSL#gWLQoKtR5iy-_1d*- zH*DB2MN=8ZT&%LOnvFJf8gk&^CoW>4MCqBj!OS7at}(D`a1p&QE*vw+R=JbI3K{~@ zSnbiH$6If`MOIJQ(F0E%f`hiYMU!cgwQBH^RCWzMcOcmm$`mk3QOY;pWzhJl4}ptg z0K_x(%&$nn898z!GF-Bn!>kB!lv-7j5e*#nEW?UYMA0evmdURkF=qUscfRr6nlJz4 z>NhsMuJym2QSS%mH`(#NPCu&Ms>+4Uzk6|uA7AtCkqvua{A$0W>UDp$=Y%8fe6!Ze zJ%>)4|Fa7lJ@?tjIrA6neO>d{dz60Z&Oji$md})D`cIk=z^(G}Mn2WZ2C0T)lcfmR zWdgP-U{0N+Qn%o97aD?9_=@RSPO$U~mP(<9!^{7 z**+uNO0XR{crgG=Nr?2?oXpm&%iHQvj zXTy@{3dKFEykc)vAa!6sE;J>#{~VyQO{y3EcCaWr9MLl^R#OLq(y07W5D1NgNO45Z zz6cclIgQb<$-bLPT%p(-rV`2dR8M-m)`HU^C>M4xU}?VEL~*Xr*o6u z?Tpv=tp28_yRz%7yRzGAwYq(OU-P4rZtwok>*KDfKfKm+qffu9$60rGt<#|A;8CSt z&Je5o5?NcE$ukx;YcuqgW|MDjI%)Kj6909^>J=4(#x6MVj(&TcTl%j7-Q8WX-L2h; z(a^f+uP6~npW}kAH_&amj=On#VwlTxF8vHN3~Yj+u>^ZXqZzK?X&&Hk)G)Zp!!gxX zxufUz4EL$=u6w^LzEVipC7uQ)rO=t^g#eOW8*6ROb?mwV3t*-Q78-Jb|d+g6Mo|)g)B;_1tlt)=Y5g~~zq7V`wat;DS z7NCHH1c;ntlN#upbI!54tGcVYLU(oLoKsizcfEC^*KJ_1Mz+`b&#HCUXP+JJz0Y}` zXYWodZmek@sodlK7k-l@x7yRu>g6+1xV;%&-94)}RZLmF_vWW7FS&QevDdHo%7yb! z_(l0wFIj%n`2TA7L*JWp`1RYrf7@@JYr1VJY0<9%Nu!KG{#_v3tGqh_9LF4!pNJy{fGp* z#>pEFU^wj1l{eSb)gq9)%>@`Zi~uZe>ZH$;MBo;B$Fkr(m#Vq*Krq zj=$vp)lPwTTbRizBeaUikw9Bn+KuIGWw068&=M=WzJC9I%Ebgy-Y{*2>130@2(a&% z@;Nqu;m(%9kr^H`w!llGk~c)`Fw4HBic8MjqU4!kh-6Gq$tM63!g5trl@yVo;wlzz zDZrLeDwDC#5&P5w3Dcas@t9kYD^0+zK}GEN8AZhmv|Z|G7R<pF=3XeoFB2ELCBy%ot<5~b~zye z#Oz9|8drGyu>-3f47doeZ_epDKQ3UxWSJ3`@#*Gr*PuApOZWqI4q z*3p@3supc)T(Prd*1GEI?tQKOqxJQL3&AO2!R8MEvI!vzu2*g$v%KKT8`p#(3?6fk zQ!M69o^y_nW7shj1)#$8rL+kC#vK79+_XJ_0J)Lx$N#0M2*f*^?Bve#$hcigX2~1S zV&b4lqQeJ(Jc2yTv4dkNBohPiTqfH;#*WJEvIK`INY~e;F zZ;ZqOT}&Pmh0KlZ8y*_nfA$@lKY2#sFF>kIRmPfORlD-njH8~`8LDd)seTl%O7@SR zHsixTnEtWTXCHaPw$Gir=qs15{=!8oPQGbnL;J}7(f;nvmcfBn{;r*uK}UN_OXom+ zYr$z-*U*k#b!}Y(-Mz}eeAfr-8r!dVVB-glfA(L_TKL_Y3;(BI^}XsGB=bLh>tVG! zU}k-SN?NUqPex%~Xw^=7Q3IfNQk|=w^;d*bppzF)e(#YO{KC;lsL=_d5p)?*dFv}E zqBS#G5lddQ1hz0`z^)oS?UNqHtjz#2I62ZzP-IgV0iHnA_q;GDle*<}eOe~Ks6d5g z8A0Aw5Nb&9bwT>DkIt&yRMoqD?T)&}w!A94 zJKJ{cD*U?x&e}CVG&MGi?Hk-T)T5-RY8<)t;nGi^HtAzOnEc-3U;Omhi#~Mnl(!!K zAzsh#6XC&?`P)M0jrFz6dyzqI{0oH`w8 zA@7GfOY%7XaOgv3_=!QtS_D{NM<85l{8&Q>hcHx5oR}nV0TNRriJf&%11*H-5lDd~ zZ;pdUOcsD-B)<^gzKK^L0tb=`zwA>KAYo=%0E|1kvLQ3hkyz{}Zai`A;6!H0!4{R0*x#Y$sxs{mFM`S zqU7L|WOjv#PdL#@DJJ`ZB8-od)aAk`ImnaADJc8^4s2TZ4uTe^5C)Gq$hine0_?NK zLh@!SkSs%x31A$qQ!xgT=-_b!aX8`^VadDDlHTMkyDSKSM|J``0phb3`-zupOM_VA z<(G_sV4rL1gw7Uz%Kj_u=s=9HfcJ9ECq02 zJYfRCdSqbA9Au2b9YwP+JeIbSdXkn1TZScfQH&&lB5PoI(jq{fO_7i+-b<*2Eu`F= z2#_a(k0URZMFB*Zj7L2Y1r;v|gmLPaiH=ypp@``+$zZh1hTS6m;Df6 z!4OFV0Kj{RFl9-AWlVPkLNog~%a$$E1ET{~IC%jjT}HwoU?8$&O&aYY+}CTWzkyhk!9CZ7bnaHB=QkT<(g6edNHa>q3!aY`}a8}2HQByHj2 zBvDDbfnzD0q_lWmS@KALui#{=V08RGM3)Rx?pst0Vlc21!bJ*HOMw&Yx!T=zG7GE}Ofst@rsw65STL?_on^QzCGeu|#fMm!UN$z4FEfDev-!c&;Kmyq{ zf)k&ZWv&5(fq{c>$!Ub)j6pM+M`8#TxE6R(3&BVNr|7~&%TgY~$1#V=%Nu+YlIP5p z#g9UKHP-LNH@f>r8`}46+|g83-=m@J>+Nc+FTD3CvgV^;SV{}PPyt+sqN}s3yX)cE z4WHG)UR)^I6}zY2zFQ5dD$Va2smT4LCRVm0RKqFIsi>Ik(o(se@Qa;?T)E-a7wVR7 ztlzw&VQ6^YXrUV)^PG%~w`2{?olnlGx%SDr({J5y={;L7ylv_2&y_6L)UvLuZE(17 zua<7Cz4C!l_TPWvy%U7_JtB2H4C-khmF56zFjW7#2o0DbTg49{ zU>7~op%Wmf3Rh&aMo~|qBBx7U3#11~gF%rbMa4R6YIHq@>Rgyy<4B7nnA0=pkyyil zfjT~40Dx+SK^q{45i9(r)+Ngzw@fF`NC1;$4Gese2poVd5ti&jOP()X$5$>{cHGZ) zTy)RQscZW;Rt`3|s*MVFsjIWCueV#i(Qf_t|E0O`zp=`$7GQ7d@T`?JKfY`AslTao z=$}1j;a4v$#C78M|5R4^!02b-KktDS4U9bKl%!XKTIfv1|1q%qo}swpQ&50uAT={U z>Y7-4`w>sb1LOp#OA99Ol4;42u8FYdnBtmQaj_%w&c*p!vM=p~11Z)dN5&`uAc52g za7{pNIh97bmelbH`{7#8EN?73Xj__de9>j8QIur6nsav0j3exxerGL$JJw|2Rjsz_{kgN?7%M~*B(@+b@{;-f(Qbw3KkUiDE(=@n~;H~1)^ z5t+ke4M?-)ANWxaT_J|?f0%<)TLwk^qGCD)rVJ(D>wXkeKCuifYd8s?NAtcWTX@@N~DO!>-vWsKp#p#Dhk)u>N z2sw`nG9-x=I|WNHBm|KWz8Ou@Ss-`>-epsySrT9t+Vn4&Lgp){EV>-1-4v5#>>99{ zivqz9Ee!a~hQqt1q{UGV#g>6jKI+WMyjYUPV2)yFflEScvLgz+mN_r988ekF@CL;k zA{l%#d?hZWnuv1fg$CGm!b=7X%B-u5a{w-xr9priPi7X=K8Y=1yP7$VTry0GVq?UN z<628Wkg)(w_>kp6O(bT!2m+jv;R1*8ScW$00mdLCv~U7UL{umez@$h8L7e~^M_hEx z;PK9gdq9^KbxZh@rlgw;YnWaNIY_rE2PPb$<%aR=dii2Eb@WbIQL(dqcx_et>WcP_ zdwS+=s;%oA*-+E9WP4-J*#34WI)0mXjsJu4;N?X(q|97D+?IvXM%o_2_i&*TEhoPspr?v18HtcI|Zfa|XaBN@U z_a40ky88z_U?bx-O5ygmwG}!a_ziyL4PP>u1=Z}JdC9G?MPT{z<$UO64Ji%wE>6l2f~Ar z&-Z{juab`9bE_-={-Wm(`u1-RI{Bf4zW0y@_|Gq%{O?b= z|DdDqe)}~u-gW8Ie|7c~KY4!j@psMr$PLryuP^)RO)q}v@~5k7_g?ez=6^W<>9yO+ zw>I>B{HN0=E#J~qzqfn*k#SPFc(BO~{DS4w3<r$?Q-(|3skjaaJ zL3YF_{3H+`hpAk=3`Wd25u=WV!Fwaicx0bbk}kOm5P3@orHcS}v>12az`(RcQW_cI zmo>if)I$}V@Drm>o)$iw1Q_9$#~5eX=>)B(-lN1jeqMt3yho8Wj>vNz`^3=rmZC^p z@*F&Q8yE>EFBxcAunSV`uq-sD&>6NeCmZoA?U3UWW)Qz{ZGInVJVsGyWH<@{VZvrB z&zC%~Lzs%eRD{i8l8;}6W%$IBZ7_0Jc7=oBf4<$1p=JK`rxPyf}Xo1dxu)ib4Qw-t(;45obV z5X{Ce7lkOA8YavvJ?e(dANj#Ft%dURy~jSQqfqz{! zYAz%?rSvm?09L_kz-%eL^Cy|p`MmY8$JFIybPoA5neZ#zRrcf+3R47lEl`(FXX@6s3Ov zOq-Fu7atN0iMY7KWFJADSxYmVbU!Hnr_MO$s@c_bh5OdfQ14U`9qomGBB--t{1)|e zHa8X?issh#d8>9!Th)B+0~=4hb<-ElU-GfjW}ot#n$Mk6NSB1LFBW*-@|{Pa4GbMx zeiZ=UQi~!90?)6800RlW@Fj$#({Tj)E_p*sLYl+eBEqtv-?NnqBioD%ki2Aynkj^a z4F+l9PNexYh4&rzoMwp@M{HV35wm`XVahGtBtIFJH@YrHesUJ+MG;Px7k0qo(Lo4} z7E~Yp{v=C$*tljeX=gt%vcS0GhQThr&W%Cxu>IgS)o!V994mNd-P6DbgEE5plP*h+Bp<;SNq}XEDZA{*6)zI#8rX8}-}BvPz~((-?0_dxQp7TAywK9< z3Kr%x^*QQ(Uh ztvCKCFv7k{iCDZR%-8)W2?d!;oC`X)h-B^qn^Y37B^72# znt@>_*U1)n*kTj5*XcRzUS@2+3)|C~PIgI7;E_obbGbKZoTW|Tg(a?hJDd2xAl=d)|7-gNN`tE=1A z@2Y#x)l+{tvvjz>=f=6!Kc2R0Kstv8J#}pJ<=heD4`1O|3dhf`kfMZ>5CYF^DH}Kl z90EcEHHwy^PPzmYgUOpEN0xLGrng=cjW|lYMHuqN1^MKS1vDbV77l_U4CI|xEC&hV zK=}+z1HoqS=MXWoG~2So2g3^oo`UB17R$+uH+$Y8E*nYA%uE%-u{4Tayq7F<6L6R! z9M_h16F7r;%f*hR5rc+{;lA0*uE8>!h~QzwncC$yV3MWcAe`4Sf$$~EcTaEm)}^z*cG;>Uf4cL%C%pXi%hw!y(ek5jD*NuwD&FzbHTSstt!+wfU`xo%cYCL}`sECT~iA{R2GmmO#j}FK^@#f+9={9oR9>3mK?H zapd(|zI^fWL#|x^&p()T-tS7AI!AlDJR^lCqHt$=`z!1FO6vAMJ*Vo%2Uk8iukG^t zO22&G%wuoa@h@jDI{4z{-?@4NNax<)tm$Pizo!R$S`^`9LYrS%@B;}L;5lgdAx2(W zgkx7WM4{ut1YS64HCb@bwj|aTKFRcxe32JE0eo|E;=b8+pa_!e^XO=7IS2+>lYi>* zlDwUI`)=80O*nSHcWVWAfFT?QCYw0IK_krEk!M`HC@$_;79$R{8a90LtO?VFLD1q6 zr2OBZK_UqoFHDhlKuH}%ewo5|aH7U1aLR2}jx}4_LX9zx?z5#Iip=UKZ3%}v_6cwV zp-xiTZMnDZGZ?^#9bfiH@&yst9hs8p~#gWna7P;_YFun5hn2D#eT>Y zYY)9@-L~4%;el8F;fYs$6ntU-cRmX2yzxhYK_3OLYcF#%Mf~EMvp8P$Q9%4#KMEnz zDe!XON5L}2;~imXSh52@7cq;2uw*J_q3OeMRoNdJBi#x$syNd~{z?cyM8VTJ?efm@-ukT<#{;}q;zMiVecvUuq1 z1XwYj?#RQVL$j;VPg5jd7N}&&psj$6R@C9Kg>;#WFX_rhbD~}M?*4FY!CQcnt-h%<`m4{=u zva(VhaPok$ll^{*F5{0Oxke z5Br#T_CQ*(Vg*R?NJeyaopJ=CXh~8OBFg1)3PCG5mei9R!nSCMF<#s^ikv17GDFMK z0RclLd6P6MIOKCJ$&-|poH$_8g%fu$^T-j!9D3qHWB|t9D~tVOn=9)sdVa%yIqTVj zj=uL#&wuGpe(?A~CqMch&z<AzW-uM4>?rn3* zI)?VW`;zC*eS8`H@7+1;qd%S1H$1v@%dXGgwrJJvuKi<$*8u=_0n0-nmZSwXs4Qhb zES}axVVQdyMO&8mv=F)N_^j3Z{{NEifhy*Wn0PHk=i11Fhm>XXuJQlzkJQNwN$IsD z#!il&7fVkuJ{2wyn4++o5gBF?IW?B?VaqLr2a^m(1cW0HgzJGxz#z|Kmc-1|lNOQ& z3ueo_a|pOsNeg+qmIxNaE{%k7ED2=hlvpkg8n)n+jf5}ZGD(q)B`?MIHAhtPN5|Pu zo(bfnTr*4F@e_h2m6&Cd3MR`zl7SOpgGXLiz!xzig?wq`c<8(MAnkovQ+q* z74Fp2Kd8vnzKke>mA0QeW9}z@H2Gk-Bajq-+9ziyr{M{oaA{|f(zD?FEpHXWdK_6 z&^ikC0VB*fJUGOJpo0I$Z#_%~!uK8boDi7O1?e;-A!Rz86lvj5&;R}h67tMSjxF*4 z=wa9aPh9viz>#JEFiir!AMt`+Y-PnRWPHfYg+!e`10PdDEb*xe$C5B#0+H=+|71Nc z1)G;FI`6LXYaZA%aY;kh;OJ1lws)kYy7%76Rj1st`iQGnUHnLkj^!OkJ^hU<)_v-% z1^;yNl%sAeVV@l-O2el8(CiW8PSjc#PI(tN8AS34Gx@YzZ$0cW2_&q8#YgD7KzjH1 zUz!yoo34tS$c(JM`P+|>=YqUmNQ1|P7U(_SeTFrTY|)Y~!mJS>uO|o97E_G7(st1- zkYPbW?8*ZIPK^_&IWKXsOr2TB;nX0fYsRFGFJ28^(CW?nB-=tb|G`!vLu*&^{Wx?S zyNvsBxI)9{F4@z$G3$sWgcx4{XzI`icS&^OO#gCE9i!B)Ix)WP5};Q%HH zK-#64=ahYXisX4ohWR2uoePf6zPHh#vw)djMxjWIFCma2sT&V?9J|7iH^=Q<{P0Wt z%NH;E*lDw_eQ?w0*nY39KklQDYNz;7@Q!_hj{<__*M1a2@Oa=y0gZFuM}glz`lArB z;zuD}H}&F2!Tj2f0$oeGEReVKF-7ECOdx+t6Tvdqgc&CR^_49;rwpv7p7r0U(ww*})-9H+hRZvpNMc8ByECBuvs$u7bquTqKsFTNmU? zJ6h}{Es~iF7I$C(gO*hY@lygJGB`32d>MopC&0KF+NjedCOHUZfq@EP&;>ZRi#+?7 zqNatQ#UQ3#>cvVaX~`Y4gp+q6H&nXg>M8mK!MHda!7DmQgqDOGTRjtfdq)@%pk`}?B*ON0rJ#c8V8BPyDcH0 zjfVPqt={J9mMP22cC`&{uOHY}+qJ&3dBNsAn`^t5mNqTk-dNr?vbL&y?xxzZ*0E*V z8@BIh?;U#Og<^1;tcn5>ap8!is;UZj@L&Kyob0Ae zo8*d3fHi)3eK;<&CbpxgzoBAi_OshpPOn=vqhZmDRU78D&U|Y7hPh4a=QKWh&&nl} zY8Fh~HRqYKH8UF*zF4((R^zOvOD8?De(Un4lJ&b=o88M%k2Y&kl-n<9U_zRbs7BC30gO_`PmgMAzH3LDCmXT977hwr#mrJep;R5d;jtBfv;LW+cO*Veu3 ziWmRmr8EEikDfi~JGcMG^ItsZ#7F=7>}L+YZ{=IAnDmLC&%gGCm2bOf!twVlUB0dI zqt{J3^f&VchDWY^dE1-Ld3;Y(+qymNe{$^a?wz$|Y-I58pFMxVJ&U^g2Yb50tiVU;Poe7$;7v`MNELni44TD+0n$lB>{P3S&VtWa~x8% zWy=;~j3gV7pqYgsGTa%?#q2opkFnt=Z)_4a7mp*eB|cP;a0&n>%WPWaba3*O%@##r zTA~r$nLQ)yu*Q@tkudSWBj6>I!({;~)?^7S7Frw;lPDYn4jEeHZ5hM@ThvkEf)QTK z_-4-|J_~^1WX3NkDPfAbfnXtKZJDWHat$iJC_FFWC%wrn-4HoV@GR{*M+qk{Iy3JX z>;ND}UZ@b}g#ck@Z9z_*7!D#AM8O*#0Y!XFP-<1(TSrfXM=g0NI%tGQv;Bp-U! zhJX70)Q_Ap^*!Hx`s7~}{wJmHI_4QRIR!=`&KI1tl-f|GsZ&og$bKqs94fY;5(pJP zS{KRDljx|^LLkU!B$#DEgU2S1GC&bF`8?&es{HG_XWUiCGIjj}M`zvB00Vv^+azpw`gS1>e3q?)0wRP=kHJbz=aM(Zd?t0lHNz88iq6PSOhdh8^{Jlyr{OvdH=M+?t;?tsz10g0A;aHMn%~=2-;gHBuGEcx8fPnDrnn9w%J}>bo z8)i}Hw_%eFbeeXL2HH<9N%G7B`_uuDF}u9r=eTh^BMAAS1y}*hmFvED!;*^Kg+gL) zU0q(Mulgu>i{_)?ooV1?{v$pL?BL-4?|c+|;sKyVp!iW>@KqlLVh4T{d;$VH9|c-P zPOQD|M*-oZkZ+|eOM@4F8IL+UwjfmT(uFFe1^(-H3i$t~PJxksty5q&v0DlODvD|R z&;;y?loo5eU@B>nsN~$7+JgXj>P|nW$-6CRF)f*emO23jF~P8O)~xYpFvt%32)gW$ zj3a{>6=DA+-}Y^erWpl&uS z#l?eRgdwIh8>+Y0_paXAT-nmszHfh3$Nu)Q z{o5J`7jJ9a-LtQ%du&Zr*XF(bb2sf>RoSz%ZQs_ark3{Zj>6vuex<>HlRC$}x1vS<8vdbh8i+dT8>?WN1x_iP@S`&@a+lCE`gnwC%9vwd05#`&$4>xN60 z_imimx?}mkl1aNaFKKM3>Fw*yEiC+2r2NQI@(G*vJ4b`*OhsoakCqSwWeN6y=i>Ol z4o%A-COHCU%9dr$g$3@=@?aO8TPNf^f#M~P$k&CV+y}3Zyf>3BIf*HJrhv?SlS4E< zb*^y|OJ8r#==fh_t8Z#uRNivQlPf-c-HbmwZ}LIMJ@j|Cto)m67X9tT6W{vNC4YPQ z)GMcK|IULOK6LZ^g?opNe{}s7W^C~7IOU18 z@4NDau7RPQjXm$U@X7gQul%x{Y{(nfyyv0tj3f{<0h|m1xjZ=n0=YBzB;6>%;^QQ} zLUxl`kU+E}kT*+&Yi6dHEag~jdA+h@3kH0h@f|yMFizfJD)*nFyuq9lF&lMDc}p_M;{-n$ zOJ;M91QI^KA>KG|pmJ@_!-A8j*(`=nAnD@8Ly<%k-WdO@kAih;Tjw)#tA6RaNaeF}10JQjw~*R>-O{HG2g9`IPD3y>8{Uio&fE zem)8%I~y*%x8f_8t$EL}FMR9j%^yE~_S=ql@^k0R*Ey(bRlv&q)5iaQxr*h-O0js%H{0MdM z55|8ZnhZ$-0{rmzCx7w$MHk&$@u^c^{^nI1)!gJcg~~3=IFi6Mj=l>per=`yfds)6 z%kv&^q0CbMAZ=wyaFZKS+8Wm~!zXsKvL*!kiGOU}5XdR0kN z;cw9to=R6`UwiNV@7=iU(4TBR_U5uLjyEm(6T&iyNS@Q7$peEpkh?Qd1ehd9qZUYt z+!+`U!Vw7Y4&0b=AB19Wp>c`>=TdyM?ldX`0-P{l0#Q40?Z$dm0mU_ zT!t}mWQG{O68rw+pQp<>e)0n(Q<%bWe7Waro_hOkfzUMz88aQDY#O7+{1ctRBNAOmLVxh?NL zW`ZSmet03nICzlIGQ;UdL}%U809YPCq0xohk8scl(=K({V~Ty=T_G}(4-B&o&Y8Mn zY+^b}V!Y&(Loi~N-rQk75HiRSYjQ$Sy7KEUB+cG$C;oERub$mCT=+K*{?(6ycV^z| zUfTbgAB9vSzDMM7{x?4g#ZSP$>7zjGjXw%r+Qp9od1xWDWC0=esMCcI;iDW5#e8&< z2a2h7%mG6nV#Q7YU`8Sa-hrJ0I|e@c3`zypc4Z^^Cq^A#-uUGr;UmZhhp=2c~ z=TVfU13QJ{b#=Q)0)s=+QfBbeDR7be*oq@smdqwngc(1loI^*vYG5WIi8|hsOamuQ z!yyT6A}u}?GGIx}E>4CNNls{dBeztZ*^d_5F1pYF`w!pT5MmC&4LaA_GU1seH0DH( zU(7G2rI{Fl0Gl#ZT3X5=<7i^C<0KF)6A(}MWTb$inGxP&7AGkHgAC&di~s=9GF#>t z=vo?<*sNTr3Gl@}MKjk)OT1^!zgljDZ_XA+yac(qv9V!r zczAdB;L7dwRqaE|OLi~cTC=mMZ|TEN!HjAuMqGULhZODFAKHLt3-W2CjMWmje4 zkI2FX1`N}uPxm$te(=mN7`fJxPZFRUlU;|H<8XZNqa`^rc{W`tb7f^^`gw}15pb;B zp+gkaao|B@>9Qq1frpdyqJxm@sART_Ab=j-H&Xb&u=Ewu-qz8%y1ef0WxKz8+k$uf zZ23VaJ$caAe{;|Y4;^&KumAR{xraTr_3tm8_>rG4{>8M7U%hqa-(NoI*=3~{Kfm#B z05(C%zAkuvTSM1^oy~uC{5_8>Dsyu_cHPT|-?LN{_e@>+|DHABt{Lk+3THmO{_tN; z@*3a>Dszr9&yl4Q#{tYI7E>Bs8+_?p!lI#~vfn-pzG)D{(e)8rHW5$Icy}70A$UIJ-Zr+`jAp?Y|M+`_RBx9%O1xN(G zK`ehPf@0p$Fo%dK0*qK<8kR+C@&>2F&FKdQEy4yF1K(|dht~G(+i9_%T7=mg1haO{ z;nO0Mr~xnoY-x)l1VzJA8qF}s12IHW#~MBimvntQMI_AGw!NWaenE7C5K^zklrJVMVvm}RYkp!5K=NGjsZypsVy z-snmlBn}QO70ydUWl--vMnl-fM#6sWBFsJ%{t{5Tb8b`+PkOl zKRE5}?dk9DduVpc2fsJ?>O>FD)J^jwx~!TK2-817U~q`lPP{R)piBqlmWPMLO&Jx2aK@JhYQ9}8vm=R z%uZTf^AvpO zq!*nX*lw~TfPr^>0sxa|5J6X>gfA9bGQf+j8;1aS0>KFnNn#Qb@L~rqjV?U49FuE< z$uiiI;MzcCmswjZ$lIsRob!<%&iLr5Gym(s_kQ&Bc~?KMrE$EN@k;!oKMMJr{ed3^ zVsHFW2#i;K6llHfN5K-4Kt2lSH~uIv9t%DPW*%SlQLwbd0;Z*z7DCh@0iy`PBm+M& zNw9^m#j-D2_(4U{OrH0cWi4NA5s|S)%aQ;9(K4e`OAxR$XeIybGfTjhJfu@l5s8I- zvcw2H1Za`8Oms<0yhr#C>=cR(aIz{)nZySs?!ZVOm;^906JP;6)s9_?iA%y^%ZU(> z_VAhFg|5)-Vg?Up1d=^s1P~4d5e#O+BE?4=0n83&@QI}d=!P3IPH2b5M$QBudc4 zWkMoD-f88);t1y0k=EE}ggSypgO=G6ldxNr*HChVBcTMuMZJjDZq6@W!XZW`w*ncV@_jeWkN1FfBub?3Ka#3Km1i;nj8gj5jAxnu! z4iV+$<%9_s<}`hU-S=HGw&wlkjIaNH9mAG&Vl>iYh( zA71ol-+y%G_NGS`m;L`PoBH6qt?fMnU%7kjw|+HqY;@$Mt<7)y$&8J4g{%0n>!%!X z&vGtbSX=py%b%aQwzS~%_pL9&5K+=qWFmxsF5X^rz#GgOp~DniJ~nyQ3$Ap2!K>sSt$^^3DET> zkB)uD(RO1NVG!dnr=MrUttiHYLlVcOg(f$F-h z-@M#-`rR$cVwJ1bOX;j~RS+wk)s9MGKT2fvrOHyBYRgg$s@PR`s$xI!quF0Rf7Xk$ zH|-xQoLXmlYg5PI9TQf)IJcy^eW0_uaEtcu>l+#zcw}DN*Dhas%=mBhu%O^p#VS(O zxT;u$Qd=GDhj*p0!d<1#iw=QnyOyA;Zna)&V%`RS6ou6}&aM^Bx7>K%puV~Wz;tlXCkH8-44;m8SfOW4l6 zznLQ(G8#E0yPzP{Xu$@Cj@=eT?SZaxk6x z0^vyDv`BI!WJ|^gBQzm&{fG`ovD4DdX)SOZt0lf9=ny1?9S8{skT9FX0RGD5>mQui zG(7UkFQR#9HkG#>d*izI99Q`LL-~hX>@py4U{Dl3MTBgy47MfMASI2GPf;uZdFI{q z`E`@i@2s`!Sc&Ov1gKGWg3zW(7Nh*cj^obV16UMpsWh@|$rtZ>Le_*CJA{Fun|3b0 zEP^Hjw)DyXvr-2VEjFDpc>)aP|MN`J7CiblOzvng%Niu|#ybJ=x~uYF3ld)J;+ugK zX)^EnxfsI7u`3A-iub$+S}f_}GYAG$V8{R$@&-S#^B-)L7RK}EG9dBP zj(g>r5oS=Lpk>WHal|@Cx{f{_EN1?)I@s(8-}PYD4-DWDV-OMuMIj=AIDMR4S{#83 zp9@akapaTG@@tnhEwLvZ%{8YEg-wn?vgCpzIdKFo6(fYDoiIho7c7u`Ny3lD|B-O& z63D6D`~?9%F>D;95cq zd_@RrM!xcYc&9)G!HDn?!EYI0ED)A7?y|JYrgI_is!oBm1HBmJ6M`*E6+--SigTbC z8Z+sog20i4pt8ltxNO0AFdIdXY2?U5jv#D{B!aM<#2rHQi-w#FQKVB4f&)eD+_@7- z0&KE_$sj)3NPl5TH}-LY!E8j>pl&OFwb*XL2M+*Zl3;e*jhHnM6f+0y_?0Xaere-v zF&khJ3teOuv+6j^;e;@Fd{y4SkO72{3k|SEev^k4F17Cgs&`6YmPA7Ne3?yfykk{zBp)-A~EyAn#&Y?bn`p_AgAP0Yck^X5dhTjV;?iW zLPI^s(FS?K1Tvx?M_@}a`-E9Di`~5!g~2j;;Uw2o0u>V>QQ}2Nh}gwKK=s|!*w{WW zyt{j7$>!?at$n+i`ghiKwhZjszNdX>V_#WA&+47c+Z%>g>}*+G(OObJIB{Xg{LOV6 z_Vmu*Qopsae@#vI3rov4?j78;GkgjYLLvyGrzzGOcE}x0EQ>>AQ_m_NIvmcgMqm+4gfb<*|f0e{3zzk9j(YeT{7=zZFhrt15i>X{iTdYxJfu#H} zXi2~>6-;&{?tL|Pdn)JiGOn0{Qr9Kl!Lza_+MN#?}yKBJ9%Q&KVCQgyhr9AbH}{Dz39am zn`y;AH+M!G(6d(y!2r%cNfDnNLGi=F#rO+&C$vMI@-;6>q z;~xpuJU+JM!4l25sHvFolV@9QPB?Ml;Bx&~U{I>d%gbFt!>%PqBqiCB1t|?+4-O8% z4w^b$zAO#P4Dw(QE}px1X`yYAcd>Jt0dJ6GiU2PNvt5@zjWmw@a7~^%em+{52yx{y zh=_dz*TiULmzcY1Ni3HNc(ed>Z$*~`@=MW{@cG4I6DPg?|;f@V`7={n^uB{_=U#54oaH*{h+|jv6_I zroviHnSNO5ujEasihl30&nksgmde&t>YqDr@nKgiTD7V0JHSE^qpw?YbJL#PRW5IT zZy}9+J?;J7&1E(1hg>rM(5ng!iP~C)${k-SX03vLOdXuERUxjfRr@NJc~@Jf-v&VK z3#!%#B(*Xa>R^>UVJajQ^!TDcD4AN#okCUIJ|DID%qX z-oPftG673`$ML!ImmPoIa-X%~@xp!l2_2iUuIuyXFVmK@5EV%SQV5);LCtaK195ap zaKc7d+J%Woqv%INj_H_i$lC>&y8M74OdS+?7tgu-k!Pmlfr?>u= zmOzl8g;So%OA8rhWmsCo>(1lD-~w>uq~84PMTdzIQ%jN0NM~pF<8U0*eN6&90Y4-$#f_ZZp2+NpHv7SFcA_Z zUIbq}(n?yOr5nO*1PnX)l8;~k(*TbhNQmKEB2rUPhmDF-EvZJE`HEjM0Tat&4`5~^ z4^ncTNYg0*8Apr=_CNs1DzmZ7AT4$boSbit8^_V4=%Q=s6yzVldpL|km7GuycyvWY z1zn2lxB$%B5-Hx*mZIV#0;GX} z0N*Z}xc~w*x0WyhUxZBIpb1DWf0l5_GQyG;8K!syF2}>T89pjWXaEEoB12T5V*)Yuo0mt=Q2tw6UgV)sCj-!Tl?CHmEs%Xs}6S4g0|A-y$dE*=zCYqs56(X=(E)N z&V6o&&bDMp_pAxqHM)A^%_B9zOEiEM+ z3sEGQyd^D}J&k!S!oUK8O0HiyMeH4OE>})2);nvnLHh0$E1!gQXvz=r@{^y zkEf-qmX(zyOG%5T44voH(n#L&{X;kf@`wZThTxh&4%Cum0(|AXj6C(3SxE9T$aBgg z-SEXrCKl{Mm1{r-9$xY`fSC-NIN2?}tP`g2(FpPcfJtcHun0C;;D}Z%6N^*$33$o^ z*i6hVrD#ds`x?P=(t>~?!xCnLo%{j>jsV%mJTPzQ0EPqrOMdauF`GbQ$`Xv=$*>zm zk66;>6bOfowcyF=6C;lUEipu_iJBs7RB&iXi>2&Ev5=Pk`J=FJxNpL|J@5YR^IyDh z>DMn``H9nKe)s0mFPy(vC;Zimmnu~ivZRmPEnRnN#XqEelb=4=nqE>mT`n0QZ zJ^S89wePpD-Fp2aCAGDM+RF%lB(!ADz^|VzpSiwg!G`8#>kIk6XJW}QHR)M#uXI+jYm-#f0Qd=hkQCNbbPfnc z5S9vPyU+qJkn}2QWhL@w&z|@7AFsXewq>ndh4UI6?%lMj>x<{k_|W$Xf0mLLuEnc^ z0t~GLmjpBW_$+8(ROhTg`_{uAWBiocs{Y~7hsdbr0V59s*MX#PhXhpF##G{;erGLs z!oTq0cIr|gMoal;#E+$ZSm|$u>eSnJi;EaX#54eqkYSLE`~rblez?;W2%ixgIn+GJ zC$yF<$i}fZ7k)?dv*#}U@q-mBHtpU&R`^AwT>gC{{S#OA9DPfr-jWfRr0>Qc9p*Btt6dA+^fF0_@Se9h*=Jw`B!INFqgkb3$sQ~GKl6I*RFFtjd zq|OU@v@l89m1;lC(iNSwfMNHvJN7tz4VdUaVxO@55JpHlJh?)y&HIjfE_XxJgt?O+ zv80i6yCi{qTI4+)NfCJZ-ZSp1j^~;|Y2;2I?jeFA zRA%=|hwLiy!Ucqo(9P`?4i1C1Xn{dX4y6lW$wl!YCBtBTRY(FI6L>I=2L=i5(f zOJiMKp~UwsR*fLu;G7ZG5``Cf@J^*ByX4p zs@pB*jSEC7$zrPECqu;+eh!yPt8GaIF#t(Q) zMuH~;D)O8{YY8?xh@2ha;Aey+!qOHoD$Hgk>FkopgdklaB6(n^AcWU;3b{pgX(4b3 zv!66F&Ip9^R%n1(4>Hn;(~=Nyi8CO~o>Bz61~G1!7LP$JG2^@LEKs*3Zy7-1NdpWq ztOz6VC!}IF^P4R|=P_WJ42~FrE!Wy%li|qYL5vK^TV@-KU0GiKLM*u?vTc`) zr&>4!Vj&NeF#Rp?A%<}`HPv`&V0G@t(Q!G(@pFC!!;`pI_9y1&Y%9KYv=y?RrCJxin%{{cUX%V2ASOgNIU6+TEq{u8wu~S}NPD}>ew>(M)btl3j z40drWgG4^7|O^2r)I9MR&Dj9uwv2NAQDcAY6<0`bTNBbI0b;iJet#W2lz z=(0q!fDoy0h`B8YBVx=3Rgz{7KjG8W|C2G2ADH0>9ztLUC#&9Fg}X8SY2+FtdB7JP zgb3l_u!%On z2`_*A)Ts(k{fq)py{LjzQ|c(xtSN03`s!c}Kz{2|1AN{CEvigSg&JDrsy0=r`#I*P z+rD_g(n}wxs@&VzP+$0?A`lio3Vpp@>vnd$_2`$rbKSP1Z`k~`3#MQ9Sh-g7)L)f+ z?%cxvuv8(ga#hExs#U`(*N>k%{R`(6T3>uME+&wcY2g&XWKv0MHP!cI)ZaQBfdHmb zhfQaqXjTx@RV%C7xuBB2d8-E#5WThF?6<*#0-IrzL; zqUKj=Ec3UZ!|MG8pbX4w_?=%(AA1CLJW;B`6T5>I3l&nI4yb8NC=9}^bEv8gC~l2 z9`zL0ew?y%7mhH$cKMpKZ{J?uG3MepJBOIZzqzUTXHV@o>DPN0t!cy*@%_EGQ^@a{z$ul*?a)V}UV!E5;qJ_QhEo203#{Y5*KT)>J)hN;l@c?_+r7# zERe(wEbuH74wc}9oMnTB*bmMOHea_>KxY{v)DsSC2`4HD`H4qhph`B#7qgTo;34Mt zq#a=DBx8`UtpvpjJH(2=6`_Vnx(@6V2&jb;ICV2R*H1(_S)AMl9P-@BGZ$t{TLv-4 zd9;gJ%xdgd0%j%#3_c=*cQtu(6;8B@Bj6Jz!s!G&4ub?@ABPdkh?xybwusfO#^glcbXVgrwvWW)la& zD*=2sJjRH;4rDWuEZ~qK04{Jiag+;$?~F+zxJDEq1xAjCJ2a-*l1w7EWL6-CrI~#M z-R!z>oE~_bmPXW*M+hZ{9lpTEw;M;6$t=a5p6Cpp0@3^UAtQcw(RaKt?gJ}(X@I;DZ!T~#1Lzuaj06@;ENRzHSt`G(}VNVoE;9VV2B=ADs_K#JU zH*Q(fvVCdK^Y^XNrfPr}y;Qk%ap#oB^urZe*|fg;+f57FYBr8)kMqxBt(n!Zd(%ED z)1KHu@}-B?;plazKE7GQJpYAqt@6hCt*o)2PoDJXhLXiyQy<^5ZC#;Oh8ZM)wQ8W| zSc6%5g&+`OpyrhE$>&&Ykxa-r4r00eg2l|+fwbdoZm1t9{3Ytb6XJ03nPMlGt@zes zA?Jvb1UA&|?eEg7kJi*T?`ZD5VM@v2Pi%kBZ#Vtfj~5*DlT`yjP5s(0rgQqh{H=d+&ePi(dUiIn|Ks`3 zoc_CMC3~7a_nXD1-7{l&pm%Ki*Ha};fO(t1oIDu#(vr7>81r}{B5&YCl94=v5<*>K zEoD_I!guX`RLryxa^(uy<<0{e3oa5#G<8RSPhMgH!z3A~Xnce%V%(u+n>-??%!_60 zpm7MB4Nj?tCNCU**<=SNHvxf9k(L+@uYNOwi6U7d#;^Ov3$rnT6Ofn)k&-uX$Wt^T z%n^_VzNe3CTdotoyob+e@f%#s8v(*n%}DI?h2{>OdrQD~E6--YWKK?q1%Hg-ByZd? zh~R<@gT=hDLo75S&VqnhEI4Ks$m7@zLYC!?1#tmSjFHIm`>Kz^*uJ6Rk z>nnOTmF^uZc;0u%^JSmEpzx=K)sgB>C8nZZS+7{s3u#D{k_t_P!dLx`R*dQ^a8AFo zR_Un;Q3u;nS*keEA3JsWCr_JRQstmWdw&1R@F4Lg^UaO5<$F3maoV(RUb*gTm#zB5 zkLG;qn!;ZeJ^q$$V0``3+%6fI^*>@%TdTQM|77$GIsv=P3Pc`g zed_E5|8myCe>!FQF*jFy4H!FsL+|dA);JmrX~bt=^0~kP6_PJsvf{)WSFG7q_-Lwe+%d13 zT>f1(b!XqY{5#hc`rgE)6@=3%umiK1O)l7Unr7_>7;xgJW%5HM!tw){GZh^%si0yh z9LC|)m{DX(V(pq8kSJU>7;sq2uXkYTk#OWeo>`Vj2Pzdz(L%e)j!Ay#N}3QD6gYKP zi#vIs?!q`_zyM~`1rw3Pk|!f?mhiI=c5I4;9bT9sBMLvjlW|PK$#H-O3?%we#*=?q z^20BiVB~KW*y7GE4%hH7n7oO|?S&tQBmkly#sxgG!IVxIe&7-00RSulY$i*tS<>R( zx}V^k{HtAh$efgm4XQ**m-7{!xac|ycH|#Cc;qU_XGzQ{5TmY_&Nb$UE*Ch^N}V}o z;pc_AC8v-8$>zI{nPABd@OG)Ymg3^q7B2`!{7`2f0lc?U9%08Ju87GSn@#}|hf6?= zAN}F9&z!yRix;hW*LR;k>V{2+U9s@NNhO7M;_&}y%n*ObMgK;3M~pnZOflyYM+uxHYw8S16NCKmH ze0CYn|$x;ahei4UyN$If}SOuMVm z9q)S!zXLq`nbLK0nx{XxmDbwXjR?Dw9@(G))+AeQU)Ezw-)r8vYM^v^udZ01ynEBg z%IWoMXE%%v?cX>0N>(9pD9Kym8qZ&0SQhzWMC6`?Z;VS7b}r@yuezzdiITH zEF<}mH}bNPELpldmaHlLd%6n`63*J)Eq5%f`Q*>${kI#I9CXa12Yv6^gU)#QpfjfY zm#Y?k;b$`sex&ptZeDrjql?dax#Dd%E_r@k^`xy$|KZFR?wGN;tEcbNzgTea-5c6^ z25+Cg^G#RJpSY%caCqq8+n4{-HB+G4RMqg-%U-^FQTf6^3c1M z9eLM6-mjUx>tAkNG=D?cQNNvY{-lcTf#LmQg2;xKAB=5V1s81ZMF<-OGNA#fgLe2VP;rH-dr?G zJ_8+);b#=(gC_>*iXC9^Y$a+lI&XPlrXj~kq;?HPDOis!`Qlf>5im}6(b?5!F+7A24 zYL)9*_cSW_e*IGOq~%SQ-?!ti>q@?M=`wwwnqJS4-;+_urp8q%;;TMYuIfnDuzpN| zYfEXXzEocOQ3@-;i5+_7>W`i}>x`c*=<4bn8GhxD`IucKgh2XwI%}JH54~iL7FW&s z-eaFtm45UGh5tpT+Vl(O%|HG2%CDX`^;?%OKJ{1Ij{3>s3-8+glLxjQa*=Aa@cX^v zE(-sWvzi+QMY9r_9VKsC8ilVJLQwJT!b$R5S8qK2=R4KMbaf8GQI2aWgv_;{^B-)r zBq;+_s28-ZTC2xUUY~t$qdbUF30`PRuGw_#O(j3Rx8#aPYESvi?jPM%$1*+)-}}`r z)%LYdH$OP1?eyEWpYV%v<-Ybw=ZOH1K^evof?7PSg`o5mdKhg3F||8{5~AqO?*Pk^ z81)!J)2Ij`EfZZW7K6e`&wxYN2@)Wg(qA5Iv5c^blg^5k7!iOuM6{Oac;KU z*A;#VWBmRUo+j^voMvawz*P^G9rLs5FOUD$=(+bdvj%{?2@Oa0q7{i{S(O<}Db1mX zT0WBy$#?MpD<+&Z7PO1_qCWHPdg?kHu@m6MDM*nJh_T~GBPUE-vcUy;Et9)?`kl4n zLXZ&}Etie3>md)ES^`FqJo^M7mliVQ$w-}Su;2%5XMu<#UibpcOqd;MxAeTQfC)bt zNpMo)0)~CoWQk>mD}3;9q{0)#KJOCffLOcm;dZ+6V5UgG4FS?qndg+EBg-uU>AVM8 z_?1Ril)N-D0*@?_bP%*G-SC7=#_bX*vt~v}zT?Oz5wN*tWWdg&q)`XeT}3+-jWkE1 za9yFrkrsBGLUPLsrw9mRpEXPYdVI`O=_zZ@VT^_?fFga${ za14s!WGe%J7%2`M!&c56Ck8Dcj~&Au5N4vtxu-)$;E-g54CCn(aPY~aBkytsn?Se| zDM_i|$dU^LfhdxfD8dXKse}BsHBrk@{y^ouExQ~vBV5Y53@u>Qt)JQV7q?* z&rh>P7~vwuHQJz_5rYzu_d?M!U&$Jqvgtf*#fx2sk^7BFjJm`@l2as;i_0c;VgW{y z02NEZ969d*z;SYzgmJusES-IBgXC~W%xpk~X}NJ{?WU^shK|9x>nnFRc5L6AnfX7GdEOgLR-d`$mQp>wDX}9$Z=Z)732}zf}I^ zpH4dU#T_>--TT7&s(}&rXJk)JHM?w5G?F)Va(2TC>aMP3d;5R*T*(LS-u@?7ulkeA z7ya1{>;B8-b3c0P(tmgQbANm3l*czWpZM7Nf4aN$`K_&&KDp!{uUq=^_LhpK?vLKF z@x14^^!N4Ny`cO*oca8$vgYR2j<;Mn^{D$+cC|Mz-`(@}o0k22$_8G3IcwXSFPXTz zxudD2s4m_Cr-I-Tl3V4|JQN9*yi1!j(voWT8Q)`7Hva!4z;|14 z@ZGm)Wh8I$V#y8~haF2y0xVNx!9!}s;li#tc#PNtn4|$PBd#tY;V_a1Gm7}4$XnH% zmjgawMq(|m6yUvNSi_V7MsVaUIEirwHbT7Y5DQ2I8GInw!QnA>(D?jv2LLfP(aAIU z{Ao9q6DhNM$N&5V+MvP$Q!!`|2s4&LkY|$@?J-F%%yx0$rxhd!Vu_s$Edn5!MMNH| zz<>u|ega!o5#eK!!KCh(WQ?!u?jIfM?r81k9$a5qKX+xt(oKyEH?}O>+Wy$oZHHg6 z@XMF3`QV8!ed6?)U%PaL4(H1kulV?n=6?P1!oP8)z|~PGB~_eCNu?@U1*t^VC#aZJ zs|W?FDpO_u_9LE9>=ID=E6~rmuSpBR0?r9PFTdpB#tr38zW_03C-$8C_+=Yw?-{w| z?vn3ZQ>e=owaQuQD(P{*YtFiB&nZ7$IALaK`QH9*m2J)K1KoXt=iRpQGiMjt!j#Ku zafC9Ry3$z#mX;#|43g0g*;HN=(DQujs`ba+ zwCS*`mVN!w!f)_OvgG{3p%2ND9Lk%@UN0n*0E^vHATq#$C3jjTmAahcOFng}R?};W zED3ImKJdLMpFXqjhnykdf+^V22(d3+ z@}HK;0Z9v-&PYl%S_D7>l{(BqCP~p!jPih)J_rBr4tc=r2Y#2$g=9f;#3)NnkWEZ3 zIMp+AIM2G}vNX-*EaqzETF4wP9cwhDP0 z{}%7c)p$Btu_AMhYSn8oPMJ6{&q*Xhxs z0tP@*F?G}g^!yYhStn^0R1`5a)$G8@xa2!2VEhmRi3JZS zB)OcfD_}UX=K%pJNQys60xeO9%Q-TY0|lD^*CJw#m}BLRaYP<5W@Vc|^6vy89Dl6V zLMU$%NEdjfdASk-bx`YJefuiF!EN*dNxXdN!X-!CxZ}`^XFND@ zl?&hB`$`%4fA*u`6ZU`aqrf0{9#y{b2}b34K3v3@A-dQr+^c`mTcNer;yYU6K@iNNsO@YCCAJZndFVf1a6LH0b%)yCBXcTb*m6)6ZW2tg0Ry8Dz z{JIGO(;$<0DOz$QQba5pw#;mbNR|L&nOOL)E}V$So0AGIm_=C9rHE#h@nU)bhK-8h zH1UBUFH2%1jCS9s6E@?J5BS_q@|dipQ=pan^Ti0UIA!O+PJtxX_?B)0jx891w$K1e zItKu;!ZeF);R`j$5C+X`(Pz})hAzH2>cO3;;>Lh7$aqNu?4cD8LWIr|KgVXK$dvn< zgRx7JKpX`R3_<9a$;XSO@bcKe#t0emX1iIM?XnX*@y{Wpi!kNL|m^>ax1BhR)LZu5Ej}H`TPwTfeKOd#H0{bjtG5rKNkT`p1@+ zR1OXlB7%WyIHiTpc$aW58ps7jz*Z{$Vh9uq^Zv1t4OL60=xldvTF_FnadhGXYqhMJ zRqby1>cOpxyXHQ(W99U{^Pb0YRGn&>c+Sxt+8?8c+ zI%!A4?Al1OB__aN8@2)-)5A>6*$IlI0CQ>%V$7``9GJYb<8$||`%hQRJbG61RVx~g zzjN*hFYG+{+3LT%_~m0>s(PusyK?v5zOIhO`ob?Cvfy^bU~Ns|uj8((Z9Dw#C4YD2 z+=IUR-nC`I%Ch^H*ZikTW=-DFxvOL7&rW{) z>hVA6bo#T~4t=VkXJoXgv-jh_UjE$&3*WqlS5*JQ4GXun0zZ7ioT|^>yScWda9Afj zx%t?KRwI_}YI@gAOYdJ)zPGOKuzOa1?N_t+v~?fy+eN28yz;J$kVIcsZ%UWI|EST|g-`LN42j7xk=ZJ~MGzV}jTP7~L#h1>R{*6l( z9dYf3@84SfFF%_7r3;rHe@mGIu69DbsCHBZDh*TjD|{8KirvVo zIF*uQ&bp^TL8++Kzo|GCxH=7lZduLxPbW|N*>jD1>eV8>E`so1^-<{S>**gDy5-5z zV{R^oK^s7wLFKQq`_L;_pLWOIkDWT>yk9PC?tCQ`gTwo-x^L6L7Z?7&CIHY<;DT+Y z0*0a%|K#z1fCsI@RxvAWH4I-of6-^oTYB4st)1Qd4@@ciFKrIHZYy{4AOx5JP=YJ9 z5yH>`jB7D_382SpezQ&jUEdq|i%)5iIs~=X)>!b7% zLcrwRsj;syfI$x?Gg=@rVv!jFY{G`-C235*{hg~feD{_e2VcDWE0;*`qGNu#{hL>= z`^q_!*OayI8yQjzdKmL8yP591XHZ4e+ud2QxA#Z4Ed1n;<{Wb6x{sVv`19M$^2iYk zkSDQ_2n}qRlqg-6`CUgpZC5H}2|u?EB*{;|M@!VAlPg(z>tT=C6_*6EOxR5$tN}}B zn{#B%O^&Hz-q6Cd%M|0T4Vt|4N{%J_%(_S{OQzNiBpD-+#3BSG+YGu_5(uG-9^0eKr}?o0)k}zvo9+FPRiwGrM%j zOQ3{{&K9#=&~k+c$TQ6H=JpbnCysUB2&Uo0*fC77&wX@7z~7b z#;K9zAJQoRmi)^JNrYjSeF8>01zX8mjN{7~MOn?KAKDaGpd#`PWC!4+NFLZp9&AMb zM+00yJpTLb#1a~UK^Z1S#g;7LGbkIWJ@i?$aA4pO&Qv>gX&Lzg_Ou8vE3xG9&B2!0 zE)FClaoCCdxD$Btmg5F2id1kyU?L1ev|!G!0ojGh%r61EpfU)2&Q$iKhzh4T!9Y>E zVhwXVn!>Qflo|7NI|Y8_&5UVgg#AJTEQ84oiwFo}j$DWgI=Kx9)(z<(zyS*!P&aVg zMKWkIBKV>bFQE~<5H{ypJDZ@zj2BpkN5|IfYU>&p?(84k-C6*# zy{=o+Ti-X@(AMXn?C$GdxS_JCYj9_MPibv?Yv1Vhy572uflbwIo675|I|drM2DUd0 zbPkR#*jiWL*~7uQ^2X&A&GI#CV|8t-D!g#XBmw5U9TJxS9ej>5d4r!AnY>%cz=>GD zX!p#g$|gRrdf|(e)f+~pKe<(py7=X)NsnyM*_JNvnf&M`O>7$AO$%CQKD|vtJMZ}& zGoC8Z?!Nfo+F28}Yjn+19^3TNL+kA7lgIxqaV@O{6Du~(Z=3%@#n#20n-;V&yJS-J z#0S>Qex`KWlAgIQl(sb$V93}jc^iKVJ54iwhTKXlB6AKX%cMPbudA!Ox2uENweu?9 z`$)w(^O~k?tZMAvS39u(<&9NqcDI+ckK8?f`}y-4Kk~@V<0kLk*fG@E(Kb3!{ydfT=0e=@h`!#B-)^EESY#<%}?^4+ty_H}oh`Ov}-{(MP&NAE*(HoWP_Q=eI}m&Pyc55iyQY2^mO@p6l%or*Pn}LX3$cu9din4`3T@!;-fu-5r7jPha((MP243SIP=)r zf{?ml$*(Pvc}uvx@Bm+=bLZL2%fvEypw5@sRS~0aHt&eY+v12F_R(O(T?TcK%tjL8 zk-;I!FJ_RNIi-lhI5Bjhu$%kI9RLWr27%y&gh7P3^6P-CF#?joU_M&05P5(Z&zleo zc_Uyq>CNNMKFJ6Km{UXW!Y_HkBqg5!F}tx}^zwW4-r>Q%miDguC$7Kn-d$h5Xz7Q4 zFyq*t?KOz^C?VKimG{~t$yrVh2MBA z{IfkO`_!f?NOiEnR5fX-F;FjJUi3(ZS#6sC<)$B1ESqXp73BL*n(~W@4Q)MxBSVFg zb+2CaQIPYo(V@GaU32Kwg@2NV$NUbbdQ@r71xH^vf8jfhe(rlWuYGbxsm7K1UC(d+ z;P+>K{@lXi8B|R z^P5dOstOpC3JW)P{ovO-KX}sQ&!4yOqd%Og@>V)?O;@c<3jjvq1z(oZ0O(9q_Fuke z@wczueB@7-)wd0|wD)}LqG^X;SNH>^k|1x4kd%b<75Il=6x30VNcWZBcWc}^WY?!>FWm!q*rfr2^ zTlC6y$q{DP-f6m@4$-yD!S}Yv$PF8v&zyiK-D7uGlJN$8` zsGCJ9hZLEWVY`;n9s)@Hq+LsRax^3*O$ZVQ736td2*b~dyCI+O*dh-zNl6CDLxE2i zQ;fV55T?7tte`ZR_>fyN>v>_8L9-<>@*Yyh4Hb?{&Z$8BocBPBC6KwUE(tLSw8a{Z z@Ts%OFU}cv)uDBa_JNjS7<=>pG> z_eMgHnY>;YqykCK5e+IP4l#a{Rq`O2^DG0*o#+VjE|aiPAwXWe-|;V=aBJ075A9gH ztuED0sua!AF6?d=$*D`%wVK_Z0D}j{+um1}~PO z5e%{bVZ>O@M>7K*vj`y=It8@Qs0*LEK^K_NWXQ8=AXrX*0FEhxqFwI|bmGEc`L!Pf z>Hu?RBrfu{xXar{?EltIfg*x6gbzLN#3V53jhE1f2!mQI32Y%S5A*_60?)8(3z4j% zffNEH#e7<#B`17F@VSe9j)aB)xVTG_KoBM_e4PR$ILVt`V!0BSWU@;hftjUL8+HSL zA_7j3*kp>lnQ$NppJjwuCh5kV;)*&&gITjB3&oE@PMHx)M2?Rbbz*UcpTWM=Au@|1 zX}3&Ta#)hXAOe2OxGOZk%u#@V^`zcxDf`9eA!0cXIAW2$xyUDDKwMp24KA6elP?lM z24ZX$!-ExFJSWLY3W60dGhgBfP8PCdAXo^U5rnTS#uYF9^8Jxy`&wS2EyYA%IU}6D&G6gJgG4S4ZQ(_GR5WR}Id6e#i2ud-iS} zT{ow3VXy0YBkTRXVx=YvZQ_dk4D#&E-(D+(Cn|AzIXM^hN^W#Qy$&CX~lR|H2&*D zK#D?2bu5J({{C&~8FmK<Ob}L?#m~YwDk_|A1S=u_Kyy?_3u0M zws{}EciWW<8@}?$_CqJuFWl36^M;;(x~pX6uI8DQ-T&{^iyv88H9WHKuxG1InzXmK zr)NfG&&MCGnN?nRnO-n?$9ry?*E>=;kuzT^KW4%XM91*h7w+49%gh2@+Sv1v+g455 zUcfwQTk~6PSWwy8+tD}h)+;9eY;F~`&)vG(M7y75+V8 z553u`Nr*gnc5=$Oev&3va^f41rQ{Gx=Vr@&#`oxvXCZu?3`>tKK7l+evcUp^Bi5Xb z8*Z7qM8gp=iqsJ#0gg>G@1Zkj9f-#$?nb>hV%8wQc+g@-Oqk(& z7(ptU6*WHLgo94raOk>SMwXeSF~%b%MyA4#OvdiryCuq&~F*k1hdg0H$ zKKs?n*M0et)!)6j@Q(w%{fH+BBUGaL!?daAKiJBw@=?d7vP7#&)xP8X+oDhWXx_xd z^?kjs{QBwZeiV$Y*MGe3E0?c7?&rI{c;T{dUb*g&t2Tc9^0k*eSbgbzrKj9l`t>U|eD?emU%qVp zKmTy{7cN?T#81l=(>FX`QMRXd-$>zI+SAoJJk+qR7dxk_y< z3Mrz6FYxz#_Zg5B&6paG&z&>(L*Fa>Ge0jbEc_DEo`&x4TsH6U>$l2DS|H_nqR>t# z#ASx%AKkV0gzJ|dbKRPA?r#ySgOEvtnqJgY0AQim% zsph$Gd|+!=AlLK2h6xETWHl!6J7mx)6RzpJxtu)n9dYwUL~?mXjH8^3ksD(CWr^A^e*k1nB9qzMOGAhMw$ z0Zgj{55B;IM*}0GcOCt-`zai$0A4?Dmx{(oGU1mWNf4vHMc~qi@37JsYn5Gfx$?t1 zd6JlBt}O}2qa3o69C9S*$r27bE;boIplbhwAP~STG37k@w4|Q67$gQZv%J_66jWeP z(ekm6k7iIf&I>^i0Y62q-#`9uv!UVPPAqPPU5e-4-;7Q}jt>vlY)S%ae&CTV9A+g} zKE=zRRM?U?9A?RrkvD!BgwXARnN2g;?6W}Y?0Xx@aLo?C9syfLb-^-7fN`_)rA4xs zx6r^7kRmg6*~rqC>+LoYNGDmf5j zB3xBfMVOIdgAh9iju4`b&Ajaa5Gl09n%w*3wI2np0S?Zh1p|=)i-V)Qe=>^LD8^I< z{;TqqC4&f($B`3!K`Xzy!9q@fdeWP_VT&TZ0F#XjyYgli3@ODS zh7OTzm|4hRkQh8v@RI=tlqljl!J-2=u8SEE9Zu*B0lq3fArf6^16^E_4@e`{%pnf^ zD3B)^z6vcFD4wP$(68+jq)se(Cpl9x4Mc33A?;+_5H2>{uqP)RQ=7lTa?qhTRYc4q_2Nu!D$;7-{bt zow0I9b$v^1@4mX$-tLjHopr5cyY^JJ4YhUkH4KclboMUZP|?siw6}d=<@P;$TYEQD zclVF%FKy^syKUEw#@>y)npSPE+1t0Tysmxau67;ptc^7rD(V_X_ix$LI&(|y=9;Dv zCo=x$oFSCV%F4<-A<}CJkAt&>3P>CT$$^3X>gwI|CvScEp-no{nNM$ib1Z_|P{?zG377PQxI+duc&opYYwGBhyS*H`%6 z`#f^)iKiM=go6%vM+|l@iL=fZf;_F_DeN2UziHaW|MuHW*Us3wWXGP9X72s#n-`xo zqk2~DzNc1{zPz>mgtfTQ^##9oB#gWStm@ZTT|28T3c1w-2Lqd z74N$Ar8&Dgk9uhBTdthGes9murfz=AFV;;eX(*{~eD7@=PJVoCcT2;sW^DfJD`#(O z8|`jy{roMn4!&!3ds}N$_rNFbT7Sk9tM(7~Z{O4OftwfHI=ghJyY=YNBO$%<&nF$Gn3=K;owH$T)YNJ6rA{<5X->cRH3NouKEp_-LSQ@s-Ech$PF7 z*rV#9=8>>1#wl955{Zjqv^Zi7fr&_RUNs_S%YcdzOn&)_Ji_aXg}lnR5OsXzLR!A^ zM2|zljG|z{7Cv=Mx=i77heHN4c@rAGC}LLl(#0cw-g0JqOY-<6nMF7o*zY_ z@>+R!@~?KOk9E8XMWJ$$|NObSpFX(yXHS*g_}I2<9xwDx z?>+80MwF889slQol(RZ3H7m~hj(ZNFid8gyY?e{9FcPM^;X%t~HGGdx-#)vZ#VUv=syPoMez6DIxh4`x0( zy`o}I=bg`PIPccQ7u>Po`!}!t{?E6ZaqHUKpV?Gh-`O`fTvj*w)ZD$ln^^YzlC}q@ zRX;he;pNr6OSX0;U$4qrecSNz?Y&n#Q0M^9yr)4zK6KKHYHKC6yop6U&ATkA^<_-F zO7PE~GymP+eeU6zdk2RKm#unl`!~*?^xc~a|J)Azl0#7&puVTb6y5R8r1W#=%>Ux~ zi+*rhm0W2~w6bEfE186y3o!>l<*kQ3rbE+ONH}Y1dR067N^|xd8F*C45OAgv1vXQ9 zP8nm|i7?2KEqqM#a*6(wy?Ea*7;hD~qz&SQ`R#-q*6BZZD z?h;`^>3?Jca``9eXf!7-iHu1Ld6!Mz7}v?`-)!ILI^>dbjp-@kEh+t6TNyJF0v zQT!-)pQmPf?MESBfq&CS0sX)HD9}O}oSO4^zV;zCd?Hhl`PijaHvr=<0zwnFc zywgo`oE@|hNX(M2G*EoW8*4cQg!Gbe8FFXfOp#2CeS~mWHUKb05rYSI3RD50R#eowsGz;v6$jwK~ z#%nu;1Q;(s7PF0JE$$c*1r=yn!-4Z4R&3{Dq1~#ova;mJ%u^JYM$l(e@Ro2?R8+_m zf+Sl8EjS49DnX^CrMxm8gE%fOf;xJ~jvWEYKC=iea>H4tkrZdiBNa>5 zNIH*biG>(bIRi6EX>z@6QA87l3V8QB4-YW%MZon+j&SUgy#h%T(yY;=hJBMnTySA0rY^mwoQ{TL&YoxieXZDJ1wXJ=1ZGB6(?y0D4 zS-G>NZ+QQ%mi~?9^-aAaOSkV?vUc0joh=)7R4>|A-#a`ue^d4Rjk}tM_OGgJTeGv_ zo~f(qTHMRRp9zEq05Rt5Jy8HV$1L%M12#U%v9Zz4)`1Q4o2EZmqC4HbtV2($(Vg_j z#u-nQ>|8alVP4CMX?tfsQ#$YYox0ft6Dy`axm6qd!u_i^FKoBe59^lA8fNoL53O4^ zW%sl9te7>SRL}gx?Tc_;et7+h53Zf_><*Uo#&e(BIcvgpZ8IaR>46Eq{LsdhTJORB zUAuOUd>QX`|%Gg|Kj77^_~3+xvxFE>Bt8Q ze|LA&-p)5)HT%wm6+^x4FKn#)r+dm)R=1Ch3_ZPa*V}KLzoDjexWD)8r`P<|1rv7E z6yDL7KEM9G*G$@7-?)8uwdCQy=Z<{iG>)!u<_S0`a|B*MH_4q+w z`PE;a{>bCYc8-k{ekm$f8sU-5L*e3KB3#{_J9oNrE<3Zh>HLwckJV1qJbpr)dv7cj@UQQ`0TT0c)9UzdF$=z z9vSMdsqegX!uHRcHS2TdE>frFH#gLpYD6WSQWEFy4tYSOtNvElDe07(N@}~Ql@-J) zLNwvO{pKUbT(|m#B~7T2Tq!F@I}i%f9?XNcwt;Et29)? zzT?Oz)sgDaPnq*9I&@BgFyyEHyHdWLxGO~ZH@RwP3RMxKC zP`<6IqqecLx4XT!r?a*2e_Y?Ue_vm3=lCyf_Oy-+_^yq%HtlU1|EE)=(Q!!oxcB~{ zf$p`X?ccs^&IeB_be_s$#k~Y7wI%BBzxkk+NyRLO8YD3m()*KjpFL;6X+NFY*4f+B zr2yJDG~9pn@8*5+qE%nJbVZ73$YonN>GvdGV}_~elD*X2jzF=Vmh5l8aX;f)2pxsa z(!m;z5HBRWe) zm=dELx{bs%EzU(hncwAOkny*C=TY(6%?VPcB@d8jmhfG8Kjfv+7BFmrM?O86J7AY0 zI#<#0ndMxs<&lv(OX=l3?XjoHVbKy70oKGNIzNKSDL80$5Y8)&H1AaY@mmjjlpM4p zb6dV}-U2q|L^$lQMxEdE!#E@fu;2$m_YHn_(7IXIm1TKzH`vDkPt=U?ZYh}}1@HU^ zTjfU}Zi|GtZyIK?`;iAYIg)CYi4loZE!_uZMZtnC38dm7l@MGKC4D1108U8I-`>lQ)0ou{R$+;qr%ezqsI)e+H%aQSdJMzw}Ya zS0En+&n7X;H~1*9z%ns|3M8DSgz)6%>E@2Sk14ajV5-gR5{tX|WzbAMH6FrC05Aq= zF-U+gj*ltKz{DWVt2zZPEWv{c!B_IeBb$f=KMJ&poq`z#2B}!GMl#<=^2sw(3E522 zmgsD;Q~a0$FEjXzfB`vy13Lw}?C{P$BjoYpg`MEHD=r0FGT?BjgC`2ss4Mo!P^4~| ze~kqP3^o(8KpY$aPSr4sLuJ<%4pZ?6;r8v@VRl%U%a4MbQ)IUIQE-KdodSXY;ke5+ z1|z~|_Q9rw2Fw;dzqH8PHH0JBgUE5ot_?z=lSGF2(O}m@Bc6SX{*Ea3x8E)$v z+*#99(>~JC)89Ta+CMzBwWh6OV648qZ*xsY&%nqICD!Qv?!nQDrU7tE>w2r|nz!qR zch+v(+c~T=+}k>LYwh6J{&l;1`bNeU>}V+6Te$9d4iSMDjtt~PEX}aN3Gm3suzOv# zy?y)A-X)W&*Uf3%wRT9;yKC+6!WVZdpy&TrklX>7;JzD*0-R!-kL z_3_PREBZ>8_ikTS_!H68^}{+|e8iN;3V&gkx{jAAE%EA^^?nw;REcRzSG;OQ9btWS z$&xOO^uiaa+iMHQB)yWKD5Td?N}&bY5#%(BvB*5a5g5f&K6g>$=bqeI(mVE{yVoD~ z*t*7^!Jkjx^w}qNd}nU=KmB&;Hy_`6+{~6wJyv$;r21o@-gNJlj`J3_yz{ClSInvY zb?MljU$^v~zui*WGy2%VEq`W+^; zP&R2x;r2eYwf$p{RPOB^RYPAfx#SCv?8v{cbL;%7Z#=qv5PSdr?@cH>{*iSZ9j?>< zAG}b0!-7h;0MTc-o(xHQ}I>p7``lvzC=N zjO{D@bJn60yF55b`N=ht0f8fOrq0?$B_MA&Ua5Jjy2g2rYXZZ~S=eM}JWGyOd|%-EhbiYu|hP#N&Qm`L!RfJL<-5hyHlw2{*2qwRv!NT}y3k zT}$u2<)xhy7w%qKHt_81o#j=9-xlcq{R=^KBI@iY{9A5M%xn4lc`%d$qY?!hcs0Em zv{2t)z5bNjDqmR9Gcfc&B~4xj`dqgE@ewKf*5&wrwWj_vGT77C<7NB$ABEwe!3i@; zj=W~gM^7zO$*N)1vt0e~w>7+jq4MTkzoh(Ca4V^$>&WX1f2a4J7d93AjO9SbN-LYM zf4bo-mlpmssjMoRFMhNWenwbRvP=76*KAO@OZB<;H!HXq&lX>tIm;ys6`^+M)KCe&$YKZx^Lv=1%Eqq}S~_JQL1jwbfP`OzYL}SVJ%>aT0BblUhXDJc1|yktK-391 zG6vBybL#E8`Q<{$^2VAZNEE;jLWPs1sAZ2L;{p*TdFp5ng_#Rm^1w3u;^kUqNa9EZ zFJ|rt6T_$C&N~s3>0{Z?T@og!R0xPJ;e(MpOFk7bN+xT74(pp&t^e>3W*l{M_2bpCyLt=He(|G_=BoHnFzo){`zVk+@S}h( zeoPT$5K02-Toa>?X~}75DyipTfRmjR`~=8*x?{)Et{Kggxd<{uQPJBVm4lopLW%-1 zkdlB|$PuiOLHKHWlMqXO%xJqz6**?c;X!1;Kp@5q@E8?@vd8!whD1b~q(1eHh%Q|xpFh>y-w$^`*LYiHli*3s(vw%WFS z{c1x?S7pawSO4J7JuQ1WhnreE_jHf6clU0tYVID{-_X{xtfaPgV0d*!OGn>GQ_sN4 zvVygpO+!`n-Us{Fme+5o+{;sQNB80#O2PfhO80Kw-BH^m4DF}cr%2~ z9xY73EafMO6@vJN21nM+uU#oH+Dg~v?CH8Qle zdH8RCyYA)%yRO_g`qgJDR#!J(v#Ry4E}wqc)Dl(Ip62$_#;%&)u}K@NAKco0#Duap z|9r`HYdSBOQug6H*L?fs+IQbwa@gdC3+FZb)329bGOuBQ$=Lp}qi>yk z+#L%DH1`aB{_ah;E~_6M>aS_*d*4szytJ|KuO)x{)2(vNj#!rR8As+wdRW5YkviAjhVsu{1gPX`%6%gfdB8Yza6V2EaDti1@K}6!!83>@ z5W_CNxuqG!6X!I~T^=spgWMcW1`B46vdd{&Szd^-=2-}y2#h}qh1(UUP~q_6p=JtA z*iul$5E6(L$x%cip;`)*g zo%GVzFJJkoGv^$Bec|7{xqIT4y7sZ>mbM*p^}^GBQ~vq$7XIzGo;>-s-QWG`=0h)? z_v@G2F1u&b&z>yVSUK3x)IKn@Z{GUWqpn^YqLMrqh2O<3 z{5j;pd4*HgHngdt^QDCqE4OuQsqCs8|JBA-d(pAJOdD96f zxOGIppzW%~^M_8=&<9_<>>C#s{)Y3krIpjxv^_Sn^1he1J+*B3J3m?bky8paw0d36 zMWNwQWJ@3mtXb*_&$_2UbXp69TAaLUUJC&LrzABk3Uo^y1ygoY$ZSrOU`qeY0U7&Wh=h|qA{}t zj7Ez=_uS(tKZKnK`<#jbfJ6b6oY-QA7qLL=^0-c{*@B;arr0^>z9wQgFz9bddfut9 zBXE{kh?b>u(IUzZkU#uwjWBr$Fs?z80RhUY06}7(A{F_E7H!u7i3mvQoWlR!@&Bhc zS|+(82^%D4!W@A|(dozoFAf&~VqE)SpRU{@Jaoc=-wYKb#M}p4ObNuy3p+R-B99vy zPUi(AS|DcbfOIGl#SY;(m3&(6s(i`@`=WTqkx!CLx}e4U(z&zlnbvUCz3Z=haL1Jo zS0DD{1;2Z_vbp1xf-@fiMDe4L50EG2fB8{}fbqH?g)INIj{-XZkdbd3tq{ZvW>aGj zPJzvD1mfDKIiDU&x?CLCDUg5V(H^f=%*5MMJBTfl~Squbiu<4_ah%yM1;VyZDmM#G>5S9n#jaW~s?# z`c<7m3Il}-o8+AlzTM=3q9tb336l)RF0o<~$Rk{p{JKE#dQhZA#WE_z3lPPaGV9fG z*ok6}CcZ2kT$V|WWTvx-5xZ&7EHem1IO<6Yo4k{^O#U-s8Ihww=c6FloLcdtAls1- zff;#TcsH|;NQ?rBx*5$W`<9XuK6uHS%l1G09bhI7#78-v&_SPLBX59GRaJ$+;g}*L z9FWA1q&bTGG0sKq0VooO0G$khAY*}9Hfw8Z$qhgF}1U`=q12d!V*=w6V2g;kup8J^OkF_pK>!?&=+wv#z44v%jUQf6B6L1H&UV zUHfaAd%H*Xmp1oTH?%g4Dag7Om+WmD7~Q$2dHRN`ePjD)Y_8kY-0MA=8<0y0uwEkJ z3oxi~;2%%daC1Y)youYFP2Tg&-OCogT%~KB`Sdm&Z~lHSjuy9O}RXYjsn{gz~;`-@p1Z_pUo}LD%Q* zSbFvJvWdI;E}2~N(fhXi%iU|g_w3d``N{mhxOCd%RRf1Sx#ge}pT2Ev$8dkol`pLR z=EVBF?Y*5X4W~T5{=>J-b0VExUEg_N?RTHpvU_)p<+tuxd-{_bA?fTL`0Q;<&VGK| z=PGl#0UBIB{#!+pc)Aw6b)h}-z7~9|1+1@q&xaK9BNX^At=cVQ{BV4=)7-YQ4BZ+A^ z{mAD|7TZg=+Lk9JmzGutV!7V7@|egoN%x9O9>YK)z_K~t7?&z1VvZ?qE{8|}L7f)DNtJHON0qCJQx&Mr(;+D4RF;}0C7l{kNk=%Pxw=+?c-S=?FT8Whm(P0Pn4cE@ zSfE-^k*bOM$|WmK{MokYi?-|^E4XfG>E2Y?H+5z6FCO18ZB56*O|47T7XJUq!-IXT z&4sT+V@ua9Pi*`8rOQ70!x>+^V9EPWn5ebZqQCvfr@waD%5^)t>-QG^XPAOL@T0JA zWO!#~!+Cd<{QY4QK6S=y6|H(&P^pqXf8L^_u3quPg65Xq{cSDd{}aA3@16pljC~_R zEseFi_V&E6wC%$CYc%kmJ8#JmH~HMzpWZtb-&tLfv$TY{IWWmnU560L98zA{Ne32ZV}in zp`+A7nB728J5#|zk}gZO&$z43u83Sk@?u24`XL5~B2`NQNm2{8;u=!$vBgW+fDvcbF0DxypbR4-(!Oyaz_XC)?2yl&t@a%gVIbs1Grr2}@W;8K* z2F9E#Dw(22I0d0Wk`rVZun3UHmlJ{T1&ON*xn=T(shdT(p8{lo48k>V96|sLW;r2A z1&6i3i{G4De%skDr}Dr8gA&D;B;<6w@jQ&|yB;152Q5Iijq4>S_dOz@^;OThdk3yDz#7Chh z%mNsEk&G}-@o6=qeX7j(`Q&8)3@S%xGl4wy#0+$Gbu|J9TBaCL4Dje9n~!onz7(0l zXIvooV1R@mPlj&N#R3`fzM*933h=cb1v0Wh3{x6erXHM@tg)HE*}*|DV%H!B+aKL2 zSR#@)c5-T#MQeuBBc8! zNreE|mbMTKN>Dty7NTHNq6uII|E^uTD3a&Gl9ri^2&i9kB>1oq1DG{3@nYA~D8`k0 zv$ws!b#Sb)sd@f}U3$Cv_WnIxL%Nn#CDq+SV@>V7Rqew)eFF>DmescQHh1)HsB9S? z*|%_0b$v%)SMT6+^ET{lY~57dR^HIl);GMoyrsQopr&vC=3Nbo)|Zwv4D4=bowd2P zse5=y$?kdE8@hT5e*zX@-UR|o?o;ALzy`laJ^vo_hCS_*AKRp}ed6{-bDk}m_x#RD zk8IH8>V98-c)k91;sa~e&uuPQ(mDCjjq_h9pZ!ef)Wd^%o_h+C9#H?zfnBr*&Q0-4fC2|*tWQ5=jMj? zwnD9+BbN3&z3?X}!!mc>QHnym&cYGw9~*gQb@?Zsu0DUpuD`hSh0AB|x?=XuxBPb9 z(mmaiw(kAtgC(DNw)Xf3mi}`3#>u;S&V6>>Hy_#jp}RJH?XIO)OyBX%hu6RTu5BN@ zzx3$)SDZAf@#FVze8;tOzV%Z5@e@kkearkiwiI3^b!}arxNhbTA6P1}6?M(;y?Md) zGj}%C)-?7Ee)eYzfAV~x0p42O@Rn<4T>0Y0;qJDY?&0^|w)W=9>+xS$Rq-D#cxh32 zi|6>XmnzPFYSqfkr60U*))Duwx@2m_pPcyEe?IN$gU*?J(D$D{^nvwLH`g}Q?H$`U z(mVc7EJ}sjm3t)*yjvy%VwWp~EXhW0qfu+wMt3nDg58X2}CW1pxqcHsPcKO#VI(CS6GI>6$6x=ibsK zKpqkUpLe0*h%4%h+hPPr76|YH19;RCW?N)MH! z#LUUIqsdnahXpcp$&1SikY!uKX>D~6her1e_4f7GwGBTted~=6tv&IUEgw9oP?f3z z)rg8hbz4eI%aqPay8Oe90E?#`Bxq5iRbg>38}GZ$V^`-c1W)KrcP5B2r-bak|rR(F5@#zh}4 z{Eu)7eV|fRt;v_lUe9poRU58-yr!<9@b}i}%B`#xKMEb~E!Fki=lpWsr_Y%7r3)78 zj?|+nR0JdMJ?@21pR@Gh`>Urdt=hk@zqze<(!w40P2P3wLz{m#q57sLcb;~`j3cg? z|EaSV9&+WnuU@*G7QY8yxa7;1toZ6>Yd-g*m%o4Ws-v#o_<<8&{KlnAzV+iJ7u~-4 z_7`^_dc~?k#{a43bfL;D6t^Ps>0f?9`B3iFOoen?>wsTj||yO z50HMt&p&?a;q(}O96>r3_I1B+KjI0x&Wmxn%5iN2VOj(<9^AphktJOOBx-%8Gyv&j z7-R}s?J-o+#g1@f48b_q&XFlg!dxisWrh)fnBRKXW1N2V;-z1`eElVNZQQ-LY5!Q^ zSLIzl*V3(aI*8m-H{X`Cb6zf|o1Dw+-sUms?&|#YQyaf{!LmcHTnjeuxsWm`78nF; zDN9MU>j$3B2WBzK8&vr6W(HVj&t%*h-zB}= zkI@g#)<&b%v1RNT2}i{^)mmsW1Wn4m%tX0QFr*Kg~XmcKL#b zeY?cm(wqwY1lII1tiQb0u1ir+LA7L zUVO-Cu}>wBDwVu-F$sGK6OOzG9BlIJ5WwV}FfGRM^C_q3iwOz&z(A0}x0_CZJV$Is zg#ac2%UGt4LpQaPEv9539|c?Z#4Mx2+W$w~f52&8Re9on@9ymG?C#8L`0d11VM6YVn-S}=bXE%y1Q~!cjcUORoDOh)CZsKMaP-> z?e6b?Ur*oHx#ymI&;5SSsj9BBv;`pi&`!Y;EDi_&>_pFu6hBmuh6^(9bOeWX3XsU+ zS8TJiYiShyVvk+J60B4J45r;oHH`_A8JT4)F~byrNZ@QD7=Y4fp$=t2W0#Rddq_r*vqXl`R&F~W z4%+JN=@}Uv-Con#)HBwgP2E&6GCo;a+g{byH!wW3baQ$4@WJYa_R@xdzQK|8rS)z7 z-QGYy|kgXqknX0bYk_s=B~b>trgANDq99drxt0AI{JDiruH@sG`9Eb?Vc>F zZQNYfQQJSdyQ*>aw)(1uwxOXy-W0QkYe`H?0!wGxnkq+&gI=ppQ+U1!uU-8=ic(lO~X~22ldQoUU+mj{HB+h=RUMUyQ_27 z?v}3ZoBznJWzSaZT;93(sWKQ^(q^N#)NDU>_xk*2VEBD&hs(AXex{dsxhHIvQOt&9 zxf_+ll_ZdkM*IQ7o?|+1e&w+*w4b-6`R#XXxO;QcUthcIwl%eLtNQ-rdkeq%d|C70 zczH|r^6IV?jl=h?C|Oh6`OL27&)u``O+Q=x$-CCP{mz}Qy|?Ow$9MmH`_SL~bkl2o zy7I1lLm$0!^NjOnUAov)ZREhv)Z1^}a_7pz_oga3N8W#b#e&Md$?=h{@q?fIP08&m z3xB+1$APZb-nikZ-E9iK9WBGJ`q{>(w-$cM`E9HA|HCbtng=FUmbD!9MAe?2vGX3^ z@?Wo*|AFgY{BKvUnDMn|W}Nci>#tezgQqq&bWZ16SK(LH#YgGt_yEq7r{ZvEKbeDu z2gpnV-fd6Ba{7WMbbve~q^Q#;98#PCxZr6lKJlX+V73MCP?$k7fI6bgdBz#GLKb^G zJz}|GNnKP#8f4Cw7QB#T0&?}>0|&5+KJ1V&gCa{a$uQCYC26bzpr;*Uf@U`GdUgSj z;lok{=*kiSz-%xwVejwjsc##cy}IGN8`ocWN7ZL8 zU;PiK&prAFTGqmk@F~&MYKlm8r`bngsyg&hd8;_ph^kCgow8L?sHRjD;wtn!)Biyc zy(Liy)O-qAZ{2CZ$3kXO0x;xhG zY`FBU>NlM->wVL|n}=cgaFwfyGv5t6;m10UB(H;?4w!QW7rH#k_V9T*TDtY(U7Jc^0ohSdS_T67w{LxDaoebj@ z(?zd+G#Kyw`b*mKV}H2oqZchZ?4sp|U$*+)Uw!Fg7cc+7*Izhd`kSc2f?j>B3Rl6W zC4k`t8_YTfm9$;6u&Coxkqaa9M4Pqx69&)@P?77P#5rH203aZfJu3JV*$6NqphDzH z(=b@-+?3sR;jvgM@%08I`{+-i`pjEuG*M0sfGZuK9H1IOB5%eXlguzaSeOCtlP->h zpSyC)k>B0)pTjmvy%q??qrpX2xTf6Unq2`0< zEjsF|LcgTZN-+6C3ojUu#)e+U#2CIX8v!FvoBqXJ!YD*|VJt<-S%@361s{u+O!ktT zxS7EYjvQH+3>O^U5h5Ub7bS-Uqpw3Fy!kp2fGA?+2}YrgWc0!a?;cq?J~pG*C=y5x zX*{yaR5oDb4qlFMoWbcH0k|ADm|wWwdg?Q*LeDQtX4qo6Lqv&PvcZTCv78mOBwoTL z2&A!x5W*SB0M-(Six6Ttf>LJ3f7W<9%Y_>mH^(d9HTgY z@ciXJyl3s`*m!SG_doekfXM^R_&@tnAT2M2;;WEeOD_vn#U6K)1ozjjD`{z{{B60y z=@f_}!3=|oSZ~iPiJ}^P@Roo>I|a*vDZlL$XfdadrZo02n`$h-+bN_NU=l3`j2VHr zp$FSFlW7U2&P;V8ljtE}fTbBhObQSQoJC&*7-P0Y9ZF8c4A$nU#h$20+>l|k`@5Y2 zBnjv(#XMi*Mv(BL58jf%lw{Nq2oJ+%13kE?z4(kxFtK>3vV;)lg^czPWDakZDY=VY z(*-af&FrMkE*47;CJwKNTdV>wAOL!l(E?__C6frW8-oGV!PA?qkp1pUApxh0d`tBe z8U*MWL)stc6aYoz6K7%*e?n%2uDrY)5!1~ufM`wLqo$a8Y9h{{*e-xv7KAtUg&k#% z0V5TV@z9o~&>+AI9|@Km6Bm*(0x&X+50)4$Q>3Dd##ogQuoK1%!$SZvLI}qzlK?zo zB!WaL2^7QZ8nGV%7?6R|jEo`x$tih-ue!S0E@H^x(TP3HBYk5BD-X0T)Bul;Z?9@^ z=p5|pA6&QRfQZyIbys(ccJ~i1+*sD!Gt%BWylzk90s07u9*H?N0ybFM)s`f*V8V0wsO|}TVHx& zPyS%iy7>oI&8|UUsi8%@b#dFmC-<5)x*K0?s@^gV*txvDe%HjdB^~+i#F}RvuMe?y zwZ1S<-?L%nUF%9#_El`}8XEkc`R4QuuoD;R+*^1{vm@r6UG9tw_E&a~z3W$-FJ9ey zS z`_ET5-d8&CvAZ_?+wU$udS=DDZd~%ghb#W>r|aHv{lZT@TK<8XSNw+FQdq>0g=)khN zp;!HM!}2{19$fFbYW69=+2}cO^e>lvV|Lj94?*z0FBk6lH(z_=Z?9cBV-wTAh=?2qmmJFg8zPXf$X+gki@(BNve^w8yi*n&7=f~soQYUwcLxSu zs*{5y&$tLT$WPd%O|G-BTe=0gHQ=aoA_%af$A}C8Kz7kWK1+~!q#E#fsNtp85&@GC zus>M}1Mkuii_+sIHxV8g`S3A=kir$4e!ONj>|)PApAl1Gc#RiL@s}=w!x-4(i!a2Q zAvpzEv^M=Sy!gc6;KOb>3o6hHi(R^suE-KVTLxoDKmZv6!NCHks;Yt^1O{2YkO7aL zG)mb64=F4FOLCGA$RN=OBg+$<7%W_7G~L}@)s20>o?UjzPquvi$}Jx}f9c6Tt^EA= z6uWDb;EF$$oLbf=-yuGUU=)$5DV3P&KQ$t}`ZC3j%TBvt=ZW8a@s=k`8rsxK4yEvjj@N5<>_73U zHK+Z2zp_&4$)q$nN?VmZBNhEx%_A;bb=vpm9BArnYc2f3KY@D1OTi_5Y;oat?Y#5M zxm2q@mCK59H7j3KtM5B!;o%oABlaC%nS1QjJJJ!c908>%ml>c?#!e2GHBPMJqs}Mc zA`0;N?-hz*?Ey-06Cd^NtB-w{(umT)h?UZrG(8D2Jp(yvWu1fWk#GbI5Y?Ol3A|<% z`5G|D^a=S=03)>=Xt01ILF&XM~4BxI5qwMVqV(Z{?%K`-*igh*B5``%1yi$3a)X1JuI<=%(rue0-o1q z-C%lPapM&ClLJ^_B$cq7`>RHd2p39T^9}*O98CoB>uq0tRuHs;`QEtr3uewSC+K_u z;bH*W95iVz0(t>=%a|lkc3l(kv}7|mNi#;uI;X=VrV1lU+F3=uQ+BLa*e~DU1)SI1 zCmcQeYmR$F{83U$HDWfy^BMtq=B594*4(GpE@NLq}mW7le5J?g^e#*~kPXF1Sr5h_{bu!--@azJ3{(EY{ zdj;er<)r}gkG&MU0`gL@JoKf2rT9`ncIZnXZ@1!0fkptlT?PPf<^2W7AT|Tu9CiQ; z^QRMFVg>*`75P>f?F0g7w+lu_OKoi}uGksg=nXqc^@EoeMk*kSF9k~g0=)2Mj$0N> z1vMdnaBq2Lkb|C_SG*KLY*@yAGcwTtAfwUJZi)?}7zyJb?2;M7igN5SFHQk6P@0jE z06>Es@QO|WfCip+=ZiSLvmpguj?7Y20p#!+9wzF-P89Y8(}_belBh@~1c0781hxRe zl|v5zS?m-bv7}RAOu|lM3=kRg2Bk)_$TD#gw8WV}?2s`S8R76Sh*9E=<&c03ii~OT z|I15(F~ygHfhJr|-|YZ%77Jq9;fuaYgD4din8Y($EaACNAbg<#=D7srB(odo;4+f-+@%!+}k!V-aj<5V#og0 z-jTAJrbU}7#wQQ1-c_@+x}|SubVW&1_s~RR-^ijZ6^+eJRXt<-I|h1($LDOQsI6~y z!rQ7Esv6t2wT@Lcw3oCF?;p}j6vD+4h5<6T#%6%bh|4TQP*d9W`0Z;}&92q`>SF`dn zX4z}*DLdu96)%?74^JIjQ(E=x&c<&oKJeGqEIIP2s#E6H{Ksq8y!WB%lOEZ6&XU$w z-Bo_p^A%6jj(+~Jz5nfo&0kyGapc|W-*Lx|KmFPEqaWD5wt4)iZS{Zty}9e^3Rk+i zbL1U2uYGJ?;bk^+L)Cw~YRQ_)w&Cu!8&@{J|MndXUHvcaZTr)6o_KWio<}y;z2@qL z-+H0y&(D2w#>o%;t8Xv+ldnGh)!(dJRo*<<=Xy`dX}QEx@4Q?Y%i`JbH@8>TB`sar zB%ax^qBL+xR|hT61q#Na0WY$|O=6NjvYSW?f;?3PIRu0=0E^fnqrGPO&#YUz1-bhq zPy{e+MZN)Ph9TA#T>xTp`&g3q2eD>GCQ%^~SRz0crOa?EDT*WL`6~j%I`=5WZkbr2 z@$3#IBq3->vm5QSK*rxZJt7BjluD!o0n$=|9p7!(iqK5vQ~wG?J5V zPw59RI%NPnjFtmHG7Cv&80`$RMGi(5QjLWo(Tk}(WdjS@z(Ho`e2@Fl&Uc-?;Jh2x z)im}F4tUxWu7iY>r5-yn*2T$X3{uX!{s4I!z%$K#2Y7}QF8E}j653rmc*6IVzWLNy zA1}0&OZX_H5|1$q*7Z3H*0Nl$WsBL)2vQtmATlQ_+a0a|Vlg`%u4(qLa8?eJAP$6c zO5AuvvM>^R_N{eTxG4cRPOK0KZyG<55fdT8E11G%ml+~MvM5=SOit3z;j)b}_yog@*5bIDxfJb=ITXH|QN&9Nc z2keg1LUL{^11!0ZkpZIT!*~Sw@2{>;(mST2#6=@FxnB&I@M2*G3+1_8%VeFUkC>2# zm>DzzBr^gqz`?nR^s>+~Q4~i=w&bSW(2ItcAfufwR^{&);l<)3dK5(huBc`hFX*!6 zAR?S2KE-DO2~h{>L@YU*!}1X~x^THWyhBf^oZ-%EkAL)-t9KlJ>8hi?zxA+-mjA_P zAN=~Qdsmcnx(Kpb=KqUc3NA=6uXriACjZix0>Ba_uDnxVVhm|IG-L+hgakl_1_3TJ z_O!AHTv#-`fM+f9;K_tUmQKNLtkoA_anlPynEpX)ul~GD%^}EER3jjeWCkea;n_(z z3@uqkbp}ixEJ9=uXr|im_Qw)4uqY`l5wjmac;cV9+0EM%5{ucAJ*3%!F=tn7abZV5 zd*s`Kq$OtuNWsR7V&hKvR4vkb{yCOHq{}V0KbRI0E>{p#_0mMgnLNd`8;Msez?2F1&?bf`v4vf;0*M zndJl`a0X6Dl*Y@bY4+lIgaB6vz)_h2nPm}3$SnEkAjL6pAu!I6X#jWy$axszioZVLpMhYLmZU_PxaaQyzD=U#P3^KDVCYhNbjUq>S0T4`1PV|jW)pZw4 zt?d}AXzm*vo2=@Z9GaLK8k^X?zd%;iGSELXJ~nZ%rh8H{w)PBet14WNist^xmi~c} z@eP$-9sOfOl<40F2HHladMBnvC#Kd^cDHr)%hR&9!S11Z7 zrvFfZ5*;cH69KmK_65s#H!wz~T>5AD2keb0@hV{f=)%ktWu3s-i(@3ER) zofG>zd!H=nxN*nuIkU@txP1TonxQAQ)t@`3;=f(9>W?mZ`a^fD`z17L*shY+;ZHtXdH8Sk+`FaqEw^m`k5{ey zn;SOIIQh|kchQ`S7B(-f=op`zPDl>_HrW84HSQ{4I+0%f@*%G!7{Cbzkac+nI9$Zx z&GOI?fel-SA`O=%@ytW2m=%V^K9m?`RG-2PBls8wAQ{H4OA$;I!I%xmuw+;gV)syc zU~+@tS!-r_ks$B;z_#+h!IE$p2w)O1?<9{n^pGgAfQ#X!omecEdG33HWoZP6*Z{mM z?jAbGOiZ$zyLssIS8n;j_X4#k-~)@hPQ9`4Gr){z6=}?1vnm;qo9cLN08^Qy z2xdQ}v_PgErG-b7vKGPlcQq?^^Iapm@ODLs90C)r_kC>vkCfM{ZF10Hu>}wZ0ZAAW zA6D6gvDQ+#q2txvxX~xhWcQNmS8@iL?R(bE(;J6XqBG`z;*jKD4qq<{zu6*(#NVoRO#6=6aI(3~>`$k?=7 zw6mG_>)xA|_GIPU_&vL5a-FLWv57Pe520zv#^oYt+#|q9+g_ znHeS^;>KpMGj-XS$2F&bk`~eggn8uKBFZUPN_BE#JOj8!kw%v^*~L_mq=h|_YWhYj zy7aD^3vRDI?WXFl|6<=&_iU|hDP;K2bg`c2zl)Hr=AV2ifO8!@)&I$t!lAo|jzeDx z#W};4r8lyQH*Y!;%-MB4b76Bg8Iw*SG>1yd+Y_9TiUm!`GKgYffV@nLuV66yr>P19 zGD|?74^*eL5H!WV5sw&_CkdGbfENJtb`3#$MW>LFXa^|nzGCp=U)m`^+G3KK8S&S$ z*eQetaVSL~a7N;W@fE>LG>Z997B_x&*!hnQ^wQL|ThQ%rXX$cvC1O&*kTXf2j7Lu8r<77!(!$m2K zvv+N#$qV65UK(}{+7nG&5z^4mxVyH!uA>ms=7FiohW48Jw$&vK-Tgyt{iEwj>jwq~ zH|%LBKhQonGO?+J1d(z8n0)qa{_FhblG>J$=sxWaMmF)H?m6(T(-H zrnW9_#kFHurxqH1`ShP1UNw9FnwKi}*A;$9o1KX*`yGK3Pk0@lT}X!x1F%H7wx<0< zk5`=XT*W(XTYt{n@<0Fa!VBk=zT@7Ki=W4*-LJiB-s^t0_H)nf zfA25XzWdiZ-}sZ|Z~yU2-(FC0{8Q!s?vgowapeo|zTw5czWT*i-Ld=B2iITn-0qJ) zR{QU-c;TWKYQ8?F>hG>!@y9<}^}6epT(G$HwE4~d;qn*%%at#_;fF81|K5_<-d^&a z8<$)%x8e&A?fK(NXI(hE{KC0aGtPeEe_TH6^;f+(_(Y*_($v_a;XtrvJ)lPRG$C{dns5lF5dQ;w(T|47>392Oc&w6^lyxqPVK^ttDF86;)e8w5q1(R32}cVSiWUV z6h;!5fd(b{M)A%fAi*J;!4Uahz~82}nE*FX8Y2QOf1zBXy*OjIMlb56lJt z;=oxN0Ag{`C1?Z|p992FO&S7AGaEz(GD_nVdWzy5BvBqLBnL=XXu->1a*%-&tGJ0+ zsKw38k{OJT*|a1el)@7jOTZYJY8gio&-e~tMlo)X!h!|f0C>0&Nciy3KSnnoq&13PcZ9AgaZcxsd8b>|o`il2@&)Qbb0e ziWY`IrJ-6@Nop4hjkYu)$liYX^NL+$043uQm#sSb2Rn}a?vlgKopa39J3n^GvcoQ1 z%oytQ73x%Sz;8YEnb#iwC`OhjwMqWy#mhf+*^))u`|o;g&sT2P_Q7*r_{_K0U-p~! zW52)txbH4GFQ(hnPgdPFu3rV;~o(WA6uFbzO$SV zmaCW*$GrZB>EDd4CQiqt0@h$)IqAB>Z=n6u<%K_{g5EBTbeZiU(~Q0A%sG6|H~M&I zNfDW`4W32-IfCOuJD1;a#w-FY0SOCs1_%p0?|6X`7j<9GNKF{Nq1(pyEL5 zV1B{4ix~XdZzRnx2`|^ zh8-Wdc-1@4oOAdk%km9CXTho*A}=`01#Zec5pepBgXJQO#)sLuFD}R;XAxoqFaj$v z-uC5ZUw6V|PMQ0HX4lbEVHZ2cHCmRMC0E97;wH&;K1@Q!5^@|mU8E6(fF;cHK?!fR zmGXS(;#Eu0cHz{SXm_S~9Z#zq3zfZJC9&@f9 zdWXvl(j*}Q5sQ(cK^HmsUOGy;%!mHh1^}nHhKvM&kLwd%E-6O#3kXxe^wJ`ETm7Lb+znaoa0_HZ!I8CxtD6CtvM$3BKfP3==o>e90G#h;>;w z!k%0TTv(h!co`;cbg{>-$P>;Z;T0L-#bwtPz2xU=FoPTf`EdYC#y|AZ{^rh+x|Wgh zx{j*qIyvl8yyB%G;a~Am@cQ`Omx39iW$~quYgK$HAov%(6l~?*;mQjo_Yu9<89X@h zr&(WqnX(ocvyp*W%MrYxH{hAaBxYC!@EnM{6&yR6376ImUzL0QyqZ-_#%ea)Slot!3%+` zB}eFKfh3tg7`p&Uu_V<<&XL5EI8S3S3TC_LBOkGuVVt*Xz#|B8(W4AD!-$ALAT#0@ zdq_Y4L!deIb^{lI46rfH*t4~&v%Y zTRTv?x?lG@_o1D&+s3yoY1NDBS9QF4-P&!Fy5fqB!#kFBteRc7@x`VU&)1Z#AFSFu zTDfVgd_&<60&iH*i1L|VZ!BHimu^;H39<=~Q9jF%FYGQM^C(q6Z$>J2xq`pUxQ zW1p-3>cXZ^JhbbWN49?Mnd-}DuK$xOUz}6X^~kRFw?9(*rTbQHu5Rua8C$xed{6iA zoU*nvpW5~Q`*;73JIgZ98cOC(#aM;Y6Zv;frLdsBxf;h36#8zaLB~Xoke4pmTcv65lbn2 z?zKEAD=Q-q0X)WhQ4^(y4l#Cbjh97AHHarT2L9P)Kf#}8%GK_6`QhBF{f(G zH<8rM`DT>zQGJX+@vV4O*qIUMyBsM5eYDM~&Q+F{N=%GuXhk6*s#x{0G7(K03}z@6 z|L&*j#o zH&!2g^{&rfx%I;r=oy+$`+3bVKivJv%QwFL^x3E0u#e1C`2?!h&-i&22|gqf!XA$E zh2!aGctI~DEo|1=auXT9xPRe2t?8OrlCB_~1ICYCyyDCoOYeE1^@~5;^qKE&OB;-l zJ3fREC2lMM$Ia8Hf4LW3EMXo41WM@)!whjFnF5DGipWxeErMkgwCj(pHeUIOJq&VtllJ`iBE| zRrOqPZ`J$GE&RBtNQ(b-@C$#PNIEgqaXTXxG8LW|yiP+a1JOtc?U|NFOq?<@c#I+= z@dV$c;G?)%IuXPoBWUDE8@u_Qp>q*8GU z+_oh%h21?uK((26mnh$rMdO%U0eBwa?#pZk$8f7GlUVg@bg{-ALp%Y9J%zUAUN%^t`Ei56Q*BVz` zdTj2n4Pzp2i%jyt=($FS2-6NpwU}^$5dAYPFeLDWkx3+$2t~rkHI`$f4kZEtne7l+ za>S*p{_YF+uilZT^yJj!XkBeJ$Q$7wdnv#aUkZ{O=67ETkTAI;uXrht_Ah!VsCaYl z@-p>e&8yrX5J6xxxqu-H(ufT(-eq`Q?bwFV3-J$k3QUDbr;s-+e2P86si>$R3W1rA z=@hs|Ams1u6cQ+sX(1$mO({aMWo$FsMGqi~?wF}y&L6Z2Swh0RVgfr2-C0w)>Z zNhU`mqsxp23pueZUxi0zAV@GNiX{dbTRa6rCdk;i5P~>`%qV(fK$3asXgTW4Rd(?Y6)T=8J5<%s(b!YK^o&huUpqRx zdPXLPC#U)bhxWA$Hg^uV-%eQBUe!9-&^KONSHHKpXLLFeUE@<-gAVxM-j?Co1C0j; zClB;^{2W|e(XqF-5Vz%}jU8QGEhAHPgH!05C#MQdPRFg7xCag#$fF_8P4`xOnA+3R zHPAV_=*hArPnR!yw(`MSmTr2fv3$e8g2#4mS=2WFk=--zTBkAA-&SuK-L;}~;gkDb zdSZ{y-n9c-S#9mE72TU&YDTkY=Dx>nU$u2{n^tz^tZMXR&bohV+4}x1i&`|dt7g~E zdwAz`|6ILtR*lwo{R<7+Z1@+a|MIY{b@Lkg3cq^EDD)vYAod%QIA_Z29|o$>JI#SKGmxNFzEhKZV%)?3!p zUbwOMwLe?&k%vpax}x)^n>!bDO`WrL_%-)dpEYm)bsIW9aLc;a-ClCxqUKNE^3v;n zy!1a`x#+B?_g=BI`PJW>^Iw0u`Q3MJJM5QhJ~y-G-(SAqRoAb5?RCrl=zUk zNh`fAr^yQ=(%h_=kvon?%xx8)%dZ%=a_gz6uC7MIZ1Nc?-w3fw7fNE`z4P+^z!*zp zsc1OXXk;*6n5dg}x8N^&T<(6}RmgJPJZ<7>2oOhI9+5B^bg>W~mn9$pjA}~*-ZEm% zM$syid7e6^;>$9_mYErdxf7)h7m^EkIZYG3JffZbF475z#~Wt_rY@uzN61gqv1b81i( zur08{8s08?WJ+^YzUmOAT3I=(h*u^mE>j~ac~zDe)uXg%3@pJ)Lyd>>QQ4~E*Fch{ z098aPUg=UbrtH?hoOfpv2`bBTf7M8)cH&zP^_tO;Nuc7AUK+W;S{7;o-*fhS^*RDw z1WNK%u4cu$idNNYNj@9$O(BIW%h|v@Rj;C!kL)CkUp{z|X_)|`#AWm(Fql<{Swe_7 z0K|l3_|JTM!xyjFzP6-$&KpFME?ZG}J6Dl8-e=*pJ{(t&^Sn}t8kqEb)KskldA zOYse$U1aoTDf+bs0;0}N=`T)^BN`fi!kbn>-3kH4nyH;P2n2@;rYRugjO&nw<_#&e&Z{%bno$tm&Vh|k|2^N`a= zFEVz8h2uOGfwOL@q5A#jEPTiGU#PluR^!gIC47Q6c?=wS@m zE87tOlBJMlaPetxD}dor=b;2+3=Iy9jtuk-Oe4c7A`OaAqY+ZJLmygrobpk>TAm7zYt7a*SoPvPJItOaY zdD%rqi1@(EqPKndS`5IBP$lIbhDS0)4*1}r$S%N= z8OUgnEk5KBVkw0<$Tp`YVX$+@F7w1eTWA*}?R?RNx`wfqSOzmp#L}G#rnsdsw#0}S z4d1!rQVXLSjm0IsHmnnDKPMb0k4#iKSEHEP*@)z;J=_#4-RQ;bc;TlGn({A(nR}!^5x^S1zg3 zPkJzeE(9!h?>I{W$?*b<^Aa}?J-fKh`bFJ8oc{c?%L+Y-w}R}=OTnZ5|HVt8Sj6XT z^?P3mp8W2e%ks~8DIm}qTFH0s7h><;v5dmUf(J7eIDUbtcL_(f9=!^b> z0geWxEo7M~r3Gw8!*K-Q92US#5ji1CltPRq4?`G(wCFVmNvyJk(vkrxs3OvcOvEY& zKw?fvas!ZP96FGhBM`v-S9A)}hDnf?$ZRo8ffxEXVpmERg}{KROKjO$^w*pqlL=0o zQU33|6j+!*!5EfBvcxSyvIWVuRHQ)~kY+{-6ge|&$1)6NFdhv21fT|+oh~~t;H1MX zN=1mC1@PRct*u4O2usKalqG2Jatxy^B+W>{N9>`8dgwrdi!?NrjA0UhWXMRfES@wB zy@sHpQFAlK5*Zp#4FpE~3Tzi|{6d2s%!?#M*tr=;EX}Mk!$^W@KML<@nCj-jcYue6 zN4A$WmNgBGjEz^ejWqR)w6%AZcT98-PaJ6JT3^;)T3%h-+TA@dH8MQ7v$nHibaH=v z;|uG{+j>X)heoSF0m5W#76%^a~y?ZQHMD zmu!Xayg3)a%vo5*W@jh7&d8zUxW@+jH#hVh@pRn>Zd>-2TUMSmx9Z5572jIX^0r^B zzG++MJMY(bIA9xeO+;_AJfBOkbF>EHc$@!fle?%P;<(~`0)7VdxD&sKc$+4_&q zX*+6e`zbH9oVldyD|2h!@<7ce=JcLAtL}@>)%@vIOF#6h%@?lhd(+QW{OPspKKj7k z!|zys#LW6Xy=Kk(?Foc0{g$^sQ2YPfu;q349r){?@A@~FEtv83XJ(xH z{GVLEqg~Vg`=4w4Dqa?D#z9`o%%bB6@;EEzr!8cj z>3I!^OrAT!VoM&9gEH)vIdr=cz#G@oCtG633~=%HU1gw&83s8Fu=K2td7cpjLfWT>;v+A(b zetUz$PWPy8Q)2206n|<#b)J$=k*D}mH!JJ_DpB>E8WDk|N>K%`kX4#11Qm-u2rMxI z6xnJ`T%@TWvA__eczx~hk1AVzw5h3XmBJc1x(G=#pj=kSvPV%%U@B3yc)lT{2DPQU z)}kou)w1eQijmRPev2*&i==!xP^p*X&D<(GfDckbHyv4KMI@yOz)kDR~o3)6qE#fL}e z@g7n5HrK|ZuH5jh>0eKcSCj;naMtQ5!~{Uy+oylw7F|kt>T*WnuN}?VopANW)2~@^ z(a)AVyu9ao_wD`qbt|rYr2MM8H$1SQwr_Z!FB%6*J_11&G?hL31wp5Q_=IbAp8TVYm;GYh{j;_W40-WP_H=i8Ma#FO zob)q;llC&xb30E1!2k}+!Qv=Ii6UuqL=p1$ z$2>$AGTs41o;z>-@^i<2Z{_al!Y^`j7ydV23h*+&`1&*d-j@P`-+d_nEMM_bu$5Z| zKo5hGKmhaL!I94rb5syj>=g0}29txvB?S>MB*0)qqqRX`#IL{x-uQ(k#-~%TWeHDC z97){BG{Y!D&{*aWd4bm;-;CHUfP)dmBs7ErLT`{SK8}DK#Fpp_Ql`JBh%r8rDc}IU zum_nGVm8e04!R7&qsW~22qS^G;%_nX@yN_6K}Z9MQk1~Vu!|)XAhNiFGB5xE-r`FE z-f+HA1TJdf$iL{Nz+aNtPdFHcJ7R)THOr*1Fe8N)V)89#*s#WcI{pM>1{>Kek^#(O zBvFDX&dCNATY~8T#F`9S9tVjsYs>9BS(; z0QEf+NV^Bdnua|H4|WZXw+&7-x3p}pte^f>SyKmk3;KEoM>bb=^$d-7_K(!`9&Bmv zZXFtF7~}emFEM#0^B*Fm319BGGGLjoG#^Y6^ zXRaGP;kk;Vp4fB3?7Fk&*Pb-5;lxL`o%&+ym8)7Vda>rbRbAEnQ%BEjI{u-pOSkT6 z9i4b|U*EN>8h^E=?Un`GZe4rept?t zf&cjJ7Z1B(!4)sn9rfVOKmXa5*Wa}EO+T3XzWdAn{Kl=Xy?N6cZr?fMg6IGAs#SmW zi_-rvJ^$6Md;aWaJ7-+6e8%~6KJ`fTEvxEldq$@wMu&O}U)JJChWPVB%H<&lh6#|z zO$JId7{PWe1DF#KS0ERs7_K64D1DGbc^c*#TAB@yjNBswaiWScVl(on1%!sFE_)1+ zW_Dc=kB{7-NJfAKF*#h0KDE=|N7+i*}bW(U_K67-3Mgr5DClwC8?>0N_#UIRj=VGIua<1+eNz zi%zl`WyAu!=CJ@0H}sZvV<$yMUn+~$vLvKkQGoiWM-kiADyXVob@YQQ zSK4AxjOH7>wpfmleC6zEHV>nav#- zp`Zw!zw}a(UI^nSzPawAd+PUhPYnzXKe3|Y+}kP+zqIfzcdF5lz&2u!{=xQ>t}A_N zb@vUA?m6lD@>6ao{4}O$DC-L?*{>Q&My7vYq%J6NBZu!%#0E6%IrXO%AGvV(Yma;Q zlH6}IUb6br-`Vm%j(+^@XT5aZZDn7&dhHuedg`zX7nAHzI6_pyF4Wxgp;`p; zqtPsc5nJ&=uc@%*WCdJssAj-%KPtKU!KyvAy`CKdeVqpy6aM#m=B@9RF|g4ypoXW`kuY&!XdeHvYHV|Kb1 z0C%+RQo`YW;v0ou_a(t(9baC3++!#IwCb3vcOCid4WIbd`oBHqvBNG}e)QElKXKWz z4}5jjr@p!J9cRq`_&3*n>H5kezq{p>pH{r*?D+yEVi7JxZ#rovjZq}F(iK3sizd!4 zk+{KVI3Y1g1L>*{6l$L&q2mx+xip=t6**r<0vw!7!w61~CliuOl=@t9Uq{kd;|HHK zrcuiAml=)^z!5{7LpKYFBHrmM`B~-1UJ8oj;!6Qi2bHQl*WrKvr4Ryh09<$h zA!a8$$(BVVps1^Oqk{?M?~(z`%upBvQ=Gj_(dV-NfleV-#YiFIHGp~l{7xZ~V-lsQ zcJi=_F~%S06fAAUPLe~w{Q%4(6A)=p8eKt}!H`)N<7NOt85lui1`kkQNe@7fW^z

Nz(PO_0Hb_G+{}rCt+-c%>yEq zVZrMF@_=9r;kK|4C7bOM;$pCkKx8aro-Lwsx-`cBM479EFaR;Ukun__0|=po5L%)R zqjZVE2n=!%u$i40sbD8{fS7k+|NfTN_RSUTd+S;oTRIkPscvZPt*vj_UeoFP_tvzO zwTw95?G;VU-9y7egUh#9)prY5-@3g`o&BSAjcqG;H}(&Ym+x=eRX@M1i-lmq;x}Nd*TWV?!G*k^8Y#E#Eoc^OS>=A1A z$3eESIdO|Sm6a9k?OmIe?tkKrb^6#@_iugfzRj!W)IE0l%4N@1E}B{P(i3|&FKo$= zE(6dkdAfY&UF#M+R`T3^TV_A7O#{5}$-VO**=6hLdp4RePXFbkdM&Qb*%FJMnGjqH z9xHw1wiUDx2(#?jij6Ne&U<**%2_pwo-CVr_nL;fwt>Nye^UbE#W`&iYxA&^433OD zW?Kg*C)&EYzcjPtGf$Si?Y7k?KDqmdM@vt6V#h}x+H>;58$NLF_Ujf`zUih_kC%3w zx48Lh3ma>?hre|Di+}g?4R5`D9{^mP#j<{>xX)krW`#0qux_SArkCmME z@TR}IcKK^=-t_*TFF9{%=WBkt{#D<6{%zMT{IB17?yrBb>z#LO{rhh}^_SPK_}AZD z@UJg=?vJlpIpZsj{o9M?{OijX%{cj?8Q)qmy~d}@58 zx2N#?B)H@0lV`M9UcpE+Ipf9^+?l?;+=q$p$ZSb4k0db1Wnj`QaX>5&i2@i{;IW7v zQ7A2w!}5WAH-)sYLy9eo86_@wb|%QA<-Xuz%)Wj50Fbzl6~7*dCb~G{64_+~JUd-6 zBVX@iJQpwmY&lR8Vs`Qq-Y(Vb%t0FtomgbWzMU?3E&#%n#9#)-L@z-=Z>yrBLbltb z)QlGaN3eT7*g}aBOX8d$gJT9_z7rc_5)crQ(?Lm#(AnZHpE@hw`F!&!&%FA$M--7NOGT=ZPNxd5 zuzSlXPyfSd&sm~WT!P`zz$i48>7ShbAGrWkqe@XDN{(6(4M6v+=vOQ>EN?&kd1SWK%C9-@5lf}Bnp+u)<&9sO zdE~d(z4g?m_^Tu(lZDKnoeGqYl+x&fi#kZwB8bZ>UKK?P^^01E5( zeD%enzrB2GMc?=D-txY47k~8P!tc37mbmenZ3)HUm#jGbhMm89YRC1DRej;g!Y^=A zQq%k9lb<4oFC+^)79VlL&J1k>14K;RECmghWBR+J9(>=|7C23Qv7gxt{^C#eed)Tg z_nck$do7HlLY40vaVhBYJ<`{m@E9bPzx~4fG>RAk2Sh$osSsG|k_Hqp=5ycObnMkz zuez_KysopoweWxP<(R~igkaZ7p37e8Cm}rtsc3m!+jM80@ zt{6Qfq&*rldR)1BgcwPF(mY@RRdp>lJh=Jnn|8nNoR{8y=7Pg76R6oAxuEcSsyM|9 z$NI60mw)s^r!fE1SFAt&nv&05x&338u6_OS51nz{rXSq5^Vf6AfAnzm=P#Rk#qAp& zUfQ*-vTw(p+U47te);6~EAQTN!7W>lxNz?Ichr9D(p7);`A6Px(zCBS;c;PfK;o7( z6L5-TqazS8;k680%x3_T5Ibe@WR+x)RLKw@LR=PGg71t3+_}pN7>6bJc+G!*%tQPl z&6%Q4o|qx&B@;k37Ls%Hu1u0Dcb_gDCUr0p05K$k>6P1T#+6G1$p!=@;B{5`oBz6> zoMeVehh2+ER7{eAks2HX|l^Dwd4Z%%tJ3G`K~f!@}mvh$g8fig;m;|A4 z*DNKiETx4RfN)XgT<{WwCR=7)fL9&;VBE}I2rowjig~QHq>=I1!9E^ttaau2ZVRs) z#{hDokr%=xZj_3=;EcnMvL|W71v24r!H|ZF9K&whj}V8BCPJ{-g0V$1lPt0S zV=n~`{xe?+=(&U47WWa8Oal5G6AU~vu-ih(yBX5gpcqjC8fq5jFcK^_!2{rF1(1S( zbopc}a##S5h5~jFC@xGyKzHO2NF6+**~D||VDKVflaK+BkpsxCaMNW8AT5}jMCb{m z4!{62X=n^^anM+N98d&~B>U%pnyVjJ{Z`#*Xd!S)iN#p+ZzQNIn@}7f@tsS*(UE3P_s_G7uGz~7;R##qC zTi$oDar%o&6bVH#&nYC-P6r@p2@CsqU0>1v^xd1bFYD0yYGw7bkN$Gy`WG5>yqepR zRlOS)G;Uwov1>(l>FU1PZ4-Le-7C9R&Z>IiS8LI%nY$k`GQ?XKx4~$ecdzW-HvQ|P zSIw^7vZz&KylCdWHFN9A*7s|AbJbVBwSdbjXk0zG~?+<=Yl_u3uCwUbX-2Z)8SmEVH)vm68YY^4Eo(g^&&suvqAxeJ>U2*m7=CL^tlu7Hl#d*6VydK*OD_?(bwe?fL^rR;HPk8N92lH-`vrYpr>$XTHBs z&-c1b>rN7i(HCGvb=60@nvo`zwG>B?2xY}XXecnrxi*DW_DGQq1E?idDdkq<=Z0nN zacHUy54ZLz39d!8jhExO)T=>6VG1H=QlwJ0tf0d?lx<``S(X63MO4^sBI>rt!(ld& zR7acfQ)65ZbHu`UH8UDWm%V5xJ8c(m74gTIM{T_FhW3>}DJk`xq zsw7nmGe{gwB@hb=wdRY3qmExs(TG*e3IGNtkL|MCJ=1?`hz5U+ z2lrz+TrN5#df2d&hr!wnT(>!Vm2#g6&N8hL;N#~I;dqKjqk&jVqdIE7;pO}lJ8>C4 zYg7CfZhgpUdpsmN6*vzO)O#p26LIN>pCg5a`=dD}JzkvtbFt*(rx&BBmfTkpla8;* zV1AotC8&~RrS$h8v65hwWJ?M0E&(M+#G10hpL(U{=kbl>pgsHO z3DCPT8h4R5Hr~TPc<;N@rB$mxA1UNdaVYS3MX=~?$M9fF;qV02fi=Z0U*zwG7cNYY zQl$@PJ4&Z5K1OcQ^EopvV&!r1K&)ISVBsx{iQphL<1N3wIi z_jH}X_dmNC4?L`Ey3L-P<7Il=vM)ls@yGgFvNHHn!ts@j+8pfA3ydu+ASZ=YPA*O@ z_E4R#Fn(K>5}cKxlFU2BXo~U*5c}hC%R5Bd*{DCi&9U|#zl!O6E0+xMb(;0+=-8#g zullvaP^bG)s9`5+G~Z;ak1XX=iZV7CR3dxy+!w8I zEdgExI@>Uo$a^+XK5{zDkhL#@hO&pm(|ni*L0D=t>ZVv$3l=>f7^EX^iYzMcjua4d zn(XINs0q;W5MG;zBRu|%`d;IV6@KK}Q+$bEF^L-WZan9YYl+&^B;4d0JU{Op=7j4v z16ZN)6qv4=yB;r1sCqil$<%kY5#Sz+?zM(EdEseX(`7t?Fu& zV?vmum=J4hA(xxfmgJ;(Zm{>HhSLV*ibE#cZ09cD3URH2a$~zbPE(*aA+xvLBLdcx zIS>#|mC{dx>Q`ob{{sx$tZd6l&NhVsHp*BzFbSV2L!H56L*e9TEgnMQO&7blaQ(Cd z_nR(++g7}mU`*4!Jx~kFJOv}QU7r7>LYhR#2%|kuS^o#4Z`EeA>4NGsRt;l2l<$f% zlsFrCK|kiGOdU5qf?sEoay4~$5a2pLMY)|memXjyBTVbx(srDa1i)fJUS!9qd4Ew! zb2lG{_cOAfbf2G;yW?SahAHeNd*e`89d-U-^ujDpatJvT!lK+Cr;*s2Ky_fBHC1vJ z{nkwoQT&ce0qzbS*zz4Z785#+JirMSfH$D56$wR!k+=JKtA+Ms7u3z_sf}rcM6OV7 zKA8QDPnyfWkLAk_Gtz68pFsEy_=`Ymvl=l94V>7wa;4KQDMYLewa7<3;$|6ugh;Aa ztQ2(LEipP12>@&~yc6ml(|wqrF6-83EtdR97?@y+w26s3gyrBa7KmXBavm#pJn2Fd zx5M|Lmn;I}oemXs2Q*r>4SKzV5DLJTtspP_c5*JQR8B;*Wwk1`x**HRWVAT6IwK_| zBw({*B-S#L_SFDw9V!1_^;3S ztq%tq)7p;M-1cO3fmdaLSAbI;5&6dbQ*3z;CE6GWBc47_K!}s?A8*U%bi4u^?t5$1 z=LXB0#hcEhJc9MxA2+KZuI75P+pNDzt-FmNbv*SI?j1#jM!swJ(@!ypT_^fJ++D8U zEn|4PT1~X-&Nu#3o^NL^H8&s|+9#!+*k{Wq=ehmq*R8@eCeMsgWK|>&j-GysYkr>U z0GV2v>zE7k*WJ^BS-hr>m&T+VkJ4)*q7WtBe;#X-BX9J29t!y_{}p>Q3x7 zRz26|vnMBPHl_uBu8F#gr_b-0CF|AJ-h{*9PM-1EZ>(>Lc9@>|{&n380xeIZwVYk} zwmyH2S?GKzM((^kT<2YFcu?x>e5|HB{uh&;+4yKR9azYI zsyk`=xJqI|>-3p@P<7RQd)*&b2v~!m!Vc1N;wd3e7(<CI?dw>S{0dWMJST;Cc`PTYBR3$+$xC{P>qiSC4l%^OR|O!)X=kFNQUyFolBcRf`VF`B z{UD|kO^dy}7C;x)_9&muSTrT5;`m|gs_>0)I^%JQ)Qy?Sdw%3NMyK^2A~AN{jCmBl z+VA3Fn?dQfKlp>n(=!PrSctCp(agc zoTUbHGPh$wEQB{F6%Y|nzQ=R(7zCCd=p*G`oNFUiG%aGGa3o{9yae?|LS zQsKc^YH1FxaLeMk*x6uyO=gy}kY#6sBsFiDzcVfoAc-06D;n2^cN25m5K;l4qxQDalIkCJ|sl8YCh&d@7GVHs2f2+ozlPDMz>NbbvypX zM)h-Z0cw9Tj@)SLRu?qD#rEdH0uha^V}rSq=URB+y|2Q45)ZrfbYmjk)CLCRV|Q5wK+INJ&R#3FRQ#LF(+Quo}blnXCz|N`!FXabyWBS zkFNC5jSJRFj+mWa<`&U(ua=KQbwyPaX)E8ae2O|)Reev#&K7z;)-ij}JBR4PcxE;6 zAj*$qg_V%5>QVHE@#(?0;Qtx?>p*uEI0;LSxXaFdr|`n3;c)C!hT@ zKuAbv_K>3C93m%4s6Kew-`N`AiTvq(?xm&paWt`fM0f!iaLm3Jpzax+p_5HqHn>Mf zpwxEbq5}u<^)Fk{l$mT?A%Vi8jh|CXD5to^Z&(w8ZPoy$q>YB`kr--)l(4vGYGJ?m zMN%b?!K)i$N@;CD0JXs2j>jSYNCN$QU@V`ZR9KmezF4>osR)1QpK9iC!*wQcj@Ker5S29vknL-fn-8kBbFn8U&Z6Mg$_( z!;^6EaS=7+fKj`pe+DAcr(H7B;b92IQB+ft!F$2qjK%W*tWFc_fjV>u`)&Ohdpngt zHp0sgKMlOeiTxuHCMST57a|>Bx&$&Gppoh=4Fl zyRNvUu&xur#&we1!kYj5aBjn#`R(X^qJaj1mKJ^fPQDQxvfV*lxKl!jj!IehcVSIz zd30)Xd|XB#@MleUinqSar@o=#udThMvVxb2jn7k8_jy1un=n>&lj1#ZB7J1 zK|wS{MH_YXwqL(y=lgA}4oLoNxJ*HcYx+o+0VnzmCCPPUi^-jP$YJnT5iuzcpHZie z#o&3;+Q~jy>dmIBafE5|f5}msI+|n!HlDwihqj4``@-$m044F!bq1Y>h?ujr_U4u& zv8^Bch=XUua6+zx0O{CM{7Y)^ao>CsezNarS}T|8gYV<{-9@|8Tg#|sOqP$Bnb+#9 z$;QU2+tD`6!Px5c9)ANbD}&d=-@=tP^z~Nf$(8de&xA2 zmxGM+CAXvYaO8#CzfVOjA9tlR(w&QMab9j6Tk|YcZN=A}ukLrEt9ox_l^PGCwi^$@ z8>cx}4aFa8O(|~&kXnJZQC+^LwDe**L83Nfe6M5ut$BsWs9VJk|^N{;XVuvF7cg23>)v(-=em0JIYd%r^&TZx#9 zi9%4vrQc%}8(?*I--`XKdh4-_cjIwtpf)}EYPx#@jRrrrw{Q?xvIl#RB$rA zs`;ltnde;Sr!W1Pt;$!$m_PcLRbESY<~+>1EG6Lb#8vl7JARrUd*S*w{wueXD`bJj zA`kmvQ-+VECXz?Nr$txL}8|f<=*GHdYo>u&`iQ6F5AQ34~asHK$^L~>u9RJo)FASZES7^<7LuXy!r1?DlA)?4!^2gBG zHK%)|SA9~=VA1hAyjti!x`a#kbTuuP+XwA5U9|!nfEPxO!rU981`{x&g?#QRnD!b& zZ+w3Xn_PR{CH0`0jjwM}aO7+vS3(bCOdEGx2RkUND)5Ji&Fm9E+oiw~WRJ#s!6pxU zHvn8N$IsOYKQJvQQ(&amY^@JZ_uOplalD0+k`dY3G2x8l_xfP(1X-=D>prq2y5Gp( zpvcnbw42}%0QUO}=s6ROP)YJTy&Z38I#)gR$LB8ImLsG;^out`^7+NJyLDQo%kj$}(;;l4X&c;jJ(@@{zUF%to;@gv1F!vkpifF(tWx9X!-@G?5EkQG3C zJv+GrHf1z82$^QC5(yczH&&K!v|pn6P~dFfll$jcaX!BmI7IUUhGA2`Af<^F=+rCE zPhnueZTLO9Cd?Q140+p6gb)R3oQI6>ASg>kIG%l&?I5B4V-fTvxD5xe1DRh_9|>$h z+FhZJ3a5G8`e;53>ObUa3)M0rHlbS)8$%5l0e_J}(U@GDC84aT+qUK7fHuKCO61tG zJ_i^vG)af?O@F`07=SiMhB`c8=9NpSxQj6{m(C9v3IisbkusAw9KekgLGGIOr3(%= zEC~u5$f?9-ABr@Ig$jd3{250O4i77u*#w-1@i^p%uiIV&flX^6B7V{DTH)!sJe9z6 z9SDHhmH6&w@Ju0#f71uyBRdq4c%6>LXEjerWUUE3Fz;yogW@zosnXFTA5Tt`9k30i z!;5uyWQ4^@i#T88w3ejZg)n?WiQ6cl zXqC2lB7|hT3^e}4iEplN^wE;sqLUv=bhc65{G7t)jTA;OVRMR+yJoY1jECyA74r^Dh0_DPw7^FKAX)MZR{V(h`wD ztfHxGlmm}Px5rsRd^H{_PuB;Q`$Ek-OJ2NZ+UpIsX`iCXf>mSE&)wEupCP$TX5Y%o zm5Q-sNSO0K0`A2!)NSjMN}bh0=ahPzjq_yse~9=wo1DeQ0)>37+S1FqsRD?D7Ho2| zJ>Pm})Qsp`a*3aGuWCyOi5GZw=X)_Vxw*M^tRAzIZW0G2HiR`gLG|7s4>+3J>lRk6;C>rRs)$^G{ zE<`>K{upg2^KHqms&Ugl-@jJ5dqb~S_Zp1Q`c+eLVCUQM)Ud$PV(YZAkhA)3rZ)B- z^1`U+Hk8FnTiaWp`uHo2H?Ra@5_*55TL+dL=f>scipUY8>}|jks+~< zu>)8w3|X09v9KKwp{URD^Ryd zs{Blpk3kzwunz9tPTAukOqBJh>xpT@edI>^m)(n5)#`hZvKiUcIO;|A``z@xYw6X{ z1@$_cZ#iz|KqzmN_8XG}3nYGPE? zurq~0V$XS=Uw+7`y96yH`MhRWiF#g*7*(#{Z6PO_50hQ&JSz?}qJJPx8;+_CD{lgafA5mki3H?da;Zoz=PN<-#5p}YHiEQ)Lq zd$>^9ExKYLJx3tEI?&X};KwOu+Jm>x5sOmFD6s~u$8K(Wk|S0}tWxJ2WlG`C6jMje zh0@rP5393yP1l%rL!?vth5%tlB8_ zdng1wg}))6E+ZaBgd5<-B|3zUOmK6(usTe@$~Uvc!p>K3Vz)BqRweo}U}MK$cuDo9 zxOye)C`~R(LZEJ)ReLymb8F!$`2&b~*i0Pd6!+RVbx?+`NcW}-Z5v^awAoBjsT=`& z8jY2r#jr%|j5f;253_@Dq(HhaPr_O#5eE|kKM=y|ejPSPKSJg>w6K5G!y=Y%6C5YG z>am6tv*dq3KDcxD91<|8P5 zGxdmPHX;&AV?dLcee5?=u4#3l@{o%Ng!F&Gf75cd7nG-0l=c@#=nUd@#i9`)$bG{n&g?`M`j7Y3}9i2 z!99~h)kNU|p8Lj$Z(^a?_vN#`A9H|CrGCL`F6C?-i2H|Rq;Wst_1bqA{Os*f#F`1+ z4w5!H;+KWyO(=Zzr-MRaw~y18C^sR7#kLCLoY%zikMxFR*N4GK^-!ccM$zVH{=f6p z=lH+Jt2q!l81~jw>(C-3(tC*D9f^24GewNvn!H~=&>+RRk+Lg{HbudiTyoGx;*cu0F#V8m@70PmRJS;V9oS6C`W6+QG8cg38+t_$C2IQH1QfCU6WU>F@`wP^5S$! zb$0gOy7Izmi{YRj#Nac(e&yno;pO>qB8Z@7TSWi_mRpl(Hnl|u7iyL9Ce1rPppEIZ zRkh~UmDz2!B+;A+e|2HeVR~ppjfzb9S6|L##XmJw?dhgtaU%l)o!mdKH%^CzAGg}D zyqU0MX}Knr^Rxfs5t-wCQ#UB?HT;as-@mzt9@^;*So@F-XEh*!#qBv?5~VwpXDL0sWLX z{X-^<#`qmD6JOl0q_S*LHwlqY#d{zYT3z=72Z1vx;c22W3u|0NN5R8?iu4 zByr`}X^-TF+m55>AiKw>k%!fWtA>TYx5FWzb(g_s^tIMoBlL5T^SBDSiPf8mlu{A5 zkD`mQm7Dh*me=v+(uLK=yHjc2Q(Gb-uU~haEvHYt*?-JxGkIPX|?(}g}PD11j`>Rfryyx-Rx9e03XzyiFh zhC=NUUK(_KU(qPDwgkUbTZ^EpjX@vH69*?%r%cxmgOCUe7-4E1L~94S&QeALvm_k= zv>oB3GEnP^(C0c_`e)xyP*?p^5LkVr)jb>@IZ83P#F}Y<(!GzA9YqRj5#_UbP->6|e0mL0CDw2tJNU;$9;|+G zv=sp8Kt-LnNPZ&6kMSfwyq?2QY{Vgpe* zo0^tYEf&8yoXPI!;cfkVceC>0O)4iY6%2_@(fzt|ek$x-b+}^toaK7gW4GFIw&Hdn z^0K@q>e+mKc){%ZLU5z_=x~IY!Yt_BS|k5ZIQf%7laXL9I{Aq<>|XZF_URd$Os%uy zX}1_Bf}UmTYt=6mjF&&bn12Lui$aqc7nQ+9P^$j3h4Vk_^1eHrj63%*{&FugOShk6 zF>I(kP9Q!7hW%(^luG*7NN-Y%t_v;dFxkPeG5UANp=A6ED)?e4NR3CvO^MQbKb?Cpf(l{$%=7@quWr=KeQ8ZBYSv?_+kH} z+$uA6uk&ty6amFZ2*F~Z>(KR2b$ve;){L?PtRFC()RSyT9AiS$eRRx6mzHI=urz|a zJG_Z}fnXg#tyWmWuZI4mRt>91Yk!NXiDg8|tQhSi4GZq#USnJ2;$JblBh@_F zp0>?`J&uS7N@n1h_`XJ*8KER;aB`(9p}tHzps$6Nwf2D2t2z~v=(3!hEE7mXMo?}| z_%tLry6)h)g-~#_%5hwr$$5blk zTsl>7#k zXG)4Or=o6ej)={Sx^qRwG=KNQr}16$(K2YlS%feZ-?bF8?v_BN7k1}Fq>SxL380U$ z6zJWLeGn9uhVG|&=}{)#Pt*mp-1vH*5D|w-BDsw%zSLk#rf7v>3A2V{^nSDCm1E)1 z6d%y!mRBeiBZNV`Z6+rkAaT=jT5@P9UJRm7;mCp>*=`#7#t9E1rjRR!Y~pDm*C10O z*Q`ZrjNvmEykHl25P4D)OoM+)*$7f3mZ#BYkT3@%e@~Pnvi_zf6a*<@fo2GbgoQPo zcjVIj);$Q+fCX+INuWg@=F%ywhW1ae8|T5szzef5zzsjx8=*g0fKd}KV>x=|alEth zz>lN&TynH&vR}nG$vq;#x}U}T1j3&DWkE`o23J7hwaktqy7W{)f#?Nq=80l+wIzfp3;;*kr^V9 zl7$9!wb+?A!){X8ZOH~3Q{w@WQ`5cSfIktThADA-W%P}AwK&NUJ}cXZrE`T{Q9rsY~xOUGZ@n z#34$nDP5HAMNe2|O?FBMBp?xOcGUwpNmHB(KICVbACpvFKopi7vFgs^-=1naVn!e4 zUyW``ucIq-Yif^S+Ezl6{+hgGsQr9!iHfvnN$vaTV1$dTTs{iJ+DCHDpACc6cwTfx z0ut2o_EtJNUXNE1e*S@4o$La6GA7koI#;x*xw8E#m2b1MaD#wo|AX)i+G_kOm7PDd z1mll0ue7vVZ6$ay@uKpal4?EfiaZKiJwqO$Ith{PcbNh#_4^)^>AKKosy2i=!d@Tu zb3tsC2Mc;oj-iy+;5z5fWWX22#X)IlRi5bfi<%Lm{m-Oaolgo)m2cap%d^S%-tS?5 z>Ba@^XEK+yUG3R3Oy( zZU1?Qwawg-jALKwCK`6;8YqrYH#|1eg~kBQF&5bY*#_4)Upq|wrqn~O!{x+s%<|ZJ z(vKjP0b@RyQe9K^p+t|Gw&A4JP!odl#>0?YK~9+sR{9i!DA8TyH`-DIZu{Lklmz-{ z12mGsv`S_&xkXIysaFH~%j2)8`ro>-xDmJ62Gmo{Q!OH`k{u^!$-dds(!5X)9K8|~ z1Bvy6xfx+go9vo>?Va__+l%eojZc3onYn!|?*6o}xu_d0RXsa?pAc?C@3cOP+gQI0 zIbnwFY$YLJR}7rUDQpT7s|wI_#VZj6a4^-uE&&+0JcgaaAzB=IlI zO6a}s2}K`u&K=5-=FzKhnc%JMW=>7z5q5V&g5J_s`tk~I^h|DesyZAD#*SZJ!qA-9 z*pb@5S$Twefy3;80LBtsqzzQyrQ( z@(K|Vb0m#|ny7Vu2&3Ep#C~fJ_6VdDvk3l@(}sdb@SPzEcvMLN!%n2XpbU*~RVOI| z4*d5!Gs=5`7(XqWeq6_BQ1|a0q&dvdK3ZvU92(AEVB()NFbEPC0?cUrBq{sqmRKe5 z{N<`?&m5BV8TODhjUwj1NPnN~a%5mgl(%OU85$}M(zPHM=A?E*{lbdYb!Pv2h?=yE zLD@`77MZ9%0w61n&w@g`%IX>tjSPS4xz8vobjC_$g3JkIq&H+4gL7-@0ewV9PB2yl=>!Q;)FqE;387Z)5)X-sN3q~8+_$WOZ(bMl#JFN6=K+74D*bxh3Z zbX5hvaJ$Y2X<4-Ri);6#Ef^5D2Bs2F*X3tyW8rJ3i3QS?(_!{K-pwHFxWos?mBSI-^B-!_p`7f;)64w5p$ZS z{o%kgMR++Nc-;1A8%%N9)X^{^3wg=U3h$lHpW=dE{d;|)YlYW0R)^fCGodYaOzk+n8usLtQWtUl&1)P%M-)0WQjMU zKpRyo#n(0G)tJYaj3u0br+WVzRNt}+*T^BqLT0sE0>_O~RJSj95uM%}fsd!Pw=(UW zM^7IQnHNO^Aasevf%Kglr?UdE>Qogk5DI0=o=nWbZ(2kx|Kte|%rC5X4Ex>Dk*zyq zEcBfcZeC~#d9lGtZFkYXq@u!v{oc59mM3;k_#hJ76Ihq;BECy!UtU^P#x-gup4vT5 zEik9<7$NgJn%f<~&wh3mbP;v&$6UR+#M;=}Tkq@SeC>X8^aKe{7OsM@4T;Y4cI*85 z^4nb-y7NP{yz?DuQbW|OmBwJvJl~+6xG{Xv}jZ`905wzE5cX| zsAi)}noc*!a64Z^K0LWNIU!hWE;#qgNU`vQlzUCKhqxW9k#!o~L7sGvkl_EmNWIbA z>2mS8ZWUQ@&c_g|Le&yo)_=I2=dCoiiU1FYQM7)06FR-f451m+0H&#K~v3?57_$y!&VT$4kqj`^kT|ipz3J z2%rB|H4(o(u8+*Gx8d7}n(2bQ@SbmMji9}*??M!1%&qNPLNgmG@8wjQm zhNj)5AdE4gOQHq3#fKUrdWP7DQ@M|%-I*Wy)LP1D^lPszy^*@^IxB+_Ge}M@Z)lIF zF8pE#!nh9J8&5Cp#P7vUtEcR(6~}OoDpc03$P^H5`G`R)3T% z1k6Znv{7RueJTMSE8K_vo(A`Yo)3BQ^QgLH77Z>jL!kb%uVgeD`seut)LWN^rq3=e zjYq$PYmblbV@3c+VCW+8w0N{04d^5r+_&5$L4eh{%Y}PQ@;gL>8wtFE~W) zY~C>O*}Ny!@Y^pkCCNJMpV}tUAA%s2q`#DX3pG_*7>$!68Q#5r7%+)#u)l@G{R{~o z`gdh1=MH-;ljIhfRCf&0VdZph;9*r^s9^^{6g6um0p)85aNud${PyE5!Obvt`|Y6J zxsP|gW50RuXH&AKNZ->w<0B*-hSEC*csoSoDjC?#{{Zw>vlrE!)&YQ+ekxJV`og`9AyAED_b6ceo2x~iZG;W5W<^rIgJ{bka3Ev>8v2N8 zqLzd+B@tEzKq%#yumn4!s3UUvMG3A-hxH!(G^#&63rM(x=;6LE>*1xXrZLKC|8eDT zve!QjbU*zd^wRyr5kPD~Y?x@AuCur*?VhYJu@65T4aWwtmjXPVW~_L5@gsBqNZ@7| zDg7dUjBA+K^58IzP?j)gY$D0s-@Aw~n=QfWzfnM1fOt&z2nu>LEy|-qB^5)PqeLM` zwL7I46tmuymyCq^*Z*L+8rp*l0VF#6Ve@JY0Rwc25hH(qsNjC|5LxKwJq|g7*aM(| zNX1zJ)Kl?_e#Y(2dkENkp;*DjF`gYpNJd>k^lbydK(r}d?dI!rJ&mT1&3F`M41>P?tJh(r(Kb)5vnbDp@xgLA9uqarj z%?9Fi76LT%lN}h+5%DnrU-^+jeUb~dqKJZZV7^6W=^PjFBEMf^3r2q1MzxL*>z%0% ztdBHcU;5NRZte-20Hvfk0mef}-uZ&?(xICv#ITtn5YPIiK<`IwmTm0fomI z?G8OE@$)UO>+J%M+kEKdZg+CDpAG_i@E~ovr<9c!t@PkPTX69`&mB4n8t;AdMcIX| zwdK0*!t6i6`K7fwL$|Lkpo^}d#Y`8-uE?SSat?ZW)*QvQ>YwS)2Xha`N$ z4R5`@GT+u?EvDrdug3G3O82X%hq+hLrt=Jk{%vJFbFUJMb~|J5=1#ZY4|@m+UQjZt zu*tIf>TqCQV!t?(OL+2~Z$K!rJzz>!G;(~q94yMHki0|OFaSVA4t05s)}?{JLz`Ng zh>_aIl7fRFxc8Z}`XtkvoIeJbCzDL%dIkR#jc|XO^eGM-2u0qMMEMzj;%*j>d^%4A z4()mO+L59{irtJ|f)3n=e2?G~ihcmNPda)Nx{i+YOSnC?*F98q+d>#MHHeccT9*}3 z-<5@;yD#2Cis2Lzw%#03jtdwQlXX<2oA76#!Pd6`Ps3Kj{buch$0eoxnLtkF2xpku zVlGb~FziPt+5R-eA;QnY{dsPkcY2Dy(ZFpdFY0cx!m@oUmnCJb_IY{mgzdv+{7O{a zcOc43@%gH8r%KazdYs6#qWt_&aB*pTQ+C|IYV@{BC+!zQWHipN>cV`p!KWP~eRKkx>e|Dv70h0>F3DO+NGVS`i z$|5n%*_3IFU{fKU&v>!D{iUY)l788a%WT!-f7{`wPUq&2+YL09dXdL24Q&4TmCFu2 z=uK;%n+_rttY2OqkU#t|u&x|tHx?k1p^@0(XoSb>R+O!HDc2z&tu6O$H)n1if2&qP zIrqLWt~(v${t#iCVL`-mIy^?Fdb6Ia>f^SF_wUY__?N0>sgf1r##Z711e))rcN|q` zSe3T>_}<|bT97auw7yy!(>TGT1BX0a{w5x4R`qr^!FFT{H>~`R2C85KI^A19BKN+p z%%|pW{}J`d>W!ffH;3dChxi}Vq5@;tdKNM3Fe0;Uia*+ql~bx-ChROniICk2_^^gi zkQi##5_@JZoAkIt*mh@bc~V|yR{CoswA-cOHz5Gg-8d}QIu@?K0Cz$sw{NZc26W*B z0A@MX0r1-P={9AitE2W0_DG16<9o~FrjQz{4E_ediIFWRl(FJW@I53Wy3O=rdiKNT z=X+?Xy8xA6QcfPDq{(k^jt3~J*AdS&*Ohpa`#aj`bQ_LY9oNlr{&TAi3 z3JqQzm|9i;*#60W^-KFzfmz4hN%|elS$^;JJ(&-~(D28k?x#?_;G(NOxnIfO4vra+ z#K));Pbo(3!aP{vJb|Xa5kS9+@?i0$&ua}L0?lh8r8ggC;9TOYi-N4KICx^1RNH;b znR_!3fv%_k$pWZTysX0KDMctdeXX#_LIVQaF)CDe?LK^1g&2L#O(ZjRPs4~T@k`Tt z_a9+qLb$v#PN&_FAEX>)I7)zlP|eNA326aRt~G;t2+}UKG#hdSGPkLiWaHcL)j=o` zP*Q-mn|SuyM`L=$+!M3ijTJ@mgg`WSTNL25k| zY;eY|QIDbTkTfN^(=Gi+7by3VY6@*265%_wDFGP<&D4;%zIwdXXAD>ieFMG7-=qV? zzC$RS?)EciUP2D~xVX5N)WzkyoiYYym4#iHJ@9Qq0BRiE=?GxtB6t|gi(y6^B_NiW z{`tUn{l{0^J@={ViqIHKvBUBD&WS8GFSSlQUkwMaeb~adUPF_Yg1bzUBUtK!c-@Vhjhl;oH@D}`F1-J|UKU$T zs!x9u_OFFZmWw>6l^U5X_&VtBEbOcPGBMc6!VR!{?SJ0Msd&6?pE#LsY(IIgZF6;A zZLd3tLO<`cIeSl^c;|WX%3kUC7>TY)H35S>N>dIN+O@dp$>LRT>O%~FWsPTkoC#L!~`j* z2^j?ebt%cdumIq$PIrSTP0J5R46F+gGbV7w&QUL0x3sy?Y{@^nKVYK+xYo5r}vrI>29KzP0Q)& zO@UWbr@`Gy%LTGJei>EKbU=xTMn}P?v?yn@@iPAY#xnUi)AcM^$=j-TTJ7Tf^`Xh< z-b-u4Z6Y2rkSY~bm>JbOAt{AYc}QyiCx2P_?Qm6;N)luAO+u8Mit#ff26tE1%0<&a zczY4;DRzhSpKF5u_(eFG`x0C>-|_do(6{@-O_yV#6gw-C<5HWP4#T>k%wGu;20H}2 z5lUOUZH&*8?UF{?au+GTY7go&EEPNVy7EEkZ3whxl}DoYrKp2?TCS_;$fAKI9|l;Q z(e$BDh~JvIIDKSVk#%#_A3=(O(H)k^7qQ(db7u)%CRkVmcTJR9kb?Vv{J#S^PO@M% z5+zc-mtCZxM>io4Kt2?)gnND`FF`a zc6yW`+2?~Rbs6j4UY3PMcaQO&459-ZaSVAZTx&ph)4+`CkUt6(c{M*i!cs099P=f> zlZp<8%@82u2NrUw4XOHGqg%DyD!j4@CF0A0wDD9@{lA_GUM(>b zUW53)wGX}ccpcvv4AFYJpZLB=r|l%)6SCyaGvr>?BvNcwt;GWX#gXr4#iBX#_QXTG zF)MMu7Q+r0`P~eM>x0G&D7Z$sxu2!5c8Q2mB}$BFmO?N*_uzH&3b3WHX3XNnn01~k zkbxfYKX2nS0}mn?)K?{B2>$~gIa9cj9Z`PiI6^PX-1UIKs%YYqal70Y9WjAaRqCPH zuJ?zgvb4(TLn(oP`D?Xn>`=Hg^!6ckERKS6LexSbe`EFn@^2#m)|*gPvhOYei%ZRT``kUrIl!Fo;iFrhHs&PrFt5m*%;Aj`|N?O?NPUyz+>L zbB2kg?x)%ZNTt@0QWqrh&;{Oj`2h}zJ8m3{g9rBky@wo;hYE1?3DW%&A-Xg?28vXo z0aQk}hG{c0Jf1NHJM$XVs5)-J7e1~$%Ioo~^f8Eg(-itU7Adcelq6!BHk0e8`sVDs zKoU-Iz`iO4D zFJP25?%?uJx>$RVd)pU6c8wls(HxYfL7u)C46Y`0g+g9c$PoQRo@V#tP+D9 z%bFnhJM8B{o`Ba~l=h{^kM}|_vwJ|?{~r=hXsC8EAsDBQZX4<}ZFo3ap)WQ_)y_zJ zfh?KLj7&_0nEu|<8PJTwNq94f=C{n%tDU~0N$z1-o-Gk19PLJ62NWPC7eJ&`Bc9Ej zeCQ2U3~P@4jp~$sSi%}VTi#R*65T~i#rM)r9sDB0*66JaG2HTnMxqu#jWrsw8``gX z>?XkcrZI+8&651>9d#xBBQmwh!`maq`fRG}myku3Xd7`XXj^(Kr*X;-&QxJec7%SlTMJEGWp7@jQQSWnpPyb55dH z=hZpkYIkzj`Zp>|N7!jTg>CVhfY9d_bGOlvGu%6tGo{LkRaFghbAsf69kdi|DFY5C zY>WU&+A3F>=*Z|OXBXGGY;xS^q;_*-tqzgv99e0DWJ9u@^saa(Z5#Y|3}w3KEJy}Eb{$u zve^27nG~otJnxv!MMB87`%JqD@aS<=)et~)2hkyJMt?mJ*E4%rUfav@a@^2cZ@yNl zOn*RkgY0?iTz_2;kHm;-+|BEi3tUgfQ(bJ_rXe(D-pu%QcI-nMw5m@R(_TcpCR-m? z8~3*d7v76UO-1X=tmYfj(cgCaeSQ1=eZ8Jm7gp=<^Xt6UJr3@hR;wY*^0N;mwTkEE z1VP^UdKb5P1%+r3x+(`)xQ9lS8CHf`suoqM{;Y@kt#36sple7U#I8qfWoe1=n_2>E z+h3kEJ*+S~qY;CTGvL!BEP}&~dJ_XVJCGua*0XL+o3}05nFA~kqS)~*UnzFBDvu({ zqY~)v-J9&%1cBMi`u++VD=lS&{$4xCLp?5!jIs!jfR0LrrEOz25~YR)NE_0*hLc-F zmV|MYp){4d%htHlFOA$lWplf?onm?eE5q3NXE~UF76dS3{LIE-qEFk_vb3Gd6qwbF zNT#Mh>Ny+;?;keGSS%3v`zodqP&b0eH8^)rS65e&wlkHkF?JEjmhbtIhr8Il&Lre?v|kcA)QhF(`0}0c7p~BCwn!QL*NWJF7U>b9 zQ~MlA)R<%6pNXLNXHjMPxu^6mdWZVUTN`iAL)~1;TE|=X%EE?lnf3j3_#5gN=}K+e z{e+pT@7Z&bUc2Sq!mrk?Q?hZ<_mQOk0WU$&z8}6|>1&UFOs}QxOk1ULRV%A{-!}a_ zmMrt5(P?GbpvzTXBG$IOcM#7rwvkEvG(r@(txD-B9t`6P`T(mR*atwDk4%Xh;V8drE7%uX||M z8P}}%-o5)Sxoz7G5A7_e?jD-{tLdUD_=%g-ksHSN*htB~+8ZA)J?+}{pSf(&XTH7R zH77pxf%BH0{maI8fAz)Jo;dRp-&*(1Gv~kQL$A zhFj)YA-5&AM0LL)JtAZ;JTliu43l%nluESR8#ltXa~z_tY0fu?tLD4H}| z?u&DTx9gZ33U=4TF=^o>gN%|Y=t+P_pF?z-w381>5i&C~$ngXqQ=5ty48SWB*oF)} zE@aGRr__RxEmZ4r5$IIurBOEvV9#aucTvY+?Vp)Fat1vKR4|(m?q7UwI~J7sNf)2e z%*f!Q5k|z&6H5+*BTXtIknITAAY$2NJb@k{+FAkeRAH?T2lL?+v5b-Y0z#b|;j-Xj z5-&&~KQ0r?ekw?2Mik|wFw)LWctNAl=|ECyMuR=kp#8PSKT7xq&s+Sq(`Vf_b7xgm zg_|LNUhz_ZkwvolpZQWiUwkQG2mIcb0)fbi54T(sG!h$GZU^DgUj74Yxen+tx}kK@ zZb^Q!J+ByKUW?}3_q?Hs7tJL#8-@!Gv=MkVmd%{AB}!(OW{Iw@Ysfw&b|k)0JViA{-Z8 z$P!F)Vh;3j}kti2H+))I`E+{h1h9HEDQoOFJK4<7yb;A zc;QEvI5M3+c@S%mf*EACge1i>cNIM&jBHt=M_?8dbHaokGO15^B-o05VT7?|i42RG zRbdQ0b0f-qfDwp9N;twEJ1LFXf(ye8T*R{0F3RjCh%n@si4tD`d>#i>;Id5m;ZJGYgaCytf!0=dW_fUDq z$k6C`X;nkX{+{v4gQfdBchq(djf|GH3?mfg+TPKYfiay^%jm)OzCq81+M$Wg!IANa ziERyi74;qC2PbO=Cwd2m>wAV*)edy_7xKwqd_v8tV%&HKHe?1Efz*U&zfiyr4E9eQ zoT}N~yW;uUl2v_c=N(u*r*7#p6&hU~uQpgqY}Noz|DmIH-R!m{Z5rdPi`zCVXk0bB zwqoPRoCkNze`MF*wF9#s*!J9gn*sR|XvoL!SdC2gyMBJto^_oKb%pPv(k?Fr&>hIZ zF`n7UpW@l&n2co6!HKbjJF7qS+=0VqHNWLoo8SAuo_F56>xjoI&RRQm?A*pv7c`zQ ztM=@9)n9t4^L_X2c*C7LZrtAau}8}9FB|yeBRkJ}Y}@AUgYSL3;e^L4p5NELqN@Gw z4Go`})&7?^Z=Z4A?DsrW_nYnQ{evPonc`S7Cwk&0N|wcHNrd5(gec5vLPi>7 z;)Xq1VhqXfmH=E>1c4m%9s&$NV`*3t1z$7+VCfx@bIj8KrD(^gsE9gSLB=XH5;b~r zrxH&i;R-uEMUY^4GiwtK%Sf|C55rob0)!ELe1sH)M3tS{@_@AjBLG7lnHpL{rD)5K3Tu!c6?1Ae^RWKDVmr!51oi z{?O_*yW4kEcGtHQ@^f^k&-rZF-F)74FCBTs>i3_s@EvE&PU$ba`Cgy!0wDSOx$kZM z^7SRRKVN&zqqWCey-Pi5N(hH7!?6~X(K!B0tJXO%-lA5u=*rghPCR@pn_zRQAsf+AE z1XFw|XhSTU+lQW6+4QY@YY)3<#iuS`Czwt_kXBj|>vWThhvPD`Vc5TVzBiHyM!OSv8$BSMPf?aUC8buaz zS#OCEI|7oi2I(D?mx5}+7WU#xA$g8iRvWg=?i$HpPd_uV>>?(U z3IkU(+9ehqi^`By$jo+K#@G`x*kFr5l`t;!xzuQK@sY)BbF4xiOOO>i1(J)G+7dm2 z7+@~mHAoW7gqvY<#WGtO*+LdO^R$Nvy~jv=^t7Q4oJ*Z&3m|qgsA31bHfAjM>DJ4=~`VGnf&Khg%2`14y6+nJr{y zNb-d=Pba&GAt?gb0z+mXFc=SS$tn^Ox5S@JPctm==@bxC4IeTCoEbf?#33nR#0=~i z+zem~9&sweSG*J`{TICy5{DQJX#fmbVpU!W2ICPE3#Jzw`PgyU1B zb$G1AYzryH$zx=gak0re0I%o}YFSZHL3gBK1QTTofCVohQ49&-59D-+UjFVe%G8}1 z0zn-hO0g#e>B^jrJsKkrCDl0z%WR=cl)*G2uuBv&^wEe$=?TDsm`PwWvD_38W`_}F z0M<106#kI!f%?XMP5qTkz4gs)%XS{vSKHXxKf1A^v$dxRti8QseRbFF!f&KE3K!mkERiva9tCE9(Pi;8^Ui?BGI?-v zcxZIfvg%DQwk(-hk)MU0^Wb*P@S3^%7e7^|r+w<~_23sDFWtGkqjuXEAiIFF^+PW` zu}4e1Z{5K1=PKttyt8z5pQbk*@?*EJTJTuuOONl{wWeicaH6ljkS7d?sjPC`A`Ea+ zOp@pfw(AITWXV(m{p0J){`{vaUU%oVH{8DQJ@=RV&5sxT%@60j^;ere`rz&_%-r{Z zyElF6zRia}z5lJZto!ht8@@89>hOEF+_16Z1NWESwZ87-Pd8lfLhX*amdCd?UHnqr zr|#eO7dLI0arOGQTs3b)-OI6}t9Z|uVOTPc&B05LU>8vdef+M)$=M z9Q#9T*8sR&!8j~50K_5Cvq?4sW3qSJoI+#}(2_u5G{i911U-}N3T8xwoh1nH%63c7 z6i+wAxtr)?hG-*zj5-Mubtnl$328SL%C|U`Whf2EVz?Ls55oY`sLrh{I5z!)5w|RP z!C*_4u+3aN3rb@it4KgrO!eYRF3vL2J%x#Ix*`D=O8^2z2x2bNDE=rd%?P+p5p@hU zu;&z5#Td){CFF#NOotmq#Bv!PWf+T32?EJ4#*KxD0U7ZK5RFBb$$=+?JJ}HJ_zYSm~*NQ>dx@%t~jq zwMtHPh%z;<3RMmF=_}TK;#=!q|D~rscJXqhDn?bT()knLTz&YZE8qRqmkzsV>6t%X zwsuG1w`4KN(1*9RHvf8V^*hgc@$gGl(EfKvJ)q>po?@3eb*`W z^0u$c|LDa_fBZ<*FQ2Wtdv?|OeS>=|>m@beqvHpMMkX7YJ4VJPJxKcoMhAu`TH1S? z+j}ji|GV9k4z{(WSxkq93QvBRfqwa;%1}KO(!eP=Zd>B!&|mRV7#)$K1+J-sN$KIy zfxXWzK<>$mLr@YkO^;-VKnbitB)=TzDr@Nk>{LsR|z1G}nv zZ+~{*N6wl3iEkFZd8O1AH#1L_>@Xj>VDUT8ob$rHA=CnnCRY!pC?U7WLFA-od3k6J#GPmdl0AaX1}Gk}p6wce}4Y z@o|^ME@}F}9G_hm7T|ETaBj3i1k>Uik(u$*;$zoGsyJ31BMEp3WShPb1|?X|5C!j6 z77l&-&veBYnP6A)xX4@}pD_re2fQbYrjcLlXDXV@?(agtei?;6|23KlqJ)Am(v>1C z=o!PXBsN97unS4GK9;qR-1+Kl`>7)h8Dc`%neX%hxG%k#!Dh+q2C*t`qGu#&>|q;e zFrGqWA{H?r5`V;&iJLf3!Dbj-B(sF6gxDqX?~i#%3ms`b*ikx;0Pr7mI@j#E^SQD- z9HgK8N#;u}80q(a>80TMc-OlcMqZSph0Jvz+=X&qh(+&p7JG;?dpR1o@LJ-E1T2Ud zukf~orT8)h6NStucDx2IRxukrU$9&16wu^3Y!(540f_}KVt`AE9>5n!wi&ULMtT7m zWU>liMjtaQ#UXP#1!8H5K$Jok2YC@=Q0ApTFO3N@QOM9oW26DFAWp>0#CmiPg+4~2 zEK0Bo_PC&hG-O7K2XbJj<30eTfs1g8aK(4K;>L0qT!NF#0eH$`p^jdZFqUZGV>#GB zoEipTpe)8PaifTYh=QaslG%@#gwR{^0*hTp_9rIAmx38tj+?;bFk&7B&kJIsl&F8{ zOF`(6F@tJH4->N^Q;_30c5+x%U0qFP;)dQXv3!9nG{D6{oB<#OkYY5Ro1>fD7-x`( zi~;}_@nWLEnk?bL(gHiJvKFSiyqs9fFGeAC_om92x_J-sV;)s?pn9%yJ(pdCk^|EekugFYRnBADR9yFs~drM+Sfy!_*X`hNZlUM_HnoThaZt`}e-; zmz)3m+9e-s8rZ9f0m-G~3|rL$jb*-+c@mY=-%`X4O%#@u~J-@jqTcb9(n-re&y?Hkp0O@B+= zNY9gVPxP1pfMkFKW)EW!n8g_jJOV~SB7^4_q{}H|!8r?~+6JI@yk~I#gX@YgzIBbQ-5T1#fkK{lb++kgb(sBqy%Xc3 z?XAsSo$XTxC;Iz(EVZmd1BC-RIQ^r@QwK-d{%1jXQ1FCTxN_(KIpD;zou~pFu6Gfj zZ*Zivre}NAz{>4Sdk>84t?k=VQeRQuKXYmQk(aML^1E9;cIm2jpZ&s@Z>&1*N4vl9 z{cT5Gz5AQ@RPSpjJj4zi8_I`I{?WQmerrwQCWd+pVN^`3j}v^6`Sj)MKl`1+H-5!m zd{o$PJ@pv`Sd{pJCUl|%^S0AxAMwpiA2@Hx+s~MF%+=eSrsCf2-+tkK2j{pI`l@*t zcu}Q@D429U&P#`*c87;K{+eAMJa6GgE?j=h)rGHgXlWdZ9)KeKiG0v|eCWKw|6&C& z{-~?A9(KW^Gk&`BCyyWK9+)^dQK)pe+0xuBjR8_oge7Wn(ryAP)VaUH?jivG@FlgI zCjgj0H{#Hj0#Poh+mt05lrDuMc9ksgI!d#FAh!(OoQINI&oE;1dtwPB-xh=2N*Tfh z7_i$KIqs}oTQGL<5(~(~#5HFRT?k^~;56Q&?U6~qRG~|06*~P`>bgG<1>>|K3!zGfOe1{1! zM=S}q>v=^;T2NM*xkd#cobsSUAhut>y*|OrFC(A`?88VwV;BQ`Tr0;xGA(JdodS9v zHw72r;vfQyM?;GkI$stFSK$ONTltz3W?ub3>8{d>_V&UdA^w~vbhM~Q9v+M$>D=`04_mrH7!U9k#1aFoo0T}s?n0KBVF)wqhWqb^H#Y-Vv9t)HL z(AXs{aUFt(;i3WnNEu(Dem&LGz;>;{_xqZAQlIT)~e_{LTP4U;sS|=g?u-YKrb!0_U+pjA6)=Q zl+;NP!U>Vb~pAF4yVqk4;u~3=WTuJO3T~y9Wn{I>)AJI)}!_CmM$e#2VnOwcTTrQ{DYT8*BSU4o;0s zPVMb*_y^bStk~WnT@IEu^lqpx6r3Z&g~wL%gUfj+aG|22Lg>UTf%39fm!r%*5ff46 z6vr(&wRhj1p5C73y1rHODqeV`a}7arZcZhpP47*Mu;XvOo@&;Mr2j%A(t z+x0Ir=#cfjC94X*D{I#MTNgZ5`q=HOANs|z%?n%B%-#R^?Q0gzEZ?@QwW+$ltFx=4 zv+yT;#7&S{C8Vqp95W0Xz=rD`yuqpDTOpAONpa|EgyWc=IDhT zZ@YK*VKZxwo!9ue=NpcBuI~L0>^*7O;0GSubJFuQ=dB;VWNGW^OPa4;+wiyFp0%oN z@}y^~-+lX*($3LY`?}tE{i+W=TvpoJKc>i@e!fu6!qU=GcZm&RVzx{G#f?44gwfF_ zZXVVNqf{XTI|8#|7a1h`dCgxy(yWL_CZoVrRaNeD2;`eIrV*YE2#~=L2uV(20){cb z;=}mhvkcxWwlp%&Y)F!9VV|ZgjAHz0#2ci6I1Mn#AwZe5Cy-SLM1XCK+`W5uFj7k% z?%K7>(qI_+>gsBK;YC1*Y~*sJ8R8?nxX>d8#Jt=!7-5M$^a9Ys*b;n)1tTo(EDT0u z7(-)3APWH~6SufYHEWA57x4_^GC1nMBw#m+aRVbWgY5>H!R0(&5JVuZFw)3K5p&$^ zlv*VvCA2Vusk{(IOMoSI4%%`qa?J2h@&IHf3{ezupLU`M@9XP*YGvy&SMOGPrNdN; zrG`_?sqNl1{hv|aamK8_`P_Ywscw~tif<*Ig3_*HR56EMpPX+HsXmpMkZGRP+$ulp z1gihE$4b>>ez@zzYxjQlp3-$C@_ce?`paESZGFFduJVGrn?8B@rcYhI{)<1^bHX*d zPyBJA6+G>x$}j({;;;*se)X3Pr~a&x&F9?F@Tm)D-TF*3 zn`fSR=AD^4b8mWwgwzWOxq$>OB=jD7@6B{VO&|maArJ_mB$#S?@1fa%8@S+Zxl6Jv zOD?ixTUM8B+3)B4zT!kzHV(<$nRh?R$=YkL^<8DJea_mpu~)1vK8=PLwJHel3R7Cj zkAlX?zElorS98;{8MEfpEbDsw^*K+Ds=MRa1ta9(rs zU->Awv^OqWK5E*k3-6qM@KqBIyn2Rv%i-5m9ev&OJy`LL(|aj*M0uXT3S zlmU6uW$`UfFFO8rb-P_q{6SE8);GH|=%l4l zb9~C}OJ&s_xf|=Mfq3HQW!$6MGNe`OG(da`9M|u={xBQ5=`PVw*Ou z?_RgI_+_=8u8xhxi)Y}!rjuLy<*C%2_w1(Eqmzg*tmc*baXtz;iG~wL5|QI+>X}n! zb7>){hhq?qJWoPo(DG6$w*A8%2Az7q;T5#OABB7l^2|3v2nvY;VrcGsWY6mH$pvRS?Ua(>2eJ z8y!G(Wv|gG05?6w0~1bearuMI)Lj(u9cS{EO!HgKxlRM8>qj*bR(ogOy@C}}7e#gD zkTRiK@-OZxl3Zwct`5QG^2u!_=jVU?c}~_Ia({ zo7!4eZ{?%l$dn%iMWw*h=jI;;rAU429|a{^eiRg^r?O{}bs*GpJX5O%SR8;FX-rET z2m<$bg~mtVSVcsPE&8+dbj#cVNh&b2nnBUMn!`Z|6GDuNQOMH5d8Q>Tm&qi`#eptKfm0U| z0lFy|xs^9GAAnF#zbaBb00GWK@EJ8F8Gd|7ipq}yddNq?NZx4CHBD%qrhGsff5%4w zzmVSSqflIcxvPL8!3O>83JDu&qzVx{qa$nrpu;z^!LsJN5_GG)N3)&%K*t+ef@F@} zl9M>g5odV9B0@Yk;<0U}wD@UoiCqLHe2HcVZICBs05LKxaR_7;5!04TK>_3#6-;Py z&59*Hs{l_&PP|qZ*DV=8YjMZMP3_(5=Pv79wWecfOGisz@qQUUYw5%}^*#uBLe1jUy_+@`zZQ~gmm_%-Le6UH zKzi*3LQptV1cFZ95Q35?ba&_a=ElxhV^>dot9krOODDatqH65A(J$0ija%o&JL>6$ zbH=red10{&@YIp35cA*foI0|3+Nf3aGdjk-RQt?5lV-lNcF}~MaW5@-=cQST7cB$Z z+FJa52K>n@o&)YbsT?#P$}$xWKXViE!-a{cJ9 z-Zk|%V#1xG&!@>eSa7cDQ@mH6JwZ`+Uuj zBPL!tspGrDtKOQm`1Yx5|LYC!Z*#_rznxa}Z9@iIQin+1c!DFPWiiMbhqG#Gwah;z zZ%sKLnFK}GIYQ(~ASxlqsBkrgLrZ>CxLnba3JH-Yc{2s;tx>v1SKbiZqfR)!v67b; zU1_(9h$q0=;q)kOP)x8?03t9WObn3%%LwfWBwF#u`@xhmKujqHIjcgz zL02#a-s6S6hgs9Q?XOnnUC2S-FaB;d^{oVa8OO%fq{@tk^gtsH@+Vsn!dgSxySin6Hu zE;O8Yg7$rcM`CqPyN!NkLfZ&r9szp>a)?7$e8LNwW^xb-7g&f$^9SQ_poj%O6V;e77hb@z>IpIx&$fB2a)1W8NYj7%#~o9=sg;gL7Y{g+|m ze{|kh7tSA@JNl=;ntQ-6X8z=7laIZ5@qSlLl^LD4yQ{WX2Bb^7tPe(f`=mdA=D^2} z|JAr_AF2D^NzZO~K!q-Dp?)kU_y zaPT9RMB#S2<7p#@KR>(hvcL1uSEl{;$;H<`IQN$i*PlPU5sqt&Z9>@S{PvVy+%3pc zPp{nvo8PtjmorD5bw}-uPcFIp&DLYCop9vUW3Cvn;>Q;kzj*~gAQf{H#Yk(Hb4KlR z*~H^-sn+qIa$D`Gzngo}pB7zkXVujYRp0nj!zFjmy6&+hSKc@8`Vq57&Fq@GV0Bw( zQHS<~n|hT>6&HU_*g=qIL-nH7JiZaCzo;YbF;N-MYCz+)o14v9{l_wl#8kA{13YM}uoi}QpIE2IGSp1>OL>geO;xp&4;8;Zrz9~?QmZu|T zl*i4%jPsU2}w;X%| z_*BwwxJkjpF-WGU$hh$HhbIXTAoaKui`*bk(Hj`}o=or)At+B`1|oT&5~#pp5>C8E znTKpyrqN2?I6%>e3c`|+{E##_fZqJ0kc#~{9|e5rqE7LnJ_;`OY4Z$XWtEaIF2JOv zm7HxzPivuak%YbY)Q3s&~bsa?^yVpT(1|Kf&~i-*7Yu_ zZ>(R_(cIlvw{*pfrLC3U-R)n|v%X>Z^08AF%w4Wr`fHneX4SW@-?-`hMJ;2dE$Hs) z8$G|dzNK^Jy6$J*tM2USUD@9E=UFS;y46APCqwK#PXx$Gfh4iAWJ%uQr(~v#%7mxj zL@FXv`SkSKS-+u}cJaAt-S}5(-+W^JxR)AU9Z@y%$%U_snDyMfA54B@#rT)&-+N{0 z+s{ZqnwwHw>luJ0~>(W<+@D1?D?!k@UO z;?;mXE63LVpI5!{jfWQQ{!-I-pK93kxyJu=#jF2x-CN(f zZ{Dtt*Y5bhyszFpeXm!VzkchuPyOnRgPyMb?p>2le64YhN9P~)(4_reYo5NQ=j>;z zc7JZwP1Dx?hl`%SZ|r=YFl0A56VsB3F8xF+14JqrkvC3+5q$HE=ZMHqp-w>Z2>?;X zDWt3>Itc-b!vT>NY5MRJg+suU3Ni9|XnfhS(!Q0Hm_ zXVJh3CiMji7SJ^%PZ2WOHz_&6F{Mt6I%k-Ox!k}Bh{!Zm#G)5Hj$svMUbAJwv%i7z zB*P6R;1I^~#394Fi^uc@O}k$(dfUUF*3aqEw0*ipEt~lXj``v@DtvdFXqsL7j_(&UT z*RGyAW8TC$%`Z=Ae(`@U; z<*dmqjzk%@d1LmzY_jfrr^2VXmHzsttIFuwS^UgQ;8h9t`yW>0t5>NV@`d13CikAH603*MtB15&4#)q)F9 z26W`oM+xhIbcRFL_Q8(4>cJaf5Y04#3Z!$$3Y`M9edZ{72f@!vS^?{9# z>d5VmerekypWFY+DF<9J@#tSozU#U9Q|A_ch|#wxFEK@%uPqv1+VgrbFm1G*Rp&zc zs~-jXgeQE9BgG^D6}jfjYh)1aMKX!a6NMvBeGHn9>5vq9dkyArRx3B(MUFMJler zNvW3`PjWq$2QRc-aT#UEsidBCK}#U~^h6^Vl^?<`zzJU}$RBw1EQjTrM?ZPtAEs0{ zcC7C!-Z?%Bd3ULbl*h;aD5%>MRf=5g5e}4RWSA(c(Ni5#Pi^~XdO8tG8pjf0uh6Jl zf`Cx@`D_u$slg|SHV6Z>3T^8*g?I};pH7E`B0_X=n|lTUH-#XW#(7V-fTYON60d+G z;ym@Oe-vIOkH|DnKF3f7CUu?&Gco4fWnglEbx)F3>0){v#Y0nK=m?+@ z#1gdv0L7LmEy6tK4~uB9X*u$4!69rFf;SJ2C0d4klp;hd!ned{?=HgdJq<564vG9BLGAow8&TmWp}I^ zBym6`vFM25M<98FmZ;(6^^QZBBydw=6nUQgLKF`DjUNTz+}I{AqIii_ZkQx8MxTNu zVtk4w`81=YGjx@2_+KibYU(Wf1N+K*b842iwRiW;Xl$=r(d8q!_(=ct+vQbYheCqB=Z$Dk*K0N-Vr4#?$_~cy^$2`B}{a2PfdG~~guP>QDW!2Pi z)hioY`+C=}Yin)qD0bWq+JX?AiMQ%X&OOx_b9Tp6O1T~1vJ0Hawsy3)b@uiRdvnSE zanVcv@axf^x^40fk1yHtjdh>6Y5ae<;^l4cp7G7$RbRPl#usm!aLC)8-??kbr>}nb z>vvB1-mUL`{f;R|KRx%qUHani>CJzdvF0CsIc8+_+Ph}0+4-JnOPU7iO&)x5QrKLw zzfzREd8W>BQbO^c&$Mvjuw6jlAhMLKnvzkviWaQ6FabJ>(Y0SBn!}R^YWH(Qqm}3Y6c}hh_q5zWoM>o~N4Yn*LE_Bq{C1$XT zFSnlg41h|OBsr&m7*2eKV=2kcUQ`VAY;yy?9kUpnoetBZd$RSTFn;k{rUP`&mXtlk^F0YEL_!i;XKWH(*{oq74*cpUXe^)(I~kdE>%8D!-kmk7tNKuF%3%Fbad8h@DP< z)21hIF6s4iJMxrUPg*d)e$4YfI(PIAr@X%VMH7B<>E!R8{K7r2)U9q?zq)yajkJk2 zE+;yN)Gp^tg|M2JhS1c1j(Lul?cT~q0S93#9a0DY*}|vdeU8pXr-U3yhnEa+IF3@@ zU6%M3Mf{v-!_wv-1;^Z!!x6*b0GHxFkhmR(!A9)m@%8&(HEo~Er$|?7QZki?^C?%|f$)bpmq4*_Ea0l$ zy%(XdIhJ<=xI^Urf)PmaAyOpyWr4d>|0(5LjU} z$4z2s37I6opYC%Wk(0?v)puz`RR$pCsPV^5M4fv3sz3C6^MV~Mv+ z^CYmWB+T*@kmrK~2s3=&O$f9&$#lid-rN*Sd5Hh z`!}uLu&KRwLxcOKU^i`Qt)xor^lseLv3`?n#H?S_+qR+jTTB~@`q|XlyQyK_hW3uG zd5x_McWu}-!wsc-!`i-0tNJ!=*tD^=f0I&bXj;2qO zhH^8+o_fuD2c5ftB&0-e#A1rzwo@lFQACijYMR^{n8XshS5t3a5$4AJP5nKa)-3Ox zHhxLtf}WZgZA<5NcdXd7V9M&og`Hh%Hnq4hwHI}k-$4GTk>VSeR0dnT9hiJL26IXp z`sGtQ|8aQD_Kz<4Prse?rF-V>`da(99^Xo4z)D?oZ$C+~<|$ z+uuHEpO;qraKyX=o~u9j<(2#0H~IQ^>b4tR{oI0e(_8w#_QyGQy)$pq`l3!!MUs{y zkwRh=pKqoqU8gPuCXHdnb2JbFIHs6nWZOU_jY3Y&%P}NsVv+x-VRcA-vN%8u8iO$h z(-}C~ z6pWS~6Gs|71&+X1T|kJDrwBHAOCC%~k_RF*1Qo;ThhA-*UfWyz`zsf{r=`=b zopwi~7ESYa^6%@lsv2T^y_&{OOIrL_YQL?vgwO$NMiEC;{tXYpT3GZ+w=L04Y8fNu zhvHd(TuEMoXsV;tYr@fsYgqAV9r~-eyInZ(+oy~?>+a>ZzS#2o*k!$a19{_Q@jp@g zjUR>X?yjbl%c<5ju6t$d;(K3P{)00|?sP`+-{R`6J@ux3(nD)o#VBx>z~X{>!GxdP zUthblrT9bBAAS^idx~VfI-%)^8yBANyCqaK&^ldDv3qLGB~Zp>z%v&Kc@QisGLwYJ zo1BPUhpi{}!>CnBlW@}) zks?mQ5rQR-5p#KfW`CjamZT}Wk|1ifSm&fwG6Zl=yJOiN7r(#T#UK3U`PH>e12w5` z<+(y{Vc6Nf`=c;;s1{J62Oo3W?a72=g$8cmIBPk!88CHSK*;2y;N7M05an^pM*)t( zmX88H0b*n@ty0e!A9(G1i?;V&@j#v9ko~gPHbu3lH)m5ZIBSZ;)<_`2#wE|LWZ_7% zf}!ijHu*u2SMw^$s;QDwpOH+xv0~Fxy7tR<+orq(2q<9uTt^Wk?VzpCYQ%o_NC$5* z2~%gn)MZaaDG%39PsQNoiKB$Lkgwp2v8BG>LLS2HR4lOeo9@K++a@aF--tL zfC|T`lgxX@sdOC3vnzIya*WX=1OjQmCDER3l$`Tp^0Y3zASdnx1 z)P-!-(@x1x4m&HhFW2}}|IpyD$h`eJ>NhoK{Gqz4wsL>y>FVqK%SS;m4EZSFXsx_HB?CBNuV}`uch*rUc|7*@Uxv`Et4rGZ0Bs zg)9+ZC5rrz9XIdV+FFtcjHAFK$qk&y6V9C-tvf{}rx}HmyF10aKSSiv~`D3DWEnU-Vnr7EF&8S^9 ze{sXq>J>E&s~TF`mo|6QE?qgJu4Up;o`=TA5_;ju9&i*Ve!g!4J%v5 z&Mto0Z+`vicc<6YENOgeYVFch>*m%rOsZYox4wVE{1w%!yViB}yfv$FSzAxl;^hyH zob~>U1#bV6AU}ML!$QCjqb*22Q|LIvvg9e2ygu@Emo$o|f;9zYTSZDYr9-}g*3nb> zSL~XbTe`ct*R-r{UbTAThW?c+ir@e5>~3#sZ|&_X?vrqAJrnW?kbBaFkWV=F)Mm+^ zJY$k)C^Vc92>}8J2xt42FKcXEw*1wqr8m4=^P7n)4t!+#o+D=L`Qq}=-#Xzx{^HI5 z=h9dI->XOcmzyX5Uzfk}nLB5F?Y;&7{ra*0@>t#HZ~I{T+b4eazN*9TpYRXoKXcZ@ z7@TCKmG2F2FQ2`0SPu83;~7qsyNV z!p9HI)tr~O#1^|&nX?y6Kn6%mnDW3AuW)bmRV`~qyuEhU^T+IXO7Zs?eXH^>ZE6R< zTKUUnw3VJ3V*Jk@@R06PWBT37KeVH*^dzSH)ZTsbxED00T0nOj4JAdA8pj<@eiedy zkp>rzDOz8vjVYP-sRF_^xV7Mz2wnYHt|?r;#EdI-z@NGdp3agsbyzkRS7u5Flq8?;meUZtHRn<*Tj$L=^Z;QVg_t=|V9cSn} zIm~U1DG&A5I2>S_KOz-{xVAs$xt)iNzWuR@su)^ZQRf@iwXW&xUVp`(X6|^}TY6a+ z5;uPl305<0`n98;F%>dooNW((@(Tw)!n7NsRT+~90`N7*67uz9o@0(Pa$+ibJdp>U z5c4CMxewSBOZcX=7y|3ZMnINWEq=nW9G!PKoA2AkjUd#BUBrmJM<}s34I%cX_Nv-i zDz*2P*c3&B+NIQJYZKJgZ`G)+Rc(pVXq7j=_wVO8ay)-Lx$gTqug`g2zlguFc7D~t z@K)jPfyeh0CiL?Ls}e(K>%qx^_`i~0n=sa8qGzkfRBVt@ZKk9NMA zz0aJfNqr-yNdq%DvX`qad;;9prcKz@{Ya0lr=O1+owJ`5t2JE^hj-79{Cc~*UH0`)nx8PoS9voMEGIxB#=Y3=%_tEmm7uf1~p}YF`A=a&~BfG%;ibq2dQq!M}cG_+}%l=HtldSJf|4D z^`g8AZnqZ?o086cwx-J!;_`U6Z_$tm^G{$@@=6kO$*EGSeB+c8mwP83Kx16d+x4J;R9SBE*JAs92FL@94gUAhb9{BEv%2rm>#@)BPM7L79c5F!|o*b zv2Rgf1XYqlb)XysdJi zseHF-arz_}4)evpSUa+8JhsXAD4-NgEoti)#d$ig7fq9@Mw&q_8?}WR1?n+raLh`! zwEg_@y{cy*Z2wd1<@6`)jHAjU`1HrpOm>B?<<`~L{ts+TjDPOz-^WS^1bkh69s1yK z=1)Y^hi+t9o7>O(0e)Pz)=qIvwhtwp`X2k8^>tWJ_bL5)ry7R4N_ll(<*!SrlkK45 zc~<$_>%PvPb4y%@3T&}*)yoTL$9~~p>2#G4qSyqsae<-Z{EYMmX#T6*5s@lI8%CmO z%fiivs3nIRwtfeG`8+SfJa+Hbk<)`}PdHD23Ama}Dk24FxoPpi2;*!+3m#tHO{pg< zJZk_kH%>u5Y*?=TyXgKgOMhY0)!bsgu)e&Y6oNZ4te1Y{6@I=dW5xYSiEfgfvbZ?=ntJP)< z`W_SpHhvnmrd1bd!GJFkNR>If(mu;>z1_lO!$8ovyFh6ZZo`ZXK2bLjh@&2rC!=)4 zIikh(z`TKZb^Ff+R`PSB37&gWldh*ir6LGpVYquWuwWu@B&8Z?heq{%5hSf%u{%tk zAJifL#+<_;VFjDv70-}LuklTXBsB(u5KH_)Mzql12<4Q-b_ci?BZ~q+I09W+l2}VF zdK3%qBmyfff@ZZyR5h!ISZ)ju-FsRF2)h3;^Wno}uaapaKF7DjGiPZUDWe+0v( zJ4*X?hc;&~IL?-IB1!V0xJzIHbntPg7&PjQEN71i^+!JB5!!(Jv%I_SVaR&3^~9!A zXY4+*>8SlqGpAWgiw2VX#rLHL{XjqXd6Z{Y`k&tQV%a-UC6D#q3%M=L@&1y{=|;z4 zoto-pmcKL3|Ml0s^Xh9$#30N;*HTLO?T6A5%F_m}!=J(U`>Ibbf5@aDAN>5$))M5< z=Wa6h$Hb(`<}ipU(An|2F}}5OHe#&p$E8KrL!193T{@cGJWd}CM&EkS9O$b~SX6rS zE^@K;@ZIk*T^`L}pTu2GhjO*_UKk&g_mfujLj1WE50?NxpX?tu{os7}wr%bFc~j?u zuPkD}7+v|m+vlykA zVz=7gZ?DKd3@s)c;QAWt#daCN$q#1m+1`M_LL@S#nH0V z)BBg^la9*|oBZ7!uS8+X^qd_7{S|L37?V8oX{%WGlQ6Y=@Ztz}(>x(Uv*lb9x~TJb z{{X%?2&|>Q3ydXvzS)Md%!4rmFe>4PgHC0y_9R+|BZKH+7nc zc?H(gFekC4XQS(`ILUb~gZ#Vo+N|Du2kSYo_tQ8rvK(vrT?tlpTZa>gQ!S*rp@bjs+$z#oYb!ld8bIM)cqXX+ECk2QyS-1DkrDiwbjqqIr@!}L@AH54 z1Essl2<`ZNWu3~i@m>GxB`BFGu-Vw?XZCnFD#bHz)U6-F=C7 zu==Ez8C7&sbGs5uBJ>3#YhF*4wt}MbhmCp;=o1h??aFfRJ1GN+xHYgN>N!y$< z87j=Bbu0?zv(rBV^9FRm4*ZVbe13Jaq?Syf7a}mWUb;JWIst*0A$0*H@qhv zHA{p_5(aB^B=ebe88oUOY5d!uk^1KqANd)UFw)=F@)Box$kPahpPAqD6v)CY?%t)O zpC{zIs&T||AugKHGd-kFD`=o02`zlAN>p4kqO6v{bWCwC$u2X<=dpbp5IwVCbXO<2 zs+J#YY>rTL<8&Vq^b59dahE=QJOxvbd+flUdy%9|vQ&M04#%Lk{9$!vWB19@%kGbp z`|n%mrpq~h?G@gP_B?+R9k?-7G@H$>{%>04k7~3M!hSDeWn<+XPXE#Vr;F8T6`QWE z|JuIWfB4iB@L-}OYWhR?FKPd;Phtagt^XZ`+_If>eCh6Yhz&U_?s>)jcj|!+j4#__ zh)#KE2w8^}yYI&?hE?#sgUV2x%-I7>@zC#i@m~LXvqRy|&V-H6TVpX(?xO_wEd%LB1>c_t#N^~?_XC6`^j!|rCI#u?e0kC?9*Pk(NYq zBp|Z5;CBgKwA7e3jMfSJqcAI7#xc>g=TINfj_D|(|6cW1rhb+@LXfQiynxg6Fq*?4~m!IaY$1b@L{E34Wy%g=85~_=rv+ zV&VtIk)fpXjmBh1!R%JSHFkH-$1zh6q!)p<`Nx@Wc1JX9X9s?5Cd<70JaCx&^NN7p z`T1_;3pqgA<)4yNw;(Un2e>s&y&*`N^O!I3B#TWItT&a#+I4HB_jh-2z?#54!ev??_Rd((3S_F(`cN4re(%Aq zYB<)&Ia#3Mj=l??NH~03!|5&k9$VJ`=a76A=DnnEa#_X+uq z27^37&4+rbz5vv%fgiqpqai1kBj5=lm<^CgLb0H{|7(7rO2}APl?lj5=&JL!u=)||i&S-wwJyF|y9La%yc%4wZhe0uC8k-t zw@$Lsu4}YmDyB%Wn-!c@Cqmp9e8-t@ek-z%AVxbzVz|P%mGyX+=e$DWA$2?YcY2?Z zTmyh?HXtzf1-<4&T$qMPI1%m1>bq<0mr+5J2^P?@ZQaRTK8C0A1kBJl0WuXHfH1Me{NRETxU1@4? zsDE`M^8qS>!ckj1kVeP5K*|zG-zesYH%L|^9h!2inNP~|ly>hGo1c2dmh)VcNjBMU zaN>Vu`jdw=X{g6pIT=}+Hc3?x;~YeU-;xhD1gRLHUbPB+na-lV`|u)pKs(DXg|_P| ziS1UNU~0RV8!C`0wNC4`HYL@)y1ebfJ7dzMxcu?vA|(p?&O)q28|;S|*HMZX=n_#v znLu6wzUxHN`L{b!Fb1u~jTKo6Y2KR%`@qboU~ozfq~gU4h&hAx@CK52-|ILuogQf3 z)qWc-n|VW7qI;FL4dawI2%UO|pa#h&1Qzo1KP!9DeM}>daxa$!C@@%ry*%C>IzQHS zRj1=iS4#|BRF~ydkc^_Ycjv$6n*z~lhoooJi-k2uj~Ds8D7vjFMGc?>Yg3d#pYybk zbwDTYh9`dsVF5iUJU*Q*jCwWq(6Pfmy#GZ&-X`5sz+WXr#g@Pa-@bhR+|}CI)BDQ9 zT=#4}`PCVxlS(w3^gY%3zHBL+)-tX4{al`}=E{4) zfDlij{i>9XyM%$$jozLq`K~T4y&1iSP?Ra5vP0j_8+752ytNBbtTq>$Rw9PA7I>s> zE#1*K!+pK;ipA$doz(l$yjtAXdFht6wkwVBw*C;u`yrHy557FOw>0pqe`(^`!~HTL zZmyp(VN=GPoW+Vg58EWBUIVdAIU-7w6B60DkpqEiLpk!)9}8%6 z^@V^%i^#^BH0lcKkV1;Dez>JA#~C5bc{GPRR3K<5RTdWH+eDPal!D}bw!I$Z7-0(j zDLmO+U%@8r1e~WAR)LXfPda`r)K-EpaCq`7+LiSApYFvCQoUyFVSf4?aS0Ofa9}9` z(u=UJN@4|=Z>Rwx28}15#raJW-ZQx^a1gOoI1f@K7rzca=BjezQBMCv3gu^zTvnlicko{ZTzdx6J z(CB?}dNCo){kvSbN_DSMUFPY_xx%GK9EuNnGKHOgOAShJ#A%Me5-|*h$;L=igKO@D}^k*k5$=41f05 z-$<9&#jf;Du|}Am@UnoOwhGayC{%P2vS^&l9{UPUep|*UD8S8vOO`CA5uD+Eg26|; zoL6QA3a}(EG>Kc^=$^^DAE|S}1ewdK^&sL(g50P_<1dVFU}62WnXw;O%c7G__Ufcu zO?erXn1-d-fTk9Pdj>`+J(Y|4`bAb0J_@Hc>UaKF!L%q6`kQVeub-&@wu2l?j|yeD zDua52vTO8&P<=nFv_?zHSv!c@-GhlG!+*!KVuhU=ziQ2RMrcJut)B`YGz`hL_jge& zBq{( z=(j2WFM=mITS6*nv{G;%DgNpVUgX59Hn#~h*EsugG-JqQ%@Z-@v$!9*(dDx$c5pl?Ae&|1cR|VSyHLRp2T8^$9bky zSJP>v?*run3lh`8NIi}Oh-eD1_`vRWmekyUdfNUg0gwVSP`q;Wbc-de(5>ub)yO*- z!APR-{8oa=l_Tx_E15Kc>ydk|te5dHBdr__)m@iIo~{;I@&*;!^Vwf%k5=d7FRMGo z1{jOvl7cCzfQmN!Rdt2>7XDE$KvxYSG%2I!Kd;S!RMi!jtA^ZR#Sremd6TcT=|yXN zBq*8zA10?9s-Mj8D*-WDp44$A9R{9YUs50b(-U1a;N&JtUzp<;ob)^AlBWRUq=f+O zU|Bxq_9eAv^mJs!YM1G`x+D{rR=<~xHt0Y^pc$2KS$u6Ex`@=qt3;R@ur*rYLpCJB z=Tc(6{<;H(k?U)1*qtquux+-tyc){7=-!$8%lf;U;d`sY%DUrKOWl~+!oR}LhwJn2 z8tdN?j6FVt{|@^2y0Jcbt61)}IsC!tqtRpmO`PL{2Q4i)Wk!7u4}r2E{J7k8UXmm# z98Z}#fM$KCi0?kUl8qz0^7v&=TIw;>%2Xbqj9?;F2G9cn3xI=+=59G2 zfNF?miY>qsKDmGw^z$F(KbJb7Gu1H&CNUJZPy;`_``j0Y7FyItY?n^)WX`9Jxi3z} zgGJG(xIuL`Wdz0BELQmapx-=EgqG+1w9&s$xHA62`;?@fvYAX^ZP!dJA$R zyGP$z_h$_(K7UOe5TfgF;a!Hm3;MY0V`)nG_tNc=)b&tlP=)W~g~%)G{ObR#y8FHJ zy509^J>}q_$oLv|xF+)EEis&-UF{c!-tMy`KQ=^AyB#*aXTmH~B`HjUXlaj*RB=5J z6o0A^k-q5fnBehhK+vo}>2kYM&{a6-^1BQkJ?`d^v~iS6I8Wd#=Xz3GesLe%>3gE!A!v(v}uwF29x znH508I?ULUg~kRDQ3t)FM5IXd_k#Rmoh$zlDXy?z9+RypH@I zoE9^Dyz@wtGIzjWx!d1%PT44GPBi*e_8@JQT28Iok>qVFaA`2uF*UhW1P(q-vtcn# zf{YBgrEygPU}wZ(HeodMkElwywvT@+zy^Cv`xogbhJ3c&yrL>!a#$S3no18NH-t%c)ekhmKcZ#1`xlT4p$d5k)Av&x!HGTG@P_^RE_;1tLZ|&a> zxe3#~hM#4_@asEM=2jo8pEWFNY0xw-5{D=A{y%?Si*7Z2uh|oK=8y68g#>>&_*Lp{ zW_#F`5*f&u3B*H6fN5f21r9wc_y2;$8wm+qNxh_1vfj<@c8dgqFGC}xH56)8%!ai> z9zZ{iP|Li*_dzsj`H0ETNq%I5&n+~^BS>_-E(w+CMOy2MFGRL?yEN!AWll5wfv4<* zv<7KuuJRlp0jV`G&ji)bEdqwkVa|@xa{JWqIBo9^s~H>q6k1@4kVECDAOw7Q>L3wB z(+wwcdm*iHl1+ko$XNY4p4apONUyOm87&-SQ)=99k&!F=T!%KnkJ8&e()D_KtJ3vU zdq_|3KjzSyapK29FM)05vLb+IiDY;{XYjVpeW{n6*Zh?P1KmEVVieBc~H|^ zbCe|MsE)ZpF_bX?La9=yvnkCiKvhrzey`o9V&*v+ zR8J*<9j?%g$BWDWEfN#Ct z34+pAwoV{lr+BuP#yS=T_C@RvxH)N64~tPDHzRJWWc-dAgF1x{BSxy6-x-0)Y8MZ6 zO2_eNutt&3-dvs?j`WNQLE(`(3J3#b%2E%2WJrn4qA$D-ix)03;>`Fo@~pgXN3cUL zp06nB1VWu(dJ^{7PurCnL)`(YHHF%|WS65!EkWT^X@W5EgEU5ZAOuBVdY0XwupbOp zKGeFhbr(wN8+I_$!RWg`+Rz27ccph@IkeX*E3ZEx6cqq7yAAR<0b>7$B>sFPs@VxREirmz$GTnZMfwj`d=NXQx zmR~4^4V#^aq1onvQ|GfidlqHt5+%#&W*OC)QK~Xzn|B4t1@Z;IqM9PPFYXLxj(+jq zph9w-fE~p1GjqNjS_vXcqj|}~xkN}gHqTNS2JA^%v1w56g1zh{J zZC5S`8HBVMi#)lR>Cx<%`&VY{Uirs3&`vz&*6*^_XeWy+Iu%a$%_D7fXWGcSxATjv z{;Sj^YZ+SUKJscjI~%+=Ls%w7u3tE9{Gr=meqqCXl_{oL>2O71inwJ{^ZHqbffjk| zs(vS{o#k&3yQ%w0GKtOj7pA+#GHjMja7i$Ae&61EOkBlB#!6;p4bbplt^OEu)m7}; zzgBM3>$A$@nBdEwhVM%{34>K{F5fe|Z2U;$ekN>OD!A;(h+iA>MiJ3mly@srbB@3fm3Y5cgQWU!SE**eEKs_)1<^%vR?n$fGTrx8$BCfPH+XH-Vh^6pYhijs5>EAXq%GaF^Y)*>>h=dOs#ZyIY(%lc}uS#ZZQ|EtbY^&6zGNID&x#6lG5#;PZn9fO10T^ z3G}^o4Mju5*A)vvQD$9GzMy$f^=m$W8e3Kh>zl@lv$mq`+Q-MvJJT zfe65@QAtLvc?#CpEpoY6fYAcYuE<$k5wey6{rs1QSsFv=GxSeJjTwd8^kVdKr!_dx zL8V_H%^(hQ`ao!|Mu^d##yiT=6)4H?BVH8=z78&|6FPE7Y$o9xmqzt1(EHlH7F0

m9+jLXwj1Y2&|>D)#dv*HNFhxI~fo$ms?xG)RW6k?(71 zLB=qK+=8^!X44$YM4`RRl(xHXz_`6XuEZv#JuWydDt9ojK1qTw6MXZVpo?%?L|Zu; zHKv)fhRi8Md8lZ|j}@?O?WN}{A<`iUi84~K3K1FO#e^J8^_Ja!B9vJ`%f0K%j%Te9 zK$3wjoQzbT@cCP!D2=dWT5O%5@k&O21L{&JE*+T4>Hvt;S)3gAEOYJr*0EEX ztp@_8LSUoI5;$3^TagJgoqI{Qp|ZC`x(k#L4_9^8@JxBm93D#broPG}0N`$B!5plS z3wB|h!M_X73Is?pDn|mP4~p+NB`A<=`z|Mk*@d~U z8>LiuHE27P*?n?Qa)RXBh;}kpbM5y4fSMdD@+g}%o~!6?sDY$%Hq3vV<+HsJF@dIx z1>$M#ElVd(a>}^FM4SWXFM1XDA$)<*4zCQwDeHD@B|yjX&O_}e6-FU>Um&^pqWv8@ zIZwUmut|SH$mXOR^*vwk>=N1?BWirL*PW2R0`zf&KYo;?yNN+0@W-{i&;*{A#OdHLM-e{(A(M*@tG&FH?hZ@+I<;r#Nepa}8%%?^2XBbNXGjpdy8 z2z01ZfB*BscVeL=iLtfJ=ce&1VM;SS{Lj(x4*VuhEpcgo7!eJ z`w0)W(w7(NwmC)~nOJf<{82n_i;Y>I@`&jSCd$6lq}WKIj14_0t{v8#axP-p^N7y; z>b;Xe2N&%F`8GA`yn@Yj2qbUM0&kFCh27!z&JY&38ASfmP1Leu!Iq2H0?jTlxajME zop&y3mp^Q6x?epSfcl+ZYgR?AOWlzj<2TSCS^m&(>q>L)oixbaosmrL5j9WWUS5}_ z=W&kcI#`-#p-5G8;`RF|%dcqAD)URam*Q+L`91gXy0oxwHNmTsF&)MwegL;ibIO42 zG8Z`xh1F>A2s!Rr<-KUkfoS<@Mhl8|1rH^N!3^jNT_D%go3KA~R2& zpm1)BL5f(L3X^0t{1x#;)Mwh#tO#*nim(0D0U7S?WQva!P){x@k@ADM z1`@4=6eeR;+Nu09S)6Lw$Oi=FM8pe1R=wtuC`Bkd+J_|oQb12p>BcL|UGOeb)U~lQ zUKoV?)m0YU(C#j1oJYMYp$MRNvuUXRL?;fRz2@2z%7z>;QAoMFABI7<(s><$4kzlX z$+`=JK50Rf`KbYS;wmo+ZV>Zh?D-8iJ9jdjn(ibqEfoC;Apfb+;+6=?Y{z}Np{;EK z;-SUN=)L#dmR=@RuEmJut(e8U@L(jmVTFq{#cq_EPlarqd{#Qx-OGVV*qiKk z9nc1ilb<488V!^+8fR`6V=e;fZ3J3$(SR|w$2Pxc;K-|r;?cB`?^+>+`X8chNj1R$ zkw63O3c||+Yt7=nS*HKHS}$K- zE^zvvhu6gX3VUqWBzWG~heW8mb6WcP5-Y!Y>xC^j%{}rLoy*+*%wHW=+>g@X(4$6s zT1zBCE4DFqOzwHZnSqDJ%~3wmavKuNEfO5~8a4(9a=zfZZ_W7i@kaFdOX=sZfgO1_ zJ{D5E*_>1Zac+EUoBQ~BK=p<2tWyB9;;-}de=~?CRrc85)~B}Cy?BV)^IJJxe7{aP zLx>4Ea|phqT63&K&>HVQNvV`j-UGq@m`G^|lv10LZ%vek z{qu5XES_j`la5BuS%3I9S$~V%cB5K$qb8Y>W2u#T9UJT@6@tt{XNj?W<)15^4`dHl z)*4SX;amL1&hTXC5pp)@+fh)EM2s!u(CVM6?`*z6`=#N~i?X@< zdi&7^$yzLO)LIgAjh#jEJ2<^+wX^YH?Ef-NDh3{^l>%qkG->EHIK+vFj8He>=Onq{ zhoy~`rA_=%^tq;*&t6VFTkO}ejeNJu0>{5X+fcFi|HZ;R=`ehG6gS!ay}f)YSBoYq z&ZI-2dro@(xo>@i7}9aek3B$w^c)+hwFB*a7-+l}c^k}ZAHFDg(G)+aU6F=eCY-2%#=m(uF)B5mvelWt~3 zP6sVz{Ocq3$cvoU9T(e=GVci}{`v2Bpxx)r5Z#|CZ+FU@1T6I*-uxtpikepZGEIB; z$NYr5uHj<^MFqZ=L|NaMeMm((YM7>kLG9P~P9vT)F=j0w$oLhr#{v`4cmb4PAw^F} zKK)fU)+z)w7fEE!bQes_{faX~9gwhAROjdRj-23Pmde zgl$`fMZ8yJ^&R!|{=fX4YDQ&})Rt5S;{|z7h;k5|PakN2V=NW}$G7{o14&_TtxHPw z_5mM~w zejyW>uMZ;qCdsOr$Iwo80`G&G>gbGJPEWb2nkZ^=JA6!0wvjf2aqFS`#msGlhyehBT%B+$TdNH3bQ|1dppOTE zN9rp<2}Qd4F#0{o)$4*+PTQSAo30s|MRh_agaEO33UP3D`FDAVn1H)?MBj#dwEBd> z00o*279F*`NcOZ~jFVc9oJ99rF~JWgYy8DR(in>xhi4#`a?aw70bt5_Opl-oU{3d> zg3Zm?7j6Hlx8xKQIlvlIVVF3E7|0q%c2lvFd$Nn8?4Og}<2<#8kU&1{Cz06sDZLsc zwL}wna4{=CPti)t-!ocj!DK_Zmd`_j>*dX3+ikVM>z1Z;iDN+w*)q{ z*CHk?C7yPBtXNw3L;w^v`!bSo9{+Z*1Mohrh8v;3Jvd`;jPEr`9#{{})tZGxq4dCm z#en3Dc5T}2T6LV>j6%496{wn4&(o+w@R^ereJX=;;riX7a$$0(=b4FBjcQ3AW`dM? zD5ml&QF)H7u&ETmu&&YaVbHCpuK)e5Fg0qsgNVo9z3~_m00pL~qT0;>!E##U353$H z3QH__2?^7>8z|ptrlHeT2gK_=*3>4Olag-89r*c#JWYeopsgS5t(UqVFU6? zp5}QZNrfP8o)GWyz_8tczcv`a7n*09n}<_hm+tpRG(d%IJJ}wA!*cvQY5QaH5ISLFT*D+W>3}s zJyN^(X!W0Q&h`2FhK%I(di=Uk@yPQTsI_Kjt1Q@YO~lW_rQq+q*hcIsK9-SrwW25#(kBjF#H1=@&P89U5z(McFJj_U_h6UzeJA- zzevRlT}3D|4bP&`sv&LWEjLq3HDct)L>}wz?q?Rz=n2I)$@lH7 z_%6N)l?3u4yu<<1Bq<7D2XF*{T$SF51#`L4!ppSfG=f#*qjw6z4czqxe|5FMiwB|> zO_1(l*IOXqP{$tKP*b(}C}V9sM9L;vh8nJl{W5x=#`5XByHLF2d6(5Di<%tOXO?E8 zJE9IzaIy()Sr)(~uH4ykp1kn6T5G9INBEk5g z06@YaWO6h~s83nr#)UVTMeuENjZ`7=3eE@3qR5O%pKgi76g;C79m-xR0>m*CNDJ$Q zFY395?BA2p$vaI-As#UTyi$BHV1MD=ErQ-QQR~)X0~!N_I{>bQw@Fz+6?S{?#0p8! zp0mr!qzP&5yN0mU(Z;I_Cy-Q;6_z4M73?b~sF2~6l|<)Ig4d!o z8N-OUrbB2Efr%zB7_X>J4Z50XXsQrh1SdAOgsl4i;$QD&-~J77XT{Vwq-tf|^h%81 z@Ci!e^O8MiM9u}Z0`qW=Sy^JG#K2>mATOz}@|-M2i4P0U6pKJL?S&AkBF_Y=X-wi+ zIcC4fpulX2IMIaL94H>0#OB*Tu9C_U;FYJCbUc&Q)n4vxT!TuIBuktihg{{8#RegL2$Nh%u{q3c9l#IJ%6$z>H-l}$LH z)@#3_B`b}*Pt6@{7JL$AOc`m){E6A2>zLlwBz?i%xMUSZsGj`DSH9C&al-sMQr+Z@ zmwN(972~o;F&o0q@T|fZd!n2|ULh+{lm)$P9_1wi{ut`e+W-kjJzM~ay?U~qqsFfx z$OZr?pv19g5>Q#A5P0)(Lh=@lEkP@*2=7UGpIUQY`?iM9G6GzkFjtdgXC07)`v~2n z;a&1a!#AT7`Qwj^>#gJP-EL2KgLqJHe%vFbH)eZe-tZ8K{U#O@@61`Wa7px!2u^#4$ChuP9aj%QvkY@wH;bb?!8o62$2B~wiS4@TO%;;6 z_uhV6J)0PEkw6x{jm(r(`PY-F9?a7x3$%xo?Ot(eI~?w1E4Qd6^rfL!1grWQMcgt1 zhTNuwESFF2{NoIt8EGx=pKh1?tbCa*AM}1diLR5DuUfs) zMzTZLFg;hN-Vdiu0QOfO1A$%(hj44Op4D2z@^sO?c zAax^&;k`ms*e)7e3|i2x)jwYPtIo&Jn`oYz0uo*#nxycP-+YiIoev}K|L*Iaoq8wq zd94rITi-8=A8<@TvCtYam<%$u7tZEbdT;H*vP@|@z;XgVEi8R)mITmq%*@->`?Vk` zvrXq5c~X={UWmgRIq>EXF9q~cG?H6?#w|RQQTaTCM4NHw``gMN`%=#RbkVz9B5ym^ zC_GjYr$Q)My8{G5Ngw7|m|BQuqY;A_t2X<37I@a&nYAb2eymf-Bql$W?4h7_s!hjy zzPG+aQ}vIJ8CHyC2KfjPpI8%!>1*@+ri}68h6uyu4a{U z6nX37p2>qVqc^7@2RtPer(8&*!3WF1g#D5$OTAqIyHq|~>5G9^jJ?l0rNK)?m zZh4RUXU^f0*%f`=#tkuzD=6sKR&GMQKT!{#w-nQd68#W-C>Am(p>~ieA}t-Lp&xEz zEhDjRRn<8TF!m8H_k{ z_cV@MkMp>5w6Jl7)uJGkk0N)ciI1?{+;J4jC6|RdohxWP!$>G!_G{9tNjh}hZ3vB@ zmg2GWD8xmk%g0`$=*{yo2_|tu)dY|_ow%vrqF&suRXp%TbVq^#06s`+yMQ5SnKe{mJphMM!=gGRX`}q+ zK8&!9H zBf?y4{aJHF^k~pFxtuTXFV7hS#y94?ovAUD^L(hxKXdJ@suvcGJz97dyOJ z+pJW2+L?!(PLMMjiJ7PtWzbhNcy`(v2<~!mg6ikG%7*sNSO{LyfTcJ7cl_)5!SF zNu{VQ5&B@hK#IV>ipA!|q(~c(SlpFP++TDT@Q6A3^EC25O5DOu*q}c&ufMA$Ni6#W z4&5^V$Z}0RNY^0|(aN+P46EHG|HQ+{)?EL1H}PYk<@&>kzrU^-o*a%A&-S$(p*0ba z?w${jH`vlMf1me_Hdo4=QT57vrtt#D>-%4bXrNWhOfH!)htGszyjlY>tO~y84X%Ij zM0UU%vv4Q>N!)<*t;-v-Fg{Ud81f%6qNTI_?}fhRsXThP^g)$^2F(xd7vAo+Ghyn! zm6QIa)8ts3GG*(dSOzNiesY_lZB+OboR8jiG{3gV-k6)*q#@ zDj_?!Gf8@j#W(^jmu&&-%FiV{!h21;PfSP)JStIT76ri>;JX*HA!(-*gSggw(rG#} zEJsMWtoJAkvw=(D{6iOLSE!Ue6%A);4u(sjuz~%Z&nP)&xd@e7cG^HGB?{rVK|MQu z;Zgtz+Ksc>e>+!CdpEZMcb3FZ{EOo=||M-#?3IFf@&4Xcy1GA#DU)r#gmKW!>4U`XDqpA$AnBl%q2kK~MK6 z?Yw*~xM`GJJv2Z$a}-LEJiBI3;D7mI08Ik`vF&yabnuhgcp+v5ibUu^NkhB}m&?3L zJAw-C-Ar!n)_{{Bsu(SFQRp5mpPB&qYJo>$$jR!MWb)XT#@iOg`)S6j_DFYp5jeC2 zgQaCGm-oqO@Gx%=JDe?a0TaRVG(iqXk0&saQA=3M_5y)XLTZp4B59*6>N7E-lPA3I z^`>q!H$S*DU&OEM>B@8qPn^^CJoGiLw9%Eda$}%fosIFbW_ie4EixzIu@%e(X^k^3 zNDEGb6qvb8Fjc<0_o>?2l$3LTH7DRiqzw`kN68#dP3LwGt;8{_s`P&(opm(b|KrEG zF0Q_svFVPf&1Jgda&FTO!`XclqnyfK|K@sJGeeXFB^vTH~Mdb2?zl!Rw*f) zQQgh2N54cD#*d<}!hiCu!X!(TsNN|r8h3~k0kEVenr@ZDi(i~9o|WCYteI(ze+LO7 z+TT{2{<_GNK7G%$lz;s6D%k|VSAs*GgdjBuo>8cYuU7S8ndcptdwNEO)mx54-!D_<-;NbY>UJBr9E^rMdMA=Z!`jOC4;VKJ zr~OWYgKGS4T|2C9lGw}}GcSjOCw1Cnfs=G3&-{iO`Qa;pCba(ez^}F$@I22w#}9W z$@zxEU+N@<$2`>MR%irs?kx~1v1A@o7n1jlq@vxAY{=Ur%TVR^RapFa$$Q|bsHg>3 z@1aYk=(k$^hnrRt#bEdh?lWxq`})6ylyf?&Q;+d-N&Z~FwMmU-i49oU_0!Q&LA~2( zFOk0Yi7B_*G7lOI*oOoeEC&=Xa#$}&r!A%MlUq{crdbm9mHTU=;lzGYxc=eX()jC~ z7LS~le_i>eWKBje#m@Q=q0P!WSwSuEq!YazuC1z>_0iIA;x9hw{AG zFk&&bYrT9p9ZQwP7V$G}bj9xL3+0EF>r5^z%D=zgQd9*kD)+a#0W%+;)A{cKxeNVH zFLj8KM>9fz_O0R&%qFw+-Fq)zLK9XG7#24?lwwyp!HSsnW<6q8tnbhF{BWmO&judD z@wn=bxzSnVVs2gM9HKLZg^smW%ipQo*-Fe z;3PAWV`QA;z}87SkmXw#<`^*u#*66i&TV32u7L`8)HY3)veElrW-zqa)^>4O2B6qU zaYAPIRwy5fj#8xGe~rUs`e}@2e~UG%j5J%miQ5yg+^A(5B^qAm$a&>phK;kbqx$S@HcKP zP!_82ZC|F((Oa&R3`31Na2_$FhfcZoEzaqOKrKD#K>j&BwVpiu1~((QP7A2*{6~>> zBe~#7%$o>jkUg1VbgQZ&vz;OLxraWsRg*=sC~GbF{D^S=AVYQ-NXXaXX+Ee<|XZR$sxfQ8H5 zg^k@Wa}Kr|FHtPSSA?@MDQ?@K%}me~T=Yu2IP}On#3^{TNCqh?rCZKcQ=~It>Y+U< zN)+tla}|zF@Li{ILWE(F&ZtI)Rp1DD9XT%IPfQoLO3^R+B%CshE$B%AdZL8w^3-G> z4-=^bg@;`daroO5a@?T6?ro8b7-3Y&vVEGe_RK-kcaAvo;QKI)9gK-5 zg4;Q2ZQg0iRqwvq@48oIJ8EODFD26O`8-_*ZolQ11?&FntfUGs4xnZa{P)(} zdD$n~&u08xZ$aZ)6nT&Pxy|DEB$k(l=?47Mkt-y~rtx$D`=`O{xOVT$ffz>de$T;- z#6{!z|T#mU*l-`n<| zD8lawc;ld@gV7wv>o$)eqW706uGub*eJgg!!mqa-zwd)zUPlwTX>PDa+GI7-i`?7rf#;4iGr^TnGzNYRU4?`6FW$#g$jOekg z)PZupd+A3#ikTP&Y^v=X5IBkkD3mf?Eit$E)c;OPOZsajw)@wC;*irx+sU&g{xrP0 z_%6)`&l`UFDcx~$?+$28@L(JcOmkx)Ody@|hL0*FuS)b5^XnA;HV)6y=uFM?9~Rf# zohWC;ZbJpIk-}F%0QP22>UZwWAs{&XdFk6Z7|bPb)#u0`U%FKu!ASLi`+4g`I(LYw zkSTxhwF#4K!>+OQ;w@-E(rTb`42oFi;~Nic!mPUHG|@>yMf!g@s9=tn<3>PH>z3cb zDB1HU{dXg>i|9IyhN7w=l;sY|7-4(LW_OtU%=ddsNh#G^8nof(D_BoTnGK6yeBXAX zf0!todFuY~z8NRvmhFdPw$^HnZ%%5Z4AvPDE){Aj!m7zJs|c-CZdiKq*knd ztf@0YYMH^x{vh~RP&Wv{$gC*PPs{E;q(aDnP{PCTCd<9n|5ud{0>}`|Pg9LQ+N&1s zs$#Rd2a{5TH5!(;_MCnr!SKX0>A%lXh>#l=Zy-m}0uYpQtDJSNYWvWsFg z@~}ducT6Wyoe+|09_r#uVmhko;Y__2q1|Ao94bizLh!JX8%zEBYUmb6UDMtW=sBCL z=;I!JdXP1fWxOg6ULrF|E`)(2%spChg_u}SXpxWhMw1rvNvSN;&~)RTMx$ziQ?AT$ z=`IrhY-0K+Q04OdQpRM3{D~oa?(Tqp4M&P!iTSv}WORdZ3*4aBO|QAM zE0)HyP05r=R}Q}C=^WBA<6-No7~T|>G)*ulvk}{7G=CBLFwYQAS~X;NhexCvWDrY> z!f{Kg%Ab!f#n^3sokwNQ-J_jS9LInBopWAo#R?536+gznO28rOc}w;P6~?0Iv0?ex zrS}JgD&^L=0eS=~1=71iXvsj4jJA=l>2AP6YOCCeER4LRyG5j&JyxYQBHpMA0c3ML zui-rwhHm5p%j;(|6!0uHA8%5JeMB9!kHaQ)lvi>)8u*A}9l3BA6_>bU(#57r0F4eR zP*EfFF=HxKA+&<>L6U%jd%F)|&`r$RVEwR3xUE27HRPgujC#j}8~KjrGg&<^6OcsR z5%@NipfW(3<3Ew8uaMh1M(2&Eo?Wp=#EYuPVVNq>XJNBFw#(LomJt^-5pqKq(a{YV z8A@dDgvi-xb-fKpy~l-Pc84STrnZz~w^$?uZ^=1!`AGPzaE8b^(6+M@98{FLOh(p{ z{_6j1zldA}D1F@$_HWtgE!2SQiv(j}Jp58skku=t0m;p!(+s5Z1$E?vUEzEFndllP z409B8fNY8>j*(GPf?@jMFRsQD|Wv%2OY@%NGd1Kux9rB zS#0F9>PX|c2C{`Mp^2=Y&>t~$B_f|}zYnmMBt-R@n*33R7jka?YN~C+D-q0Hup;-$ zUf3`Dw3sSJDC_nQV9Ftf85<30VR*Th3pX#aj_MVpTpNff)EvQ?RJ!R62D5mGeq=o`!<)v`UvWTjD%R&BFDzd*?KPZK?genUnF=UPKw7@IKnu zE&ZL+WwjBgUnAdzL{LrcrAe5bAvkxW=8sO#9gMe$5kO7vvl~xl#$u9>-aLLMq@8a?ge(+9GDVKXR zG;Fw>5;Kx3jNYOK(y*$%oh}L~?|%-@6~@`50MU$AT@t0m%23WT93#{uh;W-p6T5)Ha+b9|KV;thCDsp*cZME*rfkQlI5uXTK%Q-gSSJ*D8@OT-Z(1gJ& zXY7d~o%=3xnL6Yguf&E}mfb(y#Z55?M9b##iA*=moiVX=Hs;bDq8`h0jVIpB32mfw^$E0-3DtFO94K+Vphq&Lu%La+?)%s*u@6s`)BVy zWz_WUWC;Z!+8Z2-P+3)dL$V5qRI49>QoWE2qleCDTxbE-S#C2U2AYXO*7!WDoI?t; zLx4|q(AJP*M`NoN7~4vhag5hX9MaE39oJz4NehZhg#A@)$l%`!9W9J4%hYbpBjkHtmav^c*h#ngPKoOZ-`G z6Sh=6pKI!3n;Q(aRJB_qQ7u{ky2HH1^`lRbBQP4HI$v(272hCnezNs7?Jz))WxQFJ z`ASTy1jUfcPUHv^a?65_V{xj(9Fy%35fLLyP>~z!?Oxf(xYE@Js;2`{_c zlQyE!Cl!tts?0Q*v|y;e{kLRrzmko~XAv-__3UiWWjPPrq(DR?cx-oz+PKE7D;)~L zK}ZNENzj5ahkMVfy^xBL`g9JeTLq(2_3tNSZhXb)@|@fq{oB)+xO7OzF)-=z$S1^l zA3uCs*jVlMbeoIrcypxi3AtH&ci6e=tWo4D^l(()Gh3%*7;~99STw6~Ec;C#Dz5ms zc-mC`xCu9=t7v8+rG+HJSNB9UT3l1yrzSwH(C*JSx8id$+V1Ke^7POaeXr^`-~sSf z(g(QygQ!y+7mULv{;3_RQ8UEQ<(U*#5oZok^m?3L7T6NYs(0B!E?*|1f|k0P#v%zJ zV%cCk(m4l`V07EdB=eqE<|iFtAuO`Q-HJ=UeVbc;15wLg3vTp*fB1xb#c!kBiq0oe zrs?WNGiLxUrX>hr@adbS&j|ec>55%OjIGG%JZF%uMN}%Mb}TW4kFKGzKTG?im>a`e z-K%<~DK}$NZ*3C-HmmH+EREj-vy2kx>ErGX1$^B?SzUs4`MuxY`3PL9)5!T=?HiRI zkmSYhjrD?E-wf%JIc`>HZnW{yd6TZVPP@}+7(Hs0yi;8{X!s*o@w57QReB@~^SgEd zU60Sc%Va&Cph+l6h2jQyl04rIG2XfTm7sHq-~6aFYR0PJB`|tu)m!YpVSd@;vwms$ zyFF-rBfIC#QTLaWo=@IR=?J5XR?bPCwGM;d+dDqL<^X}-(Txy+E1~?Aj2U-g9G&67 zB32(n9zQ~gYe{^zB#n?oQKH0%R)qdF%%DV2$I&-|>OMcnh{+^oY@_Mnlby6sW(H)>8 zZGU}MsZ*#m+Wc)|{`QlyZ!wjL;&!pu47Z_&^`c~T4Restx)vRmB5~*DsxF&V$R%B` zoV%A&6|K~{ndIIxW{V1S_^AbT=`Qj;<4ku(1pu8`l~|o1=-ma?$ExGYkwOpWFUKuc z|LB60aima1$F>O!QRkFXfTE+9mjdeXB-#W5K0F{4+w{)FW+J5bj&m;xbv{-j12}n8KcMT;M;9E%Ih{wP=7VIa zw~)d`v&g$Ws8t+(?k~b=p|HrK>fIxySS6iShd}?`0s2qd5l>b>QTghgmQ< zv*R$|;XOEwG|#;hvaprN7IbiqDULC2iypzJ9D@_ct_UbF9>CJOjM<**MDV+j4lUyK znDH4kgyL}xM3!wd9r+U(BfWHo6Z^CcA-YTLOy)(F?YOz^Xz7#i@tsn|1X#otLTAWJ z7t$koj+c-jv6>$G#ZoBdpwi)HUuA=rt#v4lJZ^YJ!Vv@TgIM~S zhS{9TT`6%(xJ-I0{l_JmC*3%OyWJesj*R^tRFbA}$sl(U8pFI2Il#;M1 z{malxr0vn{`X>OZAXUhWdj1pWJZ+t@Jp0rEkNnRIFrNAr7ay2#uX9*gw}}1fsyWkS z#4NaW$I-$(-aE-wWT(RdG$fKNu8utSX?}TswEIW1keP2;Q9U3a$$oW|)0+7Pl{UPb zB6q+i0<$zH9CJqlp_!73rRvV-TIJXe02oK(w(P_%fobf&wQF>Tsdd21v>oT~QDt@y z8%}P)4~ebpd>J}t*QF*pF%injGpNReM;}6(1Awgk6K{=+6vD~G0f{ryusd z{^JwLB|q?srNT2IWlKO>&})_*;CKdGJMPB!=5zF_%5XiU~wT?cU9iIcz1K_L8lwvc?ezBfGXUNFD|T}k!VA0?OC zdoMrFCub5WkEITT2Acj9rr&q1MV-9``mMe%LJErO8UF474TYcTF~CY~o$y9}dyu@_ z1=CU=BDb^D)h^{PYS7xRT`WQ~em4~`hF9^Bsxf2!9)y>gA4P7;Qg^Ef>Gdm(RtsyH z7_c3dD6HN<{S|Y90kOQ{81JK}9Ih1phL`i|a`DZYSd6*!rl9tAyTS^#lXg{dc`1@U z#?atLxY>%MKg-h?d<*OYZWWn%&oqN4j%)FVZ(=%bi@ANxww3OCD;r{JVV*_>6dgeg z!_(Co?_60Z$P@=KGHDr9beio@@CBhy-(KG~UcCpV;5T`ojucTguYL~?guvIK9@SSp1O>F;=H;{d?8qD8U?iNGe9p=M5^~WGuk&mHF zkVvsHUQZ*rv6>Ll3l4wzRFCJkQ>Iq))&wz>aesgrckLL2WhYDV{dzy*+ttLxGiUQ= zDRf!M{Qa?VKV8us@OhQqaXM;dc&kaG0aSJ0uR`l#kwFpbS(zv&OBAd>x_)d90)u{? zaDcRtRGf8MseUH65qYU2`z|icih%Fcmi15=YJbcyN6ebInhi-2MIW>v!({l>#0p}$AGUWOimjlN;k5IayO@tj2p&i4j&qq#4<^AH=KSpr znywMz7ixLYO=Vj0x`3;mRaO(e8!T{x=y}P%f*fu~?0I?*N;yyHHv>I)C&=&D+|78JIzpt6-rxjlalb;E| z2@oL@2wM~cTc6sk#R^8}T5D)VY0!}C4NU43`2s9|s4NB>OVgH_Vo_T@~01WDn`aHNKEAyvUenC$Z4;(c``@p&cfWCt>a*vF;oC zzGl|On>`QcJhP5^?Rku_5U-*;9NY1sYIhXhXTa7IV+>rp#;h32Q?CsPt5BcJeu2hN zc?%{q0d(rbRIDTnJDbo8sZ!I1ipGPBt&bpyZMW$A?W&g-}s5*aHdai3uFO1Ej z?eW52_qAG7XdkJV(@k_hx=8hI3fBn?t%OtTL@P5%B4w_NWM(6r{RlZ7+$4O8OKZo{ z5#}G2-o>`Dl_Qr$B@$_ifaH*USDn)Bf*6z*dF~+a;bdkWfgPO|^yY7WkZWv;?SBrD z+OL~b7I`==iaPuzbdW@{r1zzzQzDqRn3}-22B$rXIWyL6G7E@IbJAX$?{td%2Unx zqpS9bC`LVlvw5rCTutWM-uwK%RCWzHoqP$~yI?4KAx>1WH2X#6X-&5m)|~MxdLK7~ zEB^pjYO%VFY~r_Y2Pf6#s!Vu&we(WX@iU+Jy^rO_h`{%k3s1=wNKNKnzLNCmm^y0z zR$rAmXZ10mK7nl{-T;XOscA1}>C;(se5LfM{H81XtfPk3?jmC?dndFsc6QF>-#~wg zqf+k8oh-?Mh8YacKnr#>eRW~tYv}mxxVPZ;K>DZT4)tKA{_=pYy(KJRTukXuiTV*Bw@E5Gr$~=Hjuu<;9{uA7sGG;Fr2I7;B%4Gg;%4 zp_gpt%2trgZWY4Qz3%b*Zu8)I{k`+$%eAJK@1eJr^gl~=s5wCAFJ7!FYkc_oXATi^ z61mf>ovj+kZRDSB8pvey!tv?rW|r3}dusQTV#$S{=d?_&H8);2e#`Kurxp{EuDdh- zXLjqpH>=w|VcR^`7V@4se>x0Zh_N1gp6}#%Z%l9T)OM);hrVl(V{o|QgD2#&gBeQJ+^XOL{2?I*P z)=Xs>nq55jPgoyVDmk8vqSNe?0;!dL4thisw0=J5kK94}BZ*;x7jihm(B#VM?-SB2 z8gu?>k-*5eC$Pfq7TDu~KCSp%6EFR*obdJA_Z}w<*#Cux92ue(Irzpb{+s4O?JI|= zN#RdCBT|xLj?e1Qr&LM!p#SV>VO(6XSkCa4d1H5mYZ!&-x#aC^ifht|+gWV)ZI^ z)nG?nxFVA`O?LOIT^#caeviKTcW;FzQs%%3{ID&~(AQe%kslf4xHl;&5MD}oZAGcH z38Z)KL?#6$u zIYJCRcA}bg@i>l~W77`Vs6A%)E=8W5kMEw(Ht#tY2|?G>i4lMj?x6&OJ1CP%FuA>& zRkPQ<5KI$r@kKLo=<#lQ3FYH1HB3M$71`bVS!i;6Mfd4cu}~GSrKPrOK@Q*wCAO({1k)(zvPEm)7(jha_|3f#XA4|%-b#o=smx7N%VH@e+R;egjfR*erH;A!o8d-tOODsh!l0Sf}+p%Jx zFz+1CsKm3j`lYAE;U8){#Nzq~xdjX@n&4y7^M_;IBxJpg=tc40jmBPc?^PFqr#HK$ zl^bWluIm$m3-QZUocpzMcXk3ybdYIA82cV9H&TG_tB{+2AY@d;WQZ`CG)ZOg z_E9!+M5j$|mZtEb(zYh@iS{PoEq`^QdglLJ?_+Fr-Qsq8!S^3ymFd@IAzz>;EPO}T zB55Y3&q^e}D1^Qr)E{$1A+m1T`$k*>Rms3zHKlGmVTsAZs zN;R~hEU5JhHZu(T;e;!1B%Zr|zncED`%yTht49T;;1twO6f+3Q(7_xy{K&A3C8hqj z-qR)hKLxAA@7b^5oBFWlJ`3qT)_(~^F)B*KoEL+oi+#=}6HY(9JxEFVuy~1DE3Ui0 zdp9Eh);;h!hZAH;^Q(YbhifPEe_2n2o`4zlG|28CFE`9WNzo&i)v33@Ww_$;^FA!mcN))9W+xRcgN-xnO+ z$0HTo<=-Cbc-qQ*>J&eiGDtp#{Z&_TdEnx_XuV#XQh!f;$gf5h_jIVi?~MD($qPa{uwK)kAU(FmDsE}J)7 z*7>d`wkP`9_m`H*g@JAfoTv5p6w6}2Yni!Tb*yXIt7U|uZITVSScln3f@ClvTYJN7^k|te2JfprX}ak_dLu47#cLTZb=9$d1u<%qzktXyH?1W*~yb-mD_u0z%Z!&EWaUGbLPigTfQX?&)D6|E+{Z(jL>3ysSGybsXjk zA=x5A@oAZ9G9UV)RMBUpio->oFm^J4>I0>qRA)^Wy|E;!A=FNb?-#`$14aYD5>_VR zw87za1TdKe=0r8;7%q;xu=LYhG>3_qqF*~HmP##LefUOZ1KNzlZ6H18#pP2ULel5P zso#vpl`!w(O=!wu>^rfx+9KJ|s3KSV{{9)N1b+VnwJz+0jUA1!9IpQzk~g*>;&f?8 zcny7)r~=_!rl|G$S~Q#9(HqZx49Cc@I8=laW!N|eOFwy^!WPFf?a>s%aQ%*LT(FC~ zU}#Iy!d^QKr@A*L8W{NE)o!%KnCg!m1jEVIqq)GxS@29J1C6lRcn%z5@v-l*7fh}+ z7wK4$xDkx*(46hSEEC&ED%+WJ8xd=8n?pQ_1U<-qzKIpCi`IsJfbVn1dxqn2)PHL` z=GrJHz>F-%olT(6X&*d$Zgw|e_s}TBX?560uvOv7P3I{3pAM7(Va`eeCvGNH)YMKd=Vm~l1 z_DF6gtOdu^n>2<**>ZQlIsKR{)1x)<7NoDaFj(OrxU$p~4c|`fSbo4xUz|)%ZT_SE zYwRo+iqT@dUO22G7tBam2Mmz zJ_|W4U-pGv)iJyjx&YkMm4D%HiWxd<+ba|)<+7@hr$gyZUaXp=V-x3moQ$cZUDtKX zf#|Ax)Rt<$RzpG`B0<6u?T*D;F&#s%>-d}6C{;l##2ZQ zqmp6D0Ktr(QK}DUbBh(lvu>xSG`NLUR)-Vjz4Oap2*<~T#?>?#5jGsRfb@rYN?gC_ zp7H@pROw>=<5IcTtQLFUgz?JE7pU&a#j)4F=p(&{#in3S>_^_5Uw&qb;ROR zoy8YqOFYh!UilTtvoe>FrAp6#^B>=cdrESGBa20b3Kor=z3^DpiD=kRLdJU$21Yg$ zoY}k;kC*oYLDFc^XMpu=<58Bf*?Y?wdEQ*N5}Wjo?zzkQxva}FqCP)x$K?w6gFSAp zhWY+YbsF|%=x2wSwcL)7yV@LQF06NkSnohSr}Vre1M}ZCFaPnZaXoWdB6+wPV5u*h zZ|+zy<+?I>eKK-S%3>J&dumSkJ^<5eF-*OFZ%>Vp8BB~QY2Q!@_kFoLJ-*l9jm;Fe zXwLK+A9ej$7I}HM&BVY;o*v_wVDoV=*IY?(Wr9*JdZyFu8Q+4Lri2SakSU?EW86hS zU>?6e;B5d*WC1qZN6@XHk&ASERu(3iJq1R1et49VC`qqXzwEN!5C5Y*peiTnD~s5F zGnR0=n$;2`=To8CaQ(i;dKp+6z!JCg%sBq(P9I0SFqt4+W2FAE7F87Cvy z)_M}$&rMmJ&@65_)KYENU4Km`K04{z8r}aZ+1D7^1M8ZMwYi9=v}AsG#Hd72+gz!j z`d+DJtcHqSnNXIR;!&P>S_qQD$!e7a6g1fSz6$DIwf5*30OCV3OU=|8{ zlsN+WPr(KhR*nOZ`%wdCBvEJ<{Ao}_rVrx;(y*v`OZZrsJu2G&sO*Qs`j@fPN4rd$ zw(^Y^=^d?LRbrLk;~(L;OJrJZn6~1s4V*FfMr44F642jNYW)v-p0V-mY0=H)U;Dpk z*e8Hfa>uE+G4t?O3LhvfrQnO#MCwjqjuJkGs(Vb4u`@@gV+ay0FfzhPmBydG?Tggv zl9RrBZ_P}|E`evse7+5YJrK+hsYy9~%HYpia11sg4U6X>J2h%cSA4*RH4?&5!)7KX z7tk1^MG2{XLmnM4MEP0I#?KfNK^S(TNu@tx13!Uq!)SXPsukItm@uS+z_cbPa9hj> z?i1oL2`6JDl`c07RTQbANUbPlg{}FXIHtxMPlXh;*(WOVwjdwmz#LKh#@;a^NJ4N& zU-9VamjrTALi(+BmVz(5?>tH}gBmKRn7P3KW~@&Hx?&*TPy{<=-bwl5VpjdHI8DyO zO^JZLH_}qzD4@F;UCdk4(9t0df@yMTS@X6d$V1y|(aXN-M8q;PY?&dlG4An+rGFl zLqN#r&>5<2Tf#@%BNHL{pQ||h$5{7?AjDQu1pR$hf}v2};nG>C&UV1g3&!==5LuJIS!%e{RpaP6nDqv>7 zL8Ms8h{8)&8&RiGhbZl7Q@|!(GXr_xxKyLih-YnfOUwGAb+3v56k=|gSFxYX&%%`6 zhwmqs#cwOG@2P8C{romaG(+~Cm3wcF{xRGEWi2OV5pf`usms4gQTK6ruv-psnXbNv^ zs{dCt#5Aj0^q13YzjS;LAZr=<)X8=z>M1k*(Xd&AB_`%nxnw3+chMpx85mD>V=pXz z+uLu4qXIp`sd`fsl=@I|F-yT9RZQ6xIk-*8;R28&s->8dVG8>lJTfZiOD4)I`<#rNo}L zHHyEx>(7K0!tvFd85*nj91tPsW2G|F_k1>v%D>PVQB@C>;+QCy_*yV!lbk)9Q#MpM6>bV z7#d@bm6l&%#xR+_R`#0~9Dqq=J0L&MQtT7mw<7#htw~qk&W%e$L5t7+L9_)9$(Xxm zIX$bp3@4wnLzCayKj0ecxlNI3Va)af*j`XmleRchutj1qGtX3UiSEUeif~ih~?C@VLb{{bu9p?if=Xh3~R z2GDfw5?@GE@8}PMC<>GVl?i*uKWCX(f9Q5`Sy(NSpWtvW6Kj>(wnP-Ku&1*! zI{U+R4fA$QD&j|=v=w~(m(AH7=W}i{q%FE?H%OGx$=?wW9cs$1Dh01>#9ER@KV=D6gadcT9x%DmQ`4X_W66DCA3jL}t4D-zu zE>-uzi}%T~P;Pm#|4zV6S(fSa8M$jwkz;UEMfn$wJU(OVDAotv$o-?gKxTG4Q4i}7 zXCa)8U4*+<-cpe}l!FAsijx)U-Kdf%rW?;1g&M$vMsy8w)jym!JFIs8S^D&0WkOlj zWy|QZvTRxokd4yP4p~qRV@|e~uNe%Y$Y8Fj%@e|mr=)*|mlQf-i~WNDLjPzR?YysG z1d2r%eWDX5M?J&!=v^y*5?+tsD|`Xf&{PS=c(32v8ex1v==175o|Mq&Gu3Q!C5=mM zsL&>WwDaSXks8FSO_PBsMWv%o)xz18>lH=ue*5lt2{;LUW~L8y?AXIffD$XZ0?Q_( zP||RjN3X@=FsyWM4Blhn5YZ`{O<+ZiNyFJ_Ia3cgr z9jT2J62A%Wp(Bkf=mS+U;fsUBE#deQ;v}aroZz(2DIU6gha6s|yM+Gg(59!psjcvI zCPW{S-vx? zGTiSt=VH@?-zf6n=vsvDPi1iF_RW9V7n-CUi|kfAB?{5;b@T^Eu{_7N%4xFxeaw`-3qf_2n6D z1$IL#)BIR?-B3c~uGX?xqpT$HShi$RVQoo8Qg6k>IkKQD1loa_mXCa?@=n<(Vcz>3 zkW?|H1VSUbJUu`3&?^C=NPU>EvULS0M!kg$WTlHmZ0Le7QUt|9zL)8{$Ou_-qSYI7 zh!|_2Yc$HH6>6f!tWh;VryyE)zJ*Fybz&6zpl?dqZ5S>mE{EP|?%^_tZTE@LbJUYb z$wOJnSZUcTCl2Wa7J#<1y|&a`DeWoUUhq&Pi^KyL+85G8^OdV4Gh+ez-+1(+XmGp`OCQs$-3w?fRJd+l8ySpCkMi-`U z-rcX*5Z~>0MTCg`U6dC2ZZ5*VN?q4WERQI`bH|)DbfWgASxpF8zkDJTV`h3KeI0xr z=+M)7xWCZrG2r|VG+|o&^(^h7>u>j_^yLr9Y5$9U!-K19@1-x4AsJC5pls2nL*)be zZ*8`%(nN!3$!i_#s)4<1NaIwIK63dc_S?~PpZVu^SIZ%7n2B@-#j#oe)}_R zK0{X)_~Q2W6(D(45iD*ym5|);*Z!-|>lqy;mwww+K9j{FO11Kl)%B{u6 z-H$XrJy$r4_g!ASj;&1T^`EP9`kenq^fj+VRmi`xhPDseW0Mv);}yETK-Db20}#m6 zJ~wNc&j$xx{KYksyo^0@cqv)>^XmzF$j_1;w-{d?ScJPsDH_uUJ%c zS}W1^1gD=KM;^WX2{f5r_0p?$MwC?vc%0TZ3%k6@pn}74F4ALUa)5~$IN%>(fE7g< zu+hgc63MT$xu=^Zn5re*$2yrla?-VzM3X0pj@Ta8&Xc;4}S0=o~CPkS8)nqT)n zIZQEIo?Gs!Z211 z^&z&9t@14|E|7W@VK%f8ME)5X?!%pPYe1$#Mkq41^U2@{!%O7cAKCRza)Ep&l-tHb zg(YQ>sGThN(vh2lc_%aM$Gm>6a#F$V5I!1f=&mrfr_-qje?;g+|!x{W1*q z{&4I8Oy+Lbz))nU)2s9NnRYIB-lOnbLd$@84QFaT^&ll+tWXRL2hM895GDdE)**5` zzjP%E{xw6rXit`OOoPd-3wYJqj1We0St$r8{-~&gRV+_?Ztbp9%$oLc`N%ICs8b7DfY%Hx;>)kbG&ot!pC(1mSE;F1@mu#>^@T~z5VFL2pdYj9EN9* zSkP(T-JoEO?nUEGCS(S_n_{*i3&sTv(EfGQFCCk7xSpnvjb`=Vu9<^5os(?uw=1>GTOth}KB6xFwyx@4 zH=BpP;zL@bh`hHiKGX5*f=VX0Ty`;vn7t(HV-AEHPP-?OW4O<`r+Nzi-IRYsvVX! zMCL4%nZm&ARWh4T6c89BY2l`E{4@8f35s@j>Qkx*IkBe9XWkQjRLjA4rJ7T&Y0}tO zDm>z#-ASLF!70U|U;lGcw_(*W?9_km`^nG325-B-=k~kN7XNBQ4i+>1UTuGEd%d5x z+1nPB?X~f5etYIg$jN+}+xy%8m9zV;0>KwWQs}A^hdcj)_^2ew>~+)L$%azuH{op_ z^DgRU0=98<@C1{@0B734MF%h5R<+8hXQ=NDPYe8j5b??Z!nhUr(CLuSYeW!kCieEf zN}=4|Xk7%Je|oyE>&v`m;U6Z}0r&r${p6;S1rG1yQt7F={kQNGbCn0ZKg+0O`xa+T zxH#NBp{5K`p)BDt#NIjLSIdF_eEoq+VA%S^_yRonbC@Mw`u24`7+?yAVIf(9qQ@?m z_yYpmi!aQQLoC?!Jcm590c1XPpcK9orhtZI_3Mi=t>+j%lWU0H+lX%d zhpo=a?t9?n{?*v2xjlF>@lAELrQM*umfB-_r?l2`O@sZI26J}%lYRQwK{o9@ycfJ^ zt{>1UmF!hvMRFE5N|5~Xxs=BlE)}JaOV?JeAzrTM#9M(il4bD8l($HPwuo; zqV~#4Bo-sSWE8920Es)l%e?@?g>8K@Z*zmflMLD53XJqDn*A`Wg6;Rn16yx>3ci8k zBn6qnX_iP_3f%hoad z>Dp^8xF#-dmBp1NCP2}NisK@s;+@=c239O2I4d=Tcsyekg9l{Lvn7iwF|?{*D&w5oGkI#%+e;D-J{nFu5<(|~nJGHR(gJX%`wYf9ukcHl1&6CWmN zAicW0=>~;gY=bNW{eC(&9Y=bO!AG}*#tTkkg=QLa?7)-$`F{W{LDIgJg8*cN1bVVQ zWG|PGR|A+Tq5yIqUj>?#H7fCvW{-@4m|3XOd(r}hdA)zc%m7KV^qi+2~)ff zFb&9_5Qq`LR}GOg5d2TYhvSu$y3bA%aDF@)B4*T8{#Xtn+R_4vgbVG(lhI^I} z)Nu-LKFk|2eo|*$)XB52X)=RPQs4=bA;@SlR?!hyRQacU0D9sGFzQr1;ZuoSQ@T9K zRE(bF18Bq(K^e&v4-o)yta4H~WtNyoVl#!{)f_jvRlgMuJ55jR%<s|T! zdW(}T7O{&LVJax$h&sEIftLK_+>itU(wNNP*c}Ox8B>IJsLW?I>4Jd3u>}(D<(5o3 zbcoWfC-n$>rnExfbHMh&MA$4#Xn^Q|AWZR7A*S{>FZ8@8t*l(NcHWY<$#a{lYFo$8 zXq-G}W%aV2X$xCsENba=6nZ+>SKgK?TqVFvc^KTosRY>7*W2^X)D=6N{K~&xR5X9~ zPQPe>zj(-_n#f~suHF6OiO1hG=jdz3o_X`+5$~)UH>Y!Tdw<)y*3~U5eY@0aZ+FMI zIkxrnADvhHl{5C&*1JBXdG*vdYR&UIEqYD$fcg1@9#$l5DF$t#Vo)K?wEVtt?zv>ulP?_YL;~$dEJb!9`&3nBF|+&s(Eh8RZ+`; z6iK_Mgye9cB~w;$xc$xJUi{KepSb(w#x?8O*R%}$9VgzJ>o;tCXUejZuAlI|(~E!q zMn?`@jKI-2f|WNZl^oWCFMLyWC5H*w6F6sFROI24``m{^z?QkaB-f*VZOK{zD6F=RV87GiSl=EGqnAt!WgH^Sx3 zErQ#ML@GESBC8@ou%$5YCG$&%J{Dx&5)<8z&KtAq`QyHS=E$AT8U6W#pV;om=TE=0 z;mYANr_Zh5w9!j%pa*p*44HJ$oD@52v;L-!f{}Adz?s_0M*%^AT|?P;GM&RtzWgZk z_iyN0-~ZHv_PsB)m9Gd^d5BKZ#FZPGBuKlLu++(t{QHq!H$yp;Nt;V++ryt!2}ze- zz;O!Xjh4D1>?%kAvVF8`5}0k0MgpplMd#?BD}T~hsx8^CWPZp;!G8VKj{;c47C#C+ z+5DqG9jpTQ(Yd299?^Q_ujj#Z)r7-a)s>u}LGe?umbt z47&(Vfb247N-~460X9<~UmrnJunghoVJI>!5SVTXWP}hcAsb*l!IH^MfxuR73Um`J z!jYj!#y6VLL=ki0bAv8^o|qJw*y2qgOQzJ5E?PJSoTxJt#{y_1%p@~@mLCOT1n})q zBn<@rEoExheJTicDG~q}MX<);n*y&mz)+btxTm9 z09cr*lgL;_6M*BUV2LLramqZ9^n~vjy9l~mio@y+lRPGlL49z?Yl&l4iQ!naHNuIc z!GuVe%M||Ln*z7#nv#!)nCcC_sV6=YKnx~Wq%QoZGYy#*F;L_U9K!i1;BNyx<$|z~ zOclO-IIJf7`F@m|`Bf7%lWd#HivVIqaioA|%$Na_*36kRvyt=X&zB>s&{&jxJ59za zTQEWKK^R~;fG|K2Go@upAX#HQ{$s+Vl8YZ4@|K(m1V0%iCf%GNtUy`kr!)RaF%n)7i6U zCzJ9fc4#E2%$YL>LbjYI1WfUH3*QELukpbk015$?A#MGvve)|2@fP;Il%@6F3zKCjgTJ zQO9RaP>F@lru;GWs^tcp1q&9;n>UY^bg2g^g+qX(#4;`9TpbxQ2=I_1f4rE8NnLUB$0J)vf&hc)RZ~Evu`4^!|U&xqj#Odwbqgqe(1@ zsV33byC4>9Sg=y0hzj-+6?^Xr_8v9%u7D^-iZm%RzyQNA^r3ec;C$}qi}(9v05y5v z>+I{vowe6q<-68i_p{fYL0EIcpC-F6V#DV>=<+mb#&7qaWgFY5#J3Rbl^nu+rsp0AD2SLr8c=^@U&Zx$78 zgkFUDUg!1S^`sZCeSUV2d&jiB^u5k^P58q(ukLcrYO2`Ckux z^p|J8e_*!{uIxMhotDBm~EXN^kOJS`O;Typ14}R~6r;n-b=T5y@9|$v~p)F_ST^n5ASvVh$(Y6EMK{H-kjN+ zH_Ay-MJtvU|3y}^>P|Ro;hN(v|773pgKW2tK2n9~clEe>M3tbgRR#(`i)_>N;%Wn- zv~-iIMNw%YaZ+zOR7~afPY2xZxyR{m{Ga{rqheJBvZ)}MRW|Nvgi~g@RVpV>26^f9 z;9UIlSjd4mBY#r!wVFzj^P^S?af?e84<#1D>s?)a+)UHR~^ zLE{(Cp1WYx@a_7}dY)CBL%ghCoa|EmDNIgy6+Ftk=+=p7_#!7kqyH z-6LzJHf&f|`~fya;uu-EYRwgW#(lT-(~PtEuLnQGtjzq&K@YOvJ|J&A@+(H2Jpq}K zH;Ix-A4~YAu2}8{ba{94k@k)c6n_D)Y4QfDmzN`V30bwoGW!U5cIhH%3NydJLypE| z95#y7EujgsDf}NC^&~Jt_DR`*N6{YHN83bRy4V4dBb(*xLM-klDvbsAKq2S01GWnB zVT1+WHoLX^>k*fZ-1U?iRimDH9E{NNekBl3ZxBU(!xv^^K~v`_z8HijHwDp+8#m6Aq_;+loLc2eM=CTj z@LDS@nV#9G9tvu_s&TP2SpY3#!$5MuEAejtqCz4}mKQ$)Eb zpfSm_01tSEDPbc7G3gbiC;13uptZlt8s_olFQBYK@m}r?a6-73ZdOX^7 zJ3>8ph-KqFnKG!y9aAwLNuz{^POale2%^N99Ykk;BW%?`#GnyjQ+UY0DFfjrE`xEk zC>8|po+M*7!<3e%5n$x)8ky2vh&&^PnZckWb0k2uL;w*1A!G?KQ%mAiT2^sP(U5aQ z%oM>If@1O+vp5C|6mbv~aUhB1Y&s6u$z%dVc#;Vb3?(5Oyi?3O96rS)jf%8nnoUQS z77W=SK$7=3g=*Ex<*U~=H!N5)v9Y<&o6~N7VS2B}8vf9^|4~;Jf3u~dU2p2h*Ww_w zGFl~lfF>g?izdL0LL20;*G_2{2%LWVG~Iw!Nn4<=qNo?qk&w}RoP5({mbEn}-B_bb z&{%Zq+r&k@xOZtsesk74C*Cx5@2&$~>dv@(R;w#UAJTIuEuDl;_vmZJ{`^!;*x*BY z4LhjU$Rn>9d)!sSu6cUKEzf@W>G(xWt2QrKy1~Umso8CTH?Lote}8z%;zeuM6mNa; zm-l}4ms&S(SX;UOqc?7@T#56#Au{Aj!b9YRve)(qk!_M#c`nm#$&lylDOwdFypk-C zw0G>#Req`kk?$gQ@`bK!g29&cz>U6pPX`g!CT2@_J&b_Zu&x)xb#;2u7 z@*nsqKQvJB2cC3O?Uj#Dd1LUr#)WH|*B4*Tl`qJmkc$7Sj1|k5ZE98t8<#Kj zJ<;fg~+b2iU2%*8Qpb z;42=Tq)OJVDf%kKv1CQ_wa?Gnjh+J8!R$2YWH%L%^qp`ggOcPMxTOt(H1JdN^Dpj93U-o9^hD6Ct% zdRpW1iyoSE%(X@JicwmWv~O1_k{oFlk+(x0eElkz+$5!4m}KOEn9N9~O<_SEtV)Q4 z=Qp2fn@#F=hl&EAMLsVqN$w<>qr4_I0yBp~s&}hHq4-bVLGm`4s&fE5ZFh@9fo={3 zzP3ITAnDe3A;3P6+jPK)F@hsZf!ks#@H5DZDf`gk5Y7)oFoTw&h{P)d@H*T-+bTO! z0jJPp1}am!gvrPQMI4HGiC`9&Y^WkCEF*+K5z~zt4FC($i>A&U$rE}{+N;Ze%O5T- z!1=25h5s!N1w z4lkbUumEJmSkcsxq{X0-i$G~#vBi6eM??{jB^5}N7xS@u=DMQ=^2~&ER;6| z!k$J650RoG%mpGjC&M7uXkbh&dGelY$Dk2mQ+UWE+uH8tKzH+V7}a4co?<&nO;d%|ib zxM75VC4&PrT@I+QSsl;RsZ$xmO#GH0vzm=hNTxOe&9W-@v@~PJ3^ozL5J&8@hVX=k zLDoDO$@dY2EU*?lHZPUIh^K9!#WnTpS+)m}v`~}^rtERNm@>ttM8QBnD)93Z& zMI9clgM@K3K05+r1VILYNs$aYv5>qWOl1jL>Uj-dV23+^@zE(80%A0+udh!AsNA|zC-5{slfFqLZIlzkjiuz8d> zMv`_Mky@ff*pvnGo{*T9Wy6cSkrAVi#T6BSkVnW{wt%pwxZp$!A5?hA6JXgY*eoNg z;$yOD$_s165*I$F*_u>oUKaSlV;^4{8P6_=ZtU2x09zF}sIE`_ht{5W#m7hX?03}V zLw7#m<(*FW>j4)G`DNu-C{AvNy2eZAkv>2ltntzZ{OIVXTU|cFVXyPJ=&9v;pdTOm ztcJkFLkHv3*LhfCL{FppVIiFsYi`aOQ(a5P2WIbi?z?R2Z|Gv`dw8M68joZEUIr@_RXWTTR?G^n_zItG% zJ4RpK=Zp70Z)jS!X5Rd!Wy_b(U(hsuVr|Wo`Vn8w{9t(Fb05^*{=~rN-y8q#r!~{+ z9ipq2E?zjRVP?K_RHF?VKYqOIA!OTb%75z37T9Zism7OQyMUQ@2SMFVnc8a>YzK}# zHMNg+L8Vz`&D5~U4guS33V<_r!Th;)iprE}4NZ$zc=5*9){n29xvqKhvZae_rp-C* zq5%i@DtZAts2uhDT{qau3c07 zO(gPA9tyS(Aw`wHe|Yxv>C+Z3YHFCf=&C2C?tH>4J68T4Z0er=g=JQZteN^wpvbtlTehX$lt88sB7_VWz8#l*yXJ!#cW54yHwL-J zfyc+Ci26St_yEARto&=1Y?-X$5P*szoD6dDr>+C{?)b)Y?@w-8w50g+y8NWX3-9vkQ4m0F7MM)?F`H>}QLCA>` z#rKgG;fpk4`1VeU2-^s^GK9Rzxy(qrdXP6XnfxZ7HF+bD+RFeA| zcHf)z)uB-Q_(@TzH#WC-D5x2CW)@({0Og_JWw+@pyYaHX z7r&NB!tYBUXAKUsuz50TDsX%p0yy|TZ1a>P;BzNY-)r@_TqRM`;t7>0z>G`LzaIP$ z0p9aMCBwu3CQq2DeChG>%QN3S?V5g@Hmq)5Tl~;u-RkAbmlQ>kLm^)mrs|S34mu#!@9b<{Hj*e{4xj_BKDyo>CL@>k=QwBQ>;vn*#R^Sx&A!LEI;E^;O zW*PA`6$OG3{G>6vOkP?jYTm>sEpZ2iB{p$*w3`OL&4trVAp*)nVuiqwyyc4pKi^Ii z(d4bF0jBtheRdGiPTfYp7TC5!L`gdindBz|wAk?k%#;jM)CB@R<3Yj>8lN5Z83CRJ z1SUmLfk8l+yd|p)Ld(8Dm?DE_ihTIIGr~T?)0d|KFq-AOEJC(TkuhbTI`25!yD7+g zoLc3`?v(q5h@|~u3Mv8|v9<#TaC4l!q-ISRQg0cPG8)I=fB-@OMLH`9rJJNsB#*|- zzMA3_V*w6R!-fed+eQ*}*}>-yvKTj#9Rx+z@Z*se10Tl-as*)Dh2u$=Vj)rCu)rf4 z5=O!|0|19`5)zL_Ld&2VEn$k0Vy4t_Dk6mpFG*we z2oW#pk0g}@ZYisn;gFXB*!YbW0gh}sPE@Rt$*P3oC)+U<R1CpsamfD4J^UsvHO zqEVpU`Js9GmHZp0T8;A`YdWN-Ci~S3pImbK?M0WYJtD~+*LoU`G^}V(c3ipjN%|Wt zJNxL456p2df>6r^Fh#8fd7su-jy~eD(LZkcm;HJS`F*GUzw6lVm}_hHJO8s2drvs) zj+*w@^}qksx<@}~>T>57r}ZA*`m&)XTwnYZ)+hF!c=C-C59vAhz{z=*nMMWT5cEmek3rxMgD$VYv%owy; zw0PkZCu8BFWfP{({b<7S!!P{s=t~FQ_uFsv3}j!{8``Bl2qg^Ge9-UL!tP^dh_~M`qiF#)0mTQnX!M5PgR1AQ$+~- zs0=ihYQPmVy9^<|qVhyr)#58H4KXeIYoqnJBz^2YF?Taz*-T%S{O(jf}vf!c`p%ibSRHsMzrT z)OEn|H%vL?k`e80s=4{uNfW0Oe_m_JlH!lK%CJP4%E{6tix#ci+|abHdEKf_8`h|) zSB9)?dqeTZn+4_S!ju<;O#sv|!t3MZk_RawfUu8p2$(&!xjv$X|HKp7HK%}yPa2YuD)+uM- zQ}3m2cXRCpPb{*1xnp=w$xEHIOR4ncrwRB7yWq<~+P$_CC~vtB+c;X@bOOA@NUkDi zL@Y~!s-TWTfUr~uTon2KAqKgKNG5M~oV-|M31JmK`;JM#u1S}A0FO0kM~FoTd!5&x z@Qu&a%~@2uYcnc+6{5wV;5&1hhXS$kP{^j|P{98-hk|Dg1uu@L;ZVo{XV7BAiT22Q z3x0R*2XG2dP%6i6+76YIz$FJ?Rpcg#kTI$Dlv2BZBX3D24pWjKCxjK76tUxJHzgLq zru?9}$WKW~N*BfL9SY1=9}3_(6o{!G@2R(yBWJ|d9}2l_I}}d4ZOfs+HFsQtvCTul z)XwJZ&Y@s)l{a;Y%%)bwDR|N1W6-63?E1q!1hWKu*#!& z$qpk1(pNPG)dF9 zr%#~3utAP_BOX{p2`uC&|+8MT)*iZLMLQ53u!6z)O z#PIp^%)OjIhRtJ#Vj@S6A3xp}CLIKnyXptgQ=*vyogImuJb5xL?nDS% zW``UZc*MemvWO!xNobHqJxKr?T4qfXj##MR17-l=NiiittV|1j;xxYNtEr!F`x}LgMh5^NRgx|wE6FsVxNq3Nu4DZW@s&W6Tpx?oFazG+sJ+b zv=Llznmpvk6J)qHWr4a~P_K4}3u4rhNdjn3{K%6m!^ceCIARA~=8YH{VJQhD7EWB4 zk`#Cnj+uB9J3`)KgkK!+5_NhGHIOpM;6;Gs39y3@^`uFYSSHLSN6LdKun{=a^Sv-- z$`ryRF{$Hczhp^`Wjjn28vp^%BN(&*Lr8V-nq0`b>)~gSC4Id#i&zmt!sPz#1n3)J^jvx z({7#gWWUBQYMa(n{+O|JsY?GRb@od#ZHlbQa|#s`M~2Hy$u@bS?S*o(q4r2UAnY}M zVYo6>f`ViabM4wSwzh8Skp7~$`9+;ehbgNmN4<3~Sg^TY>3XRKVY zjBy@^jjFl+sfqiZKj>#C7616^?(N^{c-x4DOV_Vkv*mhksQ#%lW-nR3W<&F)HI?us zVC@=B*p|PHL?8f5LTb$N+O?GqVAF=FjVmAeVCCVL7JpBVR#<7-7geDV)TG*CJDa*f z$t+>>FT z_{;WhXkHmqKNNNCWE2uHNn=L=yU3BGMHpWZ{;B_MK$$HI^R3_@Jqj7%1uC|oFWve zD5OH`EHriQ9h5iKD=rz33X(wDO;eE6JelLJbv>B0`)P0YdU#ypf>o*h9f_$NtEv*9N^`LHDOAZ0;A3~Qxcd+M5Uu3o=%$=`P< zm{uPOcHFmmc_{cEW+#V&4&)y=6qYV&`e1PFDL0PY?Uds8xAxIT$dV&EkxGuYK+*($ z=3VtlMdc))g7sPn)-!t~T`ps`L+qI*`SOYIrQuW76`Ey^awrh^`a?ltw|6MmYvpGb zfKhKL2Co&m`cPm>AX^^_`L(c!ws$D_TF9Xg4DbNJGMtR??yH0G9121ZKBw@rj9`#Q z#VMaG6HplW01S4%h+OZfC?^TYcZDg}Vze69mXswe8=)Yr`eYZ#(E4MikB+`({BO>A zfBy@IoqTKkkv-lXFnYExQ}v*tl#>ccu^H8ef{IchH8nL#MdfG%2zaJPRYIx@k-MKS zA7!b8D5_HBgh}3EM1a{`Jg6&6ei4l0q~GI9&rH||pQ(Jkdol&YEqs|E{TMBbZ)PgoKnrc<&ib~XuQn6g9BlLZ1gUYKFaYb68T zJFsO#uJChHpeP}H8Qx{?Fv)w1ZH=4|j(T}hV1$e80(a$2A+g6@k^puN1%pQ%u~5M` zHTd#mC$Z2f(_+Lz$w}UlSRM_!@r&un3mG&bIQbF<`_(rE>KXX?79vlQ1sRh!s2Jyq zOp3>nIw8Y;ZVILnSP7!#O@Tb8Nn>sbmMEHHwzw(ah#C?!0j4}T0u{k;^597TRPI=# zg|^C+)$9nuQu0GA99mLjN|+;xXw1Z$*b&^t2!fb!5_JxR9c*^?)piC4iTERdz>!%& z(r1y32(8LyR4lP8JCRpdn4r+&1}p}>(!+-jhm5tj!wgorCWey$jJ)2M0%ke8&ZE=^ zfUWg3OldJro+2bL*y-3OM$4}7lE`I&Oj*{ZQez60qZEgN;05q}E9Xl}K$F%@c%s9lT8_64a5oLej5e{Eg(E^EO7I?=erdqhhQE#Sf z3WR;`gpgFwB48@C6fK$<0*nB&M3)#ZM&2gIWi_k31UA1oA`%N?_MCZt?mK+fc5m$4 z?Gx>V#?%R|!F69n8dbW!>eJ%`Rit3+Pk99`{*CI+pC)2Ok-tY!s=DLsuwL{q}DZbNrYKvTlLwuwh} z((8c7ECEvuH?yWXCq0>-kDcF~^^RsG!uSYJ>bhZVnZSAZ?K$uN^yD|%Tt4)|yN3)I zyJX?A4T~%PWUhm0QPcdD%a^)IZrZqEWApmOi;F*et~HTxggg^c12#GYj)dD61*0l# zhaDU-VuUjBIxb&cdrzU5z;tFNEo4vJGZbKz^B&g%V4?Xj2kJNDWM2lX7`x-M^$ z1H7$q!I0GxZm4N}(R-IXIO@2|KRvQ?H4?a{mVmC#1_?*grcL~A>t{~uJ$&@|X=_$2 zS+i+#r`v}7zGMGCb?Gl~eW4uwvFqTMK3%wI;k-{qHQx5j$eW(|^6pn>pK|p_S3FjG z`zy20x&Fg@UalQ9e)*S^=dD}2dew^JuB_k}R$ia24}~?WmX4XRZolGBz!rZERW`_8 zr0E3A)_DHw!4FA00G_rfohw4;YL`Wks!MZhoBp4@?+hPDr)vj&sH+Msruzaka| z>|Ilq^23@sXN_gBy$BLzH!)M0@DRfnEO`HN(1VCfiS2yc^S?U#qf7cu9rfk3;s+ON zSN0oL*X91HzdGwZJ+~14_kQ&d_afO=u4o~fidPziEJg0Im@?^W){=CYlC&gao;w})oJz1NSMn?m_Ci%l z7Xit)#GsFKS-LG0@^DHA$J6-4+V7_`#BVH5w#=bp&-&6 z3JQRuZ+R&AC~r%`7ZE%8p68txtN0Ac3_A%khXUk~SR#zS%|ihb9@#S$ET{xT0Xz$0 z@hQrw@)v`#tk@)0;qlA6Eg*K(RbzKK<&6Woz5n7Tb3Pj}wfM5A{8K<*9SU3ibfIEU z8#xrTE~zeGt;$AerKl7VZG<{Rdph@V3rcFzFQ$nAB;3!8m!?+!XLx1A|y}6CG?UkOV9U31GsHpO=)dKtjlyr(sGfI4MGs zxJ*5XfsyR7!(+Y*0K)-;izEsv2ssMDtR?E60n83{F09G}<8BI;nB@^65SIA`o&W-e zFeY_kA*{M7ux82{`|bil;8Aqokzo)jl4Puo8Z|0W)54czdz9#Su|y1VMhqM@vt{1c z5uhnlwuV!7@P%UpCkte_HbofRWuRe0hSGZF>_NO zY&*!qCQSCZW|N{RF$8&*!w=4=yD88T4oHlHXNusCn1oP-6T#6AQlEITHwbHBWk=DO z(lqrn$Qa%S?yYiT%DRm~WV1oZ?q<-+4`U?4Rz(J%m#I^y;ZWB{ak$IQ zVH!droS0+ElVq7+0?|r=#v?v0M5g4EUtYMwL1S8#mNHmV9zA1+1x{nXbW|>pWPz@! zXM&9>{3(^cq?$||xo6r5OT;{FXLccjHN7}p{OTxpls9~s1&FT*$XF7HDSq|JO^290g!*XN{2(y}}Tmge7U@H?cv!-Z# zbP|OI13y!W>LbS<2p~qtzzT}u$o*^$!0OgLYDFrJ|_C5 zfpZVNWaM7w6+c{ex;w?)D4g+{a*c={B|pRde(NVR8KGSyGz1!P&5C}j%OeXM`T8n7 zgx16XuZLhq3!)Fx9GrFcO#Ot`MC+_+(An^Xqm|K!=xMq?x=5p-)zIr$(pzX3$m=Z_ z)J(9ff9?3doEV2hrvip0eTgTiWLRcUlR?;13l66c*wKsdj?W#~jPpW3`;HH-a9H*< zr4@N#7(DK}iF1osJn-*>PGfuXvp%iZ3=>NM8#cw&>{q$HeAR#(Dt8yz+ z(e2sc{S$AVcFQwg4*O!_C4Ii!|AL{X-Zt&X%Z6)G2}@(!-ZdBYoq6wzqubv+cF#`z zcRBU#W3QjGch}DjxNz7p*VXQN+S`BXKDguk4c#A{e)G%o28?c6vrffsdG)qF6ugMT z>(;ftV&uNvi+}SL7)jl)!yGwQ^ZOdwE!4ZrQSq&N}ZIlQkh znaYin9h;>p{_}`OO;rL5+$ju|Y)OjHJStQb%d)y+JXc~BlIA#90`lr4zhHz)_AC)o zE$Z3Fst-Q2_=4h86cYZ!8%;`@DW9-aMo0 zU1Jul*tBNV@=eXFXEind`Pqh!4=y)|0&a zGtO60uIIjoppv(nFWKgW3@uaT)}rRBKl%T69STkyZ+dws7z7*vIls`=hXSpfw)ry8nS#inz(Rha zRFu%W^IKm%L008NP=Y=Co(9|Glefe6`6v&$5|@2JNQLBQ2Zb+21#eUAa<<#IsC?R& zq>(ydh2+VsU64j%6uo!$!j~;m)rSJD&@9_NTIHeO6;@_2aF;^jNdA2_`Q%XGg21;q z6woaW1%&~&Lm{_T+nqx}VU&jg3Gwt80tZ>sVf3jm7J=GSjr4xH9Z(2%|;F#-$jP+WSxnsqi9%7Z-Aew zQ|Dad@LwamZ zF*B5!3B)U|w=yg)+NNE)RGpK;S9q=bq|ku`QW+TKke z`H@E0ti~gLcA*6D58M=hEN=>ShfPG57$;d|ttxLJBBSGFIU$fK%Z8X|xqTU!ZVJ>T zQxvg@&!fDdVHO}htsL&GnZlO*^Ww`bp}}TqiFb|!j){)J$g`9D*rpaYg@h0Q3~ukH zkZLbRV;N?K_qFQiGB zic@XD!CAs!G+RQPTKKV(49XqF@RKh^Z)#O_B5Vd1_;N=Wz9bY8K4x-i8jrxl zl#$pFvZGZ+@D4eZd}RO@JeYj(!mlY8h5#`Ur95lA@XnxB_Qi$34^(27fFxsBHKi!P z0QO`MlWUowg=q?N@{k>}gaaD^9510IeDQkHg%c_Qsigc^0iPs1R(ZjR7=c(;2T4da z+lac6?^#PmSuX77>i`UP=q4QSg2$7hFw6W96QfMB2}#6~a|1%g@u`^dNZo1zNs8ow z)1((afmp()ZU7T^QbdbnP%&tUN8Tw?7d}V=Awz&Kd;pTAlwbI?xJb4+Ld0P3GlGc# z)suyI#N;Bz4FnbLM8^@1RZqgH-jp$pRXJ4c$$83{uV`V$QMM_8BiKn|1ug@`$a}_S z!U=wS2H|7@D#H5Xfg>ijzIfmfmygyuXlpb;nt<~jp6~3}l<2PXE*d5$y`CedyN}+> zDoKq|njY5-J*dOplo1_(UO{WZ<}XfrO_QP9(9^I?OAn#jppr(P@C8pS)k*NBV_+Yx zqhg##JuZXru-y5fc^VgBG;LZaEr?4XMd=#J^RKX1HPEGYIX5St`PgO9CBL@g|%x|zc*|S z-QRckfFgCMz=PS--Z9?c{@FG~o^62|uzjYM?56!vJR;IT@-AvfY@eP|I68Iv&Q8qA z4?+es!MXQJl;RP-8c6qvPw~Phmq9Kxg~Tj_Rw41s1&m2TO}@s(!8N!mqS|k2+?_|Wd=?gM@z_FTgcH?gPfL+)PcF~$O5rTsp&2! zzr0tMfd^jj>Dj$MnNXi=l8a(-C@2XvqXDq#N=1z+164-`(^-%2h)hOg?}35OAc9AVWXk*y14&$LnnsLeQ%mF-$B#kY<5wW) zqzFi5000&Ia=Y=V8)A<;Pg>#)Dh4eP;GLo=FIK6062PYd0D{@#zXA4t77Rimss{vH zsH#CS!d6pEki`yzp5hTzwJuCqiahmfgJ<&Mtxl*mQmDen7Yd+g@*>O@5@Su+oSLH9 z;gLWE*Os4r(5ePtSb`ym$N;9?#o!4Tl6EwC=cOY1H-nLcW5i>N(ZY2G$q3Ws8qG!Q z#0wbN*9-!QjLsD#nbJ|RQiNuWKq|&FrUHyR zVu*6!8|16=P*!S+3?Yh$mG9d&^Cro}5P7y3nA^--$z(GY1RiFx2L?zLkzx=_-mGR@ z0Yg(su%gZ%ji9Jb#Nx{_<);p%Q3#ommk`D=`SmndVBadjz$X)r<-jyr)Je1ujE9*l zvG0As=eLxv9)WF;2~j5YPfY0ngeIK-oh!alW@B0 zMTqHy9RJz^?U!39TI+NEV~Yus(E;l@@HHzGbuHwzBW$MW)Gq8)`HMzPjqS%}FI8PoKFXc$N$v@+x^A%b6zqW5CWN5~uz6A>C8 zfP^m`(P5Hjihxz!6(i@|*Le7)!;iRZ#2I(ZY<0!x<9pY%zH-cAmySB`ftioK*H}BN z@@>#ul#P+Swmb5VUbxVqRcyqBhV`!xUwOujpC5L~u#OKd_(P}SPdK-_V(j6)KE3{> z1qWR;bf0dY9#UMK{-SRaf_Nnj=AGL{ zkBEdI()?=lyoVRG?Opu%Kodz9pK&!{rvxY`zdG}6V)ia}SSD#(?IUKIRB1W(+VRI- zUvuiMlW%-s+Suu<>*ua$TDqm)%JIdFjpR?hx%iJ)!Q(|@MZ_%Eyf7;wQ(~eZV9Fy7 zFJOCWJ+ndJm5s8SGkMd!&;E6ldAh(JsSZ39#0+ynp40_l6q0`5^ zw0q;KXJ#*`G$*UqZ@%ZH@ehBn?79~kkGo>fx%bu|c)`GP@2old?)u+#`1tTkhI{pX zeC)GA6Nq~AZc3UL2Q~yIU#bxwNC^akM_J-j2=IGaf?1f*%CO?JO_sp+5lC>R5`tEV zGAVln`cd2(tzQBKrj-fs_X^#fIk2UPqBxfTf)}VSJm*FFc;! z6f*3n=hLqHZ0>?BeX!vz{<{tZ-}5;Xe1|&}$ZYdapjbH*wj2uOsppGg>qFtWj~b7= zZsOkO6@PhE5|VV~>q~hDzd)o#_He{S*heM_3tZHyh?u;|G@W%+lYiL8$EeXYx(1By zkdTmu(KtYwky1)Xm&E8E9U?hOkx~$ekupGO0qGPG5l|Ea^?iQtd)~kH59c`?IJ=+k z_r9*{bJ1rxRGNUE@=8n6U7y3^0L7=!_hgBKJnd~rD_>uR){YqtKAafwzpjXHs)ZdR zz|yQW&nY^c8MT=lo=rcx87$OVs6`NFwi3tVB!+KFnK7cH?XUM=`z{Sw-1pv1LPWxX zr1vM1dDSQ%M4JA+SmAd3F;mNvXZ6h1!D9Bnc+^kXGSS3R$@1rGmI8t9iLQdMWSNO!*CYu zoK!1sHJLUW)vZ10A0L`^KUYWOWJs}uC$MC{*(1t$?ngdCyT{-FRJ(h7dF)Hh5bG9# zNR${W%0-E%*zVJFH`Z>JKoX| z!MU%QN6VAu8ePOBONVnNy%r)n1O00d`0Wqld?<>)KqEqtoxH<#s_h(6h1{HboJQ2o z=m0#A^9M+!4Q-4OF$?4W&qExiG9;3KUK2Wk{(hm5sGT|9F^XGr+|Z2W*;6E!U77q9 zqEpMFtRHu&^c@Ri9>tdgZ*SRRsF77{6DAXfvTuW;qx%GF+{NccrQPp|d?#hGfIF0b z{P+>rbs6jcmedtD6|#3vj~OYcDJ{BlWaJ$5Mc5r~KAjU4^CH$;*+3l5A8Rk;(Nc_D zv-mfbEa!XC4$u zsbFYXd^Ia74>8-);2mC$j$%;M)qc@kw_A^^1)>@WvsJS9l)%CvDw(x(19FUrQx=5T z)JKDW+#j83G`Kx{UL!<)1vXYHY+F&{f^^BuCs5PzNIe?|cX(n*c4v4&Tlq}X6jO7? z9uU56sRo9hK`ij(p;}%?51SmV!6tq*9l?-WyCjEm7OSj4WbU2YL(qD45&H8S*%Yn2 zb<*iH2)E_9IC7*X#)=iuLyy{1rAh^Z;D$yeft>JXWZd=RI{Pnp`LbivzCgxBIx4|q zPn_{`xfo|>E3JgR;`hbU4o3&?#pR>Feq2m1JIE}P`InNew(@el`F$`|3zL&xoz1M> zap0Vxr(oZQ!6v)GY>~$`*bu94)yykr#rJ=R-expTn0F{UpC(nS%ndf59q|;SwOVo3 zV5oEsbe@ktTnLth^id#h(}dC+6*l@CPZktQ`LIEr3Kx0&u#k@X zd3H#egbtD_jV7LQw-P*+LOW7tOki!s#*CdKW#EI!rQuE|*-pjuO-=~iguI(r&ZPOr zByA&umihVqem$+H?mNuW+i2mon?EdjbXL9NWNzEla%t6B@Q(e%`)5!8{+&r`38mb8 z5&4f#g8SDW`Dq}@82$6;rY$G>r{bSX)sF+OLyJs9ysuSQUbCGE(O_b0isGr_BtuF% z(_ATP(}@*z#QQ=t%+wU&;u?lu09!_AA{LXgJ*_*=-cgLf%@>FQNpQi5WWX$2@c3!E6NtxVZN7p~c z*wEkE;XYe?_tZ+ILJa1eu1!^YmLl~WF5FkY2$E}vNkdx2bHa-H)F?rr_m%sh8V}6aGz` zBp>s-=KZsJVU_bF5916taySr@EyLHMI0<~ULf#`>hfTyd|j~OWe z7YKEA;))0Fs??iRpp`D9F)W97GiHJJ@GaeBes>_&rCY&y@YjQ z9I-9$IUJR$!E}6!dfS)OISfv)nQz0z0CmVcFBY4Xabd~>YJ}+MUMbt7O^c1siD>yX z4OKk!j6~nioe$2D^5n3?8y}15C9rYXT?jwmu5+G>$>9c%;Ei@UC3NG3*pErb$8pfYI~X)@VrDP|eCDz#c~XS2bWvc4jQfVRHg2oPn&^;3iGo$pN^1m+NGKLm za}JK(`iLqS1nuf8`d7bZP%Aj)%YK!Xozt1GoKTT5&d!>4g*kV7hZ=zvA4i5TZ07U& zK#rs-TA9`7utp`kw1yg!;N3mpYN{YsVx22Jvo@z^{C*@rhqg9SI?U9bgn~6FkDCa& zH;c~mmP3j0#iL*P<_UkKzuD7yvP1+T)F{qiE^z8>0;R&SmghVBbY9h#p(L_jgY02wU8H_)ifm`GhoBYCK0fZx-vB zgqwi}7!%X0miJExK9|?A6+5hk)NdMGgLOZ`keSTEFjWM2EU|v$T`$_CFFN0mQ+@*f)za_jx-T$lZ zY`9*`EBJGc(^JdN;&wsa5H~vpVLz-?eSjb?_)VFhtBepw2^~e2B|#IyBmk`i8!%{> z1UiZZL3R_dpdpM{BdK}b+sZmH6B$ceYopX(n^ExhhCAgzIsoJI)bD z!h$tzT9_9ZDwvC$xRrB4RuS7qrXo(l(^fDf41VqX1FvAb@pYl==aGE(Dqja+i7Wj! zUCpNO{FlSa*DFgF8VXYm=N~JH@2{(U?)ua#xhNJZ;^iw~q!Uk~9{pk5dGTBj%-GGG~>6`=QR3_?nbuv2__>Re$ID>C#QJ9eB zTjCBU*wvhTv9N77sVnp8|MdSG9TLikfjudGI^R*4u6fw(`@Y8^&69fT-)$3QAMdB_ zi2h;+mC(1rfJ z^+di*wrLoJU`E#M`Sa&xp=%bwh_H~sdj=celL@UskK9hWOMrh++@3I8X^c3NN~bY; z#b}%MlRp`(4{F6dbBGm}f53|*0)Ccx0f-7cpX}<@bm4DNbbhd3XU$FG1(QrI-!^@(pm=+uA(tmyw@thRdsI zIa~uSHI)g1<;T16T+!8tipJ-@7!a;aWYDyt(=ZXZxin6A>w3}wb53e~E|w#g622n~5s5Dx44l)f;4|6Q z<_n~QC2)sFHG6#qeq9JgQ17*{nH#q(nKUoqgP*EzQvD{>fC2i<{bjGP^~)a*9+K-C zM3b)7PM7j9Gx;k@JuBr6(`3JWc_Up_TaZS?zdmBbs$-`EH@3rR3mzNBQp|hJV-XCzchvA)k$$Rp*-@E+Ha|wt`CL&We~2%lBx_3} zM{KCsjqk`!%6R{t?TYCFqCj8FKjmzJ2ixbe=oPWYP1%U@}cEZR|`4ROhGJr zOI70E>X&Scjp>rni7_XA9dF5Il_eq3J~ z{4OYU2uNTQMM0ScIoB}kPC07+UHIq(cV@=wOSaWctC!E8UR|WtoTAIu%l5^>Irr4J#++q%R=hWWvZ+s=;tz@yB z&*(UQk|fja$4RA^U)1eB0L_ryAB2lzX8QLbSJu(5s!j1%zwW!i$6RL($hFTcG~>jv z86BISTXbNbkKZoLTQ4#dA1OgRZv~NDs`c={i+g1xSoLOc9~Q)ZyW+oOEVbjXhWd5? zqt#Cr)T! zWuLK~fBnci3for9G`&Z&(odIK8hq^Ks~!&SXJ;sH4e`{k-3G+?^nYQPCqJBfbc>a$ zh0GsPRGi}|!g%Aal#_q`!JkP&Xg5FU6>J&~^F@X8X%RmWFoIn%@`sOK#Z!qhT3y70 zd=Az)E{S7R9F!J3L%w#Jio)QbG$YGYqryhxX@z5n z%96#_-g^^ie!tfSgOx2}XBU#BszMIvytzFC%^yD=Zeg@2?%)(HGkY(s&!MiRf%4A! z!7Bm~{>(8ZTMoef=gf-sq9Eh`xmPOyj2is~FK8)Bo) zX=ukBFYlH1_lF4i@sxXJZWg!nnnq93?|ER1PW3fK$&VBPWQ&pCVPhB5~{~ z9m9G>Kc85vc2|e57h2Vv@5}rBIjWmyKj<2WISsYDV_eMnRk=*8wk7}9H|3~Szpfqb zpaR~}UH*$7bXj{1q;!Kdofw5TCDueH){6bA3-$iv>EjkU;iidWbi5)fPH!Y>kIqdU zUv}UE7o^=8Ez-yfgquTDzR6G`+Mm3nI4_(m@Z(A?xZ8Y;bmkT(S75~#$;}f=uq^y; zI{Ve96uMZtGjcViH5dvks600(wKN9IqlK*3H>$RvkA(KF?_A$i;#Uy2RrLEX6wGeMrp+3@rpH~EpsYR|6p zw2)K|EH3=hE6J!ytvC(+t!*}Xhz^gq*!OhSDHRtm?B0ZKE1=218NNOUvX|WKN;8&|MSX~pyD9buk<1Z1;M|?Jvl@AIq^Dyg&R?FE`CtH@tjtPsD*nfatwkCwc^=7L)1brjg19&AjWeRW3LU-tcP>=NKknFYE3wO+AJeIfnlon zs0JndECDKo31yh{6}?ICFlPL`eamYZNZXyH(g=P;W@OOfNYxk2-3;t^Zb^x+1bP^k zkcZ_obPR)?V_4xRaxMaZu;9&TVr0tU+^!UU?v@pnj~J`5q`nz>EPZldHH zRjJ_YpMEDRXEnnTto=*jf2aq7_TreSS2~81@7(#C=~Vs~xSnS(kav?E(wDEXK?J*o zH#AN>f6d-gI=IEH_!{=#$8SQ@^@Qxd>W11Bd9Ct^8h!Cx_#7j+doP=n{SKy#3Kp z?3p#uu=|3JD#Xo21$IiWw^HlCZr^X-GS$4fctGF&_3&l}X#W%cYiJwixum^E$j*GF z4|PKCo7rRi0|m`PG;BdQXY!1-lRyT4QwEty%84@m)A4#85USae9sO=@VF z`}HM;mQ~A;85KS>9QjkH2UH2ku+XP);Np*yba|z&x}}{63Mad#)7pjw!O7bU_n*pa z)UOJX{$dOG*Njwn__6odk=cy+Rr?=5F7p1iM?&L|FRHehH<-J;f+|1+bXu1*U72zuJdn`9H7aY)|R(`Dk>Z)NYC$ZF3^>h zW(>Yu;2#Omhit!4f;I@DR<%cqK+F|$)MeAaC1tY?u!Nx{zEcxNIzQqhXI6dL8z=;Q zeESc#GPJu=lX4!4LT!l+#4oVhdLD@nJf2Pe@?O6l?ki z9?4<33GI~ukKF&Tr8+cHD;>U@7!^WFKo)NHT0or=7_eJJjLS;Aab&h6USGE!f9RG5 zOApJvUf$S(3CLici07q61gABV&Mc;};=v#&0Y6`uX|DA-+_iBTJt28k<6i8+$Pjx( z+eGSMhp`MQCUN-eF@h1KmX1tnpcYK1Ht&H@+Aih_l-LQZvZdikd`m3)1)3Ho{U^+A zJ6_u9-M@YyRbS{Ue)?)nHk?9}iB@qDXT!+x*MN6>utoNnV7|2 zC8%4SIeWI*Qk#8Wk88;iWk=_+sS|N2yT|mim5~_R1_NBRpC|H%ovUAfsJ;bz#17T1 z>mbgY$0_@Or0mJbv2jAEX7cb|n;LHLTTETwhf>Ae;Cmzg9lq8XtIB2{c_zN(`&=Hx z(!;@-(VSSXruD^0*K}t0j6cKkmi;#58s%Nksd$^xA>Jy9;wVFX?ksNQ30FBGnKB!l zxNY+F{Wrr~#qmWHT*`$%+)CjX&+S96FlX^TPHBCYCZDH?rCjS|7Pd?-5CGLge>%X|V;142R7i#D@9==1tL2^EHUjuW6QPA(s`MQ#gd8X zr|W-B;qNb=cyFMr6U$h}kp>2xilw%_-Ay-nO?+J4NiQ={4daUx4htW~NAftzsa>ya zw+bs+*{C&qYUQFaz6v`|D=}u*GcFF;3FiBy{13@WTk7}}6izTSoMlX)MS>=5>Na}) z-4QhGaYC}8ypr<(Va6C=XF@!ff@A&UP`pQ0HpeTONk(cSKRU_muxMzc6A=3Gt87ff zoX<4%W!b>sXxP?EJYb*WLYMc5)d_^}6$vk4xUv;W&P8b&pF&^n`NzF_u460mPkxFu z^j3NJ^zny#PzBQ{`IR;&8LbL;qW;jFR%Jx{AT`?Hi4B=KNxL42Y`AMO#iIKoXIeFZ zunBq)W@x&}`%_BP-TO_N<1-VPI&7(Dyk7K{Nv;tibpUHS+yD?(`qYjGY_mAX7o8?` z`_rg`fN`Gwd*HE7{_q^3I6~hg z-%N^L{Re-Z_WZoF)ck9U1D~rP-6XwV1wtco3#ZIFi7}Nb$BppuQ~(6pCW(2f6&Kxe zKK33+{6nLoUc1)^3U%8Zn8CAx5r`v)Xmt zXC)Wzi@7ipyuD$M>+~l#9p1uIcz7AK)$PgLGMX0wsb@S{*!YmJ$pn!Ndf3T=sKSt` zXj34g!q4gZg@+ol7UW!3*`vavUm5j#D|Q))9N7h{*^SBjk;h{cM9PoC{W$}N&B<7qZBsw)gbS#}se3?^)_*Y|_k;rirlF`!8L!a)(stQ20 z6$>JO8D*NV;*G-E?B||*D3ne4lf4F=5Ubi$9BiozrX4Y?ro@v7>-H zCC(WN)Cr-}(<-?`4Hx-Vf8X)mhq}2(V;QXT^`=G0WTJ3wV`C~rf=1U3B2Qp(Y00!q z-Z&=wW!iKdzle)JLk=fbUyR#WCVP=G*|oatcnv3;a)?;jW%-cn>M?ir3gtYom#?EAw|qLjj?7E%dh zL@~};T&lOjE2(LgkIUu?6p&`d{DT&0I23L2Efk;;HOLyK6GI3pN7X1fwj+nQ2inQS z^`>@eCkEx0-EtE18KyMcch8X=G6-0(%c)@G-ik9*FFsGuP)r$mHkijdM1m-Ls6K8Y zC3**h*2UOpAk@B{drT}`p6$}Po$_nItcV+^SGu5jmqf69g`s28fkw*}P=X$K&)8Yt zfMC}mgQz&MywDm*c)G=rhljX1ZYa{fXav|9RMU%py1z~iDA!-QKVe#Pez6o(cLnTF z0F86NQ1P$XlaMk2ucbVvF`mW_INzPA6Z@;{;5n%_EwK~*zrUxt(B&qRO{mAq2f{`s>GGY1 zcg!D+yg;!kxEq_r6Kl;$-Ey`_@oK_6w)r#a_2TUBw`8@U8YU(NTOQz|sTf0lt) z;qx>fdD6M8cI9l)L`K0-kxzi&$Wg(YIZxz=I)e+70FRQZL9a@C-W`I9$`PTc)H#d` z*pC!(PLU+M^Y8faQw|Y*qzV5#eaYk7TQPD#F2MkzDI)frqTZ!rkMQSzL~*BdQ+0U| zO1p~_1rpuj=KOVcX;p1~%|41Wi{sAshDp+Y$F)26^3MgP;rs9MTTyjF;os5ku%cWL zzG*Lm(tylc4MaFTgsL*wQJxd|XBj48oujZ7FiuqVY-qaFwCUF-b-4A<&WlZ-KYKBs z9{>E1qttv)!mcaiqWBD1_}u!>Qnt^(E8O+3+b^C*g3Ab8nNfMBtUiw{%|Z0>)9Ky4 zwQ7OQD#wx*^cUaf9ar1l<$^0`4Ucr>e_WG$Jj1x2BpzMSu;Fwzyn!yp;1Kd#%ZNur|g<5nuU8 z=#-c6G9wH*{^)Hx3m#VNLhuT>N3cx!T~6%h4MwqFawkl5H>>O4;afJ%RBWlQTj+TGevye%T58}#z)p!~&KfI5<%;H!!1*6q zW{CuUEeS59bYgH5j%ln_bYN5weYIX)-x*cpPoD0*H&Ea^$FkI!z=4+dOYp56qf*IcTZ}O z_0BD0#i3d-!d8Hb_5RFcifL?g!?H7j$rCBb%Wwp1E-4p&oRaaZ-D83R>GT+RdNWoA zW<9zz&$XQ2qtYuJcco8p!fMk=S`kWm)xQ@jztTPT4M65(9+iQ8=Y-l&GxYu6B;q=J zQ;|~(>^d#sxe7=uMgbK&5{j&(?x>GOr$x`R#O3KB5mLl4U&_Eb9$q~DzV6kNp~8%& zZ6lIlQ1O*p9I)r{4_Xnb--;;VeZC(R!}*K^$ZAb8Vh1I|L(qPWy~4GWl?DGhgR}A! zzz3YxKOUcDf<{yBT@FFRui$tE-tH^Z0yHn}ls1WfoSu-j6HP^suy;l$tq)tALWS6d z7}=oSE_4}5$PyWOX-v~~5UB(#C)e)0wh3F28g6oF&pm`h2EHYBg7W3n52`t2`Ga;7 zZO-K@ID4QBe&@PVIMQsR&SQf3TSsm?oEl;}pYh6wC^=@bLh^X!{$~P_bST9c>|4@x!rgXRpah(fACn>qOulfh(01hfJ}R z>pQbY;cp-)8F$!n_OFq2d0O3_3vI*5AvApI*d#-c`~wOl;?n5XTw#Adwb;_|>Jcnz z-!8jFPfdH;l0y4ZB=-LO-u)T@;TlFTOi?>saS{)SgmKu+&3E`uh$CUnRFo%k>2HL{ z1^b|r5`plNz+tqu0%1KaSYCzR)kbufI9wt~mJKFDSuKn~+XS+F(v*dB7%KjTi#xFC z8LK$kmhU7S{l5PZ2vIyMxhtJm5{OYD>bN*G|r6=cL2`oH6Dp8v1vO^KS(5& zQS)lQwTVuwc|_a|C^16u?<85aoOilekfzMGY zWJJ}{5x^<2J1;f-OX*!@?@^>0C~A^Wia;KSf;W@N%cpi$-O&z&b0=m+H@&bm8}|_l ztAVAXfb*lbF#z0I6>m;mJ@W@Sl{Rj-Qa+->0;a4mc5c;eI*F?`?{eMH^YJzh_BUJ5Bu2|GSs zcgF!Qo7vwJ0rhKlZ#=j}NM2h>MQvAZf3kqw9Zc+<1+>@BWjX{b8<%XwX6$bHk!)G4 zEPbme6b)x^O}1g=b?9GHyeoCeXVT+!6r-B-_jqsV-^|&cgr3L#OYFwnSz-}#ZJDJcM&XN+hp?HWGztp0UaYrFa;QS^%rYs`id@Teme=%-Kwza{ubV1l>T(&7(ujyi7O)&mDMb zBd;lUnWrUnGY#=;UXRZJF{a_V#j2T_*mC3&xJmSGHOry-aDV@9My_kDpP*}&VaYj? zE+O-}!>$E<`+$CeiXT*@zMTwaHPy{$RW5{zs5suuic%J)^mu(RbRCc2(u)I1Q)s0O zv+Ow^y<_>c!I>S|Hq5zO@kQZHi-ulL0CIm5*Wsh|^2tToh~sMX>XRXHSbn3A=7usjZX1g#txe^}!K-$z*dLOUgnnKV z(iJdG__Ma@5Bxz^&^b@y#n0H#sjQc$>hXnpXf1w%G39s`))>{-C?;-)196dsJOv4V z+coGi&vA(y24QC?lQoXQ1Q1x=aoMBLdt$K(O&MkT)|rBkVGVNgly;d21QTVjps;Q# z&&SwUH_NSNiK^e*R`c19r5`|@XIwroh=0`pTNbZyl4NQR+F}y2U47!;A&-y0>rWj~ zYm0v$;ZCKao{;u%W5J376b!oU!5z7(6{=oBLuD0TMPPRrgh+c`qOmkc7PpP6{ zeADfMlGw{eQd2OTF5s;P2S2%@&4FRDJyOumV5v#&;H?+Bqg3@4l}N(vUGp~hPdM7e ze~hl4r~NY`7+aB~S?zKeLy2;#fwbb`w>yJ)PM>2mNJR)-uws$b&(DR_!O*Xg&tpgK z(O})RanJ1T9dC6DQ`99v*g;2Wy}BZ zFO$}+J5${_Zh8uXG|`bN{Y1}6-I1;u75kjo;bTqmLj`vqs~aW9!D^Uiv0H!x*ZE!E zMtt?F&w6@yo^Ov!^7?mjJ`6ooKdIU0r4hkWSI{Xit!L|MJB`-F7``B>Iv@!+Y+3RCNWjbkm!-l7uTJ=ZRpxL zR~IlMncx0k-hRnuX1eXO0L;&S;uCA=`%0mI&+vpx z4?RJX^%7KJ?4(?$LvgGOCM5iCiHkXlM~PX)3o4Vp6T}vtvYM(959K>Dz&{%lAHzVq zoLnw$4dbu8>7X6{W7)8=VG17U)k4*?UNASUs9vcnK%FhodllnM^q%Mb>@F8zn>ev}B(~ zpQ{V-znvFB!-&Z`B18ONvILJ&X(eZg#t6##ydUzZD397>+^x0UP{c^%KqN4rSSKSv zP-u)!r0`chK?lBUZ#eJ3E+!00ouC;z@;tV<^Ip$s+tl2J#%>2$FPMSN>DbI1e!{MZ zsagIB0Qw0fIDRjXc0Bzy;Q!(~35Wk+4)w2T)vC}lzfYGlm`~c7W{bdeHoW6zB8%dM zIJ`Q6L!|XBlxft6vNyBK=213E9SsKMX3@rUCxkXMZj(PVAPJ z0hQZOIm&bxSYv&(Dc2h8>J%V41JKCA0LLrE-Kf*@Cen#xbvx_q{^o7$*ZrqIj%9am zNPQxIKEHD{M)u~V=wIt(qmQ|+Ey5cDIuf$y0%Vx0Y)*0+`)HwYI4cQVp+Dr)9W=fQ z=Kw6ED5e3j)+uC}7%4J=pJ(<67g`n$Hbj*r$Mb1P%kI=Ay?y^1mnYNF;jcLkcoI0s zd-ucvOba*pu{zL3V}AdGNcK61q~l+(kp1=k?Bj~c2+2s)>5s9|W-AG&_GPNpOa3b4 z>a6diZz0LB#gi?eSjs3Qds=J#=PWrMEcNf3!!--p1T)ZO1&>QwfGzg(T^GIPq|YJ^ zW&uI(#b{wq1xS(gZm=L1a+=)03nL8@LF({AVeDXs?Rr~|GY5~O2pm~=tZgJnhGAKW zQ)TjVSIqyacS-5j6!)Scxm)m9)?cJOX>4)i3?!TruRNNWLYw5J( z9gF8*Of2yq$1#n%QIZ&9i`&#E@6ME_r4yr@#>aG?P0@f!uwZ2rB?u}a^^n}$BF2hA zAI9n}mKBIZG0a0-Jqd>UZ{RfH%>IyMzY$KgQg=Z0`EO|IKjRhK{vMyL4|Q=Xp>Xyv z#lL-N8N2^3Pf7p>kjfk>k35@ukJaO=?heY@bd24m{z4+{9D7pYkVzN9S(i9RnkPAu=ffnr<{RBze)vT8-cE;CL4xr~l=Fa5aTv0WlM>SzoD zE&1JU2qOY%2|8r3r$kMj((65o)6Ug%oY~7WLV{U|a4CuTnwN*mpCkfG3}Clc>oe$K z4rAimt=PXfTrU4fSoZDhkB&nOsW5xnYLuZT|lcv|;4}!%7 zT|%$a)*u2tpkWpYt+#bvnbd8TD4gHg(GulJk3NL=QtGNew(B(}P*n-K+ljRn32ZDH*fZF?@aE-8%rT z=5#cv>h$pn^RF;j6H6rHA9d%Gwoic29_3KR;JKMUS4mG;UKKE#j}?D=yf0OL9@)xXDkW;yq%rXO za`*Ae5O9@;rW>P^_`X6Pd4m56SusX~_5Tr}B z(#U2ae`};4B#cGy8CjRX9IVksbE}>|LD1ONTltjMUOQ2x461sTI?8qpi8`u?n=qj~ z@?Yi=AoF}+B=wy=+>^mPUc`@_2r_ATo7caFl`Xrr5nvmR?f`z)Y{h#nY}>;*#S1aU*Y*^!Qwcmm$Pg00~Na0bO_?c@O$~LL!0yWuUy`+=40su&)4{nLL zXVNjfAZlm5#_6e{^LdTxV=lV>TUZ|#N6>3QNCyo$@a!tkl6~SlUba_zJcLdpBk>;c zJ)JWorGMagx68!bu7UeUHz>B+ABUsk+zx}ADh5bo%w6+ag~Us$@5&dnP2e7R(QGL=Bf z$RZ&5fQ_4Tz+F29N8xMQ^NI%vMnPK3Z3~=`_@Q5J9WIRx*T-EN#q$mMH4)_X*0f?Q zke&*$>p!uSSX;xS(WekoDj;P+gi7P!kZ%*0ly4Ld4@)@hG9^+d3d#~JCJ3y z<9AIP&s!;R`t$wpm^4FUs*5nx?L5C^h7LyA+@Mn^D7u6H~@+`{#FV{+he|(?hc`<)zqp{!#h?A(g!`+`y%A$5ztoY zm$$a0QyRnPD%Bw*h?o-o=}LJMZHSTd9EO!Bd*KR05M5wm8<;}p!HwdU$q8#GNdQH! z$-m|+-$;=Fp;DNQ9p&d5w#Nr13D>#r{bhG3Qot+l3wZZ$&8E75ap~_cT0aT2uJyY! zyw=?)d6Em!z@m4SpEum(pWZ08`}R<_Bs+(OAs6Z@*SVDr0|N2+A25skEYdiIl<}fo zEzJ#4C}WNZ9V48$Ih*toS(SIH8$588qFtSe81FvG1fvxJ4&CDy4aO^RHun**pQ-pq z6G{6)!$SlW!V*FvC)VVxcEYP$Q^V0$87wL5{$(`ZQRi$zv|G;;n_2DpfiR7Kn3W6rresvvuj3#6FF{JCnWp)B-SM62AVqSJrfZbE!x{#gksZ2Xiipv;r{#xZgi{tEK2Zly6j}ZXO#v_1RSPBY9MF1+g zut~TX&(&O^C^rGNcVDl?!f?WFA%s?3@NQ`Ykm?Y^HWaV_Hj{EUlX)bx{2SnmXb4-P zr~aC9l2>#>izj~kjo>rV(NF_ajRO8KN^GG;N>>tH&y9?sW3IX=@6YchSB1E2y`ymE zUPZtV8_xXm_;gl-IXY(WkCVxhzPiTAahvk0C#{o;A)Ai7m0!IIRT#5N+bq2I)$hrt zp_zuVnz?V~$X6bx*n^QO6GmQM#svodEyalOFpx#3T*VsQZdNEU(>1WUB}%?MPyu|W zarKPL6@_zrRnOxGW0Z7?+wn3|VuC;;R*!BxzgD;Z>0*jC32SV?IC3PFBEcQm=KCEB z@}`%F+CGh!;{W{eBEKAn$mJRpkMzGYCeV~yy2PMLRfuSEHp7rxkSC3nUV7=8Ta*Ic zgd%BJ5(1N&yIDt#lDuYgI?=vgurMK>B1N8z!JuQFk)a|%0^OnH31f|nh3MC;!nF|D z;-ItYqgs8%oJlyMdBlh=9H`;&BloT5Q!i$o_aA?R-je>NBhQ~T9@b8)oEWp1l9;g| z0)DSA;1FQ!&}i{ZQgS2&_B_LL2z{Cl^_l6G-t7?OYCYWLLubY^KIJ*9Nu}FLB`09b z-`~pxg*O8T=CxF(>d`5+ewlXBc%lWUfTt?LTSt$56Rs&{pa^QSTKrBtnhB zvl&2Fzh!l<<+YJ+=xD81eMiB;!4TF-M_R*T2DwuEEkbhCSC*i!)1kECqZy32;-x@qz!(Q#YU4`P+!^KU-KVbvix zZCk z&w5jE+(ghBC**PIk#4DBDFVvBILK)gmy+FAkwzEts%Fabic9)nFH2JaBFD4|d}Sfm zGov4QwOY}s7Lb3ZbdpYI=r=mkbKU#zU<8OK4|rJ z*t%sY7kJCdSaC7a%O=R;J$4e6GWW^@dYP#E0`NK1Ej zgES*W8YD-zqzb4s@)JP;Q9)3j`~SS$u{S&J7rUY+|G| zDpuQMW}k1q6n$*@ijyuPIXmn*(@kX3-A6&fMCKac7bqdNLm>*57*oW-gW*E+3`=Z1 z8AdwtHe>8}4Xa)apof75ovd>lU+~Uzywgc8&Tlwbo;91@a+50>9p_Y|!6u)ay!}d# z54!w(enk`POuFOA&*CvDj%|pBPule?UO{w$UjRGc?JF%JI z-IO((gZLR#%*sTxS$63t$1`TzmRc)X&x~n{L)Eg4BZDodM(VAh;gxQaZi3Cvoy5(e zl;>67kAN%flaV#1@9sDe7BROGq)5iV;f!6_U%B6LzdYDNp8YKEqZ_7(QHR-s^}^Tf zFk9*Zp(;sMk+*w^8cICnvP@F*cyz|4quvmOt;(FHn z|76DU&OxbR>%9ZJU8vu5lqF+cg;Og2`#(o+6 zWQ%@LXtVCil*qvW4hw(#dtJn&HYw6jA{}<<%ZlF%N4l`DRc~ix zgi)GW(r6@Gs$(U{x}oAFiW*liD4Vz|WVF)$?jf=Ch69DIpQGbg_6=2#2{+3`{33j4 z{!CSKdRS?Hft~HoiJ@W0X^+cb_^E@fURhhK-4@_@EeQKN0ks`2k$E9P6&Ly?1la4M zS^*ge;E?ojzCEps{3!*PD3|APU2qvg9SG4v_%g z+CBu3ywsuq>=J6iM!GlqOBv8)ssh~*{(4|=P1v;Iqs`H51t^U@f@0OySL=QoWrD5z zn3`+8bZtMs*?l5^`TqNf%-7JrbH%71U*0x%o-zyli3wXaUYDg%W9GxWuW3*&tnw=T zt&OxRfK&RFu+cNDwEoY4h)9QE5Fs?0mn6y5wuk&Agr8>6$rN@v8XGmz)PBniGRWsN zj4;E(Rf$&5Jb36u>Ug>v$UB+pMU+G9O!VHk3=dE|5XDT&x=Vpz{a$8Q1ULTpusMcScG9jPsrq<2l^0B?)d$p0Zvh&y-Xvz&4@n|=tOdyJ|{XXVIM_C z(o2VBWtX*sSy$-`flp`d7RU+_ZTsD$50({-ok>S&*m3O4(b-?zW{wf$(YrGmpl2(|Ep9|JL54P?^XMz40gE*Iu0G>v!)xY|oE)judg2!g1~ft3 zfI*w*PTWLel*pi%sv?W^Yi2S!iWadA^1pPnl-Hg`k~Gq3sXcM#ChA)zD=ADuY|Cdm z`_mx(qi{+bs>uvcLJ@%gb!#TJp?LLZr7i+vdb` z&?Gs~$kzHtFitq#@CmY4_NHmrgQD*a`)^#MU0<2#qe#wB@HhQ$Sf|vov*%&keoE>RGGI zK-d0P`pjiRN6*lIP7u?sUZzq2Et!s9v%GlgFiQ|?YRX7oS~yXlc@JIy=#p+;lxLcd zeCWBUAP{DX`2MsDutQ?n;fpU z^#1z1i*MV6&waObk`4)Y-kqgSS(!!Cmu9j>8?M%IJ9OHTzW@)06;PqZ7OQcx*3<&v{XoqYh1m`i8MTnm=&$ob-h0;q zIWp(79fR+IWR)=Wv~C^Ih1o+kQd##Io1Llj1_}VIqF*M+Z{-}u(@sSsbZ@Z|M2>;6 z0o^&)ty6jVTU;4Hm5QD0N;4`JyLJN%Zjac?y>l~G0Cyej~sWER%JHZZ)pT3XUbJfNEU31TqI#OpBTg0 zT@^ZlR=THWNPD4)A}}A*@jP#f@Ayf+Hlf+ANy8^Tp|z(NWi8KVGK9uwiA<*X*)rFi zrWUvFqYTSdxksoOd1J0{STfSA@#0T7tklaF1;rj%S*~lK9_@MtS*N|W~$`yp9hl}NeDKjB#Y z8yER%utYVwy<{ea=c4S5OdRX9Sb@+l$pwgUyxs;qC#6(Ub;eA~rq1tP!^+I5sigbK z0k95@S7?kh+Y1h`g(@3u`C-4~NJQGAPQ$j@J0ndRS)7`5Y z6&JdQJeDv6>uFcX@~S?U`{S5*-&u#M692 zP%bKZ^7F^VqHrS~PVP5GCU&ivtWlX^SdMY3D2%x>%``{wf-_X`*cToIb2=CIi1AE$0*nP{JIWMs2_;x<^hB=P)oD#XRXRNQiREbm=ceN)agUJSBQBanPNI3T4!%Pc- z^QTd2f)`g1lwI|CoI?_V5tn+!cKJuKFCctMe(GQM*wnCM|JBPMencTEUM&(zgK@%3 zmFfG1??P*k?}|^%uV2cnN@(a#HH(bDW1)6f&_}(r`k-tS~r7IZYm~5!`1p3OHNc90(%e6hJt%O## z!i{RH`bQcu7OSfDhKp~A&pCpeu7`Cu5O9gDjXG)Sr$s`wtwa?r_ra{h&Jc)Qnx&1O z^KV_eY}G_`eu^;uLNn4_+>Nv{XhYIzDQ8BHl2feZ@jQe) z$xo$3I0tm*+Sl%gX~$sEu=KOaiM2)`LbX-F6$9WB#<_Gi9-f=Li-cg4cbE-Cd-G*D zW&$JpvU)#w^@79^P#!lf2)QkX@@#hJ-4|C7z3hf*1!kH)NBn*?mk4!8artllQ=1|IsA0KOKRBl-&c0IA2(`8;Sndd=RkP#8dLDs>*Z5|hK;80Qwf(Wq#YUf zksapE+t~-qOh?5VrbyGDJcqehh(~*c%1<&!o#zfroz$hMm;1&BPn%y)K^&9dTh;m)c@CTvK zn6jAc>uhgkVqPv@d80qB@Pw>>a?&l9e(bGq?^ANjvt`xo-HD!G7f!kbg0@e0!;rsD z*8f$IB}W`>e8ux>R0t46k!|3{uU_XxR3?NO6A+~ytfPWy#qD%uv#}X4Y)DLfJwv2d z6%QmIlrN*A&Das`gpoZ`R45k_f1J7&vGI37Q9jiBsur2i>vsTTBizG&)O@kEx?Gw= zx=1oCD1VRNW4Sa-l?JZrzCYuxiq%GZazw5#j5vmY21P$>$3*4QfZb_p(s#M-`}_D5 zCB~tp+^9^9n~mZOykSW%PIEGTHYS9him-`$PHlvDws3rtlBZ@XH}>{wS{u0O1KHKw zvD>TE{Q37N_5e>F`Wsc7B4BeoVEu>vKApnIbR{-P1n0{Si&eO}_N{)M_)YmDS%vO` z*9|JT{PFsVG4TFjS6F|<@0)b?ZxOq#+kv+gAIpiif18Arzni4GwU4h3dXp^lZ?M*m z-K+j%n@9lrRM}===rhOU*Pq-omta!Lh|2K9%2kD$QeahB=s!CJmrJ8A29^?%rt$70 z2b6Y=EqhriIC4UV;w^2sIK9RKkq|`ebwM5J+CY|;s79*X&1V_=w`+}TBw$fWF;`%1 zCML~E-q>q!*L5b5&`^5yJ@ptkgB-CHcYry6n)XDBDKU)gP+~@=t5{TQ7%(A10!wKg z1DRFgx88znn(*+8;8g%f&68ukEt#1u6Fv-dC|=g@6UUc8T_o=GB8v?6{0?okvRtag%^z^QYAkGdSWMtUHiZ z6>)}aMD}I*iI!4_@3PY-W2Xc|J~cbGy!Z>>Va?#oxGow|c$kU-27 zVjhPeH<1*50sLJ5U<}$wnHd%i#wUalyYD%+by~|d9K3!!0fx#dXL2eFVPMpSjylS) z-@Zi3R z_Ed-Cew6W3nWl?CA?o-Mqd2fO9Npx17`)l(HeQvEJlz=a#S-bcex=qUBsti1^v*>^ z>yw<1XUVjj=g1i9>5i{Ea@&SROHq{jh~u$VjXzbDAogvsNMkw*$seXLxuy?s(+uiF z3%p44I>T}ULR;qpZpg!WifJ$)ta1YLi3|;xl%Lz1ecG>L0q1ZAh{K5Pb*alXOk+#Q zJ+91!f@!)vsH<`m3x$~ANYI&F(MD(GH^K+OaQuVuv+fYC?$EEMIN&h0sv-GRD< z__bBcv_=}Hh<2QKS9a+vs*_7+hoI6Wy-G=A8BAOFRgsH0GcO}yY%%9s$*1{|cBKQ} z(ASU-W~I!P#a(o|aPlue51ha56cb{iGjGb#CuXBi$u$5B?5Te)Bkey0E?=>1h=+E5 z)%PtNy#`E;U=AXBGH;zA8bayJHTVXmAI}&BMT{2!IRNd%x&{U1vLPeBWa_TQopj|D z$go)e0Oaq_yjzt?+iZHqFH{Az?q2PP4WmbnQl$Fhk*D@{nIa{s&)@PazQ9FiTKMn? z?VzNyE+(V`<@~)`>JMqL!49ztem_}AR0dq7n!9TGqyA^8c)M;lqO|F!FAY&OWQ)pD zGg2g^s<~IpRRO)0&B$-czfCiBS$l;XXgOecSAfVR{6o4C&0j&mOq~~1+NmMbC?I)iJhM}9$0X=$(=aa>ZO2xbH-7rtjPk&1# zjK))V5T!l}MK4xrJv7f{(GtWX<<6k|QL@?JX5z+Y>3KH=$feU;$*J)LRUBD78yp-O z=1%lzl?_=={zvS!ch4S&m8|D7FiamQY1(W7w%iqu9|>M%*=<0w^m_0svPZr|19eN~s`{fjm3+Mp zRzPdf1S}pr%2Qutd2JQFP@<#DdzXI;7%xH*J*e4id9nNi2st1Iq*8i8M=t+xnw}SQ z4PG^VkfwA~W_eTo?{ii`1RzsZ8CE=s0Vv8R@Bid%m;KP}{}R7_=DEPP&p>hKe$V5# z*=8PZpFA9H3=TVgDa5~j(ww!0)OsZ>DOFy^ZC#2QZK=I_{?QdWF}?mLyU3h@oi?kz zZ5G|alCSFWrclz&q`1h!f%EV|I*s0c6=ufZNZ4rV89a*H1f3{$r>$N5)#QX}L>-jTQrp=ZyXt~N3RD*J@*CP;rMAYS6Y`Y{DcFQ8<;3i_Kj9)jQYzd&zc~b_es=nUM>W6S*o@E$2q-+{PLsb9fpF5RjHf82YgH`CEr$q_zcBe z=LX^o3LDs<{Ke$ zlCZ(y!lIJu%lRsQaV8$QAU&qi1Q*vU`WZ8^})|&F@@gYs%orn>OIW zqP6@)V_Mwq`DUot{}rWbcnl6{SFz>X!%%))ss`PGd4th7mFFn-8CkYka$zFG+$;^Q zrj}5q^z54OSDM^udQrl|iwT?OJs%t|yO=4T$1b+;4L3`@bNo-?GPIaLF^WO!zKV%M zr*;2>GpXo4E{a%b4H1nj23$rNjlQn+*iZ`7ehBYE)!(FKP4ki}(`*Daao8#cteT%@TFv#TL7F{{@7Gf&&rV^Q(0LbhI`m=$92V1 z^mT(G>Uk_x5*c|gDAct`HGQmCn8|7vYZ9gNaxz!p%z&+&40F+ED2a$x#n25kF%Lua zkVI_7HA;67!8v-*OFtR5OrJewOa$i)9I757js1SaWl}F)*!OJ)i=$b$!@(zw4l$ka zWwL#mZU@h$ED7aRv?0-9l41dV_!S<~qA3|Cb9MXOkF;7VHI!g!e7jD;mk-U5Lffc0 z0`mFe$lAO8nY@J_efiV9nL7k1NoTLB8zFFh4z$z#T;(z-l*E5fs#E|RHKY5rwhBY8 zH`5q`oN;@+M(sOQVeq`4o%N5T_Qi-`6xOxZvg4f%!{>ID3p^cG(13=VN^8BVrdXLdBw+mjZf8bhK@9{fwUlD&kr8%ogcy zJ;q43c5VMKi>x#SFbd08e336tf3yx{Gv;M z#rHatYN<5H0BVINt?*V>lktZ6ND8*n&a+d-%wtTSiGel;+3b8S(jI5xV(4Tzis>0; zWc;YEzGdUkNFgeBU(&Fl!gA}?DcOCwpA!Va%mEAEpSl2%w*j|50BS?VYyQD`gw#0D zE?c53287_4+Y6&iuH?f?yg`auWv1;H_4j_;cXR&jpG{dmvbmj`={Ah)rkeKT$BlNN z_9hr%s$yuILjC(tk|U#59UH49L72G}V*V?zAUHcrgIfaIf-`!8Vup8H5ZlKAX>kDi zm470XOl2{pBto zQhD(9RiL3)#QvGq)|20%?oSuy56Ku_+VpVh4+ONV+XqVhNNp9_SSWqA2DVPkZ{7p^kPO6-xg*7$eC1HVT2H+Vk?)gej$mKbs2z2eVJ?tK z3P70kkLAk%_6x!iem=7$5Q75^Fv$(Bu?H}pWZfm02uetERK=@95r_?u#hp5hf>a@n zNjUx$s>at>Wk(DuPeZBpvqyn0c1(7NZ|CNP5w$Q#?)`|12-g2mMg3`;dixg4UB25~$e4oVK zOl?yBDtcmhoWdS$>)lv4LeUIyvmtJCWF(PZ9}`$!goIa!(;~Xue2WS4fm5%;@Rpar z-q9#t-))0$bdO7W!bA|n9yF6tdr%I-u6PvMx9fdGZ)FEhA~_h4$*P*%E##b;r4?ESah`J1mL1f&DeCpkWy{DpZwk@b5lQ zFP$7e2t9jByJT`18WM-YMC_Z?5$>uwG&Zc<`OMlS-{QWB)Q@jL6Xy(-DlpYc8usZK z!0{G`#%j3A<<6{k`xk@?O8XBp*UnojK7xt9->3XSz-Cn!_gS0O(~23@sQ~C+91D4N zW}XKH=YpmE4dhyHHBBQ$X`fE4T#MDNw$Cy%^HH$hw2F=9_D4|-SrkI;WZO~L zL}*ZqhA?B!qel!b1oIEx;-+5!`8m5xv5Cx&BQ9Fy$=|9KmOMYnL4}3|ry~_^ck21< z928_ITBEYeSTYec)3A3Za~%zynNj8o_@wwH+|vW(*g*fZ+qva`K;cZ{7}iaw#YnF7;hgXk$?IeK$_8kJl0-VWrHI*x%W{|P5|KPJXf}fbeP|I zvkLHZ4oG9jk@G|m**FA@Al|_Iqjql&*ZltqAbiGTQLIo?CGL%yk^vqItJaZf=N-;T zC0iO-fdIEyrqPu0M;cj&z-tk2&Z{Qsd>Q-4t=F&O5%Nl+e0e+C%F^5_qW~#tbk}&$ zxPW;5gtucuDe7PEsjil-nCJMK|M#PXH}zNU;-PcEO&s@Tad78v+pt0h9^`V)`lf66 z8_)8e%UH(2I>@gw)w$=`iRrH1+ z9|Q*etK13Enjd&1R+KQjvtz!r=@`0{&N42MjtB>iYI=nem1;AN|Do4wevJX#>v zN}Cu2Z&W41cUz7cvjt!VY$P}Ezkc5pKnYP1-mzjM^_)ypsDHykO2dD@n+*Vt00SP9 zZCYCH1PJ}xfw~4B(9pRNhb+i@Ik>P(iO>Arzv-o?oIH4lNz{;wH zug%u|jlnTrBlfE_tpDaQ8tSKfY}3Nv^t6v6pLF6|>kIxSS^EY<{At@aQL5 zpFP3h;w;=JC7a>{$8&u`omcD6T1YNyXog{sPFRJM?v}`f8x3rygn{AiDAZnO5u^~^ z67bpt!c8t=`gIXE(r^ozmjJgTmD9|b+4}NjH86&*02a1~8LSB0bA8b!ThRhoL{DtR z94?TU#_B4m7!G}LMXzBaX}F5!iY6{UOzi4KK}+!3#l8Xz$I^E}2q=}^l6V?-Y4a{M z0g`h^7rqI+`4nHIFZP>KcQb-hU(#HWVi#c*BOOwrqE3eJ!htg~p<6-B6dfZIl$&Vu zj|35u3O|iuXZkx@QTxuTWI{`NRL~5S+%**&W=t}Sms^ng$<>TCbi9hZDv@baB8I`4 zv|>UZ{5KYx=k(HKR_e`b*v(qc5K3K_ZiAAbPVldKLOP@Mj(-IL>1l68AC4DIOp00T z8Yo(c&R4((2Wi+PZ;Wdfa}@e^9=q*-yv4bS-Ow*vxx(l1l{n82A+oA%(a!4nLU+b7j6)v#Xxsg2^{{J z_g`6Mk$#~x8M^@p%|#v>kjN=Mu2Ck1tX^g(_P z9SvuY>ULe126tt@zg0oc(W%g|g=XWDW2*)c@&TUQIShxK^t5~irscT9ckH}#e$|CF zBY0109rPLBeHcanc8py|hC+D{TtfqvU<7>krgjYkUF+9(AvyiEDN;6f-bp?Qe>Qzm z@^2*w{cInu`y%XVnHq|Z z7iG2*mNe|_^!XgKI_4AdH7w0rRoB>cRGs!MR|hDbmmE!z)BB$)mv=BobFI%Nb||ye zM(7>-r)78SlA*PZ^!kCuT>28lmp6V^)UzgQaIWaLVUbgvez;=Q@F>Ot#PZ|rlSHd8 zyyazA3di67UgL?O!a`8J4M&yx$%fBSgRHl=xPrVbPl^uc0eiU|$n_#p#Um-qs_JdX zrjc8nK?>oh{YXtcQ~!@2*IGiuLCM|N*Q3;n$2{H~n!qExh{ zojYzfL8}|10h=s(Lv09P zW?aPmOL*`nLL%3s%EN{1PVDa>Lj2?dRSxi2ySIWE{heTti704^zPJ~mUf&5Ek55RG z)DQdky@NZ*peDYlSRHt2>S~^LFvlcWU8mz4LaFPlgmRXD(P)yode3C?)|Z8Ln9O;d zbUw0!K_EF&eWFib?bi(7Nt6l*y0*Rfpg&K{&FHHO`3H>DK2Cx`>nZc_+vsF2ggEM_ z-nr9N2J8JR%rBKk-236N51WF==5BM zXz)zG=K3e`+P}e3>S3GukjC?)A^IoHUV(44_-t=i08HM)zh{Lvw#uzd#R2mmJ;)Vhod1`%OW{|i8+;!uZc8=bA=)453At>d zU<&~j7smHweG`*1EiO<`8qkU+Cd z-nZC%8NxPQGS$}D2I~t+i^(Y{TTY<#`44PcX@xH)azj4~4))FU)|)GV>;g&FPPBap zsRTGVMTI4R`r#c%8j-vj#>h@@*SFab>hZNZzw{tJ>y@varFpjVy~XeNOM*K)xtrE7 z20-n1E*vf$OGGu~K3=ouCJ>s%)w`dV;yBhw!xg_6H^Lm4+K=Ks*n!5(0v4dW9+aF6 zVdUpMSb5cmvrWR;b#2M*Gu~2cD-bF8|G!r8SU8iYk#=OT4+l4a9XXA1rus7)n63I~ zjfP@Cy~T?m6m?9Lg0`{6#EeN2rf_es_$?)GTHgIDyAgv-oc02s!g9LHNT8n0uK>Bk z{Aw@tn^q#$JNyy@(iU)-Oy!K+e^HTc5Y{vS-HEH@N8+xyDMItX$}t}Fk)EL|S?da) zKMn2)SNiJnim);Hv^#JVimU60InOBD=Oy!zkDnFk6T#4O^JhkMgm~F9^NkFtPQFK> z$D*0Un$tub_Lv{KtEz(mqD8ja{LW+7u?CF`r#W9+|wejG-aFD1=O@7}4>@xB~o1 z&Dod@Ztjvofl)qX#KH%vhjcKBcP@aDeYXo*iru>GT0BP*xwSL((#eIJ#ZCN^r zGfQQQY$#MHOLh85(rOO3RwB@1OyEA?uGClRNTS<+J}}bzG0O&uG$*`+xUvV>7bC|# zf}A^3fmJUb4SFv8UihOW>DTK&4lhXCeEIC0Pc*{n`hDt;(66Sy5sEErs=q4q#|>Xr zS1wDO`h9r%Ic?>`4($@*o@<$(Kp)fdp4XZfdlJ4uhvF9>_&+d7%2_eQhNBZ+ysX*+ zD6gB$$IOB)@L~i-{@Vo1pR`ZBFT6HoWnW=GU>J2ZGn{5Q#2x{5KDg3;C$*7S;cF7D zFSrC}+a2;1dKd-=a!s5dyC=kO8Q_Spdz;heaR+bp)ZQG-0K3UXx~sPsb~?&#t*ZEr zh?Jy0{rx0CVZNXwBXouEFVNXuNb&y9*N(mez+lt^g*l<;23ewQEny7F)22oTU8w=F z@+5)RS(57QBaEhN`a*3aoV)Em=F_X6PH~ho(1I{F2u_YC-AE>ow$X*AW+9zo*!tQ; zb{05l=|>iWKhGmMXCe|;y^)w$kzH4dxQYlKJXyzw4N6zk9!Qy^=o+AXe9_JZWv*T4 z0b%Oiry99Ox58GzE*T0W92aWT518}A4uq_1z#BPs*jQc@MVU>abFyv(CpSUa9vC!2 zm&r{st=*l043(~oRxv0fq!%3p4o2sOoM1O&PFb99c6=FEj5b-g@CujzOqR8FM;?Bi zSFhymd-Cig#x0b%Fu&ob==7bEhrLV5(UyIJ9MgQeHhSmcdtUb6FJJymGW{l4+&aJ` zbb+$@xxDfCB_B3(EMmTVs{Glz1H1jwzY~j}L-qehg`hoVV0*gZa`S_~yU=L{n%8v_ z_n)jU2127633rUV9J+1)Q*z()duKm|XW_t@vc^xSJ)`J|(RX3ri+!FwLY2vM?<~b= z=?PCv5Lm71L(h7aZE6yiN=+?b-4FI2k_ZGn7_tv z1Pdl&7eVq41DsYgCE-@Xd&?UbALA8JSHS5E0`6_-YW&{@kAJI=UvBq*pE`X;#iU?o z36Pll)8^d2FfNw%gj~;d0bVh$txki4yKjC@FMno3E`|s+bZZ^Ief5&IRpfQpLJ7t! z2OHR4axd;P4euv6HTZ@(pA^_y6VKbOnL_x2ky3uXF`;wQAXtQu`)kj&4+)}A%Z6pI z*-}3^lWK(bCXw6-tlY{3T9a^+{_#nhFdR}=N)wq=)j$p+vOD2eQEJ;S!ur%iqoge- zQyD1N3!8TnjTcD<_*2zc$?&u|2m$!B>UVT1hJl-1)IOGEX~HmL3fW;k^GyDXB(o;_ zMkt+4q>1~Us)Z9NC>e$c%_brTzzaFGHKTN!k=!RJ@BdY*O0m`U5k8;}m4mbsq(6j? zR*DJTJSj+iO{rdkh3%jr3S2gdHDxkfp+t_B%1G$TK-D%zJ-Q`6Q3>!5yh;;Wor*Z)E^jO?+2-JOAv`6 z6f{V=qa*9)5eH&UkqXhNqD<;f!Z5HCPp&+=q&GWJLh{1Tn#Jss*MH+c(!r3Kq>@p} zQM^r$dRrJ8hEKR3EGX;!qW zI614DyO<1TKb|QrezH>%qNAQT8?q}FL+X5GiV%DtmP7HA2g=tun3`;6K*4d|G(p~U zR+4Q9^u*xH9sdSnZv4B0G#BGFW2alX(ggXsTF-?^;q%@ty{C zcWh$dankEt5G5n7%zcKIFZ;i7dim6~H*Y4$$Z7|&_NQoyYdZPw_rdhknW|L^6cC!A zr8N68K;K{%1K0{nnwdwi#X|gRL%(Mvhg_hsfRtf}eT!$LK$IpmM- zcUw@^1g;f}q6R_+(b6YYRUb@&Pax>UVW#ZoW!otIFR@GV0bo>mqI;MLZXE; zs)bLv%+h)WCmtTeA}{7gw-2)jWe*;yYwIA9vFAK0-wG)W=g@2_kqB~Slb#H&6&wbh zep_g=tn}&Yk=l9!S*YGmOBjt_Fqx;(+yF^_YrsY>DpF{sM12G$F)%%VLOKTVWi$}Q zW)$6YtM6ty8tvav2*C{1?~w6XMuW=>FH%^K%ODR3Siq6I|5t?+>ILM%d&*+0}gV z8cjM?rgVBB(e8+$m_)Ssy)Cl-9RfC{rsHINbYhmzugLt!*qxoH0($xSJX&UWay};1 zo`%teZ0L^u3|T@8G+9+P_H#hED;wAl9S+bBalXb-WlGwLDhN&a)YGreopk1Za^^yj zf`vNF3iAxZ&lLW3qzCF3zU{5eoA1G-i1ZNZzWo{6>->)_`JZ!C-`RK78FI>u4`5t= z(7msVwq>E;bE{uIznl^-XARgWL<-;WKbVLyI8lrWyt&H~HJ1V9(o+%F_Zx*1Vpm`_ zUKej+T1<{Ic}y8NOZxt>Tpn$QrJjV|Q19564`&j*4ION^)@E#uet0~cIAZ+u{KILt z;WkU3>)U9v4wuD^0iTbJX4aI1tcme<&k~})ojp;YJNxd}KKT8*wE896`%lMh0a1a* zV-BktcH4uLkx6jV>DmVmNicNL7pC<|s^Q}$11L5Tbc&iv!(FO7oKK+jt)I11TD?p< z%Vtv%!|tioz@FszdJ{!ODC$YO{y+J3)tT#Qc-3%mgO6?|H!HrBv&->b^~`M0pRsc%ehQU0n+vOKk>HGc z``+=U-E;-Y^<>+}^KoJ}(>GG2kdrwDNWq7zBFMK$Pbg1_|0X2l7GHfRu4e2}6TClx zud#nqK`3y&?xLV*mNd@)A>xe<%^2947SI)3396^s8iqEl(Axr1%Y;^)=1wXa@-l9? zY#UacsGN&=dle)e%LDNv+s?bKn;|Jz25G_1(_{!Mi>wy(N2GQmj&YH~Jt*Bm!NT_P zKcqq$#%;3=S!YO1v21e!wygS&1E$iG9T%&my|JdC$G>pOarzi_?44MB#k7M3$?FCNiHbC-_gSILxUy0% z^#elnae03t37*KYxQ03_fxk>Ord0W@gW<2b&$mQ&&$ z4BekM*)_yMFGiJ_X1EhAyq~fT%f1>otP&A*S`eYMjYYM8et}I3W25*LF2j-z1U&~N zl3Gz>0kRt2BfVw}p>r1Wab}#NG}=vxk%Gi^CK-!@Lc7X@?xsP_FJ4fTqZmS0?TROr zus?qM;A&6Cp(9(&!1)*4BLsKY%W9r`#G3uo7BGiE#CWL8XcEVUdJ&6s`fLU z;}dz7EmW(jG}UuKr2HKGCN(l{q*aN`F@qdj8b;t}oSJUQ9O!ROh}lcXJV?TisBm;X zSaDlM>H3rjq3!$H|GEF4(1CY@UoT$W_Xrza9CVIn`sqZMJeNr9X+wUt<2G|$sUE#^ z(q;u^j(H~kI+g5BXC`6p+Si@g#sN}0&wkFVL@|)2B6XCB#WJ^(wi-WkO#2)Rq#|^( z(OE*_+;~Q(4lT9|WV5^&&zZX)_KCHG{oXBQ>rGyZ2IHRAw(@G2=D*58@4HK(t`8+m zB$@w{Gd&f#^E|=qMSS>j_TQPt$MJaMI`QsLA>s?299Ar8DY#XNsIux$Hvcxi3Ako- z%Kk> zp`IH(64+UWSlQ#@()S;s@z~E=#=jqh3^d%8sGlSm}qg&`2zeHR2Y2 zcL*7Lu^C~!;|b+fZZYhVyga|L0S(i+!qYTo%)LkzEtP*V+Y+H8X+b9&NIM~ak#=a= zi;+mWlhb0W*!EdHNwalIjy&9Az^$@)njGeHD>UXfQ!t$I0mm}W&~!Kpfe(m-04eA> zpwM+;GMA`K*jUgeYvncK1$~z8+tx-(Uj+?BOow~+uxCZNkWh*Dvt8NoX7LOKO=iM2qS$vZ!JV(_(XcO2K|nyho}Qy~T5N=hU)I+_Wj}Xmrd@FVY3d|wvYy7YO@@?C;vDp2GWJvQ|T+YtXrBDHwqC?SSCn}9^dYyN z{jb3jHxcKrGq&4r9()QtIr#Fp%;(z}6{U!X?eNg;yD-#$ns2|GB(^k&5Pr2X{#NB+ z@alr%=3hVu)uRoOUwBVqFH(f`>w-J;K^V#rw+F@FSUmZO3Bu+#?y^T6Pn3j|f2rk2 z)H&x3=hK;ytlCiOM9tsy2$uiO8YFFzofuE99r2N5E{K2x1n2(Y*zr|gMegf{ zHO(t^Qd7b-v+9N#OC14t2aJ&$;%3B&mTc@vGkUjH0;w8@YKM+>dH<0i^hMZrxtcqe zaqeZN@99Hi@IMy>mrZCjS*)Y88HW2})sbc7_? zem*H2uPXuI3&tu{eCqu0v3Lz1aI%2Fxb?`v1Dcv_{|!ma4jKz8r3 zXsslf1`1ovvWk_CUrbG*b`!g@!1StWq=NrpUP>mJ?O3>m!@(JSJ{DapdcixIILryD zvbfmOrA|xD-^-=ri_-b*zY| zOM{43yFKb$Qxj|J0-a`>e|~#tCN6&Fm(6!^J6~paXC#fh>czfD! z#ZM$hm6jF1p8aXkl=@F{nI=+0Bzh=z-sY}@yS5r{y0HFBWVNQ&x7tSzyjko*>8>1~ zGdpb`!^0&NqhoYH))o}Bo!CU)+*TGT>*EzBk0dBmGhuv?A-`Z6*Paps4f(^ssN1J4 z=5O`qbw*iPo6$*Dg?|FH!Z_?6vz-Upr z*N8^Np@4!MP+lQKV4ym^+<;7BRxHj4ntsmPzyoJtd*yiWIzFXN@XR5V;+cONc#HPI ztj|{H-j$~K9U0Pg0*5@sGhCU{Ksy=#5PK^V|M*8`F4z5{vRZ-A#ER(a#hzP+6)2rn z=;xgW@&r4Cm$6er6~@rB=8GQ=ja|?3}ec`S<@$TiPwUMMEgxg#CX+H+&LdX#FO8>?-tiwF7C?d=*Rm_VCs%zF-J{-8)dv_2Vv#yC(&=OexYY6^U6t$k>3e<^&W_zWd`M9C(R zblVE2sOhpH&8?8zwT`g=eRKcmnA9qR!r(EgN7c_x_O*O6Zj+$-r%vs!pORgp308gs=U2>8e8-IZ8$XS^&@rveM2t-1G2Wd)?Q2?DP0>UH z=!#~R=nIE8G(|+8_U<|kpn}q6+D@WmdV5i4wcvQNKMAqF>fU)ic!a5yTT0~ovl+O1ARe`)pfSCb zBPJ5O>gP+U>#+L9bv9K~GJ5S~g3(fr;7PP{J?4dX{>k#X;&2H>>nM%!4nlp>>=oi* z^xe*Sl2@xt_PaxUsO9K3HP~3NvWgF_&aj%JqFt@Qf+yD<_%CMGqnVWtiz#lev#W+G zEOlIhJALAKnxA1Z(bP`j73$19ThpZ9aLOe2Vm3NlVg$rvc11>#A4UVCA9cn80)D7b zvozG#=1^FS;$T1RwLbA+|xJesdvR!~2#3o0G; z3`{cHbVbfD)G(c!t&D_W+xcT{xD0iIV8@NrK7|c^{|ER$2fuSEuO~hGB8z6plq_#Y z+yH|{C{JD@a0Elf+*|5=b1Z_|9k|h5_I?4T!9^&>WQ5C002mVSs|##d6ontgc0opt zl`ji~nQ@`vE+A|&ntFzWuV+)MygCW6nTlTt83T~Ju$e(FEbtuJi)NLcLHNN_Y-bPP zP>Ev@G8Vi|XO?B@V6f@p$dVpuqS5CrOXM_I2EgFh(S?)J6mkam@f3uwEWU1p0?d># zcx@a5mMY>dT9N6k#y|i}>EVGt4ViJ9B5bg^Smgy$W|j;eTJgCoUp^@DvF!0j=HI{K z_@B?;?xM-ggv?+QNt&f&P`>3VRYPbXFX*3*GH8gGx znj5k>mRuP0KwJo1bWWPEdM3u2cpVkJPD`7jRn@5o&R$Y2ly*lm%1l25Pi?3k3oy;G z7LA#1$x~bA$wo98DgD6UsT}SaCVH#lQwG~pUO!qi7zDQ}zIKYNodrNSP?`Dx+Y>x3 zBVSD+c>1&Mb?QQtr&Zk;15;UKSGeq2H!+o*eK#dfoj0NX2$Q>jXcruQcSsopw4^{6 z31D1i#PkCmcP%4A7?5?Drcz+98x9)mR>|tZ0|9c|6kRBFf*sg-tkmOBrF?r$=GQG5-{gY zlPwpGX#1UXpF(0o?E)goesOnWRDvl-HjW>`lJe0=hS1j3g8LB-W2$pOQXu3us1wD~ zv9}lT46T3wD@2NpB|HouhYet60;;HkgaJ16cc+~raQ3{b@c8xu9bm{cRRzL0axAsfHcbBQ} zK<}W{E1$gbjz_jW`ua@|zxI{8o-LG9G&yEBZgR+FuifW@EkAbiD|R`1>yKV}{`HSO z`Z)Ke7cIKy{43_{^VMk^A8?5(y0hT~18ziqu;dWp$L88Q0sZ*0@>GjLlxde?CPQm? zkcJ8@VZ#VQ+0IDXCpFKqZQ+I>|Q&Ob{L#Kap8VPNp;-Ou@leJ?)j zxGU~k^5C+^|0^#A!n!X7H@cN8p8EU`=Wh1lYc@Y}_>zQ8E%2xp00+!Tphtr3HnnQg znb|c5#%6(s2M5nN0oY!v)K?IjK88vVWPB;u6k9*O6#Pgh4!R^lf>qJ*>^mG|GD@`8 zOTlJ=WVMg~_)-vx^0{6LeJ%It^AVFyQFe+wvp(ihSEgvM+V$)$j=KJrS83CSj?v2z zr8xBV#2%gvuYR;gb@cYeq;V`65KNs_FH>8_-jf-jT_b1`1ZURnh)^6`W{^E)NnhI_ zSLvJqO9YP6fzfYfw8iwAA5%g@_8jHy#%s!eI~WpyYEbG)JavX$@O;)xxl331^bsN# zgI4Jw6i0lk1XD^ehtKKcSenWhKhc%oDM&ro7)r}s7Ek)%5!gehd@&6tpA8|F2%aKq zFCj6Fx6%=0@8dH*Z4gVq7)vd0mW`?-;GvrW7?k3S{F_?E7-6lOg0Q9{;|gp7jerSC zlR6}PJuTHLd!`q}RF>$K$dj3h2*6|}4)8D-1nE5KgGby5qlY# zwF`_1@G!6{0{*QU_@rUr36fltT&lWg1iqg6dh!bJSO|WqG$eV^C?TbA3S=ODP{j!eGf$yo*O^x_o-glTL_6gQ%U-LTQ6^GkT_eQ%)1fKo6>W3y)SzMwS{Q z7%b_GS!#MLv6obPs+ZCXiR?#HE~A!C&jh?am;eA-Ug^k!XtUta;lWSOUOBQbFvWws zisG)3!iFXcPCb@H`Ym~x>Dy$4RzobQZcM;BLg4!&qrCKFG%yS6=B7qnrcm$)UQ*QU zeZnFzL||DP3Y$cx*h`OUYzWRplPUrk&%oo53rDP~E@GioFUJ7bM2UErLXMN}SG-&T zWr0U12_HtqqFT>?S^4?$i6-q@=G?EpyOhp$TUrgkJmBiO=%iZMab zSC>TXg+#(~gjpe!Vk%7*yvZUs-o$Y{7|6ocy@G~~i--8?;=&Ej1@ck^b4U;euNF8;@TF8P&B|r>Joxm{r`}Be>JJQm@U`=a7Qi~*lu+4dwfLMu zt~yGG2VFQvBQIZ8WWGMF46uRE7i{%y-!_8yak|KU>{L8Ufj3nnACnG@RprymC{$l= zj*X3Y_ot@q_SNA(+dloGCHFnBZ25|n-U_`G5aR3l555!#`04#Sz7)JBdMP}y?6IF- zeAlLjUGa{ihkw0HQK7O6Pywu7n@(w}K&QeXr}1=j?GzGxzLbM2dS{QBa;*9xI6Ugg z5jl2N$?Lup9RBg8;OTfcRJe8Oxb#wRn0qPEq?Z@wj^%T`6a?{<3mzb0?f`pAy6#Is zb|0wCkG$q(@BR5+pSyhi-S^$KaJW*|LiAF`Gv;w<^iH=#7+#vc|A$owUhBP58T4N6 z1#M~<#A&l=G$HnsUI)@{(v*&ur18psM1WR64KQDhI#_1pXT2#H6$^QJeTQ^&!&}j$$UYw89|i`Vygcb;F$h%+ zaC#{!&D0Yc?IS_hF^(l+M|*=_QcF{B3UI2FBVz*N?3t;KENs&@my*V`Eyx{C&k9#g zu%%FVXU|f9XBB&S#UU8+z(ByfJjwKUwh?UF4rT;+7(_+lql z;GWn}G8=_h;%;9|ZAy^xqH*%M$g395bzcf0EIUXt8d#zXHbE}KYKIC)L1?Dl6nM2X z-V}h8j=+m$Gz6I09376-JymjwwM>Lzdjdl$sFZ1cO0a zMYh_YF_mIsGTeDQ#UDUVhAFdn90$E`6n&%+u7M7cI1nmOL5fD5+_y;{Z~b1il$aM^5mRrQU4Tn}k zTci2VnrQemI-dP*fW}VGp~LX>qnpw1GN942nCcz1LG{h1nqz{g9z}N|-67w8Sg)hO z;wX{!MHW4iryyMPQd*h1A9%D%vb!uj`injTC0o_H^8;%j{_2c7yrTSjAA)p!F>OvWJuPe8k1U&J9;RXcm}`C1i3c8(%5>qIez z%8dfOehxTgi4DcPRZ3>gfKUXN6M8PKr$Kp7cmZPBYD#KI#BciZRw z8G()sV_r7Je$k_jJ;od}XVP(EfJS>NkqcW{96T=g$1@Bx^jx^ZDJhT+uyiVtQ4r4@ zL4{mEtMSvJ633>%2{xWZU?v(Rjcrm98uvd}HJ40(>Prz4OtJd}q;?AG_tPhYx=v9fYa?+h!r(7n&)O z;qNa<10KmX$aw>j#%aM40o!DRr~-Jj(3si?_Nwccu_P$UX~&X!mCry%{LAGtMX*7F z@WlY%4YvL6-+$m-AV2%v>67Y)Kgi?%bY0_1p|@wWto2ebdIgLI>%J5$JpA~IJ-&4N z`@S&zi@vtTvt5P+Ftqq^(L?U(kb6RIo0y?R$*NGb17oQj{O`OJM4+(|rV`l;8zisO z;sfX_)HFz-`b>$BPn$)6M3!fLDS!%(u(Cg&m%_H6x^4F_-hRiz;g~sWG3MEMo6tEl z6;{VXSgY{+qd2_%O_L2a2F*bG1sM($Rpwss9m<4r-CZC0NJOCktvm0%QyjgfD9kv#>^-L>5-`c$)L=H=HZ9Tr|MR9GTBxKGiY395 zzU>%cgx1JFQW}EiANfCr1}_90iH-|yrap4?LZc(-h+yEW-&1b;$I=o(baC4ct1-ph zD!4TCx8Hs{TItAm3yC30X=#3f|S~4k};(??1jP`mwtK1 zN4kp{WmO|hiU4?uz?da>vchk>?KaWK{Yo3N3Q=#Lb4t%Jh;YXpcXUMB7aJ<0DdPk- z@IwLv17QO%sj0!h6tFBk4fYHO0h5l#6k2!+ZYo{+c!S)Mn9Sg$hl)GFl(G_-EtveF zAimKeS1H;K!C3~o?Jk;71dhJusezB~Qk|6CVspVQHigmPS%G)kSYrG)}$>9)5h~4}LY{ zkgr|0%V%$S*-k&-LAlsi)r<7IPnrog z7E_I&R#I!CnbwrB=kBhe3$ZE)UpA(jW0)y zmktb00;ryFg27UYUq1(cETJ;xE+!j2mcGy`X2>$SDyYs6Ssc0K6&4ku5foMY5-}5s zQU~cNzC?=UC*6C!J)8lY9a+^CYp?Rqn(ze6ZjyfNdBuK)G+Q#fk(`#n$5 z9I!pUb{Cdv;sNMJBp?Ax1V{pGJ0Nj67hFu~WOqvGl~2jucDPGOZAnsK@J3cF-jGQt zFPv=9(kDX6+}j-|lU{IU9UDu|fCykfC7mD9tO|%L(a-{e640nRdZD288G&3VKX{{L z2Beq>l-D6qwI9F)fyxqNyn%rV{Qt?@PWJTU-~nmX*>HXw5@zlm!rDiP0{p)>|0WGR zVj-6Wy?ajn7IY;r5DM&9?)uAD?snd;$6j~(&#!s>(c#w(dnx#W@-%&}m%`%3i&j6q za>Y~2o?NCw_0{T|^XX-eJ^b)P-Yic)_`s6K9(m~eYwvyQVVAxAh~d|y0PgVM5Fz#y z1_uV!lu-H3QMm7-b_YLJl@?%oP41AWQ91N@7P(_=6UApk5R)ZV(fg){F>c|lI^mO0Pu6}yENday&Pr%R%K zvx`~3YR{6FTHvJTrJ14WP!YJ$lerK~DOCZOsk}8C5VC>C5KV9}$Qa;4E+)DPRqMqa zDuOB$E=YJ(Cq7F>F{ZH{3^b@LWv}y*h+vgX9|tzl2_h`z)SChVxwryIEkfnsr{)k; ztCXgh;ep;%7WU&!K}G_bPz|5E$=@d3zQEj)r>TH37AmPFG8Kei6$31VMUkf&=POiOCkR7JHQ?5 z5E$6EY|5FZh~u#)7li;BV`f6rSjAC^CGfQ5DWBCUgp4~)=Skk^7Qc&bAA_)(GP6VJ zX@qT8_*x=>!5GM>@iFdWARWD7V@z?Erm&@e4FI9YV|B2xY_s`}#N{OpGgC_hAJ+s0 zvh-=^Yg(Bi!&A&s(2xlV3FOFgOX&?kxQIz9LdS)@fZWv%Av4F(mJ`NfKiK=4FHniO&|j?Z`yCnW5f!q9592tsLy!@#PiRpl`7jMaEEH5iD=hQ4EJ$S#H5 zuS~o#>sS+58W=Vhh$&+*Xb2+=8dHOpsjy@=P8SVF)dADj3WGcEyt9KEExAiEejW6& z;SPC12aG#Nj!ki9&YU?lf&x{+Kv5~B5H`V698Jl_7TA6xcEuc=?H9&_!)`EEIS2Q9zd!2;lMn9+L z(~D@2TmVF1EL06KGhK+5k*w_?>q`zg^#L~85s@`U0($CxG%nh4J+z)oSO8?Caj(<# z{Etn(E+Y-&I&3zUIM(Zk$+1fmV0utspt1xog!EkWe6A3}>cHR>4Gfm_3a6)JuaN?q zmr%MuV7m4Qs9u;=B#xdBDo@PNi>7bGp%%^k3cZ$?X)(2KGD^f=94Y7-OWN;^$Rd|G zQZxlP-oPMy@U#a-6Gt2+^f3 zmU=|#)XT5A}ltRl) ze2p)SsR&T1MSPH0x@X$N_KrrPx^V7RaYE17k?1NSdlw1%rT~zw+EY|$)&+#e`E)E5 z>&en7!iLLs8(j*k>_u~#bURWnoB-HUG_tXkLeWbBJV)o&X>=##9&G$zj9y)iA6nQe zQ*g343Kt5!G@-R>YD3A&1TWs`ZG_!XxKP3(5EzL7Qy>ibe!fl-Y`C?Aw_pfjiI*B> zlup$svTNLxDUotK#fM*Tc<6!L^~>`FL?8?bl-;)hV^idyR7`-ymjy_?K|=4~LFL%U z;)CFv;K9NE=OeFv(?J)%?Zel;YPYkG{qFR;?t5b4f_eA;pD%^J<<|dF7}|mrzV=sB zd3x9R3Y~lhF1vdAlI=cm-Npx8;&@;W3?RV(4>QU^3&42uW6PM~0iT|XmDwhGsuW{B zec})hLW4jQbv`LAi7#@;5*sdT2o%tE&^u{(d-3)^L?eSg+u}4-$FQdlh`hUhb>aWD z$%%&@f8AqGt$F0(;j3PmzOf1a*_VR1aLVzeux7Q@r#^Sajaz*5#9sp zY<%D)U;VecmOk{%FCz3duOY!Ck_ir#cXTv*8W=__V;ZsssUw=+PLY|_ir5SLC5|_5 z?LlvRUiOZGMyu9{yEwc&$@K&D1XH;j0~+uIZ;2pgfMv(W z5r7m#)y^CD_JSqYWN|u0;*31El->|TC^0Dsju}Br0eN{s$ZYoP+410bhtt#44I&=; z%EDg!5QHMI6p#`Cf}2Hg;z1%p_Dx}Em9Z3p(9nw$R8QcG<{7IDc$pduDA_Y!|4jiK z2_hK03P9D|o1^CQ~Z5u=FgskL3hx z+z6KJeG7D6t%i-GP!NJ-3P!{dJo$F4nK?1>##h*Q7A=ju;tSF?m5w_v6)D7%ULvSq z#!tL?(l_W0npomxv&7*Wp8}c^DqnV0SXDT$j-LpU79nG@P@|&(9(yras?^s?^{NG# zA|OGrT-q0(-f=6XqeqCTIMrn;1)(@dU@ryyWB^#w6qcSbOVRR@H)aT)Tnv`MHmowE zi613+(ll1BTrq9VBOm(4&6^(byDg8t<)u3ge`Ay0MX#ep&{F6y^gvn)je>^b6_bBI zMk_65w_-Pj``N0xFYyhlD+B4BS|xR*|Jw z?{@Zq-(0f)$@guz-OzjkgK8PMLn|QOlp}%?_|jul976XN6(K<(c8xtVQ@a2#dpP$! z@m}dHIW4BlxO>VX9a=nvqKqr<8*KYsyFj4V>2ggMvqdEXe71jhaORoI{==Y2caCc_kL~$egG3( zI*{0-5earA1{CE`3G2olazzDLSoR!gOkr~@J=uWmjs%sXf)g192Z^zBOLmIb@KP*D zHTOO~?1hELeUdvHmNW?OQJ@g*UWFz489PefchDzxR_@oc_yOmOePV zEFOC3|9C0*-t%onzwS%Hw;6q3eKf|pUvBdjJ+kkYZ+gRl!{-Qi*x*;4DVFRe@IJiG z70if&N_9XgT#dk|ael~{M=7s1R~4pYm5Pi*HZ0YS7Rt&LUq&0jn2ac9zTBK}`^&K{ z?(4{>%r_6-HrnI7SL}NJPp@3|=;Yg5y*N?Yv%VAu9t!- zONRj!c(X5lq@!;mWW<=5z~Bu?Ka9b^`S?=U^~-aQ_}=3(GUm(JPKhHIgdJ3$P#NKz z`cio9-WR-Tw{wm@<@)8T);#j?@H})#!>{E(ysO5mQG8+fSHlLmpEfX_NGwTRzdV;^bUVGC54?USNqFLd=Z#2hPhUdp3EK|xm3Z19{*s7Y^t29pl_6s z5KAzubyJ|>k|lRp4Dz}+g=j2zdQWm0u~ArP@!&{|<-p8ft($^l-#G*1r;?0w$!N%YiOT4-%ATvJUF(p*K zTwn`@H%c;%2tlRESTvzVM*}>0*{}rC?!*%J;Q|aLi3K0*(2V=Uhfo=+bu5Had>Ylp z*VK_cSe`Rx%pi!v#S-W_I((v0j@tu}$nttx5*e5=HF$9(nkRM=3^rWa&IU~eB1r8y zvafy_9gFY?PHDBeEQzD!*s&@vq12wf4klak%>A5wmVCu0#2YUfBUH?!GnIue8$wHY zHRxsZM9!>PvuKb2KS65tjO{DIam<}Pt|HBlsC}fNC&(KQR@s-G&@k=Xj6)(`<2Ety z?A(Z~{P6TtJA@(w%mpNa`$$W?;R@kFGH9xTFm7T9V_UlNcDmXfVd)8`mP`k?$q*#o ze0cg2Bou+3y-`LV_1FLpws`Zj8sG?_!J8CT85@+IL$b->J0dq&R;gzUjM?#q92aj9 z=*vQbBB%&bOq8outa|#mAKtvh5tqIB;49vA;P6`+Ite|5jzI@gGp(o5y6F{ahV&fu zJ$j(-1Aa6^%yi*?bR>-RD|$iAhnS|COKp$~lBd4M^RM6aJ-H;(;+V40ph#y`i>yr% zkdlEZy%Ydwv*VMasnjOgm(BxA@xhaVvAQ?{BMvXs z2~M-cN3PlGsG%{%iR#3`6_Q(f>w;vOrY^T10e?)1?GiR@Oz0oBebL^+)(j-IB%%7x_ci-7!g z4RyQ-riy}D7DR!eC{LCI2w8?7vB317UrHqVU%vBnpFUpVqeVt}kpnzOyDX#q0svYY zB&;9l80_)2yFiLJNRXfwRqT2E-HbQ;@U^>tW!{&6Hvis-R<3z^#mW`K*Vj0Ft@-Zq zef6v_g?W>Ih?Qo1DfF`IrQi#{ullntn)&iw&f9$Qm&U;Wm5V5NY6%sP@B`^HVhSD- z`V@Bt@ZhThcm=XV7h3u>ap`b+a&Z{&VAsT9_L3cb#2r6Qo$Zz`W@MC|9{JJ20B?dL zU*3)PyI`*q7Qgkw*KPCB%deTC)f@iMY;TaMF9k}^=lN2=58k|S@b>ho6%ReOe5)gV zyX8lRe`L##LhLU9wp(c`GPOa_MvJM6Y@EYJ^ZZ{5yc{_kiqJ8pan7S!9AvKbQoxTy z&*!Cp-ZlBUF;N@ zI%!BlomV{CQC%-VgI**vaOyM+z1AH<0<+w8%noF6+6&RdX+!B5lf~?ik4Ih4AObIg zMi7G~dFtTE*pbljhP-=)uzfB7v-P!trYz}24lR349l;WJ@fqhBeov#ko{(4mIIIdn z;8;w9rF4+%h{7YU!M#?Bv4H`(C`CX^X0fN`D`4frMhE~Uji)JhzJ!rI@d41nr5Rh< zsUv%4Qs9k%r2xQ|Bew0YDlD0j8MCZLBv@)6vj?xwUE2y(g29GMUq=lZ29zRzXBx>g zw!>yQY~c}HM#gQEC0VcpOsnxzYAOCxHw6eoWhxy_yOYpTUJbtCVcbo@r=a+K+bG8p z8QLJR$5o_x!qYyQ(i8f;jN1x%Lc>(C&rBvmSYG2cG4NzFz7)dKrjx~&%WiU!5y;9P zVS7T=O(C>2RY4dx5khe|lBE-kum zJp(nXgn?DT$8!d})Cd|8GP647HNESuyZR*rg>Z+eEFCpZ@lCk|n>=_<2Dwv0fH?y& z2xIM1d$Ngc%CfIjeiTiG$1BIat<>8=;h1qY@&;9zcu&Z-k1a(=JXsRPkr;)Kwqe>+L7!qG|KDTTr#bkN&%{SAu%EjlT zj{sR%?tD#^?+G@?F%cJRCsW!NUsB^a@x-C2P~e$9{^&zDikG%y8#Vg+NS=pC`&5RGij~(3Wy2@MWYu) z3MI=3vv$x_{2Eztz*Ai@apG=?F00J;p8QE#OPW6#eKWc83B{pQzRpi}glpGCV-NuF z01#7NQ<0HuYbbS)Zfh{uIH_qcB^XlE^Af~vLInesG_TynVN59tGtrmLB%{*>iE~1a5a8K}&j4>=hyX3U$l`~=ht!i^X`388fa%2k@6EsIPT0q7=P%BA z=}!N)<0me4!JB;9uGSg(%JL<-o|i)3b)LS^#+SnCrzai4Q;$8hYEgW> z2p3*^_v`lk&9)QXe0DI2E=9qE2eml!eE^}tuuV}Kp7HP05!6DX(sm7>jPWc2ick?t z9R@rw<0vv7SSla4>>WJrh_xv=msfCnBFE3joA0i_+39Cn9C5|LU%C9!8y2oyv3%OJ zTU0vrrQkh<5af(61^QkJZ1AS=##%20j$R5+KJoaY%T~Vs*z31HcKGMM?YM*FJgcJ5 zxI#<;hLBQGXh9d*({|(PdA<}F^PT!qpy5b^H?l-)y%YpzhBri^P8@u8bRAk}tT=1E z6#i(Ty?S0WE2mb1;%a%O)*yGEF z|9bqHfv8#?18>O3Tm2Q1DZSH8F>g@XAXL+P!**yX2j|Hkr?je7Fm=xDi;vFD3)bj7S&=7=FX5VuxRFnRH(b@jY?nsbstf&QY`?QP!X^Z9!sW#A~Ylon0nQsG=l8(>S8HNJvQ_b^uQ}DDw9h=Uir}(B^WTYW`Hpmf9;FSRwQjE1rojcy* zq3jZIBs5x@3XfNg_R&;bTxg~`^3uf8kkyL^RX8U!yvCb?14)=ZeL9UeG^WU8DLxl* zxc{eK3hry2^LF2AM0H?H1t&m~Cf{+0ELYXV6-(HPW~nVRg(}}@8K;fpsqpxEGOOWN z*Kh$=tz#ssxPU@mdG-Aa>>nRc=!LMC0GZ-cTtekBgIEx8fumtS5TAiKzPvh5+^s5U z{`~o!t?-fMl{9>0mINBXJq=UzNyJzLHp-Kco{dBh!dVKum|87MgO~U!svP*+Ep?gN zl2928=%r&!pFvw9I5RK^atVkx@YL%h9|-$BgbHP3Tw(ngr3|WRhJmS=G#o`R(svHk zZeMuu?Jp0LsPe^EAfZ9e*t6qJ1EKN>%pjD726B#41X5n`vQ#f6fxS3{%8Z`|%@{4Z zfOKHQf!y@MD`&j-nBQ)G)Xjgt$M7EwYFu;@dchiZjgD4Nt3mVUTYihIanwv`BkCl` zb;dfFSMB->U4?s#Aj~u|-1YsIG#su*8W#3d zOggF;z5DxC^*WSw=bBE5v_4v~E=3wCmzg?m0d-)^Tu}%#*<00J!Js483_;j$cYq`d zNPYyArT&$@>ey(f7-&!Rb5*5En6D)U z9FeKs$g!$?R5)*Pv4obF0{`-zr(*zqw6jq@S~_MJpvNIg%t$8=*?!TB;|@kIh-i>7 z;H6|XNa!yQ6Oa-ckaTR6Dzwe(g$MM6P4LHhW+AHhVrV1;T?5KJf5E!ymuAefGVV-S+rb zetg@pr{8qmb&p(na&6y!%RSD=qHAjNIP&EM|!V1OAhfV~1+F$qWHy-#~HZtPPsbKKO zo1KIQ%=id6Z*pPS-kJ8PWFw=C*&7eK^yKp&e&kWFhT&C%J5? z3K;Fo#8;r;(I^qUBl=t~1^h_F%S%BV!N+rMb={W&d%HQl6!<#uLJ8=!GaFwDn|aBO$CM&$9az*j)Br*31N#lptMR^!YAWut0nP z>r}ZjHq{xLS{0m7pTN>I%RWSc81&gIp}N>>o7FBaOG>4|6AZl#gv_Mt;)jshFsn_= z(jY617hr;P{Fu?08d|3Es*Aq7Fo6r;)YLt#Z zPk`BA79JV~1WE?txWq;XR93;jq|#_iJ<0Nl&(V}DIDrO+$*Fmkn}Vr~^ldbRXyhoS zT`;vuV9?-Y$CZ{bz^bN~#gzW}-xQQauqq(lz*Fzkn}R2$N;!&SRglur)6gRULP1QG z11kI+oefIU{_-#`ZHHVMY>vV3jBQ~>Xc|cP`{s{Ejzxw+qL##2>!l!LL(<|KgrdPv z7Bm_Ot&TT^G~AsiGL0-ySrxXwPl18#-4vLy0fT|~aJH>v_5@GyOJ~ZFrkeuf=%w!* z3T0oO`EP(b=wcZbqK^-`^k4}JH-T|1*i^m}z{DPIj`WK6r150Wt7B@Ps=Ut$Arb|Y zB70A=%VfTQrf-P`9$xKh#K{}cvfEAunb8~cfuu1^xu>y8!waEYj8ep=rIISvH0n(~ zJ2dp5GPBB3Ov4mW6TJWN=a4)7j-4QUO{ES-0qG6JGBfyEZQD$JU<6^QYD+Znrs|N8 zJ=tKGAXGa|KNjT)59YZ;B97onp!XDzo|z~20#=SeHei;{QmjJj{8=ryfC_0^96S)J z&Q!V_gH0n;EHPjiW^${(xgx~ju_{`}Js2$87tb7rtdswoz~P}6XU2>ff^!+)F3RNY z*brzec{-CK6Ch+y;4ZJh#S{#K($jRrFSQ7n8I+!;Z7bQ+pa(|AlG=R{@_Kybnti@} z)2lx4>zzJ3bMqsH3#VpRx1op7py*dU%q=(R^$88LM;ytrr( zHLRj(efo=SwK)1M0sGxl%{NE*_xRdfI&!^^$nZd@>k_T5j=dkbbYmK+ohE-2mYlNe z3RILIL156^DM|~a3T)8p|KMj|`=zOp7aI(?pmCpXEH1BpSGUJT90sN!0cKTQIJBgE zLcJOT_a6X+VxTA*)!`GXLg9fiDg^hl|H=1Drzun*d$KDBGav;KlU`|psLQ1Yfi^;K zss;BWvZ-YCf-kcd3g|ao$p;TS%7w|R<+gU1E zI_@kPs9I8vz#RC^rEmhk3+L<=%aMUv*bsn`l(AjLl3K_F7Zm}yqgO4UvKPNyP^Kl> z?IwF0#2wX6i&F}`os|(Pc+^NQrfp*Eyj6aLP_h(|F?yLfu69Z^OVzdSiT8T)?L+}X z_OyNAwH?lkulES1<_hXlzLTd2^FH@0fBz7EggIMgHC-wd`rv(CEix2zueLwr{g5O>{+t>XAlV3ab9ccKPdY&(Z)laWjyyVfZ z{$$qn$6USBXYTl$_x<~ewjX|dXU9+9bm%Dyj{U)cV^6>3j0+$9>RAhS`@*eTA2SUP z0H_X8FxX{J+eCm+A*%3H8cq;MZ;BS+35rD^{Pr4q%-r-;if1;;^y%Z(m(|XnpSktX zH*9^(@JFffX4Ovht9$m;RSju0NE62aMz7-+Z!g^T2d~@v+<8lf-^w0e3PZh9UJBkL z<4b}3TrUMv!n3>-Tty~-Ch_#&Ec(lBfAkM~o-eOMVowza62Jtf#g5}mT}W8>rO>&; zfb;A$s;=*fJ_V@e{#-8wS@=3&7?a2+%f84P308ehpXW)gVuPGZ0Hopo2%C?}^6Ai*)FJXuP|p z9>|&pLT`4my%W%;FyQ5E6Z8OH!R?EuX?mgB>)HlWR}QOs82igupHO#aDc`nRL&dDT z;^?yK(b?-p2oA~ElI1lvEdkTxg`6d2!A-3;^nT1_2i0n)4vdp_o}s zNx++@IN69Z;`da3pZC5BqLCm7*zB1ZY|<--OdmEj$~Q$a4a;?J3gN+97}yZBuQj@8 zS1*BM6}96c2Z_C>yqe?z%H+QsOfL?hu)L<;6chrI)e2;g89bHGKm;1YlzXsS<@H~? zDYR?Mtg;l-FzqZ+vNYA`)}JFm5H`@OzM%oy9#zx0l*^=6f z$`K?yp2I1a3{wW-Z@}+Uq-4I5(va~besSncDf<$XG*mPNl($4IRV27LP(?S)oi-q? zS^_NIc+of<60yfy@eLVq70!9{=HZ9n3qr1pS&9?G!H`{8UFL3W@B@=$RRPyIJDMg+4jK zDkLQ`WvM7zpgO~}FAKq)4FWU1$UzqjYMD86rtA{gUnN^gFR}=*k;NbAp6rwe?W2R* zX3+$go^fWLmWngNCcqH?CnEH5qyxakS%F7VVv$ zNmpd*DxzOuPvEG7tecTYUr5mF5OhWT5mRlGr1W|hvb^lIIAT&lsFeiUMNYQ_Dj2*> z1HeXU%(PrOHtw2!aq88qf~PlP0~>dmIxQ`f#!D_>staI|S-M$?qjsy(d9qX;FIfa3 z0HXuL7~X2;xosZB4B6~ix%nd014)KafcI)%y7%a5>yVG2=vv(ouvpgz;Kbp=7Ir_eIbD1 zC;o*}3$$`EW3TGTAH*Gg(SaThvZ%-zBlvLzGVRwmI&bpg0Zv|E6UK953-GL*e!Gbo zcrb`e;7A$&%m5Hsu~O56rx0d}l8711U@%}N2ojX9QmuSN(J-)zCBOi%W%T0v5x;0) zINmhKVGpF3GGa_>&(Z}FKfrgB5l}7MDWRmysh>HkzYtbq4VEx9|NK z;|>5zvLLn(44=WN2x$23>hTmTBjpykr)bKU+2VV+W zbY?T>FFEMA8~*vI8{U4zbvqn8LoR?{x9@NMe$QWR`LUa~_~=c4zsLD+KjPXqAAISi z6WB1L5xsqzVM$%?ayA7d254bmQ%2rQ*$~+K>O-JUheY)FRIfc%nxA-6tg1KM{zvcq z*Bd{2(pB&N_%&}oV)*Bj?1iwt+&DTI8*KaC&VVWEM24zQ+)kgLz45*meElcW)cfG? zyBc5Gee;hm1z+q_UkbkDegF3s=%v8el#Q|0OTlz}DJ*?t`MZud?}hLB(Z>57@X+&qXxC{9G>u6!qna91-y5iBCjf(n&z9q|TlXI}QmPr@j>6 zA*|=6;H1gR-Ur8Cz&ySbcK*U_A8JsC&)2@c+5XsBFWUaBHywQCR!3fT>>0N{`sA7? zA0OCr@$_WGw}d`mQpDI>h6 zsU=C}3QT4OVN4_fOW8eH(sMVh&j-UGh{GNR<*+oZC}y&-vC3VR_{5&xlAy&Rb1~2& zzAqw{!S=+PDO4K*apncdQ%91X?jol zA~i6fVpc#0qr%w$qww}9R4~UgcS@lEBXa>vv0&31E&{PZFM?AVPVnlPu_qTxUgD5r zI2epgA>=Lv4FiHz{0qoS-coq7FaBCD1=C1|-_#tPRa8_D7scrukY?ykX+}W0Yv^u< z4pBlnbm;CFkglPWmXI21NNJRkMnaHo)NlUZ6N{I-cwn7-&pvzqb_T_8YFf16Ghl|(i5lIhh;Q|sjRCKg+3Z1dB@03uI{2=9&RuGDnX(ZRT|V0U z^PU5@cSXtm^K@5$R(L9WQ#f(Nf5J6{FJAgfNQ5>tmaWGXGDDri{84X{vQ5b$yJ+UT z87p6}JY<%APw}k6#aVAVR+u_y*v?iTv?(ma-|Gfdd6W7;RZ_u1SG(gXv}4AdzUpHL zK}v-3MAx1jVW4%-83)dXcZ@Zxj1vm#MFG6in+cHtk9D-^fH_)yvZTdH>^pxv(6q7cwgp5pPso zG)PR?%C1S(Y!#B~|Ff*d_s zgRMaBlG0~)%^N4rFFz^jC_%#;m}G>h3yTxOFrwj?AF?a!AaiA{Xj3nVhUNeaW{v%Pt3$~xzY z3A)=EXL%+YLw#=e2)3K7N%JaS^qq&nwqrxXMkI#O2KtaM`D8?i$mW(Mx&b#weQ9X=M}Lr9v2d=xK3aC-_I57ybB%K ze=jkySFjFywj#yvNVEJ1u*ZSuf~VH&0_1Lg{1f?eSG*?M-TQ9_jIM$b?cIa$vvQCD zBX@D{m%@~!oIt<`}M=RBAe^U(_$%$4vtNBS?%*>{0gR^7HW{k+;_SI zdUyVg?;&`jKgfvw`laHDfATK-NZMTSyrg|Ry?M~n{RQTY&$Y9Q+v3l;`2+d~J(3Dh z4{?WT>uLZW!u=Cs<0({qOMk$j0& z5*We$fz7cS;x4}0jSXRj5PU5z60u<6iC@e84x-^_liCWQNUJD*hE^voQN3d?bSm)& zWq_W8bT3&W%hj$M9=lbFA#Tq{d1=vNSD&no6F1G&Fdjt!xjaX*iEcKzB>JQ>bI8qe zdJ{V~-%#tSRUKn_ynG_^s4xoA=V0ZK1Z2jH`zoKhUve~E&as~1Ls6(@LbdAhFey7@ za5GmN+BDFg9@Kaq?ELp}&;?5>xoVRnrEX4`qyQqMmlCP7St*}m9K}sxF0#Z{b#ef6 zi4wtZv?&N*SEC*x`! z8!yT@d_BsjpJ7v*(A(ldq{}$9lmpvIuED*RElNKYSRE$wCr}EREZ;oJhz(bWx$mxE8g>xnvjwl zbtR=S`N_z>>oftiw`|e57W84MaJ7FG8snykgJg`fg|4sbTz?zYGkp-#rUY1621b>o zr^N6jBCXY?+TkV+nww?f*l6v--ri2_ufdVUxygo+z0rLaD7OrQ*zyoJVJ>zK~G zwsAej(N$TyH7Ybocg-|2f)o|q|Gfv(;w3Kb=Zys9c|XDPF4Mwx_?9=xvitiq|;tLobJsnCWW~% zFQD^io%SR?idjyh;5)53 zI}vsJCqBp5sBc>rx>KpAy~XBL(#9WI6+#^IQ1sMKQQa8|et0yS;mBv}o2_cHCQ};4 zQg!1BiJR3VRx0%q&La9HcxZ6f1e2DIxhQTnauxOoiXM;7@QUM{e?xGqdw6cP-x5S30T;E zfz)~+VpwqFeq-U4uKw|lP@hnqMiixv>iEO_p5E)$*!;`n)qlTE{#!WsQ@{NEV_Wcu zqWuItl70`p8?t=ox7Xcu`rZTiu`^Y=)psl`u_)C3;E=RBv|y8*E?1e5Xzq&gz&=vE zU}po74|DFp72OpTI-3MESsg529eJKLE0;KOrWdj<;5a(y#5db+rBrH{V7=q*# z?8GS_gV4xjtIp47&5=nvEP3O7{>I`sI4f!~7uX!tXsjfOlU2x#V=>eFUh8GEBa=S2 zj~!<&Yb;?43QJeSdp#sq$-G7*;c-G35S%UyuU^U=&MN9R>rlW?Z3N9`3-^Cx2SLa9 z$}$eMWrX>p_J(fcVirefV)+KK&CqMJ(S8soU=R>!hcD<-iLaGKg?#&H4!SzatL^(^ zBKK9j)h&McR*lV-)pu(k+KHZUQ{|@sMJady_)=8YkQ6PmFkB(^%?%Coghvqk8{osj zU3+|yqAcoc0`gFfIARta^(ff`FT(^&ZE-ST2v~+x=V&1yS-hNaqa4D3F0C-+-?hdnFwne3|mc`uveqmGHQ|L-i`t9 za`9QIr4JRh)pg_C;}5(gUax>ihq9_EScR$ylnQDg&PQ(9Vd-qK%+$7730m`1dbOrh zIOj+d{Y?|6$Ptrn(aa2)Rb&@(JgdfJ^(Aom;zexOA2_V<-*MmSUP1CL-8&v@rSkS~ zj!Avd*K@Z|9lz6NUc}_x#DyCt>zitWyWPEgqiD5z@OCUTeg|_}C+e;6Fp!1!{8eQe zwds07UFa%yN&^xP+`qr~s{S>n{O$Ka{cgsvOl+dDOy=lk?S}<{Sg0T6Z2e)+7nhsZ z%s**)HT6sit*^>7hJfsW6^0+`b-2|X9hpD8tJ}yDG8Q@efm`vM&7$>{Vkw6ho}xxS zL(iH*Huf|tAzoxzhdg!#T}Q6fl4#=!wuS)Y48PF|<=RZKj}M1hwPtVk9sJmUndX^o zDwXCm0Ze5*SVG&PLn#lr_Cww21MC*BPyhuw>rR zoHI5&WC2!1)77yoGlO)5gb+N*tpd(6%F%H2@xsSrh=tISG6jpHEDc)h-%?&i0DT>+ ztq(iKTAO>mFSrr(b)Ah&U0$vg|@(y2aR(4kd#eTri%nftr@nro2n0_=ZBYJv6+ z6+|+>x~!og z1l~>Y@C9|^{N`EM;~VQxA9%@P+T;Fxi)q4p9U43So4a&gy+OX14MV$oYhC~$uZtwZ zk$4cWN6ZOB=LMkSKe7aWo==L9t;mKP)wtJXg*GXWBulL~?khf~hCKWCCqg-eVC3I@ z4*AkfX814Go&PdeHd&{1@9gY<_Jz7U?C1ji(Jz#z{;jelD6%22Q9A!Q<}4$K{b3+j zMXv3*hE1pUgtDsulZ?2ZjhTS|Y*pJ*wWR&XwPyCOk+{MHDwSDo8zhA>r1?bkHN|m||K7%vUfu(FM;%pWmYf?px zNRXl0R2)YXTMmrp4O`wE#4Z2eGkMRS7x?~P}5 z!Bo94fLE8C|Ac9iQ*o#@6%H6M=~h@sGebV5==_|LI-QiSW+fcJ@h}vKP$IT0{lcD< z?$qS2J`Uz$!$!H$7M>d2gd7IRii<$!oPoto>B(3M6_7D45-Um)AEXIUewo0$8Rb5T zPP|E-1FPY6q_*AQ5b42#_oL1X>LWNhn)880D3Q2}3Vrn|>hl|dwSMNe4RbZ(*fpY; zpzN%MW3r}F(Ol~T(OPDkE;r0pvq@*0fr(*5v#96TCO;@?b(2ti(np=ef|v85g1z}`3r(v z;U!jYR<~m14GIZV680${100+tF&As-H-+#*|A~Ve{=#L#K6{Kgi6U+>>-aE<;H#O0 zZb}SCJbu!0peA_)9!IqhW8UZYF*To#B6p?Al8wZO1gHHc+}F%cmdq0b%I#2T~G zD|y)AwFerygLReu(UY+7*EkZ9bNFx6v4kKf+yjpw26$*Gi^w*j5#p8FUet`{7EhF? zDgcIW&(m$kaq2tOg14}wcUj8^7}x;0_JRYCE(eZ7?3nv8vVoJeSsuF^cFpk-oSD$&MC!VK36+{x0NWvTRV%(M)^htq@ z)X5|kh6+n0+>6ly!54RJ%oJEJGg9`cJg+W-!K6_qSU0Gk>@6DJK(CL%6FtzGpr2C&^H{;4R>YjxKywG zgJJfJAYKei>0zYSK(M@=IM_3xnw`L7EkmOSF(eMbDSG&OL`L8ldhId^HL8KCmv~zq z7_dm?;GLHQ96xMrS5PTD$W*&$eUPttkwqP7D17)IeA0Uc8|r$*j}4wY(Eg#Js5p~v zPbR0hRWOG$Tzc^05dCwl+8X!!TjloT?e3EWX+hC{_j*}+9{ z?g8L>E)V&ZUO!Yk`q6uSFo~ysYhOIRpAe9w7T{Sgt_e zl@10`;2S--yvSgT$iI8G@2}q^>(1RWcN`iL0{wh za@%LusZY-u2IcDN44^8QY_dB@Z zC2j~Fb$_f8NkK{C=EQicb!dE4MxhPJ*|EE+A~w9~DAZB!>$*lve~h9ffrm%q$?f06 zNLZ22-#?dB4`PhLYpB2CGYS=PbVGaei-8h8eOZYJ`~-^-pSAe^>ACyw&ErPsjAwwv z&6M^thQEH^66k}#ccZ-@>7m4Jx_NU(N22x`lv6B6eAfodS9OfSkXp0f@8}tk^e8=z z6&pPy3A?mkEM&6rxIONBFps+3qK>u=f%turM=)Yptx)XOD0zd_!P`E`lWrB;zq5rS z1)*O@bh>{|Y;^tJ8iC3ET~hj;PH^j^Mr+ao?|Jm11WWo+lw$CM9LsG6vU&p~MR+>d zghX1-9i8)!=PV?k9RHD-oUw=wZOOem) z$@LN`zk10kA*MqbPRQ=AJDpUNIA57xMOxg%yM!kpCaT$3>)u~k=ddpu@Ouq!462H+ zY8co-H;}OvPa_nVX9DwGEOW5#F`V6NIlJMEWmw(~frdpN_ufBy^5pM!|U$djrI9 zuJqhlf)Wg2!w9q4)=SZ%?dDUN3T&XcOkjhgC2a$f?g^Y`VAhq}mQI4$EP+YbH6TO3 zt&_YB^qkyrT0`094+h8(Z=U`#E<6@tu?Ypa8haq+<}#UDUfJg?teZ-R=Xl2@sYHae zzI17+G;)%@#xZ*a#_F$CYTV6SR0*%ztfT23z_TGN^6U`(<}LlVKS zZtTTH4is&4R3A!ekT@Av_gqDqu{yKyPijRUQ4%V#Ck5gAknU1;T4-T|@T?B-t?%)Y zv)CZ>Cd-lNF26~5H+Z!nS~NqdhQUa_!*e#`e)2}K;e)yYb8}_#aH*aItvc~we9VWj zMhpMn+g?rMW|AM&p$e36vC2C>?VznpX6Ne!rtpgkBKdS4qTf&y!-KqF$%=NE23@qJ zrCjeN++-)blE-PJW-|gID3zar3rTR&RU)Qzz5o#R4a(=w@jmhH9qR|`cVoQ)KX-%Pqp0yrcf zUf+BUr-8Xg-sm&gyqapnbO;m5SG8_C^=~;|rC>Wg<5gcPePIk^q~`4f;6W%%?&}F= zMAE2v!I19{gaQ=ik{W)Vpg@Po!nM-2uPXy^(v)`LpxRs|9j4d~L zGicOkkr4=-Ml1F5Eqi1AoP!fW88vikN-g2(62_Iv2pZ>wYO4P1L9~i-mq8dA3z;9q zD(9J2^ddKy3uF1Sw!DxPl%=&Vh5RYbSk~6ie8@;buq)`Soe`rP)4`BlU6)Hu-f@Mv zvS|df2X9;-rtD}Vrt{K%TU&LLWkhT;j`h*5n1+ZB51XQ(sn7?2U=A22%jDzfN$99H z^%pov(aW+Y7+!bp@<_08Y)%qKUj43YhCo%#eiLv>c@|>H@eS*z8)89~<1ow|0de0> zhXw}8q>Ug;of#mcv?$evYQAJWYLM6W=hOS_O$7YC{qLiCjPg~H)eRGB;M>Otif>py zHx+ol8~;MBNbKLKKf_e&sE9q16LnkGU82WK-@7=(%q8l{MC+@vzEo&qSZZ;k?sz_P zPm1pLnn3Ml32K#~!;_%=b5Chph4Ri$_q2OBzYz`ZIjso;@1ar8_wT3uF^xK;$xzn$ z=kLp9rdD^;p8q{@|DH?v%H)|~$$zh%1(b>(1N(Cs!c*e?0~WE5n)O`8W^Im#m}oQXznj8}6x)q5^Q!{oZgqiOUk%Xn9pi_;%C8Z+;yzn=7ABuO;=K1RS41b4K z5u64U7gNDwpF#1t5#5qelM-YH*rd`8#Qdd=Ihy+#IZdy)I)9KB$n*rKBYFnFnlTAQ zXd1?5_Qgd=A?sgoX6N(%Iwuteo~3*dLN4k^1Ya#3uhS#|BCt!qgIzGpG#%+ulc$f7 z3FC8&ED{t=ffr7TMdvMGc@sRB#f%W?S2g{_a0{6jMvw`{!;4r^+z_D?kcgoQB*E5i zat$RokPQh621G)s((8tee1d;hkVD=PV0Ly%Q*>N%dQ$+4eclC=CBl zw*hK_t2%PfHT&uT6p;HC4t%BkoPiD?h2}$i`C^03mWqZ@EAMH5m~rYRO&yF8KkO4I zOU`p$S}atQWFrg0CIwT}U{@dft!|e}Ent-k9{Hdh70CeT$DC<6NV7Z%1-)=QMguKa zS_4$`{nVUjm(g-m&&q;Qz(png^{i1O1MmF&xjo8`0bWU=vlLF_?JcwNQ%_@kNL6St zXAT|%nER%U>MJ;bvzgSLtOm3x5(__3C1pIgs*G zv0$}()#9r!>2veJGgv$KCeDBaNgrML9dTIS;o1f&G3kfezIQgJ2fz4JlqQOn6n>;! z63c{^^QT@Na&)f@L8v6c8#uT#1u?Zn`%{@8)Rpn^l8EP0YZapDn*?;0NN`Oj@w%}_ zGBWt%OD?JCaSW3`lPSk>zvf0a-NbjT1wARTHYdH8az)osFfJe8KbXfZ0GXW<0Gb~-4=FR>LMTwPHnx90=jD~)YftgDqOhAf#+>q=h zS}971e6({mgcvEoh|O)(2W3E~`ZyXtR?wrTlkm<@C9gCzk``N;beL*r z)#&RHxBd#foC>5du6zrzw8u>rVSz~5k07tfgMI{>DD!Y^OBWWPP^oLPDw16!W7!Mj z#7VeLG2HR?McK*Sxzpgfa9X>q*OseNB^)*oYvkYmh=;iY7<&Cw5=~7V0j>2qCwW3e z%~;B<+yjnjBuxLbSiU>X8bqK;3xp-ud9~Vr?p^B6fAZq-1AY2WTeb<$nKn$*Wp zVuaOMK$q=VClkNb!>FhrhHb#k>RVu)=~VB2yiBj;YI|m_6lJbHZNN}Mq@!Ineq)UT zPLYfvHDsyeaL{Ry3>D>(_h!cb#B}i=M~^J3l7i$Vs)kPCB%&Gy;|g$Yo~fhQiV*#Y zr&`zhj6v)PwFL$J2akU(EBrb!)vEnkxZUG%?C^cpWnbSG0xTEulRtppO5(|4Hw&iN z5Lr|m_zf0eia;UnqnB@`{dWVXdiGlenGORcjS@Jp2R871>pfUkWX@6U`K%v4r4paDmj6?HuSoht_s{u@d3ydXQ~-^fBV9R>$F2-Q1V zg?f6O2GEvUPbAs=s@!94e`Pl#{OT~0%Pl!g z!iha_+r4{`qL?}2;+LH0j?_9u2f6!FXv6{?V`S6Rr)N4iSkmk$q5*d^-^Cp2CzM4| z0w;d6rr-l2<3pPuTg+H&$eopVNisT{b8!6&42LAKCibjutpBDL8W3w!P1X+h-a%S) z5!Iupi)>1WN_cIy$jjEBV(LdvrsdFFZa`IzBIV2G54S29v~0bS93aVoJm7i~u<7G; zegP(l{Yn`JHKX$-Z!%N~!#Q*ti4?1oNdETcV+6vpI>o)_POHg*6+u4*`+WrJ&=sm{ zfG&lRi?u3EM460&MII>h=i+{al9? z)gp_(u7N>|q6Ryz*(nozm@=msLnpVjc1$YK0(omOU>o8%n&TBpD`J08ZBp>0=&oIk z(?WDvNOr*;)wh$oYAeaL@!`37G9hg|H2Cn>`HG>n!@G6#b(`^!c(}4+`tUyMyA4wM zCW^svj{u7!qOV{_^s%c9+7f~{QjS~eRT!c%6miYt6L#{%903t`_5`Dai3*+sn9>AB zuoIyJY!KO!C?=Fo1huQ6Aw?5%6onyz43Oy0?kijR3^blthSwNlg#5>Y%VaBc6NXz3 zN`p``AU3jbls(sf?Hi&+xxa>ME^+P^*R&PmtN#E(XNKR?G_qg@oz3rHAgvc zlj5r3*^Vxu#)WSOKCLfkskO-hybolq1tfum$-iSA{%NI1yz!-_J%223Q*?{8a%ffl zV%hKXojsnf%UA&GHC2yPe2fMbKg{<*C-=~;BmZb0uMz!}C!H|`Kn4sxPq1$oS?qYV z@Sks!zaI|Djjp^J?1%xfn*#|e#~jLS0?{S_9-m6PJ2Le7mo}?gd@=Po)%Xs1j6XS5 zIF8AO*5!cSU#|rkmOx3$i17uNj#klJ;pmwZ4u8ZEWKA^&%QU}UI8i9mNp?B_{&8?o zFZT0D6`dnh__1hIpgHBPbUJ_EaETRlBOEr>Y+4Pszw#!#GB=55>o}ePT_X;&%Rh6( zl~7@{0tfTI2qCnrfd`zJsZf*GSO{p1qQQA*-N1ZpKK~LNpjD_Eagqij^E6oEoJB(e zf}y1=-+omsL)OEi2v~f~%l6*{SS{l5T|Y43l+JK}c7-eU&!-Ij#Pz%xcm`>M!roTP z`^68U=|hBe)Z4}xtl`I7{g@75G&D@0kE>A?sQcy9EOr$UD_SHL^A>t44dQ9;tRE>rT~X3VGU*fnZ=dGp%SoUJ~Abq>jn#u$CKZOOiOpL}k6eeae?hhvzR7 zAd6&}r1Hktn1OhT*A4_@sNB<~r~ltQVJ_SIq2{f`+ommDV&cBQ4e(ZJW#aVxkCXq7 zm;dZiw@zJfwA|@^lwqjFR}Z#`5%Gy63e7n_Lq6XBGi0&T9tZk$FHW3!F^;=xI79CS zTW;=ULZIkp_i?ji0_6r*&C625j!UYL(ewpgLDD7gdGGY}T43>|Q|S54V9%TU@`m@P z!qnD&t4aYsq`IGn$vqDZ}*>lAOsc^ef^={fEMEh$%vWPqcv-vfa(fSd_6cy7jyUvezx;x z6m2YLDKM;jmaLKk=~|Iw6Y;eyeLyta{M1TBEe9*#{*^oM<5Zq#tb;a%0{@hBr_5(b z6LiPqgc@46r7JG*asV$PS1Le&CAqwk#BlkVg|f~|p+YsCBXE~;h^#avg+ncx4t_kV z=+M~CD;ol24j<19ud2u{N6LQ?!9fFGk;VTs2je%oQtstJY8aCg&QSYTRcUPPPfd4l z#OBvtykF8l0gQ;oCV&`N(x{i6<1YmOKqgvn=YG z${VWX!u#&9b!c(oqs(?C0j`FYil3n#h65PHp$OyKzEvox8iMjWXyvGb>L#@c$wdTl zFf0=6f)t{0J=iyK)o+U601}StKtqynDfDFf4?Zwq3~f8T6sR80Pzm*n`lyzlqca*w z1t#+@21-*e$ZbXyIJq!~#Hy(XHS*A+tJ|0?$6lsBF>#M?POB3$`CL;}J5+ci32k!b ztSP>2)hyZP_|i|v+@*7f&#l$HiKj4HYo(FR)tieYyy_r;gD$2!8?}d#i?Xg`D!ICw z(Y|c{AW~|`k?!Mara6=g$hNZb=*%!*kLWE>BElGVeB9UeMIjGvha^ zh>PA}A^Eh2x#Bd~LO5cv0M!rQkwb23P1JN&9V5IG=|s7NbHblN7e9IU*g;pI?9)6p zqR2ZJc{$=bh!kC*>o{p+Z49|k@SZRGgGb#D=uGudAe@3%y0Rs~rTe<{!VW(2cD4Tp z)li19SkfW-=p>np5$HvESH_E{ zEo5-g=?>O5hDn*RzAZQtKIW7OpL6N2=TY9ut+)j-*w@a=j?z??$Pb1M? zlNoGz!^#u?w=;U~!Ap2`PNAo}eUuB!r(pwS@48fBHI(zt!ga94#Fq0cb+zm89jXC7 zYRtwTM6KQ{e18gTzKUv_n(O+RJMkpCXn$hrTwtY^LF8Noy^%_YFl?f=Vs2$|6oAun!73UttI`OndaR?79{s!SX_<}>z6 zw~I%ZDvAT$=W+DoPQRIfZh9e;Qv^EKZZoqUcX$7enhNhQW{CGv;vlx?xVK`I&ohO% zg+MQzk5u0l%fb{?kdRS~(C*Gm2_brX03W^z6%kIb8Z~1|P6B!(rD#Q z3YA1>^+deSy6Z7BBk=i9P)kBtJwY{zf>$H|JrvTr+Qk!t-K1PXitee0&i5`vlTAuU zwj$vK^ObFZK(KSh&4eARZ^Dqb91C}!?s@4(kg^}Q(_sn0fPoe}M82nlU{A|OA&YDG zYO1PMT;{3vD{4 ztym($@p-pe$|vhx+E2BUq(T8_lvBz}WtnhQ`B3@KGF6rE<>wvgxNnt=`DGU#(szHknkxM};%&W+$mQ=5 z=dZJQfJ)+qsDG!n1gs5@1`xkrCoRup{~}TNX4!RmU~H{zmOicG==kw`75A!@GiLLipP#+G>2FE){X>z6DO?PK;ePRd+4#OsrsbrB5On))WiYe6A5YfUV zlxE$c{OnnN{IAVlJj?*|U>yk{4opWqO5H9u!#tx&Q^!GQhtV_bRo;vWlV>_0UXlA= z1Oj+1PIb+@1_1z3{|Dp%yD`?Rh!WCDn8nMr=V|2&7-gpPy79-v;cSB4p93ODxZR>M zqD@=Vs@5sIswqLyC{SOL_=j}&=|*pw5C>YM({vIEB|PcV91tIXpfY(0I!ELJK3Q2w zfA8Tzb5>)bZ-Mrq^eX41S%kUQgG6aNLA>#Z&m9BAt9sDt8 z_9_=`V-?8?5rIoteLFIi{Hy?zW*%`u#s1+g7QkaUy9!hE3MlV8K zc&K-ij6#qA2b@C|4-I$WVHY;VeUrS`SnAjSx#TJqYXC4S^uGtQzyjX}I#xAVEL{;j z1culzJE(>JsqNc%+=d+oesgB};`6Bc?0rb%?-@#?jq;Hfi&q}Eg6(c^{O`VR>53g? z`ac~53X=uYP9MJw)-UZ%5UvMqo>9AYnz)tXt+4$_ddy{<^+h?cr{t4(;A)>{l#?m-?QQZW)$2G9LHHyUf zixzN50anGtgP0!`NyFZ9Z~D&aHI#p1m?(u-@9I^CC9;H}87ppsuynVyqv|I!N*bFJ zE+@4DZBlYebzZ1I(fQ$4XU>tE{rNmS3*5~CQ!y7j_X&c55Xbf-00PkMn^V9Y05QId z5CcvnLH{dSkrvBBR|rKviQ}>Vk&+fORxjXp)KsO4b1-13uK86)MyPp-6FXsNUcs=( zgyuOBrWY?ci^=^L%rq4TxBz_uCm-M{!^b-Z7@3}^ZHJl5Bz#y%|G1ua{DzN#=es%@ieHk_1u2fYYg3XF;?ISz|oH#k(bjGE+bed`I$D-BVvF45s zFzS=>sIlC6D7g)}^|Mv%WK0?A)!cHeXPA|ihqt0hvEAvE)lNs zD}uXA%FM(4&jfD}n205qB|s^f9DMP`NGZaA-NWZ#@3Gi-nnRqZ&!WfYp8S=`FSa5%Mj^?4=p2jzheC>JFYE=W=b8tqs$ zz1F!m+s+ua?KEKu5Z8$29aG<{v4KWi=$5(3oi=DKYP74ZiV z&J00uJ} zBCoeuvEZh10n}9niCS#nKe{7YQA_fsioU|-EW5vIST&njD0Xsa$@Ul(b?b`G(T)OX ztAfon<86Y%!;@_&;a4W2>Ygr6rKChL^oh3B-lv-tMk1RUxgW)Zq%j zk;z=rsInB_CnL@wy4z!?bM}T1L-jXj35z7oFMpHn5VtI1h>2Wc8Tg}44%!NC;kOn4 z4J?PnD0eqJGF~xynV{iDm-L-v(-eT>Ks$$_@n~+j&%r0MO>xcF#sWM5Lje|cI{&x4 zLJw>B#+o-26{(aagmizsL6o)m7#=6I$rMqjK2QHDFacj4*}<@`gP$^o(T5n+6~`?_ z0Amn4x3I2}i%|E27h8KMy}cSokr@dLZu__NP-)3Dsbj|_KL%~%M`qtO*lcFrH1f{w zHC;zbmAKPnrR|c#PRLLOA4?K*{%k)#9yI_7@Ba_jF1&=Q*FMO?nrlt1R3Jv{=`JOU z)sm0%O&WQ&YMp62O)iSmBr?{R7=~5m7Qu_cVm@tut^ETxUAe16V=!T!S6@L_{IEds z!6&`-azQM=t)cn$d8mT`?TzZq!1x4Xj0sDPJLX?h-qqL#v!^Twhix6GETxuiNLz-k zwd__yAFnl0U;i$zwy`rLf`Clny;+W%#}9(q=p&lq|xKHU@0#WwwZ9#`<~{7mi@Of*3qze+;%#S$IRV+Q3*>CQSPgdwg=1YN=j5w-#YL;9* zI98cJL{0d0IPKxT2kQ;;nYp{J_g>p-l|J64S;q5kI)ejT`$e<&{xeqc$OzgESNSp` z5SV3r_xe2Ms#*T)Upj}mZYrP~j9a)kuHmqiHbtk%M*Yy7i2N@hjaWAKSgxz~v(Pn{ zi&QZAwzhxoRE8l@=f&&iU|h0)9?V0Q0d&Y4Yi@xPyy`cd^fb&|11ese;od?~5kt?| zNydLMpBqH%4E?1X^fb5a9V<0udUrHH*kJB;Dl^D5ogez*Q)e);S)B1oYC}%wE?mvs zn2iP~O(F!BPY-xl)6x+3NZ`q6bPeMPZGi#}VN@?mbIMTGf2P zt1wo(^l$gk&LoR3!I;efEL$NG@!chpBgV;SXUewV-$T#)ps$|>ZST5Kj`zj&QWUEO zV7u8vF}ee05sl2V83l)@A^+3hefRc!zd7A{-jvpDcwcF|>c?sKvoD1q89XU?$mL|I z)!AB(>tf^^Z;J=ZL}#Cpvx~1OnMod69B+LkN60BI|pT>CtF@3rDCfO(`*J zcM{sC@!+G*hRno*7_DVvK>o#SCyfwZe(5WW3nw19D{4GmR%3gbpe{BRC>X&iwfEdo zga7+(9xqZ&NpSQ9h(Y{|Cs(IrHKawHFOOhiDNd_yvUVly`~HHvA!Zv14&OR+gH{S_ z6{xKGI19^_BZ9xx!8-cu4|0C|@pFn1=AojMi8s8=`EWeaG&Ehlm+w$-gw#$EEK1iQ zHJ(2buk%r)-ZBXgo8THv`$miN*YS*G7d!kCzT78Km80~0)jy681Z^~Y%c6C_kuQa3 ze$a>Bwk0oW`bXmGg+joMkfpI#R|Jm;Sho(RGKqxh+h(qJUGqM1HXl~bE}(g=$Voau z&>4(VK>DN6$d6?x=@-XxTzd%T``HNeY_5D%coND?m>>G6&OE{knT_VCbBvlHR8%V2 z#Y;-H#Z8p5L*e*^ncf}Zfe2zXQO2N_B)||p&WQgS#F?G$Dji^n3rfowI?j`sxM;hM zim50p#z6z%1=)SJ^$O2{RZ67${$A_M+76kED`o@A0SE%8`jNO`r~fLDs&tA$o2h!pn3wOD1EWCg09RpJ1S8m?XB$D(A9lv z(fdn>E{2e=md|<|Zw05lTYfw^e5b!J>`MK&mti<u8nB3r}X(RM12?(fsKoxcRHXC&FRQ*G1)t6_69u90{@EI}F;9L+cS zBLwv5Kv}5W!J1 zd=-i^qW?5LeN&6I*?*T95US=FOHgNK&&MYU6-PNCv5?#t2$roxbi~IMPWBEB5z*}L z-py(VZgk8)-ZMb*wWe?@1Jn^5uW1~Gtdw|0Ovz~;TuTU??NB0Sp@Sd>lVt2S$KbXp z=mwGngxrdKv*XxJq1arbjG`V{Y_vy?xRL!{EU1MHxkg#Z`n$Q$>zC+wT__!UV#VB_ z`<#so#e$or#=8+lI@04fMc~YmUfmC}bLM8I5i%4dG&zr%*oNsnP*NoVlbM43>=6r{ z$}__AvPLTP>01O{)wFqM=p9Fpt=@!b{mUKGfSyNk@!p@9`x2gd8WjQ|CeVH<3^9ta|x-mAi7rL796M9?8!x+cU526$4>=(miR`)e+5bk*6I z=Qh15mQg))RV>&TJorid&W0}|N*F9~!b?GmowK0p)~p%w6Er1Ds>OJ>vAFhG8_8L% zMUdMuz)_EYRmbG+mxKP+$JIue?19iy35DMG@A4n_`A&Yo&>~m>QvO?~1c?x=u zD=*m^&Y~5IrWtCAzWCHChG9gD8ln{czUE`(7e$Z{QMYgm>U=&V3ak}~5_3AzR-hzC zomzT$^vE0!1J6$8V_oW?!e|aCD!w2Gkpe+KgLAh=y3~JV=XzKl%*fJUHBd6)lB?G7 zbm8Uy#wFWW+d6*xP`e`HAg_m(g$0eIiRi`6x$w}TN806)p%NMtRtcZ_XCaPV_kO_& zoo_NPgJ=TcR~oTIR{6HT8>djQ*}B5i_;G{~Z-&UZ=uqaQ+O~7F*#*Yr+(q`3LVW2I5^pprVriJ7-IReXV~=Dw>BaXHN;-O&1r(%L4%vsT62zfr zz>EufgC^K41x(90=*FO9ZR1ku$So%8Y?fgvvApU<}R} za&!?qMfTlo%YdinB}j*Mg7fKzA6&BHsR7;t4?i*g-et2Ful)5Dvu?WM?)x5i?DqMO z+&u5GAD@5I6*n(fxyo11%4JVJebm=3*?8ac-}d3*?^xdElhZfabNH|3G&GtUU85ec z2Hk4^aiAtrcc|$k=$7=yT4$?zEKLs=EwVP$Q=g=}(oJfV^uUs zk#0<@Bqn!e-22TRjx_LaDWD!pcIoPX8SBYtYVkE&1=rFE%S=qooGEu#BVKxR0Xg>c zLsL>u@qtkn7tzENP4B3Ob1}e%T%O?Rn59+`cRiwX;6Y1ZPllw9Twby^+A8CEQ%D39 zK~nu?Jh)oGOzEN`h(zdu0Uo_EqZ+|@$kT4+g38YEbv0S1kJV3S1?%)pPBSOQ+VEV!qRSvf^;HXw12l9Z#TyiO4t ztCpM%*D6rS_>s=jlp`;954#2}dqRAQgEtzqz$P_#m|+H$n>lxA5h#>>;ld0sOnP#+ zBknolM)MU}9D)ccQlKSMSs=8EKua(n+|Gh$2j!K*YIWg36{b=Mt1hdMbTHa?0SOG4 z1;c*H1!PQm`jJ#F5v;NojlEBqsj5MxL2}V7naX1C{5Y2K+9_MWKvL=OKo9{QYzVF# z@hR~pth-Gx{7`oM@Zd&d2~H(&6h|%yxj266b!McK2n>#r4po2jhPQtB`mg`wRz1(~ z;&{UM*y{V1K6>h}mTrFJwHt2#!*+Aaqf~d{%Xa+Pn?HEzt9CnQ;{z|-^zf@T+Vv-g zef@_0kDIp1{^z{o$ji3+@NYkQ%1v_@KY8J`ckTG8Yyb9r!(Zoy9~)t#;ep>dQDesm zsy+pn0UPG=%fzlhi)1W;YES#n(Ubq;9p7OCJlSsAeJQZP-48Yp?ppr+3+CQ`-y+}5 zlP}w$rR!UIJuijct-V0k^HRuc>Pw+-^=JhI{a~@d1}?I{8cN zl%NnBst`OQ3J*?>ax8VKY1r6GWg^N~w=G5pFNE}!Zi*9Lf*=HM=!$s+(zEelY*jA7 z2~LQBMUZQJDZF&YpT1$gUtNC7@Q(KWQXN4>bqlKQwQi_dbt=V=XKy{PW=rZNV~GJy zqK=-8Cd50sRz!S*9=#mLEcKa|#9_=`>m?ckl*-FK_sHkV5e&P)jEj~4B-4}{)Y=bb zFlfmL979$AAR4rk9A%_;2JEJ(bmE8r6+KG<+hqmMAS&Y}pA04dbve zsKDBuPD=(A8~*|dE&@Ur@bzSmsPb~DYW9rbviN^tg+-4seeP@tYoyljRO*hahQ8dyMssfm93bJ(aZ5-e5Gaz^}mV&@Q9D>1sr4)o} zgq%AVMhBaL6!BI-n#vI{-Y98&3`HoNCp=)wWr@&D0Zt6ikSm!Wh!lo&G*(40wS(lQ zXz!)~3H$Zj6!24)V7MuGil#t%27d$%hrTsLlt5vgWX|*qR7Iwd#;UCG9te&So021i z#*jlMQ|=*SfGL8+xfBYCAX+7aOi3_E?aI!D8KszZnjk`n7*Hl~Co}?MjK1X-7n`>gz);0=-1BEkcQ^nkF_HX$YQ>5G2Z8WJ)rPY0=2> z=4sF)O=N@DS`y73rL0#8HFkrJ88EQ=)qo8ZM8FE-g1(6c3Z z!7zVj6^oB`F938VQq?fw!jF^eNyAjHxW~FHr%- zXGzJi4;?d~1vv42@8Wx&SXL`G82{{di?%uXs;!Q`X~XS*{JMQE_`(lo|Mt2Cr~l@@ zSMKtQ*YEqAtv`N~rdjKwQ_(x>ED3rVcM?sE%c{$RMqewbztn58)C^g5G1K*0)l_LN zU8wX)G=4Or`fO9Z*G`|E;hEs(Ac(NyyZ1_`59?2pYO35!#CJE=Hu+&7f~HD#eUPM8%-)brN)b%OwUmvBD2@w5nNp~aMeYCQ(Mfpiyw{FO)fWTy`UCQ2`pvN z$+6Vr)g!W(q8?F96|p2}4FUGU1#bY51wVk*6r1UK1YB!;h zPE7F&C=_F6Lb(`#iaPu_26Ew9?QA?5yZ?(u$xIN3#Is_7aY#IA96thk96}2cB^Tt- z6ZGpYW&m&`z$qr)Ox=IDYrX-11TcaPvaK-mD;Iv8A9_0_VD~z^ERi1vPe7^RA9=It zM{q%aK?OogIdaD{Jsx1IYUyNQz>AVWyMQI`0@7qAm;0wBo9KRpb}@xwW+QAUIsEF9 zS2Sk8({}(I5}y(+>E`4UarNeDgf?*vgA;e&mqj zZ`}RMvv&IIKp@_Rq@TEPyMLMXkCVTk_-%(>a`-oH`N{8=UV76a?*Lzrx6FFr+B+VY zyJ)y%cbH~y*ANcDRZU0k=fK;GkfWrcM!T_WKRbf>*YNSz)bZpdO6hc|e5c}@KsBpYFiX9{;2T?wi zJ~&7izs>Mqe|sr7W2TOQRkR2w)LJhEaai_gbv#59$B$#&*U0Pk{mnlebkVt&%~-Q~ z0AC^XBm{3#)X`(i)Y~~B-g?auJmaT9Zi)mpMlVxByhRSq+XaHb25}-W)sZ((wT$|BAV5VUNJ$Cwyu`_#fxK2t30(vL z>!!ervL`QQUDX63)8N^&bj~TaOzEg zz=l#-hmarwUrz=Ejs#DdMyoWVaT-;#B&3&@CR9->5xtDzWM*VQX@9wUKA)QcFT{#z zbW^B0q52A9-0|ZWc)7?p>9b}vJoJJP9H*#&ff;&P^6hC;x+%!($}LyBCQ%zCLeHYH zjE#mR8iJ=31a)N(GbNeEw7nz8TjbCKP-M^1z<`zv?fP#DRx!gsd`eys)lC5#(b8!o zu<^7MZw$E5Nc2avCU@R>r}UOF!a4`ei*5g|)Z`(>D_1_=OqG1LS+kqA~mgEJMAR~KA;lu_n_RJ`y=rU(Ss>1OP17%16OD~a7Xc0$* zcr)$YFDboeA6JDdiUvqemhCuYB^bdYc(Nf#7kInVFLcqwiD3$x!B}=)immDnFW9Na18p@KlZ|{60AZPxYGi%bC!2;MLXZ3b3`NN(l4k(2&?_S-*n z)muNLv%l#@+x=jpJ?v6mf)15|CrCPPFhtX3$_N+|#DTLr059$;W#4|Gkv#(dD7Chxcq5|% zjS7L8v1nij3$Pyn;g`-Tfr0Ge3+`s6myI{&0E0IgYi<)bh6`(i|laX4FK^aLadU7^6W6c>52up@&Su~+v+edkX^l|&aDj< z)A^*~g-?0i0hA^qX5dks2!1*?AmNRDe_p_L$S5*n`z4^MRUjFNW=SGwfw3x}ANbiw zfp*x$Q3z}V%1)q7zi0Vfp}x75PH#+27}{7 ziQdf)zx*%W@tuwLyJ(A#T=$v}oV)cg(_Xsc&t9|px%-?r{70>dwX=e-w1e^H*ocE? z8!CkY)yonLwa9B4U5G+HNS>yMWv?!^P&!WPl5yLQ{PyZw7oYmG>v#C*1#dp&iof0Y zm;W^R2IyBnUbWjV|LMRBzIN7}b1$EL`Sgdbn0Ehz4-enH%b$FF)yn^9o_xdkpKmtb zZ-fi3z2|L*T;O*7H#-e~IXT#>fB|ylt3?&?$D5;w9FXwVA+blQVC<0iK`a9$Bb>W0 z0es@ET_9Uhj;fuv$+zP0&!^ooYj_K<=cPb1z7%|=_igWMxo`DneJPk0$4kK*!SGIB z>!siY_gpW9;(zn}``-QO;i{={3?s(|nc8bxqa6FP!M5K;k-E@=6O}T+3|iROM0)P_ z$c|5aDRew=D~=^+-YQ4#{d$3qxoN8+*d0^Mk1vHc9dzjjPhL1@$&4J0{bpDEut&ZWSQQ_cY)tVcnjpe*VJ3n> zlgyG#&_%G}K4Zp=0@kFpDvNCr&~^jBOFG8ln=+^|qp@qA%xY0MmWaM4Dv(fVLg?d1 z95Jn?kyPz9GoFkI-1*|c`C-641NC-JB&8Rv<}h-s5|{}RD&2w- zFD{Z28p0+(>!~!mMquNnAYBodWl4{j>h%;EcwQ_`+033jn^G410B?^Bjtq(qUi`Ej zXklqdQK(>09GU?4sS!%0mf(EWn*tY_%A{n;kr^2P!hiFoz$>8(9X%p$W#J|$28i3+60Ey6c;IMBk_ML|qw!{&Q*dVhPsuTc-7F|Yo7(IOxUAEv0F24F;uGA)xep+b4R{ zggyz(JWcHoJr@KKK!KwrXu?FFyHUXauq1~>GzXWau%6iQwA#KZn1E_7yCwC~@PgTSEnxPH3qEFH#b&MBzN26K+p(c+EPR@ z=3;7?3LC@hp|XleSvq9&(%O{TjG#2-=jleMrwY{6?Z~Pj94a z)aTKg>en^C`XQ~MW=KP$LDXn!=(~y0Xg9Su+ANl)yMB3|UMEZKxVA|siL_!e>V)(_ zeD^+K5l79_2aa2)8zzgOi{fso%j6}jR$hMw0Ki=^fESjr$h-j7tAV7+)5g*BC2O|y zzKpqR;=4RZNBEPsolF+rQmgPV*0jM^7Gc#ZFASJr?8mB%4Cr;kme69Vw2IpOs|!R^ z1rD{6GRov4D{Rp(<@2@U_@?rLXPlI?e+D0)M$zsW*nuXao5t7 zf+{sLbm62W%{{09<6l^^T%LH=*Qy0bmbzPz=!GR<1Jo`6u9u?yueYC~3URmqN#JNN zOu5U>mqrz)m=BB~6$^%FBFK(0j`XTSj#D8%cO_$kf#CL$pmxUUbv@I3yEJl9HA{dI zjuxp|DhE_Cb?{)cM;r;bVrh?JPben=HeQGVSaxxQ#XomXQ{6mljID;5vC{A(rXPSk z;q2lBs=VAqR;DF~*{YkZeMB`Xz_!ZRu~7&;L0HDhk(Zzl28`)F!QjFjX7+75CKV;G zl6l!#BrxF100}hQ+5Fuuzj*yVzuNipGq*VMnq9vzW0!xqim{`9Kh%X2+11x71ZJaPT> zdp`NSdtUQ_^Zw?&KcDdMn>G8oK~`Mh2VeZ!mjTCTTV>!r|_zb|Y&%j$^)g&Bg}||5zRV9S=Jd8}`wrr~*GejJCk;t5=z5>80Q^izpmA zoXq|UFNNL$wpcn0H}wTFz7$@(EC3|uggaBmM27)+NWy}D8T7?1qq;+&i=vfj3q-oz}r)1yDeH^?zMUaa*SLPje+%eh{@}dWrK^+&l>KL?5WO~zJ z5K?la7sR0HnZwl`AEZd79k(JMwAPWuOT7B6oSrAjeq|34_m?=Uw9EH^! z=I-#feS(-;LL()al8baPPiV^=HfXJK6xOrU4K4-&a@i}ylx6Z4JDs5!%w3(ihw_W2D8uZBn4oX_s-l zDg4L311wfhs==CJ%8iDZskqrtnvQxJE{5EcrbY&(Z18I51R?XaY7ju2KN-GR#DOP# zBWP0yQR8XqTw*ZTrk)j#2*C-c?7K3G4PogG0i~040(nr9MS!+w!1oJ*Jo!7^R2U;)OQCp*g0(-KQA z;L+esy3QX*-!lE0VimEWB#*`Vuwj+HLGW8mllERU}Bi5IC-8SrB@tOg;Pd zq>(5j2Eme0MdPJvPfAPdM?EissR*8V(cq*dgFQS9$e9^5&tyO+yQ%mDDrox_Ie~|7x2vH9&vyj_+u{B<(jJ~;NS7cWmNbqmB_gX= z?g-Zky67VJk02^%kT^GWB@06E2gP1~@vUhcngMO+V@UmHcROH%YAGymeCIc)fma%j;g&tRUgO-6G zNcKKq5lh>L9C4)U)Je*~l$RR_NT{}(KuRH|$iUdsE^jDePv+8xOD*IMITA#$O+KxZ zmV_P1KkE7&KR5R?XWsFYs=#@6T(}+5RAfdyi zSU7!5DDluu2`~uXa>!+B+2gpmJAZ!GhTHuR!|;RcvP91qa`v6Bm+knozkT1oAO4ML z_dWRJSAMo&)59?K3~$anR^cbV{UbLX^SyiTebATH@Lup0H~H2Y{?bQZjK0uJr+&+s zdZDda`Q%e8R{!wVv)=vD;h(4K^A*YapL{=(5oJeEXHPvHB)m~FwqG>pV!+Y$9$Ndw zOBGfD!wJqaR-G~-=iwLXWi~S<}&g;UkbjEDSapZH(v^}5b`zFdMP~d z*u%$t@2Y>;Z}^W>umQ7Le3~4~J~ddfU%m>&p@|C4fyHzwVIMO+hY8Q;QO+!`z^;%FL*u^}iI_N>k5g zy(zRLRMB{;+LMxv)ltuJ6e#mz5GR&~zXZ!Xnha;fXADqlh7TdW`W`p6i!@|PK?!bC zjKzv6g~_3QXOy0!k9X-kc_~{Q?1&>BvyLwVY?1+BsU8As^j#jDMe%uwZ_0*XDr2k6 z6e7ZC-(Aj>OdlzRypDnt1O~j2OF#mbcoEsrw?qyP!BkOTRE{A#nWI7^8dHd-Mqk80 z@)8yXN`t#4%n+>d6(=_6@hQmo@fMt!;6e!t5;I9@IMRq9uWtc|mAxeq=&g>-(6gy7 z!D*!PG(}5sAk5xUytUN%qc<2pg@N=m5t~c36I3xVANCZn1QDz%q(e;4g@&(<5SEge zCwD`!Rt=#r@5vrZ%2!Bb(lek(h?3a=rg!1aKnkm-9ZTeJ#}Z5Sa&fd|7eZ^v;UtI; zBxCV8wqNuDR(0;OWF|s2vJ}KqWFuA^^eSS^J$*LHmri_xL6jN-s)azW3XY|C>ZvD} zKJf5CU%g?2cmG6#t3lD_==roGdUxHwPFJg^#UWdz)B|alHk|y0D7s`#42{l-z<^%= zWT`(S%uy4mCHk{1PGd%JJLT@_E~?Fvh@<-k4MA_zHB9?us;Pp9mqyA|tE8cqR45mf zt{i|_WhR2oRY1|C){(H4qer8y zmltm^5EPEP>@oV?~^#hEPywkTNbeyP5=v+x1On-S-{X2e<29d2LUEi~-``oE zb=YU0yg-($Yvp%=Yq=U;vHgg^RH$;3PPu|5iYP@eFkklA1KQ5ZkL z*^D0rn%`eCXW(P8@B=VF$?nB13CFB3yY7iT9j<8i$- zN<*2nV_OmU;zBm-#3EHV^m;fN17|jR${90efUPviJA}ZYmp1z@u?o@3c?3ite0r8# zWKKy_UDbj&LpDN$BXrwU2_tV(60u4($+S9z*wZWrUoJwh0geh0$;Hx>X++^jpy480 zvyOs%>4yN5-_(@`>IjB%kSe(~l?-ske5FCt5l#->6wvE#R$Y2H_=LlqB`;S9A<2**(V%oL(;Lz;~@nt0Avl{Q=%3vUNY*uG3xl6R2YI(whZ%8QhWM^!2q(c9wB5F zZ}^EQ8a;()l%*Y9+Qcgk^saqj6i*<1`55FCb_8Xbsf9B70NZ$cR_Ndbfk7XawmaIaMWhz zaL>{Kl+vMJPwyJwXw`2%GXU!EPH2qR50eHe8+1VmJWPKkco34e6>K>`RTi`oIgL5QNna;{aTtSlD6Y$5o{ zO_|b@C-xYKWoZP0DSr#CE{sW=F%7Eql_?F&s#3;4Oj$Tr0%cYLKt)+H?vQ0ALx6bW zE;oS;`^~_N;ow{doEXX$nzSLaQ43$-_8}Rv{9#If-mXxEG=MyFi|ayY-Z2x2nZ+$-nLx9*Wg->?>(WAVlnJ&C1+wd65*5~w z91qGD1&+cQ%a9jV)vHG`cN%e7@&#qlx!VZ}#GA|w_xtAE62_`M;HTg5Zo|VDUGgr& z?B(Dxg8@64%T^z~;ZxtccJY#x4?eKwALj8j)h}DJ=zFJKx8u>bJn!wl*zmAR-toDc zUw_CSxBKKxI~{%V#z$Q7`h$o4W*;hFCeNDu@9vffzPc=gY#GP|A##?CDbG8K*xR3* zeBg?I+3D05?{@mmUzqdri~sW#w{q1ZM}FtVZ9g&mb2}_;1__HYxjUWgU2)iPb3S$A z%wPQRfnQxP=c?($+gN*K^_us;=8bpDUCYk9{^76weD)uwJ=lv9>?eOX=dFidA+hpA zwZ!m-c8g_+@oalwOy<3XJftYan*ftiOYiOnilfCM+iA+2Y?2$c`NWJL z{eCzIYQ3fPJ_=sE-oQ`zQP4Y(c#RXLeiSGN#Q)m(u8}55JE2LJ!M5N0I+Q%ggTxkC<_rJY>Sagl1i=0Y3k&ieb6VOs2c3qdcj%xHUfkX~Xy|@v}fTbMpX1G?H zTBBw-)Ia%$aB_#N=ictsB+r1p+%Q8)pv+(@CgZhuV_!;SAiUVa*Bh#?ayr!qrDsp6 zMi*eiyx{b%lN*^PN^>cqXRU>>6L3P=a?s1fkYg@-twUf2lGpzqyeY5=Ee$jvhK19r z1qcQhn|(4j1;g>C0G3iey09mBNZSBz3gQmgJoZgN0)ORAVceXCZ2rod0xHO9xRjD1 zJ^P3<#2zYW#9Hg7V2ZD-dh0$#dHL8b`Y6!oqe+9SY)UdSdTXB-r6M7E>1#Aaf>R}w z1dWDEbVvd|%NottKvj|ug0gI%Nw<~ovJey?fwA{XuMb&K3gIP!7tJhi6xce_FjNQ} zmh@yzJ`Gh-hBi9<($EC$2^_bDp4?+>n4T;;nLU9!!@BPWj#=9K{NapcZI`3XuRW z2&N3dDw)iY0b?4&IFYuOi{6kigK}e5{-DxlLoZM^nhaZXX42DI;-)AqllaGovphGI2$<%I|w?bIudbV=>!aENA;>}?7CxR8?lh@)M#L3b5Xcg^S`Po=l6N0}KPCJQ zsZN;?DpqKgqCao@9}|QQ3S-#_;c7~$A_-&L@9U131BtWn%27+HFE<%irP>Q1reNA3pF~3-C!Jd6sr8wym9P@uPfEth)mBRc+_U zytBK#YBi<7R|wovwulJfB0b2qD?x55f>1uC3SZ`!0ce(B7Cs(iq6CGDOTYsSy>Mi4 zWyJ-KY!M{~ya_FY5@OX9OSPD?uORpVD4Yz{zWt|W?ESUd{&?N+^7lfR`cYW9{GpT1 zxZ$|77k}xLX7Osy>Z8LS%NJA>WZJ-fl&_*5AAzhd z5@aHlOr+Xh#Kqv%`=71+SMGbxi+BFn4}Lpi`Lf|l;brvjLyMO_bl>@x&ED0U(b z6F+ECh-YNu4_yA1!!Liq&Sz}-(dlnK^!(TEbLxA(Iqk#Wx#7e!Z$0a>JI}df#&0gZ z{m5@$zuku}-t4F=U%B4}TYdPdeU855j0D*^gs$ryCz}`E|FhIpj=jD$=XhSwgQ~RrshmZxLaly~B(~ z2|rlI5TG^WV#zYF9|#kVLEovv(z8@xX{b?eIGzkyPCV8$v!WBMey65(mts|9R#xpR zdObpvz#vMY(I{Mo;fv0)C15Yl>Jo*q5G?6oN|>MuE`$`gcbt@ZBRBe*;lFn%;X_g`tb7wGJE!H_+*c$G9*#PG#t6J z)M#pq+Zha60QO}_){9F&v0c*`gW^@@(AZm{Sd)X{$RPJ*92Hs>*r7?UikPXTAouqc9+3fHb)!*UYjMmyHI~&;m8f*g6)%?C2Z$a_~0Mk0In)^0kznf!;x;pb_A3 z5i5a`rM~Jgrb)vlZc$2ujmJQNa2Oayms!dX7$de_N^cz*TU=%|ImTPL)y93R7L7p< z*jTs{0v{V2%F)aaLgcd-nkIL#s>?9mILdG|(1%mwt`Qzuyy*9r-ErWtcf9uCKfK}K z;s5@1{&O^R^dvY8IRiOEJK{L3bR;4>=saWd@0oQ*ba--yCwsnbVr(3Sgn$p$6~zs~5Dtx_HYhgmovWOdM2AmPAO}+i zYhF7YJzF43W@N`N`E(z12veG~8bC)e_{wAkTzZgQr9^S4?Z)D4CkiM9`jMV1oG4(O z1s$g4i4Y)Ql~Z~#pvRk7khzG$-pSGpL{X4U5n#F$nT^KIk;)MiG7WG+pT605;dFL{ zY}Su7y23eGip6Z-Z`_4ju!gRD+#S|cL<1I-N|n|H1|jkn%g;gIz7HERbb}IzmlD`p z9XyCjDM>Pcr5qSTqh#sS%h910tTZIX(pgy=QHO0MOM{t`Cl{gNf+raW5d~00y`h}V zvP|zDE)$zXrR+h8f;Um{#vUzXJX>fWd}YG-X`7zVdZ7zW*URoOY!p%s%C|QREjJs4 zz!XTriXumd1S|>!`^1?Z&H=~WYZe>T1%a7jB@7uYrnu!BL>Zz^cMifK>_0 zlb($-nL$vdC%feebC$1M?TFV)^}c%@D~B)R31{E)xaz$6_>E%=Votuy!F=M8iu#2AB8lv|B;UZkUk2Af6+(b&ij^a{=Tzc`|gW3 zKWg|BIu=N2szx$G#it#7?4 z&7N;)3U7RKw^9HJLemq_>zJ2g1~@0wCg0Mbby=c`cCZPPwH*#HG|b45=^4{F2)QUi zW}qAfW*sM(36!$+4WA}sC*GE|6Omp;h8o9s)6!^U28HG*kn%%-rsst>`oVhAN=DoY z2~fgvGh|QCHy5%r2xU${TAB0GixuIuyx@;n6@{F;V#x(%Y&Id@P}DwQ6YYqyy-i7g z+4yjUKl-kFQ^<^lBlk(b|KyDlLS@Dqs>_h9hZ&7yW1JT>Hqh8V$(ur@MO1p}#Y`Bk{91ZnmONFJLdwDdh zv9UaeBSY3(FbP30HE-TLvge@(Mu;${O`E0$XrOrYr?-WsF_bp@hH|S;?&y<01YU&s zlYbAIteIug%h&Fq$(@-g5u=#EOk==UMLCwaoJ$)lB_T_`473b@=%JbArQY$gL9dT( zLcKs!hc&X-L3|e7lhDiElqFZJLLxRZvp3#&BYiAMWBT;zQA$(cn#APKKpK@VLy47@ zT0B1rj|#IiK+N*xHKLiKj|axN6XM*gUMxaA%i^*pvxH2pxwIs_P81{Hf6t6 zR24y!r(s){8BH62F$7*CZ_I=!?WIeH>aLo-c*~_N$2!oo?ZavW-zk;Qc( ztS&XekscT4FlRDnI0(*mj&2HcGwi~kH|#fs^v;M}WbTsLc@Yo1gn)@3Q)K0ohU5(i z&XkNLL+?%k)0Gl}gLPLyW3uG?tT4v=;FqF0= zxj2l{E0D2z#dR1J6uyXjomK?Sm!YGD~~NZ=xWKem&h9Nhho*>%@G5zaPafCmU{LS`utfq~@p z7AQ+QM}{tbVu5v=?bijwLP*uoK#(WB0{`}H-=dM8LX_hQZL1JygiyX&X%~^89Bi{u zg^02e5x2@0g^g_hs-asV8Iy(_B?+fZQXwjhw>ChJfIVPVvBC+|wq%J+mSh^n@xa~> zdsSO~_jz>LW_){oRl3m!u6o;hFS>H}vK7nL{FSHmHLr`C=geNZWcVsM80g23!uQUY z{r`RQ@jXrdw)^RCJ>sgDyz8u;KR5j?hh6ahzV$d{wmszbcN=}%T99dwuW(oKO^>`v zb<^fP=o|IGLrZ^h{#_d$eCEakSSa4 z!l6ikR>9IM2W$*%c<4o&f9RT5A8_8k?=$>g<&3Q(-c*f&*B*HO<{!T9?H|AL6DM4K z)>RK2^UJwAe&Wgv4!H28d!Dt~WE)ru?1^Ht!3PLjI6Ql0*-Ks~cms=4>no^*u#u#} z(a`3%v3ro8zWMjI`0x$i`JKzs@F|%;f6f0g`dA+Y!x=MXj2{KBdLIQZcFWO6q0`0G zkAi;uC@^bk{3!G>TJJ}JUYq(+SiNfH%y|pn_w}p)eV?;7djIfu1S-e78YhZXd;1nG z%Ey(VHMNn*RwquzkAmlG>PMlc)!t@o8|dL_g7I^@-0IndevoCW63^&4FhcGX^_cX?RW$3 z_{WAGOY~8#x7#P5$l;&)r8kQ=8pfdXO+}_g$xI{bON^I<8MD+wZk9}+kgp4H2tw3L zDFZU&@kpkx(W}wAlOgLxG!)bn!7Pnq35{$)5o|W6Yw5vf=FFS{O9qsN&?FouMO0=y zP?~j?wy#Wq1;Pwt3UN|uIrOI3%RCKZO$d6?HOk0grUB8zVL&#;UQmLFH0(`{1kwOe zV~%D6DK1|B;d%?uupDO~J!uN6~O^f!q}6MIIn2xw##JZ;p{gNBfRd1L%cL>T`0AmVCCI$$ zG)n!r5G5wbhV?Zd<1e@reZ4n@h*gN5X6j8rRt~^QAg3Ab3IFw`5b}6akN~gorVu$~ zjm%fc8Z^Br>Cuxjj<+_IS;OkB2VPu_%tkD}rXgvA6J(wkiI}Pa`Q%xN-_bIpakJs03ga~O170F zC`VCbk_&s)DN16@=!M{m2Sl+av&WtUnDHtTj=-78A2QO|uw-DCl7XO#f=^>gR$hW3 z&~xXdUe%cbLN6#B!+v3cjRZ7~o=F<^7yu|Yy%1ta%mV{~yArrF21}13dYofpT(!)E zt1dhQq5G~W_{H06m6^g`Cu!a!DVL_|vw%SU=(MdU(Y3>kvz%+lbEJ7dWZB+s1z7cv`A zk}MoEX|R+n8~LCJEsT*MI((M$=c`GZr4P#e3m442eZkJ3xaetH{OI)uo#$lvtSx`w zXzMuAJ;8C7{G4r0a$a#jBs=*z4>`y>>p0OebLMmC;pJq*($EpyP~Y!9^}8ax9Dtk` z9hjcF$?*BjkPb|uI7qqTGH`Mt(6fP4CT`BAAXADi2M4Ktocsky zZ2Eu6M0ZM)vx?kI9L_rQLy%Q>X=gZQK+4wb)T|#zJ-!Op!*`9rgQ8UDKrc_{W986P z8U*h0DH**xl_`CHu1}48J2A__p_vyPdgYknE^Xn+e)!Ux#j4O;fZ#;VF0_uP?zD=P zHX7B~Rh&C+QOX!deCquO2gey*0#bq?H)u+3Wizlk@>d-wS6_J|wzwSimdWuqdYOqr zIimG@bdt9^Xv7;dI9BlQH~tPsdV!QfPs!0xjlkLK+YdRag_66{7z<|wCC@#fY= zWE#7R8D`o8e1(%LcV?n6(<_!S8m&Hlz)GVMSR#Q2QQhs4gJdW8QnJtzz`Ps;0^Xlx zpf6!tf^5Ix%}=C(vfm6PKm)(Jqz4vS8$&r@C4dtd7DApDMJDttO|gU{v1FEh%vuXo zOGZ|P$|NXCnNkwSni@WD`%_-A_nH5&&B_0`{m(W&{Ex@~^7>UPeGnh>qu@Q`9Ws6t zyaws7yJhLd@4xuE;)oaTSU%Qdp*LyC0;ZDDN!@=jg zaHpSHFZo*nAS$xHYDcni+7D{SB#oWp2MLCvbF>_o_k&6HIDFOq=lsn^-`(|N=UzSS z_UmTc@uicl+~KI-zj(LP|9;aSyn6q0-+1V-2Y3k~kj<|Ug5)i_v>{+v2{di&wiz1+ zGL%y5{{Ou7JDb1%{A;GqUvSUxXRpxct&TTs{3v)uKmJFd_k5oftMfP?1vroOQDD|b zf$`Ljf&`|16jrZXa_@Z)Z1=uXpR?WYPc-8}IqFrHZA1QVe-v0+6qbg)X7yf`lorJv z<~6w$U%tWq=e=Q{AD?>R9pC!-)!#dP`fvVp*A3HV^w08jFd)bu2`Y_Gf}%P+D9}gT zAp~8jV@W^-8(W&5L7zh9`&N#;L7=DU_)d>T-*q*AiaDvdXCIsBA;LiZ=moXD|@mi%tWjl1y(QnN$$fD zkpVztf)dLi1QeO2eJc$Oj$||$vKPWEK#n%5S?+BHv%I9I3OMxRO@T(Z0>K<_3UZ@~ zH#Rf?Z64)7Q;7UcDN~~qG)rCpl`JddFs4T!feQl}08&A%z6uSH83UHwg=1z)M1dqJ zVOi1W9r)=p10qkeY@iX?1A%Eu;Ycu)hM?=-6v)iPWu{VqjPZad_B8B)056a}M?!Rk zY>K5``IZ10sMw=1rJS`s3cL^~TT?)2R0qM3BNss>qj|ofLY@Q(@C7S`1nBWkDd%z9 zfQ=%^f?`8T;>N0~O{q&z27zb*hxPlfHwC202O#Dd&?rzit(!umi6VL6iW|t6gXoZ%X>@3S3}pjXFtf@g6NEICzzp?px#&T02>}!r;pz1> zt${oOR1c*oWfMS|qE|593Dud4*(x-|0xyE>MJHgk-V~w7PdJUEJPm6yN4ng`aG=O6 zQxbs4A>#-k1Ch)Ga`-+`VzB7swRqE4yV$&NmbFD?TPoep!8bII`gsM~$wMrR;HN(YynCja`S zQ}sJ1|7M1xk5i*F6N7Fzu1pLZPvJNwIxjj8IrlhAu?NV}(D~R9AXr|`?)1*hg1Uk_ zdkF#DxpvRV-%P_;dWLWR^mJyq@NW$i}IZfmjNW21_79Q0_SSqr&bpPF?J! z$E@Gdln;T6BOO>dJIpD8Z*{rVxEDFbIUmE38!tn7s>lyVfL%OHxyc(UNdF9?`+Efyd7{aZxJQF4hbjeHKb;cGSy=jk+ow;=R z^50%|&&&2abIXqmzdmKNu~a^i4d3zES({D%A8*Q@DNG`n0g{zzNOqxW1-TH=(r-md z0PPI;Qg)HUo2=gWo=bQ6%(WL@JG^xlJh1HYn-(1Y^(!|#?4nISc;$-k)_S0!E-1T=hl1h<=&mNPWyPoJaUYl0c)`b!SeH55+U+bfQ zdHdg5O#LWOjvs|LO&+MPpMKBvv-hreTT7*BrZRvXW(6{s}%D+Hev z(x;Q0L5D--JCz#R;Yc8W(kG8itVo8h7gQsJOyKSSz_;~Esrh6lv(zk>Wz7si?o!n# zX*!Q3@RCNE=(&iZ94^*~z>eNs*<{esztanilqmIW zOR({btIojkXCM$E1MXuh+nV8ckdC)rAOz79qz8cjlTutVM|zqpDTQm>^NKeOA#50f zEefcrGn+emX6S-I2}GG(CIJ8CrofTL6tDCI#*}3Df}rA!@px0nl8aeTZ8MH#f<4?4 zdOg~u@tIfQq#7GF!w%A8IIv{KMbT6gr4f?5zWt-c8=Rt7tiCF0)ozwewd?7FBA~?- zC^#XLO$p7ByJD3|V~Q7L$ta(@B&(VRGJ&S2&*rH#J>QWfe1;~pC}y*NGB*XrJzSMZ zQ*|x&Vq$KP4!e?MO;)n}pu%6OjmR>0lkPy#>GmIt5$e{^Go*Ka-nw3M2Hbe&c zRphMB`CjT4MxrHdAOCw}J`XH9xXUV1%^-nGQ(+|kD|(Fw_k ziak9X#xxH4PD1bc%58clDrabS7^f?zVTWL6P3L3Lo$2)gIe~T26~#fy@e4A1;bf?n znDZHMp#gS*=|0n+%`1OV%&N#4&RI>#9O1A>2-)?K;TSzSmv9-E40+#>~bP?oiIe0M!t}ey$5&~D)pkaVa0x0>*gbm+)zj2p9 z>LN%$2|yUgQ(_1dOF1mzi17FviszrNt@AHVvP^XA|A;Hqh}@3{BA;r%eR zd2jU6@S^aFAoSYwk}+lI?U%vBOO{5!)9?n_70DMI?D8_9i$d1Wk(4A_HZV^}yEf+$?zboAnAndku;YIx?t zo-&Qra!7+cnZQ6FG6R7u(^QulFUUC>%CJLA;S6Qf`2>O?L3*Z`0j#u$En(@=2bg6A zvgt(E5evS=^lS)bqf6n2VCjJv0xS(O18kUL+_vP1SORb@OhX1CG}M?eW-yfm%9aDT ziblFxXadat_Dunr%wDC6ByO0%R%fNCH7E;Y2BX28JpMM_f3A^^^v)^pwDbz@Bmp zr_v0dk<-M3JT*e^87?i*cvIk5^w^U?gv3Boa+bLv%p$gn^a)Xsmm#lpZwhjQ%m5l? zv>3Kb)g`y`Dao3MN{C5-hGsLUSnkS+*s0BIMLk7kAjD|BsQ{U-pBN9Vf`wr}u9IG{ z)~NzQ&?s3F+GJcr;m#}e-R~KTGHceX5a5eK=`9(RytvS35TLw!@9Z6F5yBDlmWdARadq(G6Vu&v&@Q1u0}$S zaV-)wk2LTe9(sLK$PrF%H&6c7culeO(LxrY9s*7ISRG#UFa@nfdIYl3reW3vMtlV7?dd6w9ye)?D^F@oNS!)I?OqvI59iNI9580I#9Y-IJ-Cr zIcqxo5S(=!dK`wxj+l&{5gm7&K_NKSm~}C5JTlv%T<@T7%3+b2C_vx?f6nAzG|kds zi{MZN+~q+Ipm>3D?v$j{l~~W){>KtC?9~}dU4lA}4fNOmET!){D4)g8u4bcDN__0RJ3~uekhgi9m0|gOljEU0AIe> znH%hX{?R91J4yb}ZS{(U4=nx0X}7*?&)>f8kl`P!;*NGuT$BT(C6lT$#j?A^we8>Z zo=aY}&lx{G@0ME^ET4DV@PGe$13$@+f*c;_qrhvuAB8dVzviPbYGD8T!aH8F=kHxd z|84TiTP>g3kzo6Ix1hQ$O^-~=VRcY}7CY9qv`mO%O!@d91rMpU?xXNeJN$Hy&)+zI z;p)YU22Nz95M|nIoskr!7J~iRS4=JPS9o7xGBz+^qvEqYOryHUi56bD*P7xxl}ruW zpwq~>c zCAz?tzh_f8^3lDIl9-5CT~V^oBBtH$fTDBZonG*2pb4Ujnn@RxBa@2h&MQFO62sl4}6) zV?fU_9tiOknKU&TXc91Mv6$tqrzFtFOf59CYLxs_IM{G{*_0v_tyEaIY+{UA#u|HG zhS-#ZFkA?sDL%9uDR2Ap|C?HVmWLkH4L977#(ttPYIUWgFKzjAWM;?=Y_sX*Oj9x`4QrI5aADt#2#@6tR-j<@BhebY z62P)AAB5PN(qpV=OfOb6a)eJQmNFZ{=k99_hw-#&)7XRZ_M~S#@6Z3IO|J|+C|)Cb zKv-hFWx_Kvt1OciH2bRHMah0l+t8E@x%4fefeAc4jmDRrKwmS2X5UjXlOaq)vCI~c z(v%h;5J{H2S;_>2R7fED@|03&c;JgA>k^Jxb*Y*=eg8uaaJ&(i^`;<5Nu_Pna2T|o zLof?LV^3e`3?#!#8hJ&UD2Os7OO>oQl!++RCUUk(modOzZ-5uhI~4r*W_9B|yd1Q~XnW+M$X>O1e2c6SU> z451;!RR={vbCJBAot2aPbDs5bf-p9XqlsA8**^$gAIwq;vrN z+qZp-i?g_1!d#v+`L}r`Mi7o3Egbdo6hdgT?(LApefnnKsRZG~ zQYnO(o$+kVXv9OH!0)Zt;CkK|O1Hk$>-KQmFJEn@k&_6y39M$Wt>z|4?+8A@KPHy-kb*B^4xen($?>pe@C zExCWef+zSWc)hImqd;IheiZJyYxpQI9zO~X-hcN6*WB|D+noH`gNFavTRt+BEi&Ko zzCS&E%OAbtyqnkU%C9@ zl`Dp~<UXFTh<}B zea?Q-PCq;Gj2nmd>eAs&JN2V5d$y_vKBs;Z62^}L7b~LCj~|6Tz7YC|j2{J#4A%N6 zSX0L1M}dK5VgDpQ3M(IZ^t3-cu=!C}Jn!v4fBBxjwMEfxEiBMl9|dgS6BWw0%F4H1 zD2*0tVJRQ~qX5dPwP~Nd)k&Lw;NrP=uUfrg*n|@9pyk}vFC54gO9VW0PQV5;T+z^D zpbsK`I2y7i%$+-zMs)yD!~k#f@dheFtcxLoh@u>}^Pm50T|8%&hQMaztp;2asZt8c zMH(%Hh-TA308XPZ)~8{nqC%+7x)7wq3mUyNxEF|?@vXPsYE~MpzLJGwcGFEaaiLM5 zM!*9!vA95{j86i08jjLN4h>Aq!vy6$V3+}Snn>1jmlb!JFfi0B1VXHGWKR&9Wdg^w zcw;Pzo-t%Sga|2Iu(81xEI~4qrfAqRLrys9MJ!K3yFEuWc6_s%> z^@KNtVkxsBeC~Y|knE!%F;Km%823?76dQVk=hX&=FOVVT2@?CBViMN3)a(2q74AxMdyrR`Em(lgXE zVAk>&Dy`@-Ye@{Vr$iJb_5rewE`nDZ8^eVD7i~*I(DS7v$ciH~iz0b+!6)=q<QfqO+(MgO~z zh|(bFp%JW?%<0*1Ayh9+vwRbP=LkHF^qA#B4o#l{G(%9Pgs|U083v*y$bWo2>9tiW zm)*JG;Z5Ir)=Ty{qob;mjl-f#f-_2|YG)d~gN}0~!6}ECBaUN`BRIja##!GXrVE1u zjr#+4Cmv@_W_cMp8)eq%+;!K1)#=J1$%X29+y7WxM@cTiIoa#wv)?!G7P>30(=bcN zCI?@=L$(_iS(1B9{(@Yv4CtM`9I&{%;TVD?6P%=-p-qVkli*AYS*os! zMjDx62Knf6e0PF`AiZa7{ynn_6ibb6Q>LV`=T~n>DPK?w+_lusv3mDE_8w~|XE%0% z)P*;7v8fhjK4LMG6(w0YY=pp@%|>G=E?@UsQRIvt2JrpBM*^J8(1Ba9_OP#X46N(JI(7N!K`*+AH@xXX}qo+y9$)e&mE3X5H?^bf6=-rLdJn?HsLPyVAoW-#@mU@4#EM`8GPftN46eA>OceC)h`-R+Ex z-oNIfU|ar=d=xxW>-{J^XS-8&_{haK-Mrx5yNBB>PJCV^jI_?&aw}mw5Ca5hJLa+J zA{S|f&9YC3XHy8IiK~$}MA0(?4#5W>$$GpI zn3X5|(qk4T4SB7b0-Fd#6ay3?iZRkyaMUN8rzDh~*=`ElTdAs+ux-YYJ$HI_nWBj| zGC(%1wemx=UXn4T9Do)D6qjxapr+mwm~qrUh01^QAVd-%IE|2Am>_5}pfN?(Ylb0? z8jY+8mT@@3mv_aR1*?ZiuQp0sjTsvy(Rf-E!%Sh6h72GBWK7fk5JC@!flScavQ;Oc z?W@Kfzp9W%`-w3#8i6zd1Sz4Cp0NgmULbuW5@gu^rh%hnObA39=$Pyn8a-pf(1d6^ z(q~2vEoFib!jW4=S)s_RX37u_S_I|Wi>6ee`jk)XJ}>%A4&&P=M^UyN~aluQ@bg8_T3*$^`|-=hMZ7${o*Y^oSgi)jIneK?RH9IC<>ud zlMFBzRQLqvMG*`+0#3OIkZ8Ok4y|1 zi0H^A6Gg!n&S^}xT-=DrT{h&yMxgFL1P1iZ+3;1`pTc$VV?d9A?q+)SYLtMWjKgP8 zZaaMHCR11fLXQwiXbifc`4Pnw1H3s+%9*_c^q5x;fw9uMhMDS2*;Uj1%@p2D`BCq4 zw>ud{(u0OZcV4z;3)C_^^xaw-)ab%N5flo%VS z%1vnQRiRQ|YII|?9D2UYkg00E$Wf#6$!6uF1f=mYg)Rw`Y0TPVq6lZbAjsCNDYtrP z!U<|EctI16M)L64$lO%fDoUPcF(pHXcvRSOjMc?bJ~*-cAc)9OEM`(N#n^Ubz*4aS znZ+tgdPBLHvYC}*%gG<|^S1x7J*GOTN|>1(M3+o=Z?wx_Me_G}B3}<#2pg~cET1rC zf@HJge%V4+@BHknw;q1khfbJ&|3f|m!>hncK<`EI&l zX`A66jc9qzf#<#DJs0f$`ROm(=@+k<>}qAAy1$E<89r?Qgy7j0^5%hn8SGh8TrsA6 z=VxbP+iv7;e`1mu0dI(U^LvKB{d=<`uipH~OLzL@m7n{`{FBa{ee>=2FIv1};RDN- zEL(a1;+3;*d+>rA7k~S=cYpcRdk#5n-s=uH>$L~}VTaG${HFK*Y4gd$ZtZL*i@5d2 zZ`$#bS1wrO)3fHI;Ps9Z!thD>uO9`c$#p*pR>Yfsy&nbckM&XLYrF18fzTo{_EBiP zp75ja=p(~UcxcJWpIvm{J3lvjgZj1kKYHRVia86BALk6%Pm4|8*z~k$vvC;zx1Y%9&e11tjUVT zaOzDVv@yfhQIc{P@|$c1dV%y1=rb!24IC|FLbKXH$7A0VwDg&gLra+;dFjEFFdMQ} zHmfO+UJg?~3exsiMMbYEglmKz6Af>A2#g8c1vJP&u+&uP*=z)6rlcoU+Yi2;h5(rm zf(-dG2Ev`5OrVTs2{WUYbBzHg&8#J0W|n)7gb{=woZYgPUSGJUAbsBC?-`fP%$YL{ z1we!*u%YZ(Ge8p!x3Z_<&$!iOEpJt4J#y*csK01g#escTO?8{kg<1A+g)NUKd7p({P5Y7Id?eF zd=v@rCB_&a8%?&n=);$u9&+mxZ)AcY`+hf-EQ*aN3X=0;GdZ{nqzR$PlPr44NPw^2 z6exn$1Iz#dD(23eYp9BwZn}wpbFiBH8Az4AVUGc`Xyhm^p;chU5vI(6NRaCm8w6dl#{VA*JrNeEv)L&1~AULQC#Lm(b4?uPLeOL$X@B`69^ zK@E{W-xAX_1yCPdW)(tUEQ*&M<_!sIBrxM;*7i`Zaw0@TIon0jFcddfvjQC<>VSBd#C({E}{-kT@UCf z9p9aq07BU3>vu|tyIT`XHvPjh4xKK*vI1`CM8&?uKy|YbW?7lL1x;vwgpDm)r=5(#xt}FTlY6 z`<7z`<)T*|1V5-yV5=sUo$&n0zcfQ&h9a31DBggJMXxCC7QNqslbBnIeIjR5j9nBV z#|8xKF{8&D9K}9$lj8-&VVU5N5{~G8ET0@?9#P1QJuaoEE`72<%+#oa>|Hgvu*a}% zCaCC!%25lA9AqV7*&_U1U%5?mb#?s)0^h8a`hVX1O+8lu!qyuYF&7_u`5l6@uqw>q6^2x zPX4!doq522Tyxvq!?W+@qxV+PdP_XcM}du3lObiV$Mt>`_=5FnBG9aP%Pm{Fa{1DG z?!N1mTjn~S+;odg+DDd@JX8+@J<~?WopTBswUn{2-!J&SG{V#aW zSN?STZ|A@9kPBYD|M2fcp$>2AV&DgF>{05eQM*l!2Xr9;16F~OOAD<>rVtj|tEr7= zAI6&t_P^}>s~7I{tBpT+)l1*?+n4V8^Zmbg<-VW4V!tn3dDt;G9Q5TY5BtWApE>b{ z#Q(fIs~GW|K$C{`J8v1!ec1!5U;4^DzsGJHKRmX82RJ~9C%C`+=qGL#af++a$ZrHGVdjg29t zJy1E2xdS1$n#`mpb3&Xbik@#~^fDQJ^qLc|Df$Y5EDAk9Spk%4ym6Ov zX39Yev+$KnNsu#5o0$PG8xOdm_zDD;FF-581)3=G;R4^Vf60jwjz$9@d$}>wGQ*o$W(2+jN~sn|l4SUXT=2#KPJ2dTlw^+b z@ixGu{PnUmR1{bUdS>zwt28Q*u|?N|#RfoAaSl1&%;rK4&C7uR-~MDQ3L8zfygD|M zp_zg#DEoMe3dswhF34o`_Q*(^m)w})%@BeRnmj2*FByQQVo7KMO{>75>QrQijp@^e zj{?FOYkd?1Wp8N1h%W7DWG`oWv*pGSCJhin2AGi#y_Aq(Xi89-@PfvS3`Ys!@X{o? z?oB~5LKA>6Zrcl|XRoJ^Nket5byFZq4{t1oKLQPlijT#}xfVx&){G}4rcBmztWHBq z7}xqJAOqJ3a1>8~kPR2%u#l$YvXlwI6oY0Nqa)c$muJJrY8CZl8XWn+|Ed zWtEn2i)YBi)LOA{UHKa0u^GmjSZoL!aaB1ACyPR+K^t*j&uA{#*O_v{+ z1VaZ_W{x|CJAQ5!y~~E)6dWfW2;BhTxW_uhx@j=p^Q*UKv-_9l>HWZg?10M>f^$;8 z_vNT0pPfHH$Gy(o0Kx&s-78_|-FJR=rqB@lxX#H?+Pi$=X2xy;dIu~CKsMa%?*^G4EFi@oua@*1!kD3RQ_HW|%mXF;CQ$7-KHC3{p z7_d)lW=aO^S+=(^DX2vRs|1O;#}a7ZsE7tLVv&WgZ}l+yJzKfSWdCFDkrEs~09gtl z2bMCFwk=_(cE);@0>lY3Y2aBzzVczo#@b24K4FFp2%sR_hw>K-AwpYRmS*ALje(!y zvay2f$&g?F?u&N$?6uS84sUp^XWx6EkAmL&r`Lj40eP*D!qhjse*7qCDaVh3*GO+U zE)be^SXg-9@Tq-d^{Tt>e9Vu+!^}uXbG+eRtW44`x)ong@ z!y6B|XtSfP+2n&)``P@%*S+D;KW=i=4X0i-{I9%|lvk}@@$f@SS6n-L(f5Bd^E2PS z_Sj$F^6g*WeE3%`I_8&iu9)%Q!;{~#m{|UIJ_^XBC;XrND41Hca{0_Vm%euY-@N|a z!$+a_b9>CA)P5d63Y2{mdXUlHN1=DA<+CD>^-#F-Q4Mq|L>aZq+DDOcU3uMuubwGh>XmLfD5TR-=iHsl$51`VbnbMWtlDC@lf- zNPrUwS~djXB9jKgg213z_~=T0k~f96@snwArtYHN#_8*2F1;$n8;!m_FN$nA z4i0~Alu@BEu1)1ltV&=hT&b#;TpG4edqZ!QJ6RvBd?J(V>4+{pgj`zCEEy1h{4d=U zAj{c(q})b)m5LrY?L4ovqnep z`ZXaOLgR}@W?2C1OE=7f9bKu*?9yW>}ueAp?Y;i;DUc zueKSpc+(fLUpU~{SqH4>Ef9Qk$xzU?F#}5Zb2Mbbl8Y#DMQ>IhE`)N>fXkD>m<_M= zl#?1)pLy9`yL|DMSL{9f&xB6T-PxS5om3oII!8L|xY#(*IHvn?z9Bn+zHIWhp*Z(A z-?#-i>u}`4*O3U0dx&EbSQj2HWcbh=L%}*8Inc9okaCt~?>P0$Exzw^>wq=>e|^qL zG;VJ4aUpbmavCOxE|yCdOcB9KOrE@GAWMu!Z>rz9b<$NPwC8SjvY^t2CiC(k_&M-f z3&0BJh^CybMl_Ds&TV98J5b7TFOq|_>HCdAXF;%fN+)tk=`q#|LCH&q7f=3jX~RzH z_{pW)7X!SxFHz!64_REuKycWVi9LKgIC`S%Z{PMUBnVn*3`F6s$J;;ca0+Df5`aiU z=FG;3%*cwBs&JIN1eGBfQNW?0#d=v3Q&?36ia0XH8zmbWoO9$NdG|U!8&|=|L6`KT zDv%Ov10=}7l%go%w=PzbWBZM-VkyaHnOO*Nr6&yt!YNHS87c=+l-&DaEMe7A!iS7u z$ba+J<75lg6_?`+Cx82zy~oBZGG*(Bz+DbznW;2zg#;@l6-h=FYF8J`c*D7Tc-e%8 ze&DE@jfLCy8+XC9Cq>~72cR`oh#?S^E8bSGLrZisk8ZUjZAe%}v zIudwQ9a*d*%Ft|06*3{nD)$1kD|5QZJ$ z7!c$@pohaAKE_x|%(_GcW4(wBg3VW4UOmz5>6t}-X_Svy_-4Z~%Zm_8W?5F(s3$PP z27SI(!P2wQ;7G>eGN9)kvc{`4fP`<@GX=9)d=2FZ5CV-x1Msmv3KjTdJ_@3MHN`+y z>G?9FB&_$Qz>J_T`j{b0Jy~O{I+)c(pBbnKha+drP(waTHUd#fj4v5JLAcxt3cNt{ ztpZC1PXS>wku(n>Yq%gFjsY}!xuV0A9^B27|5KM4FKkLETuM#S?ON=#9fw7j{K`## ze1bieq0#8!7n%!9mWK4q$P$2T){tJr3YH0t#LUuw6^LFlgiO!3^^=lb*%BjrEF%;? zGn+#=f?+pp0;MDk>AA#UuyDGr^8!WVq2eNcQ;f-#X(&&#hM4Kk-;?Lgoy$f7T5&10 zs+OeaaiRnvX3w5YZ$+dOX^=Te)sUqr_-st2lm>7JW(jy>uL`ZDF(hzguVh?nOMw_qdI~Dwc^TLEIqyCTMq7qp0PP|=73d&K;~dw?}*u%l^%#gkK2VQ zXC^0j!n3yg0bdseP_Dj|&a#e2hn%noh?A2mt{y@|=URs?$P(ke|FQQ-fENUT9IYI= z1TyR#OkhUe4NB&naoISHxuS>;Hjwh?#YGij34{m5Iw(twv4qV!MFB zyA7GWaL(DT>mmY_iEt8AerH6nqJ^>0aDclVi2}h%(V-mA4BYhe62@C;bA<5JO^zox zeJV#>fY?*fLEpZQqZ0O*{NKNjWdeaE8&@W?lHdE7`2eAHSz=H=4z<9$5}-x?z>%h+ z%($QhJ}S_nR~-Z3s?)m|yLdPaBal5CrJ>>2e@!7CBO?>?CtV}n{6`! z0+G)Q59+l&I@UX;n^pKuN6%JBM|_M4#2A_k;dk$~f-;AULkXyknTjCOON>Fk{Vr`F z-0>sayC(l&jEaB=+LkZ`&LtkC!Je#;&@6!@l>@=*h^s*E`Zpf>$IT8uXZE~%7v4Ag zkx1`^C;TXQHF;^Q`%&;NoxCO1|4|_Dh2Q%yrPq#F%-|6ED6m=YN5Qp+{D-UVIP5Ez zZu`+|-gemUe|h0tce+b&TC~TPX8+snr>hP*h*B&z$k=%9b|<6JR!0j4@TPo%#|nFh z!h_vnr&(){0JCRq@qI3Kg@v;&76KGL;nVjNv@RADy=0buyYUac{L|SB?_YHLZSzzr zRYl2Kb>7vJKgd0N6z;lfJ^=|2E?T(g!G{n2!ucniepU27;YXqOc^?H7#gAEphahMq z8*mdw2as%2$wsy}GWQC4gK>bdhZ%RWIw z_7F4zrM?gfhsFSoo^kb7j#%wF$cEe*jJ&B%T(ZSdQ6PbXC9sbNA@IPsp~jv;uwr#n zptL_BLomgxw1>Su<))xUL-~8TVU-zJw1dJGSm87VEY0%jra+KCOT2+)k8Q&m$3hSJ zJ@!oj4t)zDgnSrOIE`8u&}))mPtQi4yyA^gV&ryRv6$hfG{%JK@kZ9@<=n1Ajvmf< zQ(#7;7mLQeg3rBmG^DpohM0Mrk3u0@7xr2SD_^!x=A*!!uc?&r(BnoJKME{ORX9D& zkY%EePhM=G>CGaI20o%PgToA_>Ilkb!!knXWOYW+7)VocW-SjJ zJP=q~5EmBNKENfcmjFF8UZ!H8tkA_?2<4FNQ#wRC@ss<#sebL> z`QFea!O7m0z*)!r!BxRQhq058BaXAF6AwKNFGGhX!rLc*Gs-?+zmuaAt$QpG_XlSq z=OKleifzL}O z$aE*s+XK(q@&|0*G5P0PqY*#dRAnoN))AiqDF<(o;fMioQ6UOiM&1n5;7yH^vC5G7 zg5?EPN(|%!hZ(x0CkKHrv)h;E8e)6jZ`?)W2cR@CIr(jWT}Bqugwdk{49kyu^)mLze8#qQ&J+Au_kwM08>6%7G9D zI26T?G?6CVSt&9j=1ut7YyH;ng{>Me-sjWSEM0lmWI%*mm8?wVEW!a zFd5MIQ6P^W1#e^ebw3KLS9uSwy5o-9ubTD1RnzYo{%_%B4}SUNYu|Fjb(0%$f97w_QQ|0V{b!xi7~_HKkaY|cPrutZxF1PJ%&2?dW+(R ziy?Y^h){<-U3x#zE6 zzSr<)ReBt3HaiVP2t+2TdlvBaN(YkZpBj$iPs-WI;L7KyEl-O`4#ppr_Q>SgbKIdL?9E?UWP0|2)B(O*sJ= zEFn}29A+J^*Z^;~ZJ-L7%Li{96%w($*we(Da!m2X8v$?RF%4N&em$2~LE5eg@vlh( zjpFi6DZ@&W1}`o>1poz-i6#mIQ`*#^+GH_@)#RejE98`;`>34wtvSI?)eu6qf^ZDu zEe;7>2t8;71yW)aGaM-m398V`69~amEHoM6jIA z(@i(Ym4L&@&()D6=+% z+z3Jg2i1L5U8*xHe>m(L_P!vnA=BqbV_hLLE}4oV!~=VdmCQ^^meWvU3Cd;?lyCOJ zv8TsFwBU^w-q^_5+edUPon=&%-P^@s7`lc|NkKY??r!PsPDv3Qa%ky>0YpMT0jWVk zLQ1-kk}m0#6oL1C{_Fk1N7l_+tm|B7pS^!ur{hSc4_y>4MHAe>s~E+WBq6uOR8UCE z?a@DaA(O*)cldhN^XEtht=J*3=sU2m!%oPdQR)2dO}#?GDdhTvcCWC04w)1{iC zoB^WnelXWcAdrFNxy|kZAAi>m*hW$zD({Ivy@-xnk=%G9m0(mh2F*3p#x@>zKu2-0 zsoLh8)%@)=CTEn1laLr1Mcn9no!@4{Ho!Y+2%ZB5u)5K8{z%V@5lkqa%x;7Ff9S7M(k~z(RJuVa??K^xDeD%_lf`T=<39xkOxm!|UbOVCSvp2eSLi z`))r^dqqEf!w?OZ1^|}+?wda-%rFB~w3ES@4E<;C5hgfOmY+)7X(C3#d$W&l1#DiRL#C=SkrrN0KSXOUcDKZ_ON_1At zK|(>|zz2$sUo8ulIF`%szG2&yQIWD>$B7dli^lB8T-R85H<{8B`mKzzAt&ab4+cDL zuEP@;d2iHQIVaK6B{Z{%IWc2Z-!^Qp(etcC+k698j`%0H;oV3(b#@}zHEzUn9f0o3 zLB;VvB)EKiP{*k>*|IDXUwL%ODY!G{y3TP_;MXw+;JRsO()@o%7kE`TI}7i5=UP-j2K>7RV=KQOJCEhy#IlP~nQGJ>Q&9s~dT z#Ysup2KMjj8GEkCvEYRusnyAG3@@Vrg+2qW3X7<|!?(X6*u*)26m%48RB; zJ{x_*9q4_Ye)BMJM{{%<;(zTIaQkC7?9D)r65+DX(%BL$b7X|wG#%h zn_!yGcSQ4ENdfHuDiPL~o}Vf5wGRUT#GKc(6ZZEDp{1bv#^@6L z&Z*eH5xp&i%e6sB!Y8 zCwJ=hhN|9{hJIzCg#KKKEKr5<+GT^2*86Rf`8VzK#hDw1nGqy##4A!n=%5)^_89J~ z#xe5tgYN)H1Re{rozfj&sga2m+emB3!Yni00qx859`=?1f888j3(dhm^}?QgxJI@o zj-&i%9w7m~L_Bv#)Lqj@s-c@(Uwlb$D72gsY_LRxayB z-)eth6DeWGhA6lyFo$odeqc_@G?UX8i=ij%S?q%P+GBjo2MOY53ZxBj1tEZI+oVP~ zzSQbZCeA29lfzQThvO&y4B()L3{LfwjkfObcZEa5sDpb)7e?TE0@)@EZ+i@Kyhld` zw#*e>%v^-g0wOTrxJgCJ`^CBqw61+<2rH2L3aLY!2n?gWWkivo5#o}%C03ROOfFRv zPIHW2^gxgDB@t?E-8)(6&k+SxxFZ4|o^bRh-q9DBO(Ry6*^XXp`7T0@{YOf2`8+4WOQMelP{kkYl$KYMG_a-Djc}HVI}UDxv5X!N%LX} zINMyG(`e|FdPG0Zuz%~8IxEB@RU zx(38@rY=QR!3GnKgDkioR6V!0I!e%eFg&K?;)K<^ zZDf~E<_0c>S5&1_svv-tiI+p1Uyiy8dFT38+1!Yn? zF@xoE-;TE6%3&kY5webD3&O&*)JasW@hutHgDGz?U@rS#Y8{64OVeao5?^syv^}h{ zEQMZHc6<-b*=j)+DKu%6S0xK3`6ViR6#VOHop;!`58gW3%-qU7(LAL+b=cS3uina2 ze{*@HzOLMz9`gN0Y3uBuNE>@*-w)U-cV2Gt^(ix8CAYpbNY=-rMGlUe^N3l39zRVMc<#j!x|RDJ;OnhEp)9O0MAza2*?WrESO5^0j@g&&--pqM_cr#EA5 zEEehVZJiAPnGWo4vn^9KTjyp5YPHB>!Q$_5+)M z*R)u-2T#07K)?3VM8F0kwc{YuUj4NKwyL2et!2QSI$@r}_GoyxNwg?Aayvl;!(zdl zH>h7ajgOkl&e*1(pnh>wT>+FhyUOb<8@Ywaotr3Pt~4Gt z05XgCP2NUU=j);WROOwo_IqTz=so?MocTaH{#2@eRT99j8!z4;U5f$tV5g2Sn1oLN z*WONfSanK7FP;61Gegd7%aD;?nxl}vGN+>de1IEY_1rv1)z7VWQVNIiUSY&0B?KLT ze+JhlQ?%?D&z$BL?Q?fsm^a1*t~i-h%cszw;FcYgnw5RrKcR2Z2*V4 zD*tWnlCJ^DT+$RUO5L*r{rhddmVW|ic9BoEd$#x^T{!+1T+fh~%09j)rNC#ij>iwl zg%C?PboEfeddWbP%yPtt@2{?q76VScJnz@VQdqC=)|f~~<<0dd`l?rsVwc6&bakOj zmB|`qkR^-oL3FX>Bo%VubTF=|bw1tE;5i7t!bTbvze%A%vpU;1u`6K${Wc#s7`R=QwSeL>WRV|Rz{pWGTlG2 zYq83?+6+M5&REztv6R*$vfGEVY3p71HS{lqu>)$k{?+BYfJ=ppChSR-Hy^rKkfe^5 z<%0^odg1^bI6O2D*01$#x)Qo_J9j1pdueL_H_*(1d1kE2I&krmAp^yI<8H|}Wi zsEb8~RyHOcln@tawi7#croB_1iT%U=P9BQ7paY6EYLh=vS+NJM6XoeBo(~5PuP}Kb zE*kQPCB+(sAwcwUBHgO`8pj?Bb{(OoUW>2js<42%U%$;xoX1Krk;}*?3zwM5I`VC$I9m=lQO*p_{fr#KeIz-r&DuBsVL*)6ue}I*b1o1 za=6xrk@K?}L$b4Z>SZ6(TAh_oJ{Qr?Jx+Yj!+H^#ik4kQtRBuH#aMF28Wx^DBr>gB z()Y?8wV3J^8-AG_j~)9vPEP7q4q5Z63H|llP-+_n-eK%lXpHdtZ@t@0es7!JZ%2ys zPyZ?0sbUizu79wRUtc0fbL$+%!F(J1E(b$H;qCO{?kFNMm5aMx>*Z&bEn0X(=W&fv z?b6MzSLoUqCP-pg!ckmDe5VC_QnVXD04%+?DIj|9`%P4ASoB2VM$}F`J+I6MlfnCE zzW*idW8>2H=?cr#)`qupeT@!#Vzbp_?!C{GsH7RqDXon{(pR@1$bc(H;6d>qm$9EkMDCJN$IV zf_TLoF^VSI88S}ualY#J98b@D#~5&TcA@Xul3o|-CF~ey^3~*Zf06gaf56<#XYv?W zDwWf$Gu{(K%`2B(>ex0*XiE+0NZ*2w2_uD82zdo0Hx;KoDaNpE5z{PcteRIgB5J4! zA+(9B)8oxWE9>7%n$`;b4M}0UI1Mr|1{`AQ>a;+^GOR2nTe-e$4 zf=)0yB?1&Dh*$WA*LjnCDc5HS`}1JQ@A1 zTwL?O9UFu5KQ>YBeSx+rL&OaJ|WSKmhmy7k0sf5v$c?i^n5>9z)iUs4u%> zStlBZjs3wP5x=sySS$=*J|*Xvy3Q;IZY6^_$uMT^{Qh~j$XGnBqzrLILrp{mYKB@d}F zKrflv9>OD~3dIsqs8U`p48Is|avIyzPJG$VEKNr@ia$I$Il(nfCDD~$R*cA*WtjlLAEtNAt3 zJ=gF?tHt%=Vs`4>GVlyn5-WZZ3LKd4TFep8Oee$?sn(VF#&jmq)A=K@O6GG7!$bPR zS*?Zl_6${dz8L8;L^*lz%JVe#>y_>`$3v)^@Tb%VtdV+FF7K)5Vk8kyd^UD9;1UPXFc)c zbK&1H3jT{SjO&a}to*U_P@3LP*LaYy~a}pM&Mx1iUXbShLrq-*oE#cMbT4nk{ENNjxW^R9ig^pD@ zlx)c7EHt&6D56c+QFfghL#&#TN8qMZF;kJ2MY88#Y?NfblIDMfB(w;=xVtF?%oT0) zArAl>yLCUUmp)8ty(NfBRkIReGTc37N;=>f;bCd8F6*~;;t@-p9Y``xSiENW`lpdl z5YjEmgPb8KT0($n5|zlSOV0npbJ4lBa`i|S!DgX`Uf2^(CMTSlJIP(|`+GKeQg#wT zg3t2c1|Sg{@FHL?2b)GCQiP>zJKFnN4;0rCh~~l_u2??0GdZSJX0g{=)KguQS+fID zQ;uO|P$3{!RqB~q;>J^i+iS?C(s{eM5b5@KESrnU>%6Cb=MT3Xwd5iip|7eb()x_+ z<+x+@k%B1DbjsY6LiZ$aJx=pSJR46E9iiQZQJL>50P&i1BsxaDT^SlHiOBiWk&Z2& z%3ZeTO<9#!#3PVj*(=-u-Y)-^y;bD3Hn4J#8y!x&Bs)vXIFL`vP?sa4@h=~gfZD&j z*#0_25CCJc4?O;ZY2N_qLPYcBEe79FDPKEjc`&Kwl`iGl@v3eN-s5x%NKCWW$}VhQ zWn)Uk=tJ=JvhiuyIKhWJPe-x@h@%@Ch|cY9h}LQEsAfKH}y{Ix$7&7Jq7=n2MB4KVaom@W{rkzG+ORY+iqa`|a5J@O0o z_Wn=?2Yp8g$X&>~3ahOpsP(C2OST6-hH#Fz{DX%`-&A}_7Ip4@2y0z4EIxziU$wYeW3kaD^AYQ=Jy?)8}>~ zj~8!^gpz8*9E}9zIqFP9@SxRci28XPMz(GP2BsQEuU2y(Em1LtNG6?zV>Vn&FF8cC zQ#@DHfKC#fwgS~ALNBSvNy>%$A$xEaFb`rjL6qNO223rI+iy(31x&cHrjx%{tE5-e{V?FzjO#x8%Pp+|=)pyTk1gYf*IU6r31_tngKz4#b)V(b@c26YL!N2t->!QDiq zk(W{xMy&zVbaqa}eh(t(qD_cN+5UX_lT2V#l|r8G$dhBXyiv<9#BJQ}v&Au9717bO zmlE+MGQ)DTQ;UZqBE3@j_LI z0G+z3$hArKK|J;|wV-xro61OT(CJaN>gDwc6hp+&&DKf6eb>}Z`6cw&z7E9 zi0^BJolVLRX2cjuhL#qH3CGze;Z1HAKG_e;y+Ry)-xy`(WH#^}77k_$`|UD2v*I#w z3|?x8mtkFm8w+!klQ5(|#tA;jrj;NfoS8kuMdPxVfcyPxIVPv#kiuDu4~5I$>eir; zgZAC;e~fuo{cmxd3T&3=3aH;RytlX5wlI3nW%;r|`k5nb-!rOb&}a0P*ahR36k4rF zG3=?j4Gr(=0Ahc(?GuMnyq`*gN<82jeq*9o1Lsm6zVRZPXK&t{qJHzQ3)ou&5;_sS zp}sOc3;wl!0<5C`Y76j%tnk`Jfq;c*ZSQ|fb!oEe0F7w^_?i=KH|uYK8}zlEJ9{6N zuWQ@hpI>w=Lt|uusvS<;c6s;*M9I1XaE!46R9?wE)m;&;%zZ0q!ROG5ad5imV+1#o zVh{`v+i;naA>`3l&zLv9fB5%f(6Z)ZJm&RyToD+(N_;zC{8j>YWoA7wB-mN^U?3f}j&eDQD6Sn{HejQLsNp(UOKyyM7vv z?j|L!W2A?tDjVfwwp7LOuZ9Eeu|dtpX^a{sR}B=I&}}E277hnaa_~}kne6B<)$59- z1P+u<{J?gf3YE-X-95!=g@( z?LLoJ7k`_K7QsfQCDLOH#z6&EpEHZoc0d-;Hr3K1qj1&Ba|n4OlpMGUs$Ete_xHg% zHuoJ`*I07w$p4IVW2*toUZaOo z$t>y#OWCrdP9E4n4Qm=IEe~B?GtSvm>Fi?i{gtMJ6N}fGE6JUnbH@p%-?p0mQ)%?H zVj7+i1M#W&*%Z3B%VZM^2P!lKPxSX^Vdf^%>vRWzzkeL$78Ykf4QOxr!$#Q(n8>p0L<{Ciyv=!mmVnQCt6-zRc?To zsX9!&9ZX(}Eu{)P-@DH?^jA?YoAOI@&ToBRoqEkUaB!enQ zdGf~smpm39|4^FGolCE9ZUH4b)u0^fOM)UibED5N;tjqzNx3ibYQ%j^lzDctb0{yL z{(LAzTViI%f3YecqC{v4I}#gyt|B~b!>iyVg>1hdi^Df*pK3k<_e+i22|=@%8*wPg z)ghkX7K*VpBWxSX2Jlv zhQfMPnG=-wNZ%)^G#H>qD;HsN^qcfJs~HjOw6w|AD@L$QpV6v)J=i0Y*Fjf7j`lSF z<+m<FKP#T#{-qPx{!*Q+O|v6%e3 zu+2O|TbV6O^1WfSEQ=4fk!4#|Ofml-(eil<0<(SHtkJKN3Zys%_v! zmTizJ?JRO3P)Mi)l&JKKgzVR0F3Z?Xs15VZ5U9c$=|&@DvJW$0pcIe@&iQ%nsu@FLyI--D>S; z(;_<>^YxkXXL5F02+4=zaz8SPIv?s+QX?wq#!r?CwhNu$XEC&l+sbupe5PjIHOrN8 zBGAg0NszAesS%SVd8}CeEM;k44AHbVIffYRq&*4BcQ&mVx_y*!-r(n|y^|@kU?!KD-G+9oDZe zk776lI@vrGu_}nn>Rr4D&0T~Yd!{eg;}P*FcD-C2fm4kNn`3$E7_N9+o>-d#*)*oJ zIC2zFQ8#B=dzcJBs9;2fEgeHmeFl&oZTs~(+MEshy7SLMkCF&^sa8h|56{ao&j3HK z6>A77WzdQbEnxfV;Kz!gniqE^+5=ROWf(6iKdCD78Sy9Y#lwMSlCuksH%v0Vi(0tW zUnjiQ{&sGtztevG`57bm$}dLLdZPl2iI_QD!kEAW<%Geq*l|#O{aZ;;Zq%Z$>>>Os z&K!FA!}Z?)>&6l1+Wfco>6rACkC%w;stC!e(mLP8%_Rycj!nU4Nurk6pG@kd*52no z+fR!AtaO23HV+Sn!Zhh)YeKI@`+A0nnU1C43|{`P?ODtCc7$k%oP` z*uQe?{$cx;KM$YQ2<@5t>xBbL!cg7G*sscC!2G)$`HU?es^H>;t(Tr+>TBRv4H4Rm z3PE}ktEb=>%gUOy;XNA5;CPf6GbG6}>ufa4<92h#tGAd6!129L;sridyYc5@z8U1eab7^af<6eE=kwL$u+A7edlom27LB+K-us@*Sx z^)Ox-!>=;&*vw@F%8ENxsrXoTKT&{IEcDzi4$&DkkdSJKHO4Cj3~DXh(P|2Qt3eMl zVHTpmR-71p0j!-e0GcY}#3t1tU4jwzgv$^S-pLdmtG6^*l z)bZmcO#voKs84bMKM?7m77#RGi=rBX_+K=l@h>gu|1yj(!*Zo~mq4EUfCI=eL+KJM z0SX`*>fVL$N%J-+Wn(OAHX*Xy?ULIa1EL&qT^u3z1@9?D5Zxjt>qozwVaSUV%;ExRhjZd>BZv8g+8>(HzGgS$Q_~+qWq5JT93Ac7r zX~VV>Rl|uc1CPnB0YNB&GYXfAxR_58|?)ijF}W^XyJfr)spEb&pKj z&+5JT@J2M61&zgC+ahbT)iPG|b-fB}4$sB`IupsA&ZeRO(`GzH*+KXS5|;-0?rH?T zT``TDMMIQdAAVjA)?fZ1bokrjFt1FP=#vL)-#Cy_{Sy{?9(i52Yj#*X7t|Gm4?F1a zgTjJVGv`L?3Q@PfrZwzdjf!a-hVg}x*IrLr8b1aj-z+T2*uZ%k_j@UXc|5{mdZ6$RW zC#k4mjZ9tmgaPD~R}X1byzQ&*Z-K-+nK3cV+YIhSk?rb3BabIUzN4dVR7S3B_L3i1 zpW5o9dFWo=hXVhZ(iA+eD`}iS;Bj>IEDG4h8v##)3lToHXkW#~t!{X4Zt2(5)u*2- zwjK~oEunJgHt`Fv#mY@r`VFl}PzH1Cz?xIjkk8?>lXrEHy|NpNrKh&As}pPM&fmWv zajcxtIx*VzL2(fo=UDTPx&UnZ&HF;V@lo124U7r4SAKR`%q;i0zH|A}7GijsLmaXKA^Id0sLMKi zPKz07%(G5{T{Ln{Qd#d=DD6#nYt*Cb1_C$w%JQt11Kpp_l!_+*a*0tl5OS|Ba3VD? zZCLcVsnI%Lc@1A?jsmrowX4)LgRo)j{ycI}+1_Z&hzdPx8FX(bGX~cGRySJ`4InW2 zCux+ke~7VZ=8KVC2fdKr9*V&Tf+3~GvE)Q)9I2V8{M*^g7t>u&U1JbQRMZD(FGh?A zxqq>jMx>7>$o5J*CUsH^($Pqj8Cg6StU9=;PPnUHeh(#uB4OD(>}9KT%dwv_B$u23 zgyD=|?9wIlh|xGX1q6oOXBRQfK`bpyh!t}v?WI;neMK^{gVsxO2&H&o0v%3_W=6t} zHA&a0W5oTeb{>iSncI}>N=1pEfRG^8d&gNaetXc4K56+|PO8QZZ+@?f0E|l~=U8-T z+Wi=GQIO9)j#vMdL-OHSz_QPu?GL>IBWYG^y`xGP3+H?j1!6NVK6)^iGiJ{++qV)^ zE_KJ0UzXaCv%+&Q+8OO5a@9+hj@iATo9-w9ooqheAA zaV-ieB$(zpkuilOu}(iPtpQ>_4p#!o1ZbBRJ-Ms}vVSXQ60nvtp;&?8UEw(%(ZW&o z2j%&mm2a>vrEHF_1nNzqt{H8)SJ^g5o*ThnjMdb%Ncm41(kOC{)z12?=c(nE>S{&K zDK(<5PbRo9Bu*^J#Iblo@a~%bgmIW}Z$g076_q(b*vo~X)#6E?wI9>)->n&8Ap>_y zQp1)bU%PcD4B@NQy-7hm0DtNHzj#j2z~5aDzw}53G#!G^iI$87zs02e5>B5U`qvl* ziyYSX7FT+^GpFIx@2p7&)MJf1GC0fhGmHBg7+=5lWAP@=%KekQXD8-Lgg0=XC@T+W zknTW;aOS(uL1NHJ$NW4B<86Hep>*9I{Jz7=82HYTwZgFD=FrgNC4$GRH4ooSnbX@U z;}gMuPt6nW|2e)Sh8Xy7a_C@}7yPiS`pII8jG6W$by7~DhnB>Jv=4neWb2qtC4XVj zBJ*@C(N+ z{*#ar&}F7!z{#mA0Y`Kd<}CkAfZX2dTAC95@+xy4v?3$!b-u^P@>XJxZJWkIQL5N} z1l~Z+y)@#?b#lnparT`&=h+ebQYGSj$YyN0DdQr;$q^$^X3>HH0pzZEY&%AL$4`WX zUgl`U)o{hjg62R<2u#`?Wv>n|{*2r5e6|V#6S|h%G-5rvlYV+86LbvUEdYwra8Lb6 zt?q#up-q! z=EriuyXaxJ#a@qYClb;kZLtJOI0H?vFCN=lbB7?B-0s|0;g}dlR5T4LqG;3@p+E-( zM8k@F{Nx8xNWeYpm!(tv*x~2=r@hF5f3`!L8v)Ik*8W>6sKpvNlCOV!6@2qFN>(f7 zaw{@zG05_JhvCzEFQNbXUK^C(%xhfVu9TmOx%V#%g@vliT$Mr?r-T}s0en^Id=Ndl z6>vP&4cvY|*WKH?HK9jGI)G?Sj9X&cbm&gv+Z&k{7aKALHve}guSM+p@d`>K^ji&{b@D5=H9hab_DowHhV#+TQ8`AG!bu?>I2xiGOtYuf=ku~^Y zg>m*)u9s$ex{DC);}8Pj4FL$|&g&>+)EADCu@@VANtjxs>Mqk5=o!p8P0#?K%O`WQ zk^)P^a5B8)Ii<4d>!b)%hA3LNNR)P6#2JeMJ(nEWC5{8D^T(l7{*LJ*df_apWaFgb z!sR);A|8eYx2HY@tU=p3HNrgEQBt04VyJ7lo3*R%n4YLw4}Vz>8N|wF5w~Ip>?O;0 zZ5&GaT#Zj7JM79#MYMfe$I|JXUQ~*u8<>b=T!QSn2lZOL&oUWHwnw?3WNIkorqOKH z8%H}6$^r-R_}4{e{R_(J+;o9yLeUz^*8cKwShPh@tYsk#ZS1%TM~FEeL1h_5R)uYn zazB+zB7Z)L!8eBv#_S=1kuIj87?e3K(;6-+od(^kfs{g)V1%lOW^E#^AshYY=3eD; zyd~$%7(+ONj+j7E1!-fS3$({9$#ldb1AFvV4XuDUxolcc*(Lkz3hGe@B~!7~ccqk|c<`}CS;`X*d)ioIEvqM5O<02RzVxn; zqUpw~>Qi$KK^-0zwq4!EY#K1T0ed4w4Fr={r*!S~ztWK%elcX$| z_#j8qdTskENbZnzOXZ}q(;Vk4^^mFk=LMH@$w9bs%u&7V;0Q;KHzPytCXI9n-k7?T z-CuIm4qyAO2KBoG_sdH6AMUeCf*e~(#4?cQ%y8SyG~0=SH&g9NYeA1AH&PR>PCyg! z>d~hvk%#px^RS~Bij!O1T`v(ZrgRQ?K&6?%m|1<-KcXrESN6NiR`sduP<839QO0-e z+@rXC=qb!;@6GPt4b=myihzcS*G|Xc+lhxn0pf2(ON4F`P3SUmiOB>nEe?feWaK4QTV!&@Xtct6XGs~aut4_{(Y+wh2_CH9$sX^m(T5OQ1irk_q9Z2xCPflT<0i4_^ zP8_(58Gdx&pqOuFx+-P$_FLq*A!|*YGffeNZd=&f!UPsp!pCuW z{Wy8cdmO~xS8Sg_VwqL!mY%|gcWM^(^UWP;uJ+Aqq7gqNgN409pA0{U`ur|Uxy;9K z4LSqEqyinC_@wKo}yh4^i=Yr$_OuP_#DWL zx0G~anEkE3(d|08)#dA(0X|czds6)Y=$4ZwQ344^dS%N-_CAj?{5|bGbTM0D#do9s zVqEfeVacj~4V`xhsP~o*`?Eyw{dFlb&)RL=$Qq#dt$8n$0Uf8yBhHd%g9nC$nq9W) zC^m-S>6O2cd-lJQ?EuXpS^}<`sL?LA#h)RG+T6hX$^q0JC^xd2O=rEk>BN{QSf1NnFZTQHRH4(>E;^13-mFY?(zdkN)N4JpH>L7E(`M0G6Q2EaihpyQ1YZ64aa= zePd!KSa>EoWO5usoI!`S4&eCl#n3jw^Rte@HZIV>5m|eSbnsX27nsCe4P&yG7hrcI zQS7?sIt}%o&uj*XJ2NFeItXuRbrX;54y}=b=--z9|ESbbWN^nw3DHlT1uTq^4rBEs z=27r%dpdU6fCzP#g`yLgd$!il$eS-I5$X4AvU{Zr+D=<4a@0q-jCR*ko`X{u1`;Po3VdDq(-iBimPFHXx9gT+gQ4B-@Ne zBnE5k25)!7Ctv%|-bL@^V5h7}mTX|BI(1dyW3)7^_VvB7gR&Yvt5tUDZDCYd5Y5}D zQe(o@qYXcb_eBO6#HDZ)K~sk8BYecWWYggz?iVy5v^u5(RHOHeOZ*<7chU+Y7SuK) z5J#sS-gw}cjp}0DWefXjlrw52kcRdm7z7zRxF~z)?UeXd?OnBUgltn$KnZOTf0IxU z{*W~nwE%dik)~x3+-du6NX4Eomj9Dg!zkX4eSG~&B7g355h1Doq`^Q4DfPU^kkwig zYZO_s*Lzf{c*Kh;7QwqDvytUx+BhQSdKU%n`IND}dxQ#PGI2qL$H-<>TRBZF!I zXdMaO*jzlIfr;Y`C~2cTf1JtLX0FO!gPwNNTh+N#q*$J1M~2;BNNKN~@i|W-Y8UQD z@vo)YO4}6*BTJdfi+jtEEp70OPiP-Xo#!!})ng6*?!F97SP1FgpTS-YiAOKIG(|R7&T;*lFwD+8Y`B3_`1&!uI_% zh1q1Ru8BHaZD|iH59=%te3aA@`TR`mA?l4xNN0(TW z4(myYxOpcMsS;VTYsFiR*YV1w9oWY@USe;l6dU8S^@D)IHW-zjeCYZk`kzzt zZ@bRCVf%&7<^fgKWeZK>F5T0iYwb(oziM*j1O#Q~<}<&#zk7vtiUZypt3=&M;6WNq zHVAlY3y+k&ve%kg>bFNO#@4Lt$~YCARUOh>O}k#n$l$yjOR2W=7q$Uhx~ zYrL~DQg2_M^nU&aKdG$+3ez_*dV;$wV%QK=Lw;OtUgqY?o2^A}>F&VTyvCeyQ4DLp~}x zP0Vw(QosG2R#=`7TI{zc>4k3le6O#lW&&AbIJx#XC}Z>p5Foy~F(R8CVgM{bkQGzB z-YK+%!bS4~F9t-2wylcNL}jsmeL+11KCW~XkQ zPENyfLQKjo9kj;yhje2UTFz<0S68uA{0cE}=ReIYsg_&4fRZxTc;!oNzo z{&<=DY2Kq{cycr^47^7n`UZ*Q8&wdaRz%QdA;gD#{wylS?%1P~t>_&6s)idM4g{Xqoc) zu!}>zaIPn{K(A>6${z6b_JB zCJo3wHf+}w&`&elp2-^ZogBm`^W`Hu?)m&ucUn+_m7#!`@^HhPNE_85{9^HM>HPOC z`<&pj7WdBU!=MM+s})3rh4*~Jj_`3^(5v5tu(536%S~!)(pUatP0e?%u$4Quz(}8e z^ml9@KkukweHdBadDUdM^KO@GVGqri+1fJRFf^FMy56NbojaCFVllLr@7tME5W}3j zcYVZd{o3t`)SYpIIjg?ti$-lt{w+J7Gz17)%n$c9rL|)B2eC$9jDDV( zYvP_zCHLG&xBSJGY26XR{P%eLfi6@fFG#zFjjscx%o#1Ps61*G1Lda_h9Ba1wKN`;at;)vdz|V6Es}&i;{Xdn`n%w`X{j!u%l0g;siAX(n zluHZgy+^ghjh3YI7zKk1Xb1w99n_jD-N}yzpeuWt(v*FzpY8&v63RapfYh93v^y8R zrA?;mV6}4w7nOikzfpI0Zpb__wVDxthTHjsy^T=fg-f7WQFn6{Yfig(Y+6sa+etv3 zs2L#*E&KY(hLgqyqU8c{3)@`oC5P-Yg1Mh!A(fQ2V|fvpUX+YlQ#4G^?J*Xxv{z|?WOOu-q%y*Ig%T6IH_yXZwU30%Oh;(7BX9%=29hE_qN|qBuS3d z0H_!CKeAXt7rDxReX?;!(+X&*a=w4Q@W8p;NeN$ZjqF|BX!EFxHHWV2J#n;sGOp=)pNY8&)9zYX z#b~154gbZM9L*Qe4jbWa9?cUPA^*6WYysjeig~4&3{8a31Gf1hSyBNOjkkf6f3Ij< zv22r^Ckl_>@I+D6u&bl1uB4`)jt+hI!?#w1VK?@#vi?0;*kdp-z^24;#*}3qgdi_H zl>hFrOf~_%a4~ov8dlH>M(aUkma|}dYF;hNT+$BfbUEq+4xE=@5Rrjm_61Q~(Uig* zR;I^jJSbb1y{gr3w; zuB-Ef{NH3Bokm3F?SZ*K-DON1li*esU1;LF8gK_AT1UDPDM1nre8WOIdM_LDkX@Q7KW3^*GQ-q8chvYF`ZH6Vk`Yi~(=H zkWz_i+`Q}<+uvdBH6d`!TWT^@iEK{@MmdeNL%aRPpE#E|X6LN=o z-<|Q=N;h~6Mc(kX98S$@c;$xvxu%!AUtB7iMqW;zL+ ztFtNkMTb$y&k691vffYnoxO*E@rBbmR<}ag$`eF$6g2l=f`>!~36#rFOoZKQFJJyA zlAqCt>;H!XKz(gbgo_nfga6dn%TCKk8F6qkxvcy@K6K~JX|vQt#D~Yw-%_|IVJ_#} zImYxBw?MA|JA^x)#RlaA@FeJaIjRF+utmH`DrB)ek0e}fUSG}P%qBT$y{{=t_9NuA z`g<0cQf=0>_jpei8aVW0e)as0r1q|>-Z*T#O;Gx=*L?NjWKG)d@B?7&UXu)H+jyD{ z1|U*TE6Qux#l(M+0|)6Gt3PLf#m(pB1+$76*1p9_=IMH}IZSwb4{B>?GW4HP&vbw= z5B~m?wvbxS7S}-T(x}PxpZIf!S5ASbpFmin|-N zDKccR65yp|yU|eLX2miqPdUh6-$osNvuoF1Nsp4HA9_*BTr#LoEIn4c-?|{l$3vu8 zIingHGEo{ih{Btoh6I4z0TK)e40vt&!7E>T&;`%h>PIi$?Tmlk@ziH-^`jT;^vh#@ z^oP6eyzQaIi|uxgv*+5w?p0ui_ulZB8xl0z+Y3P>WMg*xDA0Hcd}2Hr>wXj{4ZYmF z{ic2t$o(leQ*3Cw?s_||^-);3@V=!>9y;y(>2H1Sg)e#6@JISR<0!Qau%vc`P$Cd- z7Q#COUC*BUzvYG)@LX7Ni^U9GQEizl3MCu@(lBo|3CtK+9SBz0(C+nva}TL4f!k+o zb!aYEk0|`;(|3mPvg)JIx5<0^ zzwuF^6cp!{LvKp6=u@3QK=J%S-uFQ zC%4TARSJh5vPQ{KTsB1!Lci`ufeeH(_Y&6VS%PJzd@|0Z#8(w$0=-%c`4WOfOM2xf z8Rktl-2{YQ6>NYQ7BRpU#c-76DFM!_Z519*5S* zP;R`uD_GLtO+Vfg)OO&go?c3WA|t4g|##Dyjq&E}R}3!IbJu5umZ>TRt4ikdh4JB z0;O%JYJvuh7Z;0;$#w-xIa_`C8^SU57kw1KiUK(^X*`*afVqxkwPgmHr7LUvH*w>%oMNwXH>P(i)4x; z9B&Pod9bsTpKK&S!-flA8pzV%E>XRPM2+B~)rUr4fId?)G?W_+W~CbSa-(NMX~@7( zwaf%UA3%+GjJJ=^LMh#)IbK>&42xp+e*n z1JN6A?J*5+hGsbu6s57D0dAJ1A*ES3mRNPIH6;d=S;EmMVYBhZ-IPYto*}eGgZ%@G z=G-!G|1Vtp@B0sb6w{H>eTm>~=iunn=w#{e=ceko=_X*-y~5CS!u^)=?>GJqdp8Fs zPL~j;Oh;7*L)U6}!{H;oxoxDL9fI1iMAooGZ-HXctkt*T)@!U3JUhU%U8ChhF&9&42Xo`wS;?XL=cS zw^TJ|6z&8s`6%jUh|K;!RaYa7{q5Vng;-Ru>00Xq-^GA?zpIIye$&`N+)(*w>=y`J zp$RnT6$t;#q~UUC5&gJ^bpZq7rs3?)xZetMZE(1E88FL>(0#*VSs=cUL9svJxO?@| zR)VzEVx<_!+-8urgiR@#hKuE6pgNXjRYbsyxS|l)NZ#$mH5G6AE-(a}%1u>hyMoYe zH2XJiJx*w|ww61m{nmvOOAr`iOy&ZS`@KXv3U6&K)S2Dq>vyUeQRq^U!tp7??$z=^ zmz$L-L@5nFyiDO)IG8d=BTTHCH5E}{k!A`5hH7!$-T&Bo%ytLH9woDQle5x*3#Uwl zQ<_zg^kNmIY)ozP!7J3Y!M|MW6{;LkWaQ9FDaoSAVczCPZrF|4U=3W$!|4}gO zDd=U(k-Ha#mk&#?FH_^o&9gIktF8GJ`Tz-D8tZ-(ctM~9wbn<$x0mp>pIpDu5m&tB zy~FR!Bh!XgX}n>z-Dvxn^?um%tGDCFDytfAIQL_H{ZOLOenVP!V0?1d*0SQ6`I0&T^L147 z{++(S)!%ofTD!Z(`thcq2ZBb4$(CkBqajO!d&O$1P#q!OT2_KGD_n+#a^u2S8j7WtTV^4|n<-`j z$qJxWTtt!4LSP>P`*LF}D}5VG0;*6HOwm&Tuv4&~1>9@gSbBNzrqc>Iq70XThhv5aIa>G=X7m{kSi z=+c{tMqU~;`N$A&l#+}hc@h}QoDCUQQCijUMn)P(_9z9VVG?NsE-eZ(yfKsHW8D@3_r-h(LDWTV#C{~1vS$dd|N1|wev=ChM zC@rOUGnGI&YV-g(mf>I7zH{b+-M@OTE9f5oaqHg4%-{XX^WJ^@{jLxW`Yu%4P5zuG z!CmygZ!Mst>31@@IA1zs? zPGab&%7s16>khu~SzDd7$p^1`-Mjzr+5^u!_-i+wcHzxPk}w`DiY3EIq|sOfGD7rh z@YAB(bp-mhA9_9DgukXupTGJmzqoDZ&)>YyH}Bj2Q`2$fYU=oY$O(&f`_f$3D&@O+ zIpQ1oaU*g~>US~`<*e^Kty1?fdNjHPq3+P{K7c5ve-|oeZg)krvv*swG=^r~AR$0V z0;EzRg8TD4-*C?}zl4a2^X_&0j&)q?TIY3MWv%+)Xf3`o07FUci{&UvwMzmF}E!-h(QGaR8Iwv z<5V0sG^t{%6=7&jX^!rC=vW4W@z%iM~YGRz2i$*Ngnn zlkRNu9C-W^8qdyNpS|_!`J-(-+1lrA`=R~bk3x7alRgU0j=k+^V3_ni^c+q3D0F<8 z@=-7~<)dKAEB~|K`1MNRn)jQ$WrRZ36G2OYm;yAMp?>7#Sr@Zni6e~W!G zpOsz8U9`fp$vqmvz)xw)Cb8e_CCgzm$mJym{p>F`JLS;NUbp(b(Qk?>mzTfy5<#JS zRfmrP<->gxlv>^30o2XZpYl=Q2pjp&*YIlsTQ?r>Kw)UoF|;MxOGP3b@sDuhiz}E} zhmgQx*4u3DABO?Cmlpt84`Y8Slr$aIxh7~ZUgm@XnEWW9qFMi=P)L0gv`6uyu<@4P zoTkx4D6j%Hl$u-!z?$HdZVVh<)o7erJ$D57A~#eYoIQq7nd)qy&i0!jDo0-$HH4=@ zn4uobP%s({lGbY+?C8@ugdx1V!x-A_!^-}dngI0GXK2+;7J?y9xhYhKU}Q?qnteq> zFJJn~m>@fPhKe)grqJ~X($)g7e-Lu5F;O(7BSXTN#lV~<^7b~v7Ax0=R;Q^yU*knD zl7=+_&=ib}hL3_~s?^9<*|G|C_$X9r*-d^FRG_-Stp8Dm4_5n!)U99 zp&n-u8j{lh>n%r^KVRcWKUueyl12cV2vk!SDJfZxtDM!&qI!UZZpxNI)XPij;naJ8 z;c4Qv+Z3)wqehh6w2gc}6j5sn+HC~-AvoR(fFY*@9xEAr#nptA38A|4i?>0#!jWKHSC*#l3;P}abD8cw-}(MwiONoYX@ zMu03r?l{7LSu1`Gts$x$dCY)S*zys?(|sEfGhc>~gz~~~3Z54{dJGZ5=;6&;4pYFk zmR=;~E7?-^>ZfE<-6|||k6-m~&j?#o^y;R!Sjbtm+yqE4eX)@{WEk?umZsPOXQcs1 zgb7Z)Awyt-R^8}@+N?xaiOQ77#gnhsPf;pr*eG*=E?BBn2+duAp&hz*B@$<)j z3R)J<>#C=2vT%TQvUgLGslEffx~ZO7hiU1%AQ`Hv0y^j`AafT#y_=W{!?+|k)4RtK z-g^3K2XO_r3W}_HnBBeA8Njv5x!grg7r_JMZqRN{9J{d;d_@aukd^i4>R<@+E8lj@+(A$gfK> zLbH%=T!JB+g+bWnlqsZ;AeG2a@gY@}N0BHOkA`xjA;^w9de`hqZU2i?Fz_4+m>@54 zN-A3kT5hr_S9&fe#Ul*f&FZZP027h;Q8&x+%C}y&%lpo|^RDH$-ZJ{VCi~Ei)!VMU zJSm6gU2n(Q-n|XTc5*LCuh0Od^t~lK1!N33HQ;7F2%aw(z5PGD@tBakRmkw3J45a` zLgnh_`u2shuYbwG7rgxN(K|$a&fh4E);ZwIegWmdDERU^iHrfX7yyn}#T)A@mKLE7^YNaVlf-(*tg;qqlrhF8t zr@8^t4)sV@KNAMRJrqkpd{E-mX$3>cra+CDF!j? z!FZ35dA&~$jouVmAJevw20&w$23zSfX+!ox4hcr41XBS+YyvhlL`a_tGJz6!%11%` z!$+ab`3HRz2pjn*FrfrXPX?2?S)sNZ2!#hA9(pn84GAJIPD4RrK*gMi*`lg+1W^@$ zOjUp&wJI-24NN1TrPQkfDx7km(HG%RH{=)qC~-C`9(rN4AB2HZJnBZDiQcRn(UuoO zoPwmpqrsOWJ(&7)A!SeB27s5TDegEz zWl9_3M{AgsS?7F&)`&SP@z{ZA1Dm1&CZHuqfgauvk6z^?gwZqSt6%;ARvfb;QFgTI z+zy{|Q@|O&WNDbRXHabdMB);ii3~(9-10Q6nZhfpLV+h&-=T59J*)Kd=g)5oR&mwtCu7JS@(m zNPPvjKvvqUj7p6!Jq-q$3Qj{N@HLKW^y<-v6k+L8g2B+6Wh-BTF!Vy@rSuDf3{1#e z1JjZ*=N+axm&If-WI|1L_zCn3k+TX}!|eHCB6q!byk+QNfCr3MhDH{oAvU`-9){{e zm^=QPDi{z7zQl!xmI+J?sxRhYdsH_)q#?aw3q&p*erXJ?vSF`v0;LvD0f*O+Bxo=> zUFquvP44Y_i*@i zPsaSRLoeL%BeSo&Y3FbeHDw30r>|ZFLZm*rbVp5-oDuMkK7HDOtIT zM*t$+^V17ehK$F}Q;@cqEyPN-1t2fiQ3WC3dD{3tk9CvGS0ND?;)GYF(XH|=7rO}) zgdss!AOVvVnG(K|GLaXhsASqcA08I*(5tX|vQ>6G@yqdm<8D_92@1@rQ7SJm29Zk# z#*eCY6JxFd1W0)DleRrw?r;3~+*cm{^IPs*``fka{@b~s4Ic$N*;fC(ABFS}_fcTD z!H)t%4U7hcFg#X0H6cA9Jx$-b@RnDWfmuUnBXR2U z#9S~;=z#~nW+~fL?J@2;Qz9IW)U#*L7DJyodW9;gGGa(zTl$3hZ26)GsAWzM6HM6j zQeOX~P(jQh(ZXv;5;Sb-AK^#ADRjux6pR2S2~|TR^c^YTE1)a_kl8x%(vV~0-E%5b zsfnK+j|Uu&N7WP;Fg&s)(=!Akw|r#gsEUdPf5@iF6n_ONDt*gm9gD<1j1AZ@214>6 z1lHgIirkPFvzj;qXhQPNX*DaX+58So(P-!q8oDWvA=w6Cs{-8=DDhB=U;Rx9+ul|b*9lXZxQLqBj~t!1#SGMKqCNFz4XjVpB`otcLr;$7NRs^ zr8yuA)HFf86g@iI6c`{kW_wogR^py&n)2kPLX<74s@5-5XdeDz6@bWE4@iP3Br|5r z&=12!AOxhF?*! zh35jN001!b9VJN0?97=n;b9DiYLI&{WW)tW0zim?z?XpW@Ws%OBPK#Z*ie0#1GA-9 zd}Rlwk3?ArG6bGRR!p;oIBhEF3xfs&W^(Ck!1R=gW2Km5)=c%>mJ1jjm1J1il}>#C>}LQmAU8x_ zSOmr|MIF)t->GxIKK!Bg}`mZ{4I{iCz(l|;&I%qy)$8Ugf z0q~5SzjNWQm#)2Mv|jhzy+*|1U$}6gvP(fzJ=Ktl(rK!p_)STZm8^Rz6@docW@7@W zm%h5Gss^B{hU!KRZ)p(H16W)hw{0*oudfO_pV`JYUK#76kTYaKmI$4&gEcC9Iq8b^_=6?lm4+= zob34Sln=?o%>f>XBR-hh(c`u}1+5>21p@{{)gS$}aEdP^*K&F!hFt)}h~{CH*iQ zVGxzwB|N!5b^O0WyNbA_xG!bvKEtV8!k4CvL<6QWc9+U?EsVc<%?b2Es=~^}9T)~z zFMC+s+OBwz6S@%r5c-7x^${L`vPcTyv&R2_uXw~jaB%_~ISqueO;ANL)2+dpBDeTT2+zQehmPA_$XLDvn^sD1^U(tm|nwRIOU^2@Uj&~82mI=Uu?p*L%_!CJK8OJ zoZ{yl(y)(a(K5t9;7Gs><%QWMiNO@SceVF(iL*7^M-#2sP}yv0^!a7pM}Z&(%}~KN z{!wtqG~`r0Rhu~(a`-5i{i8n$QXpdkKn~CNVJJ?8DvTTn z&lFB3diXT`696=j_|3vAxV&Hp_6b^4a^YfF?&=U{{4kuFVu(i=3~{morU6qT0D|>0 z%hqNS09wVT!O-FYkjq*~U(EjcmU|DQh_lvOG&UjfWZvmy@XpP zb>j=I$c0LlyD9u&c|nL=Qwm{Y1Hddz03PvF8O3D9MK1w`G6lwOgrY)%6S%B{iH8-T z(!uD(!zm0~3|#QVwJ8kZtRTQ>ANfatM+^k+1dK;u3=KKLCT50)<;xsc4>RSafR-aj zVc-EHlqM4KsH)22fi&cfZ3zmax^bb2jqUHfDQF^52N+YsO<@!6k(yR74HtVX9MrRi z7I*moM8sIHWQbriL;Dp820p+%v_d3T2pBQJD=sA}@tJ~=p)g>E%#mmcXO>ya-ssqg?#z5u%a{ zTY9zxR0Nf=Dgg9IC<(!2ho|K%a(Rh_3myS794*@T53cBeIZ_z_%oR=bEFbSMOoW8C zyk^asm5dFo6u^+Mr6e#ck|8j9CV2!ftdR?VeyAH04JR3=atTZ>9D&i}x0Du|cjh$k z7DXuxIcn8-hc_g^&`3%y*Z_d_Tvs<)gH-_=;^_P$`LC_!5Cs@h!cQ@ z36D%vvh-D>U%eisJ^t#;t8^>}4RYp1!W<_@^sOU3@YrBQU2YbH@v+-U8VA zKJg+Wj~fkgv|#Y9H8zH5mCGzW0VgHz8IIiDzxLQOui5;aSH0xm^Ivu3rEbE1|K@YH zd*81=_?3C*TsUvZ9V>5Kcop(Jr63(H-w`TYY(p@gE&@Om~NInsi=t z3UsJ-G;|_#taM%^IHa1=yMsB=0v~be3MWo?DtEuk8M?7JgF0n8aUOcooixwe^CuTg zUw+T(@fH1{zs}Ht5+>_LQ?=ztFU?lO&_c*ptt_7@DYqO7Md_nkK@79@0V`-zG*K%;?hkIyU0np3##nICCpb2XPljf^#_lu=^XlyOV=En6kK+nsO&}%6ArrbX#y(cPMwYIN-S3X}SZb zFc`mXlG}}c)1EuE)zi3mAa{a?+~;$*IOtQ7EytdpUKj(}MG=NMzg&n}PigHi_%XDI z03wGJv+M*$02a2Scyzb4Ls$uqUtoH$$jyp&$MGMn7YWz0W`)5}c)Yu`(8xj^WWiRz zHkeBbU(7{fmWETMc+$3~+k0eJN0oP_vG)`Txd`zKfJd~dU7t| zBiT~x<|a0mE0OTU#1IKV(e(X#0kAzULWX!K-RqdMash+Kj7ky2PcK;lLbE&yRneF~ zeydXhSb7>(&)?_VeU6>`>)A{1yLa@Bca-ozuU@_C)?5F}N1=nS&1@Uf6Z9U6J_`1^ zr^$;#@9D7N&3ch~Kv?xyO@0&@dRO-(Zt$bPytg8E`2sMkU3BfTZI1f+wjY?WSnq9SWwqpiF=58IoO~5QiXM=v7OWkl_j8I>!(V( zSHojQVks*okG3CX0pynz06p+dADL-`DY$jCE&$4IDS2Tl3>ZtvFWKf{*m?<)@}-Af z^0w3Ny6(o63vQgVcJ#khjanZCRU%YOg0j=7yb>vF@A*Db^h!529kt=3KmaBLCJ!Hl z4g=W!h>t=7&M6-SL*U$5T;_(rd4(34pi+BT*L1zAS6 zWvrQ|iVYh5&j6X9!lc!9-3_C?3gT~+6953gRDC4OtD8(?7DJ`L?}OL@n60q!6NDjULwZe>=w(!ndQ(ifRZhhgdIv#jngGNB}wFpOEf_=J*I=E@{=RV`ozuo=#rIgJTAE4Zrlg*)KliqG#{=gH4aPWY>@1@ZK+7ecilO z_phrxmfzmH=B_*MTCw-Xe))zE&wj%(*FSf+@9y^Rb6IPmx-@PGO0TBu%szGduWkO8pUu8` z<+3HCU$t$o3bn^j{o84Jb+Z<#A&YinMFv(4J#zvu0K6BAQjD`2ec>RLqRm-NYQS3c zM5`HM(+KeT3XV-|U^eN}Wp`aM=iZ}Ey>*-SP2c0wqu;TVPA7E-cc*ZNZ`E)yma@~f zV|~|D=Wi!?Cuu{6?5vd3l%qVnG9Gd23TOStZgDbNrE?{7$8%VR2T)!NPk!B3_;QPO zGG%j^J$@8_7?9lv=)mMB)P6 zJ`s}axKJxF8;nx9n1i|Kg7u39lpJ-TA{=?zD)n^#v_H)XLoTL-QEvzKkFME%ZdO8t zmo


GvT`84@gk$gL(>Rjq<_B+@GPD;p&oGD?eK>1^rCWcVj?@yQmU#2 zt!~I^#3>|tcxqmOKu{0&6K333nm9mXtIh4Yt+V2auS!Mf8aa0CU9lRgtZ3C6DE0CxsD+^@R{LuHS zPS&mqDqCxZN zkTW!!h5(ULvo1}xfb43t-8VRZWut18Hp)H zgAoZOIX0MF$Xet=&D^Xoz^roX2n=Z!cvxH*1*wKiGBjB zxUit=W{RO9u*!fDXi7mn$$SZ*h12k;8@-TBfoV-8V4z1O9&#FeF~bm;i==Y#Ub5PV zYyAJHsa59Ev7qouG5UXi5y^@%79eg!qtP&kG{)X0YB7KQd>TW$3YSc(FEBwBlut6e zDhij=r%(6#BdZs$lILF9J)8m{YeQl})Cht>LXbl}y`CezS)BC3E|J)VHm<;^1bT*C zGoj~QFJC^q z#z6K4R3gt;hNl#zU<0~RSd#tBTY6Y zRjkHJc!Wp*q`=Cs?Wa#r$(ZA8D1ECeS-stYA(?r*OQ`Kbw7}I(f6tngpE%>1f7ty; z&w1mS@BG4LS6zS0O$!#>vGlh4?iu}tfRF^HEQ@Zw@tpIn`s$D7eC?+<9)H#q-@W+O zeLr&k|NgJXK4;g_@4PuaI;T2oy2&^fI$}CpcDZtua)LBG=!B(CqV9F>QBIi-j_w9~ ze|8ao%LzlhGpj@G({}v!C%-XE3Z8&UG1)5D(0Y96WvYjlSG7tbekCH%NXIOVq5Uwf z;^?38Kw{Co#OM_YEU@yJRZmuxZm64@D6cK&lOO=YTNf={xqR8eTbCdG#YWE;4&P46u3oNHPuTj)|KsJK?{|s#2zn7>`ho7?CP0v|hiI}@2 zD3`-JrCJ?${1VqEr+>9I>xSS^-fu~$`;na~_XGkL)|9f}f3uF#@go;Xmp8PMg?CjT2-Q7@ zk`=-JakZmlC>{4kRdQp5C&RdY{Lfc@@iDJG(S_4cJnH7gq5|DRbW`LAcF( zu8|-TY)oJzi-8qEru6EGRw?92BY3v1--cFP{NnV3hhARdscweM6Zn;&r_9fD_dIv+ zV}AClYi3?K7F~Sxjh9_9ec6)RJPpg1KI})KO+K8%h9{!O zMBhXAD1H>Y!|qwV;=Z-_pMBxtEswfn$B)k0>}|ia(3Z7dIIw~Q{kG%(#aET|%B!CA zDrwuO1Eu=dW34-LQ+Vh-WiSd=xiFYw>p>&4vbbQX=jmWV?+29%KkJQW|IOwn87ez~ zStkG6zkHJZAI5({gRMtTFm@w;f{QVC9tSIH-R&!zYMb|7_pUQnUvR~O2YAKPqwUv2Jq;96qs-DqX4N5FE>tY7(2u#*eU}%q4l}+Q7{x3J==b< z8<37u+SCL7IU>$6T@ zaaeI$t@x$EnLs1X;SrefQ4qF9&pTM)J_-uL3R3zT{3w_*RQ9M;CZwU+&NeU#B~zMf zuf0~S43$@o!1SuBFJLYR4dqz;h6oMY9t0Xaa{#hOlgoB+j>=ENYA9629L7D z-&!QtJVFXtE{emQWEDqL^h$vc*c6O(v{r|nfWfi?tCa}7sc2X|+)Y7c1XG=5H*MN9 z$2sP0OVy^V+PrII{DjIS_=FZK&7jwFq!()YRtzPgKKh}J%eJm=3}x5;8LEM&x&@{g znXPwI0Fxsxn#4U&hVarsSfTXts**jnG-QpEp=x)~l{I997w+DX8jjQ?N6|CV))}6j3WZwDdLd>0o#^QtMmDni*-(<_1UF`<-&gcXjUMlFm6W_9&==mn<5-#&mr zVyKzYLneeD&#Y^cL*|2_W{Q_}gN-)Gic^p&wYJOP0;YXQWA}3>>vpqpDFs3GFqA%6 z45q5K-ZNI+#75A7@nofRQb0mOP(UyODjMD^4s*c}n4^UeISh@VDUCow(2F@uZ9M;< zLr!7V4aSd6i@x!OVXzWgf>t7gVHTms1E(PEHvsW4!C)VjVB4>B6t(~;HG+2#By)+I zs%Tp4r7va}N`ktz8E|6g6>O?F0ooW0DaDDz5LhELgqh4so2-&nklHWj{N~%2-F?GN z%lo&c9!dM<{NL^W`Gqe#>>{@*$5z)ihkl1w2SHZ?$9nfJ_oZjab!59u-e%duh{Fex4AyK_B$V|k1DyI zx$V0~PGi*S&xGo}ayS_fOw)z;R2C{ocwST(N5IlHc9? z&=>grwfA~KtQ$P^QRqdH&_}`JFnkmYO?iBVkAfZELq~{V_$YWgJ;ININiV01u3EVN zr)O^U?(5_w7yC_>`V|EEDxJFNEd-4%p>Fnu#Qj(%1);QXs;Zv$fX$#j)=L?y8@;sy zv)`&4eum1+h5A!k2wrS652>e*6(xR1oRqIP;ujuOKlI#LFPpGXd+E6<>+KfXhI0Jt z8W(N#-W$Go?hIx5-Gle9T(Mkzy-$o3w)e*9ldz$WLa#Ng*P33@==;PFhL1udf9{V$ zZSc79#zj0uo>D6XLNRD!>$L5q?exh?E}~-C+05qYa~}^p5<{EKdz)tRqkx>iysRM! zsF3{Lk3!`FkR##0;iIsAgAB&?BtP@~0;ExsZm@cflG%=GknIG3a#sgKGFvcJh0#3S zl+x52RslUZ?;^1kqXp9l81z=k5G?==W+d>Lgeg=Sy+)%qTX~0;zDAy$WhR!A9FaQjp17dvB;4n8>9J zGv%Y8X!HqS6+; zX#^UAzSxE~0BW4VtQ(9U?aA%;a4qJ9P3#7NN>USwT|y8&S%{K>BbR{PP}RKaX&6=u z#g!yFv+XB>A-om?fMm)CKNv#~f1d$(JG&`Gu^8=FR&8qlFl_wNS1(ABSO5*Pp-6iF z!t1f|GHh#87})mf1PCh`k^(C!%6aqViMfnu#3l?eGqlF`5F|rAy&%&Ue5qmMPBGOD zCboVV3?W+{MGIeH2~`O!Ul?ErW=$D#QEKX@7bguN6P&{6b)YXJwh|WxBp8{J7p@5^ zL*}9i2-{F3%qyCnm%i&{R@GC?W^Ep_#xG_Vb%Qr6Dte1Z&{+1XgBzJgNiGk*p#iK`Q?Y*mS8vo}IH0ppylL&qVAML==v;5m-cddE@7#ka)y5Siee1G@5W4I@uH4#MH|5)rHMT+AP7DzTXve-Fo^CUvuV$QCJ6ewPNDrO%G4+ ztWWPQp_p8#DvWFMbH;yh)Wr{#9-Fmb=Gl%O5r2d&^|09F-V%1Q$H$XpZ`;qdw+-wO zfb5My0QMg6IBf8v&@08`;N?c};PkvO=ZK)si)YQ#xq8Kt|G4DlO%FZ)weKALlj+_G z@=^z7vBWB%ZptVli7N%YBKWCpPuli$^;cf2rdEC|ka7`Jz!D>|Z6HxuTqK?jYprg) zw6AOxR*LCe#Dy@duPsDlin(or4H8Mga0-B}KWR_4a9zdiE=U`|?%MvCS-ZUNXFvSa z(z&<)X7Q5I`{9rHDD-mEtL^`ij{gG(63vi#nR3xb0l3PfH*AyZ(c&LI3ej>pd=#|dnF0{7V0xxnAPkV=H>3wkKx?rS z5ChjLV5&t#V%uOaC7w)>fYFOYqts)dLyc2Yp1bo@6pEqM&=6%TfM5{mn_#bg2x~!wveitJJAvf*bq;6N&%SF z4C!eY%9<=M%nE4Ax}YTs$q-(G1U$j`#a!Ju5{Wt(LK=z$AqGP|Sr&pc1%@00Fp>z# zdL#uVO<+n#)0P7akD3TW%nZdgc~fYQrRR>LDo`#A)s3xWv3W?z2-#v5ExE!nfk9=6 zid_2G%EFLdc)?^^W)ibp2!fQ1JR{C5s5tV3}3yz+WEe#Sw)uC5b<;Fm%e8H*?L-ms3 z%$YO2m`ue_KX>k2f_VB2w4$u$%$b8keK`V%R)aJo$PJzzo@?3ZRe_RFFEIHw#ma18 zR+Kbt7lK@xRd-W*F>uWhJrYwI@9-6qiDy;Cy?iliObpeB9>13k zcY^652gA>oAw8;T)22}}5jlVwR$&1k$AHQ#q`J{)3;|Stzze4hVL}R+VZ|YsCFtb^ zrf(_@S^B)wXtr;Jl!kI7fKe8(9;YFtS-B{hKBe6v22q&;kQ#vtb%4o=pp0ZD_EiPp z#gKRWrr;qZi#&a)siavox%S#?O~F_f(b|40M!+lvY>z!f&=-myRK_O|JES)dSzU0tf>~YL57B5?M&zjNW zpvhMv(h+=hORo)elcQO3Lk%8)UPgvy+um9mKx(L@3~61|jh7tJv#M?l&C(zw=;>Q@ zn_Qs~#x^{Cv*zEn!#jWavcrF=AkNSZ#}ahZc5ZfJRxWi@6SV?xgHk=mcNZb0a0f7D zs8^-GeD(1zz)I&X>U`hz(v&m()3!g;#el~BjnXl_n;Sw)gVXK8nVynsy`i;u)5qs1 zyQM*EmQ&=I4>|D;r+=Z+>}i%0mcR(Evf^aOwe2lgFs`{{uJ{Zo6;LG1^Vo0u3s^C^P%GxU zkN?RouHE-w=-mS`$l62X9yq4`$@U+b@w6Sk{epeZ+u;M(yky^RfBekZ=U+bhw@hry zCAY6TQuI-sqAuQh_5+#BHGJ_=rLJ(Bu{z1Dg_81|g@JQDOCt`#fp z^45FnanoM^!5N31bf*MmA%02O!zHM~dyW6lc)QeasGF6NrV{Culp(=NDV-r%0WBgy zSs3=mA{g2~Dp}2$8@9MzT;Xj1+t02rB-4vcZwiuLFl5VWL2bYP`N}T}#uPCAzuEjG zv-aELxB04IcKqO#TOIl1PoBN#vTJXiKX2|Fon=^*?G}ZH?(Xicp;4NlM7m2DQW^!3 zl7^vEkVd*oKstt!Zs|_xl9D{{cmDC8x%RuCwb#1W$#%RP3J|XWx4Y@Z=UPJbDi1ll zY8?Oj`GY#{MZbKK##~5PU;|_c@_Tk`V4K1RVSt|FY60!hxB~>w55R%}tQ$PaMCM&cwyY_N?E{fCWKGUskc3EfCFO6bGl31L{ZOVHzsT01*rL-n9x7Uu zqWcKo80R(a&*{>XQw7fQVW}unGQ*PFvGfuTT8^l>gx9?LbcV}!^zAwQZM5DX=4=)R zl6noRA#|o)Z!WWOB29R7P;-P&M@HSM3=cbj_4TwFi|7XqnKlktZK}tnnfQw?c(HJP zX>KjZztsQ;R*tStyoR&b7n58Yc9OKM91Yo;-p%YvzAleipk7!x;&6VvTq4qfE+<42 zIT)RSQMU+iI>HP5OHJy&ETWRew5w`O)3XH<+$mI}0qTEpwB_MNS`Xj>dv|y^k@vav%j~5Cd5`^r!7ajvAj6AC`qLCwT@V64h2s9tmu5 znm?I|R);o^SFYW66j?D6!5JoGE8I;#zVA{OYGyosH&YQH%5Ra$rjl5nUD z<+O=ay4F&qpisfg6X@Bm!g6C~=wD~my15Z#kvOa3i$#V1%uiPP~~mXaa32*wVCNkX`YbPll{2zIt!78>)pH0 zR4)Nl;{nykysy+l#lP5H&2s~7c-2`S-#Jk`Gi=hR@*h9^Gij@Ob@p1{QRx}qZ_1|RRY75lmMrq8HsJ|wa= zuX0LAeOS!O36F{vqU7vngByH1WToxa)rj4&2$J7A5H+p8j5~Y!az9SjdFt)^I61ZQ z(e%FBgjXcVgUO9c2chKsuG?ver|+xF20h;Ihs9_G28srV;jW$_M4|zopNH`yV$`g z`le+9{()IpltuqM%Ie$kaHuBsq3t&;odsgHuc85#ISF36-ahPi5sgALUK**%WmLb!=ZT}4&?x`MswN8hac?K z!@&fR49vDc7)gq{-=C&_Q4GP=hin@aAYz#lZgrMh;_cJ96(?R!@*fBo}~+RH^w%}U*)%lpos>Xm+d zqIX)FZ-zGuHg=0uY#-Q5+YdRm@9DzKLgF6_0ynh)uJC0BP1lj4lBy(#_TKV?_15@E z{pJTaba|Pif;c)SpZLDIO|ayk2Zr-23b5xS@_r>)6=^mK`Xd}gHm&y3wlfq=<2I< zquI&$2XcuqX9FIsqOjEaIS45`N0)q&L;v;Lx49v#+(((tsj4DCYaw3m(I z^6WPHAbX)5o9@(7a0rEQ-*^z@v(O5TM}34!9}OQYWdy$~rrGeN7*0*d(EWSzZB(>n zf!3O3M0nmOY?F@`SJHmyCLEzvn#Ig=zn~H2u+Nvp@HXl&hhf`#d^^3G*l_$1sotSh zhCgzr_FH8!grVVyOkC0A&Wjd0iuG_x)Mc~aemuV0Y3^HX`Va5tk{P%J_+Utagpt;l z%7CTEWv4)f$qfeUFJQgXGmO{C&_`e(l=K8SOZXdUHR_d9A>a|gAS@{nHPfw3Gkc^2$@N2@_P+dx#5RQyFZL9G~ zfv^9FaDq_NNc<#Fz zQBzPD{0YcqE@EZWl)Kie;D(CghR@Tj-Q*(3#WjJUhpb*|UdeYsk|Jhp$xPe)(-5gU zlE(xrn+9jX`$I)MsG(PKMqVogZoCjPA39EjVrIMc4ERlrLRjM=2^`=Ht4__2l3F;k z_ay&1AWmx~k$FRKb*R5%Tz?nl;CWrmhsxV7yFV0$qv0~FNmb4!o`n-|yYXZ&*1kPz z4n!7C$hx)$%>g6dk=d6G@3_G6)40Hg*q0)GC5V!HiC&X%xU!NArDy_R@!Rk?`+k#A zP`z@wUjc;L9fB5Li?v>z{%tYIqPbRH$wJt_eH?WLJZM=n0j+mUM|$e;BRR?@j_a~F zYO*TzsB=hi-#AbOSkew<^HbUuIX6yL9EFH{WmuHttpfE|M;jerEzvr3&;}X2O3B;d zBEF?trKr8iGhH4dHhY#OtH)H^lo7pwDI=88*GCm0A)VW86$NhTMf{)U!aqKL-nBZ) zJ&S9afA4a7#w+j&u#mJe(*dqWAP;2t^qDul5Qh5BPN3Q?<7}2T

_2i0hP#}X>-Fy=vnL5 zJ;EePJP2;;O4>rbs@hyY5VJzkXQQFE@_NPWx9psY82YZ`*&BI_cPJ$3{u3H}#3Y>j z=x@w=Q1uZu(>?f44c>piOrkHxbivGgoADbvk!fnV+R0lqdgb@p_m0Kdu)XNfu-7B` zSZTw589`8lh<~o@=N@sv7e{L>-686Rl+uC3xY9PSl(egT;K@)2yI01Zh^XrQWtuS4 z(%L81RGu~O*|&IYciHAGM{Q(0t*$3_Z9Zr|?-qW2uEa5QoLK&K^UA_&RjqL<N<-mdbtYaiK7)yz(d#6+l=;e6=g!G#S_PQF_@W$`ia8n#fv8yV# zt_ACYs30a3*LA|srB2GO0Y$2fI*NkcPik+tG8)x|r$*H~#|8u9;)D5m3NE$Cd$zO1 zeU^tNGwb7vLHLNbiTz)5_@I!uE1{lfhn-^!sbZgDj(f@+xpIc@l^U^mUcj$x@0^t3 zOnDF)d?16nd2sQ-E>;l7NS;~yv@L~+{0LnDah731nLwa<1K#Qx{GAjg$ykdKXG7g< zVYga<^7mInF*bGR{x@i!jpCP5$&{Q<1|q$#Xy|Mecp6B)FVJTH6awwNVo8=tNw=jK#TEubc+uOvurX*t`&J~~!2!*ga$}Ray53VI)ES$Tb7idmpB8`|1|7P4CraM? zoSPZkF{PFVgmc_{QyhM!NZVI%2_;hdYk?WyVLa}*L zXpJZidG1d7c(Bm51llB?q(KFI20xZ_`JuevLkb@~+2CtO26#p$12e<3iXd~%ts&>S zrVGR;6n1W@8PUyQ*qDSf;Y%?anwRpELDdU~%G;1c2eY4mlb?xS6+A*s*!en|L2eVF zHlGZSMfI9vPc96N7n(snx^?_iu{-s5a@Q#3UPjkGP5D9|U9-v#drFQ_w?H&HzpR&i@*-nR;+cq5tRl1T!7K`aJcWU?A$b8L zfIKNS9cqE8QB##LDx9H`XR%G0#s{L5^TNrL-$}!EiULIzUU|=_(j$;idm#Z@(;)iYn@&mG-Bxtf^B*6uZAqCrIUyF2@Iv_9Zp5km{SU1m!zQ57b zTP?rGn?3TOy*rU!h-3c@p5Oor1nK z^|r9}=MROq3FC^MEd=db zBeZ8%@X(>#WntGU%6w$MTAHX8D6cQ}5$dg+TgD6grK{rf-z;U7P>wss?BM9$?+y)W z^c3(Mvi0Vt%G>*iJw$*&$c=h!p+K%qLvdqLe5ED1qJ%J=poF+I+!LjEPHEHygi5Vd zcz@%tF+UU9N2yw|`$3#48=@#M{vtQ@3|ieM2@`YDu320OT?O}H8?6F%w+fM-Z>S71 zBPx@dN)>1X2Xqe_i zZIiy7@YFG{axi#QKueF;uE$X7ZJ@MGMdT!YPR$LKyI1Wn3Q?z#oOALlQzys%D>)Wn z=DN4J^ALy9eQ$=zThrQdpoF1srMSna^t>fdG^RUY7C^M1>qub+Go+&by_Uu-&$E~j zlVfDA2lv3uNgso46snKQt)p`Jt;bQ!Ij%Q_of4Vfk25h4syt$3eJftmG(v~p$Yjl` zL9KgOMc2HTs5*UdZCKFvQMO+UR6dTVz4F?Pr>&$x%C$DU!WsyeW(qR6MT1KEd%3mz zVARMIi7l8$h4v$}#rEU>@Uk6E>uwW{NMF&vS=g4{5=L;<8w@T~l0ywiErBVyqQinb zV@b$x9(JcQU0UCm9kM{XL%$2Y$2A-YM6PEv4S2eq-i*Mo32oOEbuv3m9GF|1oXC>X1h`Act|BA-;zLNn zdK_dyL831^zwF_VP^0<%jYN{mn|~99cDd51K4IWnOX*I}WM!YiTa86JO*DNp|8#c- zjtj209?-BXadMqejQlFod^r?6!GK3;$@91PG1*9g2}}svXuU`UOM|Y>o2dGTn$~Gi zk@!g#al~1Zrz~*vA?`xBZX_*6;O~WLFj>ysNOD~*iYgz-kK$vtCrE#bpo*hy5IT38u>X%5ljOb8XWY@2XDh6!3bh&@Ogt_`{ zj0m1~_|ERmxUB6K%s=(pmWX-2&XKZTp2=2en-$}evMQ<1>AGzJRF9|->CbCd-Xn8> z<@=_;KzfeFPne+4CaF^7STs{<^jn>rk!ihky-L-f(`+m(vJZj1gC!YpT5}6b4hQR+ z)t>`wm!o4eN<9`3SXXgZ+uiA$5g~AAFv^eyvaEWJM^SCqu-{k^-*%ktdOyD1bYFLs zo%vLn)Y_8yv|ADHndu?J#+6}`?wG=rMHS73Q{?_)W#*gj-X7B2+CqkaWQYj8E(rkg zB4Wu+ioEIAdU|*pxPik5Svt%Plqxe2)O7J4ZT?bre z5XrOHiXz{J-@R<<4YXiSF5_iC<9PEckj9kuX?)hGot*xZ7^qQ0d_tY7{VFQU@o^Mk zqd%R=s2)+VKXGvAWrC{{6q0~FL7nys#e{r#ir=ZRoXm^?Tv(S0M7Jv3O61 zQu95NbnT}2_TBk3gzx@ntdp4_g}4iy=W8ubX__ zQ1;m<=n#3_n)Ji-!cFe`d>718%F4$EGt&jaG(GY+CJ~-RK<+-g7_B~FJdi+^C?69nd6C z%SIr_lvy2a_=zuqigF;XP=+8hLJGn|twUYuRiA{9Mj^{6n|>vkQFJgu(a+Y??zFWc z!cIDvDe0YjOVm<}Ld{bIGFJ0)Dn7T;!T0f^+zVC;Gjd%9p$CE#HtwoYS zOweWeL3Z-W`dk#=s_1b3=ssN!B67c!rZ(i7a%2@X%=4CBBquvkBu_+W*kS^=97dF^ z*%p5?R{IxcFYxG(-KnUz;TG2n5m{vF7G6P-5{=(5*gASB8^5?|iMIW)!?^50<;c$I zzUw}3s#&RBz>MVHn_{{$m&UvTJ|O4F9z?1zSc2&WSvlOA89NgGm4%RPUO<~p|EhAQ zA9=wt{b!RJLc{*3vs+@OCGW?z1C9rzLsR#G8n0$e?F%j}BAv=}s}TMXnxGs_7 z9RB6@X4(!$31&&+EG`L3#X?YBr)3Q1XNhs*ut&#Hi!B|9{q;MU)k$^> zjkfaqtvC9w%H(DIU7KF-Xcpyk=q6_GXS8Aiy2j5jm9O%3N&A`MT$Etjpu8eJ4raLA zaGPRn_+>sfH37(}hJi1ZgcihlVBc(qG3e9H<*N+g--$rYQFIj3&CIg3JE$<(GtyF# z{f-KXlw|S)Pfb@uDur!07s*2rMYzBoGre4h%b59rutQr>%fOoPLl`nh!z>Ndw2YOs zabczY3!G*LF)KzdF6Z=9vq`o~J^{MAL5O6k@|K^o3&Q;|Om+H&9Zz#UZ?B5`oe!VH zrFRUJxPCr%mprcrFhml7`r8)wg81H3@D{n3N&TJ0+>hnRuN%0Hi(08KM+{`A=hbxP z;zu`V{_Yb`j%WY=c~s=IY*T0~KAVX9dlk==6qM_1yMLDaV-s$EAMg7-FmfXaJkUqY zYd>sCde&SelxAuV4n`}?l~=I}5Z1poK=y?<>W1go-7(N~P*yKlYaOsPDwB;x4WlXSb{(m=Y$BEG~s%$}DD&uTsFX=4r0pbr^Pwf64T4@MITV zP8szJ{FUwxpgnd5{U&tD$<$$B{kf%+r$vRkHqqAW7QT~z2Vuo46sE82Ow&-#?%8y) zEfY{`>Bp7`i<=?Q^_h9dW0b8W7WEd)J&BnuewTY1qeSG`Mb>z)Ee>wBUoz)Wri=b# zpq$+*uR0_Ykc>)wZws5o)g>Y~V3jn1P(*6V77lHjciwwR?hrLT3;2VINUJzob|RGg zut{`Ew>+_u>bSms&&uC2P^`0^^@z@+AG@p@xtsWYb{n>AeQ{T%&SHX6OQsf95W3sJEQ)c;oJ zM_`Y%^I3E#$!T)}pgcdU%Xx(L^w1Jb28s)F1e~Y(S~C4AXkWx^MUP*yyMGi)sA|OEwqG2n3*$I)bWuBoeoD=w(<#M zZfOf2YH5OZ?8U!4DLg!GBpq;_w)uWSq>#dt3IM)VDF?fI1-X`HWIhTr#Avx(L8+PA zNCo)@Cu<_vXG7$i97I*ANfu{xPIfp4jzbzt&&e6=ogy1p6Cav6_HkIm;%t6nFD?}^5|F1WzGlpu!WLFm+4J!}us?T1 z26xz{bQt-$ZaX2^q2u@t%-N}`+4qp{;J??udmFC0ks(e(Zy?&6F8H31o$jl@v&E66$)4Q^*1$PUa%<)g z+q$X0{hzNq199k=nypQg>PM&d%#w4hCDTw@oqYssCPG9;aot8?aIvqmpCn#6wAXy4 zbqH~eWeT%moYSv{8No(Tat-2o=!rmA-x@(M)L#y(8+isMZvJC+DpsUskroX-q#BXd z6=>kl-%FCFBL;YtE)Z-}O_-=2Gokum?fmesqveC) zA^?zm2;C;p4PAx`L}j0ILhFj4>XO0ndNFvuzX`scXA}Wz~tmVJuVHZMHZ(-XCo* zf#~dm_rARPzUIEnLE8S#pT2{;eZw>BgZ+a)v#w9OTNK0h^Ox1T>!opxF6qPN|2dIXrg^{T9NiX4p2^}@shcrQqj2|eS6m;4GloyUT{oOe9Dg}GcitB` zz}=8P-J2vCv40->PX5GJN)BJa+)r=Q(YmzT1e?g#8R>+cHrzjZ&@sPzwW5k#JAWs= z>OoY$QoN!kMwnTVA&y$ep<;jzxo?3brn z;sKwE6I3_=`P##;I zxroj`%8~mV@8(f9a#n;@SDQBoVDPru79F~IiO9Q;Gus(3EJy>4RQ)yY*Pipx;pmn? z@5SSjuBEGpx9eA~?w$Ta!&v@)e{irAYt}i&sz2lZ2nsk;${VoodMlk2-(xeA+Od1* z9iH8uUpuSP>A%BbTcoKNT_hHD9G*+*6PXs)M1r7NmR2~Zv9c$W_UGhT@f9yT~d`Yjn66T9K6lu>Q`3idmye%DV4o6)p?HT1=BzZxu==P;X z#FA>#(mC<@|fT3L3T*SAVhftewl@qC0X5s!_)k>eHR_|MRXzgq4#*Wv6#bO?A zI$T4>ju}cv#kr9@vQ#~^OHh;T(o95)%d0_6Kz##As#_FlOq$#RxROdBpaE?h`j_I0 zrZC3cP7*#3*f88z^E(wSHhonVw~Tr$ovzuVSmG%{Fm;2CS;8-?P5jfnTZ`99C&dzH8M8C zg&J%m*^>X^)89M3uML~~7{v>eNfo)B=qI+4fwz2|HT{;37L`U_?G{nRo(+Y-sdR>q zOcv8b2Q5~nz#@cMIYE4rK)1|!n7Yf%$=TC?#$9%(EVx!+XNlPD)NW84&WdezuSe06 zEbb3uVJD~bDConMIFNgdjUl@7Aw(#w8zmNwDeT$XMwkQtsq!u2PY_{%BMr70MMWd4 zmt+sAf|-!rkn!Vac%E8M7B}_}5;jRfUH~HjUfV_2AEqQk(L%!}L}O~|PRnE*A)s2M z<)ZCoe{05FN<7@73B7t$0q2n$^IZb9K12CxNE(r*A2+55_ls1^$dcgTOhUa8hD%lL zs3=%&Ba4afPCias^qY~Tgf^;y0AA(dZ`u?3y2u?d#AtY21mAMQ&ph$g0_LOi%%3i@ z-T@=k-1XzV&iZ-we1P4}jHkrInJ2|lKrQYTZh(4L_8?6s4KE$=ygikO^V3*8#TG^W z^Bmyy*E8qGwy2qZUq7Gtqh-^&^V;Xrq4kc_wTHQCBguO!t;?jdj@z}r%Rg@`TOT?r zT)v!dmzdYT@Jl})dcW=bH?xRE>Z>JH`)O!@{ivz9j>zn&N3;KmQzkbtl>_48!UnGh ze61_0FlnGyy{tPY`q%i5)+AQkLr|A!RA_iM3LoF{7ZWyQ_=cg@>?eYRqqBqtT@as7 zP-JZfTKmnKFq;2ec#Z!937_~?j|SiEk-T}KvO=Ea7pnpUq}?(QzEU{bGCMMK)ZzP7FRU*THm zRz3LFv%Lqkc}H&Q*C!t-!E(gF1D0~w6x z8Ez>&ImPuu4~N3qhzj#sBlTCC;qHB9Bj!GX`xAXhdb6uAx%1!iac(J5S*@FWS zeye58P2FGOPB76%M$GL-Dg85+KYAOeG|nV~mpC|r81T@o33gDJ#Dc)HRMrpQzSu8+ zx5t!LB4o(yw;gsEmcw3vr)_&G{C2m{dIn4*Ilw*P#s1~*_pXTvvxZyGxK}5w^%Gqm zr!4ti)`9=FkAu@OFabsF21V-8Hsb-+nlp9XyG;(TBD7LPoe$>oOee`YTwm&209S2TJdphH3YfMyl+%1e`x*pR4XXJ}t%JS05IHFHH!TaD#P4buw!80$(BIdL`#8!$<3SOtGP){c&5$y}7K&UMi#0 z#P5}{eX_{+hbU{kR5{-6@+@&eBGgE+$D#%%D=i$^$iSWFX~Ck=lgW9e+)=e{9OR#M zavRKo(MV&=J|8H=WziE#VxNI^Trh1hfE;TQAy^hq#~aWk+|U1xCvt#=E7S9XHY3c} zS_%l*&Jud&c8VzGYGnxvS=BZf-Vb`LIm>k-({q5`0K9NecqR}x-H|I|c#8m^bij;h zF-4E6N@&fsFh0;HqmGf8dRzk^k+>-Q0{3mbQ~c@ zCTNPH*Z?IC12HK_(~FQFtsL6DU(@yM1J*C+{?yo5MsKZW`MKqny#2Z0`w?V|xaPS* zLcs=di5^GTH25t(tugJcV#q-9Id_unASO19tTU8ZM-r_5qu<_y3>8PB>qLTq0sxia zw{u|g^d^(mLxG$-BB9Q|U1GehUI@DCz5$Wy^&cX6z>^tcsV_=mTOE$J|HLaH0iwpJ zJN!Yyz-$7B)NPQgROYO2HPNKIJCNAH@yjy>%4MjcTMiS|KK88;Gpp$V^84L|?t2Wk z0fTO05zngZTATy>D@cWNY<;_3PQhwJ_s}k z21hBP?L5(<>6^#`|Kbeb

NGQ9|uy%`5+0^!_PV z?0|+SwF|MW_Qxg^q}WWc&VJXQ$0z2n3oI%HS`SGZ zFG)yH!04tiZF+Y@X(>Gy1P*ky)oGlTG17TQyFzW#61X(bX%HYgl~i<1k~X8g*O9%w z2#LVsVGTxXK4ux`3fb4d|4Cf3I4rkB4qAK_5jK%0g@HQ9Jp;tcdP~p1?m77t2q)Z` znCVqtS<}F6gl?tefUUI!mtWq`^I16EsY0y&7|mq}FNuBz0PP$+&P-8H$q-+|;fwQN z5U|xLQ;v+=soY?689R{*udgSUe;`*P!FquNN}TR0rjeQrGIK)K#VEZ<4AD73F7=pD zkS928XVw_W!SL#qaYeaG_!K>b(wYcaga76-QQ^k6gHS)F#*B{gAchd5@oLstU!s80!xC#lqc^CaH@$Espw9eJ44 ze~g216Oe`_<+stQF=0_{u`?2W&_Xb~EsdeVdYAE+*_wA_us?VsI|OBIgCYJDR`9W zz^Py{sK{5wLIq~v8J3^3OPhsX^%dbFtZ_|%t2Q-u4#q-?T4`KEHP=Rw3i51}5%4Ix zt@FJsMKRl<-h-)ve~ANc1HQAl-yWix*{1k{&NUy81MB{({es;`NLapKv2V`QjHi5j z@D~sA7+Pl#J@3i;ru{giCzVpen# zTYmFuavZ1iTH#NIbe5s?xe%|M!=Fp@ovmZcJZT;8NN1~A6C8Dg6rPVo%V7&25AkM! zN1Q|w6}MBvw_;lt+)gW)c`=hw8nRlBq1Dpilp4BM{~Lh=`OC1WM7~6<&C#eOXUS&c zIdladY>3R-_o-+-RFqCIZuU~DU9p6+O;&>|AwF}lrdTN*Sr}^c8emxi@y+}6XR-7A zuqlhXpFCR6{TY99|H?!W$ef6!y~;PNs;O~n(%IYNq5tWy>%P|#TviD)i@~q3y z+S#-8KC zE1~J}C@QZfs1XTQk%os*GS4$&`Z(zpMja5Dz5 zpv~R3y~60k*(}L8sch2%g6X-;Kva&sXD^*QFS9n@TbN)YXn#=iBhkOpgh0cdnww#= zs2m6WV1mK+qhAa(f1GnOpF4j_OwpM74|rTkKJMm(GFck-BOA@ys| zG~jjoJ`rU8b_(Q%+|^s-=@#}VAPw7^TO1(bCXN+)Im)VI#BJIV-^8MkOk@xV&9P$> zCzNY93S|PYK?QbbDPg>}+U0K-coVX&b~4M5SCB-Iu~2R!odBH;h@ZL~V$v0!C}nS~ z6_)RLZdgb$#ESyVM3!x*t49-)9+HRM`S6qV_tL4n#@?tS2WDKvshiMWCCRhE-PNa5 z8tfOA@D(S~($t4~UC`(Q<<80Z4uo1mu%}4FhKGk)l5jD9x0`wesj~$os>U=_Z(%2V zyqZ`-)5zM~%}r~H<~=7~-IN{1laEhh-|J_o)yTpf%$Nn^bB5f)_qUL&d;0o=W3_qa zx8bL#9!et0Yxd6qRx17%lM#-w5L_=u2cBMaNo=e3WGT_w*hDtM$np<0eDC(S zEAK&)-iXkb)(UX2gFbgSa*XLePE2{H2D{Wr$p!3uue}N0fn;hqF4!bNq_xthvN2at z_SiTH`I(|O_Jydng*>Uqkj(9F{IoD!WVotyFqK@xC(=qq5na`JEErPu#d^xfiN(2g z#fcvlZVuI5y}LXRV7_cpxyBInRkyG%7DZ~?xK4*-6MjTiD=HMI&`Pm$bI9_3H~u1I2s4RAxjc92H=r==JB?1o%Zk-^A-7u2*f8pyDP(1F3Eqf5i0qu#{-rDr_q6;A7>pdWJ%x0(4C*s);ai+k21Z=396!4v;u8BQ#j?;T zf1v|5u1v5pO)~zoyZf5ykxY$gZ8a8`(00UO>;hJt&$Y_gI6Bgp-Ep4c-Kspd(n{js zk-3*LcAB^X1OJ!d08Og~4QVh+VMdC}{=)&9D2{pt6MZ+Ex8Gq=+jFNam2;mTTH zN#@+am}c8&`co-(&Y&0E`eXSV_2#Lz_k7nT{0;_heyABh}idj z7fw9u(9zJDYAF*0VUbLNRZz?BwjG`mZyKG2LiMp9wvgB+?PATOn411-0qVqKv05X>Wh?gQr{QuVIM@V5NY8`UnAQ|8w93{YHoX2g|n^BgrFiD(V(^`QY84 z`?AfdoQ%*awlo|Pbn=^u3plc71Cjq7g`e5wd060e*(B-9{jO(*VVv8X@$`^yauVeq zv9w27-@(rsAk*~+WwOe_7nVU#t8xBXs>)dt9<1Q6JXm|ACete!@)znw{NYy0K&`9I zOjK=JwP!$O=MLq=*Ps&jt5C}KK|#$w-oEKLyzPi&_*OUD+4ZHQqPyf>KodOZhNpvj z!}>P&KqSvV!AD?<7eL;EBQ(8J|nwNjvjr5L87usx&F7$`$0n^$d z_T)2qOiWC=V^I7sULKEXdS;$KBjj?~$LXZ@f5>0af>mnlD`cl4HwT~;9`>kIN)d?$ z{k}I|Inm3Ec|7uuAxP>X6`)iNI{9IhFP>FIAx^}%SILQhEFBYloV7x03Mm0$G_pk@ zEJ3RjYTaTIe}HImqnCpX*Y{I?R%`n)t{$c_bMY=fsKQb0g}p8FQVoZIa3R0Gk$jH@ z?`V-tD%tDFU{*ZvBmJUwzorEj1er%|S9AOV^VW=fFu{uAT^K8YJ)5orDwFa3=baZU zw72N9!bG)PbnaTnc(j$BM7VOWZG1>ZXKrBQU_9dskJUj)ZKicJ6()w1fO9AYx6KS1 zzVoZ|dG1vQmV7D<&}m?cWk_K&d9Y!A%hf4g1A+rt@D?M7hHF`1Ak4l+lfT(<$^mL~ z5mMOW^2LInAzS3FMe;kF{s!4vA}25!N0|;5jpTHpDP%H^pQajv%Bv~Hk@OKP1;FY+BkL#+<1j1-35vkxSkN&}oI2oa#d2?U4^XrnW` zyG~7aZOs{HH-fEIBlw$W7(5j}Tiv8OSKVPB#=cM*pttuEeG+S+fgh5|Z#687P%LfC zCXYw$ZVPEJsyvW2rf7M}K7}KL(8$7poN9sY^RrCW{iDINY$^Btuz&b*i?Ofc8vYsa~{Dvy$6|%JbzrZi>Dht(@V)Q z)?m}9^2;vyBrKkt#g<)4h=1H)Nc!|}@GkLobk@A*ajE9!-`@E9=b?ij@0-J=+e74Z zuGl+xr7`|-eaF{d%xvpVlO^u!&+!o-18ox{`&62V-KC1A{H1b!D(`GvuBf!szbV+S zlb*}!ezcXDljpsx(j1)_>CPY2d){%iVB5Sj7byH3d^DHa__Eix>%BZ>(fYz$(5&cZ z^!w>WS7%rgh)C*5BswWOod z1x9G-%nnQ+7?zs`9AfDDH(s&u&vsjdCV2;U9S%?)<%Yl%6@MiwdJK#a3(}WI8oR6z z`$HL-eShiR;oH43cnX&Fd_-lPi~v79AEhks?*EIZ|K#}A+&s|STv{wFG>yTO%fbdn;!#mF@lyLy_%$r6!G z$r@eO@*c0y`~?xj;Wa(Kni)y(lIQSM@oqGKLyTIMTq4;Xf%pGz*!OJ4?KtSoqfs!)^1Sky$<=RJpF(Uz0$d;-MZplq|J5GRxkbzZx} zUl*aFqtrWDUPd{D-WxJualYYwrfJ#frR3_mdTVsRkOdO8Bn@ z^Jh_?wSx7o84?m<(~Sl6p%#$@I%63aM*XP$W3k^prX#f!`a2(27dLMjJtz;BCG6E3 z^E5HTuYn&^dl;nZFKSv1>Xv&h;zX|h*~MMI)vS{A@_#;5{dm)BXQ}WYw(6VPzBNcu z|MKx@oVEVbI#Mhr$?|z)9sljj(fvLR70s`@0vYcc-%joiT6_CaIBzBYyXeT}zE`W57jrlenmzp0BU3(cH1CpFNB-BNyU&yNaPp5o^ zO6@f4SqN*ZS^o7(#Y4$s0OKb0?imz^P6v1`mBz+mJa~v3nX?Cdk5`V4%b+dxcFex2 zD{wOy>q0RP!wJqN~^m_%LK)Qy-|o z=16^tl(G66+KyaHDW(!U-D^el(TUn`5vc%c`jra7 zt7&u?M^SIi&1#-LW!5`S7iW<0G^nM@5=-Ln5eF)ugDWN{PD45KKhW`RhN6LVdcDFi zStNijOyu!LEHusXIB2lB(lA)}uMW%nx58MYF#1R$G>F5g!I-VPSORCVI4+* zD1RJdM|3eWSxQ&t%!%He7dcV3l)YBuK>kF0w>TAmh5FqM9bZIxI;+oc2*_YEt+36$ z#CjhgFH9lmO9TtH8I3N9R#z;kmcR5WiyBDDiY8#!#hIHAk)XZCmNNFnO(CqQ3RCFk z>kQT^p0i4O*B{sIy2fl|uROJm_(=0sUAWwfWKr*4u(-m^I!+ifF@^t-UO+)~WI`XW z{HlDCf;~}fn!_5EhNR~^fliw1-I z8{x8H!_^R){~#C)38zZahq@qe8<3t|H^eKJ0Ed{Gj*j*>)WHL&svd=|zFaP;k;#WP z$(c?>3rakW*RPiQ=CM`0&l-{EDVf4Z}8S-p?j95BcN9@S|tuFPilC ztRsdC&w7&W%CcRb+jhcFwfC|&N|WXleHH~ft9hCr{DfBR?S6; zu&Yq8WnKPXUQJlRx0H)?hG?ta@W1e)NtOwHHM#H?akih*-i#vfVS>H=i@U1H{N`ji zn3I{UJEJ#${N}$C|MIiiv*)Sqx*h7KbziC)S`WDVS*0rh^zr%U(k?f9<*MN!Zl*k#R?*9nKJHm!_&s@)^M_z*3f!^GR); z94G6)(DzZBD(g$kwUAUUm2?hgN{4BH=MBPoC(gp;Nhk9w0j)W|<2ZJ0RAM;*7t(ZI+<=e*Q zS^0bE+6vX=WN@QA)d8AZYgetaic1`@-OB?kJAdP5PuIc_NskeQKq~x^-bQeRqX7uJ z9Eil&kMr#@`ogXxd0+90l#R2=>*!!upYzBLibQ5pItkE%6F}+`)sjQ5t@I@&T%Ni3+tyzkX`Z zkSCQR_PT>xSvjNp`azVu+xi2cg>ooPh1c|?ELiPo^z%4sWooeK50xD+c{z!4?dw1w zKMtMVl{Eto%iMGXKnX#p1Llcg${QK$( z{*;vZriTA$U`ntrM*H;YS-O4F2f9#=H#SWzW0@tKBc)pPipx$6RANd*X`#{iZPSOi z@AfCQ1GSStkfSrAMd&(;-j=8*35y}&`}l(kPs1}DQgpjVn$(Qc(ql?V!BC9i zJR0=>+m(f{3Rq;N#g01sntfkNQE5aXK@?)k!j`R&| z7C|INEW~JKP17~lgeb&Qwat_-0rPUV_Qe!M#q-)9t3l-)?sR1vmVpgU(a~X?v{z>B zR!FXj@IrT``ENvwP@b^l2`hpqtA}E>bq(Euvr>)F@NiW^iV%n#UR^QOsXbVT<~KpI z_e=K6tBg1deolP27qStTtFHl1U|CMpTeN9E$J{pe)JdcLBMs?h4HdY86QT(RPLE)F zxd6N3bBZR@+gN_1*p>%=eZVRSp}(f;oLFOo=lZ?g-K^Zv9LUn~e%I@UQrGABKgn|(1$(}x$;}u}c@OK>^FmZ%U;{;!@ zRa*W>AOiD^gEGOGTo}~_6kkj``4tJ*41R{9h7unJM9!`)yya5XL3v6^${B&w!vnAp zHg%zFw=o@U%<=_bduri;G+C3_o4~i``6vX z?)0HNZUrm;*m+^Z{@sL_p-G<#{+b1NJT$ddt8Mn@4<}8kEaJ!!%T`@(Rmz-q|2|oB zl)`+KKWP+~oO>YO@uSWbfp-7Msr zehc(PE^`X8m1h$cfh*#YDKW16m0+_fvJXX3QMMeG0fHRUR@p8})5$a|;-+-))-%fJ ztZhbCcR;`e3`VjH+>Jf{U7@-0lqn(oFiCbV{AuNI9=e0_eMEiKrx4Jz1DUsOVI5Hg zjYG9xHqJNS{|VeJTjg2xNOga6rc5iOmABGzKKzFE&Af%7$jPtHpvS9`pI(0F^$_N; z6g>8NGq(ikvrK%$aV2eB4j~%$qNrwlVbMxjOH;CZz;L=n+g!wboz|zfpI>We+KtGL zt1NxH_nrSby}d$tOlDaYseY&Thgu8V(Y zE8%h($m(G_ZUWhv(SsJW71BYuc)nxl4DBqa&2SpEKS(j7C|8%Wl9 z|8rxtv@o)Wl!Rf}2HiTQ`D#c#Pjjo3v9KxaHT0qNID;0^4tG{g-A&YR$FsK{QX8wg?gth5DKE|Y|?|!RP~is1wzl5Bxhi9d2DRM zhAmhBy{9xr@I)kwC@YV2uyM3bxR@+GwstrNcN*~2tOX)BKTI)5K10%6H+Vmtb8>$B zhnr3&|bqsI#y!-GuZ|Ig+ ze@aRkQwQBX<_i=Ef0}{eOs#u8I$8uket}iIXbGRAJp456G+x)ijkg;B#2MM#JP1)WC@kR=Ls3tQLEps14dd>S11X*&kzr3Fxlm7aV5Tn52x`cDIkYsxZr# z?4Tb=)+oDx$)CL?xzxylyq+2`8I2sUd72;?um%A0o_v^Wfj~XYWLha&d3ENru7fzL zE;?Pl!5eFw@k2}*u>DOtT16j&^tfIpomdS38=OUAn|+$`xnub|npZqOE-7hfLKRa3 ziz;~dgMVrM46iJybQuQeE|aB0*HTm%6c)z#eN8b^Ul^=loc{tteObt2G?7)`>u2mY zj90RWLNB4IA>u#L@yrj)jfGN-=ma7LM0E$qQGrRk!Sar#eRBT9kO%eZWkYq`(rNaU zB7SRZ|9>p$<@B{uM1EK7o<)L$5ZE$-d}JZeXpF`XU$5W zeieGp8x6c!=VQ*jBLgN8jbq9gBdzI~;0_dt!?BrhFjW{Ic&KEYSO}?aut`$Rq7lnU z%!j0_anwXM@v{F~MmR25jWRZ^tEAaG=XO{t4NN@5Bp`;0^~kg%IiPXk01o@Dnn`(G zn@L9JY<_KY)8seBIH9=i<^uGFA7F6}@MbF?97Ekx8B!J$M?tDuq71ZrJ0IaXcuJbFkS zNPeBD(_jhz)%#ql3DMGM>EY|ObYHT-0bwB8CrXyuKYBJO=})X`U0ms9p(9cgH1_`P zq7NMU`(JMHmdd6ZR-X0D%Cnv|w#g>L8sM$BzV8DE9rlUKcR795Za=I);q0ZCeEf$U zuiC!y+-DDOu))~on^&Iw?4i24u`OS5=F!)_>Bw95IDH0UvQt3x6iw+AmQr*Dmp(qS zV4!ZQhm0SkQ(k(4B14cndmW(N=dKQR%9V@$O5HHe8OUGOO(V@wzsEr3ZJdf(QU^@v zQ39^c>ZvALLAhh1+OG6s*?mg~RsTwMno@xnXa(&lhWOh-Hm)?{+9@d{7sh@x{E?-@ z#d));=Irg1D;lCFUqMp=Q?L#Idnbw|Gc=HwIEDmMN#(HNmd&NNn&YaBsQQ7U2nu4C zZ8}RF+yyq`bC0o9t(L~cqy#)w8_(>e3;Y@n)0QPSBYm= z?c?i7UkaYaG01r8F9m{CLaqXNIhHR4IO};SSfzjJF9m5@%`~Ibz=^DGnUP;7K z$+;Yq|L9AhtV0HRmex!j_fpWtj*qR`wUoD99U2+y8=IKbG%~lbaL-FY-SScx=gHnI@$2ks9~x^JsZ3kkGrfLzdG~m2?Uc(P zDB5VXfS5;P5bUzT7Kv1=$E@5G13rVY&WfXMwYy_#Ya--4m#f)L(-=IyQ&2$qvQwZj zWspw6q59W51?glJESJ*2D!r)@o@)(72<;qKHV_C|<%@$U8zF$GUhFec*iu8Nttxw7 zL6cV)mf-O+HN?#qtfGa9a^)DSgNjKCF;jPw@Eu)-^qS>= zs#6e-zPkPocM8zTvucQ#bPTNOpybhGF6TT@LSoLGIXPZAH(7<{&_H3sQ3csBkZrz? zxyQ?rdNISsP!tbAu^HF^ID!V*l^&DS#Wj2gV1-M$A*7C`_N-iW*27u7jE07WMT-{E zz>GZ&KugJ-7yhPrDxB@aladAq8V&(^WM*)XXJ(oz^AZ%4Tg#OaJ|#=5meh^DEOgo= zY=aM(qY7|gfT6lsl@wq0(y>ZVa7x6~P3{C)b5HJ|*ry1T?3FR~lmaE>5HJ;*z+TYA z0)hq*$n=INLZeM)K+k{xC#k`-3IUp|?XN;nvaw3(c+eYQh0Z2s>YCdIL$JVM5_pBY zWarPH&kS2j4BUjkOMHTN2HGjL5;0(go+XaTh&jQrOqG%#gQS1}{z=f37a4MPC!8rW zrAIZ$4giWSV=!TWx)m%a0U)QEcpVl z#5Yq{_8fu8C3lmEQlnvDh;B*`&{Z|u#R4gQiJ$vgUcB5LcuES6D$&!xk)WeXtjRbS`&LswtwKE(aJ{u96Et6@l=%*@xk)``QDp*Re40 zqbt~Y&#SOy5W<>ON>J?SX@u4SQ36aa#5nnCV5AI3edH2f_B7)1)$qv3&vyG=_wtYZ z3?N5S%?XW$2PUQd1X@B!|3jzG*=vt;XVz^nJatO%CYww?>siB3dwP3a-T%FP|2@8V z|9ihQ{e36g{pN%J@Ud^segC%>e(Ug`_q}|(zPh^Zy1IcWQ|jyLDjRNe^9PT5`KSKy zwnJ}3Ml2hrZfKM3CSsx^sic{gqA(AA~>ll}EI-*s7a?Gr;y$dtI&U zgd79aQyE)n3RX3&YK$dI)*HKOK~1HpBjv(ZXDftoR#63FJG6faVncB=)$##k!vI2# zlO_1JiEI^Z8qu9D2NFY7g~J75r$ypn3x}Siqa})lGiYG(XIUOsHuyO01aSc(iHw5e z0N7kg8XyRe*#}3hxFGhjT`#A1NSr$EHaCB@fxRdwaY4fp7l9Z%rOp*g_lVA!M#azu zt8Q*CQ+Eo3oEgaicd+vZ2kOSyVN(kD#c`_sAIrtX`JG4H{GpQ`{K56hE91q3D9?6} zf`9s@;F0Be)7W3?>~F~@pT<%KCLqQyy9Os z>g#K`@%uB5s_XdPX8q^9xcNKJoVetbE55o>{g>)`ZaTGZV7M|d+;h#Yecyk2@7XV` z|N17Q7jNDE{pT(`rLN;UPw$>~u{L37Wc;>AmfgFkb8gG;8SjxWe!XGRGRvjKL zlnhMKkSTg(g@Ti#n<;l*eA&A<8H3_Z$PC-k!da!nHu#X;q$21&4NluI2>B&*I$Sum3QM>Et#TKb3nc`44`m<(%EZl4UND3r)!;w?|ogN>{5!_+*tMJ!3MP)Gaq512QG#>?TVD zq)d)GOG-l6vP52Cla#4&!1I(r)l--+jlm#?p09m`!_4_k+!O&%dNO@Dvn045vXr=# z0tJ~djivI+MqJU!8MTR9jlf-+mP%MqhN*h8hmhivrAD8iWbUqtV;Xk?`{YHo@1_Lq zymI(yf*-UzH|e2SQfGV^5V$iSKsNG6_`JeLafD7>SNK-x8MrI46&DlW`A9Mi6B<)q z!kO|l2!gs&s+(1E2Ef!u2-i4*f@4aEF`+12^>$$IP|1j%v8mO#Q;P2D3|I}IRpi6p zs>B5aWfht%=!3>MXnB{=xH48W?p&}^XO5|oRdq{5GQGQxB_TEfT@5U+zqj}8N8a|PPv78!Tl1r5@Z%F)Yvjk5_h){%Ol#o_+mCO0Hku_r z^qLdKKEZvF`{H-iHs}O2Jn1O(7(Usd5q$mY2ed;B^e0-2v|cp6-8Bi?0O0hROfH%P zXxdSN<^dVs_af@$;4n@vYMNi2=_R1)A9(3laMmQ?hKWwkl_ijLv$`Ps30esFnE26S z2oW>s0LR&?CI_YlSk?etDG#pxzipF|bUs!6FBmHqM~U;LC!~hJ<%N<)NS*gMea0R? zSb5?;KN_j48{ee(8_pAY;AcE-@n%~d^Vu8Tdcu7>om~8@W6C1UHyrf)cc1dm9s7QD zV)M<%w|M^87F%>x|B0-b@7n#1hu!?` zp@FM&m;h0Hg|c5P6%e?p!r@}om6=?GCTLlu4_5tM#l^YYeM)>pQE-mp(n}}Duc%w~ zUq}`mzC(zAID@j3vtf_8J9``*A*;?CUxMfk7=!ZLS^^raSNkQ4?_qWhoF?4l` zM6@a>dzx$zJshdgAi33USC~5U3Wb2%2PQK&i>X36KS0>aT}1n3s$!`dd{M%m&R*j%}DR`jKL$l-=m6w8`Pw}NtKC$zVWZ<=nt+@Y* zmjXFS!Ldq+F`-(yHQz|(!UzG+w^@lfvzy1?LXFq4;+~;?lwOQp? z+xMUI+`+4N9$vk;tGD{;e#;lee)@vR-@bk1%GXT%^38)keRRo&BXunqmg z<9E$zozXD(;F6wc3)@!qPfT0be)s&YSxejUiuBE-YJOI>bTzc~;qRNkc|cHV2DXaK zGP|s3mZau8R=H^8OHi)trgNw)gjAb8okH#cf>&fVg&Z?emI9?y;7+MiFie@b^0hVW zbBbtib1en#xi2!{+h|wDVV?6NmmGU?HNWEi%Br}O%EF71yH#;5(MZ#(C^;<*3>vIb z2TNp{tfq#9thxdbBAtRIIKXkn(4aSE#)iFPX>d^r_KcM=Yz_9&vvk1n6-^^G<;^rq zQcO5Wp9V;IHL_ok4VWyGc$ljgC6L@WLc4~ED`E`7C#xLk8I#$hZmL1gpsa~<1))4J zasMYe1p+0Rfht+zYaffh0_}gojD;s1Ymp4)rV&ZJX!sbWVnfVhg-v+dj65Zy$Jk9C zHoWLfQ@FU7IixY3)kWaDNi2vz?k3|Jaw1c!{HL2s2k5K~d$ zOFs6YA$JB5C?RADErRWdm*Q9rI2ttJsetaoq+m%M1Pu;AveMCKKj`yVaS-Wg24SP7u zqUTkHLz|ow%EJRW`1GlpsZ*rdh?RG~LWQs>N*YW-Sw_f4BuaK6dVmDrR+Yuu#gzdK zJ$gaTrcmb35d<{|>f>q&AT&ZkkQpQq0{+2VvSf+s34u9d;5pdb*~BqSQr_rI)h#$c zgg_&fWKrN`r^10vR(WM-U76W*u;hUAY=1T@aX8s8JFF=*J+RJe%g%f zKUw@OR&9xoZ(sk~15JggZ+%y-g?@mb&(SCN;Lh)OwFLq0{|Q{Sdag+`h0sjaN-_kt=RbKgK)S13P@` zSKA!$Yv58~kCke3!BfkmbHjm#fhmTnq^+`jjMZVAy|1BUX5%z+sOC3{ruowi2GVpM znAsQZa#SB%DTGea)T#v4M2Hj?Z6Ua5@N5AB_EBTTU0GsAW4~C2umh90N<>H*frw(N z$OJs?h$&yN*&QIF6SSIaxIjzYw2P{3Yv}QmPX2&EA_Tpta8iJiKLmlpU3LWaGGd_5 zL>n2FrhJu7!=HAY}j|=y{XM%^ArR%zZ8s;t&xW$4Fb#vwJ(JvQu|UUe>Wu-GmpD4$-^IP z`BKPJG< zqkiDQCEYhaynOnqp}Xg`J-D=g`qJW8f1@MAZ5>_n8#i;fqBhIzR>p5P0RF=4v&1USXJURxJsXn+sY#{9GY02!FZcVInRN z8q*}AV(J!5P+>**>&;a}0g@bHk|S6Js8e7=$%Wo+B^?@dC>mgsFcXyk1ze6%$qY&$ z*jQq0g*MBuO&#e8;s%@}Sl|SJlm?kg{xnO)ayrG$L1e~& zV2R*rRUli-mszq-ToJ`$Y$z;aL)}bS@-iGO%D9-K7d{yfSQ4;Jc~t`k2+5ROYj4B= zX6oiP76OeN2|^rW93f}~u|k_W-!h#DG%zi(w-*RoN}!k#@`rh{P*~x(Fkl&D#0)~V zp6qUy8Z#qk1Ozf=meYupEVy8jtWAUIO0W1q&ImZcVdKI^`YC(L2zf30JROh$#YQ50 zO6DFoBmFbFuX1kMXRw0Y6PB+x?$nc}Th zeOk#VXlxh+Q2q1tmo@%;ldRR?0|B10m|DtUNlBn*Bb;g^ZZdKWr3}$!K@bHQSHwgi zBMAW$#A0kD7K13EK_;*lmrL}7fP@BEm7yn7iYOhjJ(3Q+>d_;XtJMSwIOM=Wb2~5q zm?8*NRN=3`+<=^ds2&2@0(x0+A@DVzWm*oF^c=aHqTzwDtabE%PP}ucQ;L5=$#=PL zeIMDr)b&C>qkVJh8GKml1YCX7N2vqx?d}s?OQY-1dgX(jF%aMJI#TvN+?n~Z_oc20 zVa(FUz4m~Tfj~ar$$AF9ngQUH95ooe=E-^(fDo)ggLCkYSLn_32^wA9h^_-?-~C#e z(9=$6bm0q!Ih#X&vMOySJpq&GS!%R!M%a=cK}{j^)hNn~=7{P)M=bO~KUywpQ4l~I z0%DlJ=L>`-cR5Nyvm_#7nl}}bDP!FZM~Uoy`po^#Ty)hw-<(bc{ zJY%B^-?aZ8-=4qIscU|v2~A~oKW+LuKX>OrhyHTOGoL>^bqdSXQ>RXBw85(X-tE($ zyYX$u6u)j2U18OYmjrdfwgy%7kkL))(~@BRFTreNr}5J)aa1n5pNPyvS5=*=`eRG4 z2Xlp{XpnVWpcp7r>?NBWQ6(FvD-)4k?kcIy5)o1Q>>1-`-`O8{))J0rQ1VhYe767O zZ&Zv8Jx7|9LTEu#c_~O78Ud^dNYl>BPF#8dFR-G6;v!!l!T}U0X##P!-2&Wg7QtTg z;*R{W7q>avh+!*bq5Wu{Av1&EKtl7w(bQp3F?CZY_70@DSP29~-CU)>*pISXRWX=Y zNkoDI;f5yzWoJx=ta{l^A(*kZHqyNg*=O%=%tWH z4LwXsgMA)lPw}My&EpFQV|uGJ5G>_km}j7+43>Ee=4mWk`BDh7K%tZ&dLGN7Amf^s z0s<@{5W+Acu^3=W2yFsiapjdMfemG7fUSKgh$tPhmqH%GPxMk~YVYrp_k@pu0#?Dx zm%_lvL_^>BZ8KM|>=^Rs*R97O1<6YRCFP)JZxHwzNM>4&>=eiF>FXcp9~!gG{p}4- z15N*6L7*J{LnA%iJ(KNAI;P*;xAf7D)h!LpdWqt9EqX@9tt{ynZSB-46kBgQeDSJ0wzZvtX?BWDj-_epth_#DRii9|I2 zO>L(@!;uZWYS0rbu@^McaxhNZAWL6p8u+D4EHfC`7vRnS!QJHR6b*scLv!8`USnO& z#en8o(qfUs0Ig18}*B1A)Qg=v~j!IW>%#1#>ORW<_2 zoq_X4L$->ca~LQ#rlDt=!Gq#lX`i`;j3}=@FC@gI&wm?S8Q5G@AY?6Kkvv{$LV6`?%$nbTV zLja%PW1c#=l5Awi1scwh1?AS za5%0Z&w!q>xS$vWHlba?W+`QNE7^zumRTF>>HGlX1yh0x7cS(&j6FSBWmuXDfxyzG zOGC+E@9eqKJ9X?sAgdWx!_AePa>a#^nn%x_G9bCj3jgY0kZF>2g90|OVqch`%A}CHOnW3I33#C%SU$9^SR`9cN47h+z+538n z|BuZX*Dn6RiPL<1`+WE5@59}9zmN5!f7+6-ZS9SZZw-uZ@w7%h-*p8VLS~ev+5>`V zIxb(~gc$o+_lXZmGr)!*knYGQJHdB+>~%^E;6Og?oO&IF{()XgqZ44vCBG}v=a}jf zbVuy{h^rGo5|l(tnbC_Y9c_at{kHr50-!{6AfhnVb?9yM!&($+0>s&MtKF`^jb8c) z2u(eb&$R`o_Q} zn@n!D+3qVa<4(DyWAhhJY`j6`WiRXB zaKp;R8`QsdkE2e$ZKtn1Cdd4n&-xz`@sS8$buS|8P{8CRR@~9cY1Cm#mR=_hQ*&sWfGEB#ps^ikn01(z z0P;QV(hh=MrpMg=DtPV!9P9#0t{g?Tv*|xADVHC0Q&0GQV5Sd8!+8@Ipksrr5XWEE z35s4ie$*3H<$dFUzvYWSvU3|UOP>s3>pic^AN>H4!uFs14Gsw;K{pPb*&tpL&pv{B z=h1h3@#6Wu{XBv_M)H(%&11*&ArHnpZT@pFg#;2e&&j}AVn+WIUkaY&UJC3XKj}-s z6z0G8r2vW?J$Fh7M(s<%ltHF4G8IDlS*;!Gc`5kdZSEfW%VYHqF6~*>KGN0GZ}S)g zw#rS%Fu7`Vk4kGAlVkZ(0Gmo?2voilSi<*Gz>QhHRn~ebke4lAJ~~#^!N4l+e0>%X zSeC09Wf?8$J4etQ?HFG2=g~zsRJ!Nzqi`Us`0AXsylX+n=Y8jT{wu|6@K?9AXhq4ry=(qeGsNhfB2!G{ zMW9L9t6NmKQ%0{2vCj_ryid8*AsdmQ8rdKP0bAQC(8NFp(R2P?(<~*NQvonSHb~96 z6Ec{kZiF1C+#NYxEO}X?5Aztasl5$ZS|YHFd#X`gEJn!iO{c&($JIbSb#Nt1ijqx^ zJvqKK3|v)-lDjEZzW+l>;`9UqzD^+w^Tlhb!t}~TPm@nOt0|+R{nMQSCfK^N&vxTU z$TYN5AJgQO!8dv~5pd>`Wdq#mr5CNe&6)>_~D^4TCYI!2n>~LtD`72(vm`sX7(} zbH^*~0S84%!Yfv+;KM)wA=QpQS(Ot8A-M8MnZg4C4Ji2RO+6d|3cO^=616sxfc-EC zDV$8`;rI}AzUgg%C_qq(Sk69}eOrEe-$ zrUn6X1}FhXAW2zb<|?TWRy0w{x(Q(^?p)|oA0cQEOK2(3GowlW$v`@p@*)V7bdm*F zHp$vF5rqgK@H`xm^wOn=0H1xzn4qrQi{cIs&zdz0vJg34;>HY=S`naG6_>GC^XAP1 zP7gEJ6iUjb_>gmu=tXftC{uPq%8RWHHBC77z!NkE*>3L24o6%;l{!Tr=ioWadAKuR z%s{@-Y=<-%5Rwi@usLID9+W*P(2G?36}cv0%F(9k=9 z)giE_WT2)&?d|NY?oCv?`;O>VG3{{|b3PMtbdSNEOQ?zO{-_r2xN8$|&UuOiKZ{&?uo zzgzLFEe594O>Vkr!;~qE7rp8oyBu)k_Jj_DDw2WV!0!4 zUldTAL{KQX=g$jdiZDxcQv{)3vdg7F800TAW5r9as4;__j!V(_nkvYaAGrjS7EvJE z>gq?&tWcs04GJ(CU)~k|_@GvyW1sAvh!o%Rrl*b`)B&;|ReqP%iZ7X|QrC zWM@ehlr(lkSzH0qGuBT!Y@+0tITiU8v7pN0NHZX-6+VdZdVBT1vxUFYWl0EWW~a!` zl5QVEodh& zM)Sg*E))?C8jc^?8S{e}G{*1x>|G~cFsHk_%P01FUJ9OLdHB$KZsbu}`%=gQllyvJ z3a)Ft6ilIcQqeH@*Ix==ri^h2LmIRZ@KOL}>8ZRFJX*aJg1{wL#;*UCmx3s!WYH7u ziCzkAZN*Cg+mt0Qg~o=4&aR&6%esDd-;(zB_c5$wXXqYQcl5V+4f+V~=q&!$ z8#BXBFI=*G*2?ZXXSdvN@8bIxcR#YEt7D+(OWWJp`bS0|UefV@kF1>CG<@R&OaJod zss(Lhx6W*yvA9Lug1>TAL;dQmhW7s13zp{Zcq<70$_QWR6agg(5>(YHff?o@jJXn7 zqW8tCR`Qjd3L8L}iD(c&ab!^BRqYgfoX{(aO)s`=y`2L4vQv`lckZm+aP!c4tNl;VnuBov41P35)yqHOW9$TCxPGBP)2B`xhAb z4q)*c;FOgB$Qs;iTX-PEE<6l+gE4))Os%?#3W^4s#Df-CQvx1IRX#MPNl8R05m1k> zYwSH13HSi9Z8^=R?3I!kJ)YS%1*I1>APgi)k5xDX76;@B2!}aK(+pFqQD!ydMTb-B zX_5sY;HnRw0g^PLWShxc649UmMF_I1G*yz2UFXQ&lo`R09WMwnr58vAAh?lIzyxBS z@;Y`-Jb}F{+7S?Q+ySO;rr9s{LCAJnN}+NLV1_Wk)Sw5#(xA_vH+6-Rya@ER0BoiP zLB25#vUF0S+*<4%15>Nj2x~%^G9%CgKV~qq-6g#oOH+YjY^Mkwc`2#lWGg+6S)xa2 z>ZuV8N7tN2f;wjlQa3i?mfsA+hrleW^ulFo$&|4v_tY~*pvfS!aZM4(4CooB>;Xv@ zrfkTLE*b&PO@VXvC3UbAa3BG6wdyJ_Q)ZR~jlHFWQ~&V9UljKF^s%~h=~DKDM9j^F zjK`>YvJAtVC4k=g5E$4IULhQu9QBkJPG~bW%^`#!mMMJ#(YTg_4ORvNGK6SwU`dF3 zvLFaYZ@;8(m9o4kL`=8>uDUg@I0K9$!8E6WAfiEU%8^VEH^)FJH+uRRpX@%eeW3fS_YrT&cR7vk`%HBR zKH`0pYi#&3)3Kzn@r|w%)6X!_4zUNA2Gy!oK~upd8ZCiOc?RrVA?P$j(U&3<1RVvv z5W@M~2WXXE`@|h##M0_$HV^}-kI3qUY^uclO^4rn!WVAs zc-~7VH`<``{O5O0nNrzk>f-I+zt=&(+~MT=^|wOXCJmb|NTWs27jah{v|V+2vXBn8 zH1Kt;vPMZD^sGuBJ=-BW*Mon&LYIiPLgfzvblS2Oh#+_SZl`F#3U|_#J>vRNXMpyL zUWEya)j6k#y=^7uH^XE*LXRXe^z4NLh!2EpHzgXX?ff9jMHbjfhla6Dwx_VOrC`ln8C>&F9xwDsr+?7S$ z5THRApfkhQ&(?ch1)Lya+y(mFCGGhG8VN$+XkRSBw6kKNYP#d`#c$g8Jnb>CaM;*% zUeI`n0?IkeP516&?>_B{Wuw)7VGOV6bFBz(3Qc z_)>uBAx+=b+R7&3=ncyDfyuk)cg$-Y>7AGy9{HDE3X1vHmqJfh?*R1tm1YKcDGKx91W%F>>ppg zy1#pPqJOB!noV9<^BV`JE$Up^KY7=jmiw#1z4JTj+Xma)+xmKYMkgkx&8dHEWzWL) z@tYo4x}>RhXt<~<1OvEqkf}yl(-pOuYDDO;MAocxeeKem?GpH<`^^1 z-OAX(1DLv*X1~_z6x1h$;usn^gxNcTKE%qT40=;nI0o63-WGtRms<2##TX!Plq^9@ zE{g0Jm}Z-dDtr+=+0np(5Hm8i5K4NASv0`3*?tb}Sb!!gR?<#c)f5BzRG+{4vSbjt zWm)a3%o*oTr+}osuAxp~tdv5SvWa7m@e3?{o~jszShfdSWS9})FgB$pLvRf~Rzl#( zj4zG-CQ}9>tfs2yKY{STZb3Jn_B?xdeB!$%ZeY-9(@6h6n` zxN1bXu(29IdcNv|q{Bv_ab?CJgc(amM7Mfv+2JJpl8YoNj1;LbNi;OIWZ*{OyMFgGIvb!L{0aMkDY&5|pUsZSoV5fmpbnI@33(+HO> z7LMLXF%ifyrZ)vk15i2~f!IgWGF-OF6ed1os|0#i2nI990ATE6mhCW55+uNs7EJ|Mg1!h81RV=w;An`B z1Mtv*<6B=l0hY{53#5Tz%v~FARdiF0f$TIAS_J}R?S~ZLiwj?eEOf{tppny~vQHBiUWc=SHsU%KN7#s8&KJ>df(zi79gf9jB5Haz3`LmN!3yy!)} z8*el|b;`0geQ>|Se)EyjieJksBM$i$I>Km}N>lnY>Z9w!1P$d%k4NC8COSZDCAiJr z*XX!Rl`)+az36IgBiJVkb(15I{0DooiG;8GazyVZqJvbn?n1MdNcIRUoS>;2<}6+F zM;=y%&hL{Q9z~WB+0}09bwwv|!Pb_E3)7DrMKR?9nHkQY90O*e19#pCXotTvLmQgo zq^o4*{4+TU6_}Gr-#Q{o{g>^M3y`g@=`GJQt)i|T8zCX56e8wXgsE3 zPhUQZ@>1}a;+Th3`G~H4DZuw=iv2oY3Vgj3SaN@&mqHjq=0)%{v$W2af>@MK^imL) zJw11@GytWO2X9^qd15nTOlAfUAF@?w5-|m6&^*PLLR0hVIm=dej#TC?U)|SVyzcW- zKo}19*^BGvENhmwRM=w}eeFwu68=+sDGZHF40SY*cQtgh6u%WT@+;^f_puS*Iy0BF zbPZ2-_6@YP6~Dw*wBju?Fwof2>XT)4&rm~K@94;Ich{QVk&0Wm+v}l0Tia0mh-z(Z z%gZH+h>i*VWE%FP)qk>UY;3fz`u)@2-)F0EkWPPp@AB0Hx6Wu>IZ%0cS?8T|RxjjePKp`!#H{ba{S=u z{N!9QBh%X^vbe#wk3s|%2T^z>kX806J~LM?V_&uHi^p&6KvU(f8*7`1BgGplSZK7E(=ozT#PUYJ}6U6Qtceu;qDARL6})JGshkpm7-5znn7~lVJ;?SmE+b`Wtr0I*JLJkNRi?Bn zgk(Y~w5c>4--MH%X+FWlBJ;}QFPQ8FWk$$gnGDOpEcr7_P*-Te8IDErhod@d;1ev7 zDFw}H?v~WV6$i)${xl{3P$gt=G!3$;yqp7?Jkv4Zl{(ap+U(Sg06%pGm2^y@Ief14 z4xa(afJ|>kgCim#w{gg@SEYo=;1Zm2gdY3Q%T;J-239FZs!by!$dqgZN?BwV+LW$B zI502?Qlr5$0y4r83__HGhGYPN*evb@$ib`~mSQhTZVdJ%^OOz_@US%qxwYiWGS40M zY*L~X)&E``N8ko`UJNprC1N?GhCh3H_KEJQL|85T>;LO1SFsY^F$3!wciWx%Cr3eZ z4hf7Y(N5gj=nzsjAVPBwprOw6FxAac)%`{lfG46G~n0A{RJMwUPb$<9*pk`6$WoVVzcAf6DC4yD4f2cn*)8O)@g$@Dg8$BqSS8bDfK<2k?Mch=qLa6@jcI2^!^izKY&m`1ccUEz2VTC z4m#pDtKEe(_;>p_J(CMJF6~PCX{#a+hzQB#06L z2WFJIP|1GvsF7{gK~Naei+D$JA;tq z3tz1Kz8ZhD5d(-4l2+{zN0!*;kg#_)B<1i(N+2Pask0@`zw;?m8qt$JdrN97cW5*@ zsMwPIC}4I(f|!`9Hp)G0(t<2wo2)do7JcCQXm+$b*pdh ze_%;Z(@167qK+1yY=3NuN9MGQca2mAhl~F+m?bqI8=q+E9Bk~eVU@1lem!kd zQ=@&!s^JT-xw(nG;;SCEvO}KWyfKrq%FtAg-_Y>r_^f4Zvl>S4nBDS!kF0F&pXeW2 z^RIbLOjhdqChwi!Ij4EBd1&IE`R%K^CK@`2n_4^hmtU{~*(1VQBgJ=JwrrW8jPueI z9Zv#B=b^;0kIn!M7gy8&Xs2K|vyX5nrQp7BqAanb6x1rr91l>z#KG0TpGHz#VgQGb z5m?HQGG@!C_7y+$=FrE{<-}#9AqH~GKD5|?iX@$ z$pEs}_63$b1k+r(;BVN?vNEnTGJ>4DNyM;alWk2bAruOxIwTyP5t0dqA zNpwmaB_%q`Jmtg9m4Q``q0QHn0ogT2gaAZ1G8~jdiI?iTqG2_0b7e+vFpH9nA)KrM zCJ+M}Q^m}o%stN~!)org+%W9%1TKpt;y?&ZSh#SZvxr#sMbQ*c6pp;qmL+_N5L8MSk-e5JsbKIg~P31m5Y_UzP(83c*rh6YStszfk2 zQo>AJ14s^VHD)oGX@KPjHg&U`qJU+YY3wN(07*JQlO0C_V>F=fbSEZZru8M_$pVZl*a!?k`hYycT~CS@r;hU?vwzvDD3!K2JYIaNckOC>#(s zh-_LrdVg^J^0ypz^XorR{7qC1gO7C|*1pSqscRm5;%k9SePO3X(Euz(veYO?(&e=lZEA5+Aj>3kGT^{fW} zy`Q^dpYP27=^m%IXlS4L%>Iows!W|aF{SRz*X{kWZ_eBKOU3_fRehwxH~$FMp~u|N zy7>z$8%&wpc;ouIy1}}-rQ81ZUI+bhyHEdKc5-BiL;CQrrBSH#d(cePSy>P;wIle@ zuv7tEu_cKppy-mKdCS3npwvq%8nf3PaJ_a;i)A}hjF*UNWfT3#SA7)3hQ4C=E4SYB zD(<);kov%6EVSBc8fB*%G=$fE{8z3HTTT)F1cYrm`)&5Vh6Zi5O&e_c?7RK7DyTZM zlqOkTvQ~tgD;r_Tj0}e_Ju|uM9<{FwkOXT(k&gxwfWnCqK+2phG_VEen29JmW-_%D zR=Hnn#35&|R5yBY0g}_AtDb7`l74Ow?g}Eri#~i2aLHO#|E+ev`rXIee%SXPd2n9G zFK%zzcE9WK=f2&3*P%pC*%ek$Ta)6e+wP~&{rq{e=FVT#)Y9J5KhoaSKQKJ8sajsC_8_`6pfqkQuD=rGRbuQpn>p37RI646>I3 zFP3>JNSPpd5?Sk|kaSAgsQ^K0!U;i>mjZYCS;K*{w{NieH%=!fA6vZo_xCS* zbj9Fb9$odv`YByJGU$f|oM?jaKdSK+K0R-?3P2nT_00@2`a3Y?z3d~=cwdiEh^RmB*X zGEjemL3v**niGN;15=+aN}<|;#aXfhiEyD87YCMxDPuz7GP4U@Fq8-l%tXn(iETCu zcr<|`7z7AW!bz!_A-q7vEV~?6^o@Zat{ISibgPXN|*pFLDRm`u)$yNDpQ)dbLWEM!pv0^ zaUrK%Gz3@fNyL;p0WoYbi2-*Tk-C9}ll|qDq)e?Ez#*FkKSL4ZLYZmHRFvrZ5h8_-C3Y3g(Pw2sGBKYI4DVn42?Ylb)bi-P+ZuH$i93uVGEEA$KW&Oh?}X6 z$hoy0o^Od5NBSgg(5FN~s2hQXnX6SBL2sBQG!y5C`<~V__|b@J6?|v=$o8Xe)C0Wv;6Lqf#0?)f@Y0>X{MfFi&3fa3#eY9W)1oP2 zqf_#MPVk}c(_g=#UrOKNE1y7l#CeUr{SVvy#2p)21X0S#g)6xL`1OpHwpFKL`QwY#ov!OP#Q0e;(OZ`WTTDPKvs>dn-FyFd^W3TL6y^&tb(zT^)M1S;@9 zbAu_WWcJDhM8~Ti)v|W{Y?k62dvP0_>P>g=jwjr^-*=b4?cm>?|Jy}v-NRkI zgJ1i3{c8^R4Kv%pQQ|`5iMA*Tg&}vV_-+%VN#aoU2cBfT0 z|8QVnczmKV-Zrap^G>5zy=vl$?S?LX)v_;bGI7-_D$|Z1?kReMrp}>TX0*(#AGmK} z*YeKM1x>yGd)I=#p^*WfvZEu@mv-I!=*m_7lhYQq|KB4km-kIBY#Hk7SCGlJ-l3HP zlXuT+pHbgGr+IvO<52HJ@nO@|@C{SVAs*3vW5H$37C6<|I@Ma;_@vT!h+UK&$x(i9LM;aFm*{wi-uPjJN{ z=R8M+00eEqmnGbGNE7sBG2h8{j)g=Avo)a6?OvMDqM zuJp{@n;~h*7jN<{-E*9{!-s4t7R$9d1=H}cFU)A*;Gc&8ggJBOgduxZ#$4!)FiCc7 zVrI&nfEc#O!~i}HshdD>;6vcWi~$Z-OJvjFXD~*-tTvETTXC3K%C5;Vj$l)2j;XU% zf`?BMPvzB3bR%aY=M#wW ztJ!auIsI%*kxX8M@ZnOT5rmGHRx_EJ8sY{aBk4m3nrXQ+7-0?y2Nqo-6imWtr+D@lr?ZX%L{lgASw`@)h712n=g=bU3U2p_A$ zDRRu%n1%+IfCQWYG+B@-4dHN(#whEMLC&5E#~3(nY~Tbop&3{*6(#nG!bbWG;D|zR z$I+%Sg2R$tF|+%@G0iiLy@MAamCs2130w?uJ=}yND=%1@?5xnK2|z*77#i&B?j1V+ z*K<$2tnEF=7XR-`U+2D|eUxiRd|RjG*s1z|)Aa?fKk=>q_M>m#|KvYidgR_e{K7YO z`24h&?0$_;`Fx%0kQrzLv>dLV`u<`|ezYjQ*BSU^*N12?^%5Eh-|p;z2YJuxf0ai# zt2zf)pY_}AcO8M3B?j6FOGuh(BpB;1Am`WDEb$aqLx}ld=hW+1G&3UVVQ|oK=@z(a zY+$nFE;=;5pVk7ybiy)%pyTDm%o06(9Y~0A(Fe-HPgys{@&!mRMNc^CgJMRb#ogblD3cG z{7vaKa+F%N{G&}eTLt8$0`xjG=}X*{l70RlLqu`O`McuGgr-qOAevr@2&61_0S-L@ zlhnS!nW|E^(ci)K=Z_BqU!r+*MCf@YU9py}DV2|FT^#H&sA9F>xb^#aaC?>piCUBCRu{-@t}GR8T=CF&{evT`i~nj#YkOxt`I>)y+=3J8 zDt~xK%TKm!IBny~wcAv#dh2BUgFPb?&9|Okxpw=JOI|s8#dgD&Y%}-sQ+m&R!Pu2= zX`KFl92?sQZ=Jb%QODT5^E(!{^sVR`(ExW14)=6-4fOZTUfFlc^pzcxm4}vg-ZrD@ zvHF2UEyK2CaA06zL)XI2$$RFtKeD`g#;U&s{z7hx?b_HnVwF!$50S0jQ!m8$N{WsaOf;#izmy2q~b$ zmXlyGP<(@&=!&0@J;cgR0kW-e4RUR#VC0L%!OpG0#?*nd6oCt6P876MKKFV30GV&nZe2-wDYgXH1~nEQInHCs~#_gg=d&PAnSqQo!0yfq^=Q2^Uw@ z@aawfo{y6-M1}wdn$V_Jh2R@^#~{QkF{4Z(aFR$WgJ%e5D*C^rQ%JJW$38fYO0t%h zsT4$X#WVS$m#f`p5dJWgYt27`6+|f60Ew~2gOR9lBRfn4bc4vunJ^fnWVuf~ZDqnn zUx6{qoZ1wEpsWP=^zb2Af}eAMA5ADqi3Ti8diJPV;+s^ti^ZN90yK)k(UdVW0w!n_ z#i*7e+z1%}RgjA;vH{RoatSO0n4oed2)Q|}(i0@8bof|O2UqTvQVmr~e??E3d^1GE zL{&puO@N>cO?1SPaTdDQO_j*A8YAr4S+H*{4+#nkIFlBv3NL*&s-hKD%r% zQ&=``a(WuuAsjMfWz10#LZ_klmb}JmyGcbg6WtP*6EgHg^vJpbo^gw*;1m6QfO%P74Amc{HnI*IokO6_xgIH(= zLerC@hlxq@6(~^_3S z3<4#Ma5=rH17jn%tyMOLDSNfTlU|i9B@ko!^6qxtBIGMDM+h0rUG2E&A~HxsfTr~9 z0VZ4!tg1hJsgI2e%w9G6u`k^I+E4!egP$+{yEs1FH3mMlwMN@uBiC6D)Eq!_+3=sebM_Dv23^e@u zOd2@RBgRZCg_S7KG$-nod?m7r{`LpU&i&|@8|vzY>*_k|>P9x%q_XLT=f8g69ZtUg z{ndXYOgO9*O-;5t@P?z0|I^ZEZP8l&jd9P$8&#&%EqTNHci8oU|2m@hC8vm7Tv6hZ z#*BL!U`g2*mB}wHQ#Z=|OyZXK%h^MwiYk{~S>sHJ%1*y%h2k@;vdZ$TM^OF9pviN}4BqDKHQ& zPf;#;DUkD0fL6W~$l|W^r69ywF9lDz^}G})*^4VFHjML9kPc)9TvvqF6~}DR2d!_8|dpD9G#riIJ&%dV&3Y(-`~6NwwWz=&1~%IEk1aB za`|ZP862CxqIGrmNKb$9DNZSU)h2s&7G{6_*NME^(kb-y^>%gl&RxFxp~W4KEbYB# zRzv5&*vRN`Q}sA4Zs@voX3N9N2X3F)cZ6A%jpkcQDP9f(cZ)B&7qp5Vl$Nr*GoST27Q!ofI z$WehWG=Y80#3GpH1{6*)UHJk`blmbS!I6FPHLQxr-lrgAONs*oZ3AH`XI}{FLr^qO zy!gUlCa#o|FF{_p@7T~FoGw5aQA(j0fXy|+TAhO3A#)EJFR_9jeMSmGDHem;O_3DA zm9NlvvS*y#40-nQVk0z7>P9K3!K_+_C+rj?q8g%*@n-Mr4hOBddl!d@DspX(R zfF>NX?3DY;w9HrfhHm&`fjo z2zduEvqa#MJJXUWoA41UR8wtiEpY)(iBC>r@Chk`pk=iIQl@%@?5RP|D|)e9V_-l| zS;(#l#D+`sp+SHUm*9jaV;W2B<%>UKSM_m|hB+Fp3}^y^GhebJO0S+U1rnEUstqB} zXa+EY!%W2RaRo)MEF9xY&xRhpBF8=Tw91#@nxF`nX0Jm#_5zh=SVbRSBSB5$ZklUA zQVN>TFlgA9_{_3j2wS35jX07O#7j%=Rzm}h`wjvF2Px?=U~C#MQE1xRi*h|QYvti* z-uKb3On=u=#eWya=e19E-_U-1Uh5_FC;3&|n-BZT{$ITHvIE~Y=a6TwJaL<|Kk?x` zPrmuBN8R!6V~W3xsX5VEvDA=gQGB(h`O$G{lNe|NG@L?c29CLKby^X6U+TWsbuS{a z1akPf4H_zz?3tmYLG`&0oJR8u83_HMKUqbf)G}!{2>Jo5`GuqmbjHE-a zxkXGwURn{Y0{*%t4GdV_g|0^Pz<^#qg9c=Ir3qxuhJZOeV=_!pBw|W05I&j{omF9W z?CpDhXa3dupV41eH@V@49aE+ZZ@h8k85^I!{k}V&HgnH!%ntJur0BRleZwhVy}Ror z+YC*qtGxKd1DkGAnOfJdB82(~eeA_;I&&md19Ji>tM(#w z;}W*YLeTAts5lI?f|AN_Zq zj}=GmDZc&HNpi;ubM%}FB~^2E%Pw=l))Yet3M8G>8LV&)hSLZfc`^gA&W5}kT^wv8 z^6IbQOjY&s>1-7N6eifR#}>i~mvaNpHDJ|Y$K&t*%2lhc{qwxhq3UNtUzex9yL)(`?}6DZd!KgyPNx({ zQMasI5U`a(@EuO|SF7@_31P7quy-IGhSdK;wm0jqF(iZ6xcwytH}+)Z<(L8uF<`zHI!rZy7vmvx#54e(3(64311z1{RH8{r1i?o?f~BEyF+Cw*UN>^6yHdaHI$v1;>ehw$ob?hcA|O)`UZvuhR26S)||H#aA8aT z!^?XYb&O44HMF#Qd}aUW%D$1I;iAs`u*zno_@;`SI-BO;DKd?hpk9j^N3ooZoG!9M z#S9t8jNlbaU`Yc3?R>4Vlm+A1d&7bf(UsoS@e7S=x=+|Cz@g62Oo_vfglCR`o@OOfQ!o5Q0|fn z4OL}8V3`L9JrF#D&rx)RGL?Qnr}z*u*Qeg(zLJsyG}?T^R)2bw%|b2%(Qg zbSZ!(8!Y*9ky@xqCv^@hN=w4gOIei&++8gZ>MKo2+)RUzp8pXE?*>;Fdpd_dp0Zz`3lqrSdNN-gj)4=kIBN_%dOG3mR zh`gdn{h49HEbhRQPTUQLD!#Et5*hBigtiN6!XP)Df_QtuXBIDdLtIPH$TBrmw`4)X zECzzAKRwJOE@$E;{c5S4H>lIn6fdfX0Kr~;7e1RHRiS{2&P4z)w(4Y0vAi- zmi9suOo0%%qZ%*9^o+Skfrj8TmLN1>*%rb|Gv-NvBPn9 zedN^p)6!@pv?xBfO@00AA71~N8xQ*CeHVXX$J=(>VE$*fy5*x&E1sn~u0+ zkJD$q`Jm$ebgGH+!R;%YV?Nxst^Q|t(n_V10ZvE*tl7|4q<{9KqtFrgn%A_Xz0}44 zVWxv3!_++JaCAz(_?e~Y^6BqeUr&N+raFf#fyL^x7qvoQ13}xy06stl8VRj}C>mfb zQ-VU4z9^E?R#}pWi0DZNAT-SkVj}9_D0Mhi1?3`Hb<_Otm9O^ft%u$8z7y`gVxMod z*VT8sQC|Ly`j*(-}`K-l_#UmbeP4ec*{#l+OQ%9dLW zZMx}bUEPYe?Y#Fv*T41X;%{iHn_O_fR!1Z*deV_su9R9b{i@WGwI3C*Do4c^Nbe+K zszjFctE>MfYEbez`ll@lqV>|jil|C#k}phbwa|=()&xSPw*~a#Y6w+;uR;l@VFSWl z8F6DKA~WvlW($DWcS@Zz1hko<4MZ%K1Z80?kbSWuD5*bR)n*_a_2&rO@k0iAP+%o) z7nmX7{4l^Lu;MBdz?@P+*(j;=W2zvsR%#$(!DJ835??>6;V^K2)m~R4<_Cg~nlS`d zDL@cWLDT^;HtL1|%TNDk)rUTR*Tpxk>K-Uwi0;|0&W`y@n)W#PkJ}&khh&Y9?a05X zMI)n}Lxpmc7r@-Gs+T`s5J;hrmz0f`_!|!V?FUbK;GADCn!lu>y=SzgW1y$Ef3*7l zR`n3b6P4`AkcZ4a{ZjDK$-~FAc(kqSrI1HG{gb{FaA0W~cf(5|mbo%m>!pA>mpt3o z`BFgg@h=760L)6qfApo$-qpXNcYHy|&|e;HSlB+)J)%&5dns@!UkV1_wO$Iy|J_Sr zd~9;sS(VFP+V;K8dM|j{)ZNqH(cuGT_1Hw^fd#F%%xGTRIsTW&>TjRj`tYLFZ5_%r+1T7Vb4B;k-pPCC zx7|6Xb=u;d)`8+v%BHBTWVPN1kB^ObTcTH1N)RYJD0fi^28|-HG#JpB zI&TC;poDKL3CO2Y@bPA9?*g(`r@#w-4i7Ull+hB$95YuTSYleEiW^qWEj@#>Vy;{ipG@g$l|6yGn=}dH5c~4m%wU=GOcP>o zQs+crpY5jSD7xx_P5R8zDa0(*%f8?rB}+=>4GpUaM=yk`y5gTlhryUe2*yA}B*%sZ zVD?wRfs{osb!Eeay+U!Z6p|{uo=$;mSYiOYXn=9e)5kIfv@sF}7C{;k5Qe3|;YV1q zWQj_dax`Te9%@R%MtVjt>D|2sp)3%=szA*CKkoiJ&abN4AO9zTP(l@{ih_WOUiGTi zYrQr^dJUoX-ld4xu-(#dDY4LeV?d82GkRBYRteFoZ$1V_kwEDTk%MWZ z(5B&&EDGz=NXZNzKL(c67Y(ek3LI@g(W8;3^C1esQgY{xhFTM>ssnw>2-DS4Wo0E< zM)abnp?ASn<76$m)93>v;{xX?q( z?Z6V*l|7qKHBDIvSf!r1mWL@ESM&%dITh-bJvGJ3R66uDrj8SQ0*07ShO5 zJ@z2QZp)wZ(F1r{_p0qRU8h0wwyU1F_FK#DxaNd8 zXHMLB^XnH}wBLfWce?Z3f4=zIpPcZ;jjucVF0BZA@8S^B1#$ES@73H}xXy$|8{i#X z)5Vy^E4x0#o4S60i&n&oI~jtPd#~~u3|)i<^1u^r<%<=3?Sxezmb3x%`V&{i0oVCx zwBT!9G+??cO^795?13<#6eW#{?DR!KOBQnU*fPUSIBkrM3m@R7mwmq$4XN?MA3cHi zl3k$@fM{JzH6iSe_~@J?Ke6D>^S(8<&9-CPj2{{|Zg}Fvv7NU2;(2bN+JDX}?%DagVl&im?e3n#YYRehJnAZ~ovZKR@)mqE?z5Z5YmSS9WPC zsiaa;rNE8;<;VRpuyN5aQ|d*fgP|ps9CfPV%Hn0m{z3)hn}#3AD^C11@HC>DJ;v$) zL3tI27brQ}WqOoEQ8!n+pFm`1NtG`A)<#ewp7rHQ#%F(JjXI}pmtjtyu9+1-{J3&9B}-vL~-6!i3SZyHe95S>Klq5|93rk1wep5j&`sM|&Pp+NJGKNQ?y zT&)Jjjr|243gw#{IXLcDc_=V@-iLzw!@`^El^U)sIyKXxAY(E-h0-o5i{yKlH<=hiv5v#+`5)61@|7`ycqoBw0i z&7awR?DkjIee=)_b02K$?CmJM0Qc6f>74$Z(Ir1_cym>APwLh??ilUT?RfNgv@nyqY`v7gzUe>K|KN)4zOke@F3C;S5GAt2Rwv zTED1fVCv${vnpGrFK=93-#0u`d>_8Oz1ZT)^)(%RW1AY^5b!k|I z!z`Tw*?Dk^u*&MQItAhKQkuBs!)z)dd#g$+T*?SD*R4AR_AnDSS@X5ZQDs6&rywYB z=Ufz)PArXMlLO3{rF2AeWn)!b2BraLmSn98#NME%v7y97M}LrPbi1rn42-wbBrGQe=_P64YNA#qcDX7tQ# z)0Y1SxV&>rEhh~SG=vO{!+>D0$z7PnRd~<_7wqFpX(UNz0%dz7lZe4I#mv+($_a4# zqe*pa4=DpbTtQA*&l1pRzjxUI6LKMaIVx8ObD=!%ASr-u~q{qC`*W1A`=F zd{S*_U{g#oB_Z|ao&=?1-~cTId@}K5Q`EZDBDyk010}0uf@`>0*C zL$Z`n$_LD9%Fe|gsIyfxvc(RYSmc;t!hj_ZQxP$gk@{mu2I$HF2p9Tz7=}_vfz^Qrf$#}dvi)bQUS8irtxBc3`IfA8OK&Fft-`q?n z1!bSCSpsx*>kr#RVL%U15lk6dB4k)iaSUEG4hdueC|MW?@Pby>SY=~h2+-7xz#!)# zn5Ljiv*`pof*S#uC=F=J8xDzUl^%G~MBZzGgf#n4F0TL9JuPp(@WD5nci-DDpYop4 zx8S^Cd#(2l{rdACIPv-iet6nDA3AdUtaJ8weDcJHkKgW*qbeRc``|Bp>PN3WZ^~OQ zdz6{h#fvx>ulwHJO*I(06wRkjz*{?6AEh<&vaa#qq7l-=c#qenntJcI%2M0lJ>IJR zC;b>?Xd25jZ;W+xUi~fUD7^9ONeI{fvYmmJ0Nz-CAd1-aZjh~iAt7FNRMn#teL0^O~- zxVdNi_^#6b13aVwo;cwv2Oj;->u0|IhT^v|;Q-3@%r95I@zO`mIPZ5WcG{!(tfT)XHCj3-S6id;lbR0Jt_dNu)|y68WYi4;GPXn4#|r_0 z6iOgU6=q`}wSS=0O&}4uE2-M*x{(wJLwcC`Hx95?LD9g0W)3!At*=o`bo&9iUU)*_+I&=23NZ;NBt^fupDiTq@-`kfETusmDFY5 zuay-3>LbDAb>z)+K6umYS4}Q{(w+@V_)g${NB#8u*FSa4#}~Z$qKDso^|Z4;J?;08 zZhT}$Wo<)o_p7dJyXhyDCw#it5wXw!i>G~*T23`$l2SLdQYGPVvqWHns)*caY_x;Q zg<0v-H2oDP|MB=w&YLo)#=T0o+-+RlPuwLu6x;^gj{e6Fh1|p4wQ|q-2OkQ|UihJa z-m@MG^xR+gp&*clg6Y-|1$V#aJ`{N2z%q~8zxz<=?CKvL?d%^J7%b|>l9}tqjT^kV zwsiJYZN^F#|GkHTCJYV%lxhz3w0HmMwEpkCxJlpp-Iom9dT8HwUo!T`*R_6gzt(wo z6lNVQoA3Vc*pw4metbyX=XM=^{Nj=IPYe#(wW5J!(A_)G)?GxbZ|U4vQ#>Y++4`a2 z*`Z-UAaSKhUw$Zbl^zPn$buJ5YisdMP9W(pElB~6a!HMEOvUO}>P5;KWB400Pdcd`tTJE2@dS&zI>@}^+*0-pdY9vaIr4Xr4 zhBBs}J^e#ngTpmlL$^;`v3OHQb?0zhbCHG4tG|DsuC;gOvf34O-RqkB8rr#!c5L2)(l8pCo9c&x?U8V#>?KNLf_O*?`H>lu-T$AQgZUN5+(Q-eUH`oq{NNWi@qB36yB(MZy$d*~Ng9GN!8d_;4{0sO)Zu7Y>9JnSf8u zt#k~6nlR3)B_G}-E=^FBI)xO_RUpR+8sD5NG9@7&(sHNZG|C7`5fNi1M-^aWYLHzS z3zrIz39i5?t#XHh1AX!$yCTB|rq$eb*ry=b8ur{x35*FD++&t2uaw<1Wf6rv5E~H! zS(RPU0AsH%S;%%~ht$FngP`zNR(dux5T(bstYa$FJrI#F%IkZru zG-8kvWLR=V&&CU6$b`~>03R{~GAOHPhcgbmXbO~4A!tlNJ9h(FmE4(#PZMiQWghcS0q zSOs;-cQ=tWQLg$B4G%MU(O6~t-s_$`?50^iJo2N1+icsv{dTS6#tluFFt*DMKYsJs zhktU>2XCH(wk*=X2=}H-A35iu+v{HR(%y07#`fO3ZM*IIG{FCI#93F|^R{cJ>ur4L z05z7bS~7{F$5*$bP*}-DzTFEmPwX;`W}FH=hP z1ZA{wWMxD^TTY2NlB#N#8DJ<)2AC+I5IRG7;l`c~VtiTpa)fBqjXOuOx-k=%qw5tv ztatEeL~%_+PNQz7uRiq;s;UTl&;Q1HMPTMU=zHZQaT-~l^yx(({rUPEe!A(cmp*jZ z4Kt6s<(W5L@ZhA+ue|6xwXZ(yPp5o#$u&Qy`qiWLt7>{%I!ZTz;l9%Ez8aggwEo18 zKYi+d6hGfCt}00?-w9U}rLa>7%LrQqM9f*m0Z*1VFjGvK64ZnS+wA^vpIGqb3m^IR z-8CA(;_c+W|4^W(WW(64!!6x?&k{3wx0?UfLm>z>@cGhbm7cq+X>Qtt|II^T>)V}G zSHrZ7A2U}tl#x-2SM-E+n_E{k49r>6`oyA*+AuE}Y`AM43*>?RmgeH!m4-dxAABg( zHZ=A0Zh0tpRLgB-#clmR+;{a26;0pRXW)0QYyQH{!+&`7z@Lt6TK5cl-FJO$-B{Pg zjulfnmfSx!&{q5euyjfdM$-Am9||KQfA^ul-Jl_-ZhTEco*X6F=^gQEH;h8@|A;2K z7wG!-zNNJTk1eiUvUzaEiiWC9#rg5Z*51{5dPPUT$N@95%jGJ8wW^Ha%tf7P3Y34W zQ-GO|iIMFDp)d?g1xqz)w*0$S>8AzcA0CKuH?69w%H0zna)jIz zpjm}4AK`exVE_<*Dnf~2$iwGC50*WdV`TOOj%C70Awnuu9+}b`WsQ+3N~w=PA_l~& zS7hM`(U7qMx?D{NqYsDS4%Cq3YbkU2!-H$EI92daI^n#*|?m-{+39K?XUFwj-M>t`QsI>^?H4 z(cmVF#5F}GcLAj)un8K53eJ%d|5)Z2sIyoEdMS&=g&;bCy}B`Gpz_#~^AS~|Sc(;Q zb#oQP)G9M|2q29qV?4#BH&rNdNHVh;N(LcbN%OfQ)!s7M$_(MK#Y(K$2(*6vdN$?Z zv%t)1>L%IjK34P$;s{Mr*p_dF@iORTil>x;AfHuJtMJ#YTbGPfJ|X0o#2KJxl|Uad z$=!BfQU;W!N(w|nb~S~=IEj$6#MlT3SWD4l&_pO((v;0yogz@=9OjZqk-iTLvs9Zt zKhI*CT~-#+EhW2hP#NV@L*T_;g7oMG5C{!lgI-cO4As@uju{*@a+ec=yVY!vvkH&_ zeQHHE1Of#%fUd=B+z^t(-MvG1Ke6$|k4`)6#@XJvy<~f(e%n>kPyhI|yRSQ`>O%)C zzv>k;&V2EzYY$m)(Y^~V+OO_o|FrU|m;d&o*IxFuWk=kyOgrQq-7EVA-`qg(n(l30 z!=O*_7OwZ8G1U@#iT9Ro^|hrx52Ll<#f4s{;SFBj!i51ZeH2-%lkUiSKmDsF|2|#K z>(06(-x<>yX&BPvAfN%z-=-PR2J0v+iK25B5mhY{CfX{<>A1Myz%pL1IsJBBjRr%9 zhEKlNM^G6N`TD{qtaN$^z)Am>_Cv3A(&v_*{?&EAJn=I{-}~Y{Mz-5-Y`5LU_TB6D zBd$CB8ynB~%38+ybCzH){?4Z3KeznK>mO=+=^VN z%av2@h-zqf4w-bDaEM7tL6AfblztdDW{RK>g!!h@AH2m%??gEG72hC)^6k zadL9h4L4a^6;w4C)4=CqbCpYUL9M>>l;4@^geAgK*5ay$I`eYggoFJ4>!14Z{hK$` zcK+y&#b5j5n$tfu?XBni?&7a3{Mw!MxBTGASu5K&HEel#?e1)MXDMz4Lw)ONd(QaO z6R({7M<6mn)e&`~M3;z+R0c7Dtg4$Tv6KSlf?CB&0rQbjwJH? z9xq02Q;`X73z47qp+I)4iCM0>50i5b`G53Kpl6VWf}5mTfqLGDf_q)==WcXi9zbb6 z_n}~kF_OkV_)u6?Kd_-|w7PR-#_G=2p2C<-+06C7`%utBcMOa?GJpNbnxY_EJrw%J zW`Ats%@wtuuIT;Vp6hR{7`W{%qt%agbQR#}ZPEZU8XW8F8SEb%^$KtLybp!E8#gsJ zjE+42L&5OkTuS0U9}0SVUSu1gZU(m8m7P+Eq(hS>#x$uL95Nw83)vIQvd5OD`sc?7_1OgZkt3D|r z5~8t#TXzca%2eWIa8qYSn(XOmQX+zL6^$&UoKhHY_=>f4rvN|5rcR53s7y{BK;_Lx z&nhLe)GZu@hR>asVVcj8SRriHl+2hiUb#MZlnpY-ag>FbD<>zU!Y9!H-(muf#?kQ ziozF^5SEw;WXXMvvB6grY_=$j$uwXUj#*AXLb#G8O9?qq@+l=aSm_E(RY@TB;wD^v zBA*u=eDVXgmQuG=+Y}nTD+Bfj<70`CPdg}_SFT){vL{)CSwIAW4@5Og+1oWCP!gJ+ zY$>(H7Ec-x<<6cj7prn4!#CLADI6Og8>lUvHpx^qQg#|6tg_12Di=7ZVOD{Y3E5xS3CbQ0W4_8o$xBc| z4oT7xJ=>}>K6>1xz=q6#uT}WcXURRr%8Lm>&>(OrPtgdJxEzHO+F>>&Fjmr(9X&1t z?skMF-+Y{vLO2=*DEV+@%cPblaU>`LOnl&@iZfpcN}r9&q;5IG_#j4OiVVFdFlkKL zTeT#X>(+J4l^IH+#0&v|K0Dziv>P24c?Dmll$f|Oa2gTj?#d>$O%^z#v3&V*92na^ zdJ)x)fC+m=QwLKtvV9Ebf#l@Sn2O6D2&#@NCJb;8POU;4f1C|o>~Ut#z%l6W>*?!h ze{|-mQ*M6vm6QMA4O^>o@Tqsa_4J>A^_bVqn7rN8Njv@V-Q#AQx!Xg>O}y`@3A4`G z(Y=v-iPt9SRWuK2oV>wn-gHyi9&Lly`m|(e zvYGQpEQZfOIHKI5*J+!d$HgM%3WU}gsHv)F$6St>{-I3!GR?M8dFRV)6BE+mG3BO z(FJ||d4GA|4Kx1z-B)j}s2CeRzIoiZ&hg{NDk{GEsuSLH*_3x&^%w;BzEoS?{_Xl1 z=Un`!)f4yVV!!+DecNr{T2WDXz?&yubjM3ix=r_v=eeby3)c_-)^F)9koK^M?38h37Ic2fxD`_&;h%&Z) z(qT!TR$NUip}|;aQG@_u9~tj|%+GOigf!#_9RDjc7&|aDt^n;aG~`WHST)4rjy6F* zDLeHM1&%N7lCtF3sD{cAbn>r0^^f}=`Sb7GxnXdiucNKFEqJ9`x3RvdrMLssRB!N< z7#!%;jQCXgu>15iH#I&rf88g3RsF83m8JNR1c~SLrf!Fx_D6v*$013{9bp1WR>f5} zQ?je6f~Y3}2peU2^F!ILYM?5*Ys@4+VPm|0fRx27m9NkOq}ZBMSS*#)hW$uBi)a zo>=ROo9D-p7|TR#+7mLCeeJzbkShJJDX!Y7xws}~Oi zoQ>j<(A7|X_f4(8{6N=jM=$!)yV@7t+11rkS6{qi;P%&t!hmN;`JsU1KUyS>#zp$pH^+UCx+b**cv8_;2vhk`fJ>YB~{LnA{&|M^hB+)^HF#c8ZPisX5n3J4>l+-IxuX8QSyii=1{c+I-~D7| zLwoUVfS6jfw0HInk1bhKyJSW2SF)O$iXWRY)Qu}XuAo%7r>FR?CfeQ(n_Jr&dPbkw z+<))PwX-T)AAhFqm-o$Cu(q|Kp-HbGJB~R;PK#1|bHmWoqZS$=XCrlBpnwu_l{**t za+fKd_7s}jGtJwVDM#+;sT*G)eCdTSmO+7ma$_KC&yQgh+)YOKBtu z%n05qbX5#Y)sUV&z~FD)DabLetcE~n)9_MfUam;m0`^5!OPxZP6IgQbwj(J}4A7=8 zgV-R20-`vkQb5Tn0+`d2bDTJ;XX@sP8+))^ltqGM_=Z*X+!a%ytY&K{Q$RMU5}pVf zFw1pAfRNJ|k_w zxy8YiUMAp#5!f|>t#Stq&fsNGGG-${NaP#F$fuCB?Gc${3+K8K(NskPUmyjImNAU#HV5M|`XjD8p}^df z-k=F=d8mxBW%8V%2+7v~B2cncOu2*)jkqZws;WU_;K_`;xb`j;5G!oav*hkcL-uK9 zPm@m*0S^3dGnEJeaW}{TG01XMe<7T!q-i6tiWx6F2|yBv41})`>K2?*g|__rC>mjs zslhTr26_;-O#XHV%C~$PO|#czbx?oB!3Q8dsaq1nlO=l0Oc~gHR|uw|ZK|s3hFJ0< zNS}dKOAyN8GUcu^G*KF$lBwu;ik`a%jdPVcnC3JR;IK?F1Bf#Ygs|es#T1hy9zEsO zbz=aN@s|1Dj=#*PfBiXk9d+{@J?hc7JahhMXa4-0_sl%W2~=mO(Wq2UF)Us$hW8T50u{T z$$6D$;7wh#q-WFWc!Sr*Xh`xsx)VROh=JZf2Lkh|A2;g92+%Bf? zT{-35S3Yq5*Vjr`O=KZ`_W7$(ANqMK1YYWM$fVnZR(boVAoMy$9U3TQCqR%sa5(Bl z&}2;rPV zIDBP++p(WmaLD98-96LOd1%w7n*RRcp)guJPm23|Rn?YKC1s z;%{iF3~tbnLBl~pUMYl@%bBHLyM>IZx;o+NAYaE%F忯Nc%9T&Yzg;u^k}pgf z?(gdF?dt9-ewgmL4+Tnma(43WK9# ziz;jDTRe-O^H3Nb8|iHy?rE;AsqX91t$Y%l$;H5<|601S>Ts_t3SKDNAmU|oH0;Z_=b1H%g{8njHOH`aGNG`DK; zrhx?;x}T|P8X7KgvAS+!?W1$oZ0s3(Vp-iobE>-g2Adj-|MgU|(6TSCnI>+K`v(R= z)b)+dUfa30WoUU__Z`z$t*zJX6u)E}cxglbvs2(6J+^iv=^zkI9QKz!IUozy^*>xRzvA?mvwdrAFBjPj_Gbp-E%Bqf-P9? z^yP5$35P9r*HCgzn!s~BY{ZryfyP_HERr@_u0kpw0b)?H>pZ!bh9wRA_=;-8%V1!d zyOJrd93Zq(S&VrB&p|OlAk@i-1|hMM4}r#2Tx1B);$_Pt8*GFNUB@^ujxRo@*)mf~8)Qlb#VdqOGm;2n;HG3(nAu-tPd%SCVx|;1Z7`F# za7i#bRW7?-$dmzCx#S#YHG4;JrJ)abl*+7fZhg$+lJv_6IaH=#QwJ$0Yg1_GrJk4s zGiJyqv=m%f#tVM=+|rOkpgd9^8Ko4tQU(@gqHI0b$4pS?jRDx4d5%dWb>q$knXn=! z*_hFXGfJ@+lnsNBCzk`|1M4msJ|c#5^l%VJf?+}q4op`BShCOkA$n$L1Sh9AG&njB zIRH_bCQt^1lrcf0aRn0oV8eXt!7^qx5g)!_Y1nfN?GRu<4=Pb)XE4jA8!^t=Gg3hK zA;UO=9AmF;G%Q7==MFpuc#35o;}V9@vQzX77$a;-pE_V@O3vpcv{^dXp;&%v7^XtI98vz0wIocFyUiIU~!>*tHf$OGS_2YUC zSi1VRU;gO1Un_nwvJe7^;!B4n1Xy~#A4~4?Wnib^vw^Ih_6sX@0A+s_O7ls>AX&s7 zHwJbPjtWc46dxf7$mr#m38&`Flv;xDr9f{7Z7xfjXa^lO*N_xKTm%@q(s0RldYuaN z(g2GqD0*=C0=)7^4Z;b{%XVK@`t!f0>dBG~0?q(SJY|9ECEwljPAB$rE3Wy@($yP_ zyHok0;G>sMYi<-i{<)32KX{n;^bMW;xtS+_ZY2<893lC-iioY_ZEBBfsHs|++Cg=| zO(Lp+06j8TIsf(|JwG({AwZt=xn<{kdHE0SYy8X1rsmG#UN>C2P8@=yruKk`tBLGFPDO!5mn6evMG_o0v*a+Lr0L%|IjK+oSk6oy8| zx<ifs0JyXAMWABVr&C{3G_YXS{1?^2Oy>~rTsn1_hJGi!Gthv2t z^^;L!=g{Wvv4!h9R%~p=LwL#%My#d9rflg*rDJL9krELU%>lC!8*3Z;hQ~U31{#`* zSLG7OaOd#Yv?X=R>xX7lHb1efv3GE+r@MG2TFs_QIaSKz-Ug{#$-79ou6yK(6)hV( zMrt~TXDqAp4&BwYrBfJi02+%oD?8$_aLA#u3y|pz_=Q2~-3+qCP3>dONzP|9t_ZM{ zREk4>Zl?f0Q$tx|?`oP@0LxG6d^(;rasuH%V}MEdV;F$}cO$GQqmi8uWqbusvN4N5 z9~xZ3iYA5i84Nz0yupeNfn|7>^<@xxS-?p>x##0X&&$ZC6(9DX;zjwaPQf6UX5h(} zv14FLc7++95()EXjhNwM6B!7a=&sq#>=ewT6V4$idhiM56mpkyC6`k!K9+xF6wpQky0aSW~=;OxO%kSO zBU}nW*iiamcgp+&Wb8q)j9Ee?a{|I8ro{(X-1Y0%$AE@GmT(iDk|ti+(F_K{5d?Cu z2sSlkkv_p{xzJb<0LCSQSJDA%SOR70YKnRO^;95r1E@Fp4mC5>qr4OGgmR{69OqG6B{ zrHl{+LO9BDUc9n3%7sh}z^cDtYP&Jvjuat;l8yIEabjeIl=xVX}XPezQlOiIO% zao8p(10$O&3L6IU1x3iNWmw9Gi=4Vy1p+f>4psR$!FSE=gICbxA_O6K?Fe9jsD>r5 z;ct}^Y^sW9>Io`a;|i0nD44hcSGsHvs1$^rGHeYW#(W;5VGuLIyKEWy*p>wE2%uXd8f?W_OY+ZfERh#TnI&<~Vq|YvU|8-A#pMK>T zcb)mkCm#9u*()!9$*OA(e(H?f^u4P;^vVSn?YH>S{hv5>rxjPfV!=f(`O62loqx_Q zkDRjGO&8s8;kP#(c2n{DhrP<@Mcn)Pt55xdcX9oXX2YAk_Cw#|1zk^~f3V~|o|#qe z_c{==w(X#keslI$)@W(8ubPn8m;NY`SNwxd{w*kP{16C?Uwg)%^f0;|4TByJbH;i+ z9RkOEpO8{tq;t^9YMIajC4|tF80yfNX(wnP>qGJ_J_1Kg2s2FxVl2~oamN_};9wE3 zgui}I^wYmodGf!nymiv&hc&c&yr}pefG18I+jiV9-gf>8->8{<`MrPH2I$V>d0yi(p99C!qr;yiwvzJ224?zO;eshI$0>W{$Vr5Oy^}Jw?1K-= z9#Oj5CYJDR6R(^}JL|wGY z6x>6|xm{S58codHd2$bT+j-VQA-DAZ@k4-kzRCt2S-!8LVm@?9k6W-$NlZ zwD1s)0mg9DxYBXd{ObPOna@lbH5)>$uF*SvVs;M65`v(|J@U0T1Pp?DTFHa4wo z=vdP}de@UH=TtUq=oq|jMrC75$6$Y7b4S;jmZ53S)Ge;=dvxKZDGO_Q2S@vg@9U1% zb&fo;aP!lvTjy1EuW1|Z8yczJxUsFZrDt$-!G`XtuF+L3gR|CjHFXWw)z*4n6v)tV zH+Br<*Kry0N>b9a%cgRX2u+TGij~6Y(u;rXO@d_GwyJ4Z1N`_ib&o8l7PRy%Dn{v; z>E6997cZIV6bvT;rYH(BFf=lA@tVyoy~Y1~+}5eu9^;J-^+0M``<_@*(>XX++tgaK zspu3O4>-7GLp>rB$oVgCO+LRE5}2`PkcX-5pg|yc5$s(M$SkW$zl5Aj!yrqj=FNmA zUZ5fy403e2=cpr@cZM7Ts|lx`=@hKSC4*Ov4OoKV+Jr8P?{PcMgUlFE!BZde$?C) z2n_^Lu*%IdqimnSCdS;Mg;g~86KtPhDiia-&RHz!;ON<|Y9l+X@8DCu)# z0|6`zkZcMs8<7J;1A(JK@78RHn<*$vxYL*h0j#TnQ>vR)ORn@_GnJQB8fHnBQlRRs z{v0s_xx_4W^N|rkXcch9IlHVlx%nUyX3Mob7=t3_q@8A*zSEQwCj9D_Pfh;x{G&d#e9~u^ z=rO#JYf*F#-o?F<>oL5bdsEN%+_Y->j+UOsTf0|zEr+-|7GL?lUNt}5`D#(L1RBx& zF&;fYnpTo`;~n zMM)IBkS;}ZQ*BTB=X{TjW11!1l(^8Cp@HGipIC6x=U4pbm``+6RE+F2acHNVMt0qG zY`bw^Ipo-Pd}7J@*E~44V&^eS+TC##51#tD_x}5uE3SK}dB1~(XkPk~u|4*%RP*}x zoq5GQ|9oljiq`eS5y-PqeKJ+^Ali<`=* zMm9*OT`#YPj04?x>33w1+@MnA9MY$SrYywV>kf>HTS;fL&YyYS07Z>t@y`? ziy!cne-W@XzIb+1n%TK6v*ycyy*YC4+VPe<%hz$ zbsGB@dMLQjAwUCxV^VXIbl(=&R0lS{vTYc zb6w-6n(C(J))kw&|MbMlCzdt4J~F4Wf6yyU)5uWq{q6hbte>)Q^W8Jn%&%(o7Uhkq zt);oHt?#~BRrA(&FRtmCx1q1Db7<|_HI0qMH;3DMhgQ@NJhr%QRc&`qpJ!|Fs;Ovp zlfXu53X;QPsEk2l)ih_Uz-epi9vG}_9<1sbdvayNozqu#_Z1~#rpV~&useH;XSWaz z6=mwi-OkzU|@u&Db6+}28PfmnI;^nTXzbsxur9EZl_RTV&wD_5MqI@sgSCP3Zi&e^@hjI zY7D~Os>4LjhObD9f*;Imr*aqstI3>we4QI~t;P`{ILHZ2Fs#yNaD+)oPJx(-PD8+l zyEB9*dgaoyWB@-`;Pi0VxSECrFTMsG{4pmmNaE7T6(FTsaM0L81I5J>!IW<{0IN`P zj_Ctp9ZFYGDgN!loXJjJ4dk`Dme6n?7k8iWcwu|gcJ~eW_-)1E(E})P#G`{0%LsG z^L1rxgc1YpF=Io|xY*;;XDs++5iKEXN|uPaxmqIR-pxL2LxVj_N<~QG^vobg&=PP{ zdf6dHNI{%E_RJJ2*VL02m*CS2q1u?MGY<3&=poRAfV-g(SlKucIa&o38p)l&AVNl& zCrtLPd`)eEe3J+!@KYZK1eUzW$izJr%f^`|YfCc1fnMF%!<0UaD@ye6>5=D{=&s_* z*DBbg;O53&IQBGN$TEc^oU_dmcR zSG?VJeG?`Olp5euFTV58^NR2Krk!)ue~K%MH2)g)OjQ6GMbQ1CibfhsS6_-xPWvPs zU9?1W&e}qCh~qzB@X!}-TeEr7rjdcJhi0t((D#;||ILl>zwSw8k(w4a#ZguDQAzF! zBDAc@ia;-S#K@?ERYN3k6Hd{xl~!@K@6b#^38DThp;0QS1K^4<1UPmRbEz?Nipcp^ zt*NV1k?){FNMkQLo@DqoQI1khp>VLIgT<4(DS8aB5)K+ct)whFW@1@&6dj=)O9w^^ z4eEV2%s%yF4|a8R_x2S3o2$2ZpHm;_(p@MwZ6CEl=;-X6xn%Rbvs!=sX#L~M2AbP@ zuKV`mhG-Gjw$mcD1h__+@SAX`5a+)~Be`k`RcpINzf z<>t-}jXkaH>Q+1yEOGpM4+YTl)wPYQ*4NcHcQ!U@{zs*;a(#Ve>+sUr;zybnZ0MT4 zqH)HewIWt;u77O7`iJLNYk)Toj4iF}UQ^%Wr5=v6wX`p&>R3|SfB&qt)0Q=@sqJiQE57Amv!pgUI?~$S)zRT`Q~X~`vJ+jt zhG(U$4aLuBLIr=zKIiyx7QTFCYJ2Ee zCo%isN{+v%+!Mgn;3!f?m~odOq8w?GfGHOms|F=YQ-sJs+}{b7@=qP|Q44x?Q3VJH zxI%^*N`xY6sa>%eJ!9AKw?yE=AZ5iNdV$y*ffdLg@MTP}M3X&clj`H_ei|DFgm~F4 zg{Hw=ID;j<6cR!fiIR;WBuYl?p|Q_#q)FCx6mv^7I6Fhxa{Cfwb%RE~diCn?OnDj5 zvkXqk!o^ZKbW)2RK0&P56DT1tFqI%!2F!So3G^u=!BPenBWRKhTZc-0m@zhJ;w9@O zp3jE#+0&;=&P*Q0IHWA$K*-qIK0IY7IveK)2T@#kxg+FOqAalwAJhC$L-v*_mSk07>3SdH@A-JkxsETV)42TgSH#;&jtI3X# zy2&L1GUe0mngKr_Msn^xH2HKOpl)E3mysI>kZgo&1W!i=v?-bL!XXG@m{Y`;hG2+7 z&J?l`28OXu-E!2eB1Q-e0vt9$aAj$lD;r8zdWnn6c+wWVv0+XYX-eE^YK9sCQa(beQUz-A(PeFVBq5)Va=K~Hk2HDgcCY(<8CTSIW&Fw z*g#Gq@tV7``LG+Fn*4>zw_P)H(#_L;b-@Q7JAT}%YYv`%+Rk&&-+ST3FPV1A#HtU! zcF`p-opI*w8*hI7imMNrcfmf(t~_w@rTfo6@5QrD+wT5rj=JCz55Dr8hmO2?j`w(- ztp-MGH}P-mkv$J64CJJ_q0h2R7u^C$3zFnOKMj0lfdd`s#jD= zjtpc$L%#e6bvmf`UN`eE^NJT=2cy2R{m!YCpT2eNTQ0ok=#S0?Xum{Mv6mhD3#ArU z@l_z5XPP(ZtA?pBmLg92>@)V%R~j}NDL^x&R8?lm<%=F+H0XILuPHP&#}i355accw zrLbj583;7TfZirLNcqmN)VQQ>R<*2@jsc}TmA=Xd3eeRdfuoF4OWiIg{f4vD4M_;H zBUsArb3EfK>p%33nLcDbQf{cedb`{E`+SauTU&~Ub!TTseO=wU+TP2*^!S_4`NP{T zpL*b=JCD0%@daO;eajDLUGmM9hu<{!h>y&k^x36S$SxzG!IqsW$6x*rrDbSr_UgJPm(_XL3u?e;DXx975j@f<;HguvM~;~* z{j)j+a>2CJp%F@9i>$4>0%YK7%D@sKl}z2xjvfc@Mqmrhr9}8LCRn10FBjVvw$Ixs z_*D9gQ2Lla=EageA8qb0+$rG99-5T%4g(=sd#~Wmm$qYb6uOQ5Fj*~1se8#T% z=QOFM@3Lwqf@2Cq*>h4;H)XWtmZYBw2N{_}#3xf(xB|z4I}iwz+*wLIJC)O{L=5oE z0WwWl5|@q5V$U7DBtiop2eK&Qa%U_lG@#`OG6uqc?3%rBNe)MT0=#4g`VN zi;kgiz`>#lnOVHJU<*_A=ow@aA#h<}7kvB~o90vCAxDl2GcNgD5QJkOoGF7KNRvBD zp|JuO1EEpnVo5~R&Xkba=5rw^cV0eC4B!jLUUW)PzzT%CDGsSBFLg5|!z38ck_aJ( zlM*b)#I+PNg5x0&ZX%jGPB4=ogG47QJ3Yc^(C2UxR28xisU%ha=~;pjg_k87Hb~-c zm@=jzWY;)?3cb{sI}kQj#j?r~po-yxM#|eaIMP2l*4i_$zP3@qZT+Jk|M~K_U-iU6 zr~KihYw!B?`G?*8zKW;L*!}*ax0yO==O<6!b;^m`t-1b{k5As?t`AJm_s+j?-jRRPy5tSw=6sSBlGgJo!;Z$c-~($4_X>;>aGW$ z{99LzoY#5=>D;`~d++xipC3rpsOY;Gc)!b`d)#3CdU@A}kOqK8X96?L z3}0w^A>fd8ECgMR7J|EGLoXx{_xul~`PP{ZqZfs{xbL{?vDck@&$mDD;pU2pfo-ZN1XJ2vc1C4vWtfQi0Y?ocycGzK4Ma8NE-hA@;x4+@y;{OE& zo@5mS8RWI2rjpe!F_09!=(13a`~!ije5LQI4^-O&Pq>w@^wZcYJA_NVyGapf&i%^D zb3gy&jX$ou`upoAeRAf-->iJ=B}J8l&~ashQgB|XWGUZSmAJ|XO_@F|--{+dRv*L| z=N|~z9D3RxC8D0tkY_`qwZoiD50+k=s>imQ>I{TCr7wYWvnjZ|EOFGS@h!{#gWP$4ok=;->8ci;uRSasHhJPn#~0Grm%F#g`r*8tCrr zA6ik>SXtXw)7ZPYsk^?l|KS;Ho?g{`>y+ASzqR1X?^V6?swe*C;)jp@c=3Y?I^K6) z{p1Hf^zg49-hBEkkG=8SJKu5T6K}qF%6qPx_1d%Vd*x|&9`@n6|8&m1Z@Tb7Uk6Y6 z{Yjr$cEru|-+a--Z@X;DK_~rIDN;8K$x_CLfDdl?JGZtNdHZ|lX}7=ULo=o>DP9RY zuX4xm@iz#0D7dSX9}4as?lv#*P{_T7m+RIK1@|8YfA68-CT0kl&L=LWTp+U~2uJg* zhXMrd0H5_xaL@lo9tr@t^Lo}pL0$-p;$5M(wP)Irx+#k`&tBUxW#OjIJ`L2f9}2lw zg9A?-%8hGUhM%r%Sy>U~zTT|Cn+dkaV*4gp54~6!&;#a74lzyZNyZxrQ+g8iwh-SWSW zrRKcWu3f{itN0dL@h+67SZ`0ylGW7Z7-ms!^U}1Id zoVA_xtsYxSSaen?U~}ou{DSg|RXP#Hn>JX3o|(E)7WPAf8|&NenNhi>b!>4>_kxW* z>zW6v))&8=9AVohDI3b2V^R}HcEvm4=tzBY`}BurP;@X^3Z^%R-_mJ2g71Sg+9{0UYeCk0by&&wMDF~&Imy-tBWFH?hn z12W-;2Fy&eitY1u3OGxgnaWUNp3kzlj1xT|dG~OQWujZcmP?RfI<6A8?2$=C zN>ldb>fvJw1ZPu@49JLugR3b6;gltJ9>jtpE*slwsF=?tJsV8mE1J^Li_4v{(xIWw zh!FykoppswV8)9e-{Mr1Zg)u}S#U4&p_H;p(#Ji~SuztB4Y>d}P-WnnKcvKF%P+w~ zG*py;hTuvAkqpArH34X1kSjRu5t5Z8<03#lmKg#ivDBTAoZ-j;Ap-(m`hag88Xv>d zlG_{vfTq!~v1$WM16y7-FbR}lHT7a2eXc+V^vJ9({Q)irl&-PK?h^21Ce0i&1_mLV z8HmosFy)fE5u!9qWtt)ol#Vio!%&|TDx+LjI7yI(jiAl}jdW<}DFdD>KJ>03CUHjr zRMKP>P4tSEA|S&?=maw0Cq#xoL13R-hE?{MsGC)Fg8)|OlE>eK7BR$l`9w)SX|jnx zld`))h_OM4K}I<`*b?NHW0u?vpT^wal8!5R>vAOvMT;if;u}j9h@90Fq+GXLeMrL= z4r5Ug$WY0I$S~#0g=H#(0~gmkchwC~BY_GYrRa=l!p+o9$qRC(^aeo|LX#D6Yv#d> zOesq68Jm_@L)+5Il`DlPFC|~421`JmQWPK3WRWWk7b6==pfnUG^eD?$vGU|Ia`=H{ ziLnp~nrS}HGz3#artnSW;uw@GAFr)L)3DD}kp&G~gPtYZ&eFF67+Dzf8rN1oP_t}s z-Q4!Yk9I7$uWinsX8-!zU%TeIn@>9a_cvZJ@A|hrdHOCZuQ_PeIWL}f!QKll+D{L> z>Emyhappchc|*mcC+#%ztljm!dSDH(et61>JIp@&#mg?;=g-IN{JERIdE70FUwiI- zr+oGq&6^i=Z|YizGrzQ2C!^icifA_S6R_p}%2Iwgmfn@I_xtm{UZuO!7je`(d9Ax3?LXg=6%nA$N1FuSR3Net`KBm)?F}YEYuj{0pme;T zG)};2bh*43=X-|YvX=-NhzTS#p7c5~UOEu%@rj>#=KUXj`nRWkaZro9;|?R+Z8x;t zc4IHu`x~#F{GyZoc*@0htlj&Nu?gD_jUPX@O`sUYMJM)sO?rGZR6~%9X-eZs6 z9d{&b{^t*zf9-?s_|TK03xS)sDWm!%1w9XXqFePP-}Aq*UW24K`8GKF{A4on@@4M} zb9Hl74F;uO2mR!GuAVyi-&g$0#Sgvn%4zSre&(xAz5PAcJdskU4@(6RLQwYlPZd^4 zb;CsN8d{Y>?1FD@V6SfM`3jeBMMB^!E{3TU5bi)M>FDV3_r;yP3S-3uzD8Zo$wiyW zKrgDTRTEwSP3?{-av>yce1!n34){24rWb#w#?-2wg zA*A7yKIQ@`FM~_JUw`z6r{4O|`fuD(^Pa1UALd8<-Iw2c;wPSd<9YWS^YQt|eq!M} zuAF+#*EgL0g;jVuw+!Hr54&;pucmcZR=0lP7f*leM~go7t2N)dx9QWrs=Vok&wTCA zwHJJ0)+JwCbls2EAAQpkr+jMGjX$dV=r7h^`GcCnKQixMFMs0j4;R1c96d)JAbQG@ zf7X$gt1Kkt^zL`mFWz&-Ju5bN(z)OKA3PL-kULLqHLfrGP$=JmjPgUl-7L4|+}yT) zC|E@`s|AlzbRab0X3ETq>HqAZ0M)Iuv|4&7jEvN@^e)@fUDZ5PRo^v2IneK+kX+)J ze7Alm=(0L`haQ@{Vcy2>O}%4nT}ArhaxtF&p#ZI<7-?NQ*0F4`yQZnBML13CoaJ?u zt%LK|w=dk#X{(;8>z}itR->!MZ5tR{y1Dm(xi#zCh8sHjt84Qo6^Bbb=VL#l_looy)$G^ADMAF0YVXIc%-?rzi&WQi?|G0+S>p8==`bA zG|a2&nzz2YzTNH=__oz^hCxG9@xm-$97=WFvdcwrN_!+ad&9J+e|XmFrj^ZO3pVzx zYU#r`W-{VV=R!PU{mL;8stD3R_zgiee}5kiHlC5va*s4pE6NQfyX89 z3_?6_r$DwuNJK7~5@<3^p`|$a)bn*UH3$ij!990_au2B*vJj~J#+wl3gOm^n4LQWP zs9Ul7e?60Befe&~o)_6*5X%ffQ(nsClGSa2BM|@q|MW>jK~zi$|AS5;IH6%0{xq(# zOFASeYJs|jSl&pUZVIH?On%Y3jeL$Je%Y2uMZ0&0lOGS%dm*rqXn1B7F4 zMr2p+IZq}2MgQhlFt$qAuwjFutSkM2byFM01z<`5kUcr667;}s3L$_=@{wvZ5Hx$d zqG3?pElK5HR%l#lTq$E_iVyHm%{19%Brm?QW@8B@f@}7}5EP(cmC}@Pn3&RMCltZd z5SPp#C%`oo7RyML*mFl!AewN_ALK#LBQrZ$Nf%1qEf$U?K{e)EqYkvMZSvA1WiVVU;BguJ~BuOGsS9lDJmGT!_>y zHdb>~SfzC$4|blNTL4=e&I$KY524r)>Z9 z6K;Q7#hkNtTXx0EpFCsNHP^p-?)m#powV~)XY4lR#2r_E=#@1ed;L8} zYW9x>r4Z()iiu@AH)p-Smd@?)|{c3pFkI z4r&?_J%(mUYvfIxMn9mz@Di`z&{pZ_=(Tz2KeZg*_1SBdv^VKjnQ`&1uXWKu=~({d z!u!|@1Xdens!P#qhl_O%GaHBhlq&B(Pt%I|n-+W_+Ah?^^8f!G{(%c2i_WcKZ6esyTu3EdMW^iG)2v(5OiyUOp+l_9!?a0nMKYISx5Bp-(rPtiwdf;mZDk_F|-nsa*Nfi~V zU-`DvFTMNq7d@!6lBS|*z|!*wDt9GHCzkdson*?zK;MgrG*v?%OGA$#8{H#cQ&nOB zR*t>|dgJ-`yyNmI(EjPnKTGq#6K>Ufs_Gj`e{vZ(7pwTBZmJ=!?vcTvr~UDtOaDi) z9ki+-`S%F!cKNku{E0!B;GDw%iWv|~_@GLu?6!u1t#r+gz9WMw<}mTJgYq`!h>_ZkLVznIkAlYW2jq~E>tm|wi%oV$;@d5*l~!bOhoc?l}q z8_&D<;%~42%AYr1__--_7q9KcW@F=w zXPWMKV$;v=tGentE8cV6%=ceE>yT6a@TT*N`a78lqUl9DpChy{|3Te5uAF|}ryuI; zd!dH{!41vr#ofmBfA&zwEjM>9_qXSLD9}9jp^)34Y5Aexh6(M39}0x$eJF_j!Vd)v zXaB(P#tj>_KOD;sg^tdyf&M;k4Y?0PbMuVM0K=GNK=T^xb~<%Y%~PwI);9MxG!<{j zXv6@G=ROpA`v=<^YDbp+vilcrY5(!7#vV9+VAgksdOP_nUEe-?UCYy}n;u_Dg#URfq z0yLY#5qU~z^adOcAc=?zzfg^C`QDwY`izc^E~%`!f7aSXHG?&sV?!fbIu@g&cet*5 zWL{-cL#Zpy@enr!z7zkwYg|u@Uo|P27t?ax3{%E@rH~JchyuBm>xPC6 zHLOyaGIkZhls<9Q!PF3!EIVvXUD*)CGDN|dJ$H_->ca)N4_!J10(&o|n6QM9luemI zK-kpF%yT;hdZ9xJf?+CR3Idki;N>vG0cg-jSt;1CG=<=-VqP-;pL7bQR_O&5BJ^To z6(v`esT%~wF(8-{vI`ZlvnHym!=wa+QlO%arg^hBg^M%@8HSdc0^%DDd%kQO3rc8i zi}aMPY|`H&77 z><^J!Nl zIT|seVSuW-iH;A!VdD!*7VLf6`4SY6F_~rRfOCo-At)&!8^qmUX-a8CnGaV8 za5u8WG@_S^QQV$f(T<}51S@DlSfWueIFwT3Ym`5*hNToUG=w%X1#U?qMs}8-fDeS6 zSRq6N!iK$7H#f|Iu%WS(;Uk7N8tP^W*}%=K3>;_>(9Yu_u~IjB0*#$Y0aGZk*fYrK zGK%kJjEr^m^bL=U4s^FK`@@&3etPx7Paplzd9SMc*jtufy!X?m?DX{MyG}V_!V{Ax zK6>Kzv(9<(+UsAfzg_*ILmoPA;$tW8`1IK?`t$oL=A5_hqD%IF=(q{fPMLV$QR5#z zeuuhS{$=SE2i|$uxW^~&!fW=qdrqCSQz@B0^? z{DG_PfBUtw^aI)novIe%svkFMKePm|FZ~6Yv@UuxFYa0kJ&8s|Cz<|-M#H0P(nv7K zkIquQ?ATvuCphXW^e0+1ZAN~&RmY{>B8WxS?Xc9->IyUoubTXOT~>nXwJfD665^Vl zHtXf!nCkR2MLIn^;XuQmh9gX!n^s)EJUwii5KRfgl_{?)f7C#Zjii7$NPH0sTRTE; zTazywj&Hr>L41(8;F}wusheET7S84ZbY;mMNr|T=PUj3C2m1874x6(oE_a6^KS?f} zng}f;;VfaUAdqR;s|hlK%8?)uv7o8jJFj@;_0az0Qd8AAcwe4i5>+t1wF$m}y1To(ySuyLf4{Z<6OLfb z**xsM@B6yOt~V2YY50EOC5=GyxZiccpsZjFFf>)=$mFQKQ?foZwLUYk{29i~-U;09 z#8jxhBd7aO)kJvIoVh<;L!2W9N$AxDxLVIN+&QIR(w$>vWLBmUxcF--cS;W!GE`?l zV7ry~RUcg4TpsQo&mbG*0CF%UKk8R{Cy<#b%=AtqUIwWC{jJk#4c>+!d98Wod5sf5 z;G47;M4#DTAbQBGCcJ=-iCMBBudy_#@z`ryfhhJBd_R-+uJ9>g8uOdtiUBH{vx;z) z9V+F&0vhmmvvO@U7*yjlJHr(oyL#R1cXM-RWqs;uFL4vR*m~HzX_X<62B(asG+5{I zq)>u!RJ2Y@kj`jf0X8@x;p>f`!Ti?JtmhzQ13A!=m3bYK?ZEY)j?a61r)REMS;$t= z=Wkha+#gs*{a~Ljv66}%Z&|$9QD3jFZ#>=vct|b-s1&mX@=)Fu==?dYv9m#7nSAeb zGJiRt=+`qa+BFmb2frIn7u}!b7)N}{5$zXSzmn-a0+qi5@c{0(z z*!njJ$jBSYG#jE}|83R@A%ip$=Y{OPS_p;6u+&JB$3tyr{-87A59|J*%T3d@L7=fh zivPhlC`zSr zCgJBPOK;e3l0`^5MI8eioI4Kd!C7Y8$BIcvwVMjY@95Y&HE|SZnMxH#-}l5LmwzJ+ z@^*v13SbS7kG9U+v#C-*Q4IfS5T#}|J4Lob+rJw5>jjJMij(9yp29M#73UMc2(q0YNRSrF5 z_*y2>3Ahse%k78`)J|R?h(+){sBNb(MIuSG9lS^Cn2yfg(KaK7H>LXt+CH|yMk!Su z!tamOHia+R$AFV$E&skASI`nk0Q)vg(`6pm75PFhR{}RyMc+%5#D*EJ^^g9gAu5&W z37251wIh4Icrx7Qu#gKN`rxXq=xfW*08d+ z!}+GvUE5Xp1+bd@a~8_(Joh5tHW?1w-P}(f+|435#@;b|4lG~YX*=yOK+`IRvftgQ zyYG0mwO#*XXyZQWX8uif5w!q>1W`)@Jl8kRruPYNWQkD~t!UI3iVU*m&P_j0=9+!3 z=0C1s1%w>RDOqLX5BvP{Pm{8yA^;{a_Eo5~&g&G=M1;Noh*sp%gsEy%Dc!?v&}Sf| zf|gnR!!Ygd$LIuEtUrHvZNsp!(NROee>=_WnI4_MtrloWWl&;dZFM%EVC~088XeYy zyETE$-HMjGk4&w1O)8#+u7d*^+_y&@`C4vwfe>vD)nBZYTeqTHy)XA#Dx`NOk0GV? zO-5(%)vfT?O{cuIFa9;iFGm;|Ns#Bgkc{abP2_-3<{KPha!|JtS87Rep?5gu`c$;_x-v3xvgjU$JiYNbQZKsi` zdtKC(xQuf3hJ~;W-ZAdvtt}1z>QUg*Fd%o;%jUuBSv?q|Bbs7h!|+h+4@j6k&cRfs zxXorUh(JH^(WkoH;G-*`}BV^~q^eamszmu}-`mVW`WQWUhB^7s8Z@>6FQ_|(9;mH*|cJ^Q0 zET>r|D&!0^JY1mm-%EdrNyh6#z**Cy@RHkeKJe!Q0pebkr%5{6SBq5uSzavS_37km ziB=C6?h5s*4LO<`c%)??n5YmGAHBA-V1iqMM2w7#07Uv*Nsw<|CXv{_LO8!@7Z}oW z)}%f=t~kTfSekWj($Tp04X?TVbB(E_VT%|Ze?+oy2vG{&XGJ}KPXF-L^Ni7SpL1-B z+_ILv+kqFs1!v1cWOq+Tp(7P-&|_7??920?(Rg34vvXCTr|gTtUu5oHJxEeyamnI) zmThhM`SlLyw!J{C@}L#h@~RQqAJI6#BSVG6FzSdubIJjKy+eZXSDm%~DUy$>63PUE z0-W-XQM>vmX;s23Wb_|RdK4yqZy&$oiFcxmH^`9}zv%G!v9d3p*k-3Iwl%)YVMWHT zF{m+5Om%BA#C4QC07WjrbNpVGYGxznEM=l&G&QbcT%6QYnrBu{TZuzF@8;IYDjhKT zt{m%kAuEV&k(F(c8&sQRV0yb4zH{T3qS0857O(2|A31496Q}($j!ek36o3+Hz5(XD z7HnE1&|eXjN;QPJbyezwvUu7nx<448sebCvwgbG*Lsve;8QHA*`bU^}KE%X;6&+*) zzxAqGBNM4M!3axLdvq4$6cs)k3}Wy*2e)5_FK@_cz8d0aN>R?-3Zq0`{+iSWgs^P) z<+7hqVZiJ5ce&Cn^A;`omT29&y6%}odKvaV|{e{kDl)lzU*){yZ?F<(~ zLu02F;@IXfGsdFGwLz2!(Oe)$ts=JE^AD?$jh~=e}Lb$r~SI23m2ihBgjl~JX6lsFttNJ zIy6zN%o+gm`G&lGPsp~?zd<4fk1&B>K)oa9*V|QV5(M{J1IhZONnj|d-aPdC_{~Wptn}l( z^I37C{bu*V-s!{rcG?H+=Cu}aYlpL_r3#PD>9m`!<_`d+L(!!9=iadK!47kZn`IAt z!t+r8`Qwa6smCQ`Zp=mN0ISy==^8be>&1JO4iXC;b#GP{PRU=I5ZN~&{LfibF`Z%h zyV$&_ns@QnNT{-W2%P*{-pPcG(D<`yP_-@B>f%FIM&0BQOvCumg>L0u-c}95cZx6~ zxaFHk5mSR}&c%;m*y(0=Np=&X9TO8~x{eXVoF3JnOUbK)qdzHo%^T0|ZLafS22E$H z+P_$N`4=f<{@T zG7zBq@X^3*v=jXPgx=4ido7|^S=|snE%WC&2Pqw@OI8IR{)WH6`jfoW`r(&HPc>Qx zzE>-+c2O(E&yH!=CLl?P8Ta@zjEY+4^VJ#SARG-@r4{d1NYQ_x3-%1N^XN8LhY8YM zhm%L3{YA}%U03`K&k;_&ZE-hUEUsj%*g~Ve@HNOw+i^>dKBC@iH-*XLyt%AQ@UXXU z^zAs7T1hL1s%NB|Y(R#iE^Qf0Ys2zI{->jF9gY~APe%Wx4Dvgvl_YVLA0DW2;+3V<*LO47kPCA`F`4GNs8+m-&X}Ml{@cb zb!-ywvqciT1Ru^e85gU~323g29}J^V?m$;Jf_811ZJd;rY%g5&hbt=zTsIDZ)V^|w z1+7yzNjh6_5oBX#e0qLWIhG8=sNyr4a3#I8u9?mtSTQKI=vy=K(i6kc6G53x%F}S8 zsr|P`x5q*f-o>U69ae^Hga>FS4~x^(Y(MYJN8Carwau+j&MD-S}FF zRQ`H%RFD3TtyHRZDQ(>WqpjGG5G5X{VmV&B;h=z0wq3wMGybdB310mT^!pdrTZNAtRPxunafHw6NG*Y64YbIk_b#QJlCNbFMj z-d>IS*%I?x*Ogrv2G#$$<+8tr9ow2XF~M0F!w&?B9C615YLxhPu= z{mXx;ReI1y(auGAqeBMMI>a(#1&pG-WPb!wE6uY#9JLQ(2AGR5D7qxW>0v{N=+|Sj zaPnXU!-+1kQN5^&3Xx;5BmMiQ<4D64qp|YM;@3^wD_=}=5QJAW;YGCTthFY8@vCs4 zN@$}f?t-Qa6M0qbO#IRnX!Ma@d*cUmkgGh9Hv6?#{6nDMU58j{`vzy%cYl5#6{4fi zz(QJh$;7cg45di8s5%^smN}gO!67O?ViLkHRP?diV~SeFE}jh2Gy4Leb~?tM(`QTdBACexua zTKE_vpBkjPxaJ{k?~+J#Es(q5Y)DZxAhS%*ZxD_P`id=Ow}Ktb2DBd=&j^Ov?6gO| z+9Wyjb}Olnv)nE7f8=#a0duuF?QkG}Z98o59c!*R>?(8Jy-W~vTz0A&TQM2ADVuCM zG&tikPdUgxQGS`=Vr<-|1|F)tgQ~mpn!`mE0oTXU#l?{f7l0_MUA>)CTvc!Z(~+!Hnae|9M6>ndK~r(P z;aHMN^TuIOtKB5QY|C4(TA!DFD^x5f(+)^we5v7W#QPf5Dk7dMH!ijh0_i@iGOE3` z3sGeyO@tqkOWzQ>vAiq|MLbbU-!`(XgnSSq$?=&m+b^18HWQo7FhvoY`=pKt$3n(z z)Jie{1C>?X3-vw#1|5lWB*d5vFioVD)(%pEKKVzfJNj>DjyX`~}=Tc-l9C=3(_0Qp7^5|$eZ{{a3me6y+zqN~YI06#CCXs`p zM11Fwii*Au9B-!+H|#36%sM*Fsd3gMZ?5Da)VZTKJ>V#WKq}18BWVZqGztYHZDE__{Bz<~vt2wg0l<&WtaHriS#1o9>0yVqHtaQfBbcq>@g{&^l zR#Z0{9J1e}xb-GK^#<$Qu<%wE7*9caorZy2q0TG|w--3g`N{WiUsd#M|2b?Wf@x86 z=_&&pe^R*H0dPF_%FZTbLnQxdScuy!wX4eXnL1~b^yQ5&K~Z|fT;p-YnQ7R;F{86V zJd#?imvEF=@r5k~R=T%~r(s$KCoMg6gPCIs?A}eh?AqU@f}_IIeRf|fj4=4IhD)?H zr&g8^9P!sSK-|0Mb*OUebsp&gaDBY}7+Mo@aWTl-Eg=mc5(9&(w?adLE zN5+93PPIX^y8&F_bhVDqt;}m9ER^_B7UkS+RaW?7C=Jd!Fd_c?@cKvp5@dETRrfFR z_80=0zxF;tis5l3dUR#Ekv zI!Vd+3XM#3u_FyKyrgWKbvJ9>Zp@`**$HrD2Dn*9lWZ-ZeHpM%9;y2S*9wt;_~WDU zEJ+L%2R?Oqt97dBTekOQ@Jow+Uy5(GC%&&_rC4W-r#8V6Ag!b>fA~Gb1cpgGE@p!# zbOUK>PGFKN7J-nqo)=H&rvNydH}yftr!)`UPQ`kqB4yStQmzW+V$}}d^6C0W>Znqr z>zC>{nRqR^j?XS{&z9al?nny1q+n4k{=q z_Y7ynI7uCpQJ+{RDH z;Yr-UrVc8*XmpXs3_0FTLv5VxlU?1o7UPDoCU#?qj%&jIlbUj#HUqknoX6;BPVeuxwLWGvPf^iG*YEv7btZ51 zi@*P?=nT2MUP;_>@4sSRzGDWSkA74>W^VUe2x8nTxA+e{41YUF%=_hz6z#`<^8l0AS+6fvu02xJXzsA^K)tn z`}!m3A^hK|n3ul9nB`vu_P+zKeb1>$#=S}?7%55qaV9GmbT{uF$zu$Xvpj>&sGz7OQivsMhZy!CC@ zf-rL`zdar>Oj`FG;$p@gM|xYdIcxi@{qXU7%0ko2PYjwqvK;sdw%k$mkduG-i8qqs zB!z}6E@xi&x%!Z9)MD&DrknLUGX^{Jw}vMB{Jo*{gm5jse9Q+vC3Uv-=Iv4e1Y(k` z+((cO=~N}0D*ymd1Z~t8jd_Z{b|b+~6lCuWDsbI5R-I;EBNFKu`4q%-4}LkU*5b(y zYD-syB`RuAV1JKiMQubyKye&{hXDtL;gL)tBK=JC=N)WpvT7XMsG$iGqs|8R}_l zRz$sKwQhbfxOTL8us{TkOXD#PDzHb7f-b<+6t7`)TBIwpVCxDvLo{ZA*f_#}bVFi^ zXJFgM_!bo;;-ENH2s3;zmOCQb3f z^zwt@&N7%REbT=r&Ff0O90&MeYISsaaOCzVo~E+|*-l`#c{%(@wzlAY%vH8u|1#V< zdfPF32wrn>zpJ|=eHo!l1Ln+iQ35Oskn=Sjw~M4XkeK+g>hzUpCrCt8YVYxOgGQx# zSpeMAJ3FaZkmtG*I8vp|v3Aith)D7TWh`Bh&&MIt(ow20oOygQQQ@z&RWv#pKkkW} zndx~epPgQAZiHGrR`v?YXfDCL%#Nxn z^IN%2y*Lye@qLpP|2^4D2R3lfP$94W%1l!rL~n*ybAPm!lZ_B}MI}Ef>Y%u_8yN4Z zlm_sHJv`L>;#V66a;6Hq+C%x7jW$jR+b?j7D?SpF6%?PPRuxt_wEHl&26Yd=4lE|k zQQCs`@nsJB`|CMDHQzYBRwf&>;=*2>Wp!@Gk8emUG$pj` zeSZjeC&uyxZ07|Ic50&qvLEaI6CEwjl_t8MR>dIBqkc*+ah^BS`hDWHLPuy>NdT-G zRnf#nZFj5(SEuR2I_87$$dkYKA#X5BkQdvFy-!a};6nubpZP)(#@=5ctLj=ZA;c}Z zKx*+Y7zrD!2y48#sf((o=;vc7qeVT$<>A8WpoF}Rt%+kWKwXDfsnqYw78uX_6XV1* z5iyd{(UhHHs=Zo0>b+<*R#FX&^o&Y>vHg2hZ;pXE$`|G({!4~ShZu@h@(MtD2UzkuaulT1LyIEtqH)@ zPL?*Crtz_j!89V=r3sVaS6|oA7lP?w0Ekq%#g5sz6t$ChKB)$`j7fATEm2Fb%qnga zkvQwVr~P^BFy8UcsY+(NEDA%dw%gR!;Y3nMp{@ZDdWVDa^jrIMVyN%KCx%o|)}hCC2DMHn z>gcQ$-M_vAZB))b(HLvXJunKDQFJLDt@}N2C>fcikvweg)6!wt_Xabw#0Lh1Rn>HH zv28~Rv9Vn`_C#!r+9%B*73HzH2L9S zusSb9?J7*YmjOa7J>5d>v3azCe|)~qVaQ?%@;keI%ZoI-Wb4TwfQ4Olp@dIGVs!Q` zf&{fo`7XzR1#;2SXH0!FgoYJ9f!Bu=vbF=-3ZgK8t*)6l+1* zGZ-RWLtY?hMaILg)2v=RZu&PELDD>)+3DIIR=IpB@;IjdH5 zN_QHR1s=M+*PK2<0oS=5m6pwoEt+qR%l`Res|G+HZOx&(9yy#y5Eul3$8yPLP2lvP zN@w`;w5yNbsWRNH8S1u*=+5tQjOh%~O%az}ew{F2fTlNh?aA@ImRsbLy4^y`1e@+5 zDv$5O^0Z~e^HV0JOnDqB9{oYM#9v$dWkrv&A0~j3*0i80eYHs=$4M$RnOO3t6%>9U zV|6~V|FpL=4=Azm(iAu~ya{ian8|kQ;0xRZZ0u{>N2 z33WuhbI$593iU1n-L|vhO#fa$J?DrI9XO|p!F=VxJ@l)!a0<)IbTJp!YS`v$iG-Ib zPvQI}j}v7#uUkn&3+|javOLf$G^c0uSJX3)Gval+4-YffJRiY8w@=Snpm+>v)%t1& z`VHTTmMHRCXJO)TX)-kTd*v#Tu zj}f->Z5M$5MlF4bT)s%8j&$Dw`q0e{0TDCHFjw;4KJw{>908%NOGi~Z!{5j~QZoBYw7_VRV!N}uP;V7$%ooYKSR=lHOp zCX<)ygVGfGvu90r86!ohUwVJH$T162jKPXlD}`Yr44mK@aQOB0tu-S*Ub=R((_rV~ z!4R?MRr_l=czRoCR|>T0Lkh*F!=0-L+uwmfU>!owyLmD;z{s2&S00y(Y#sExIi zj`B)Hv9;}hdYJwMuC8`!yS`2^O`29DUY^V^A@11lAl2Kt%!$Ry)<&n2EdJ zb~4}`E*T9oe03A?Cd^b_W=qY#+7&p;{G@437&9rH$~KqwbdfUEbTcy?DM!iirJ8jG zwH?qxROd&-pdWT@8p#A-wQ33=?eS$cB&H|CB4MyYo6~Wt9haUoUq4SNHk*Cqe5OG%BL;7QU{xe)D&Y;|Qb;^2n(jLY&FDH!MudLzjh7dVX; zD#aF~ji_>?TxUlra*;Zn%ylkU^8g6l)n!XU7N_PK`JIt`^|zak4{>K)4wr4^$EDvf1T=7N(3FA?{# zh%pCbkNvds))mnaIAP4Wpfoc0N8-`tYLJ=OoQaBe?(uELhuM8^1d#4@B@wN)2a=@Q zqCDW82gA(%N%zT&g$kj=4NYf|ia({8fhrhDx~1xun+82ZM2j!=`UQxgM3(zQrfRrR z6baMcuT8f{(|fx@)x=Fy98At^kDxn(jZPEz$X}Z*-<~3hRlTMJW%!Khp28PPPvf~p zzgd(4V_fZNugaSHHYPx~H$BYdKNau@ikl<-{amx^aHr{UAZ3Ez)}A!d4a7pqw<{AK z2IaT~-4rG+1e`8qft1I60ekS-9h-~C*&d6@ebaDh4W%#Ex^zUB>S;_D2}R4(rfyBukKVmIzq^wr}GkC zpF*8i>eu}>g4armmnJAp>p&uI@FNnhszpd!#mp+^pFx~^o>p3(2wZEahSCKw5?s+4 zki2HVVGO1^umxGd)O=FU1nIiP{nu<8%H_kIz$a!-``aoe{(YP#JR#wF{QE&3l$OID6|D;({DkfjIm z`{(2k8xPB=*D^9f#li^zF0EU@FZ#6lmRdA69v=)KkWzd)7ai>n4D*@>IX~0^BH8QH9b7` zpUw6O!^(;E0hP*7>Yw9VKD>KH76%PWD8L3r=(>#WXw*P}cW*Icy5(fkJ>qrV<97qg z_&O`LR9Y3Eeg^>xHHqPzC9*18Vf##K1s(G@MeUPnrO!L2s9$RPLxAl?OhHEV$}lM| z0=Git=XX|Rs0vOsGNBVrvM3-S7~apCghwiLGhYS&%FrQ$KQq%{V4Zv6J1JX%~wM$Vw zp`q>|*JZ*@vZSe~Da*lhqxZEZC1}<;0*o2%HlzD%YPzKyY9e8^#xGaq4sCRBss2Y2 z(dv`+Ff_;I^npJgL&iK0zG?^SJ8G;7=HTuw@Qy)-&R#gbw&2mlu4{PC%WwK;b9Wh7 zn5$pkZXb(jIrJ$qq{L5SFsZIhtf)+fxnH!2y7S_x}MrXXEhMc;{B&1Px6NdjtynP36~ z-;UmOSvtC5nG$_{r4OuCd{I)a&GPx!#A-%Z%HxEIyOBAu<|#;1Gu5PbKsG<~l8$8r zg=zlHLN_ zYzGx=DbO%Fu^XptHhOrbFs+(ZfkrmrF~EQq%9J1)qDmP;lok0dmnjawo6vqaJmm~l zhA~4v*FGZ_qAN-w1&bMHM8pL9Q|HYV4M$+BkCGbG#S~Z+rZPa#=S{j?cFKK6UINmI zDA$!8!iPxW2Stnr0ts{yiA=kGL$Uv0_$_Oqu+|=3QoCdk_!5vlu(9uCOByZ>q*LY5 zLF!REV94Q7!aB%g(Zt%P6im;9lV~;8!s!Nn4&rcc`AcagXD02+2d6YPDBxoMG)EO* z-=UX09FTVW)tSlygjVJXozL&>+kve5XN>66j4b?UsZ^E#nOAzC4xQeEzO4W{^$j5`)`Fyw} zijTyZL(wRzFgcK<(%cTkqihOn%hgP>%V%y1N%xTPc|U(;G|YvJNcc?dM9ogrZV3!l+a*me~W}!Dzaiz%qAg?0S7gbD5cWhkDebE6NBHGvy^lKsgvR< zno>scJ{Fyu?I#(4Dx8!kL6@R~vjx%@eW84i<%RifJXkgiN~B!ylxN$)5zQzsB%f#R zxZ*ZYMG$fuk}U94`#^B|*5|D98*O_Il9md7pn;=+Jsq z9_$`LdN*#j^>*2D@i5fxOs-9N{URP=a5ZlC{v*Fx5OBzQPwY%CVBI11Bp~3L5BS93 zXAk}Qtgp`Pw)WCmt_;X|4wB_oUpnL%AxlPLdzmBs&WDb|yc$~nFolQgda#Z-MBaWs zN_`{7!ax%46B*atFPM}!Q%N*4+iy7Xx@IZk-;!&@06=B^b zdVw7IMVjy^}s0O}F45jKVSH1AQ8W;{la&dZdF8136UEpu}&JTu23Xcb>yNlT%h z*pKO;-N;RJK)LfTO3{2f4zZX{+O$!bqO*X8fOC>S3W|#`^d%27GpzowFU*GbZM9D8 z_S{PDMkYz)rD3g@?_f$wz_tsWKOZ6-nAC_v!H}kI_D%^EV;g+jpWlVoZF|9$BJC>fG_6OMa0iQ>1E-nN0W&4`+wE++F*@W>dv_tK{Ev=J8-9eRa@if%iP$v z9YN)c+q^<&9nUj}9KIKn`VJ%GdRgw33k$K;mA2huR2o5LB=}bLB*IDsnqZ`lG=!# z*}J60FQjO3whq0t%;pNWq)2agkpl^@%o0^e-S~xs_j?u=Pag+ zhglR&n_25*P}iyU)Uz-FN2e{U*P4s)B0et017{s=$kF`R9r@D&?1|1=)#()tu)m_sjVfv4=<+jWVU=r^PxTN6oOpvFRn)Yr43^QEt{u_e5JObcXJe {UdQjrD)-a~$DUu^pWia!oU$tV zkW${*DgEFn%&lW8%1f`HC9u_QX?d|Y_c z#R1HYcwhIrmGpiMX62b#SREWPuG%>0hK~9~B{3YD6#qLSwjE9fmWBZ`2VDAJI7HiK z$N7FQa6Y!Dg0DEQOD%*7%L$nBKdB_~KCAK|cTnaNe@%M{nVSWNh1TBPhvI1%49wWo zOd$9VQItmF{19?7|Ea7x=TYoJt@BG^o7CO6gDq(Ae$5$e!_3wsUIe!Ly{BoU!56f? z->bSpKNQqZLf?n;WobHrTzUk+Rgx0Ak<+;0kunzzA40Hc*8#TYUsDd#V?Sd_wcdyd z;q{_gdt{5?{6;l;h-IB4+5%1hA~kK2(ZeZ$kjmfkTy#0AC;VuH@a^d&>bxugxSmxM zZa6yQ03JD1`8>4A%x;qJ19^lZlMdyvFfNG-P~L64Y(wqwu=MC*)mO_wlV5G!38`;= z(O-7rCj&7^6eL?WcZJTwatb6TiYQb+50Rh;5#Gj)8Z&_g`+1Xp`{5C0Um5>AEQF^K>;LT+9VquCTO;X{fL_3dk=6G{m$T^ zq_5snBtlcgbwZfwv`jZC3e(^HZxUg!uy~iy>unZ1hFElMTNI=8Bzw6mw4Ap1sP-@G z_aU-Wj=CX*al8nAtN7$nNh0ehpICAR{t!5O>k?t_$0bOwiy6zat=SWQHB#J8w2F?! zZs!*v{I~iznIQuY+&*?ja3zJhqkmpXn!E1lmhF}v$7Cug#*3V1vvwvagl|ZMf81cx zkb)(^8DkmdWPOJMAT28ljU{mOk$ikC1gJnnvHjz@6q=^{G6qPLaUeoN0)KC+RJnL1 zH@kzliS>Hx6<(|oRpSAzVO$^nJlX;iT(0>kk_N5E`xt`=Jq30Se|G9|2P`?sIkq=+ zHVk2oXq-qw7`aX8k5e<~10G8_)q*a?g+B`lsFYGDhEZDa2QgeqwCk_u#9z4nPCseG zK2tm2AFGt8;rhkbca;|FHfDG z=XZC&5|S)GmD>)Wcf1ZE(|mJyfJOhv=ZcI`e(DTR@e?#}E1$KCfV@fNqiET5j(SP+ zsZx*5MT_Gb5LPih%*|%icI$z)DD?u5^sQ!UXgdzPF8`NMAu?%2Sr_d)DPPY{C~n@3 zBr-XzI9wD(F-r#yfz8&WF;C&d$jUkx4pV(=+*ie$B%_ZTL2~n+0}oB3&8KSu4+~3z z=M!RQjc$t)8BB{vD^ah)a@iN$2U8(nW;ZO~(@&5n*}!!M!S>?2@!$Injugv8semfw zKhv-8s9_tGSN6oD%f1q~h-c5=Hm8{uA*7o)RE$IBgwR zv-oNL^KtSRl@d{`U0$0$GfpfzlaE?z8z6VAXIn#C9SarOHFfCuS`Yrky@M(Z|5x5d zY3u`-l&-B}bPy8Co&QuhK70l^l$khid6xp`jSiBzBVhpbaklsMiC#A zBe^f3xL}0<-%^cM1W!=Va^U+U_i~q)00FNOc-8H8Jn&b2C^NowAId-7>;!-VAnkrXQGy)o0c_*-PxS;>B~z+8b{F&clF+nZJx(< zWgj0m1juyeJx_C%@0<_7uS~6@v=%wXBC`v-lB~d(r@HxJ=3c`C(_pox%RQ(|FoONaF7hgt)LoU z0LK^~+9ZllAOyis`l-dE&s2-C9K;!Aw%Hg+y}evGobeK7KG-w)dVHgnd6sLKgS~ z;N;`t`Kl!~xDg|KE5RkKhc>GPS89@$XU>~&E$H@mPkN`yMEwbqTH$8XHKuRMjS=o* zxJQWJ=+*i|h>&Hdy>IZPky;}rB3*SMp@a{y+>o<$lh+2pA3o8F19t*BwU-`NR4s8b zhSG14lJRG(sxU>YtFdH;2>uVRuT-!<+Z8_$|Av=hksoX|ac0EvjciO}`~SE30D>Du zC~9**y5w$vK*e@X<~?7#YgJuZfi9M4RfP90RNjI4 zh+%ZJ+K0w*Ed{C|!@Qpy{i=F|orA4_<^F&$l1E{;m(tC1U+`WNyB&dIi$xe_4>Sza zFQ-uS{^BB2(#p{7gp?OhbK@doqUnyt!1fh(OvHs)0F`s5pZ?zILdsW+jB{a=-snNm zNlICEQZ){eSMQ&FC1(p&ZQ(-bVNnnYD!6Li{pa4ntDY-XgD1yJMSv5DqzL4G*MaD= zKQI?JyjsYBEs>Rs`xhk)l1);PAFG~?lE#}K3T4YiPV{InfD`_J&X!n_fWni3S$?@= z^w}SQlD15BAc1XXGwxXRF;uk^1DW!7nI^fsCL^npeWq9hzD#F{R+F-tDMg5wcZ@^c zbUkVoBdd3y>tXzq@83rUe@4gfPqxMdB++z#EaEHalySN!g;^7f{nxj!tL;}RgVC{v z^N0-Wst~4rt`zHA7YRq)?*#P`}YhZ}G zyE`L(+n0FHk>T9z^*mg4>vnmqMb766jD81VG>xmy)3w0*uxXm*to(fQ<&;N%2?(fw zflcA~g@EI7t(V&w=alRM_`fh_A5+t1d+nPGK^Z`Nlo@+IzgRkI0c_8AG5KfNX~0t` zWs=df2k@`%ff-Vo&uA~n#*z2^?d&1BafcR*9zH`yxQmgPIfNGoQmP4iJqsg zeW|93hH;pC^baur7&Vg!X` z&yBIrav5jucWZmyrtvb|+qBpprZBtSCv)k{K4wFDwX5Cb#Cpz$bOfBvJGzM1yUGME zrIf_eoh){=kt1a0oeZDvE3}+nZg9B%D+ojgo)EmFIsV4$=`rSy`c=~@d0v6l`caS^ zvO{Csdh?hqG1Y&t%@M=Ppv0!c1Tsv3V#0RILq-njh62)It3>6VsGPO$^9_Cr<>@jX z;VHf=425Ri@^AJ@b}K;e!iuA&5DI4~W2|GCbxJ7sF$hjJk*$;OW&~%dIk}cOsw86l z!m39ORj}0?D7nmEs(M`@DnI-OrpI@j?D7bP+kDm zreMwW)FrdvX@bkHu4$q}AjiPD@XON7)SAmES;Vl7wfTv;1+%qV7krP&g3K7r%19qa zgc6Q!G73)d=nNH=_A_d zA&7gM37O^$9>7<58^?bWg8e=&DP35pq>VEssPwdAZqj)VVxA*(TuYz6W#Vey;aGIC6`Zp^(ch%1r%y0Xm0U2IZpVV+Xsag`P!Se0Gd)S^OE2Xx@{j_d)Y7SS#pvoKRZ z1ef-J!mj@x-)4lTr{H`*SIY7Zmh8QFhyr^YK?i+0LU^X;iP_*Oi>(R*PvT8c-fH;mKpjNrp)~r=5)8gzpd|A1jreiDS02D(I5=_wKcxZ^Y&5-s&aTGC z8`r>55_~Q>#9L3Cd_PHNiqAP)Q&LKv*jlW&8~g|y3pqG6Udb1mb?*%~Yzh_E#o&Y2 zYwSgDb{kJO5J{F^S&S}@Ytp=u8mz^@7wM564VejOkpcG6Mjc!k1cUQG>Cx#hkWjd{ z3$Tb~J++&&?DXD4&@Uh0a3Q~H+NS7!F5`MARyJO6(8{RwG6vja*@`J4)~|O7nFDy^ z`PpUP?znefvT5kj;95c{91!B1DecHUyS09@m*{}4BuH*Sh^n?zrksiuRSkYeDyb-` z-H@W@yG08}6Vk~BD$ipj{j9=Nx@jC25{sHm2>ZQEvu=L}F$kC6F3d3hOKnO5{m!=3 zEWLZVNI8}RoIjdCXg8I-u;IvPCTy&|ZsbUOAR)qNtfBTs+EUEV0%KeQIiWOu_JMN4 z`0TFlARJ*F1eq_O+DKTBehJ)CxZTGX|%u(0y(_0uF{$ zUW&c2z;$$N-g+#e8+Gt{Fg!cc-_G7x3W%f#=S*zEAGA&+Piv-l`>-4aQsO*axtJ+A zIjRqR>+8%o#I2U9#!p=|(zag`FSD`q{Ei2sBBMOC8iZ<-6_wbS8CMEo!2RzNg?qpM zVB>&8>6w_nkWbQigVTQ4R%HRx6%=pph**j#%&=Cgd4M55cw|0K!Knv0GOxIt%9xNM>TRwpaVla|$N&w;X9l zvt7TO(AY^gH4?0zPbI9(3o(nLc71tvIK;;H2vu>p2bNHjsJtx$@z+`v5WF?b7K z@?-gjI-)90TVKQT-|olFnA4m`Lr4T}pzh)G7g6uO9Etz~R(8D7Q{h<}K43n$9e1NLjIC|Z?2);4E8V5v?$DP+ zr3))=6sAoz?u*LS8|e{aktOebXNaDa3X1WJ`>~h9H(9sOHG02Ej}hneGbB&NCnrw7 zU92p7PY*DVavoOt=L8kF;~;vrBD(-F_{;;t(YIbV%KE*Oq+$Q6TwsEcSWAJ1hmE3b zyccY`E|+6`eZ9!g=J6Eit4DjW`X2xrLFB$~Ma9s*`;NWlHDeVOw;gunF<-4dY|_u4 z*$UELr2K#bwEcGJR=!S6>9}B0;%yfIt}J z9~7j5=E~lo%0??7CSXB<)vV^UNI&jE15CNNqsLN}tm3RDIh^PvO$4Ng4}>d! zSP%T5Nq;=@BeTE%r$r;f?zhDq$u+kZQu$``_Z|wahC7L+++&Tc9}1v66moCOJ?p?Hg%cD7bz!G8)-^&{T zlqJgLoBO9OZCc+k*3ib1W8&CvUfcJ>m-l{WzoGB!(Rb%L z-o3hd2Zl#HDF%B>|BGy2U;mblvA3tQr?<7Iuc577*v^iQ>dlRty2qYg)%etk#`zn% z7j5k78yxBFDK@3Mw|{d(Yu|vk{4Iac^tlfO>4%~7kPU69uj}pU>g_FF;uWe~rS?wc zWw=FS2gw8~gED#Xpj1-BG?j0DcZtvUJ z)M3xE%k;tpkb4PoOQ+DSyu+i_jh&mDdu)>EImVrx9mU^1?k&C(CMl`qS!@R(6y&|v zbq}tuYwPGKew@MK%<0l+GuygTa1{=0$#H1o=7##tp-tVR_spoAUD@{N;=09E4c^02 zB~Tm*(2QufN8^e%OPbhkAyYc)rs$j&i{?&AD}oa$54jV~KlF_R=@l*jOc~5{)Gdf-AiOLgomH27igr@QqFQ z(->ibKp66(3}GV%9HTb~R$aNo3>t%yd12}1h65QaGXesTQMJX=H<*Fqo@>hP8i6|- zzOJTx4ap{4z&W~21vYgv<&Kr~DG9O;PsX59rJ@1m;0n=agJ1wP_ybDOIjDP5W#DQE zToxE7pHLLWl^j9H;FuEV?GwS2qg6JxCycAAs*q!&lp?z86(5Gy){Uh)DC@{xs;ECEQ&j4%fxg!+(W&7D5!)5Kn(`C6h$ z-7qoa!k9ZWODs9k5Xx5rNO+PN#L^(Zq)E9_E7>W6EAm3bAp0$@LNW+0lW6A)N+@84SFtE(sDq9doA=KOs3Q7+If1giGLRC#ll_-8zAz2#{ zltoP-hy{?qoh2pYtNMkQZ1>1|{+YSNeQX;FD?O5@R5iTq)HA2(y%q#t4opjeN6BWXQb85!eKW z1{qfsz!Q`xu7*U^&64^gQmo7~KbAH5iqUcQ-#}X8fOcg)ILfAxT z$XE)i{2FSj%rK`>x0HxdL8I^E>zq9wI&S+}=e+n&?;U^NQG`A3J8Hrcr|$BX z503xCzp>xut`CeWeV=yRloNN+xZZcvHk#Y1lXm^ndn+EFyz^rx@3`c${ej>5uN6}# z?E>N9<9Aqo)qzt^-0AMaCsbZn{M7V)M~!Fp&~ZD=I%ls17wxNUUVFo#THmEtXtQ7P zz%dg_KVrSxori5pz~r%$cbYnB=b2}|NW=WZDLefBy0cEX{+`#KQ~ZdmRzz!|Z_%G< zKQv=BS_>VB228t^_RN=6{g}RjftDjptSNzenlyqw1fZr!)1tl6z#MS=ueih1bZLh) zaynu1t0wa!!b%N zqN^_M6({~0CS*;ulDg&>Bm2@rs?y#^{Nhu$R&{iC{rtYQ@4E7_gHFCp`-dlA*Fz@V z#>JN@_k6=vbollf6rRkuNCz4NQ})?nQT~6_{RP;a#nm@_?|4XpBoN$-w1v9RmI~J5 z?(V_etx%yYUZgk_4ek;kL6TOJ>fQ zb7fyb_>?``e*-q{s=Cx%nPrQmom`>!sAfHkFII&ctrAZ!8rPc8)n zbIECxX@R51{2yHkgtM0ddBnfJ6wv?4rQpV{Z)hApbH#^qir)Er_4L(^AI~qHwR~-o znb5v^DX?M|rofgKG>n^-Th*Mnipe6chzW#~n0k%Rjcr|>3m$8KV3UFyhqOMjUFQ>D zYq)b{!|m%ezjJ<9w;W1oUw2P$b>^oKDbi=Lp|v}wrfYRw_sXh{`nEo2e}$K;`j*u- zy>klM=N7gW)+Dbk!im*U$4U=#Ji-6crN9$4p}Poex0p&~Dy#F#>nm!TOG=V&H7dyb zBH#Rqx|hezD6UM3=lC$Wq_lKJennnIb5VKnuME;?`w6zBw7j+5u%gsJ?VbaS=2_R`4UD#A0XX z>NPo~_09QB>Gx;mf3~9bb zL`(MY*(J|CK4&Y1K$Ac+rUDRCe#i@odPGOeETafA@%BO{@@7hlbuna@S0wqM*YKm) zfP|mu$QvlLK~M}FA>bI=62!#L1Oc>#*25790#hs`1J5W78_T3Yri(C(Fq`}mEa4fj=OBhoD10)-48H>!kXb|+4j_IL17r#g8BF_t z(>%i$ykyaWLlO~+vPOj!!iFTl#uTwg0fCq@#EflCCO$^X1{04fI`9J)Z9NRpu@V9d zD2DWybP)ushqIN#m>iBnoGw0O{D=r9zHCZ}NG&ZuR_qvx90=2~PUH#W+gmu{ZTOFm zqZvZB9U%vl9f>9klXV1VsAy=-9z~Ok?M@59RW4D~<3!%jnh?yp1hH z9U5CXM@nI00*n=m+XZ2k z7VF|7U>Lqh6a-9B7z!lN!eP#!H9i|gu$;Fjrs!IIy(xS+dQkGfI&)=$ zd-JptH_E$w=ZQy;n0e|ZwZH%Av=c|oIb-wU>%XHMU3}hlWA{|SZk~75H=o<1|HPw5 zEgG}U)Z<60lRrCQvq{HnH1Djf)Uiu1*kR5YTTVQBoN;e~`cQSGLQ?|aY;*8asv5%V zDti<;aB#R3B~Z4)Q4Ip2tI$FyjUexJ%i{Addbe!UHtEr$x<`+0R>}?-P?9Nh`%DR9}m3r*k$A9nAX+O*S30(0q$}5$gjPZ&C@`lDlbDRId|Jsqy3z>jKsWYP# z#0)~B#3EM`D`fe^G$omb-8^4JrsM=6UiIghnO`R+ji+XQBR5049{W=KjO(_C{QcxV zEq&;%yel7Bb?hHkk_U+IOWsIY8nD1E2N27|Vb+z7*2roa`m!RX@P+w}<6qG$dace6 z&wAfV;nM{rw1~)Z_>u=qb@F#IKf*0P91}HRUtyQLEo9XMMP3h$mW)N-i1Cxd-#h&s z7Bk4n4}r51TWg2IpEZk+Hv|E08}d^KLWXHwnE1uT6OX%n$#`F!T(P#1-90`6!6)C|4%OkEeHaL?4=+mlK=ivke#ZUhSg<_ z_EMYz8MHI)iA$jTr z#TBikOWU9M#fpnkRev1T@xW#^e;ibQ*OpClU+V1fW|Bn599?fiN!}97z9q$t(^fUk z$!{IMplp6&TWw=|SxIq0ad}C7&z#kj^HwT9lf7Y+#HAo<>s|^<27p42O96gOOGkNa za_eD6x|SE#%`I%N@3K{rE3&Ylpr^a5q@nZa4;ReMOpu;jV(O^KG?(DCh4JzR{~R!H+)SV zVB*UISl~hfh!8kMuwj~tUIqyBO8604c&o?f3^7BBFy)O_80859pCrQ2tbI!zI4xF)$w0h7rc4ke zM~6fZ>ozE4B47GoA_xZ)Tri1gIC@$HFeAK}4gUfJt)XMdaX1$TE`L0kIFdr009}$2 z5$aMCy3v!=5FtiJ3uZLTY@-shYsX)xhpxsb2ZEW!K}3GhkzajQEK(74G(!Tk5Rlh$ zGdLj(D$7S`ru4M*1Y(n!4aux0;lF10gg??EAqWYSYPxoYq{Vhb!~@1|h|#4;3>`x) z{LC^nbnt`7ssu+1vG9RF7)6^h%uFVsW%Ceuow1!|h z?8-p6A>Nn`;TXchd4Yp;d?k($x^rGT2}CQ^SddCIB`|2caQC z%PcE;^tu9Oc@kng$MM8Q0&%pA)IS=8*jI^9UnF0{58;?a=))y^L>7}9di+RK2qQvK z9~q|N;E)rv?L-A%&a-)wQYRDwpoXBbu1kr3|2A(L6)l({95U!|k}crD$BbExRz$>M zlBT#CQ2KQxqY=XoE7@7YY!VQ`GzfSf^9XRKVElO_q_Un81n|$oZ#pfw* zH^N_a=}s#y-f_+4Uso-!zHHZp=WdNCxMuhHXK$f$R>#geEBW5(IcID}1%fZ7FR>LD z@05Gx*U@Th!iwblt9KiJ#Ly299taja|LiSuulz>w_1`MG?%VUv-g^4Uo2a){&U~Z$ z!9fGT7GC=;9;&M|ZtPHc^)Ab=`rd=L-m~vzlMlLOse(!YrfyN;s2>!fhRP&_0z-Xu z)?bV86|tC6%@P>%P?_38(SpEKZmH8io%gr$C`u`+XOu1owTdbwKDATQD9I2}I$~1% z<_WK2azGKN7UB#miZRHTJW-ngX9cqIPr;)C#5APHqC)Z4*Uvffrg?MrJ14!~(7sJK z?b~d#^yZtVx86EEba409+l@c?ieH^L_B)r)IPTGgYp?yZbenIcHyfSaYRlejwtnH~ z=k9yU;v*lZ-1F+$cV6^z;VwVvNTt%-Y@HrGx@*v&zR{!88;t1O?(274_3qJsEoDwP zd`75p*+r;hOzquy)w*!ht-L^=<%oF(X#!tF%I3{nvd8<$) zOvbFCDELE*7z70T)9%hApdwXp@|=o5)ZvVBfWwA-7Mc)vB{TK|rl=Vr&pHsoaLfji zMQh5X05rts8#m6rzc@j@YQ}z7&pP%G%Q3}EII_V*_?DX%b;9ftU;^hS=Y6vOb#ssV zQ|>OuzPjJ#lYakV@sn>ZD6LN3V%u7hPj&v)rQk7N_Z)Kq#38UQQ^SddCJ={1&_QU3 z&~lQn67;$PIC1PCARzuvE(QFU#nFdL_=qfKxDk?BPY|J~|IaT4vj~9k+Dc_zm(qQ` zyrj-qqqgoeZ(<_bsAw5x!X+Lw92W5yYit0%*2$RFXhlT5J>8Lumgbh^ukF;$>wNLo zJx}kFerflZkLNXX>&Mhl#UQ*Ff*wnqati78Co}QoymMgIMdqu(hEx(U;cD)Wqq3~CEm>z=hb|&uwr3;Lt{&lH*Y3A z-JOkXy&uia%dbdoRj~j>H20>fy80U1lRGXN=BmohoW|ac%->^TNMpRDwymVzGW{c! zBsH$nGPE>ade<_)h!>ypNl?AsAv3QcUwn3LwyncU+FG1!6IAS$=!1z^UEaE^x@%c= zXIXu+3K{_ol%7^Bt9P()0~4pVwI{csr>Zl(xTK@HDcNuK5`PHTMT$=xZyHf4)YLU7 z`@6e3K!TOGOa^+r8iOJkJxLA0gr1}p%xIX|mQD5A@fYf$tMN7pT`h})h&-SX(Z}Z3 z_@BjzW=Mb*BDA96M6le*@)4RTeORI8PzpCfGV2NT7-lO4dn_t;&*OhmDNtWGZ=kd< z`KjRqKZvYKmKid^$FzKLEMzACk=1M-B5?abLj-0<>K_d=E3aS6{laI2KKKNJ)(}jG zN>mETFTpDN;;*+wJz!T^TA~QO9O0Xl6uHKfFD)dBVCrHY-Jd5+cv|hWy8o-dHboVVVL?3rGYgz3j3j9AY>S5W*yB zsHYYACkBvwBo-ey$%vY;r6Gpq6#;H=6&kJBuVz67AQ}9~KNSLCsTlH*WQdtU;J_!$ z97($Pe2cmiAtEaAk3h8K6Gx-V6P)0OKhyzAX)H(lGiUf|3I{CAa2RGx;WKJQcoP2# z!&^9J5s|cCc zQ(E|DC9-&U9>3VjXwwtKYCiRC{#Gi zx&}~V1=AEm`oMv2x1deI7bZ`51xk!`V_it<@mbXH&PgH{puCmYlPB;WfKI|C9coov^8@^38n*Oh0*}clTfK!-EHZc<>PQ zumbgseFn}wb4vyAtH0_u>6nqTPTS=D1N%=pX86a44OS{oJ$@qslaJkC;?cw3KXAy* zQ#YP+T=JdIpB_2caS92b*A4t zV9?w%H=A_yh)IX0K0IZo^Uk>G7gx;w&Y9zWaOQi;5_MF3))yZ?#z&M2)c96dg^=1t zulm9?r6N+RAmT$yOjC+9@`mxr(Ao>^6m zGK`|S%NIqn3M!7l;gwQ~AzGL)8N%5s^F7089Q6;M_q*!z9Zq=tv>#mB(tkizD%IA% ze_OwP^#cZ^`=<(0gYQ22Pv<;V`^}3!+w1Vh?myy>)3*I#W&i#){rk5L9-Q82gYw}U zKl8(rZ$5YIkH&nw&+U09j(PLVjdtxD*sryJ|Hgj((nE$c3>eVYuiw-i_S|dC2fw^> zI=4B-D^W1b2d@6;><@N6`bCZz;wuiNf~%@cF>;a$ht+cN*{OU=IALhtIrS~2o!M_3 z{|crdne+ZuPJPECo|6{&k1AB6;$IWupAQ&PIfKHHkUcN>^oN-rga*ql!0%>$oftIU z0+B<)*2R#|Byn~){8>J*tB=oq%~}Pzyj5i4$7lWmK|_lQ)(Qd-&n>YbCk+Whu&fAx z9A-$r`$@0k!xuhb1g2o^qJ1v^?7OGG`;8M`|J7yFe|FJlC;oo^jgK!r`@GJ-h>yB`1Acg{#YnLqNz&+dDt_IFRsd;Q}@-93E`^|hTHt?h09=sfEL6*!q9_QXmlSk>Si&F9jS9@XAnH;!yQAzUi zQyd`a<JrK{%$Go0_Dx zwxPMDE&1o~%4tgC=GNqw4>dP8RaRA2)U{1toIhtpSz$#( zYfDReXXp5tE62?(`h0c68=tM7wyeA(Q;8(t%_@)wjA(=*>j24J5i!j(G6AvdsgULTJgdui`X#{W(kpf}>31AWq`G_B3YZAi@ zMIe|OmFOWbZ8^vfh{+p{VJHIR zPdFdKk$P4*AVoNuyqVRwN0JPc5HpJpLElgAKRAW-qV;TY^!$TbLLbD1%h)zOyMUfaf@}`C7 zWFk=!mlg?$9-z3$n2lRJJc%S5vThcEsRtVYBJd;ghMb|oVw^!}h6un699g1BIOAGU zK}G(}GC@)7hWHvq`v()gyy?*-BX8spIE+Sa8I8>eMCQ%LYLX!Vm&Q;ITRJS(gVm1Pu8MfjTkn(G4^NhdF6A z*XE(Mt*Nno@!cnXuwQD?xm(x#ZjVooRHJTEbltZ;I#jK@*`#CEpMUmNc~|YG@?3q{ zE-Kh*CvL0&e)$&zCmua&!8u#Lf8fB(A0iqu>$FW*UApts$Htwjz40=xI>02n5P^!a>gke^JmeRt;Zdrx*k3I^evwHernty!>PZvSHD@OkDhqg zpvMpU=9nv=+2f+AzqvN~i#SRwrK~bWNfR}dGF54zE!IZUbF6k2K?MHB(W z(vi0=LYoZ&lzx|E#v)F+GlzVXJ&K%@?^tv0gQaSf`1lbK2=JLEqrg*Bsf|gh_aLyy zv{HvUJ~4o-t9BG@kd->>F~wC<`ewc@_Vm9N9dh%630wZ4d(eQ|RH}Ww_4~_ItLGI95}G5fB%A1s&C-H?tZD>{;Br$M?Sji zp-101`}^0<|G}PrShmsjP5t_*rPG54*Y@kDqHgKm|MCO=@T*&sB*bT@(j|e4IzB6R zRiTKZf44*($T4C9Isf4b@#3pIF%@z`R=-i_wkQ;$DnMxzpwN6N4&_JEBt&K;E%|tJ z%tyl4pY_)wwnQy0YCkgYcRK0?i2_BJOY#N{pP2Nr&Q;bqW);YgWSx8JTYj1)sp932 zp~M1LuTnYnu3TCSW$|qfkqSp3Z27VcM6KWM(7%I?f|*fTpa7DDY>G?1m}45$p*PL_ z)uofacJxb!+_d0`-_HNl1@B*Q&%8Uvu3DVe>{htt>E-)fo%~)dIT4O6!2zi-1Y)R= zKJm{h54v%|kvC4e`^80LKVG#YH@U^MwwC1ib*y^8;|Ma0-VxzIa6ULa;&wB1Cg8^z z7-ts(Q|~;9;|mdIh_k|wx)Z}m@^3B$=MQ0uTJ}F7yMUs1KP z)EioFPR`m(p`2luKB}8Ka_jnL?sOx3eSp4o_QS@v4GpD=G@>d*Lg! z*W1;XUQ*boGzCI82~gkD?TaUvLV%3$HWi7D?UV>-HWC$?(fEM&3d?yO5XO`@GWE?J zd8Kt7on49^e4NJSmYU9Venow8afwxL@90!uceOXPSFLOmUsLi;s&oN{bw<%LM>w*`0h(xQNI{-UxeaB5!&j+aBDe zr4^LdzcY2ky!?8Vc13l)lo8V?Y7!`9T1*23i^)R`QBhe_)!0_i(mQSb>XtU^@E=tQ zjB*>1je<*DwHv{P0KO>5BN+9ZLcoV?N7;VFsDymH7@Lwen1=Bb1LQWldcq8$@o7cg za5Q#hA*gyU1JU!E$S5U$>Xz5EVh$|69^1Ji(xpU@h}J_4?abbhS{`7 z-Y7B$A;K}sA51P8;%hj<#H4PBpKOCKN&vY6MUi{#)15(3Z=AQ?0cb&7Gwq)b2$ESk_Y8xfF(DF(CDxXS?fXzXzvB4%ViPHie0 zK6$!mQ{-_%F$AbEgup?QM2In)yEdEiNP-4dj}s~go(GdKF`3EEYF3jQW+eolb=kmYh;UY(IUt6%0qdf` z7aDL(Q)IN*1_Z)S+Xx_nmB5ciK7No1EOq8$gQA5@K*H(b12jdFlcA`w9^pr$#SLNz zjg}B_V&CG>r9u)B%bLww5M*Ncf)0UL=s;jJc2~>_kO?xh_=#_s2t?pi$j8pXG-Oox zbPe$dN0PHfLzsISLSlszL?k2{G1re+A{^>gARaVsP%`o&YpnOND#wh+kE zC9HW!aSX#KBJxI-sZjZ#{MiW`%{oo(x@qZ+-}~%@4b`p- z&e`hY!`54R!S*U`1@N3RHvjyj(J%cxMO{S=e9;*EesAtOXwosmCml0FsjS{+5%Ix6 zgOt#ppS1Dod#7fewEh#P@3-&CkN)J6nR{NC{P`SJoWfEmqOMTSD9KbQ>QYsf8b+lQ zrIA8Kg+`J9F@=rtOhFP=naT&#Fuv9K_}f>Uk@*w2n2IRiXjNZ)=ojA=tbSA1sguw9 zTR9a4o`Owv6txybOeGe41sEsckXLB&6NdozqJ+bbj}Z60asI`pJYBol_USD)ZB+md z9GD(5q$8DD@Qag)ZFl;Izd!kr{E=JKq*6VjMy5B|AidstJ?pKf0IuubUvb+ta6o#! zp)IM@M|+%b{B_fJI&bm~N8ZygWJERjp+j5y^{eaGud{z@?01hjLj88_ESM@rKB&Z0 zhI$#`iNen?>PZ#aH&1w#+cv zl17UOib_`ND7{Qe7wZy83jxFwLIP!;37)83DJnir$`%7baHx^0JvBAK&WiEAn>ceT5Lfo_tr~+4ruVu`D@M zGp*Ot>p}i+F9o!-B6}$~Uhwq<$Y;+h2#%xwfMZ++fQ_(hlVcD|E zo(YR9i)xfuYcBLSL>uhQ)5=<8h@)K@PBiD~If&t6rzx}v?ddF`dp(9*T0w!OS9 zy{f#eqcefhBBhxR=aPR@2oTAE;2Md%aWb|68Rjfp{CkIB(fH&$GPMWOhISW@EZGJW z-MqAV0A{|ioMc3;2+ytWF05}WC@8jEon1YJ6Q68*`}p)*`}e$gWV+zf;^NYZ%*%5u zBFxx$)>@Z&mrsoT`Gh-uGtZ=ht>OH8iNP@TmYt za0wu9BQ9tnHN=-gs|+@tAhToyh32!NKDIivI4jT^!b2+Upy=X23lL1^fG`xxheI7< zmP<_2!ig|7{CH6(AA5sJJho^JT4aEUh$5SFD%8ouCecC#;hi~LBCN?sAVyyir8NqaopRd4(`Vk_tXU8m$OF8m)CJ z1&vXDMqGx3Lq1kKDS)F%3IpH}q|s~EtN|ndLs^5OQR5tWy;)ec3jtWduwZgwXf}?X z;2TPi?GnStNc{U{M6TiRRca!+u^wjm6GpQu4PTFr>m=et5RM^)tX3>GI+Cc5?1#^0 z!x;k7ZAd2gK;l@5@bS?aB1>y%d7#2BNg(mvn>ZRGu01q2$Rp&IQTd^ZmJnXaTclb} z@D1azBW4y(Zf-6Co*-mW#<<6An1&t?_!=2$gd+r6pdwOYAq<&tq{S=~k^E4{A%+yHCc^)0T-n`7M$ZHR z{7@&!bA0M(Nh6Fe3PdX9OUfd;9=Kob$*vFaE6GM+Xm@aMaKb5AHwv^wFOl zxuGglnL7XMxoB?$iI5G8K-QlLSA+0u5aw4 zQr#kc1M`~8cQrfv^v#xCxWkm=Hc+5`e$ptFs-gOJ@p;?7cfg=&CvNn~;UixCRlnRT zzoE3Ac=T|y2wDr@JQvDvKCHdRq8yyu*;#pGi*WM$47n=Zd- z$0g@)2XOUeyUaLcGg-ce&FSMUqAQQdyB{Ke~DVUbHD&K zaQmP^jr|AA>Oc7CQ=i}C^5lDo`5+HW3!GP+RG10Y7d~39rh?-LfX*d>;XJjfCmX%Vl?kWnx*VTj;^?6D%xa>5oFsRklT zic;o|{@s$mL_i}9nV&2wiO>3Lk%$h={QY4Ick&%;;*;t#?k!-~lpY^)RP4M3Wn~3! zz4*W)H1dX`CSb_1Z=dp}01*HM^3(G^7XEimd+#UbPdx6{+2iIlRo6B3cC~c0Hq_T9 zhgeN@bzwnaM_c2x`9(+EJnIK%C*SSNE3t#(z)nZK@U!zj{=u2=Z+qB_=iR^NYH(bg0I`PG0|?UkZ*9VupH9an?CzgG2p)aVa4F zAHNhx0{POVK;YkB3UK05FvLWNH-;L7lG2Km<;_czzj)M8*wQmAw_*C4`sU7mq>&Z^ z6b`81h{79CYe&y#%d3{x^v+maTixVUEx8mTU0=EsBL7L=`jVemZSLr8Y47?+*1otD z5M7-eZLKZ&-o&b_ynQatubY|E^ues$cc!hHw4`!b@!AS4u1JT!LLRJ;D=R9R8XFYY zUZl!1m%^ILju$^!Gsir8&vNWQa=+gycD zJvjSZhbOctq6IlU#YBWk?ZWaS_Z}H3SuQp{evcx_i~)^43kg zp{V)sA9Vb6{jP^bSKX3Izqxm3<&yT!4k?RV1z?7Z*4NzB*!IP{C46tZ`tF`?S2rKz z=S!7>pac?kI+gtVyxfwCg*jDawXXH#o3k)A$sz3h4Fbu6{5)2~CC~9x0%^@8L>`C{ z*0>=Mvn1Qw+d8_s=jFG|%&9Bu=$o;oF0Z~1h?9YsC^Q7&7{-1JR}p$NG_>r+Q@}CK z;KZ{jhuKQO6aq-BCS7UAM{9^It)Z=NEGxxzD+Nr%mnsD^^2VtA&_#O;X(3o-OHNpa ziJ(G^=ThX|#t;rdCULk24W^you{9g9JKQ2P)|rS%i2>I`CTy0xS$*tAL~w}dLx2hL z=y)|E1~aT64DAq}BO?3|2t$YfL~8`#1g)9kMnF-twd|9~fF7*C2}EMa%NS>HcmhX^ z_K#t*MKiz2JPt89);B4D#S92RKhlBLxEt#ljdFMvF=vTvat*Un8caQv*f*xo`dCFA z9+SZle<1ME67q};SchzU^FXX3zgMqbP2Se0h-0YN$dHeUJuCtwW{5D$6HGl@@`Vs- z@To_1yu#Egnc(BZV+>G(LzjwXND+q&UBVhd!xut?6OBxyCA6|ldP5zbfQH5oD4xXT zh$&3b;Sewtm?DZ0JT~0+7-$xF#flX|FePI=v0dx{R)j-~q{QOO7@Qc!7L*DmWIGZ_ zC79gcEp-IR;3Eu)#paW3)+N5sCLA?P-Mi}2orz^W(cNb3 zo~c=F1Pda9!h39Vd`rfIj$8WOolARWx zx6Rx$x14_R=8P^pce^#0e?9Z}hes|xb9CWve{tuf*Zk_T&yM{|fjZ}$`-|0Jsu6{d zs_C2uO4Ogq8pz@*4qLNz;tQJBmmA5_QX;Z2%711}2e??6WR)wPnvdzIysn!%={3LHy zA0MmY!->*SiKW2%(U^~q`u*}*-}-fJ=Fb;(3?14vWUxZ_#a#|O77+q4PPy4NNyeSPxsvic+s8Z8J2u*``%j(6DxV#!OYni{&(mGvzhon3~KhEL3;5U2WA zF9i;FcXtZR?3XTu?w;P3j^6g3bYWFvc~!D5-cIVe)ANej7nF45Hug3pp9&|*iM&D6 zh@sm%x>`E>s1u1K*LU?!T2`6g(A(V8+m*>%S($4g`R>B*@D3&l z>%Mg9QnQ$`^vjno=Pg2j@N;vLpB_*4QKL3 zS}Yn9Y*7a*3DhH>iRsMmh^nivZ*A|XoA%U-%Tf*Zj_&*Wu7x-Due)ob?v-Qh5@kV4 z`Rew{)tz2+Gh0cn;2`V=w9pc6=H)QIvZ1u4w==T=8Hx=P>B$}r)=jAo1o7b#aZOH^qhWx*;6o~1`%Nt@{ene*v3!el3ZKV)_*?u{6vSm76O>$d4j+pfQVWA$Xl#YQUD7>7D#C3a3i6@wlm^+ zGn65WxUnI)RZ>zCX5e5lObosuMa>kk@GKh!LxzZG;Rb?>Y#~D39t}Ua z5q`>}1wdeO$tsc|AGS=zI`NHHk!X_PwxDprN|=bXj8mQprVvCFi^N;japKJz4zakU z*rHA)tHo_rVn~sP8XRKGi5Fk&b{M|=n8ML`70-NZjtC@DN(>-*TC8JoIHR<-;lM{o zLiXUmPg)b-$N8U`?ZzN5T!3+;MYzQ+}UmuueNfHZwNa}%D z*^rb0CK%!&Lh2;JexpTl_3G7;0X}GCILQ`up#?sW*dB(M2!0Z#W#Pg@fY}U?;Rb?f z0+BaE7C9CI;XlRjJlnvA12$OXL{HtlMHmg41F{O7uqpCr@@P|ZttPwVxr9S2yrml( zkI#k#@C_qrdaDoF6h(>REk8AUCgPAKFMOwV1O-8(js{Lfsv~?pM7m@T%`u9Grtq2I zhW!vYX6-TAAOHkZHgC-xJ;hUAEx+}r@Bbz>`PdPP&yNoqn)$m&KUs76E=AXUOKq9? ztaXPOr)=`peghYc*>>JpTP!|r+gYb={=!fD8_qdH&Aj2V3wL~NuYuzZ89wdA4Ku&P z`D-5>wBft^4_$E1R!c9~UO_wKl+n{p95wC4kqX^q7w(`8o_przt1jK?!-EIUK7BLb zje6ym{guJ$^A8UmqHbmco z`j$c{zRg&*sRD`0>Zr`OLq|Du$c=LqROdfjK^=$^hyVg#-9=I>|&M*m{B)89MkcZ(-|>%d+rzJ?4*Z?bV!|9-#!&dJ|B z^Zi3^S)fD|rZSZe0!OHOm6Qryv5StA3VW$jun9_?DbGpyci9w7fe=$OpK))2B32Zl z!SskJL(s^h$2pM>-3;2Y=v`jT;TS2y=|cQn@5cv0|Fdip$f9%>J)(<6H+baeIp?e!%GUNz~k zTUY+@>~TLl`-3BITl&)rCSUe=;WHDeKK*Xb*U7%W|GoEZ=XpA>&a=O3 z?X^DJ^q|~KQRV2WH6>u*Qx!sT30uj@3H)hc=3-)JEG0lj(c{VLy^ zMZV`(g3hL(g{+B^xTl6~Uq63K61NMW3O72ApIW$`G&C2QtADYh&jY)~OUqM&!Koko zMv8Nacy}Y!w*H+Wl1XdA+t#ocZTPqv#X;EOb zjS>t6&!M7CCTuY;htAJ+U7YlFJkna-5^k-wsyp1AFOo`k9egdUE=%9`qq%*TJ8!G9 z!1{d6g1jDj)}!u2bB|=n%bZZJ>xh%g^c4y$RvtgUn&_ynO>eFoWN~j!;3fG}4UU$T z-Z&j$Hyo+CG&i}q8|@)?!p0|4-LobmY#-`{ zKQngRiwyg`OF|zwtwu$rC$9#;6p`aFP+&tI;8RCip;+PLaCBj`Kf%^`Eormxb#K?i3a`oF$ZQ) z9057(IKwjvu-06v=)DQcxGSm(q&~sMT;pf_g(@-BXapSjM4VKELg3e#5M%V$<^$^eyv~iEBlN*xY-Vw6DBMcvQA2%f@i7){{Z6o?YTwzhb0xwU^J0&d zrFP8x`ouyAdypAJ&7BPlN7*Fx209V&Pim!Bg8TZc4?QrU_7!)WC_&8RwJW;$-he|Z7H;nAIfLzk3`ho9nPO^R<-Ji3&8xOomRa{JbPCnK1P>L^I$NZc$ zsR&7!AQax(7sTZyy7^{Lc3LdlL|P=gX2`Qv@|yyB1se?mC_~!%%4XmBMGa1&`{l|? zp0Oi@9ib*bpbn6+*&OqEJWkmNuR$*oN0-_|VE2C8q)6EB(*ZkTuFWP`lzBg81}(i+ z?6`?M-wxlIW%0DW9+G-HKGxKFp{BYmCeJC8ysaQmaxNU3syDxX|MT*^30*|g>|Y&E z*s1FM=C-wJH$98wn(BL>jA#mkQgwY#uJbv3|Cx`~Wps93tuvcta>yN*Yfl39>f^pE z;CU*3F_kE)+b{=qhebJpCmqnACV{RZ;DSa>zNY^(h#0g^a2i-T%5K3oW3YYdX?uCd za9khmwQ?IOcpTX|h1Bxwah+4%G~d+9Q0BMIcL+hA?D8JsReryR1SG^Iiu`>i$J4EX zL!rzZqx?MWC|*!ux`b9?O^@aQgD$p6k(z4pMpm)Az-^I-=>pFvdBazk!U9~1mN$c` zl1B7!>RuH*{VSP55ZthqFEi+gE?&K+e>Y!OgT=cc+@%Qe8AO5={WV&pS5DX@yEoFs zkHKsbP7yRvMMm`r1vSOTd7*+a=H2Q}DudTV7*Yw1H2Wf@jHqSc-K_IETa&>Y`s|$%-Ky0)3nYZWU2NLOD@}^;NBm4;ScQ<+NFL+j zCWuBH!I65`4^rI4jYdkI7LaisP2aiHwCj7>`Q{H$$nD}>z2CoM3!x)1^jYt~BNnNZ zhilE;#InF_*5TmPg~HQ5iM&7uj*7fzL4_zVeUS}+#SY!LyNRG7zG)kn>TH`H`E&os zoANc&D?OzlsN8B$sp9px<+>@`tqmauhlAJNWD}f?IgQ0?`YPs;*H!s%)FwE;Iz|Xx z??Lth6r$8xm1SN#eJ!fV3ruv!4CXRE?Xmpqo_o}36B*+&lIXS5xOp|Xer)K%UOQ1; z?o1ROs*eCbK0BM2jN6)^j{4aV>F4B|x(a}|t*`2HDs~3y?kZsH?)h@hdt@(ezwZ8~1@#1}K z9&Vl1+`1gTJ4yO%r9aI1ZZ+<0-nEgev|qEHF0?ywiv=|hEOSVuf(X2n%k3=3n9G=0 zM${0w8}BA;gyIG5zN*>;6_(k_SmLNAD}O3uU`($1uCBhdIFrRh?Ms##&nvWyo?K|p zeG|!8G6z&fe(lxcL@=&7jV9zQTEFCh$bSCDh(7mk;c6Cql2@4^&XW63I4mT<7@q09 zY5YB|=KeK4A@?jh70UQ;-S#(oMP9jkV1m0ff?_v`9V?u_p z^k4?juNbt8bZdMxn-KH;I8cF#J315Fugytct-C%7K*M^7T28Y{!mvxCfAM7n23QJ1P0dZ3v!bwF(S8KX$g9A0k( zhXVUac{x_s+fU^sjO&6~=@S&Yfu;R2A~RTUh$=Yx%ppF>zE72k&fGd}R~ceA1QAZc zGMVk8#YP5#DF7`FUr&WSQYVc(9JBY^BQ8D}x&a~_pAX!S{V=C-`A1$yN`;4yJ2iat~kM; z{KK0OTTS;?{zQjDP})%)U=e7u=Gjm2KvR1WA+^n#n=i8UZ`;Rn60u3j!*8na`Oy>| ze8x^zSCci=v}^5fI*+Nw#=%uf#BFZoIu=-4vn*qfmyb_@_)+CS_Q(wu252u30En{-3~ zm1H(d9n&?+PeEI4CQ^fKdwA6lsYq`=`YLzpyX$_*&24uX%I1A7gU|Z5^m*l0rvf^J zw43&iFI~sglbJ57Gzro8dO&bg^GEv};R`bGm!dJ&XKin?*V!pJwfFlFV1T`VSwUr6 zZaxX=zW0kQnm#v;9se~tB36p+o&nc1y!vC(jMlmWr0cqKuNtkRU-@!v&__es7H4_? z`}ec2Yp)ci(u#Yp$|*f?R_KT4{QMqoDzMKClScD8J}L!7;O#NSf8MM0VJTtX>vpaI zP)B^d>wt?EFcwn31+=H9+eeSn%p0u`)i0^#G-yZ;*YZ7+qJ zUG_P1EFPw(`Fd}Y$0MY4;UI~iV2xUdyAnecxzg~32D2^w3b5FablWJ7IttD~2^38y zE&iXspx%Mz7Y4t4Z%}2=%5lkOHH{OlVP~8wOY+0{uP4+&_)bKBZ%4iuw&eg_IN1#( zIbxZ}%905>M`$vf0TLG%;x?j)(M*NZpBq;%nv<34Bw zoHeXrOnIM<^6&XNTmNEM5HyyVsxdHmd*;5s+!8RB>D%s!f`;R{KV1^E|9KQkt_Tg+ zgi0`*4KY@$*Fc#TxDXt#V-q^%jS2oE-h{qx0wToSd7U<|%jm zN;*pmwWBczU%vL68P@Pnc|=K%myy(%CV|^apdO*M>CR|psb&b4(qkytNc8;vX?wUP z5<%bZ+71ioqSYV{1HN(+oVK|Kgk&UtW4WLVYIIT(3k_dzpZJLa<$N=Csf@+^dBqKi zDJb1^afS*1&^<_Fx$jyMLjT8NP(sDGz~55#vIUmbdh{E2_h_g4^x#*8{*Qm4?gzgi=3~6D zJ;q5!s1INw4wiQ-R|S6T6mEZug7}b5ff}#YLuB$f20?%iv?2-S-x|P9;o13dM zS*j~vycE?9)a4CSWEBtlmb+hzQ@)x=ddN#pWoEW2e@;3~Tx`Kv-W~C6!EO)2O;Oiq zIbgUME7P36Rs5lLzc`2Qzu%{+}Oxts=?_+pQxcWq5Ze$Z&{0gsz#%W zbEk;Q_1_lB`kV9!tF;bWHvgQQ9BCDJLF4EIZtjtc@1Inw&XTj^XE{_U7E(0kJ4Jq} z|B`Oa7xKWD!PHY%U7gonSkU>F_?lZS5 zkrXviH*yHQA%#0;SU{gf-Ex*h@|(p zC~7_jp>1D}n1oKsVy+nKT)GyDzXcDUn8X-eB{9W!glaA_f{$ZUe)7m+j;{GD?(7>* zz7-hD-kH8cUao*tty;4K@l*|C%*1RzVk{D=GKb#S4Zo@LSP4H^+r`*+Ez}If-I2iD zm-URCAiCl4pbO6)1fo9*f!8bA`%Yt6VBx#(|VSlz}Cq-tRb&l{xlOn&lSTZ z+eE?AR}q5WV=OQdW3bPu#14~WKk~aDPML-)aK(=Uo10*cjR~sQ9M6`p$_kZ?$Qk+W zPtb69Wk$0E%bX#+YGf@n8;V6wEeKkK!<098jVj}axT7(IQQG9I5xzxUBYz>R&L z`E!Z`L`{J$CMcf;$f2ecM^AQu3G0=&h;n<~Pp%1fnc9B7z?#`~p5&b$Wqom6c+xr0 zYfyX-(wWz5>$~k!MN%fH+g+b=n!?j{y+KRP?0N$_91NZBYY|gxwyR;3Df$h2XLGz6 zz&bO)%2nsr%H$Z!y1_!>GqF?EocBk+%&b3j)8Mo)1i9+%2_r;b z$fjB+dGgEl`X=Pt^CwgV;X7i%zjjyKw;DQs<|w7_ZR%vV1__IK*T!q?_GOan!D&~f z8TU4=D<)H}VKM2mM6Gu{k@9*q^w}4g zIwT>y?}oH0cIQzO`g$~j3P1oHuRMJAJ>BOGl=>w7M#{|$si2?yJK1=Ya07{?G!fUN zAdr#Xp&Jy&oumg2R2CcTUe&y?Qe%95V{aU|~l0L+yl}igv1XwpIy6adG!D ziu%fJ2+pcrn(CTgipe|bTHVxj?F{7grS0^=83`X+j5cQ(I@4UVT@D`p4OB8w6E-ae zicurV6hLI?aaZ$uW3!xbUe4qC+G2v9+B}Dq2bkCHoR9$^!jMk=PzRa8Cb%IRPE0W0 z*-j~V?(_%uT>ks<((Dm$H_zZ%e(tZhO1fTfxuB~o>qsZCC`3=q36Z*Y#U=2-rzoD|SqDzw8(lk@2G)LZ|;V&eHjA9lR zW~&RUW0}sJuT_G@&V_Vf)B2g9Z<;A;h&DEWj;yRCKDW81Ekd@*uoqYtl|V`tMefq3 z$D_CTHOXWs3kYMXtz2ZhQ6~xx&@lR*FE6M|jnww^+g~lQn zjErQPdcJUy7{B+clCB{$8#C-fLmFH{@)Ckg`H^YEXt4r>lQAp*K*Nx#=94)4r6Nw% zGv_z+(8YK6P2pL7oY;@e>RZ-=GLL{!aQ4-_r=gLGd;n**$RLcLC)RibHh@le2G8`A z?jeLM>>8OA1p^yWkwMq?>-!#Fj4KWULfw)o8%b1!gwMHR0=$j++<6SZ*Q=c zZ;5CwA=K5e)Fzw5aDJmb8qI(V{nz<^HcGpn1LeF_KY7-1IS6Frt-Pd_F?FRCWm}!K zHX@f8Ham*PgDI-VP7ZKGwfnu(rhL)tvls z8qMy=yXz2fo$xIBHOY9OI(R>S(CpT{v`D*RJ}wc6juGJW1~#C&^n93&c+F7R3oY4f|4SE1gT6~IfAniQ~#IQVSy z0aPix?WeaFQqDP!Q=@2!xa;AFtblk)YMHN8eEQD4GBBV_j-XPH{Jzf+#_x$(N&Pzm&>EOk_952@u2ESAfK7tmu=pPD+W$01jjsp2_b;y%Z%4UPHNR z1-a0`u~}A@bo4G|dF`J8@w~tpQ9_2wq*2e*ic9BtB*6mM94cifa^a$6ak9mwSc{7^ z!wrUhpP#UyK1ccb4e0P>kH)Zh-#d!)P*z<;kjBP(V_w7YU06g)O2Z;I zZOT{izEyeuHDK;0N|+>Z=df01CTs~?IA|#u={x*#(me-09q($vKFJ`k0={^9eNnrq z&T5k~>N0bVeeZ!dh?9^oop9|7F3!>vYlXhvf?CFFbm4ydY>5}E>H?HmNnNY0lG0so z{9q8ZqH2m7RoA!H>gL*+(;vSbBalxGf>c<@`&n#E8YdVXBjh+mk}4N1&Sj^@Egr2M zz@OG0C8IP|HMch7+NqHATl-TbZU;gblcj!`R(hWCP8J9dGH$k0Jj4h%cmCC%@oMIs z=WbZgTzr3q?+S)Uhif}&8W7%&NsK^Ui0JbRpo_EPA4`| zXf|t4^NWfxKtSR!!Zpneg56O)zGY)R^ELUf$c?4q^*r}tsHysGY_QN5Ps{7F$i*&m zer8rd*p=0wbQ%Uzr=g>=L)AfdMs34dO>id~ zYL^%qij06RwcQULG_CrXz7qliXoBoKwI&7N_P*{jds_sWmf&M1pc}4ZF`<1Z7D5cg zYSxAlz(`Ge&4;4u-G>m~u}26YL>|!Yw>I|szu{v@g+_~$`(Hn#AP90t3!>*VZ3sqU zVnrJ3%jJ_C1QE;=VhDx){PlU{a$?{UjP(70EQT~&{QMR&i1L4VMg_F{-V08)DnghClgRZOA)A0LuFQ$CxiryWmW{ImS4g@A9dV_ zo_o0!n+a-P^#?u0=>9#iJ4$+e3lINXrF-AaPki}a`&>xqNZR$+?p26->W9|TuFHZ^ z^^`9dq>pqdTzRpOv9|eQ^lo%i-TD!^`e1vR`eC^ifc9dEB#_W06L(e)-XBVihXE_H zmXH~KNSodgMZ@ma|Ivf;U@;a7;nr5Wjgul0o1uV+!dZzJg2XbQljrCT)B=NGaG`{0 zxI%OaxWJ}fsd-kvwTQK6s7Pr%RIw)v380R`Le0f!Oy}yLLXwQ9c)9Kx=ao8NKkuO( zKkW2CZ*KSwpL(HrywjE*)7n+Md;hxhw>#rB2cQDXd}i`Nwuj1CC~1IE9IENV|8pfs zfVs`S4QNm%)B8zRv_Dz_!}>aF>sH_K-L+nM?Kb~6+_<1cKJSCl#21ggspu8^S9$>) zA%~s{FV-LLyEzde9t?K7j1w(4gy9;lTnqQkF2c_~J#lV{Z-<}{eiSPltM7Z0ruICJ=srAFkx8O(tR7_HAuSqtmiZRDU@nL{^FTv_8nA=S&0<1PRVl&YcYLc=lmsSgnM1-qaT zY9z|t6@nN+&_1sjFP%<0lYL!$)j~;@lds7Y&*Q8Uo^EYI4_$^Q50fNA;#E@4n4#Nc zxsMfoi4+D5VFxJstVAQU^yk4EfmD^l{3XOO?$P_?yp!s6KESJkQiWn54p*GJKoCOY z{6g>;r;}tj?E%LzIJq|!0;dJ4giV8o^YcdlM1T0OQ+%yFtq#&fS{^D)5B16Q6g3rl z5Ofqob0w2P5?fA>_Aj!Zf8vg6{&2>{7?gd7MEk&2|X~0 z$w<@#hd5v6hiY3c3bz%=&{G1ix}hU(s###+pxB9qf`&+Y!nGu>h%v-cUCPMFw$b|# zhKAYtQGk8Ve?MZ0!;c>Mo)-vwc!$5T!@f@R#y|aQhN+8*ApIVl!}v`VTjKTtCey`- zbgM@QzXX`j*?!0%9id>v{w6D8EwR+n-qc&3ec3t7Yk_5ManT((7@30nnxDsRP!clY zME-E=%Gi%+wVJHyqNH18dzv)lYGQZ@n#PKd|3mLY&jte*_XAPZB>o4YcW8-`SK<*< zsi)(|pvbL`qh8s4liJaZ7f;o5dt;@Mi{5n|_kb06OinIA8QZ{e(;1AEz}pcWeV=}E z0xnyPF|ACiDX|;{w}v?_HZ*x~e}D_gEHwx?>^$N5E3M66+C!sq@oFwk3 z3FfSg4wsf2FSD(==gHJ)kE#2H<_2Egg3s@zdv=5X{!wi0jc~Ec{;RT;k&4kn;D8CI z(<#6hO6zFH_R-O?Qgl&QH3C04l6%=)?XDzqHvS8eKM`rC(dBC_sAw{Im*?&xY~RmQ zJJoMC?{qTX;Dl>fD5p)>GGnns8rq@rE7$+Ra#^PKz^PyTa;ibyZ2Qgi#xL*1cYbqy zd3I3?q`{IN?ZN;HiKwNnxv_Y&I=?Wdso{24RL+n904Wz5aKa#)4=OAdK6eq|N+-Bh zqXzm9V|ME0?eoBsh0c~eKRuz;I}$QW7sn*$8BWwTU_6o)`D-lI<5yDsCAEGtw zI`$v|Kbk9$d=krs_^xd}IdmUEio$llpBH2og2lPdDak0W0ERW$8ZDy%a^bbr@RY-R z6IbepdAYVSS~&^O6uNNa_a>8v;m?WQeYWU|Pea&rEOARiO$bBij!@tDI6f)P z-af|r^^r2faS@?bc+nT6ij6>h#l6Muz5K3A#8sq47guVIZNv~CfND_n&%d8%w>!NI~$R`QZDinU0-PXd>Yb+9?TwH~eBM@`L+VCR?W79yl4~kai&|5oEEZ^T$3< z9=kwJs|=>9TTl;zokN2tCr*QDvh6L~@BENR@ko0zX)@EE-5U)u@`|v48!@ZLT0|;I z2Ig*dl!OA~O^C0N$y%ufO27}99plk80*9Ow>UD_S#7iC{nnbl~f5?#B9{wtm+;6{h zjrk|SaE6u^N09PTYyuRrZ(ZC8`9E%1bfakkx=zXDuQdDY+(g3COtrp0Ed#(;!4O4* zKUC*F*ZdN)@wm~U6^YZkH9Y;hR-WBf=QR48c<nQLWwxZeES{wpSd5040+@vSq$KW1K~{V0lu;r#qRMhvkt4WZ<>^U!l% z@=ls=14C#rYh53+H_cfdC;tE#g1YmDZB7=OBTycFe!klN!}`|#0U!^aw{!hd0r0>K z;mhsE)i#Fwd{nM7ZehE2i~M(oC@H^1NkggR9E0Z^H7W@VRM&r(;Iy_>VZ?RF}nieL|jg!`SqB z*(4YD1f;dut$CxZ=kRv3>*@m>ZHMQujr`WjyUMZ824Z%uf>l4p#UMlQxHd}p_)gQkVwjxCX)Pu@L*2;K^Ff+i-3C&rPBH%kFI>0 z&4T<^1yBAiC`Mx^;@>))JkHwVVvtC(9_iX|WA7`gU!|wN;u@x#!jWqvXPF04UUM3o`AOC=#wGs9Pk9{?4>^KnI-6={rUD`2tCUwkiKkCI7YLXBvke|Iz= zDNW&VP(o(6jbbEJsbD8YJR4b<2By*6#pX>X0k?x!$jnq}Lq3NowY9=q%jBpxbN@<{ zqLq95bxyt~Bk0Z?2qrOBSXrN5jQ&8xz&5Mvpw`SSQ=OUN!zzu1@!1VD-m5rDzg+pd z7gvdBOS1kvo!o(DxA^6q$D7)=wfb|wGee$y;94s!E7K2^#q=M9X&PEv+G=Yni&?f7 zij%(Ce$wm7B+lbW?Z=dF#Zxv0EHBELk7Y^~oK%xgvvO-=StaKabU)Ni zyA77dY3iN%H3~G~sB1qLZpF=N@v(^SX<_(2`;Q2gSA4tU?yrOD+^Q5RJE zH+NDhGGu_J0XOvDju)Pg#v{zX-4v=IaVI-vH(Of}y$rPSkAoFCa#gWg=8@{OzXhIR z4liR^$v#aD6=h$ZB)1gSylM*}<5TRT+54##94tbwRK@Y)U+oxS>-oAdfHnmhKf25= z=a9G|f`sYZAW5hc8PpO~nk_t>@Dgs4R0_0-J=snB4LLE} zJziXSB*<6yKnG-hr&My`SnLQXKSJleSgl7_Zk$Y)4iqj`F)Py+7zt$>K2xoJ1b}Ev ziC%xrcf(_-{Eg!}7oJgLX%X@t4_N)-pvvK+jOn#)AcAJ`rtN|7f^o{Sq0D0k0$hm+Wny7c?cd_j?xoG0wk2 z5GJa*0`EjNIC&7izMUcl-@+f=fCEDyEcNHeFy~#(Bx4N`jVO}RPXbJ&2lW0Dba-}f zE*=M0(u5f@>?A&yFuwRD(YVS!zwTqv?um&|@`B26Z1RTuj>2DpO!H(i1uNrm4!QW5 z8bUB1J7E>UCyuYsjO6fPc}k$<5+|nKhN4=;*QM<%z`KWW$zX;M7j9qZ$GhlRf=2LV zJ4c`NuKl|~oMu$~>n^hMsk$Mut9ZK>>C50-q1)*1h3b!{!$uuPk~X@d>j<6AwvLOt ztz0JKi>`V<-4I`(HYIQ?XuWoPmrm3{`ZU|uI8eXJjd=mZDu8A)6>6-K-Ijd$)TvUaBto#*X|1-ksE|0TzlrZppjP z!ZoIsW5sX(Uc;n+T<`4Bp0{|9n*uKPE8uc#+yaa4HbB|izhayMaNXtp{G_e5U!MCl z__VfcZ+~~(F52G0K8tiMsXO_&te9D1CRLuun}9p!wp30^LK7+Em|$a8<}ODx*ZM;` zQu$1i7{hVnPk3DtDWuhlEc5abL2d)ZDMg9usaFfSTfzs5t!3QQSPDV7=-wS=2&Ua- zjo4q!HZ@B$(X($v!{iV;PvTsJ+8!-wA9G7e)+Yg$(a{c@bhcjrznq*)^}p1j#|*+l zV(*dSu}(KpeTG8NIRQt3&35;h|Y7AzM9#4x{7?4&-rh-2kRQK zK0n9}@sLF{0=0CxJ0Ob1|5J2nyXRPuM;47Fk)&m&Qu@_nD8ek$cf@OqceB%My1Vmk z$&QeXtm6QeIK$R)gthu*@c8nL?WQedj}-ea`C6yMpPGHl5B}2cN$4*0UuWn-Fr!%; zs!1Q}W`)9iwNJi>?@~jk{-LwrAmuLmc@UNCqQaaY2+;ayZZYY+vttt}h%Dk*s2P0= z(xD$!9K|7&AbRi*`SORCNeiZ)mdYUlO?M&5uZY6?&ZiIV`AU z)-q~TOk;IZA>EKk|@Kx9(E&#Ur1CfFX|ue=`;1YAWvqGq?y?7ZAF z?%{Y#efI*ok3LZVm&hv5Wt4Tbco~~L)LracjPh(*`wP3RXvnI)=;?YHtxh5co`uu& z1?{wi4O{|5%PdclnevDkH}~tbiWk&V+%#F_mMZ_9+MXWEySV{p%2>~J z-F?Rr+q~8+bzvL;?%!>r^SvCZ-41ti6SwjEf`At4P6O?h1+0jxytJyg>T!Bi@?dfk zDz}=R$Bh@~%}s`9ie}UJ_e|PI^?^Ip6iwFhv&_!CvL<>Dk?4?;Hr^-pGnhr+g^1Pc zCzWHA(y9<%yG|pSxwX$lZ33q{38XYM8fj0$L(4qJ(Sw7{Q>UJ{RvR%kYd#;zzvil{ zSf}jhv=a2LzaG(Qaw~P#*P1(s8OVwsI*FW8GvD)1-5|<`%Z~{qtI+@3gJt!SmY$U{ z9Q15-Db{JjdJu#UI|jH1C}Kz)hbOa#9Jw zY5!Iw`EXa6zGRERY+3VopX}QZ;y(E)$F~}Ee^Rn01lQX2F>)9_#8z$Ge6)ffWKvv` zpmfQySuJ)laFYVGhAVA=aMRy-(ML$u1E?(-y%7p*!EWppyOVk-HFaR2*akcf_b>I6`n;gz+6`9KoAD zy@{~+Fy@VT2fx|KrV)jQdVd5eM#}BWbB=xEs{h&d0gssAXTa6>J*ja|0cmO^B?tlD^R*mU?o^nU+WvON5{I@c?Gos!>(6k|`I_jej_%S4Z&zM9tGDUfor4(L$U;(G=aZEDup)Hdzug` z4A~x6 z-P>=?hqR`2sNLQk5YLg?WI6k8WHe)x_#Dt^Ghe>`IT<)j-t={SPe{>dch}vSOX2mt zD&94#9`-nxa^a7#=5uou)c+B6KIB24M8^#F>z*ItAGjGN{F1?2Uq|dO&Dw|I!_~%~ zy<6Qhj8+*tW%)MO?vEl2hj-x31ZQfUTG6T-r(5bGREpA18s2Zs0Ojur$Xq?W7DR1|*mom|C<3>-Y8*nW`7UBn4zn5$1iJ7a z7k%D_NZAcv$;CDGYwj``J2fBoscmjHtG?HVif{ZnK5RlYZP%mnh1!kii_+v_)8rrb zKsk4*Y^gkrbBKER!R-`-M3Zyfc3iFJZa+!AR@F}RRNw|!;gy}%N5Juw&__T^&nXe8 z+fUezu`ah>mFd!M_^iX+<(mSg0Sz^MD{1>?L!A?Vz z=S~_`49eH+Mpx}CF;f#RV_Jy*I+?f{Rx>JRgWHH}ub!}a2rec}{U#DKqQ-Y!UYS^m zNZX3NL+1qnD(IY3VJ#WL_K9>n%%E*AV^CFNM3n{osVWM9P{qzvDY=oTzTYFCJ7GNO zRVl;Z8N>3qcpJ(rh0|SM5LqY-Am%P}>$saGjQP=cqkJ#$@EiIg(d)=#%FU);-g7uM zSgp)#xn{pv4}~;)(=_AOb&a|U%c|RN(;phkFd+)4{OHzvc$j^d3@F=agO|e|3YG|0 zrF|lpXHBJ}6aL7WQ=m~$U9)U~aDM8fw*iXQbGkSD&QW3?SQ0$}d zE?&96-+?nHsW&NtDiO+Kh9ki;m07)bLn%z>o@erpmP+KD#d*nrLL4HI6L22C$8Ejg zSuHSO12so~LV*%niFkxvN1$l|w1trDig)mkvBRaMm`vU_` z0^z#CI&QtOL7&75nxbH5RsYDl$K22e-r9omO-9JU`ao5cG|z+RJwd)FEl2b%LSBsh zenFmGP0%@&#J7Vo^y2?-U5YyDYStG|Yw8eb5aNp+oqGoC^VHj7$xugG0FQj7q zoYqe6vNZ}ocHtvHWiF-&=+m3%Nb;n`;Ir@G;*jocyQ$kPT6v0UiR!?@O`c#h|DiJ1 zk|(o4C#2trtwv+Zk#;fsI>=FvNpJKMd~7eOs;w;Td~9S4wnxsTx*KUqTZx$%$%;SZ%{DEl6W^z0Hn==650__j zwimEG(W_OrjXbC}H!$um+73ilWgj*fJAs3bKq;z=YU|5$=?DSaiTeV1gmMD2j8;jD z2saVQGB5hZ0=h!^H%Y&}wjLF?j+$>5sdLZ|7w;=7&dM%icyDR&lQWl7vd$GZ_(^#c z->h!hQ$k&M5}Tui${uPfJ+n7?-VU2RX|r@Y99<7{juV=2y|ZwS@4QDaSJMaY?_;Ij zZR+!Sd&A3COCutLb$%i3^qQCd?2t*!ZF{QDOvQ*A8<>e2mxxkEIlE!|Eqgd z=`iN9!pVCVh~EAaoXBgW>4``ww!7qvH6NPmhFp&YZb-&5K1U)&6e7L?7)pA&5ym{6 zXs<=;lkbKcIaq3tEsqoDUD}a?PJ#;q_EA%37)tV>0Wb@bcXEa&Vm|_Wg$_;( zCfQ?D)HMxQeMBlD9#VVP()s~72EK+se;T93(Ge)dfW+yAa!q+Gbg-c*wg}PmQ21`h zM+08ar$BzcD-2^%EoPV@GKmxa8u-k$ROcB%jEV+`{Vpj+Te&K!dFnLMm8Id|6C)$+ zLG(uRDXjXPh69MHvjCStCQBu4p9*zLp_YY(NSokGKyR}N%3WSP%avj+PW(FCn87#i z;jyvb%Aj@%*hzGc_+8A<(5rJa|Lr*_YLy1yQs)kQRDvfI*i<7q*P-v5@@I@3l|8J! z$o@f|=^MGP?lM^-{o7W7g)%h+_^&dbxh5(m25p9G-~Lg^fCZ^WrUR_y9x;buXr}n3 zFhoF9bWzFl7_v}BQlBe(;0BbzVDUISQ3+84Ov)J2w4NgmYpPZ#T07i|KN2&NGIhd_ z=8Evnkl>KMI7S6{^QH<`91VCpP@whjmk7SN=Bu)@vM;<{HAM~fBZO#`-j4wb4>|nj zZqm%Y+nMTUQE6^R^kpm5581W*@AYfNg5U2(6(cSM>aEZ2s9E(iuV+!l)as{nb?+B1 z!?U}JcB6D6^#3-!pKrM-{4!tInq+jpZf$jY&%LlAaDy9xb<0}ixQM==de?YcWj?50 zSG$@wVI(EUCt>k890ea$Gx#1C9oPvi&!{b}FY0AK6^Xq^Fp}sH(!YLow2omCiN}?f zLQ=)FrfnnsBg*r6Bm^3*9c>>!T`qw_EikHGv7%QW=O}r7jB?1U&$+Mm#Nj#~GQ_Y@^*=g(2e*ru zPQ{~ki*^pvM{20>kUw?p6|48w8Sl&ZE&b9cl!yb z9j0Jq*0iEkH75F4Y)QmoVpLy^o~Luw&D+A<@GYYTox@AQa{!reLftqG)J?MycPi05 zgDBNy+Os{`kh^+^>WEhLUs;2@OYR-P5K%;d7J=itmx(fyn5?Ax`oY)M0<^ zJ!<-uht6vU0&gN(KIGaeObru!4zpxD-+6iOT=)bWYFu$kc_LdZ)yJSbEpulva#z8- z4S|?v`8&^3%>vLyTF%k}Z{hRX!I0Ux!&~pA{+ILPy^r`!!!fX08C8 zU(|h44++2W>70EmYrqNnQ$|6F;gu1p_X?0)XEr$LJkGLg(rFwFagbxD{d=6zaw(!J zA-8w~4#gx+#9L?x9{|^S;PtZ)G7&rX{p!}oG5iqxA%sUBxi&$&H<0iF334XiGBt10 zC5KzI7(8(cv)Z*kTL+F{#lLEXV0Hi3wPJ!1hD`k*qRug@^6ziM*`CbFwwr7>b+V1g zHYXdCH8q)&C)=7l+4jl)e}B)L=WVOiX|>jF@BP{LeO-RIKVijRLO!*hektv0dawX> z`#-~r2%i@}lvFX%jj)bPw;X=d>LWQnex*7%5Qo90VF!m(jZ)_D=Q!67J`F+Y8l!%Y z0ks?`0=3Xr;BB~*Dd~DlENB`Tmnkx5t0#hnB?1u!M(zOL2poMBaoI3(A7448SQw*;TEb@(id=0HgPtva<&0;NC$n0qy4+M$fM?` zt{m4(KhV-x@|IFGB;1c6B6fOqCI!~iFGJkZto9O?N{w!BJcsAm;=da+^Z)caulfs@ zSf;(7>JQd*G+p+y11tVq5>a;(souWKa9?h!XEbCX3XjNndxIsam6%5p6vulyQmLoA zL=GpXH3J`?z?rTGTAHuv3cdC_8bYtNXQjTCVoog)4j&d?Dri^Z0=U`s{^bAPBj!!5*D17~wpUvR5D~8OoX;yE7Lp zIU{a7M1ZAIse_uOqZ5+m-T0wOKQO}#W9s*JXJ#U{GaQcAO~^&*}R@NS~na6&vaV z_3@%CaSFt?BFvqks$fQu^UM0vNhF(lXFg$Y%AtlBdOgk~;zL>C!B>$YuuI+!;8WxF z5u)E|()pO^@(7v49oC`DPI3iD3N-U6g21wd-^;f%q75mh;U#p#Awv-2^N=XOJ%vY5 z#Ku*Lk=nerNoQ~zmfkq+!T8hrX@%twqdcToq7YH;y-^V5`1ONiioUQwCNC>vfQwj2 zWE3H^ut3K_W(b8HGd!fYQU~h7IsCA&pZ1gYFN85{pkDMmqJ2xK*GM7a!yH}$)N#`a z%1|NY(fXLWWX<#%l!qFyv!fNjL9G9rGH|uRu8KP{!=iq()a9D;){onReNHln5wtSV zq&n$Qp-z)(Mo=~}9{C=VqVcl^xA{L^7bVV@iCUsfCSp+BkLZOG+sq`Z-`=}>JT%VZ zHnIA*A2em3Znjn1AMD1Fy%$@&3QeY5I6iMp+k;4}yk8z#6O7j0w~ewk-u*X#DRhUo z-dlDHcc6>sMoRjDV1RSidtJ;oqfYPl+)`{|cb(}+-}z39X`_^fe^P_f`pfLc@68Dp z`qx{nsE%(n`@g*BF8CSAKAd@|%70Q1j zqyo*1`BIobvM~skUbs*FYLrsc=CKbY6{6H4vrJnPCSXrVHzTG%iYn-*EmF0`4Q`hd z#|+Q+ybN`C5GM>&zD?!UKXxfaMrOuZCdT*MLbA?I&u_2W5@a6^Cv%ib`2hThVFTbK zKCc*t_x}eL2Eh1n>kXR#>o6k#d}Ko#Tk*7>pk-9wUlG&H{O9D9ll5P*{mG|0+XL)s zUE&X#V{5ZW9HOYzx}?xg!z9B44h-3l{(KS>7hVS`W6%!Tk8?34c`oBtta1FtgWlP- z9p{4p?GU=cC8Np=C&+3~2v) z7t*5&TTYZJ3R7653c_5y9J2u$OSbZFzxq`BiQQLC!)jKf>52S^HPSc`e;PU$OABnR zWSSR}g3d#O1PJERp%7*GhZotqjR=cL{G!=dy$f+cN`Ra?4fD_IFH!y7w(V*{!Nv?izi;@cC)^u$u8nu z`|0veI*{)r^U|>8DkvLQk^dohMXA|Nu~-09Uat;L4~}vNCeTeY;p=Z8duX^lzX#sZ zyvKnHt!bfyESoux&2HcCCL{oMk;7c}G?AS7?Zq=*`?C4F!|Lhce(6STDR_@6V*e&| z0$n+R=uv#jspLR*LX_LMa9cP8jQL44w)3tigo#SVgL@5}XzM9=D;L zGT=}%pQj`)Nxn0Z1i==5iO;J+r-(36ZNT$sHE$C`If>LS}_AL4N>G}DsZWZBr*Gt$*o zmnn3)^JVi+%KyQx;KUhB?#ODf+M6C#3drSPh9!g_8&6K)r5Ye&^(GRfDPDQon4kZ* zls%xKt-HLWzj1peT)n7YhzRaX`_iAuni zw_6?y-r}}lgV}|-Y|sXv9^~}487vx<60fPY)i+pg`qN>iYyxs`_y0GyF$av+16IbK zxlz|~?#?rL54u9eh8AngJuPsRf^565gB>GJ!WZe0k*#WKvg_z-n@eh%e%XqN-MsFk zO=~T&(3hQtEN?7gq>6hQ`Kq-2ssy(Du`C+a>MX5)f?rw!Gz~!p3dwSpO?eUq6ZEbQbRBiMUsPI)%oZ>t! zX}{0h>xS#J zm=P_9ldrbq?Ww)gA}|2I-;P5?emWgl%j$jA0|8X`d;x zOYmo1V}|)Kd6+E}kB~$KGZKqwYAE{Ho^13mK3n1he{VA5vyo3g6Na(&DM9?iNo6L4 zLLe1{%ACVD7$U);FO?_>jncv`!JLiDOl8K99akm#Q>q{SPQzOo74ZuRf;G9ZttE-* z5u&6xh3Gi(Fw6>PqEg8b1#!b;0m9^uS2m;pjC`8{xpK*Z-YhA2@()pMM5q#a7)Cel zXlvqYOS6P3IL_Au2@KKGroRhwu*jV1g$3+)M#;2Qcro}&1Uo5>yLTnpz2;LF zSg^`46o}3QGG`M>D1!)-FP{h$VF(ar2O$*?5Q0)EJbJMx`?&~C1f%vE!V-QHn~<$I+YhIns+fCnKL_1%po)3IY2IjS;J~ zB7a+6_iuObd`bk%49~M(MPFn*?RlcRy}Ni^9d8l$3;CY+_Y3pYZwg0K7OKda8+@^girxXmj9^P-si{$! z=Hgr@rvXNTKD>6nWEsf~b8a+LL>*qoBv-CGS>rua7cM`j4DxUU$UaLkin zJZ@8&WNTs+r{3`j*O^Yol=wYVB_woS%nd6)K6QX({(CS6elXu<6|-fYz%#&K#x-p4 z-6&q|blxlJ?%poA%zf%5#Zy$LtB{)~SJh@1nkPM>fUQQNlGiu7?wmv->V%Reub@z4 zGPshpP*1gbYm$AEjQuSxyZXE_y~fnz#tLNaU=e!-^7 z%de0{_kYu7x9S?vdf2lASReT0jp&A1n5o?vt|IPuE%SX_iSK#E)8+^@vQdugOxRG!ic!{ zNsW}PpL+2-*(8(PXPqYq6h@BE#Gvp;x7}EdK}f%(AuGv@B;HFGrA+x><#k;pG*A5Y ztRou`9sc!u2Db|7A<5;ftu{*Dr|q0BB6^0`PZiIZl|*9|r=82}w8RL4A1B2SsSSWf zr_5flCEY!Kz4Sa-)gL&q-vm##U+8u34}NdgOXhuPzHsYkmB#k7bvV^mTYP@12=5rG z8N0vW%bc`&Zb}c)%8-?9*5L7AsXQw?IXa$trRhV_1^iRTX*!KN)0RH+0n_l;gjLGEv-g} zkD(FBS;Fk*BxkL!0yuh%9k5JVD0gb>uM4uaIJ|be&g!x@uJ7O3?;c=x-FQz;tc4ej zh39SL;ZVoz9^kSvT}&`O2(;Xzxu;4AqgKl*==pj&8rj?DYKhhWvwlO(<*xb?TN4x8 z_5s@NF2-_fb+fu8t^yW%8$H8y{@OBcWkZmb3dP^@i3>Ryo<{R^U!O0U9c$bk>9>zY zK#MtGbG-eo^EvLK^&#a7=V?F0u#oGW%JHtIIc;if1&tL;e$h)&QOC1$eSe>rmcAhB z_8uD-_qW5?4aKxaWWnBWOdV=RGf?lGZSfb}`{W&(391FBmD=pn72wF@c-qoOGd!3ffnmA$br(!ZZ&ku4F-Q$Dr%v>BU(%X9fD z=CF=_QpSW$Pfs7-{mW$%6ZyA+Jb)N-z`Mf9G$ZQ`&oc^F)CX>WQmlZ8uW?J}Uq)om zesJgz4caflj}b~LUJv{-zT>`K>t(k3xClsbVetjqg0P<eO&VMk=_jrU2h`}XL zap;R2kzQ~JHxa9Q1^n&KTm)>4L<53$;7?HGtd6nuIPesV^)QQe8I(Z@7_r{B%%j>%GksB-lt)2qU0hH}~Q)q|m1a9m-&_LxRe;u3*qa-;I6nQ7F|yg^4+F zSP-cMTNdkFkCO2a^eoMwLo1(0^oYN~NS5M>_Yh+J_2rIwWec6gCC=Q2(3RK%6-`mN zt|jU@{EZH@kES;z97e&s!Zen^qs``x))CMhh@Yki43WUoMKE7Su9MADzk$i;B*c+; zA&wA%aeABSWs_Ny|aPa0NV(3=c_mBOn5cAl2v6*kF$jaji^O#+;3n|c{ zx<-yRXE>&2^_cdmdiyR?T1q8iw+708rDPFlP-4OgNsLAy51FLNf#?f})aj(Buir+6 zRmhFC7lo4vN0e13rp&-1%8tX&>LB<2e8mjI-pWl~+{~_0KTg$&V4AELl(CLOYO2=g z=q*k?k&1J`^u8XfFug7xmg%{`3%FAEfwyKYXh4NNe=_co8vv#Od~SSzE2lyb5aie_ zRErpTEn0%&NmQ@5qP%O@41ZhGgr?n39qgq$)A%Y%SSQ8V^&gs04NwLF0Hq*u0#XXx z+6um7^c%E44pYGHD13Y{>PZIvbq$ZM&1IRr1oWl&EarhbHsQ}Zj`YT~0BMBqbXOX{B!GWU`Y_=03rdU~2bpN-+J|5Q8siG;K1 zgwi@v(vzRalq&{)s3CEJd|)#Q)a0Aw@MK_dL?p+`#^Mlxs55*OdC7^wQz>ysdCvh( zAa?Ya@dSXy01!$|h4f#MMD7ZZXZ?AG=%I|dZVZR)-elqy*(>N)1PB2PZWcw1QXeU{A!FwS&?zV(U zk^8KydzV}>M>isDR?(}<%=iK_*^pF>{Th0mWWC1l443fa!D|F3@xWSegZ0)*Ga5htQ!Fjx1MNiCKnG= zUV#ymhU&NPTRGS8`n;#NB9kOHrBN!K?WP;aj|ZK3B_B&HupGd|WnB0Yz!b|7ymJkPx|NEi$X7C$Rn8n6675)=Z?T?cb2T`#OAofw_YqBVX_=J#gLdwZ9&lgB`d{1 zTo5eHxE4vuCnZ$P7mE1lI~gP(3rXiChSXGF;`J;cT1mN7?wd(2s=hI;NP>^Fp7ev$ zTiW3LQtNJLa???m_PTOW^r~>O%4&pUTK?+D8rGKP)*o_U;)>(&po={IplR@2F_V<1TgA5fZ-gYz`VMhWJ}kS?Nlz&a9tjq_#Bk z;|WnOdOvl6(M5s5HrX+RyHR?(0EI{wO41TQMn;E>urgIUs4TTqy&W}KJ>A#`t~WcL z@n+|}+B~g2IAv8ZW~X&#U+B-K-xG!>HU7R!NL#k#2!YvHSe{v*Tl(>ODzByH`%rRI zxsry>n?CQ!n6WDGB`v*0MO(kMti$!7zHmqpk=NHo%*I|p#uuEjD%cB&(A?Bi%yM%g z-2L-l_sIe|S`W;SoX|YZSn(};^;CCdac>W}qD6H;dAVP&E#Neyr%&hs*STfYrGNER zMK&g4yG5_w;BlRl+6Ms0Q;_8?Dx8$)|3@R)&W z=Ihr4oLH*}bS0(98_l#XE)yLy8BYm+u>I_#iF(TRKR{cPeWE=kYsY13Th5xbpvq2( zy>JpBS^xdxFjZWzxumaHd;ha(zj@kAw>nb2*uSqa{uU2D+TuZide_>jlEyw#bql>& zsIF%_zWC*?tY{L%7X(B1{jpj!l7jEc9bxV;b5&or*@m6|5+oI|H>QnoAxx+a;I$Xv zeno)7C?f*Hn2eAKeIWi#h4+*0X9r;>iOMD;LO}_82mh8*IG}e)jWv|Cw3x<*oH-7| z@MZ&;X;6D-#Sohq!HzdnfpCba2KcVw1^2~6$zBwxNlZe2C-!vFR_n|{^0S|ES6(BR zt$QrQ5(sn>LBzTj-(?dY2O%Ua&{9+pIT+QIcZP2u^r^7f`wxG|t8hd*sg+^2k~e;h zh$9v#K&>6@F5K?3h?7POejosP{maD80!9V zP?5DyRe_l1DGdfFSlXUhxjB*y8AtGyI3pFFlmG-l&?3wHKIEsKS zN*Hdxtk#*3pYF1m(5%#FQKxsC4bd?E&wHbi8)bhdBVT`IHqk8#S)=wICdQJxL-A?O zIZfRJK3)Co)#!c;2D=On0>tytC4elcd40F(Z(sYaF!izWUjxYJ6^>ua&ws4$wEKB{ z{&qKFS|IRnIYEDYPJLlxEMQ0c{&9d4SQ}#eaSj%$n1> zl##vhwk?&Pe|5MJT}GFQ5lto))247&rl>&??_D-w=O>NFjYDVz2{0tvh;LqsE0}b@ z5Wh2_>3Ty4EBawoT7ocD)sdy*iZCdC1CPfM-W!`^?2{Gc^NrE$cLfYuVRo9!C0Lp- z>_9^EGwZv4=#8d0L= z#&r06MO}eJPf0_h<9<=RU^Yzqs?>d(E{Xa#0}ltSOYr3gX%SN z5fky5`^oa|x-@>q2Qk&Dnq7JgxVlj@2+!P6pVyxtGrdnweeB)(g1t?jm>>hGFgEev zndly<=F&yY4I%BSZR-Auj`ue1XhsOgf%u5cMm)qNwitfpJXqYJcR6n)Op$tSe3!x# z%-fkc}P}0%YGQ7Od^QEs^eeYKgBTEk%J^@TSd>%W*Bcr3vn!Y@{`**;- zGzWTOkQ(c2tNdRy3Zhtc7APF|5Glp; zm`N#iejcQ@C`yhdiJU0-^?>&YIVbk*i#>obcS{pAp^Wr-$AMfh6( zK@DPKHT~Vsd*L-Xo|}7}**=q(Y~Q%S^Ly8${X+chvmzno=!`&{50b*-JAGGtyt%WU zUNTwso~Vq1>u9W&&tk{w4-wD1EWs%}oOJc27P=WAhg~IQCUNlK?BTBEa}2bjuCb=^ z?7qs)a`etG(Qb|{<+WnBwF}suu2^=QoyB zRr9WI%+Mev;`G;jTD-qE_idvlPidxWv6R!%({L1MDJ-UJtz7Cl9;98Jv1^%4bCa_2 zk&;@C*-fvZle?G0tu7X9aoqoR5vAom9YD7ZTKcLnBk+D#5OVRcySZf5-&)Ggg$+ba6T@}6e#)-rZ2JZM7}tD$%2NqmIJsm7JG zw7j*rr2JQ5vm9g`x|qrYs3+|Rr65c|QPJkTG&RJeo_FyY*k^KZjuI0F#g8Q5NJ596 z0o$Ev(jk-Z14m^pQ?+b;YF`_lIt4!!^l$?!49EN~@o!b3FC1yr*gHXBH_oDmHOz)5 zdJ1h6z$^82p2Dx6kEmadqhyCI>TL9%79;FCC4w!$UC553vQ29FU5Lp4c>3+F1(5n~ zf96vO@?BOSZvtXfqtW^Z&|-v`$B}-c97Nc5^&^xfH5f6^pd8VWfo`j<42o$Kn4HKo zZ7<_Ya#;e`t1y}LSo);M{Ahfxi!f%6@F~i2atvg}Fa>c~99%Pi)Z(aH;-!$+mdD8# zsjUtf-eT;GU(YN{p;@gvNW3z3otAHxG}HI-h=ct|fh631#V=~WSF(o+Ib$K9wEYs>xhj)j*BE2MOEnk8sroe zO>Si>791*KNnbA>?pTLfl>S@CTQoaWw4~hE<|i6zmk#j>TNEZn`W?rfh`Erkx2b+1 zEEzU|;=u?lySd;FZ2gs4Sshd`IY-s*=RTys&ys+6 zwq3QzZpJh+zt==y7H#csa{_jq1HLVuruED|@Hpy7JA#5Xhn@L}1I_(+8egj0DX6i2mMjFoS%$*`Z|9_Pl*FZumztO#f|6>3Eu~_c;6M4~N&NzmVv!#6hXBxnyX9t)O0N7+x$W8zE2qi(E zM?m4@W7Q40i%!J#{y3Q~O3`po~-NcTI>-9+)R%@4>Y zZQ9_5e>J^qFnnGvp8HR0HyAZ$4&a^EfIN|h$g%riY{;jANVQQr|Gz0?v=+4N3p4+< zVt%R}z5>amd2uQYofBT1DmB`G(_|<)q4IZfOWZ$(Qb>?Y?#0-Q(dWPjSwXG5Bwh`Z zU1pp~1>2^l+Z{~Apx5wRcKY9y`7Sw`Y3w)iePC=fxi=1pltv+aH1L@0Ykq*oT1Opf zq|X&ho`EFQXC!iA5p*ITVUeeE@+x>%;vKQke7kCu;OpM4;0t$qdb(L_HD9(9@b(S( zwD-44jzDsod&~BXwn0`_A#j((P{+%pMBdulh}Avc^**PH?|a&1-qW$==Gn5-FR=PI zjc)b*t=|2&=caH6295ejhX}IwmP;e9eJwnd*uO;zzh7IBjHAV8NkIW_Wg0NViuN{%Tsp^KL@-9cBXYOudMoPg=`Txeo z-u&F3M7&j3RrkrM3IG(i^%sT^=WDC?)s4MkmJ_a4U^aAJt5CsUWR&2iM(4*qdDSus zi<~Y#h~#$py+_XuGIruLaxH4yd6dWae6!Wa7%l#3!3sNl0Q8EyoCH5V?g??{;q^Hq z_gvHc_YV(8b8EQRvMebI)Hfp*Lyr6XI|6$NDm!!{5fFC1T^mYJ=#6^l1^|~NL8tmi zqtgNeedJYxbwMU1lG&}`ukQ4k*N<7uk%4jpFp;n6$l zn8f&i^=fqmv{GAGCn}FGl!O^343YjOE0A}W)mO9uGU2L@`p?~ewu)m;KR606RQkcS z7faVIBqucMEq=@3*?NxJ4u<@lif|ibm+=#UEWMSJZ?@lvvVbfZ^LV9ptIv7yXW#u% z_!Yxk`%+~Ge*s$0=d2+c1%(@Ag^oMDDp^(Y1R{=<^2$#oML0hea2Gue_V5-Ks6Wt1 zy+Pb5c=cH&9c}FIi3$5(v%PQBs}VYii<^q8&AgRW-Idgq(|)9l#_RfMC>ts$xZ3L3 zdRx>_cQ#wGgf;K%P=u-8tNoU_;v{NsYG|izDJ$%(R7uS~OPsm|hUy#7Ojh1WOVt35 ztJ*QQ(@DzTU#z{;FrT?^uyTfY!L@d2Mv1(klA-nzEoHP zJt=)EoTpl4Z7y5)g|V@Vx_qW*JGrQk(F*5qB8{dv`A<64RSspfwhTV!(HAn!XFg8m z=OhwywE?t;O}3}sPTPEwBb2|YnRCjTIja_=w$zTD->if;*K|D}G{;X-NuN%w{=q=> zCH|9SE_@>~LY--pCfzdxhp-4~I`WBSd&0<|uBggvsA7yD#^pf^f|okH#!9>OcrOf-}^c#ya)dZftHbSv)X6Jn5_CgSHW-4PnwA#|=NCaEQx5KMoW^nm9@tIeVMWyAD1v z$S2?{RsVO4Ia?P8d~Jj+XcaAu44c9~pz+K0{gYwAU889yQ!xx2*-v8KFPZ}(1XDe+ z`Zhg2FSG0J#c}z9^LI1(Uqsp(Y-iu@F5lT7W{}&3Tieb0{DHCdW!~db$pmYaJTPE> z-Y4=Ee$ktr81|)kZ}OZ1rPgj#$zEiFjpuw@XhoJ^M%Nih`AW@Z-(Ul~3*S3eQwKUh zq>4aZYgezk(tmexD&bNMt0lf$hP(YB30YIb$7HkUMIo=%W!s>XX8%@!x9Db*-uu+^ z=G{f@h1Qd|+goqgwaazv+7B{X$dsTpD$$Bt8H_`8+3YK*nGVm+2&Ls5!(F`M@uT~ zb#a`n)CI;H7xu0zWQZ!O>Yxx2nGT5QXHa$uH?^>bDEnnVUewijUoHl-RB@|O5# zSHiL30rj+A;@Ol1#@O)DIyFRobhuG|x{BgtZ$br`F%jWP47FsIvr;|& zvOyz*zVe6b$@zbJ-Pma&#L6mc7kNGj236V=7@ST0$-p~&E9_2UTqucGRkHdJf&~(? z0PnjhN{5`A`x&YJ7BKy6^M1YB@pW@)*7w;EjZqm7{hMtmszlDcbzG#K1A0I z?A<~=X<2Xe?^iumXXrd%^w+bS;de1#y4nW(Q9tMU;g-8i5&l10EY{S}(Y@{$))%{XNtI~{wGxk2jMOr1^xXeqzFJjY+7ZA{_y zzkuSZ4 z^yM^4DE4BbWeL(!gXFuNUm2;qi;rOG%t6<=8?T!mE153_+&8`GL`16ws9lR)MCPPp zd&f6>L#|fV`5)bG^j=uOzCX8s<}F`hLwX-@%4DBm!<5JV{pc+3D=ruEd{W#)kgVQA zF@g0CNN|@xeE0v!j`TG8xg=ru8mkTg1FCeM`QUrt#2b8ug^W9^UqT#b^EG!op9ygf ze^>LSt1u^pN#Y0$8`&)fPnb8m6H@xckj$p10#3Sw5N*`4zzB+%~eiWJMxz| zz3se?OeJ;Y?Zju}@{s8HZ~YuhY9iejh32IYee`Z?n`DJsEgAdjJS1#&Q4|9gR4A19}rx9Csq?y|3}?uC?~Gry`N zW`@p15_OROt>88tlIe8)q>~4PbTuper z`$rv^OLAVhn4;xoigMCqTB=sIkezxUUYwD4vCOmBu!_cklN$1d`@%V8_p6C7t)^(K z`aRgBVEfdJdvT2x5~9RJ?)12xSgrQ0zX6H)yYy2c>6#jsGqOmCD#@a%DE91@tc^;Z`*wxQ5=E zS%XSz_lH2@J>)oc)HbIw$uN^a89o;*z5&cXLK*{OsznUh;JLz(X(&k2{kVMyT%Gj> zD|BWKLKD-RtOblZLzF_wZ}-snwskP!JFu}JlbyLj;n^oQ_Lm?FN&SE%E}>Eg1kE69 zlH|z9FMaGp$$qL_Fc4Ve16VME7m72_w&dlgR#q4mZ9wb!lO|T0!;_4!2ZN#TFj*Rp(^&!O`U)b6E zJMV9GZwNkq^`|Yq6l8II;H^l=&u%@0(XhSmN*PKEl)7GaeZsT6c=UOHPtmBDYay$Q zoLmcZah?p@*RVp>_rBVQ5pKAgoyH*(X}NlA?O!6+)$twO0@vDox%`A=W9sdGnLE6% zncMVdJNms6tz6jO*|r~N*;gf}?L1>Jw}p$>P$%G|a5>c~-q5wo#Nwvu%k-PqMK35i zAEK@Us2v<_TVfp#7e4ARDJZZVdD+iv)bl_vg1;SvUv!oR=Rk|JGs=t!h_wYmRGg8=z6uIu zO%=sEXC`VisxGNqFJAxSJzw|wo@_Pn=yL7(gQfkH%;@cGIKcZY@O8HNd%#y(h@nJHkmv;U*FfDw$v6T0Gr_kkPzfFd| zS*EBKDj8R_CUCUloSM+4s#F*>!{|8Ak3>XGfM#NJB28ThrFdSkqKan1VDm#I7Jny2 zbu~jnI0;6=LQ2tpyj<zx(pwt-N1{|H`f zMlfwaaoPnYFK)0ZsGJr@>l?EK`4xUXXVss5RQA@aV9>V9c!q|o(NVId)MhYa8S^ru_!v79&H(P5-@ zQGrkfi_tL$T=se&hRDzZHjd7C4YJQ1p!lYmm>~HE++AVxGQ??OH4#7I{^%IRmpjSt zG#5w1OrF@%a-`G7Gi0L{tC(qI$~5Od&a*HDp%*}D7gwXRGX17RGX4{;zY!_rttgF+ zi5JZ3_WsT(EI08O4oj7WB`B8k6r&;pK42B9GdZ-YOMDGtB>n!(=aVH=>&fMG=KY1N z+S7wLhwMm=?bPWlofS6X2V2R3*HCc~G_?10=x4)wwa0fdRmUkNbk7e>mCa_PVg#uc?ck4Pb0W9g-7ZE^xohI_KaO2rk*LlC2DWo!O zK6WB;=iJ1euaZNx>4)tyZEiE}bQe{isdxXy^^9F-OQ4gr6NZbaCWYGM*}UDN%QFYH zxvb^bVwa|SJ`_JFYe@ricUlG`{LIPXo8qpihlkEW?~i>F{825T zAB+o+ISh{v@pwFFKQ0Yd8}7pbFipNS%#Es`@kc9I3FPK7YgWVn93VCNiTz4F-_nQp zgK%kD&dg$Ya>Q=^O@YL9A)V#Le8B6{ka@c`^5=DW%A%x{=G?2Ks4SCUO#d1WI)ZgI za3CQz|M@0PFTn94x_c__tO3=o*^4OF{po}VBl=)JjP_41hjxAA{dQDZgbVXoR*)Ys$p!1y7GzHI5X>L zP#Z$#lJyKM2PrZxvRDj~uqTX{8}1ohzcyu=;2HvL_RAN>unSPg7q}T?r=`IOLQh30 zz97UjF+bwQ&bZ6E&oD5`IX(>ohU)YqtFy{Suiva%)DV`yHj$2Wp%zGm`r-Ed1?0 zBPEZZl3g?LP~j3Jq@octpt$slRi*IqLuOM9VbhTlkN?U91d*_@M2}!;Cr$WP2qLFoIcMwG9-%qMAYOp@ODE3NVhc zV3W;@mar)~dZ1|f4(4tK5xid?Nt92rWSK=0C#2`Clg~awCEx~)!W{N=NEIO@{*&pM zGYHYL-Wn{F-1vuGC0yk`IfQMJ2qfZSNT3oR=%ouO`muwZ39F6ib`ntpz__b~!!=E{ zBc418U{PALXdTmuEYv|SVg#i^^K4k-vJ7!266E0!$?ZsFPIHJOv|mZ{81oW&!=DWc z*r60LdV|>%$=mub)IZClMD$`jBH#u*{lM*IVQOaF_j6xe&wNoi>fVXTgjb;#bT$lF z&$zpb6yN>`lK>9@uOe91?ZAp&@E)J5ElyIFT$AH;h&s zE$G-D*AV<<2hCq(8V%cUPlO{OgcD^!Y!qV_X(qEw z?&sbX8nWMh(;{yJ;BNiq=T4FKlU$LvTlj#3_>We*o8droF(9POATf=9bwjkF*R)asg(4}|X`$yIJeBN^_pG3M&MFLG14nHn9 z;d9>|X)it=y(vE)i@BpQq-wEb3kqLv?#hv+=gUsWQb$Gny{kiH>~~N7X)o2Tw!TLB zpnyh;VyR+(1*xyn6{~-BOEp0P>nfWvBn}`NkZ8MA)?GD?kQ@IhUC_!y$P=^5sc=ek2q2 z{|L;P`K7KYl~Rf?;;KnOC=d0TF*cr%yZ*6#BlB@L61UWSUe>DhCi%i$>(G6Fc#5=Q z^g4K7`?m6`@@{^&P+QY+qESuuHgjM5;d6QzP;-AHV)VS6Pv7~xuwe8UHcIxC1WtIB zeF4(Y?RLu>yl=bP5o;gaDr+}+DIV|3!(d{Wyve-G|Ux{}jRog-m5*69|SVy~x z6lPH@M8W&fd%&q9?$3|6E=-~Xz4J=}7Hn6nOjG0pCqZ>2S;Jy#bR>_{RF#Lvu$Xgdz zJ&O!{oaM~tdkecho;Y&@r_(ll#H2$V1gD4SD5gWD;u#=SWr}}|RS@%?DHeqbx?t0l zr9g=2kRUAiZ}qwU|LO~kr9uBreuc^OnxT*`Ug|)Fj@Y&FHKs!f_$%NFLE02p%ZpFA zMAJiW@Oo`i)QeeOZgg^dHUl3=MMEc;Kv)LT!{DGo#(t=zuO! %b619_UeKS~?dP zIM9&KMGuqMx?!r=AD`!zTV|hwTN++=aEYL|3(9L*n5HZlFB}(lqE3|fGG&E?1J@lj zSzc26sB0N>UT)6y47-2t7wJkJYqDbR7eM+k2xBv6uYXD25Yb!aNn6dY5Zn~`BFJ;B zp*71_|FIW(-D(#w{BP|!ulyzNI8%1t0GYKDTOViC3fVK@Uewmuj>f<)J}&Oz{@%kw zw^_YLQCazTeH}OfFr9UF8W3nPqA3<}Ox~vzoNd|F5A>IxXcsJ}XBxHm_WhpEm|no+ zjJvmEM`Qz)O=y}o@e8CTg}QZtk6is5Hsv#;9X9oSFZ2*67FQ@2ng=09eR-5SGbaXF z>P7z`=OzSUiMMv~=@}BsFR8WGKQ;{N7FaMRlO1_S#ae(5vZkn5qm{Fn`7_fra4w5?W>gCXcs;)w;S23I zrOUvG+}q8qCBad3{zB-LAlv57|z~xu^L_!<*fwVBnk>#NxPS+Jw|SpgN>~suqNm~+#Wa4pXu|1+iG4b#Y1JKS@nm@T?^U>ik^&+AR z-pDQ68Zk;9ImVI2NsARJC>ndG9!~J75`H-kGld2vSwVivlf}zop@{t|X)AX03v)3I zE_Y}=*!$5TPVpb)mgx6Hd=ChgHwTEE9Vz5sR@GI=N2uOXin!1j%WE@|s6oW226Ihu z;}q&f6cAo|K@Vnpo#5}F&*A;Qbd<$r|Mi*(;wC|Sd7QtN!ql0CHp4H)JM1}Xo7_p( zA#^i0b?>s;WsHPg;Fc{+@WXOd5857?!!;t5vL8dkv~-H>Er;i3%2>dd#ZiHgkfxI1 z;Q~`pYCXCjw^9x0NihXuFIUEH4ReN>V(=LQA3EyD>uCJ-(6T_oXzlH9U-yZ0W2YkSAd3(sHIeDeJE!2Rw0chwQkU)NrDS@Mz2o3E{{xo~mM?Zp+R z*B?G@ann`x)fe<%{iXJE*G%7f^uCJ^D&Bwcz*UD7R-RdV;ygs{ku%bF9Y22k;Z-H~ zO-C-SyG+4cTY2XE+Dm#a{`A~a*IUW)$>a&8#c`G{`4PK}i4h@oJ4d<P{OR`3{@T!yf3WY6*UujRr+r`h^Vz3vAjVVjsVSZP9LU9G^%)nJtq5&w zCxJj1A&0!)&^{p}7EeV2k|uR#$-|5m8Ub2lYL)ywPwacwaa;cI6RY0*$y@LJ{6F9I z$-n#9SMU1u_ucb94_>W4QP8SG5K&O6WK>_uFa?ZCOfjSMQn#2=hN)pxGD@SUm((q) zN0p3%N6BP}Hmgj+QRk?^6l1315BVs%I6|l})tSmLd}8srSyYa`wMv*%B^I$ST|K8n zs>dS`-1GjICPofIRz za$-s~tEXj1ixI*W0{sUczDrO%`oj6`_uM38G4dOG1`*2VV`~O z;cEB(7cPYt9oz5Lx<~$dUJCKpai(5+Dc}c(7@T@g!$NW;{D7ANvO2JmMF_Eb~ys>}F zaCPmT)T1wqPvn!|LMH|=gLJ)t6!Q7XeEa@&`ybyn_QZ~fr?!t}^5uMP=~D2V7vsxb z3Q~~#ZtZtm3Z+uHw7B);+0%Y1cfsr0_x^R}+}GyM`ti!0Z>!EFiKQ!b0ITkKuT;vJ zd?`EM9>}#*jm6etTQJ0;3BH>p{~@+_tXM36`yKeeyj2$4-P@wWUz$2FZ}W@o) z_Jzt-f7ZJ67Z%rkrj#DqHk4APKCr%j)$>DzQgv`-VzSiOJ5ks(5btK$S=U0Xp2;TL zz~!bF_2}pbdcM`_9~{o+^7f>}mMWFLvGi1?BY(V;zViD>0u|D47-Du23|f(3s3G$4HX&^SnTYkZ|ALPdWTH|KuLI~9N(gLJ(9-xlD+Q)Ve$PrF z;spRF_yJzt^f>J3U(_sa%tj*v#?s&wTQ_gZhK7bB9r3t_+XE$Nm;^%z;X%VwWDUm+ zVLx$CmrL8i6!&`Z;Kxvq8bX>VYAjQi>kwnd6bsTC4>Go- z+lwRf)>>TD0mcW03!KO~;dovUBdqP)w~y<<&w@RG2-s!`bH}e;8cd+#9$sn^9&MZO_`HKJWX(QJkp1S)RgV!Ebf8sn^h{~$7dapc~!P(o6QTOh-_@L&dtBR{H zDBOEu?cvjQo%e}K=eMJWSXg~Qk=9+uHy=HF_eGzXy!oioL#NgrJzGJZx$C&p9mg!B zdLwUAZ7mQY)g(lsc@fd1!qp#pBxnrrv%0 z*3Vov{pVj=`>w;+Uir}rpZNLT&i#*HR^q0YEnE1pA8!B3FDAbo{i+`-FI!f@`JrVh z+iUZ z4A)U!iUloEv0lC~4VAU>05(2Om=)b0|7Y?CkW{D2ej$iX0!b>H(c-lz@+@y$Q?wH- z2R;kG|AE^%6~0_Cg(It$2J_wD*v2wDGRzVA&?4qbAd;_|#es(m6-*_%C5xKho*^lp zuYdQAh>xD#52WE=eDcA+{oG@J`-La2xO?l|+^n#*nVdRGxcagUc;|^gK0gu#4R0Jz1x*lTl^Ipal z_70AxN{#7kc_LLb9vMzPLX`}&fYGH~YA$RUD(;!CKR1wmc;i5+*7QQbNVxuX-q^1h zCYJ)eE}yly6!Q5((G9-mn$csIjU4x5?T7zo<*L^gPW$1~Js+MP?kQK39g>=z-P=F1 zYW?nABe~I;tU^6kEcFgg4vkLCB|k_=E(Q0jRh%u>w(lRR)teB`%%&C=+hY@xahvd{ zjdm^tewCnGdZ)J!<;JFF!LuR~1sh^+F0I0!eD1FH=CjkAZk$Wa*4Cfhd+4(9l?)<+8qt6rGgK9F`-biUg8lDjo|M~zd4u&c$6 z*fWw_-;-OvccyP-s#+lPOq)9FI*=EthfNTOY9XiepcdbAkgL&5^BXjDuQ zu$vrzrg(`2@`dAgYH?o399StZ<*>xlBi=LZWRi4YBfwgmHGWkJI4sk(#8G$?U^5gU zAtrV<0V9ks8w=q*2W*O7Jou#&1j(=uh9OBZ8h#urc1(p|LlMD-pu&4RU0E}f2Yix| zRi?T_VvHk*;Zu~8;6sQ>Ox{9KTwxY+O>!jRl`92eFtAJ*cVbL3t`uxtt{7GQu@BCM|T#R<{#63YfTV6lE=@ToA)NTi7`4IZ;N5d|ZFkufD+ zbO1mjSip}I8ETQD$eY$>;t)n?@X*514CAUG#wq*6Vi!tIq!%7IxgbwW5)2uqh$&sd z#}7y>#D1dgoPf$gSTM^PKH38)kPv`@Uj&3K+f4E%dxW{rvoD8?80x{c zZ>Zx(mVhTli+VRwvjGx9?Z6auIl;uyk|pWv7E{2O;s|C2!DEMv=nVPNOi2hC^3dW_ z$D{}bJ{7UhisR8u4&;W!44o6<6BeK;n~iIPEZI@`k#MupC@2RBlP`QxW5Phd6sJtZ ziPGYH^2IM2jL5SdA5!fdEBNCiS1d_#?VlC*`z(bSanwJ z-V=Q-JacLKj;|*lYPIgN+49&~+cnv{6u4R0mNz>}PBaAJ*p>tcORVHb5tYa!x|6o0BS|X+fDjv*r&W@O%4#2$bI zKirXI8L$wT%N6T;o?QDMui5j3-+2C$zx?pqmhC;{w;p=y4?XqXpWXb?pL_i9x3tn@ z#agS{F=%7Z1z50No^aSGH^fge z)qXIL^rdtZBg-Hu!_;p|bl|z;LQp)?1zyh@k91X`zKD?_37%jNx_IngmDY!^fBQ*$ z{^Dcz9rN+)p84=e5B=(2t$ocKCja#BCw}IaW`6Eh#((wq`+xmUcKz+UHoo<9_kH$? z&m6J(AC7$Xt;cVF^H-DVQQm|Qz6?bHt+EgyMV2GN|J9!na0c4=xiM^vus{ZW!}xB61masq@IGTSooaN?~qmE>9Y zJuU@D*ac_Gv2{Q&9gUzJ4YQ6woPEb6j`k~G3XYib66)-~!le)|VTh5DkuY-Lr2xi@ zE(M2_DFSgRu11rrCs6fr|-@rb|#z%U+_VI=Hx7vKes-xUaX zJ#|CRB}rgMbP)><0Y-r5T~<}p2*beHlN8v=JH|kNf2~?6CC~Zfy@f$}i{~4I9$hT& z9-6!TiCvreGTSDq53bvv$rZBM7hejVaiwZAlP`OUL;JFqf;8q!m3AvvxZ`buUtU(f z;SH^;exY#jZ!b)2XtorJ{I^?+ZKdF*zWfU#we6$jLODs4%-JSF6M{iLm+u)*_hjbR z?N6sl-q4bdLB@|240j9jtxDB9Sn>iO4`Y)vjaE`e8A6)P7pzCRSkIU1t>F!QC;UqL znqSVI|4XIq_b$%8FnRLNl+OFf%DrzH-m+?7aCCmLJv*13ZzbPbkw(kmzUu2szEj-2 z6uj^b42_L+KABl5K9kC%=8~T$jg5}B6v)XR<47)r+1VL+mI_JhRHQj`f=WVbx3}&e z8yuf4mr5$iRH4zADv!_Ryiw$o)0N~MSe|2h7t8gDY(-HR8>!lC7aNQ9)&gOuI$2t@ z+p5jQY`NLF=@tt0#pm};PRve*f&_+om@4=KIIf5^X8HJ`&(7 zS13tT!>Xvdhi2F9o#{z8?qAotbE25am&c=0$d%@c0C~3eLcGfg$U1lr_LZePV!!-2hV4oNm zWHdv37{EgSZ>LfvuRgMH3PP;umf_D}WVu_6D z4Wk7xb|SqTF&GOf0}*CC4m5c)8y*emG7b+($)t`GX+g^yM>rB<>BC^yq-84Lxx%aU z#^5s#^j>jr<-u=OA3C-5=-HXOj_$IdA}dUpR6U!32veD1!JMwWji`IYIud#kI?YCm^PbL}OqjaRk@@6X(K zV)o(F+WYRDyXOS;c5~+~m4{DT+;?Yt+l{RaS5!7!k-qoD=Ef_@r0zX2zvlem2hPi- zy-p<$XbHEAB+5EUyOpx{WL2KynBW*ng;gda`BEe;w7hy+BMadG5|%(y@<~|IBBd-K z?e~mT+hta#c!k1pp?eYOv2=Hl?}- z`0(rV%H|Me%`ERqL^LE^-~$O8%Pc5Lr9~n4JMX!Kw%OyoKZ%{a77sgpDL(z@+~ z&-ctu=9>MZGx_|>TneL;a|7x63q#pTtF4?SAQf>b2rvKxGwg-U%hkx1o-00_zxK_o zhd+_pbZb77Q;`Z>o2xABnQd>_pM7fQ^sSHY*wL4~i*{gt`%J+_iP<|2Y0odDH{G0GbE+35zAReOTg_zclDmKxc+&Y|V*!7uBq%o8bJazq zrt-D5(B3vQH=S(Z;?T%gx=>a<%%+k{!TwSWs_06cOJVd|mqILeKG{ABAAUy+00mF zaqYf2S>G2a?9X`p44Ej zdjB&$duA#_DerQL`pj&qQg6-gxo+&pWrZt#y}j|B?K}UddCAYU_g>X%CXS@Y(TF`3 zj|B@I8#0<*WTzpBNw3|)HDPpIrrk<`Wb7+b(cmP5X>Y`1ggiU;o6{7B-MYsPq0YG3 zNV{eh5_s^x&q@K9sJvLyLk_JzWULNfFyOE$>WIZKvTbPs6|^DG5dw$n@Q$g+v`KJS z)`AlP8UipG04efjL76h-ookK`tQ5=w#xhfSOiA7NfKKY zOXH4N90X?A4gmB;ovOCn{2p7u(6P;^2S*PN`EL#9o2jAf#qZnjfuHaD z%J1zxSG zx{W{=vld2{2JQAKw~hVFk$2)+)&L{PAQ`9_kG#PN7?~q)D*XG2+nJ^Qp)-2l zcEZjNT{!XKOJ?4BO3&YXb<zn)r|r)C2z2C5k)(i z%-g>9EJ%{fJB}oynSz!Pp{a)rA&>P^LjuN>JPVdDrWjWelR+aQQcD1vRZxz~9={Sx zfJeHF#NrZWO$Gn}I99|yLHmlGKwhH0dP4yoWi7yvQ>Vp#c+pD&u|uz!`^xeRVAe?9 z_!SrMbpQ3J=l=eXr*3_6%uU;Qu>Dsqg&<-U?Xbjw>JAZxaW3Kve$Pt*zk4Zk595F5 zQqTx2Q61QUmU5L99+2%N~9VUo4Zdq{VP zh-Z`*;H^R=0f#!VcqL#b@h*uOc<&$A?*7~AuKN;okL%8+u72xMKv;vB!u-yW z++;fWDfiG!VcS@xf2Ni%C8?gSw|mm<&PQH1AlN-yn=U0DOSOgJLMvIDPMgeB_KcUC z-^!#)J^;U{0W1#+>}csqecx0$iL|r0-L2yExP@wsR?lp0w76JF{{8Qwd$Ewu*@a^EYA!94osh3Lc8unSQVp6G3tvm}wz#-+v^bb)PUfqR zY#tfS)=G_TrNAQPdU@5+)l1*dzU>b(7yU+Q#bK>lsnT5f%W2hGaxR#P6Wsy-?TwJUak?QyENeO<=%M1Y=j&QJRC$f(jaVgeX>^$NIu~MD+TTQtP~9CqJiw_eMhBW zHjL=m$7dwer6LR>h?#Oo>1x3-#R5Kg>S38#{Ah7%mIg1^y7;5TW8p=u8&0=%&32~{ zT(f3qDzL$$LHK|7Qs6}+tT%K3mnqQ00Z}o;IyvMcbqZj@KrqGfSmzh{_>FHAaZRPmL6c@H1G7ot~WC*srQH$p6z@Mdd;iIkw;!8*__WsA zOHy}yeeUjW6jq#`fAEy_Jty>E{Ut81$yN<6tde-c%N7kRXaPq!0ryjqizW1rw=N~D&@JQ{22ln26M&^<8E33}g zd%-7$uQ{ap$Qg@IU6jA)gk2YYy7I^w#fMIvy7{Qaljjdy`T5~{&TP-u%hlwWD^Za* zVG7)0X|WtqE%}nB5g=)a3Dc6UPFfQ6*xQje8zAyVEY_EzWSX_9h?zp*vx#8GEML|d z9qWQm*Crva#}5HUO3lSBH=MHW!>@hpoj<(#y+85zdw$~nH!s`uwf|@InR`mrbx)ug6he{mDn~3(JP8 zyWq3-=bv~`aflBmBOswEvW8YZ8M3CtWkJz}R{M$KuRguv_uhY-k}Q6T3x5<~#OSK@ zV53X&4gY>Kk0M1Y5&4CgU-cMZXaH1+EO5s@gLEMjj#=R==iYo+@+t*|5(S*jilfB>4(~m%S9?odJLd-;~hgM^FIVO;HbX z@Z*O_Bt2y4YD|&j4wKDrCz-&Ah&o7yER&>LE|*lWTY9HgK0o^0VCk_fW9#>4HV>E9 zy|AAJ0@6ZDL=;&b9vVu1>$p}c6_e-WAxl~lpZrU?BG}T!hm%`#gqrUWsxE8`On@i0iX!T7Np4>5+tI2cDLa3kO zI|9OyG0_c-O-<)2%IS1^uF-7O8uO(}@)m6>+2XBcI+q`qDQ_Ll_a~pZm3+u{>|yI- zI-J&P)xOc0-BXRnUKo39%gA_fad32UW_n6K*|F}=_e?+b!szyq@*|svpY6#^Wz-H! zl>!;z%uY>AZChCzdZIG1rCKbv%DL(1?yT;*uRhb8&gAA7lEhjFuDLs~QW%?@o|yP{ zrC_B71_t!Dv?%Z?PS4J4-8bGlQ_MHp6I02HG^Z?t41;vz%C_gBqGe+Q;YlJ?nj29{h zTLLrkg9AK8MwXEXtlWbb)2w(J8nOs0QOFRXsV5%^6`@`v_yqV6Nkq=9UgQWW;PQvi zdV71h3xi^yODon40WKIXyzqiZcmZ7^FvDzre?MK2@FjwMDonuuwzZTCL#S92f@T;; zLKG}STImKtgvAC4K_CL*!u19)zlKy|>%>13;vHJ>sDp}#yorS=#x+_oi;xzU2_WEM z$`s2C#wLTDN3-~FMm8dRVu*0j)6>H{Fady8?C&szZ@6Q}jxZ<{2qA>`zP>)X_>pJp zE1v{R!2ouw2;^o#jVR&sO4V4UVDg@EN zz!xLa znxw`W8IpG3@bHL?Ogwq*#PUP4_nt6#&7lfib??mW$0BxL^cgj3>A_Q~tIkS3iuvj< zl~$eA*l>lqcjlfG(ko6^<(3{jd-9gArS3eg^vD?sl@QUmm&U(78L0Q%;wkI4}Lssrl6x^j>?|t_wcZSbag|@pH#-JEr&IPmkaB^}Yu# zDNpnjilv+l;L_c@Z?y9-Nd||8YK{70WhT4!#_2o0vG=@>_FVq?;=`xyzwGm~YV13Y z+kN4uYilp5tT=7p>O)g|HV#ird$Prj60%?!iA{^P3Z^>SA!(6${GB^@%B|&yvyW-v ztO6Osux3ZumKILt^%jwe+{!bW5xqskBuvF>a*7~tP4VqajZM2H_EJ1jDz(~%liv5l z+kbrZdw*ubM}B_&2VVWy$KEu&?xFfZyH-yg6eI%@c?Qu8qOH3fP5=Q0o7=W+L&FS- zUISYohISem0m5T*Mk*o%d0+<;8Dot=9246NRB^?T_kwclb^ZTx#IuSP<&gfD-g3oT zkKCjndDDmPR0%7he&e0X)h$XOWsfiQj4JnaZ@)$vgH|S~xYRRrqX1LtsDIQ&_=+p_ z8$uzZj8u9NQ<9N1g;4Nda!2JOXZ9jgT;x?^W|>l|sfc*wO9cgw{x|>6^$IZc5+f=u zGGHhIO;L}E>ox!D!l?b!Y>F|}TGX_{VGaLx-*+p?KkR&Z7T0EhVG2~GDN|+xh7cHm z%@mycf}wckUA%H)_SfHWowAL6U!S>XjN4wpEDl1xOT`$eu7oB$*0biDd_Vc@q~g-YuUneF=mL0JMN46F=RRG46h!ZqRFde;rS%as&~#riU$wvUQeGUex!=MS6W4sAOjh(X9p zRQNc0G=$3IU;DRf#mjH};`FC49OX1J@Xue}aNFACt*cqD{nsu9x(*H%v<>eF#EEv6 z9W=*;WIUOp;e7v>f`>L!FTE5X!RI=hauk;W!jWVxE(NDJTzi=FLb3aBqboG_i3vRT zdMXEA3TVvkrQrGhT`q;>L#p}Won&OD^Uz8@QwJCkg$qp%gC+(%3wox4?&8r%%6vRY zn39u-ju>^8EtXX94jXy1WXO+=j-(5<4g2SmH@l~sH$438icS4{W)~k=yGJn|k1uJV zt1&n>Hk!>BQ`vl9|Bym19=rsE#%!`ZzT;9zO-xP=P32zLJ5*0Tz&L5)9Ud~fcJ9oT zD|^NZ8@KlXhUpcNHDZRUl5C|pIFnt!W$)Pdq@s6kzm1hCco*sv5=pS7($@aj+aBAw zsV7yaCO_*`8LMj`32g8yQioIddefzlNlN!pacU}g$jdx|&eL1@+|2f@ANuBR&m6lf zd*ZUf&2Mk!Cd&;ML33bmWO6EbIOi(0;YpXm)c)a_+n?CIX`sAkI9bH8OlA24>j%cY z#Vrh|G(bP#QiuZ*>)yQ-%HMe@RO-!Qy;*NIYSl_@zP<9<{%w6zxm?*h7d-wMZ&y@0&r8i!&I~0z9-mPVy49^yx+A;a;p7CmJ>5Z2i zsEUM0@Z)Md;aM7(4q{70{5-iKyQNgF>ZHht6 z2n1|q&2}pVDz=LCWh5k%!~T*=fnVWArNAs*`7z52gLDnyp-3JWOzH?3po?j!2Oj5p zUJB6C(r7`8$q`6YB5%NuN5B9Nnj|f0i3VZ!QdnkA1Cesjnj!aau%*|i1<)5Y0@~8x zyEIt248+~W#S+z_p_E)M0xpm7T&C!877Iy$q>NY_!$==yY!Q4QB|^+Bh#yBz12z?= zVm%CDW)l%j>@vbQzp=Vn=)!75*SmGMwgw~X7U#OfeEK* zy+Ra#}WO7goc zOG2G?pfBDTvCv#_3Y!+sWrT}?E*K)B75mVXhZ`-yf(iz{Q)z>_MTiL}#3Bjs$77wC zVYAU#zdQGlvj#tK>b^s+N~vdl{{y!xmQ+nq2Of0sxSC2qqS#Y$sg%qr$#9fOpS@&4 zokL6!sHD*oP;Dx56jv%P1&{JZNv1;k__>2BoDZJ5_w$!cso9i;hU}P)67jHWGc2o% z^o$&OP5Ri|>tqNh1-avh$HTABlVM!Xnxe}Wk8sA1tW~qV6kV9`sFvx1$B2qfZKh_^ zN9l#HepA|s7Za_(6RFY>N6))j7oVg$pON@+H}Cuk9~lKteeB+@+HOM971Zn1%S3#8;N* z@S%#|QvT`I`@W}l z&de!9lXq@W$cdsuhIjRjKHs0(GgV%*WiVT+d3O-I+2m5_yf__rDIh%i)I-@!@>$0s zJup~N%y_XWmG{gv*6kRHDe=-}M=_ZywziE`hDz-%!)29bXlW5z3no|y;7}h@1Gqnv~sO>=kGFqyUpb)yC+Kf z=Gr@_>fdeKSCcWZi+(O8HFyo-vGiXzhw-+gzJ@6b+_iP~<8{Ssr z?m+o&3*$?J@6z}J>_Bxev@VAQ=SWb(Cy8Sim4dSw-#GAsfeDNNbp0| zPyPnMF{c8!>Cdy5V&f z?7)RI>-rHS`;g$64FN_F1oR+v?Qp6$v`*}I#Fq>rnCddw6d=Dbr8gU=A{t3fiJ1*C z!&pCF0Kk+tvvSCk&^){dXlUw)2o|l$RotnB<1}{jM$AwktaU+>iPbS=%4}CS%xW*2 zHx}fLaX2Bt>4q7WyJiCb%fX>&6L)P!Gqilc3|(eJAk2!(Zt2J-jm_9LWdgu^6d}|co_O4J6RQ~#=;loe<67)V0=5C<0X2qQMPkA1&T150 zGp2ZnjTB;GA06AQlm5iM9)|_nK*)##t?>m?Fg2ltu&FR>GejPu@yHIsEV0%?dwS=( z%46qNSDc!<>-fd>m*?+0Y4)~b8jqbbd&k%F51l%2&7pfPK4|XF<3_Iga^e1y&CZy8 z{M_0jXOtd3t#IE-J(qqi`@lEbyKkGk_2~4S$C0T%c8+25iSx`R!xg8OA3G=g@M-Gg z%H!vb-SE}&1K(VH^8DQWC;OUz{M^=KXV)G&rM%^S2}^)|m%Mo_ip8@(moLP=Z1!zz zZ@am&>I`_QkDpuQqW7N4(-+qtKd0UMU@bS*?CcIp-%U|RFKMzA8%!fZAa-dC5fhz{ zSMA6qOak4@=;K!TQIxzq;f?Kqq{eTOp@rL+GQri@z1D>SGWRnAKg3D6v3Q-;(4A&Gm;*-*@npGyi(j zvkEgcDltfe1{g<*K$YhqSEckSYB2a^+!PCNa-npTB{oG7aWO?eqzXb)%mPMB8f7fX zJlVjMA9w_!L=>8GU1H^jBN3rxOw@cKKvGgFiE&h{xWGBY{BbZ2%xu)S~|F_uM23V!V81d7dIBc}V2p&4;c1^o1h_U7Y-TV*pGk zZlxkZh5-QikAEIa*9H)EAORA>&tEphK1ubwBnXWiS_J;_u(f~t*_8uRK(r!3&y&m%S9s3MZHvI?k-AFzZTt#qr|&wy|2FwJ=<059Q}Q1UK#;9-T;jt{@5gcC-@t-D9QglZ_n{)n^CurB?Ek z3;Uq*OFk|I92%WIXHYV&(%>-%OGHuPkk z*gC3Aa!ExLR?|9pcg*CAdnO8Ztls^|#=fb!QZBo6DO9V87;lFClZD5g?JJa%U;gS| z3QOV7&!-DDbyKsIydG3-fo8Ux8u88xeQSPk?{In|QxeK_X<=hud1GI$Q0wdyJ2^I? z|9`8orl6HEPUq4|A%~g7Y$w#?jn_6y-V&4ichtL=f{hV-N$VI(TB%%7{&hcbeRw*T z>U{ilM=DupdmDk{))>##2F8=`L3id8*Rm9+ED5bv%Qf1AlNmdPqFYxclS-j;kPC%; zrQTYu;y35-`HO`c-Z+29pSM^4OZ)0yY4={@43CVCSv6v^M{<5) zF;`odEiDYqR3t1i(><-|PMD5uy=QoO`*>~N-27Z4`5=#&WePlm#-;$5mb=rNbxsq} zP9qtcoNx#jiXA~Qw#tE(f=8B0fj~UF2q5%fN^|IBJ`>hHeko(9jSUf+1kY zX1t!pGN5q~bU_84L9PQKrlAuERoo)Xx*>4FzO{!+$_N{3-G3nv=R|VI8%l*Cs9Nx2 zrRmBeVY)#i3GRI7l?uNyOfo_<JX9E9xyMhHs| z`ve3cC*tCl!Jf|F90o4{<7?7F1?*Tgd@Chhrs5Yln35A{<2xXR8Zl_Sb9-MW$va^L zf%xtbR5-D{xCpamA&DjsNDwdpz>%Q9;F>%|Otbn}CXq&igiX3!hq{K(K7OQ>iXkH~ zOD}bch&Dx0qIiLjJDB7AM3~&+XpudNByCg%BXu~C6W}O7(gGL~YlHws23WQqAe170 zsdHy7APlCS3wFQ*-YRR1^AgujB!L}6x;SPVg}Hs#ADzDSsL})99JuO`>Vv0b?*4`n zxBAE#b9a1QDO+4|diK7P<~LoHyZ1yTarwbhCT}`&=GLRfZ#=?RSwTHEy zx~T7}L&k6T>covlj4c03<&iToo!_HIk6wRxWyR^wo%+F%8;>YIbn2F~{&V+*pU&TN zLf@4K@4fh-EO)mYHNSJk%;d!2Q1X{}Vj(~kl!!zsC{XqL_U*%gUk>eqv5Cpb#I78j zRaBJi8ioOhp}V^qhVJf8N$C_&x*LX}TUtPnAta;`>F#ck1`(u@7^(gJ`-Bq?n6;QM z-sidR>+0uNdUz|~PqPB>0e`h^8JhSmZ@0u|8GRIQyxcij+kc2l$C%29kyC4u-RK+( zWHQ~vIz=-BO)@DJa;oS=Y>iS%G-zf=;8T5f9Pn~0Fi{M-jUfz{^=Z&CiH2bH8|7&@ zUBx{9wy2PPZgog~S#MN%xn5BgkuiG5bMmvD^LD;SD%e&=6veg=O9c=Nk%;?oApug~ z4$#(h8kjEt&k*G7I7Ajps?Bk-E+dO7Uvi|x(QJZZFwL$~wN_WowF5P#ZD(!{q55*83kaYEq{4?ZpLNcze9b(pQu;( zl%U_gZUr1(-MT3EB$j*afDREt09Ah54BAKSMrPw#GJfQ^I^-=dY(+%qi86ij zQGXCQ6|kP;Nn>3ONe`tVvOL2Y_^;YFeP8)D2*BPDA=!}c;S(AT#Hq$>=yL`2Wf+HG z(7GvxC`2BxL6^F~Agj&ZY)g1*XQW&P1K&=4c@DF!eb~)AV-@m8*B3wTKz*!)v7`u|{X7IfB8AJ_JHG=^uDHKH@6>pqONwf;j(V#Q@VyEMT zuvhdTrG6@6_@$RU*m-9Z*R6Xq_-fNX{InrGeqTi6^V+o^SHHABR-th&#tS^$VH0-s{SBg03#BS&8H-DG3UVN{{60^2p*yUqKUS_t9uS zISIN=QF53_#!GZ5#i{rOF`73`Ra??UasdwuXn?0%&C$nssube$8sE3S@dG$)_I2NP z+e>^O^sC!+YBmH6Ox#kZ%MOxV@82>amJ6t7Co{Ru@y8 z%xL&IHn_NYuW0qs#)|?;8sp|eRLK&F;Io677!Bai&?SUUU8>1=?G;jcvM*1@j6_ZW=PPWQ6kJr3BeHp<-Ji7!pUZpv9dPA^6ApOa{@p`Qab+Yr>sb947|o5OWxDO? zs*VF8-oh4@=b_fym9$0Dr-$RDFUR+4G8Ww@E5oV5ulJ6=eyQh5Tkb11#Bjqf-I**X zVPl~8YY7lbR_}XHPC-NSQMGn`c|kxFr$9A+ZPRF^sLgzLR?mLnZ8GC+se0d4y2ytF z-IXZ!w(W(MWgH||kXf!i8ZmLez1HpP3VnnmMkGgofWVePWQU~{ICD6}E?Y0lAND{o zC2E5!a(PAhU<71W2KsrUiRNwtsc7qCG)3^{ZIP{f8mhP|vFaIFXB%fe(XR~3mIBRz z1PH$9Np1{stY;WGdQ*}t0k_!n*1yA9q{YgJJ|VcQgAwfnk=nw7tw9F2AfjGD@y$MZ>#mK6d=M{3@&KF01;CRb z$hoRHG+6MFokFaNe0qbDQ3?s4K*1y^p`Y_ueUX2I0s3ST1i@FZyOVx3-qHPc6V>ZGln#9)RGTq@d@+MBpE)157$=Zhx;OvrcPl`Gy2c9sI@b>gb8Acd;qX?33PklkR!9d7nCC*VXQ9$sQuCu~M@ zhu2TbNuZ-}&pfN^lP;KY&{B8!#pnu`1m1 zvSJbHsLv&;CQ^Er_t$NhUk%AMoe(KqIfP$SSWQyUAys|%EW&+kp{3l>)0RYK>)j5% zO$WhjO}X#rd}%j?}k*$lu(IvTt_Mp zdc+RmXd+lGil_r$2APfzE9~2^bZUsQhC=q1o|@9K3`IR(11x)t(5oq%W%`V zSfCY=JFr~S^em0gOaJ0QBup#TWSst4G;pM0#(#Wtzv7#^&;hntN%e<+7e^0SAqi49 z8T1kuOui}e+A*IE2MnFrOMyB|4@ca0eRZ4ofqZdw?6FTl1^yw&9GZThO3KI`jZoMp zeN*^u90NIzi7;hEq~WJhVz1nbKTEg8s?zO2^3;{TqpoEnX#Xe~D>f^}5)w=7fivSV zvQ;t?O#DKW#?WYpEty!Yn-p>xd{I3sJy6$Irp+g9Z$M zz=ISl&j&_`*8b!}AwFM9nqpeHx}!8O5?@g)$X_W!nf)r-7^kTb4Z#(ZC-P^F1`>dN z5w;DJ^*5jS-MTYB{N!D5tGRSYk9aKs>=8FgjVLF1{yMG)mupnFCh5HXB}L9SV;@jv zP-WCb_?zC%5Nj3m>KuXLwhsl@UpIel$>IsMAIq|2`K@n?6H zqpMAKix0czWY$RHyZkYWg4MTbSn~4$Tv^qW{y070w8Al-r{{E`xGCbd#hMPR1{#5O zpH1HU8_?rHDd_xBd6$&r(74t;Hecv^Te~GuFusylxYQiNgMv~rZX|DZjVTcX6*z!; zNtkm@3;qag!u|@q`PHA#9ewG#4wq-QI*-6}Y*_rtRYdB3)t1bEGt}KcG*Rp5y5-!e zTkv)8D<2O}J#Nv#azqj{+w0?)eO!Fz^-qpNJvW~jJ=a)w85tkt+Z*gUGwNE&P0c!{ z+bZ#{KIs_$=x`!woPy2t^x8nC+`8-it!;VWds7bVT12jDphBrP-e0cU-+W#on-&(i z{q@jvErD8oIIocvHD$y>vf@q~(CzOxVf|~f;?9kl`;2Vt@CrTR=qPV)to?ZZ>}1Hj z#^P`OF>#NOSHI4b)s5?(m6g$kA0cAiqIF#KOgRSN>}-;<9S|*Ou)xpG=zQAFv$xQ1 z8tZ8XYj9~(Wsxzc`oZ(xDQ|$6sbi_7Frhz(r2CQ{(-!?Hqrr3x@c6rFci*+Jq;3Bt zxI<)w^oc?9U^!Vl(EJc@g)Vj_>o&MR%dr&5n2ztM8W39PqfEQNdzUff^sdnDmKzqGa?d&2&JvzTi-m<8Si!B>2m}m4AG0pz?D@SHVq+ zMYW=zQ3a8qh5}zZ>08tlPj)T=Y>d#3NbZ4IALhSzcN*FCj5o-;@mx&&{j$1cwnkrf z6wmA-rpO|b46-Ykh6tG_7|ux^Wsz~MX11*#2_iq?r2cw~i7xTxy5HEIww|t^PECpw zi=iw+4ly&;hKr`Dw?1`wfbh)uh>@W`Y2=CC-g0)_mp^U0o*Y3wclY_}0Yx>!0EiyB zl4v0SN>vL%-iVk>5bLr&$d6kU!R~nKic>a>G0mEvK#x&zP$}d^AuP9lB;MWqnpgum z(CxdE!}L*>LGY@%U%ILMn}F+R)RGO!wh4>g@5m&2gh|v`%x-&BfuCdOscy=pc*wa7 zRBNkEPC8Uf+KiOQbXb_piX-VIrfFD_z-V}cW?QN|56MF?fnQDO4HZhJ(LR+{x`9F% z_829q&5H(wYeb){MdG>2HfF3!9r~+b?bRH<0*H7yJ+J-hBHqdDP?8THGx13Tq_;vM zM>{70Hr@-J|03Y`@u8t%J!K529v+#e@<{njPZo|~^S+EvzS=T8SO(}i|61*eBu*8Y zfIRHg@@KTKV$Juz*9-vUY~v&6mjfUeOGGQ<|2WLZa(*B5ZYt(@bDq(OEh6^ogV*!U zf_@vVxrMLM&87EJS7O0eEueI^nTY%4{eL{#p)nZ(8Vf$Jh4iPDkgALOz`RXv&qxIH z5=HbrJZ)#CTJmGY;``BXbr+)^Q&Ift!WhLLNH2*mW z5`ZV}r?ZjR4jt{*L&2N^>6Io=WXGN$WY%n*Uvu--ZGH_O%1r;7;dyD^3yx5Oud#Q@ZDu3G8}r&@$6U z&D{*IKvEBmVhPvGZ}np%Vm%aDkv->-6gVc8>&OIStlzvb^uWqPD#FqpIobX3PM}!Y z|9p$K@mH9@eZu04Be1AVISZ+cQU(q=430-rE>uhn+vQbv^xdLSe{L*)k(;=`_`f zj5FJei2qWg9^yZMA>ZFY-@~PHPv?1x$&}cS--DQej~vZk1AYdUyGDoz2~11FlL>m8 z&JAPKP0h2t_0bCW1l6+oZ^G~AVpG1kt!)2J%E6M@;%TXts-}jlPKy5b>|?#m0!oJc z(y1d+rj(m$*-*zVHJ>=u?%(>>7Z2@3xyc%lj0PalE{LelAYe(gl9`3cMu?LuSmK>P zv}myNGB9lE=r4}cG4pw`p#kc^gjN9$ly-vYa(A|o#CV~AUb-IaR?Y8p3Li^7Gm;jOyl6vcT(rvHqiAknlrNP{7FIwXEc#>J-- zlFi*JC9l6S^JWhAm*+I)E&j9*47)pd4E=*9d_pyL!2IICgOWw;Skp~k&Q{i=dlmI# zR3}v@Ihj~J3jqGK{-7%4JlkBa{+A*6+NjRNqAB!oj{7rZu+u+a4w|j)8+Mu^WaBvR zJ>;@CR%?eVBl1Hc{q>~j=g|_#zSr2pMbXaRe-?XwFs0I>GMGU{AnngiS7)Y$)q*d^ z=3|Zlj_cN2qk??L$b!df@}AE8d+(Yz^TPuSwyqUmed(9_?YVVaXXF4LPQ%UGBcQbD zm4kl95{$~UC9g~uehb^au{_tRcMqvsg1_oFSXc-K-c5de-;y%@PQ)d`5M<5beUN8+ z^-CF9x0-NdoI_*bO+#mWZV2gcSko~4v5ga@BEXuV>Ah7@^X%~-TBcrAH+d!HARZV$ zFA1i1`+TqB`xo7-z&cr<+wiN{55op|Q_*WJ9R?4-eiff;Xw5L^R5cM&^1d!=d&`2k zBw>8sDjqz-f62FE)-}iV>w0bJP{jRdVH`z9;9rZw(sh{Q#Z|cL2mWOE{$8ZLdE&ZN z-AT3kX#z|=GToX%^;j(dlm7My(3(&*dGZX_wT1u9PrGapg(i(Gu=`a}{kXQ@M~7^Wb*C$mM^^RA-VQdz@WHo92o*?(K1UuMPh0` zrYqJ{nr>&kGP}n|m-v}^esn}mr8$jdz+^{{pKg?l70nQtfYD$gCgmErX(+Oh#)yoH z5LIWX%mnH~lBOt1L!-%L&!|TnX5^h@0C~t!7n6eBi28PQE0}Mvf)<7%XTf6P%gmqTnSloNt~X>Rf7MQoJe`5R6Y@PybZ9VA zk;r}(eRWpd4Fo2x9u9DOC1?Oj5#(Tsk12ChQ8F79s9V9}>%xwc-voIh({!WON-w@j zrFTo)PD2*0SK6GtmrcN-erv;&Z({<+q?AOI-EOWFAh6j5schfV4b7XNWRKMgWRA_; zNEUaT7XS&CQNV!$L`hlPrN02fR(}6*#^4$Bgw4L{9zme}aqY@GCgtM-K=4#I0;wVa z?+H5q!~tfsO9P?CG?JeOfn6jJDy8grzBsl!v_F?>__pgKbn%zl>c6f(@TBE-`~KzX zzI}b>-^|ZrOtba(A5ESCnkp-nWgs~9w96ms=f%?0R*3u7fN^{DA!$alq7Ob7LnA$2 zA4Pt0sH?BXXxxN%_gcRDYyOtQy5jDmxPNwsAi2=ZO%J8OgFMWks$cT@eCkL;CQ$*% z0z4W?^}{L3T*zEj_gR{z$+4f5d;J(>jTNkiQ4^o+#P*Fc@?vJ?AqcAtvgIaw)LK$T z;bU`;Ku#ifrTg%8S6h){m!aD82YH0wMM%0ze1d}Z6-V#H6ogG>XXo+UyhZ{Pv1Q#< z2hxZfA(}-~2sLQziwY*42%nU8Ci@4t0u`>1CxfuLemNSyqj>4U-Mq%NGW%SnXT^SK z_&54Euhs(wQp{KVpz;}@VE!s)vx8Fw#N z?2;h+!6WF*AY7pv^7jwt4k(bw$2t04Fh0H42knK!RX(_f2T1|P5M_(`Mv z0a}&#?3l+kZ-HMk_B?c(%Y^R4A!EoTbL@{6SX>r6-CTlDEilJhm=Vr_D3D%TBLI;9 zkQ7>qLmFplqu*vp0Qf=i!z%4c1L4uBlJ_Z$G+Qzmocr_RNiTl@53@uuhMFyXRUl~O zl3qvo>t*#zBo9hTcd-T{VJo5T@oQT?S*u3KDO7%YRe<7tdc}g*ls##HF2kVx{F&hT z;<9xu9oG;J+FG;nh6|4S`SuB313;BSBVSqFN>Jx)$p7F*qhX{+nc{a z;sL$ZOmpsn>RCVPHq*UesL}6ajYn&QNPlE@t*h&N)a}0R8Zhp%`xS%c4Y%D$-pDr| z==&(?b*SIe{^MWh5o@c~&yG6(73-^NZ#;G57BjVAl>EZCQ@oS=8L2+UlvJr!2gE5H zhDnwck?bE_I7H&3&`#t5MD?E-Bjy!nZnsr|o5}8_QkVF>X8!j-aAAyuxBZ<{WtlmCPp=!VWXq2eEbn(8_UU=9tyId=6(; zSMZ618OO#fe#qoauHNtaeAjhnmeDLIENlqM=z^Ud$oBaCvo zRF^3xZo(u266+6Nouz}vA20USs?bSG>MIQL^aGFj`f-?oIOKcnX}ut`vvH%u6~e*{ zt!YvhjagBK>yyH{nWJ1$2&B_E(!93e2kL!*EDVvJK{_|0oIRtgV6evqXJmF-@W*aeMmZrq1^CUM)TGnPhS(B{joP~ZXyL@%I z_sLV&pIw9f9u;5=N~vVbO_u#dN>XqmZ#NTq<4fAsx+U1-0N>q|AgY|wGUh(}?t2OU z^CS4Z`}=NTxI%}7yJ^VIzvFQM(z~se`Ul~Uzo481@KFEd6)Q_~-{r?;O0z#a)j-Vj zvAjBj`@QLAz;WqMDOM)fdBVbkE05dV&yDa?n}xf=#Z?cbFg;q;v z9lME5{?sC2*XdJ{P8I`=aYIDiDDvBi&<^gwzjBI< zE2na}OeBFXG_>foAk{s1-&P{;0 zRnundH*do{TUH+JwWck5p-#d$3;Ntp3+_(8pfjQex)Jx-0CwzLW9j$hZRdr(eJZIm%k9%Ghd2R>N6w_KOhY#pW~t zC495UkfUQU7`tRC<5#*7<0dss9O7ONEObDsB2U1U~A z!iVf-)`gCx+FHsZq!>;R>`gXW8*LNdfUQ09U%QXE=T3mrqWS94J17E=3GyIEC71CoR2yS`MN!8+{anuF;-K!sOQ*X# z&Fu1dp2U6q;316?B&5#M7`WphZK2or=QWSnWH=W+>J0o4gE3FO_e8Tq=_ z`k=!}Md`qg>JaHXf`$GNn7%fGW5r^szi|wHFvN-`J63OMe)O4S>d{J$*fR94^WU!NVf%SA4WDbN3h`w! z2zDG%t^3fa(7)m$>}XJh?`!W(pY{0OHqg2Co7ccu-`qYW=ae$wB9}?EpIQ&|VxJs= z>1s|nsEiD6AlGS3qdVj6CywEcB*47h+kUdh)qjvYG1eT27@VUx&zh8>mcZg zvVW<+|M$Y$Myj|MHGXO07q^`mqQhX;Yhe_gTKi((+gfN|H80VhF;{&R&bN-4=l)EA zCYoV(!6mhAe%FP#zx#P#Q`!yva)!0Ieo3zmGtVhC%r-yW*c*D|+HIoEfs*j?$3^~n z=H9YxhlyJERC<14m7jESjmhYW#MeTpuBSEqE4`Iz^k>bN>GToaf~}YBQA{0Cn{1W0 zBq~B@Z@3Ywz(;19f?THgcVki4RTA~~#s^HfFv$h2sncsWLwS!Yi54L>eEm@h ziujRVJqM+uI;Vy|kl=DEWE7fY)}Yc{H71l3gdC?IBFqS>$mL>42iT}!^7-|@ZA(wB z;wjE1QIJ9m70lq;{&RUF3Zg2B{{h^}CnW#cJu!jkeg=4sFvX_sA=)o5#O6Q67N7JN z(X`_gypt;`G>Hf><0E$WBGMXLY<;($i-hBBt2eUebH~<1pt6#J)zf(qH-PhF;KO?^ zCW|R98p({H4 zM2AKQlczXbb(+-`pSP#EH!%UlnzFFeF`GnnA05ItirptGaA2y*MbMwJWD|)MxNPfi z>De0xp|j5wLOvHxvK*~Ziz&kBL8P409=({5-j9rB4}l{_2qAe9__DkD1R@g5S@15~ z(u>Ofy}jiSGf8A-Vd1%2G#$=i$Y#V4#NmbV^U4HaVxvx6CYx*8-k*FPGgz7ApGFCg zZB$;ZfeecC%O@>dXc*Jb#SihLa5H2?j{?nBnV_M2Y%7|cqftPu^}BsHaRC@}25jVv zychS{IZFJGd=7N@VSu8t``2v$xPZAU&q>eKc0ZucGO_}DEYSlLbK#%?<3!wIBlEyt zy-Qa49e?hnazgyJV8s(#{sdt+b4`b5Vtw_`t75z|lO{+l8HRbxyOC>%IDSX7+f|tX8Ac$3r z>Ej>)nwM^$K?Y(C(%|ENb62;4NHnnXm~K3WS(lauFL5Uu`$4ilabYJuo-|?;RwIc(oiBg^?+uVbgJ>&j8-WyGo*ywg|>NNydq840Y$YalUuee73~Gq9@B6WL(#GJAI>)zMUmQqq}%Apf6idmWIDJd zo)lq6UPLnxusn08LKGdeoQ7j3#bh$bITvZbTSr$^wvpu($o6u7C&#~kduRgHm!BV< zrrFbJOos2Q5|6RT`*1qoL>JxgBG{=oFHehDz3FC1NP>lSO|rQ`|J%OT-EtG}If$v{ieoeW@`W>StqjM(CtE4g%9 zI4hjJ_5+6H(z`F3?fLAiIZ^-oJUH4MMv6jsB=W{nDl#c`p9`)No7%4yCr|cog&0Yn zwH_k|LC9Q>93Da&1=pmH;$!^8Y*qS-R z8!CX?Qtrzgu9ozc#Pxo;#gXRKDQ<^+t`U8v+U@D+Z<7)emqpjiOv3R8P4Ux&O#K}8 z2aL)}pFm<*l zZxDKXl9GG!ZXbiCb>#$yQVJNZrR^0P_eyE?!=tVWT7dA>vFWxp;O?v-v1zx}<;8Pi zl~$TGL|fE{$zr)VUhZH;14tJ~GR`4sK4mtf>+vikOsKW9b08xLdL$ZInteP;cP%s3 zt!FP@BZO`=QxV|4u@2`O)ZkhENw!Kas{svUB~I zH=f^HF#8Xz6i%~yPr9KvN7ngi!095}A8eh7M;Gr+##d@rK;O$ko2o}Ol@>BcoGkH2 z357rbDP2TwpJ9DL;#YC|x6b35e_xvNfpmMzHS4M_DqZUw-;fBy-WtiAo^x-Q|q77i!%0}!h*PCVo$&r6fthXj&^ zN`K3mW}SDOZBrM3XcK=m|}n)m}of)Ax}phGT({~_5ONGc9n*FvRZBCpB%?W++`z*GJMT< zLiPjQuFzOkf}RVr7@sORcgnGX-r4t#o^NJXbmQNuqo?>NLIi^J`DBi8xVS>9nlo<|dm_ zxH9E~@;Gqkqt2RFnK?6_uPpqa{H5?kvYI!6ia7mP5JRa+kDOz86@KIYrlM59uxc2W zfH(}zLh^kjgTCnH!=*P`UP6z|-^3R$F-#2MtfEGvcQuCxKyRPLgCpJ)Rp+R3_0<3# zf`Z>S-DtUK6l)Bn8ya8KK3#-?VUWRoAd_s;oy`4(g=l$zATlmicBJ96jl6cQr$Mo( zdt7!uu5f?}BjYNQ%}W64uicvk|Zf+=yK z8(xIf6T1d}cS#lR8)>a4(q}loS$&lZY^a}4``|wofLA}}J|yeYg@@cc9u2BY@EGzW zQi;6DHr9B7X+J&PtN*(FRtZ;*Bw%_>yi66OAm+Aj-!i=~W*-}GRcPDMVtau#>_5Uo zoZ6p~#*^!9Tj#I{5aI)Q@~i|=t|v|O(aB2=FUklwm#C*$gZ_k$N)`xKUHI_Eq$OoK zlckcTa>eE#JTQ4Sr>%_W?%^!v^blo-jflR@wUPOlz)&=HZ=;(y3AxKnUQ|e8+?*0&R@4Ax~km$=(a-k+jk;0YYk2R zeQ12e8`F$Y(;zBpaFjRdq@k8IG?Yj(3O34wl9T-bn4C z_4TIk_wQSmooiR?!&g)zzBl$ z+c6m#7E^CVlfobYEA=qAQ4I2`K10x1k=V}bQ_8T0?#qIhDSsa6`|P#E7dM}YaeH9+ zS$X^Zk;b<}av|*G73RuQ|8KpC@fnLMn(6n!-@4L5FpQBaPma&@xoq-qXd!&Qv2kI~P zZ>n0za;OkC1J>I9WfBs`n7Q8Be->H#A)V3VK6NV(k5DgJn%2hUlD=$sT$3^FIMS+> zcoqa+Ke!|xZ~a2~3puOy2PjDG5eqbPmQVA678G9}3(o^~U;1lVQBt+|j@cqEo@wD9 z3Ig!^m}BRCpfMjYqW$}9-o4_$d}tyO&`91xHDl~6w+-S;9G3^wX*Bujy1Zc9&Webd zzk1dCW^Gi!G&4NM4Jn@aqWygPs&tXuH1F}{C5ib4%JI5eu)8hTky$C4@QnqpiVU%o zVYApW7e1cKNg!eTZ0K5=(?>7^a;`k%-}H~8=HNoEz=09_j~75WHiG(HUalQ&Zi<~+ zKBOL7C^(8A=i7;T5VAF)YiaU`!<{G9a+Nu126BImzjH1^g1_PnmsEF9E|~NLklwoa z4Wx`P;P`vG+n^GJ)oMu=#y3Rc#?yxl#-ypAMa`fz$?oE1f5sb#r*HawfvJg1vj%3? zuotwped!}t3?Svju`tWsM+8Y15Djr+EMM%zax*bf<`SgLAX#wSN=XOe;_#2*pY9hk z@MYVr{IAoel_lrV_r6WmhgkZ{qTU>*D6D;oU>~Ji`(oaa}0Vmg# zbA2<8y*M`OxU~3}SMyVy($=vEn0&-LpVlg-Ngdr-l})V41=2=a*`4UOkE#Z^xE-;D zkRgtY9uN+gZe446@F9)3l<$jL-h)n2`zcxIb9d&C_4ku?qM_U4(SLM48k_nWUBxB> z*qPb_fVI8L=%fh{zS{wUT-cwvwFjN|Qi0F+$twHK8{uBi-RBMr+@i+wjG5`p%Nxi` zuLvJ;?}?#AIUuVf`*sUXfD-ysTbYN$2d7l9t%6M+;I3%rV%#DUuw~p;S+j4wyfO$X zt*>Od5nAZ%Wk>D*?q^Oog@wHg7+1W1=BOZSquJQ>{quWDg~ZrmpRW8@c9{Fme`bt< zf8tmrv}S^H4{(aL0tG%CufiPLw?Q0K$@aU=*P0M+lIo71pg)!P0Tf?cO-Dc0wIH2EXD@Ti$Gk&GY~l5_GIr!Ng1x+vmA~ zub^br0;NN|5s}Ql4^7Q^-xRZHN6Nf1^eBq^Tr%uX#wYBn33`RJ;d-V1qRcT*7FIWg zI(@}=gYw~2uziKq&R$6t_gvx|FdK?L>y6ACVY(ufv)fCY-!kUp|?B{ z@%ovhs(7UaU*eTeMx`Y#86AYt2gX38Nxkkys0^}a&gj@-zIGR4rOYOe_vjU~xePOf zf~CZ<9vqLevq%wfv|R~A0ji}r$OiMA?mDbEC-BvapkUFIh=u+8 z!Li0nYFWy4u5JNXXq!glxCSqZaMcL=GqBe}jCL4^NcQ+<0@|D1-K$Rx+y?4RV6dz&ci7?fjyZ46M?Xo z^%FJ@4u7eq7M({a3IUMo>1H#5GBxrE=7m{XY?;8i0_mFCoy0dxOq#rdz+1o}%`yt) zK`)4$rPTqwofH6{bSlra~G*j{5Pt7nUPLcpixPEH1Vif|WMR?^}4CX$@1jMpUOz zM)CfND<=F%^BKN5mKUO5?9}bc{;eVozbHSy#z=kh^ujylYBa^^hYqcN_di_oKPm5w z4u_3Cnr(&own!G-;Iyuu(bD8_pI^@IzLr4ymB02T+w)Phwlw9b=8kH0PUL3vdO!gdbBNZI zd6WQI{n+sIy<_<>)8+$cR2O&`4&o zNf}@B-^;(&DxiBmOzD(LL=A0SGz2w>sgyMoQsR(_g$TD%q;tHia^28~Bq2j)VEd1u z1O;&4pI{*LfEw;SQNad5WIanE1z9^10msWZxxp_QX#HH?_j4mi)=;t(F31#5K5WG3 z5Tg%2Lv<9CtA2tzK&P6)DywfeH_H^`vTV4|<56m7hr+ra4NY6qMPtm4%~8dZEY8Ulf8LgnA>IgiNNuJvfQl_rbK@GlFjrHy|W3S%=GzLA;5;L6wgQ zAL>)f#+1v19YgrGnJ0Z`6bpx(npOvi z0x^do@XgF@8|-9$gR5hLM&tAb6zx#w(#^&x3lIyQ5UBi+DGMN2(vDcB3VR4{2~#Gd zq6ggf4c%OL!|~B_{QLu7Eg2QkLrmy&Oc<-k{d6$YZeNKRL`r(d6UQewD3P%|dimOJ zVb)?#Eck~>0hyWPk?AUc>D}GTW2cc17!t;7D`}V*s){vmu;M6-zO z1k%uz{FufK%Mwi#nPM+<`-#kc`+XqTgJx8bnjsU2!ZS`ky>beuh{9=(gb6>_?R`epSlicb_Z~+CL$G ziMlxwBlNW{m6g9T=pR*m`|z5h^!L)b3u{JFuDBap;)kQsL{0VbVw7Tay@2ydJd=$Z@)b;Y_n_Gh+}q2!r{PUeT-W!xEXI zol%)*y+#!tCqIV5I=&9nP30zhGTcZjNIu5|A!m|E_uDE(goj@o`%|?&t-9Xs&o3lm zj^#bQY{0C?TX7@n_w0xEqBNF85R8T(>W`A z>qc9BGyVEb)7WVOo#~!27Kt^x*J#PGKw(dSCJGVo5E$9vjl3ct#81_oggNcmc385v zkWy5wEuQ@9I28Gq5&rLSe6l__?yXDtWJvI}uFXwdUX}Wlv3FU#ZN-}K*f_vyLdi1E zU~517i+PlRVm^**-TtP#d$tv|g}SZH{a@{m7@4K-J9lPzT~%%^d5;z)Ogl^P+wV`_ zdq+%q26?tsn^y^r#Mq{lOOy*kF*{>E^u^q*BzMW*wDPl#fySc){+M!CdNGYgn8^1v z7oze%aJ}k|*_uP;R^HZQjA!{0!hpa!i(*%vR)gS`sU8nApdt!a|8luMk~qR^9&#ab zoOqhvZr0AXCV8#(=MeQ`R6&^}4Ptt*N8{R#w

kN-lw*P;CF@LTBSU;EbS>Zht+d#R>S zrR!mt@sAJJRRUJ)-}h$tot{E|{VaaxBy5zg(IfIh?6aCe&X?p3g{I_X+lCJzhL#8m z5=ej{B2WG%uPd+n=VQv))!@&0R{`G{#KRa(H#10)B%*t#BXFHds)_WphRKQ)(KzmP>SB$F?)galw9PIn@z_-i z)>M+0Rocc|u#JR}9437#R;WsC^F08Q(7heDNtY5D z{zV~8K}S65Dp+S9Rs9-pMR;$+B6_&4oVD{yMWImicm(P#@JB=lR66NLjAkz+{uAZL z_l*pa%JL2Y0ixXkd~5KoceX@pC90Z~};B*zI`4-K1w7YO6{XQzZ84h;6k;NdH&vCFd*YIJz0fD zdIUWj1a2$?J_H6Dem53MOu14o5etNZq0t6IHREIHP+UYpr?f58*O8o$z2w&5+U`mr z1E^!3L#)-+eLq(7E$*IhL80utw4f_SF=KP5T4KP^P)g`@R0#xJ*@ugZ**SpM!PkoB zPeOr4iy&4JV@(y1;3itwz80THOv>~An_+{Qd8iyP|AeW`)Jb{2J#FwlPA#$sxcD&l z2bZ^2vgzvgn!*Z|xaYNA6Hu3Uz6K9yhQPtv0Kk2`)b(MA+4pheA9g{Risbha0d_D7c8NTUCCKGHJuVhg{ zrGH%+zROzI4Gh|39`0XZu*Q%R-;|UjXh@a+v^BkiKhSEapCyC>Yq^RH$h+;&yX6vN?z#M|F$A^O3bMGRP8#5Va8gEOb0>>yTIZ00{uFf#{0UMxg!MTc9L+S)ePv0rPngs@)A8sL`#kmH-DS$xKR_xSK%fL=kSJwQ#@9wg zXSDwx0A@j%zVBbZ_WWU&?Ap^e(J3%~;7cJ+G=iAklzmRp(LlfSQb3R=ga5LZ0@}%X z$W2BmvMz-h>&CDO3E4 zg*LkwCkAvg$7X|dqteQYwdX@6?} zY~$&jWA{9@XX{8|<#YW{Y#AP#N*#D9G#mBFRBq*_zHMWrH9N-cUbE}LjRV{JlHXW~ zryNwtqpVyW7*B2LNk2bax@Yx{ef^`Qa)}qSky24hvPU5vI@UrD|HR~!SJB%3Co^|_ zYW|7Or=C2$oKD`3n)8b)YJt>}za*So3WfUo^ZnU1+s5aT3?&a$DbD2!Gx^%UYtzA1dR!Mkc1K z^%jMCty-ur-nF)O<%WIbN_8$Zn@%S`jn8CRtWVF( zHjHhS>>tOoRNXtC-#Ii_C>HCTADfFV?Fw$q4`f@9Z<`s<*JqP#B;QVoO*k~3df=J; zJ0~l8Tun*_%(G}HuZ7@G&dxU^8Tkqq@<$4N8=KuE$v5tBe< zGJ)}uN&$GfB>5#EC`im2nq|--<%^>2gvlEFhMbZ|+g+H9crGC%ha|qCh*;-INB0stb6QzT$WUVy|ROBzlj5C>tFydkq_S_DjC z@(3g%vSCV?Bw0hh?4_WQkxwBL;4Z){vv{%FaEV4**~J%jWYd(8M7wwI-aUKvuth&! z_z=<&C=u+$w&vK-ENcjycm;$n9@gy3EHSacL4Z>Y@v<#;4Er(Uk#X_RWl-NuiXl5; znRij3p|aixQ^H{lcti0Dgd#EU@FB$4;-PPf9Rx|3Avc8?i9%yiG$aNRI{m zUtizu-MgJJm^lT57Z#)xCxr0{i%X9WBs*duN!|iM#U13_aY_swsh~?N=$AGw*Z~aP zJSFIMlr%6W1n!xsa(M+5JsRiYbX{u zVFBSt>myzU$xuP?#ioqy+_}^0fNhE}f?16`MM%&vh=LI`MPiI&I>Q3N*GJv}5GI7= zHR?gUY!gDni`E-bNAtoOBz$oMuttC|7f=aSHV_hsz~?9uOU3(;6-Rg&vBRtfl3hIc z#C3Zv_(WsXnUgmkHFe9^W^O&Y_lhr$F8|8(Enh3II9<8hcf}W{@A!KDv2%v5KU@tw zaMdBHdr!=-I!i&Dz4ye?8;|I}>X6*Srwv^Fr5Dclj}6~^|KRekEIxP5$n}ShEdNUD ziSyXZuQ{}o?st-n0|$QeDCes1ROZ=^?i z)5(EO9(lm)VHUo?Um^R7J-Mwbi+k3l#s-V!N}op!7;0WtgH!VS`Y^nEjWpuE#g4f>H>nb_~@~$||%%NCo>#Z@I#kvQ6O>pN*sd zQDMm~GV z1hXn|G9T=GTr>MXe&OB# z`2hn|X2Fw2^05$r#SgA&sWSuihdY1Ym}N5hsC&tfmv(vh#Cb#HMXji2_H&m`$_caa zlitXlcp3cS6*Kq{`a0<1aeO#&Sd$I9@@9$)>%|wpvAEJgm>2x`z6tP{5dN<(t&u%j zh<%a%+p*98&F3Eb>rdRV^4aOm&$wRZQZTfiZCb>OE(L@sgiY@7b}t1-gZlTp6d0#S z%W!d;0hbq<5 z+2qGL-YRCMr)TF}5anj0IWe8?8&V-8mjcVCdIl%9j^>`;H@jv_^2+z3OJT>3o#Qi^ zM(3ZmScHYec4o^x_4_}Vzxm&0H{4Y1c`~#5jQNSpDs>`zq($5Spw;k!s;qrRwB8jID=51jM2ygPTyviAB*1T&g zQ?AseANcy{k;|rzUsk-}b@hoYbJ>FJ3$QIZJ~oD)oIapZD3_BPHkEy@XZFEo_H5g^ zd*9x@mWjaV=!oSVPgi&JPZz7nrO85UFu~Spbv5wtY-#_{q#6Q8{+Y6@b91RwI=gFN zYR6!@cOpM9ZqvS`Qm78L*L}Wy{qMAIe&fPzZ*KRmOiJ|1(m&eQ;xe_{<&!;qT#nY) z`7&kbcsdcHU>2&up^;31iMs7)bBcnDGh#nbBnBQng!o!~*US_<_76!p5hH7uh8z*Y zq-ZDu{IY|?U7S|BDvqcW;zYctQh*R#SGjB`p19jO44SkNzR zT(A>Q0O>N+(2T%_fF!`g(+m; zFPOdc=;rDRCT==%`qrZto;<(4^33X^XBX~0vHkpY?akMgANXc-&4ukfx3@Q3vGCYA znY)fJJ#xn4y35jce`9gYh1FGOrSCevy=8fO=Pi|IuO7MisBPzbthn;b@~%tJ!Zob7>3n(X-n7?r$$H{V@e$ z%794qnynR2f7z2CVTxCiC{3hf+y}&D8=s$uw?pXI&Q;o-%iZzN=fJzI2u4FX!!(*T_>`F2vG(nk#;lSNRr3>ao2ESYL z*om_y4`|8pG~>&|+Vct_Me-Au7UO7nvn``hgpDu4paQ^%e#!c`4r$m&L=rSf=!zLe zn22OQwids9>7I9;xcl>+e@v@jQ^P296;5guUkK$*6q#m~UO{830M$9<)k5khrI#w2 z9hDVQiDd_5RL33MCf5lZ+X?qDx81rt(aY_JLFOFrwm8wkf?- zr?jHnQhoi-dvDRJCtvsWYfLE!6?=*_e2^GXqw-F`P*ChJ!ahFZ2#~l?q5a1hJwhM= z1`7}Z5Cu6gl_!BiuSxro3Z}#ktvp1Hs(_E*4Q7h2cx6L$gt<^IlE-0RC8<_tRv@ZD z^(y&D2zBt3>w;xR0W7GHj;ILfl#1!>f^uheLN5M6{P3 z@^av%5HA~Ce78%1r00Vp8GJ)brv96k0y>VfS@K<|m|gpE%*|qUqwY#ZqaIUn>Pdz> z4dH>~B_v#gJBxyYFviY)2@?`+FY%V`Ik$q2YTHn1YyWhv?BSM#4-z{(%0CR*rGW@MeA(_rC-1F|%<*#X6@RQ|R-xgxs#@UYP#@>nV z_%=$dxmcrP)$0v*W%>&x4Km=0bLG{IRoZbA7eeLf>?*+GsUe?Vg`OcqWj<;FcPo-dm8@b7u4L8hfx_pwMQFo>6JG0V8;25bjb3VdP88>T6M zJ-9sd>_$_bavDhh;_Zb;V&Ah;KpYrXq%oRdY!CPkjEFqT5pu-Kmlnb=ZCu0@FTix& z#ngZKQdq{Q=X)#$i-umv;-Swdj*LX{EkShjwzVl@;$%V+HNyx)IwYEwhnIL{mJB<} zFnL6H&l58yj>Tr2)9|i`J}wvn_<&hF@=S4!!0EgqCLhcICq6J?fv@Oe0nFl)Bp?Mq z#)CV~hAA$nLuHm?^rGX1dSsIroQzNxQDi1&0iYfW%p<-G=mD^_yclvvfILE6VJEW9 zFKc>J1X!~X`RYc235nCrFN6L4{hck8d~^hw@vtLru^YU;gMo%eqa|Yy($xr45jc-} zc7QQUGCays7=+3!oU{~3G&3c zd80^PbY$d&De}OuK!psnwBR@F76$xEk=_stnEyZG?gLKF>be_0v6I(!u;bp18yMqW z5^D=yl2Mk<$NZ-{z9lr61+T$0b zZa)rZ@VZ00<{eO2bb5Z#>02-P-nKd4$5cpX?mY!;?a}j+KTvehcd}1iIXc)oG?IMZ z3vazPSxPI#XHANPk8dFmg2j=F*iNyg0>_az$&oiq$&_mHW@Du+1pHVd^71B)hL8!c z2ptbq`;8UBa*2u-s|?T-WRkQz+{7MsO-TYbD24!z20(_X8jO;)xqS_mjsJZ%P_f(8s@d&!@h9Uwlfb zZdA*uUJ%L~^^Dp{T|_|fqgwvV_Z~Fd_sh3@>>GD0eh8@d;?qCspv%30bA5f>LgM^W2^A2`H{qt=#5@+V!hvZlkNx zQ>Q8Xe1%b-v#7@>$&mV%lkm+NV)_!Ppg3cedm$M=t1Ns49swW{71mXBB$cMBK?S6E zsWYngMV^ebFv_d{aq!}H*?F&2$QvvCWQDxENrJ*vy~#c+^{r}8Sx@G zK+=$7)`BO|ixD6X5p>}zp~)!V0ZOk0g1{>vR{Spyf9}r@U-|P(SJxUUmcs6rf*o$( z+Lma|Hg*c)0b<|U#(JBd{I6aLwtXBE8=F=@{W_Nda8L*w=jGSA6fl9ukP1v3KG2Fw z0S6{UG+QKNh|fbqf#}V0o9=&bDYQR&rOvd5V>X^kaP*y56ljPrL|1?k8_A)FkObiI z#L&QkG8^vEl{X&ZN2KKA!7Cfwi)_Gj^)tabH{bw?OQBRO%rxqiYRyGfZ_Fs(#>QUy zQYaL>PnV}M(<7tfQ|(W0Vxi+Pi(so%u5=Hj#*3}K5$|lthlDJ~qmRXErM$JP@3B=q zt9Gh-lC%iWa!^kS(^VIZo$wn2C%mF{(?|2?zot0vBeUi7SSoq(=pUJUWL59Os|W9R zdh3>1rOLBTXOX4NJu^=7eLQTGCIOf zsd8&a?{I&r)H792PbX;{>+hageOD{DWn?P5eWJQ^vbt_-?_@eVIkC10$p+A`2LG(Istmdz$VL^?3gFWbq7_U!@^N2Ky*|DY{X zdt*)vjf@QpyR%-RQjns7$-=sAJu=CJvuS;mDGp0_S6AQA*r?a`#!R*5MoTIM_%^qi zrmC!MwldSzsl1vh`Qc$ZvtCasg>b-D;dUlps@2Q&;nkTHH`j+&=d)9#YI5StTBZ<| zRZiNv@z~Lu;ye$X3$t*dXFYMR{m)){+m)Yj2IG{;2EM(GrVdBr8h$+7OhI79&?dJT z$g{{099m**Z=~c6#I__ufZ|J53YfGwBX9W7JlW8kLF4d{=hh+~jOcKQfFS|88e#r$ zgGGHjSi*l+h{;j_^2#hf1%(p}jrs3X3VdMQ6hK43-hSGBTWk0P=yIw3xJhQi9Kw{= z7EEXkn2Hw6-5aJbfdoxHws_3Ou!E+Bj2^7j-95uWgjWb4v5yTqjQjS5Hy_u0^1|XH=caEvwzcKf*18)ikDXt7?EK6FXBHkjYwEUR^Y@(GT0LKdTzdGN z=90?__nh2VHm|ke##xe&o;Q8(DXq=7G*-{A+<%7I=A-8&pBV4FC;7`p&t6_$bo#{2 zN6kEYIoO#cmo*m8$=q>#<&kq+>le%{o>RX6jLhxFHJ-Y-wc@JQ@+(?>_suN7qI}Ou zGu;oBO4F0=-=nBSCJ}mBif}|1D=yNQ{WbF@$-5_H_bJUP$GL;HyO=eKeD2Cy``4== zY^qo_jS4zEbVx&8AC7g(O9S$m+9 zw`gtgUuwH1UYJ5Kx_d%8Q_;lB1cD67U}`QEhC1=qtL5t-?E322U4QuF$CXltT$@!3 z#piobM=5(0cxo60(m$WJ1t0S}7xt@i|Mk2cb)A~6o5$mt$Lz^-Tey4>1gqR|ub*x}&|5n~SnZ3O2;iZX9iZ+gu@;mP&m8;6rW$;+CM%ubhU?O*5AcBuJFmqNKdyLo&jx9bfz znYTKM@MJK#ZRW|J&pdKqx$EinWNR=xv$D6?GnTv=c3QPQlPf11xPNrAduVc3NXa+x zCXr{0$-f#{RlH0#oBZV?uX8i4*_lQ&H!xc(kSWi!DlOM%cGfgrCO=w z3rSpE!@2cCH=J;v|vB5M#GYv5|*^a#Z zO8Z5nz&#sw$9Q@94z+4BN5#6w()({(ZQpEd8mmnelDzF+DS#i$HMgXiTP7-fQ^k7w zH&Z(%Q7Kp&$r(!5dUK7+Y%5!D$x=zvm6GRD z;{OYcOS@MJos^>gH!B56>!b)_XewGTcW;;udpr=(3KAQOjLgQ@WcUmtu>fu`>mA{N7F!Q8zO zpdN~C)a2n7lA#ir>9jrg;hik9sfLys{*kkI{077!4`^W!izG6jA08f#e}u677^c>*UmtwBtSjG{Ak)>=g-)ClCuki;STjGBJdZA&0{R^cyy8z!wWBQx+wh z*}i={i%c*|Qqsahx+yXc0x^%~b3v2#kt_QTXgKXNmy%prJ*h z&N?*wa6@hZ2DoAPOhpn*X(11s8)(~!MYH@T#vBg=R+A;W#X>~#aioh^;TW9Q9vVXg z$Zy%Q1;IKunCtEBg=V(9yBnX1DFMQyC5;fE#dhMbS&os9-H2nzIy73Eso-#1-nbM| zr_)p3vqr|oD^tUnN9S(4=-cJT&M!WC-tcvYX74{E|LA$mQ6idrz5KcLfA7^l9lHLo z$=i=pArCJ&yl38znthLzD#>paiJ+{tkcA*8J9g}dPt>il0QK@_jU?ak#}~MC(TY6C zq#lBejTyT!W@VdvEP)hhXu9$ly9+*}GDa*C$PgT>fMyY&JRCh0!)OGgofQt7MPNeH zfMXK2j>#gmf7~uWh#4|rmV5RaChL5T?ZF2esQ_YVV-O=xApWh96?X9vg0f+#kcYf! z(QP56f}&V0!2VjoicWQ8sF=hjph){*`zW1QQ>=XZbZ+u?5@0V}EdH3JW*DKG+lLW{ySJ9H^p;fH1y2#XXs zsRHDiC`3e2M5e(0;g23AuZZ=1etxN(T$qlqban+X?Ez<}7>1JNBj!#7% zz$&=~E{&p-x2Qt7Av*FhY<90NT+1BO7KMrc%^F%hODqX|jz5hm=bZHIC!YTRmj%agvIYYZzxa8aF6%gENfM#UvIF%*X?C zv~EO6Ad1&WlTCw0N!<^Z%vGEOCcaBeHish=MEld~t1_txFY&w%& zwKIM9vc89wZAm^vPEAzGC9m7hZ|Zw!)u6&Gm(5^uqf{)>o$>~do$eXSuUxZXY&?1R zPi6ACsZ?syV||-f7S=D?cHGBD?>^r8E$z;28OZgHW$#Vi8B+6E$-ke%}cX{qRN|(K1?5I7e zTW`0Z6UoXX3vKOes>#$O(=r-)%Vo2|+&-G$I+B&ZFoVVo8 z`JKsAUeSN(9+d|VXw{~ZZ;JkvN&zx_vI9AkJVU5Jz&LK|p}gdmK3+z~hW?Pa4T+)3I81=# z#*G{C#R7_Z>djJ)pU5O3#_lBFtOvF$56DER_x{Kuxf*@RltS8VkS~$o#Z>LSBwA zMI=U00wgAn;tlK6`GZMOMEcNzjL$S-;HJQKtW$?66%jRCvCAWGY;g}q@@Wamt~Co; z)X*?V3X>Roo{$VrB5&yMZRN_9tZa&Vg!n}@tGVKU9n_EIGOvS60O8h^|hQhfgT=jEZ}IZTESkvG;O zEf8pN!+wj*^V6(ANU}%_K>$ZKV)Nq=Oa8LLV0Y=+`I)iQ9A4L1Q-_v3<_>GxwcVTXk*E{Gat* zbMVB?M`i9hG5x@qJFhxu`(;1ecIglLuRUaDpeT0cGORH9`lEBz42=cK~hJ-CH9FlslwqjRT7X*!p?P1}}YSK={LTmV1 zVWS2Y~Ljv3* zDSWW8$~d+V2ZZ4L7$7V0JVcNToY;`iVgrOTdgcV{?y*q`L>d{gUHQNhG9m(qkA@b8 zB5+J9Fa;ifw5W3oM{|7e!wSh*3-VKw|YltUDQQtmH2*F6_#RW}~rc6?^DKDuj9dQ&$#1v7~Rd;*;a1GQ0o9gGwe)N;ob-Bcl@g#yQ<8G^Rl*9sjxg_m<2m0u^}g|Az%iH7=>gfEzN$ z2L)j`rdOny^~I2~P_epubqY`*Jn_XbZu1uYcP{J~4lPFEQ;GUhy&5I4gbfbA#qQ zB4A}k6#N&Xyh$wIRMGKIB>!^8HZlOIzx{8nKXlHT>~wW9mHboDi!KGHL$fX8;Q(6%49Q2x@bQI15*h)_u)+s` z2m+qH3=tqkQHo@vV;vJLrYOwvAD{;mju<1K+><(h5$v{Y+Yrv_0ZZp=Q{oqc%C$dZjim0DeLMaQdHap1{cz1{6nP~55&`$ndc zU)^lUYPFqxL*0WZb>rZ8cE>%~%e z-R7=hQkEuvyI7k@P304hl0Qe3E;P1o+p%mz??kyJRo&x-HQR?K+V%E~7)zz8Tye{e zzM+xvCs+5a?@9KXNN1Z;T1-u4w@=pZd3NWI};avAr_2!3HZSRqv%AfbfnVUaazUgCYf3(NwiF>xjmo}P7ap9&8a|vGZWGD^{Cf}Z| z4p)%k+YB~OoF=diNXUB>;5dM`jolJQ&y&ht4eR!gL}3ymqo*Y;8a~s6ftwDIAD(RCtzmsThSK|rG$Sr$*MpFJV7h)|C$h#;mRXz97FAvn3a z=iHM%1QYmFc!h{C!#zXbfggRRNwLf@3U>GW#H?ZLatL69co9M*K{IREc?wYEc}Ex> zu&ijTSnn9N=UblUY7C3m+uKVRnzv^J$0$bBqLVH|u=ZsjL?apL>Ue^qmlhnl4DIf@ zw7|rPRUphIVusYw{5RW)cXwUQEM$@qJ~1j`SHp=-9|C5znCi4J#BPW=gyBgXr;a&p zM_h0a);cy-M5k@vzCC#&w}0^oEg+o|n!KJ2-=eVLSo{va(AD6CZ{Z0#kQqWls5QJd zm1j5JJG=by`ZIG>yv-$-m7lyQ`CjE`E=}KYeD1!}N)Mf_%56M)-spnEeKnuHr261l zjVCT_EuC9^;LO?QuAE(dMe_CZCH+?&l)dXjr84VF?UUYi$%dvXyEk1q8mJ7dAdG_*VB{!K) zHbdl1FK-c-gdk!!B4hwl@3H8BdptRbIMVJxL!h(YFdZ((IY1(-fv?4O3PXkxWf2L) zVPq>-EgBj=LgpjAv2E}XKf{llOQx@-_fv@l2hol}; zAO4#SL(%vgPuHCTlixpY-4~8s`}^$zPYo7z@5jDzw~|RMq@+~IsG7`v>-=6tlqx7n z-1yMaSJb7-xqof{x-500l8;P$z(|(>nj%26hh0BSo+5KNhc75bwM5R@z0y_~XmR38=dcz9yqkeCuD#qyC=1yN)3$h^V`mpw54MbvOc!3eA@&_ybd< z{QUaaU99~53G0-C6cOCO7dV12pB2e^)=A1k6n?&V1wX1;D)J^RII2hZ=r6tSz1+Zw zsS;^P3x5bei^Tr0{pWloL50bIsMu+-%RSi;^?_GT3N1bjmdu}CofZoZzjw)yBAG={ zRLILAv7cO#!eN4A01vuqijxEmm^bnMe^~JDzn%Z-?<|t8SQmthQRJAO=aRGUmv50M z{=fH&*Na_3gkv=Unni#G$W^JfC<3HNg;%tMEU2%Z)%}eVpWHc=9EaGAwxt6SXTi2a z|2mgKoHYlH7?sX`#`(W@DRdmx6H@^?n4L?3S8i1Zo)6^X;l{V!FNI)6gA?Y$6LdT` zesL+Z4Mij1=@f4B2M015hgW84X@R2;m9}cq&>kREB5!0U8X`gfO&tL<_?@Xv>*Ng$ zMARI{Q6i}uH;q(=%B?NqjU}5?UFpVDqqSoDq!LI8Km}SvSE|%*d1%Fb%X{uwvhBeY zJJXHU=APuoYY9jWnMl!8I=gPiaJn|zH<8`Cy<1eBaI6bj^PXoo^P)?k-mFiL&#pXv zcELwlcYV5Y!)M2ynulLb9-N7MI#< z>)m68tpgcOgooslY3liWZo1f<-E}E6W|~9!MqhDuth7r&!WCl^+3MQ9JTayI(9keD zrBXRHm9Eds&NP$XEtwSUFTA8pZ-26W^Pi4i|M#;aPgZXFMD^ZpdBe(Wdu07H_odUx zNAcI)pUqcx?W@_D zx^Q~Ni#vwW#8TN(x&0l{{I1Qmwh!lq#wPL8+4#Ak*`AT?`jK+-o4v>Kt=Z;eI@2g+ zXS2Pt`O#MQZLg{(+K8UVf|HXcGNMjvsq-0~vHl=RY zT)WY-zR4+QZ=3$%@v-sbCBdy4$B;{0-8fiSvMn=OYYkw)Kb zu3NO?@pVJDJhoxeK*p+eb?qz`RSMn=TBS!0FJJtI#l7ew+K^n)#BsmiACRObiFDt>I_DH z5aEDkXjx$fU~K!C>NI=;RLmOMB=PP+QBFGM&;c9!mX#M(3bvWjpi?QpG^9daACCxx zhnp#|zgj7T17yO?FXk8FYAljkDByPa!>SPY59yB9H>jv?`*xe`w6 zBONg$pdkozfJH-?oyB8CLzrR$!I=;Xb7(F>AjWe99B6#dSmC6M$N;kuCk9Rg-0id_iaQyHQj1v#xyHyiRe2+2p_lMnwnOokg~4MFh)0Vh^Y zGmK59$rX;C|6nzAXNp)T8o~@G$$;f5T6B?2MgyOiA)n(KW}W9`3@JuXIEM16g(vv2 zaFES*R>5rI@e4S>qjX_i18B;SyeU3JB_I`6jfuz=8CvAw!@;x_xdfbiI1rmHP8StW zl{_~c_~7NJLrg^6%J5~866g-L+9@EidjNUS4s+yKi@VqB$8(kdik z)%wI>Ut!tJQ@0*fdF=e!6Bj0bf9R=;%S-2u-0<`2Bj*lYf7sMrC#rZecN{( z;oFa!zWiMO|FF@z-IXQp#Nh3ENF@D>z-B%u1d*s~I?Z*+D*>Y=R!;O8{ z96WmC5d+sAGNZa)a#`;cKdC%%K|Mb-JhJO2ULtVLBVsKgjap3UHNu)Ch?IbY#J<%? zN`hHLJSAvZT!j2cwW0lQy{u`hIC%v5Km%(*`4D>mKgw*n#PF>G8Yeb0FL>vt>Lq99assRNZX`Valf?P?yi&F{DWgs(3{wbmc}@DXL0!cq-JOd%S-+DiSl z|HXr*)JsY!VoF4OU#cu8VYTBJQn_xSe<{v!-5v=C-lQ@~+&b(Z*n*v1PoPF3mKO?^F53rNEWVqoo~_)m7b7 z4=nGRm}!j`%2QLx2GB@Kg1k=VD-W$4=%1e1I$mDACHW{)IFSkuH-z{0;gsTRc6cmR zC?uDH=Qcm53+0IiPb^*Z`s_J-Hg4Frbm43I&-q}hII6sZ;Hq7=abR_Se#2;OeP5EL za(UOK;1OM|yl^QbKM%a?QpjY|BNORG%ewAcvNfAau7J1{l+A?c+KfU|fU5S#(#6MC z_iY%Td3wV@?_lzYWwlbCl=G3P#p?&B>&YT!L`s&}EDW_VM@tJJ$kDHout~}FBO-*g-9YLov`Bhz$)3w%grMb2@J(^0FnyrC} z+*CR#^CZXu(c-G3Bed;ZeFN$0c&3mm6pM}K$mn>zw(C+T*JmGJJG7x^!fM5jG?$8n z-l2)nYHNLeI-4(&93J(OS075(rpw8GQ$tqN-m|UY=kBT9^y$WBubDjSZ8LpO#|0*z z&R4Q|Mkj|S@})}hYg6s0!gQ`p zV2a4PIB$lTe0eC-$h2Q_B~Wi~m`&EMz28QQjWvUXu2l8@6}_u=B-b>=I5Jx1!K0_n zd}ZtQPo~a!bM}I_wif;2)Ol~7IPteyn{Q0#l5@cpw;|g+wQ41mt3J4*XJudUsr5ts zBPovn{y0J6jfaEn0Ur@oOvO8ZeXHS%3tulG_!MOz1k8GvKw#7+mlNu&+nLFpY}c7) zd4j+}cqZs6I@EEH9iM1m4MCAakR%`w&5&KaCRaFmc>{~kI#XN?MMIdOi!Zu(W{NJL z%;InoVaR8hA#a)OZOIW1d{INgF$9hu>iDs6kj>KKIlfuU4i50nr4SB>OJX!7IWM{t zI=Mwt0R_jbtU~61JV)jUFddgd@=LII#vTQ|;lI-u03FLfKH$PFt%EL)!O^HNgD@L; zloUiK9ymB=^Fp6Fs2MU{9kQk!drBx1hX@wD`~Ob(O^c@LWuJwcA4y` zN5%|!D^k6_B@`yeFc7F6J1#x^CUA*kq0K_g6H_dHOvD2VVjn7cRNtn3=J z-`(SQ0Hg~rwDhqJ_=XuA{Yy5sxWT=k10=%lB*C7ET@g(bF%`QS0Rcw~a|B}HB2i+D z%-eMuKw2Tpf5Mv3gkuHKB=NZsVu;w@e1KyZXA&nGI+it}Xw@p!=Wm~V@`C20=O%xS zXvI~7*Bq?MRjf81I=i|23PtSr?Z>sAy<7o2{rCmdXD?R_n=RabM*6N38%r)z{nj2j zyYc9G%H!mhS3P%SYwK;z=dLW>cUtm`td`BIJ$hd8{xe3dKdiBAUUSWL#f7KNJbppr z=}XEFoSFPNrFLIfJZIB|-^o95VXOOYDzlGYkiYB1+T$0@th#pM#>4B+Uo~6q&*gXh z(}SMl@~Md;wwatD9F6FSNe)Q@hO%cf$ca=tP^RQoDhQy>YLPdq5b}sPAki>mS$E~_ zmmB%r4>efp7~4;TQoaMNpS9O(4J>Iz4=10UPqvBeC)p`#hRFM`B+xZ>E?Idb-;B z;YB+>{I%p~Wqm2J6i!OYueN_*l(I^tq=-__D0LJ$W|c#1*bgroRcC(WYj+Y*+^W9JM*Rjy)f&GID=Z=oxi%Yxw<(pL0$b6g zKvlDS{G0cvy_KMxBm;qaN=I&!hpF^ZxgnV20M9v~a@MQjsC=OP7k4?Yas$GgU`c}I zc6_9XPhR28RbL87$x+xV2uYGLMIAv*5ePxx-#m9G1kR8V2tMm1%>o1>4}8PqPss3D zEUHjqres(Tgi($u@QdQ*X+>1UT;(SyhRBeQyopgMOGbVO6N}ZCF{L{bB;kvQfG9Z6Lj?bsj(?uuXA<}c zn@+uLa(nMYqxOqK{qI}~arQeWH~25v9GU;{QgGJd=@HE_i77_ouyihkFht-bF9oOX z-?|jY{D+rtYsqT$Cee91$q0R+2i(3X$q5+@;d^2S!=ts@-#muzfxE_5_W zEwUYMfbxzQo<~CmU?j(zhhk=;(0HzAda^Q`sx+V3l3KE5a_P3rJxjK)-9Dsl+5J+e z)*9PVrGZ?nYrOL4n!$~umF{sb70Hh!$FoarRXdsD%<`^$Z>F(*vc9Q533K;L!A>dH zTiYjR`ie8Fx9$4%*PXmI9{NG++Pzv=zrVHc4`$}Sf8>-m&U8N&Q{~#sqpJp2_GWja zTT8a2l3yJCLUPj6mEN)GbfHnLzC_;gmD!y7@`a}S?jD|0d7{H^vsRfMU*DSUoygVF zwbt;Y8YcO3&9J5$twz%wlq`zm<_ksJ&f`Co$v2w6xD=G)scb1zs1EMjKJn~=iB$^+ zheij-bA3YqWI>z0>M>ExIv6?E+WDDgUrW>tXHa9roLM{|b#q@M}aCk&%YV}Ih zTB$kfRd2FTsm!_*hSRxSKYF9SWypW&+HC*eXr=w@j;)}6B3GZT*rv&E*h*w-)q!Ev zfCWv4ww3y#QLpj8e-tSQM^X`NFUP1_sX%K%=mUYSM-xMdbi2WfXBr1W5du2oLqKSTj=u*ZpB>Mr6c8i{ zXpl{XtMUd4jupZD&sGZ71rgo`bN2?Em0g4XbC&`ixEFMQMEIQ~s1)Mq5ls}P_Fz(Y zdUO1?Wg{tUOEdy50R%58kQ6qbB9DLs6I;Qmgwyd;$mB7lUQZs{mMvST1B?e8F?<36 zsF?y4fU>VaGmL{og(8AK!Gwkwdf@|J$3UF&8}b~0Nr0aShNM_(*d-H&FsTdN){j-B z%MiO^Mc~wFp@l$^x8W6Mm}3P2%~2%AXK4750UqkXN&@%ziO&`e71qs$U5XrI8VAh{ zjdjef_Mh)FrEw%ZS(pUEvB(bxA`tQd z;iukIPfrgTU-)`?prT>&pNViIb_-{~247}`%v*fI@Bx~YOtTP(MRb;lFmRbMg%6D` z_jntI%mT+GV@Tb#4U;9fe8dQXdBk(Yx*I-5?A3aG9!x1sR+KI=#{Ugm&!aqsDJK zvhSLMOAntjyx?$Ot;KWjd#^gE`|=;_3lE$*eB%)#H~c(%=Ly~O4j5|-8&>W=qvy&4 zC+|HacmEmq>4m3G+;Mz%;i)R&u6YMc+*P=}Sfz9Ik}!oBy-vhtH`# zdC`u!KiW3u`=d7kUW7pb^# zBsubCsL2DS@Z}-)rz!FhNKD@BTLSoIWkWvW6vUE&wI~RZfb9r;Jn)sht!{ z@p&(f5>(Zy3L>m7Ql6=cqCis7MWL&NQwF0!sjt*Ubl>;)H_*iaqMpPjqkMYDUtRSV zKVOE=5CJ$UF~zV-m1AuE?sxAe&n0|?A6R`efvINQP7fSh%>b9@FBd1gWe_%BkkT%rg(mJgIvW5#E>dIhtR8wU}YB*~3fW$ppw7-USV_OX9m z_>phi`>FjOJ9)uC-%zSBo!n*4Zyar#Gj?xW3if9l0sGV8GHZLAwM&T+a2#Tj$DuHV z56zVQOdTHwg7bo@H>Cb+UJ7xp0cwt6n9ys<5p6f}dSaSO!LicV(gTm<4~M#-_}{q{ z2tdQ<20ondmg&B}zIYChG3(d{NStCcNn!{_fspA0&UuX$m}DY9piG51Zcv9DPdQU; zQI97ohY=nHkg1ClEG9+rrsPe-Hw%RN=FOWEndCVKqWfaL=BF19d?OZBfyLZX9 zCpJtxvt?@Y&g8Qb-fD3v6pMw-bmjT(bYG#lW^3}pd%!jRkE=XyJ7nyH-yAvd71gWW zTbuKSp|jps?AwseGLk9R8jr5(eP-+Art#*YWnJBa6Jw(zZi`Z-wq(QLqwB_=**v+W zdypq>E6JrW)_#_{*(S!5zhx-B?JPByukRj66_i**@tYSn+%|dMKA9^%nOc3fp<7{S zaA0V7^x18rPi`EY$P|jx`8xHf$!AuqTeCAYl`W(ulG4AorzbmIn#`3fcYeB9Ys}`R zi%RQCV|FrISks^FAIokZ&h@4WQ|WBJJfq{1m;dxsx|sYOspL{fKA{~RQY)wz1_oRT zRp}m`OndiFO=Y@9a@AUWczDEqcP+RWTC=U5zJV2+2ZzQpmPdf&V*1wdDI3M#rbBT~DMg`t;xlZz|sPrO6%3)ho;o4Gk75ji)vYuh`W7$>A6N;I`XG z)X!{A-Tc^wZGEHJ%r7bh)!e2X{kJ{3YHfdZbIS`QD8CE{$+LcQl;vRwAgp|apjBNnL6oZJwM;0bnc#` zC%-2D{I$ef=J4g#!Eu_%C;wtypLy!}t

9?Hdq#9oO&ui&{Pcd@!_W?aBdJ_-K&~P zf&V--6=yk~9%vSsK!f5f#Yi1RgmB}zfg=Q_aUkoN6PH=A_y9%GJ{QTiMiTA>0!MG^ z->MV<@?WsrK+|HKKe8Hp4zR*oe2PK_Xf{+J5R2&Ip~nh!Q~0qoyoyHz4g`^6>J6ET zOF@gI;qO6#mwJs=xZ**Zi=Sf=4+A(+4H zv<7m7goY6AYB+jYOpr9Bg#($ZIB3XmJm{LmQW4$ZQb! znBjQ`jRSD3N+=S*L||&-A|{Z|ag}0Txn(1KLxf%eNk$Z$p<)Q!ln`tJ9Ew2n;VOb; zfP_3<$XrEm12RecfYOVXFoIUdNI0=b3t{RJ6afS%gsBkVKM&1DyqN4F@G-T>8!a62 zg5o^Bo|W(%A013MZM|KK*r6jEHoa{?SQ;tfJH7aA|gywYOKEI6rsyiPQI=q3F%sdrJM$^M-HudG)dL3y++e{Os=2m*iEm_ny*Pa~)>w zsf#oBoi;fCXO;FZ!OAT>b>`X23yV&#K6+mE?vv8DA2;*FgmU5!|nLzu;< zP9EVI9Z=$e;}HRnI;}w9kD(}V=vs7Q4B746h;4u$u^>p&G8?dQRgj0Q;b;+8giKLS zk)b4gFFa@X10-ZLmxrNQM)l-l8;1ZB44H~-1Nu!SX$Mz2cD;JeU3QLveyZ?5+0!ihgd{Q_m z{PbTxyGyx6od80Cq?}VMDUDQs>NH>E)nlqP9JQjF^PA`HRGTqJk~~-z68%HN-`j->LHs|aai z$d@zn0)y0<>OS8)&SuEVMx@52VOa8iWWm3|K>f>Q~Aa@-R$y&lhFS03_Os`0NV^n`iMILMC*#GJLTvJX>r!wcY-#+? zr4SDvXTjztV4owX?0zY*P8buxuKrgq1&W4FSrATHoKy1QA@$_={PLy14Nn6EEmN3| zTPQ|zHp%dipS&ews22z^S_sJT0HjWyFo75b0Vks1EziRZEd`!P1INL(98!J99HnZyLM%nQfcKDqW*V z+6fR2KZR+Xhejt-)3wQJb7Oy|GLtMEXCi4@TngSu#xupST%}O1XR|N96qvSVgQKZh zvo&2vo~}IMBonHd;zV!Z&aY0K`l`yMZ>e3e-{j-x+hoZaB;R~HJ3Lv~HeQ-+v__Lh zcycLt_o~%rR`1NL?3?b&)Khsca&=6(X8oz>w~S3D%Or2`JKKplPLiC;dAF8F+M(1 zEvr(;%dHLlncB>3X||QGB-yj_DfQcIldI`mp*GXnF*pgN(tdX<)>|8Q^n2~9HXn)I_;4yLqItZ0p2iu9TkorAonG zdUE5$(jB=c)(xjJ)3#lwQgHnHM$;RIOUrlUc4lS<$9H{~hb7b7UHM#c2^xx20PT0h zh=Xs|T~CaFAvC=Nl601#IVqYUnu^78 zd}5>0)yJ|TFv-wGgnXw`FoaAJp+(*t$%u$)G6dvJA88>Rm4Yb(2#z64g#g`n{6@T( z{6xqPrWSc47FiWO=kfKdM1JtmnCN&Yg#dnsX4mjVmxA`cb1Cc*@!%2-?}=*Mk{3OW z9w&edK}V3W-X8skzzKD@dT5b|7y_Y)NS3j^keaB%sD{umMH0CVF|Z<}9vcn^Uyk(L z25#TrBV+^)XJY*fBN5TdO9zm!cv&GI(P^A9ge-A};V>D2n<8&WfI0#~Jc|ivfuNC; zHv%Dp6EDgXgA=P_C@4cykw%=57baK3oM8wfJT#d`;DCTG8&ZtzE=){B2q1(Bp@SKODLAyykUP23An3zYQ*^^afv|-W z`(Kj*w6qXrC3YjIkhh=+<_O@kB_Y(|B)MwNdKNcEwxk!HS$*I%m1_O*3tDThSH$M- zIrY)=T6B8j$%{sBJYwkj!&JYj+2#`$Dt9MtIa*go42hA+MqVV8Z6?N}jCl1X2S@Zd; zCvH8a@0x=NOx}K6<%tVh+iovCd=A*=vU!8o9Xfu~k%jwCYc9W{_T)vyg{QVQ-dK73 zg5HO(5k+J&c7k-_#C8=X!qA?H4PZOj0EBS}P>H;0hBku@9NCWDXed9#$m1hoS6DA- zWN?BAyJTp|FcZYA0*;2GmwZcu)`;;ftRP}_s1U=^5WK>H9P)gCU>Gu>;;dO*d_-)1 zMC61PJ`Y13GYGcC6_T+N&|2gW6GtN)dyGuHd25UkU?|RMI3OF5AADLGe2NU=;De1J zemDRVXZPqd%mA@1gYV9~?dgdx9{$MJPkHW}XKnb)!=L+$qt<=uyN~?oA;~YnQYNX^ zlsyU|1)kzfnWV^3aVe{mQfed>sj^dz^tH2gsISNnsPU*MnL=GD1?_-&6Dp|BeDA^du3CUBD(6&^Dl`?NLQ7%E6JJb##Z*Ho^WZ~P z^eSIXDMYyqcE7LOW(pcuL$hi&w$zri6ofb;5)OhVdf=jnc-5|$0tvK_edBI8NQVyo5P4H1)8ZR*ib+fy<+lvr2sUy8R$PLD21UX!jv&z{G=5N5g#~9I6_L*+aLMboxDPTf{gG5oIEHC#}}Tra?Op_3jqv}aO9AuOzZA%`;++f=RLBbx!5jg6wm3!|4yI<7 zqEpX*d_65aG4jGe5Fn}N2AohNW{P_V>hZ`8Eu3iN1%e1BIvz@4g>F34=yo0&AsGTB z2@vZr!>%aWm-0-#G21g<+A>-kD9m(CRL2YTd?E3N09(TG$VxUr@?1>|FPVB_3BdBU z*8bjObfk;TcHc6lE{!j`6ymoitA%hPZ+eo6TC-H$d`ETpWtHy5Lj!}!=4d8Q<8rkz zk($cobB&p#JRrz7iiokP=?%S^i9+4mXN0Vc7G@SbKhQIl?6(NKT&|3bw|{?Z@}%{w zZoiSwR>z*dcj~&oZas5we&_R&Ra46i6(?)R7 z_^jZERwMyoRxD0myqhtkmNvy7R&YGNOnKtbrR5bR{1=E>Q|ywLCCrdv>%Ueh2UrV!#Oeu?4CH9|yQp>}0|(P$&^2TlXV-LlyM#Iu zf?`oaSbjZz_(?tTKp5XJzTW^80kE>cJ-YmqN4B(%Gp0ll&cr%dk5G(e80O+a4f#-v z?S)B^x3NN2k#&ULNeBTnqfCG@gkWg@!RJ*+EK+BC?Vg7h<&BkafKiP+H$)e+ns`G1 zpOX?I9DVo?E%IhI1bCvCJ$b_sh#^1W5H{o?e+klhE zdfxEOM{T*}d#PKFPThJ;<lGBq!*q#bi>c5Za=Q^_yx^p zFK?~6E_2t3*?Ue_R1ePoSsm=-7Ytl`Naf*k$`78UxXnIz*5I{=G`HVTUN&!d{?A$~ zugR#2?>lXF-3_Umk18#>thMQ8HS^?c$ENQ%zW(Gz>AO$bbkTP!3gcB*Z=Zj}RR4Cd zh)&+@4e7ER0+(=`4M)5?ckUE8vB+CY#i~Vn(SCy_tC%(bbu{%(Zh^36mKEjA-% z+z`-Wd(dT$8#o?<-a!px(K|cA=C=@5T)+Ejh8vLMa1r1JSWt%4!yG<*1msv;{D>}0 z$4QB^Nu7*sZwk|Fm^S1Ii(IlBso->XcZY7EfhCOSG-$i1Hcf>je0f7a3&)~?ia?l% z(8!AgW;lZr?#UZnLM9=P<|OpB27#)((FD*M1K9cy?eq?^Pi=%l|hn1&1hhuNJemH>MV6 z2ZtC!-`V!e#iPLH|F z{9y8jIm^|0tJ%nvn@?>RohT+dq`mKw9D>==KQZ7<%u~1hTiG&&5(#g1lYN`=n;$9e ze7Lpfb7MDubMe!Q7cRPg>C$JPetPj$^KZQW>1FFTZF%s?Wh>WieCnyE?tkFHwd>Yy z+O$!|y1KeHZ{93#`nYZwt0liyx-~pLHC=9$E9J3NvO3YGi`9YAByW?MsSjYXxP&CE7O%d-zY-~Y_!(TPfHpwLQw2>V5q0_5z}?9da1r%s-__h-%F z#l=EiUUp5lFK*i}2rk)m8p0+F595r8!a0q7h;Nvza{JR`L(ar3T~8ZO#5A!aHrj_h z@<2Yeu|pb)(P9{U!+2a6I$t3V0U>Xu43o3jKF;K$_9MWDaEVq}H1yB_$g57JpvU?3 zD+NZ$+XKmaP7oEQC(jU|o&zV^|H+|QM&DHah-(2X{!r9D?3n7aEUlH)fW zS$p!L+S8XPo}15HszRO@AyrJt3tuLM1eE#a`yHCQOyyN(x1&6DIp;e#0WM=sl z3gGgh)6;jJ0KB+#?wYf|o+J76C7Un&*4W}(q+cu%ooonP>Vg)yrHSK%h$M*J4Q=hD z!gB*(k_pHy6$1E?A8CgZDw3>^Z5F#xwhd$H4M92nh9o=tCt3(-RD#fAfr6ld(8vA> zn%iM69&V;Ov*B~_fdr0WIL2oJvFm_G2xfQe*byc?qawg)9s(i-VoF+^Vk#7!WmXU& zZ1a2niy;*z2xHp1;R!wjIG9WmAVyx=ITHjiGG^OeCvGzrk0Z>;Lp17CUKsp>pU#z6 zcNOnkp8w)8%m3==wck81`Rq}Rr*KjoAwKjkx2ua3Y3icjsOVHsYG7rOdd%1U7Y{0v z6iCV{rJX8Hm8IVM*7>~@sVLHvVFz6`r9yk}7q3^X;izmezjw)yiV>l_1Qo@$p+YVy zH}xJsr6U}YO6d3e-F0d_{;25q$zk*-zqOD&57D%I;qVg^ECi+n0-R$Uj_MbzGEbeX zTvYq1knu%<;3RXZVv+v%@^Jz38LZIAqY(mRU0J9ErOp;=h&GULc`@_fn^swdMJ9opDf#e{JjQl4q z1)R>F>>O%}9RW{_-7keW6fqSW_`iH9xFX|eAC3IKbt%O0iNi(AA>|UWU%eCznFvYG zin#rm2CI)_ZkBGi)H#EK;twbs)^R$GWTY`>gV_!xQN+PV5bGpdFSM}E4dyiF3}ZHY z4ut3lN1lO%d!4+IM|-&OAE&Q>Fw_18MbWCYh7|%5F?KEm51nIeHV>eCR_T+Hb%8{`@cg-0-6x{pkPr z)Bo|2kA7s~!iA8T<4N++YbRuSde@~8VTRitjN{2C!?U)Omra~#nbPdap2Bc-wzn|5 zvAFw-uhdw_;2sq`~7cu+gslI zzW2WE9ee%w^RKR6|L)eUpKA24AU2uKj7}!6juRPoee$_;^8LUQrQY_p<`$;&-Q8Wa z#>_~jylGo^rTw>LleX%T)N!wveE5vk`1$no5+$*$yX_jW#KRmv6d-96tl!zLU&<;x{v6Y$U zx^tt`yY^eLQlBcfO3=#5A2GryS87v*I?W|ZmT+m0J@$C_-ut}mJ^TFDp0C^YW54@H zfBd=Si>?b@i)9g&*62oZCnrwWCvlKtTh{D4OWUaw#>e~mdJ*=L(g+_NO*Pj)k=;02 zS=NM8|>Y?Vx@I#z2fTDIfX$JVdvD?PPoV)J00-9jPx$7q*+sZwv1 zr_#6YU%Pgn@)d6%J$8@AO&_g3ePUrM`G}rH?%4xzTDcd;0l3zw6bMA3qM3@s>O1+= zI-VoQASiYO*otS1vlFM4(GUxZ1R_gei=t-~D6^3$y(ySsND}N@1lZjx1@dAS3t=iw zO*|w$i$XqLB*=SpX@85yuHVm$$p^w-LgI01sOJ>{@=Sv@6%RdpoFIT`XgL3=N&%;n zqA;pa3`tEa@o;?0>lQTm~8a+CpP%R^q@r7-~JPt0;FZtd197V5b&)u8COwk$B-d_4k%7? zn^-u8kOx!U-Q9}Jcu%Dj&KU9>!I{9}Gp4(Q0}vRci?HXy7U#*w?Zr3E5E=mla~6UF znjsL04fmo6JeD>V9zGdFM=};PJmERV*d-tX2uz0fgEk9<8-}7|mlhB*KnUR50O2r0 z5MoUYX-Pgp<4?q{4<9rE!Xcx=q{voiA~MUR^Osh0V_oyIR3Y7 z`;P49r>l>j-+%Q%O3K0cKP%mT#`FVcu08Kxr|&zh_QZudF8ks3%YN8<&B5h|&aOXp z{@9I2WbZyH`O)8p&Q9HWjPkhp$ho689x-zLVYAO)U3u($wXS-2^yZ^ho%OY@xj!l_ zI(>He6{9yDsi;=^npHV7w0-W66x)USPE#lEyy7S8FZ@pFzSAadI+CH8CoW83lDzM< z0scI2X7Rq$y5=2_yXWNoYYt9+YjoFLU6=hZ_wYH*bvJCk?E4dUoKzg$DHW0sXDZ3p z3r$KTK`LU)$%dgkSO`fl8wbHutV=vbq|{cSV&SY2j`YH}YN4WjhGS^e5V38@*l!4Y z3uJG^Lye*p(I*bI!Px>%D|UrGcCTG$zp+R-tRvuCO=5=ekiq1J2ZeBmk&jIdFm(0A z7>aEidrXYHf<_m?Ney2wZ^Y1@h6#rX9PWuF?8+O9kR#9GN$07{ZUhn=m}K%Vf!x_AHGP4E0whVoMY z0RQw!L_t*RYd`&+Mao5`)bF;x16f(9vQjImmvGcVQFf|kRlKUEkAD3wHJ(z6n6k?3 z@3sFP5}f$Vme$Ya=Wvu^-=8zA8bsi$*_4rVKk~IZ6_5381x-RCZ#ZV*$h-tbq*Qn- zy~KbEoFsXfp^L9_{>#IcGa;)u)b$+x$T#l&(kYw%?uf^)UevvD$7rMOZS2>&6zqS) zI7D_SLVL+e!L~%0wfPC#uK(pr!HF=Wq6Po|#-%_j9)qmE=u)7L@Nf%t&l5ez^xXE| z73KuUR-ge7^|nXJql_d>(S^71_#!42l{t$cY!-nptMO10ZxTuSQB2G-;d48(5&nl) zT-C@BFdJ@APnJv``nvP0ZkfLSC$r0ruCJRnvUz!_{avh`7AaM79Cu<;Kq`$CY@hk; zXI}pDm%rnk?|AcD-u%i}z4G1fdAF%IzVVIdJ$_>kW!@X#^v0x!de6IG|N7Toef8CF zgury6SQ<;0`p2@Hw`_$fhr3@2=}h*yb=!;8d7pDI1Nc4Sp=e&c9$ZGU-e zGOI}PTG=~1@$9zLK)JPYXQsP9shmZ631?|taQA9~r#UZ(bb?Q364;63ksk5XCQ%zo+1UuI%zxMz6opUf;h zYV?`wGRv<^KD#ayXPUE9`Eq4w_2`1HYg3+O zf#IRS$*Ig(ads^0V0vLrE`?kv`GM#5caOXBl3#j+Nqt-Ygw-7sSbyJ+?K{5w&;R_E zx4!w+uio>+ANjB>z3Nr3djH;gbMLF4{_V!vYZT-*ZI4P}e4=-+sOnRHgEZ-v(?o5&2whIC+=Y^<5QI+IMubIy0Mmm@dP+{o9sdHk01E zbGSG&yM7@1@XEgKOyi05BkTKJb1H@8A85wL#;0q|){Yzdj@V=3jNh)`_>tbDUtYN2 zwZ-#ZmwDzA%Mte=>*51wv(d8indUYo&+(lLwEY$j8QU^B9lu;D@HvhTrfo^mly~X) z78p#(BoVecLkOpg7#s%>)5Fb4rxj-tK_L8zw z(Dj@aaM+_Gs!-#-XcO1kLB=v50@qaJH2Bm5%EI8|a0tOFpYSQ_1-y3cTHbI&PXHlD zvSzz5#P3a;Ht~?6>jw^hBH&m*K9eB{3XO=38v+_Y%-A0xhGtr$u8-97s@Yk@3(oL<4Y6d~{=1cXL08b0@!z$XBQZ&rj$2#wuvjG@@p#Q1<|mR2ML z0Zqsj7f8s5=lmhby+9KeN%DlvV&ag2X-I{P+0M3hoLCGMAaNMT$Qyb5kf*L8goD!= z0uc@ZGFy7)C`yj)L^3#`h$&Z*XB*FwAs7;o7`YSNXj*g{Q z-CtWgXK?-@`TI^&nwB3se|Gi!>>bCeS6f?doq6uc+`XrCU;g9bqSGr6pVM>ILHWB+ z@|C{x1f}xiZO7IZ&q;n=){RGyY(978)NRK$p182^z?maA{Cx8E;|SCqId|fgqw7y! zQeARc&lNwZK5^mnqSM!$^Ns9XC#tBM%jRVko~qofJ#(pYdf?haW>;R*SaMlOy}fkq z=nX$FKY0=NMi(4jd+K6^vEsbdeRuLh#rK`oSa-uX;_{}S8DTVzR!5b}m8w+K_6yy@}nVd*uDXMzlq0UNsuLB>h3 zScW!+Wx^pw3!x{|*#<=FO)OR2Li}vpmR+1@D zm3->hubf84zJ5`LY{rpAhF_JKqa}ZR>>aO?y!vc1Jzv+KorhZc}E9%r~ECOemC%)8* zEUF2WZHhg7$Y4pT6`4bS?~)gm9Ytv$y{l9c6c#gf~rQn$c+0etmn=2wN z1xEj!OF;%ShQc4Sh9T)vj*!XoA0HEJ=pu-5)uR9raYe2$^^ql4DXC$B?Nci=$>?!C|6s!jgCYp-|h`@wyM@cK8t;lI7&6}Me* zNV(^k>Gmd>n67OYDUBBzQ|ZiXOW9dUitUE%?Ya~;b`R%^<>pMITuv5leC{7sFMmsY zZ0Y*-n@7h+YqPD3=P&%jKmOc4`@CO%UjCae*Q7#1*j0E-h?4RH`+h*u-tfjZeEbt1 zPd+yP@Q3z%&7NQRr@wF3tF>|={p^*^;V09#{UCGmzchE;U0-qOOs!aNG-uPx%h!Fl z_lEB_Qrjxo(QH0nsWsvoeI+)wO?hUvQg5gm?bVrPE0>=h8BaAZy$v>Mxk6?8$aJxm zYy(9o`R&8S#alDg#%#G%RK7m?kH#m`vAFhJCYKwnwH9xk>>sz^l1mwzz_^lcrrAF}y`e9g zEhgX8N`)J1)~vA=9gJKyV}E-&=u`@{vYE`v)f?;*z8QQ znzmmY2Tr0LqRz8ILpXr3In9zW8`~g`Fb*`B#DF_5u?o&wsQ2{r#KAO65lsdir#P7U z&hdxOmLW`hM&qT378WUMVA6*pozuMnn78JkZA4L%18A**HuZfu9On8DY1v4VV(OYJoa49wfN&bW|pJjwaOp=ir zK2X6y(}ETog@B<%hqw6l2R?8D!laJLD>TnLT9FV0Otzd!>P)vE$H_X8q$naoXr>S@ zU5fmKMz>>^^8%r=e*OB$rv)a!8Q{W^JzAOrqi0m49H6VA2_Q%^gwG1=I0(W3O^F>^ zDCz}*!#6!QVz=eU2R;WWGY%_$p z(85O$<}*nGlF1WiOxy`0{(|51&17?ZH#GAEy9LKKOm~y#8wr z&fIxI^_fd6%db$o4qS8a)LkdeES}Rf_eX=*9h$!VxSjJ37@YsJZI}IU`1-^8uRUb_ z1>YXJ?$D71ho^2iy0vs}T7`Va@#@>;4+Y%@&0eHUl=xYq;Eb23iXyaUp=9lPQD zZ*92nJFR8&`se>_`(;1O-+4mvN%g{0N3TD$_puw3{IoZ=JXp2ZPMV>tM!d2l6%rEX zLavA*WGuF~1(HK8)=Ty@LwO@iE7Bgjg`)jn)|5qr5MpS}tnFdQoZSvw!=Y;Xub5OWIjjspQq2ZuUup)dWZT} zy%!&`D!o)k%36d1??eA`yTVCPhfs_m;xkeOB)(qxsucY4shi*X#p_jfm{CY8M^%+d zFMQxCF_;QDUy3mT$~gtFq1uus3cM&Ofv`eA#mE!0EUM@b93Y_5Q`$uZtF$&$_4yJA z0Y=r3ESgdt(^4y{300x2Fu_CK;`39@30&b#SNH&x<@-_Zzb!y|8_n%q)W*vaB0zV{yl$p9k<2B z83jD&)!4GcJq0s9nQydzTAMtJ#3W6^xeAuKut)%oSOjQ_6+S0!e|zCq&fNLc)7Ibj z)YfFXmZl5Sd6%@kWWT-WQivhKo^&GYLp$w1bt%N5a0Ce8Qzz^sk|Y4rc|pXb5QoL~ zCXA*S0xx+f0I|=1^->7MXw)@?qemXWd4?bu#(^?)0Et0^5b=t_ITb}5Pnf$dh4zp7 zQ`EyGuXTn9Lt=7bh~POzR>TF6x9|ze8=tlCim)&vZ<=RI@FkFSoN$kIoy(+vI4YwQax#*mWu3 zYwDkJwZ3WRaJsPTQqXLVTD{h2ww~M6x2k(;ZTDpNz-T(1TnZkU!y{u$*KB)!`^1*s zR8(T>o5oDNZ>q9nTefdJ`B_A{!vF66-&JR-dw=`4f197&R=p$Cs5jnnTd`al92(9Q z>pS~L$EUnI&3J&ax_tZ8;oX%y&6~LIm{ujV zX2;CC;A1O}`_Dq&j`Sw$~dsT5@UH;*dC$9S2(b4hsJ0~iYLTh^K z=wlb>&v|Wa*#)VovRXvm>do0=wK17b{swSzEzC5P=q~rxY_nXcJ+@-o&}3;k@6~-$ zbc>$dv28Hfb;E-L*?eL7=8+9UrE0SkzjS)Zv&)s^uYUEbf8%Ap@u^RLN(j>RhkyJ> zZ+ZJWKk<&&?!5Q(N~P+p)CRT$USCcJ#WElH=yqj&tXM(QFr`n$3@I*FnxJz3PpXUFoG;#`-feoBE~- z#fqm>?CNxOI@Pmj=I+0rJpJY6dGD#;{IQ`E{#)VVw@#e&8>wsls*=x5OeJ*zNykmD zASdU&-k8jls&#J#zf>vM@WSCh=P_bPK$z4qc_mT~W5(IU3_n>RLz22vj7Eey8Fq0zXxv6n^i;uT4mb{2 z9&(tLS%yMUFHD>`hI-EsE%Lw+Ns7?oQ3D~g0-poKVu+w6aALGL^Z)EpkVXQ`xfJ%G zMqjc_$U8ZRXuk4EuMxnBMu2d5Ll*~D*y9AI1_z%aram6xIQWLtJMn}$A#pB{selax zS~&Px7_!)bgGRilnH4Ysrbah#7z&QrfZ~QBTYBcC8y{0oCcqH@afsnWiV=GLM_Ns3 zthC{G{ZnqN3dvZfXuvHGeuR%>t1-bh@<8x4{P32r?HkDCxuGXu7y|kb2wgo7X+dB& zVj*V8)mZqjh}gZ6iSUCCLxB^*IEa{H1rfc~VG+@BIJBsX2!YQ%GB}9Hn<$l{3_;$&d%L= zLV3~YQ@0&keE6K%^$W&tJtlSQF^#7#EV+pR%-(fkW5reD zHy%-4enoBZC8dYYbNJGEFA&MU)I{pUC~v}yC5{Y4Dy(nhGZqMQ_ZIR&69yP!8Wl`^ z5T=43VxB^bLJmHhuozDXGO;Cq+gH{i8ZA9B@)QvoVcRUW6M?{q1|*EeCS;L%3{8== zf2fBW2oC{`B%_3R&WCU~U_Fi_A=ELsK>!~hlKuMG+yCLDP0BX)rLS+G(uxb|D(BMYDE^~qfT|2icS^BD^MKs#R2s#mzai3h9?N+ zA2*1p{l0qUc8bIle#D~C6)7lAa!Id3{?3K{1eCZu;Zl^@(5P@eYDjf8Sb*wSnBo!( zd0P8lJV;Vu8NYgp52E0|v~Y(1DrAPpK<2jk6CZ2{K*LcX!vw`*d~>xaLvDzLdrEOk zk~ma|@kf3D@;Op1Z^~(k@iWpgNuHB%#0Zv{@G&LOQgYQ=AijFmjz2zV$xr9?ZW-{@ zO^%QK6FV*X7hMXrP@FQmu5&5aw`BBj77)8%3REa+hNf&w1c5j;(THhe2n0Sc4#WoL z5@Z7S@gyPktCxZ)#O?y|WYZI45uo9VE(OEz5CXAab{eDq(WS8KTQd+E8Q_}m`G8;% zQy}43Br4QF9GzuUTiq5#(c&(}io3fM_u}sE?(R?^xVsl9PLTqoxVyU*cZcBq?)NhC zKLavG&OLjtHRpgh1PypF%e#Sm${{+t&^`=znRj4@oRd9?nQ2y%clJAcZSPm-+9=S* zcfoXmm>^z{(fqqLVU4b*;su6H{+Fwu0^W134(UsswI_22&|%jj&;I-MYrU1xb&7bx z`yyJ9@8fmZ$L%oI#|253|A|c*alq}&%VpQc^$zoVy__CpJGqHxH+* zf<79Yf`-Z4M^x@HZi8e1pfZK2k@WHkV6%{;Rx}*2Q#on2J3Q_sQsc)PuXUY4W1x8FTEHif zR9K0HB8L@$NH#Fz#ULh##C@S6(SHEdoT`XWgdXUAWu%PWn|R6o3zV&oB-s$O!T~CO z7$Mq5Vh%7h9{@TeyW%%|)5{RMHBC+5)BB-PpO_xvnn`B9ivFdc7rsw-Eo(2LmjWWr z0aZtUv&y$m`A|?2?0m}$kE((o-61M9Kw{mvQ}5{Wv-^V0Zg}eb{k?8&Y3Z{mOu6`+ z`l=xh92^{m|CW3hbUG812&a^SjI1{-j4@-HPDn}ux-(SEujZ;A&uU3QYK0cuy&>Wm{#P^V=&rp~Ha%<-a_}B9 z#l7P6Np1~0X>8&Rs&Rc(xO^1d&d6#BEKajHIwifzG<@nmIm4PFsjN{Pxc|Vxh^sgw z)AY0M*6b%7U4;xOqCiR^z|ep&>}fngKoqtx=%|E6p^@gl84M>ABc!y5(fjR*vu2=a zSZqMft!-_5SoD@=8KZne_<;W=PGA=T&ccXF$i>e-PnE;%5aG#B2_KNkJYsdO9ll%N z4pLYawEk`JR7cLU?hD|T2*wVYxYz&ber;~Le_kyI)$I5T4Sf9F-_IriyH4gS^lO<7Qw$Ne8Eg; z`K5l6*&_}ko+1{D5IP?A{EWvYLmtTrAya&goTPz3TVBF>xN)V8K*`ikBsihY)@5TR ztneCTqGkhIoQ<&KNP>W~_V1UOaI&p>6l8v0wgFS3sYo7AY!Y;k$j-ldJS$}-l~2CD zzPJ5nJYdG`bMpnoh7YcU&mnHH^0)Q%Bi5zbR$mqIg?HyANRbEBkm8ENr}940|0~7I zk{L2u$Z`0>-}NvR*eM2C%BYSJ(D{~9Gpa(BTZy2yUT*$;rFE&yKp&vt(uo}yt?j>0 z1?iDNaM{g3lV&w4IY4IOL4Z%CsU8fXU;h7o`p<8Lf$~O<(^DV=P0NUr)v0cM{bf@B zyAqx#XcTai77)jaIRZtX`=r|SijBpFB3|T&Em|%dZ}&9+O3_k{(4eb6Y3pk>((grL zpc~$z_|dE)RW+^}&izo@B8X3t@>F!Q3C%%vpJ5y$)dg$+4Okg${4G0E&q#*+-Y1^M zt!*@pv4!Kox0evv{k|8C-RuGtL0&4~%eF_Tw^PEvr-C^q%=r{XDw#|w0)Dhcy?oi% z`!DM@Mu^JvsB-JNjCpjOHl6+wLIE?HnHUyn{<}6w^$RL}^d3hEy zVYhLDxb-3yr!6archOfmuJO>=9Ad8h z`lwmxmS(04Tl47~JoXcA zkOjsy1#7?QMlYsIqw6&07n2v)+U6qx$^wVVKekk<;7rFL5S^bRtd0!Ks<1rXQ~NgP zbn|_(`SR&R@aZONDo|>_W|1PddDgJ3e>5eevr!X*Me9^5sgbo)L>_1wVb(Ox<5lil!UEa&G+Ax1+J08rnv~mIiNDape$aavPy00ri{FZq zzwu_ke7BST9N}iuQk&uXrr}dZ*PFTBUDhuJo^j1&qmunc2~#e@jhV=f&jHL&+v5gl zV)kdtaV@jsrSGw(b3Jipc5{jf3YKmw9{e;?F%3#i+1|c4nSBK^mzCH=Ql`_OPtQy# zT7UN(_QGXDf}IIEVqO&e^**-!+(|m6H)mMv^l#!vn+isp0_aD^S+o$Fben+tcXPl_ zQj=K@jio2@&z<@HKrHwtc+uhomDmGy&>BXq*_dFia&w=-erD{W@$}56!`2w_FKAXaZ z<(tIuoP`JNQHd3!(sV9y{^LTD?HHwJ;`IkI#ci=+5dHzx5y4rcQ8LK70#YuVU`*R` zN%fw+pHdslQFjMv-PO#fBfN^hzFaMa%%DR@itI`UUSRttnPe5t%cmbE{e&&0nLiue z3=loVmmNsPD9IbohR{r~;&rypl4+m|B6#JG5E?G%sSr{k_NbUV3t?t^GkC1SeDL0n z5F}P130%siU^!*5~&FjP68*h0aQ2tC(!mpIs`GE}k%hmn1lwzR+tC>jfWxNEdnHbwI+M`RXBxx%sH={yBD--mfvv zrc({yv^i3FzywaAq0}S3SA8-toI*$|_G_nm_P%GzY&iZ0{gW`KU(oA#uVkb&fh>ST zFd4LjvPrz@kRJZVn`&kzUV+16fi}nWp|H_=4U2vixkh`%Uv>8rD%j*%m5#FPUKMM) zTAWFqj4|COvp(5;um2^#2pi|8A9xGYm0MgX&ive0|6A|5$luX{ZK~2 z7{nckAvb|a7&F?w0?rqbOtr!q#e@5@u9s;NqPj=v&-Q;Gq7?R3dy0kQqb7=*dv;Xo z^f>#L1^&zhZL2!tIZQ75<)8E~{}#rWWXw*#k%agHC%_CF=7!Sm2seiAk^HCGElepB zLI_6lQ69FM&NMHy`>PDReCB{egj`h2$CF%0!AQyUyP+tQ?vLx9YO;?IJljW1Oh`;5 zba9D2f%g6Oe;@;YpHtrBD_=u0?VnW4rpQSNLwOr&kr4z!o8`{py<~|A1^DqITMuZc z3AbK6xPd-r{TZK`1FR0(dE)cmPgeAVgaUd92bG@ASBD!m+Rftxv@cZX7WKsE8UW7< zP4u;HwH!f^r^-l`^YM{c{PSL!&{IgjLqO1rmqN#VQ*Fm_X^uQXqA(aefhFDqjKT}! ze+T0?KBAo*=V_@rwVum&$#f^Tsmy!YHSzCprD8$}o1W`bt6IH`;MW3lco|Pzd`Zft zku}*cTD%o*twtQ~Y7jkd3%2}rsNhL?F|e-YxvU=|2JXySr<>q(o|~I8;kVLt51#$keY{2lXcE}yl)tX#AZLckM zbMn6}>1OGhaHfr9oMJucwtQ8qT9i^t85wQLQD5*Bm|1mksIn5>t-#V%OYr#BdahRR zKEAg36yNc%@)B?vv`O4`O=$FV!t<>(+Jlt77XU`Ry1Ou{U3^hEv}-Wit*E~qNm6$l z_~U{!!)T$4wbq_keIlck^9wxa2ReAKJ+?Y5^{T1Vl1(>vb~k0$GHvFYqfNCN<3>~5 zPvH@vtKrnE@+|d}YKKWbPp+>xGp>KS8hzhuj-24W?0DEv@&~7YZz_Q}-kp>G8-w9p zbin<~aM^v}nz-;rgXi@nGRecHtzJsdWSzg~>hj~`nXmO2&&1R#fE>gtPD=cF+kB4$of2hE{ja$-E~La6whQS{AD{m0 zBL#YNJ6FsVgs2-on8auIlR5ljwh3Md_~Wumna4{0gEYPKJVyX~*P7g%pPp zqe{Sf1e<>2fkE#9;K35xIQafBr^aj)UrhljoqSf*?kYl${ZLR9re9=Hnpu)|M6s15 zb|!{OB%9SJVtpj46aU&+VkX^6cLJ{Iw)i)4-fka07z_9UZSMhb`HJ|+aVTUlA&R1J z8Mxc-Fs8%$QWGamr^&ch5(T zEfMOP@ zL?w1~c6b%ks$A{K^h?l30d1@2Jpi!l)sFo&AnFIkKrbB|5E}y z6OJb2c05(~MfdRo9ZAQMNi)e$VT{f)i4OSb;s~)GjY)fu(x_a1IB*y~;u1yhiA&DN zyZXuzphzk9e4P<$YZhq{n?3OiWLizn<96k+K7`)h@G4N`a(c)oGGBI)>H2aZrNa=FA0*VR)`4UKBB6x_9Cz%A00hoGz zZ3M}bmhfcr_=t+-de!I$G^mh*y1{!G=wZ~(ebZtPQQdT3;ki~E|4g=ItvG!L ztm9mnttulC%F|+`72tlA@LsJRDM2ESYSl!vN>k zV_l*cr;r0Y66A_*o|vh{rODNvtVe$w5@{cNNO}pr*r~+cWB~&Un$t$@9vC?}nWs3n z)*z=3IP7lwfS2z=j#nJA$_;SiImX#!LbNQqSOCd#e$O-&Zh+NoPls=Bm63rmN(RX% z8azmzE%5O)f~bcr)0@F*-M=Rq$V<(~+m87iY)E}A34;RX?aw|A14nxFp)w37bY~S& z`#L86xqvmuuhal@uqM*sfVBTTA;4NK>vznKbJpw?iW&b(B6l6r`bx*M^3QNjk+Wq~ z>eXr!`*-Wie)M{|sDT3-EHo0$-hZ`0bl!YVo9)>Bc%|1B67W}jH%BHraQ5cNzg%LA zD!$1Hz>FuO^4zsnIgv%e=7~^6n(0@f^3-0gD)&BYv_QOXiyb2wF z=P;z|6(>v>UQaGEkq2B>DSxG$hpe0C%sc79Q~@{1;?@T?2|~N6~f4fOd>5*NEr# zwOVCHXT9(K3$MljYvnH`f?D$xlXL?Va@n6 zj~tpWYF>-!om`$0%4f7md398yAzwV(Q`=0azb8N7l05RM%I52I1aRiGTU#`=dlit)pyKg`FYG4l`<`MGZh);4Ku@C&UE8v&!l`K2{(g=m)4&C+NEt4e6ALLQF65SCxDBxi0ZwC zB!q>s0xcCDl>dA+_~vLeVKSd%%fnK$FU4PgU95UUFe%Vt@>)a1e_`;OLNB`l!+P_b z$dU5|D@BdacW#aPbm}5gcSEqltePmOEv6;1TxgeW(O%(U{?nrGZu9+4FI-V`2nAYi z+?#L;Z%Q>wXB=FFAGe{srKw9ittmT(Qu6Y4_R2EapL#k|>u8X9BdWBMl~jpHIC*J9 z^%9Y4vi#5m6;OLZZn<{SK%^9O#b9*ZIKHQ44O5cWL?P>g>s1!`C-FJ#^PSNz>{}Sl z*GN>|@&-bpMUy3ATJV>fFgW(nSUW%R{nH>86b2 z`2OHL=k^aIxB_!kh@5y>4yMpjI`NFsZ;3-SWGvyLaa4l+)4j2E4hn3U(F!2^DLYbM zqBUJa_~FR>maQAc{G~igO+dzk>&aw7s#m9sHsn2)5{XViMo!<2fWDg+{4^&-JR;t3 zqgZihNJ&t@%ya_U>j4P};adaGw<|3J3J6S|c=0@DhT#Uh@bMvW0kMhQ(};&&7ym}k z>z7medzCcDlasV{MarEs(JW=6*@z&jXsXFX$c8Cs!AxS2jF8*(z4qSUA*$-f^x=&M zyV{&7Fn6#A6rYwTk?ZU^@dK4o}6e6u%VTw#MS0Ue%y&kWs>6y#&5jSfKdInh{WsQ6Qgwm zX<#F_g0BU1%LX`j< z1NtV2+heW%cr8H=fN8vKyLlS=Y;`w9lt=s32-MwnXFd5Tf{Fuc1OYOj_gL}t$Pz>lzTRxBhs&VT8BU;mgb8C{+4 z0HRhSFKa;5YN)#J#L%Ml}gj^1RkFo_S zttNtziY0R?mOe20v80?Lws$?}tm(R0#L+(e;-qqs>9GU1o$X>@gvj2sX40TGJH0(d z~SO!uwT|>uqU}7 z{X~?A2_%_%qau)Xov}rQ&%U0+8i~RK*8-3A6F!sBpnSoo^X|=#>)D z@bHYPpE2aapN)t+bMa2yL#}YyJxZ@#)Vq57wHU-GDhM**6u(nZ;6TM*wrL*quDp;q z!7!*28PdhBK#e)7?;;v|@ULIp1F5IHqKr&m917%DlL!@B>`}rURD&hxvS79xR4}%WJ~= zwJS6uB|lck{>;f4B6_A8*!C@}xQt$L5iSSDtT(-sK$N-BC4Qi>!1}Q(Qo*1=62W)M zi8|qd-t*)j)gexvSc-UuUDSbZK$6{;C_o=EPh{(ZKLe^$WH@uxgU+1&nh1-9MrN=g z4A-Tn5XXwB$45TyFf7lVh`rmUe!sp?5JkGic$U1B?D5kOBOE!x&H$Plx=4scOHZgzvIk|8e!~xND*HUNDZoD{{oZ&MJpgx@HH#Q9KTPHuOt(E zgz3f7lO#x6Z1OcTu4K=wDVdXjWUQezrcPhaY`b!}YjGm@YMTJIAj#eM^Y<-ph$B?I zFUMCk;TOKI<(r6^W%{vpUcLO&%%K;v-jadsNBTiwVbAr5d{9l3s~p&j8m3)bo zXWIyNdapCTKKjfb@@x#?=yho;7L0DFLpcl@(BNo#F>tDV|7-LH&^x|ss8?ut>J0= zSg%vPjMYx6XE{;0DgZL@VV0@uQ}X(65$ zC@Gdu%T@G@x?7t2&(_Dw5q-;LX>>Cuyy@@jKK-*EbJ-5_O#pf%lnTqA`0F|(X2O@c zUeQcnl@jz5m*{i+OmZsR$7^(Bb?Yk)M0xZE!$-@kZmaOGl2Hq4KfkA#7aL&I;h+XD zn0+F_CO@;C-*v&z*^$D0m(xJJ*QiGQj#HK_$%OeGAI+IPENVqkY)gRJi3%4o1u+6T zH`@78CXd7UXHq&H*dIy0kqGn^I6FlCVyrAm*PTK20QnIDAtutK=ARIQaYMO-#A~M9 zUs$v=&v%mqm<#J7x?^!>2{EN45aD5rV*GnzS+^ki5kw?Rf4^mxMg}XXX73og!}Rxs z;X+;ssmkzPQEVv!3fHY*oh|j=AX0Tx&x~87Uk$D5^kN52 z%MTMW@b<>;DU)IO%tcTN5g0KxPPg}>wZWTaX1`{N_50d|m=%Zp^hTj#BIYE6;NynL z8b%|M@U9xVtoGvsJD2B>_p#+5(=6uoZ9iQwg<!31PVf#{RIU|0Lm z?Ll-Eeas=UftR(8WXIL~?3>lNP>{z(4OR^B0S(^qzJHsx2XA}T(sm{^mK4`r{7)va z2=sk#1;VfA*Jp{r<6CZ^Uy-!X3>%L|+4s&0Z`&|k^dwfcUpaKcQFD3G?zGkGk9 z-Uk=|5f#*-#Z*?rQH2Tpy;zK*xIOI09tH03bwdyRS0Y$*YnL;>3}h8Z?<+2RqRIY< z4x&<=CX%4}kZ75v0-aV_$M-FXFU(RfoV;SCsA_^yBUlH)=({c7)k0(sXtaLLCzkrt z8S%9Ma#R!SR9g8Y6}KJM=TJFm^Fh}4JxoseqFp?;z~3=bK99cj4ONa2pXiI=#r0K< zZ_o>b=PkH|IMc;l27Cj8CRvFP>Q!GwGo!Dvpa-aY62~tm@w@iozc8~^ZI;u#oPT7< z^=P_B+Uu$jkcSEZYtgAV2ro$I*(MHzkT${K~mp2|EJKA;5Duc zprfp16B{fGcN}{!+LqWrXOrWhG#jodT;yv{r)_@NGoQU^+#CSPzv{jqJ8 zFh$6OZ__^x&KAe=uZi@_GPZkPis!;ze{ro<|G^njJ3e#Il07-7{ao|DXCI*Jy8VD$ zLOquyTb#zEX&--lEVkLrdZaU;?@_tn_VCym!JejBu}CBbWXJuV+(?#rp2A)`F8way z?%%rGfWY%oSCT&x=k=qB!D$)`HVVy6CB91rjcSE`VKNgX30=$&yGCV4O21-dhxAj2 zUsAv3@9f{+otixv>lV4C3O7d6le2U?G=K5noIH+Mju^ecc#*mpkJyg+DwYP@8F~SOmbCONPKStzPue|QRO)F2u=zN+`1IB=d%uVSO^{LyqrT$ddK6&9Uqi2QiO)=mH2uag$7mhhC+=9q9fUv9qOW?BJp2 zciR$U#ICvFzCy?7@sC|OvUk{!Dj*dP15Ylp)rU}u3zZ}ipbFuqD!q)&d0=9bZxI`k zIKe8C9Df!WCfmOC9Z6b;9a$d?O2%vmt6=Ew+x=@GA3l^G5p@Nlwz;$fCtFDJP!LR} zTxbn%Zfy;(SnkF?zg-s&ftfFH$}43UN-}1%@+gBBg0`t_ooC`5Lyg>1Sv(@aTNuw; z0!z*5xNBFBq*G?CxiJo2+z(5@YD=skBO>A)7}h)N;0`R$j4huq#r$L!(hn8Vp5LOV2-$N;Ien1jdXY8(% zj0uMA{n@LLoID5<|29H2vTS)zECNLYWVCXLqQgC+w*}6CaD(kN1fijF1 zkd`I;`tN;v1L(X`cfmgQGz>Zlh>?8-*otaidD?zpato{b{1o8XPkJ)XK!64yDvn(J zm;d?t8@wmk391DYZ|)c4vn>Gl*Ak#4US0A1`r;M;&+}~32M%5BEq>G0-EG7orJ1QNsEn&jG5pFfN`ihl@)>whq|gl5(?>PG5Fi5+Ye$`jzy#<31 zy6{ls%po~emnFI20^MVRU_v;R2*KdXu4_;1AMkjbgfnF^^v}_R0U7d4 zpmqR?vQrLS2~E?>G!-EkOy@qVsOYYMagt9*g(0 zMa5MnRNEFZ+a%$(5*YM?tc)K1(RAkc@0B~Ns?m+7`UB{S=8wdL9a)poRMpA1jdwKK zh52-l?|$wmz0i$>f9u;=*44vvZ&N9@<$wJa7#Lk(5E_i8Gg5}FJ_Gshze`<7a@Y?M zjpLre-Xc|$>z<%ajRgg%Ybm+&AtIv2b++#d>T(a{HS3s)SQe#$;F$y4<5TPIVA+iA8~*}cg&@|n>xupEci;o~H{mNHTs%VN@Gh$N&B z@OYKEe1jVJ#-Dp>)`D&`N88>H2%w12xx~T$iD1FT!&o>hPmdAMMBvM(w$rP$zhGod zSD13kPs4D$-TNp7h|hgSZ8tY?f^J}kUm{(I z-4D9>kL~!i2Iu zA~I0E5s?T*uWyLAq=F~ye?;SEmm0T!WT}FOf(*Yfr_N2dk|Fp_>)*h-J21ky7f-(I zJ?||QPA0AfBZgs|SsZR04*fX&{E`x(Q6s>il6j|p^OHN5nWk%Ijsf*fd-J`sGil_X z+uD#*fW3j!pVk_h_4N#Ia)TWz+>G9DrGHEsTPgTo(k_W_4|uwc@0`4WUD{JLTF_o! z(Ctu=`@_0dN&zExo7=Amth>WD_UmH?4@fEA0aY7g0k!HTlHT)jq=6z;o|KUV#Fi{m zOILU8r-=bdmxfcA*RG+`XoqZ-tt;(MT0}j$F`9DfW=7x{EJ_Gl)0kUOl z8DasJ_U9A>((zd<*Q}@te6*>_QNT? z1!$6B1HbdTQs58GyYxK_Bw4-ms0~{G-1+!$a;W}?mz{Vsh%JRd(=KkMJmPeNZ()0u z*PwuYex57kU*!~PtVQMitar`(*+G(6vBt4pUe|4CQ$%30f)$Kf&7xZ9`h;p}#~;@v zMjRyE&yVWdPv<&-{Pfjr(7fZ72{B&T>O&+XwNm^j<{EXXnoCF>=6*r`xtaDF6Gvu27q(PD;$n!asE@%Zm-DP$-o zg^Kv^Yzdj-v4+=$pm1`10W4Fopyosr1yK-gZ)1O31VW)Jwy5s+Ppg|$-xPFRXuWv1 zi-uql%5&-5$3TQvGmA09*fk{hwzv}X}uIdGPyJ? zc<~>uI_XWpSD8t|QLE)02oVsuzaVM^zfZ9wReFl-R`>0Re6pW!-5)2S7rf*dbYc?K z5Rx{X`|qTQn_&Dk0bX*YUR$ldQBz)9ugAB))xQN$3 z4r``;|Me_mg|Ct5UCa%g3ZO-=$QWHi&CjHy0NiTyfAl$PGX3VHwgQE~+J!jj`3(JZ zJ$K)ScIapTIQ%@Z5um!C0DQ1SGwm>TiaC{panXnXaA_VaFS9 zFmTcQgiD0V0n~8#Yx(}(y)LME<=355*QOB*l>wxyWB&LYgFv76dO6F8MeLXrl$<}Q zqa!O(_7eG2vIJ%$)t#1K?vg2->K9JWgYs*sbL#gyek{LZA*rk_qf}g!rVjk;3SrH8)vvO(v&(wvkPgiSz1jAOBGp^Q@{w4cw2BaOzQU(=dS| z@q3$joQJ2$YkA}tJ(J4Gu#BPLbrWj6h_8K0wj~m}Z04v*=eb~DUf~s#U{j8lr;40A zV1;K1TS^Ee?8Pqdv-cf{h-Qu_Y^S%JMPgx)5u{1Oda|QwBezM*cin4(n{wdZ_xmk^ zZc_$G9?NoYj4Ndq0C>D;m8F^~U6ndWmJz4eRxPf~kgFt7jh3FbxF+VS@oyBvpky#~ncb$NP;*qDa4-+V&p;ie%!88UvJiWkuM3P)AHuYIE>4A59E=U1xbi z6)EKuk#++-{53ucr{W+@xqI3oqKdUSY2WM7(q->np>wb^s75D*0vTvK49S4AS_w2B zJLfyP!$XzwkgdY{(tolkfN)PsDI?^umn)TtL5Q9DbfE!J7}?L7nA+Q9-=Bg0Eu6NE z`cW@7DGx0uW%Fy-<$4f5$!}Yt-{1A!p^~KXcl)BI;)>tl?to;~%e51;zk6QCx;o}E zeKrdETAyaU1Nt8l-TydICe0J3UWLFmGias+;%TWJ8!ANp%we+s&zU~rq#_X4nNTk7 zl^`NF1@gP-7)kx2H^2zDt~_Dva}S&~yd$8v>dgX*H|IU%R*}fzci}Z2+jO>;`qG@y%@lnTwCO*bA_^XgfLu^rxC@>$fCIYV!-!dwJ#LVw|2ynH*#5;y>K_V@wQOV0^4Hv zd?L&cd(gHxH@2~=xjTmreBXHJl(uOeBKB*)$-8`gq!9|75`0KhI+UXbU-5trR|rUn z{(9M!ncS^M+Ad2JxUD)ppU9Cmek2&N@AzCcszy`Rx}c`sPlS z4ht)AA_)P0knMma+&3A0TAC&O5>-1CmTd3a{yVfy&bjO_Q|YS5?W?|4LEze=(@lo7^E`oS-$UtjO>eAn+uPMMLC$YSz4Q;l5SAW zTWNPwKU)#|Wk;Lxs#7Xk@%1k=&uoLup>>5O3)(M|wpX`>mrk`j0(EFD+q;eJ)JlSH zLIp%|A=@)_IA>?})EOiMIVb0*TK6<2@$pVa1-h*iH(S5Yf#gnx%0oH5yRn9ooA{t=<# z$Err!t(&nf0^aIy#Ga~VodP04pVZSA6i6SoNy{IREmd~%X#OzWQc4e ztPodfR{>PhK2R+ig4=v&+_CMJCg341G-Q&>N&k4A8cYI;goVq_mvf%pFgM*CzgDGOGIK3dZ-H^ zVwk9V{k{f2_D~jFVZcP%M0vI)nFk~4Ds8at`2+_OA4mfIOcY2#A02cV#EK(3;PxX3ow+1}0&H%#AB;AYe=FC{R>?(0bse zrMMobZ})^V05>WB{(UBS%o4ynH6649{TIuEmPUY-3@j-1{T_1xZZRN+UD0(}xIz)u z>fr`Xa*a;_>Dc>V7GOf;8n|fOjl>{6P9>UsDzVmK6vJ ztCI1I2>a&iwz_ZH4=ruNt)iZ^Hy8x;1Ph;Yq5w-%iO3zo?TMYx}K z@O%K0b9qu+6>7i~D|-OpVeV}QGFuL)tICcyMY0v3~USV{` z&IKkTB_t*}`U6Zdx)<=`A8}c;Dri_=-w*hB`FuYCE8EiX&^hHd=dRsg`Ba_tRNJ7? zU6FG%Uz%Gsgyg$JE$@PbvmOCavg%l0=LNRC5eyh>6Zn%ln=u>nKGV~Lt?P@#e1~I^ zxuGi8BU30z_34v96D};J#^$d0sVKV~q&&XVz}=ZOQbX$ZW`WMwWN)KYav+M?AkWM5xINn5@>iijQbZCXHYOAlWTVZm3z zxKA!dTAV+BiK*61k@!6k3iEM0WMMuR0xvZDTQD&TExSpX=@5UVU8P#JDn2q*?>=hk zx4uu+`y{u{7;r}zNT8E1A}zvFWykkA-MZMI4kwoL>ujwX8Ou`&}7nl<8MhL=*C0aHSpn%}11sw3{Bn zIB>a`xu}SrMDE!s1&8G!W|N5pe7@ydH?Y2{LRUzrs`k79#)4&MTcMQgBOFF43%ab> zJo&c$UeWIY@}h?nuLiVYm@S!Lz?VoI^6+fM&XXg$Wu!#|hy_ zOw~8mH2j9m=}RshZZGxaQ*c=XL@WXIabg$-8Tt_`BpMaHduDKwPm*@8gTuJSWCGKp zxc9imHNuh>%Dc{DdrV&zZ0}>y;E7ZMSL)5soEvvKkpr^k3#MNs5xgreGQ0h*Gtwuh zCftuwvp)e%GjRFdEox<_bSH}Z=Z!a$!nHm(2MtzJQm9r`@36ZFwFPQR-b;8=zyHyi z;__wE2X{`pK4DSZ6mU%`b=I&&3zzAWq4OU&1we$yaNxeG5A5Uwltfc+itg4$^7@QOSe{@K9$n(A|b%K^UE zrXNY5M7*M%{y&;kXU46Yuz-tdo2n(tUj5yep*rC_mlnD>_6_6yT^^z#JGt$cGqIVU ze2H|g>dqT!<67dd^L0#LA9G*l*OC`i#lLa7{4HW5;vvtaer$QYE)8b+IW|9x64SS4 z?Uv#z!6E^#>Z6w85+xDWH8NN(EO+K3C*Xv-e?94K^VK?Dp_Pm8MC@T`6A6`<#YxxX z^~$cl{33P1=HxgmDSfX6lb@()c!EnuDR7NpWTX_@nJ;fc>MJ)$ovstH$1#>YS)=?5mc$#OgA@V_CREa6s4_FHo4j~j9`y`jNIPk(>WK;M_{ zZTykyYajdddAu?hipsO&I=gvig)u`!HD zXXD{3xOE6*m1yB!@z5DoQ(Q5422=c5Y@=~fIrMmKP-dBkh!R@$x1O=YQh6v5A$@pr zM0vIC46UPjbl>6BAa6uAPjV7=p9obSxF3d_x{9Hg$Q`9yl1OoM*f?_pyGfxrdnn$q z82N2#3^15bckpDq-$*ML78b^PX&+=_ifH}Gxb|5}$x#F#Rz(pLXz{6;Et@#DVU2N- z1-WVS@kF3QrH4c0+e+}@2IAm+qtagL%vfX5DbUB7BFEXOq=v6_FTa}6BHxxn1S7Ez z!2ErzhQ_x9|d>7%-^;1Jy0j96PSEC7YdeT`m zT^MVuoNXTJ#v{^C4#lBk&x2ZM!FU394SpliovUM@H@SX2aK3VGo@3ue*DIBb zVrz~_^zLL*gBYIGLJkw;Z*UD|q+SX|6Ee#>22!sPZ&pR;M?4C;a1Ea7{oY@+k8}ezH6hfUzsCSA?xVq;Oh@Bt;cHrp@A?>5@8Y0 zAN{Hd3w^|vNv1Z6I~zNQZgaaV@*b(Juo4bQYBNsXv-}wo6{&#;>F+poud8LDC?oh9 z3M#A^)e|Do`4~A2nNqiW5C?Ia%nZKd7AiM3XUM?|Zu4<`e&1!+F0P`9wt%+2yp5Kn z$Nl-m-M#S0{=zuBYI0;^>YGyo)W!f91_3>VH%cELS`QbLdW9VA$OKQ^e%W=;>*Fe% z{&*~MvH;e8Az?@cj%Zy9JU=OKwQInWKV%WaWF1^eekhfAx&p|_uU-n;zi>gO%m>z` zfE?H{LysKbNq+DkF#{FANQ03c7*St)DInp0ekq8IIEY0(n+pH}U~B*uJ^iVd0>R-} zz*(I(*dsD90JsbR5+DYK3okGaSV6{Gn#_Y8MG!E{lzNC^hZye|q8bd8s6!@AyBl>J z7m64*&=fb;LMz3ij;>w8%Tbk1rEQDfPK<5g{rD_?^{gC*EW~5+a#RHH2Txt;K@}c5_Xrj!RF!e z(n&}hOeW)n7KW6g`CP_+bcFoC1$kn_0h(MQN2Nv&0BK36i+Sg@QG?8 z>%!4keUot-TfC|LRj#^5m(6Z7eg-up_lPBi#8E;1QM3N28U?!VOguJfpwilTnDdqr&ImFWpr=4z&R{M1**$MVZ7Dx87jv07&n3v_Cw zz$T57%qM@~m)zEFknHz(M%wfb9s$@M0PO?pzV<3xg(Rx@&CdmWtEjS z8CzLu=Jyj5TDw2FAU38|a>8|%4^K~zYaK6N&Law$%r0Xi(6dvZ#~xAa=ShlW>UtWu<@@B-mFg1sZq)0;SB*#s>+3dZu)^u^03LA-e;m06IpHj~p!I(34(7 zp#@$5W+4_HqyU{l%wiY-ya2L+9vi@b#{e1_JVFjg#itktozLI?QeaAqkg>aUDHP4q zApiguWQ9=umr4OGnDMoj0z+V=!AK8`D8-FOLP~4#fW?I6YIGZAd_V9rotB~!%I+*!;n-^?4W10v|v(% z&61-v13(Du0BEGaMb8iFo(slp070fj)(gqUc6XZBPrG}s})a%BnOmR^)dp8p($q40z%|FARzd>M!bnB214`Eh|P!5#gd2fK2p42~5zi9N}1w zB?L`110LZ5`10~{V1k1R=-D=~BL^CKrl3I-yb_KaLrtNf8b(n@$~HS@bvrinG5_*@ zx$R>DOZ((@e`cBSj&0_+9$lU4+V4GgjXnlDWoZGjUx8YlzizN>QdvK%qM0C*9@eP&Q~oAFY6m!KP0tr zm}B;P`Td`#wu}rd`6#u1NOs@E{L$&DO~a#*RW8UKoSfb~B7bZK2G|Ne$V8=`+4X65 z&v@$UEVFyYC)W?53~r#nJ}@b~VW{zS*3;kiF6u=MPvKoU>KRz#YX+L9cJqe zgF~MTZkZ4~wl*EGC&K}^!^)ZyhdgT)5BbcMsfI(b{c}UB24#1B>RZs$GpAc__qh1_ z!SNOSDgN;hr?Ak!=)=azuayjWB))!7YRibw`r-MCHBEb0MjWO@Bp3|`S#Ph`I7|^v zdK4F$umiIM0Lmh=g0s8Dd$ON-kzyR6>a4C(IDh6qxDH8xB3V@tJI7r>iMS1{Q z@lYi?c!mB%5T4+pxXDH!C`$2-CFHjke!t`qnM}P4AhDQh2Jz4nTV#-d6 zG%7a=(cizjmkNps4Om|XO>y=5B%j_1OzB01Oxa0+M{Nc>MJ)fG8Px=V$~mSez^K;r zb2KRV9@k z|By)`iiL=xxJ4RbnMFRtc!6-}kplrHQL-W&b$W>#o8=C?$j5Rh;i9U?;D-lR!-Yxs zPAv*0FvO1zu4VT5u{IU(2*gN4fyYj)0#6YRJHy9@)V)03#Vk?6DQaLUa22S;7TYj` zKtTZGO%E@kz{VX4W?)5w=yiT%F{QP9)E_CR*uVem8Zi8W9hedwOOS)(RM$`<`OfFJ z^qO8nc5s@LEi5`cO<77K8-c%cDUdd&UJ5!`l=_DFTr6h*BJ+ ziyr&sGGua)RwM(dS%%DF6AC~B;nGrW*nX%?T1s7Z_3W^l$n29W>S0q z(911-&d$$n7hCn1rK%(lHokL|;83hqRMqV`Zar#_tv}STqujIMsBQ74!@9|;?2Nh=27)P|`ip+bWsl}_aw zre|jUFu7xhz7#8z%GbJ6k+^X%CQ{j0;e*QLOeh?QC(|zX$xFd_^KC8@k9ZnAQM)T( z^Z3Z}Xe3-?YVrg^k!ai#hy=p1+AT9f8;2x=#xLdiBT2K>cA~s07EgqXKPKc3Y?
g(!--@( z97|Yj_PY9pbmrux5J(u8LModnxA>|53Fo0oYojlL&wjf(x8cR?(!b{Yb%vAZF7ygW zA|8v!j3<9uIFb3!UoI{*C=WG6y~ZXsE-7v&e;`C|7*lL9BxDl#eedMvv`-8>*Km2^smB*^`;Bd=hE>{?iEtpZ{^jh1E4?3|pO|=EeqQI~uyfM${~UGHa;HK- zOh^@^>GX&v*l#(O$zuI4l>+uCOVJ2fF_&PM<;piUk@QMzk&KiE#!el5u;}za8kAs= z0J1=92!~R<>R~5t0BmXwSOC#8tA$3d)B$i%0PApL*XR#PxWG;a&>y@Ypdp9o70-Ew z_zNX4yppd7Fhx)M(xt#A)x(3NVIIOELpwbO1x;dU05GaoK=7Rg@C=Csl&F^*z$_T_$YKAB zOa`F_GGd`{poKsHusl-FH6vJ_AQ=E@x_jW&d5tApv1x@N$B&?#r0s#O>00M;~0L)el6&3|S0K@_H9| z!UX{~@BYj&uP4G&n@6N5#rIB#ZW?}K_>=w>{d2oM zjV$jM-8d|?W}s)`he)XY>?P{()b=s9S>2-R2FEs!I6C-|rpd3FKYt~(dSG<_%nJb5P&XnOGD=yBUaCQ~AcqPNQP5B#g1Po@)9-kC6*Z?`dZq9~Bht`9uNR_GN8yJw zNoqCm`k(#jGy|bt=Wx48SU;tR~8h?>V9H`Qf zj9v&3Nbw1bM!f=zj{sD&u;4y+!j2F*2pK~OL>-m@;4ESRRPE!V!g$@?Gl&e9Q>;?= zGD{qYCqf`b5jF$h7oni8rpm<^Ds7d-w?DN~VP}XUY|uIqWXND_{pT4^f3i0iO}QLj zz7)s`B?-v?>q`OQ5RkpP6u^+EFe)3tYcnzgK!ulW?|vz0Er5` zz$8V97$Q*Y7%ZoVC%jl90)}wm0sz8wSRslABhoMrzp#X%Ys-l0uFcZZI%H9rq2x3_R)zOJs(>L{x+o&>B8r@8X5W6Cd`?=(wI`&lOB z_68%hp45iJ<`Y%M@9R`H`Hs{Xj~1+&#T#jKp8T05li6Z%`0}Cp^s>8imhJv{W?xB7 zENPsv4nJ9xi^LP*csg3Q%RKX`yw4O$WE<^9p7?x$(#jgQFXXgY^U1)jZL8a~Y}u++ zs|zl?pk4cR=beAv-S^%bP39VH?y9=RU?SgO^O&t(S2Q08M>3Tw8;@)bvLE*h%zLZY ztG+;>p~39*g?)Zwx#O9P#b(dta}CabFBnTEk~w>2Jc89ah z)L7lRZ>w;;sZlZPbOe?oyBvw+7Zg-?e5@~&6_uDSl^>(kNfYx|FOp&d*Fcw z`t|Sk>`Sjd@#5PP=d4_}bvIn3oQ^4r-RY{>m0IzLx%(NuerF_xUXYmin~Zt4%i}-w zlU5`xcWx?~Xs~%}e3`=ykJ6EajYgofk1KJ`*yWs8@B zFbGGQVgkF22d=59ffq*P=u%(`o3**H4FChca02L%)LF++VgV4VO97ZEq|qCXF@;Ov zjVIS=C+S9Pkw_+IJ;*&^<;MUXYNJ4C}Q)wKJ_j6 zD6)D0|18trj;{RJGUJ`V(msg|L!Gm_Wsgit?*6Q5+zb9?edB8e2A6!~UD~I9;;Yfs z1N?=zQd2*B7WMMZe?PWvaOK$NeT#be7Jf*D99uicH2Dom-wbkQzZYIJFuiSb(~Nhh zkgbLHKj-&VPF*OH%^#J4Rrnilb7d`@=+Bgh@J@el;it`oy zGh0U1j(<74>f`jbQIRFRGTTOY_ATb3CB{UXu(KjM4Ol6bj}-xT{V1*&+A9yPz@mtBo2jtY~KjIxl*jareak8)0x8?_~MmcLP|t1z!X{( zcvNW5kF~YGZ#Fg9BZUvILO?}F;fh#hsTg1U)IqUFMaqz}jY^MNj@g$!bE>FgivH=5 zjntV`fK<-NK?}tpEYFRx(o>znh>@5Fo)VEd5Ij{P1u*haiV#Y4T%ZRJ8KofgBx11^ z8iWH-yCMw&ibkmbV3wj0|)WEL_a1_mvtRv0l17<%lX zM-lQN!&6Feq!Ey-|1uRJxYPQNlb~TrFI;01dZ9-YB{6Y>m^grh;F(cPa1r^}C;0$a z9RxBY{;UrFV8<|40e7(KsS)N|pIZIs$46{|d^Y_}mjW41z7>;`v>}lIltrWyX#+s6 zo_Z-jrsP)-!B;N@r6PdjeDkG%b{PN$;=-NqO_u_^-~Ljd0ls& zJ1D{64oIYd$2_*SL-Bio$ZBT9#lfn4Ud*bh)`phmIZ2J@4F3 zH*~t~_S=>%T}t?>Y$10n=ZhMD2Ny35cB0ng4y`?6D{V5?m%<5C@hEM4C3D_yt_)Rd z&ii=YO)yTxV@^+?))n7!%+lzNWiv+TN{*M@|KR;lE_ys&h8(ZPX%Jhym87$VpbQ= zjhRq1d9<>TXvUIhTOiGYI8U;^XpHS0WtTM_jvSd=e`xE=ue|otpZ)CNM<4s!-FM&r z!2KV5@c!@r_?OPN|LBoNAG`P7dmeo7fj`{!hu{6~cTYa`wE6G=i$emy6uNQ z|Jwuq*uG<@&*x>`kJi|?oN(=_32r)26OAVcPC(xg-FVDju^|!ndwj;-3Wj{hq|;4} z)V)UD^60AolFz|-$`neiKVq?XjAYhkRI;U0$*r3=&YC&nx#yng(4oVRfAZt2uDkEzjN9RojbR=_PX~!_+aVMB`QG3K;xDBY$SDbYI0}a)V{Gv zhw&X+B%36wkuB^XuJBrmugsa*QQR_0gi(QLt`5v1Uwi3dgMUEaR--RN(2!Rsde{w0{!dEYa;^~Jd05A%LE(L@mgjwQd6u{Ua%b=FU3?afe`6(mlISm2O zs&Jr&aKlA|3|_HwC?i2pfS#cYqC8XnVKKHc1x%0sa;X?io+*JbTH641_y7hUWE&Fb z3r}N4iH`)xph2Tz#1N$H!EGF&73B-BhD@GZK|&ytU>7AS=;Z~o0*Hg$L9fVkiwFY? zqUfQA5+uZWL}rm>JkDYpWTM0X!??nCrZFU#xWIDiRTmfuJK+K#dJqH9igJMArDuu= zV(3`J%Hr2r5Od4WC5LZfRNc1e)$xBwXh#0pO#!zuu*s;;hPR*@vC z5Yw03|oJ1DYtP;S?!HJ`oYnA1JIaTt|3 znDoKPrq5pk@GkD{qSQY;)imLi;EMhf|MmqR;3k!S=Fk+1aDdRVz8HxpYIO>AB13_V z3sIa}@=~ewgn8<9AK4MU-E=(L?BaQM=VI#QG{w1okRss z&TyUrkmsCQ$ONV#U%L_v^z@tt$P@qu$p}Fpl*%PkFeK|x0U44(GNfUib_d2V1b{}_ z$P`0*FaT;yakwEFfeIA9h*Cp&2MiZRLa)0MdXZt0HVZ>p%M`WQ-X(W+Klt0id!aE#aifsNDI^dU>RST!+!(7=AerG~L+X&s6e@_e%3xp$ z>@JTjV{sR4HNMD=b^m9Vg3=E_?ccZ*w5`C14EZFp7#WI;Ucf)Q6quESZ@3gNiN>V> z5*7dQQqXDt4VMCVh>Mqkyw+ZpWQZAp1fxqqPSLOsJTz+D?6?M55viyuCLkqH27tsn z1%zG%vWh8$;GJgi2zq95RtD%WAp%IChfD-T9{~`8c?hA05q$9Q+!L>!o}Sw|Jp1OV zx0=N#T$`VIeQw<4q0fKNbYf@9_?mFT1}O2uSkPR~>98jg#)`Py#!E?9jx-1e2q#LN z)qk|su-5PNVz!ZQ@S*}C zsZ2JU%*E5j>slPS*qovS=D{skkv=dXc5G2TW4xP}23NH;bi$F@Tw*`c7>=Z}UXN$i zteLIav^w+5GupRrd%*?gpY`3d+O}(Z!G#xGeDOsWUT_|D_?6AC{Lbm$x%BeOF1!5F zX3d&iape`~oqsOCLx1^o{qA`opO;Fq+7c)=hur>XI26R~ePw31kEBXdVa8J#ujk~Y z;PnUVj_=DKe9w1uN}btb@uxA2QoYILZ?fo8;7UlO+%-qb>K*=AIF_oYHGWJamPk2l zwv_F#wftZ(5<6a6-mYDT)@@p29z7OPks?13iV&Y@JQWBT-@D=P`0Xx#BA2&&0*#({ zBos{U7@YT&MUxqSC_;qveO{qR?8xy-mMI)dI>JV%cvh)##u|f#pI}J3Q%mlx7|`X1 zH@CyVu-jQuX+3%EtDmk)NYSk0N2P>YQ`WX?9w(AN=qK*IauICSBj@ zdis-pSULCHwr#J&FoMRvyYIgHSjjQ%+;}pRDg-1DPQ>(C?ypn|+IM7EB$Y3%cb+IW zerE^*tOc*V1I&^!louccAWiPTB7tC($?OPYmA|MI*ohzsn(7@66UcCoO^T_I(GbWU zhnOki10!0HtfLGVMxJ35`BN(e2sk9Q!C|Kd)-wq-I!?jJcL3;7$GL|Jq|vkKiklb9 znT1BPI?#~A5X0yp!yWJdYH0uJr2tp4$#{H0GQihf3X&{Fko|Oq#SnqXl3J zBoZW$S<%DJkg1|rbYTxeLJbDtU;tP@8g7EY3q=fi0JLjeAk*53o*jio*pV-#;1xF( z2o?Yo$tqlC7MaD26fv^^NRWJ3=z&oLlDJ_EG+4rv@UjP)vKD%lQmcu4=pith&A5+z z7!@~!z(s=$Q;`FJFVI7VE~cOaPt$ThCi(Orp;1yX1p$tr2n?zjqJpVnvMCw})H;HZ zgB-q!FkJMI6+?kEv=As15jTcRp-aS)qduL<=G`aqhbB{?1}W;+4~cIWnm;<-wcrD4 zPAbxdNw23i4UZJwoJ_rHpVf^@IJ0TEXW@rbn^cwdxjoX`$53ZdB~m#zP3cOd8rd+E z5;wTC4<$4uB3$;F?@~89X1_;qn>{pz`j#q@lGs}Konh)p{<#E1N;O)BdA z?$7LtdcmIDJfe2OE1^}NP_@=iej~qc;>mBr+B_n@>(i>S&s(OwRsHFU#!ojb>V?6! z>2Ehqej~7=e{RosG{)8qPHr1*n)qsB^N7@eNhd};M3#xQ&|Y8>^}Z5jSwWCs zw3;9R$O>c6fAM!K7-{4W1Yk&VWiR zfM0s@K#1tk^3_X$3qKMLF5egYLyx1BZ4^$Fd8!Eks47(eQ^ir9QEpL*QJqreQ5*tL zM$!XQSWqER$#gt)`a7@7qjBrZC`}>wsuu(cvc_JJP^b~m1-l(RKqh|a4yL(Zj z*M6xmsd6EBvhcG>NT&G2JmjcSg#a?RFc___-DT@x~@9{2L!x(c!@*9UofU`O&4nczx&f|5!%tit)(TN1EXU zKqm2dVVqq7M<%W*P#8>P&`wW~@s2p(_|Sr%yt=c;#8Q9A$QIH-`S33<1@Z(W`$aUQ zA5+?N03?t0j*=fTrSbpzrGR9l=~6%=SAaIux4#sS4B4rdf^Isv=pp;sOM&x&Ats@V zDTvVynR+nvGzf%&m>zX#p)vVR|Kz;b z?vWmfyu!CeD;kJ{J)TTASe)@BrFfdBOk`r1Oobp4PaSE99&U=%g>p~7`rfU#-qO7J zl@uyhU40eB%(}I!J>m4KeWt@riE>-QA2!y#7&p9T)deGswM!%u!AQcpXL@elPl5x_ z^L~78cEf8vn~BN_ORAgvTTVFVZzAcxT-K}Q&Fz{uJMFag9oi9)?|%2J z8*jRia1oz7zklb&mt0KI+qPX>s^5z)zKCM@vdb@{G6#A49e3{7wOeO}#~(gc?=81R zZJua?vM`qP*B|l>ZPoBjGv9!7bF*)-Y#zr`5?2jRs>WtPW>>ybMqby+xB$T3O z*Mnh7hYZB*JM2M=b{}Ds1PF?i0t6@mPt*2iU(=)rjOcZ8Vm$JRuvQRW=z(>5ph#9> zHnV6KnY2U9EP&1y09fdu!FZ7PE*k8S8Q=jBj!c9@06jgD0Wg>)fSyZ%5Xlk64J7O^ zLdF!10N@MskfBR)lY?3gh6+A00Y)S7GzwrCXaJz(4-Gn`$WM7CB)xP1Kv0}IwJ99M z294;!%VKfCE)R_iD&!CbK|li!0ll6naTORYdSEDdT*EglKmI6Q_^C{S2C>LTATUlD z9)9uRWQLMYXc$5Xz${2CRHWoMNV!admz2_wK+zZ7M}=J0EcPQ4;7h?lCKwuwMX@ws z8Y~i9Y+xW}3W1tpNY4<1feT?X-kC}20AMx^0_>y#FeFOI(KSq#6A*X_Ag%!`Tm)0T z5E;~ggc6T5RK)0ERGw)q5Qu!_ARO&bG7Fx@5HdB0wL0Jt0#I~c>;M|#7l0bWB3|@( zajICFW$Y4M2R8hF@%6e9DIZxo8g6wDYUB|CTJj`RAD1L z?5H3C#Ki_9ZVa(3mPkfQH%HeErsfPT?wwrqiSf0}d&c{g^`*26E$w5T{6=!i$mr?; zjyc_pw<50}0y4XE993whP*u7X^~xWc5n0}k@-laLs&D@L>HVKmLQ@1%Ip+^f&hPp( zy`wpu1{lY2FBJ7${(HzW4>f&X3NOf@_z7! z)(@f9%~vkSt{*}*o7gm*!ZlwpA0e*U??FZloLD<3cWj1rZV%s*k5bf}t3L59?^pl% zYvw6kjqkpi(lxeWXmsnS(&0~HeCFWfhRJVG&r_~b`i7VGIWh8S3kCC(uK4Arr2p)t z?C#Gz3qGj+?4``cVHEj3!m?&y-NaWRbI6B+kgC0?+z;}qH7YP6$i;fTqq{&}}rC{|pT?z~$nS9^* zuK#%V&?5t@sU-i{{Qwo9UjKZ0WFxhiz7vbul|qzqk+KjxHKAU3)E7iieKAGFg#>yk zSn6IXJ;l4e7Ksl#ZfKdnLFYh0wr;4Ml>u~=Z%Dm!Ri&c0-41f(3 zgy5l6O^zHSpn?*VS@5cCsQ|(2MOsQwdMw0LRfbfOSc`c8dZRK0D(+CJLWawz;NPng zJ@ShPKuJJ=5sQPA;&@FQ5JLS=fl4ikIvhkG_~*u00ZzIBHqgXh+cTw)zIzh?NHlF4f=?|gRrFFg-+e$04<8JSe(!~_co2vxD( z6OPM-SG7HLJ1*cI|FHb}2j{V5xYPc=*}r^a=ilBxxck`2KkJ-&DJUyQhA&+T5Rk)U zj#3)Rue}sFSD^D=~93U zVz?mw&r6|jmD3;t4*;d&fDner0S^)jr4$Ectr`~=)&d}39wACoqNjm`3u%IBMLbRP z@SZA`CNd0A@QY1hOlPv;hNIanuVkilN{zWZx8ye0@N2>wKBUy8&croN4=hJWqs3th zr)oXXMO#X1U9oIFM=6L{?BOV*LT_j=9jLIc-f!Ah6FkzGdhn@NZn&Y-6<1vT-S2&u zx`m=;(V~TDJXGGazrt>DhhuRg0Z@Sun(_)jH#J@-Qkk&Z>iYaw*-0(KBQEz3IX}Pf z_Eg=b!h52PX7a>W@2jn|8;?eKH+#YRmzmL* zq$jk>FSt2+WLAOjWb;STp~CMNvtMWcJpR(Bj6XD=tP~h--n{vmYp)>)&091-@BH&9 z$SKQDJFVG`H{RI1dGm`dy6D#1Ze<0j)W;jHhTMd)B5$Eb%{-)5&Zd;YoSoF0FL zC33VewzI;sYIk*2lRp@aU@!^BE@P+AYkQJx3^9OwV-_UlvGg2P#SNuQpn+tc7E;4F zC&6I0(nDtjfQWSh0H~)4FM1lng;6skeq*J;HjzCH=^0`8itA5p*>tz1zn27v(viDhyO zGU!EPGMT_2RM`MhR&wGK5m6EpXtZFpUwr*EN1-s3tOyqu4M0sEVjrTw7bT-hQ6qvx zQ>yEuKmh1L(km07#5^d`rEMmqu48+6@ zJiKLPWehPD3&B8u1Te^CNP|oMGQ|)TtQUYJ!>IVc!W7<-Ip{^Qrbs`m1%_Q@ursS& z!(r+>xXQcWgPPA?jBXs3-af{7>2llX@Y+F+!bfT;faB{1yBB;=H{liI$BmZtu}po_ zQTXU@e%oluyz22UhgS5r6+W_?+B(Yg`D@-KAH_Eet)1|SYySJxoVgui14}-tpZIEW z-C!^^6J7}~??-h_l^9*#&%5x0{H}40Q{Jc;^PKTg@Up(?-JiuNvlsWyQ{~RX5*!2t$^Md|(Ah16Bc~wiOsof7S~mWUP_0f}I6DWJ*N>qSk{PAwA`Z-ITQLQh z0;sqVG^MwJjD;qxs=x8kmH+Y9Zt66ONou*a_spc!q=;fjA@{2{wo_K={mIm05U84^ z7=wVy@Y=skrv`(7x|fpgrO%wIV<}3h`koopL@B7(LMhuQLxVs#5^|Va6>_ZyGrL2&=$VSyxjP3K;nxj~eSmbJ?5H3FBfq+K_#Ba^nwP z*m~D{2MGlx8DV^9&&`jocz9qfB{$I~V(7ZRZz)b;81AD8Qz52j;qcce+It?KwzeLb zB!Kdb^dKt)kZ+_DFa#tXc#;z`h{+Rr5|8}|o{WW_WK%K&f9XR`C&ap6EMyv zqNb(6UquqXD5a=~FcmV8(L^fhYH*CZBlX$k_WtMF`ktMi-XU~kelTo2j&ry|R&Q={ zI8J^m&-?}RZ@%r;ORu={_B+3S+wHegMBRK#mmmG)CqMc5udi*_q0QA-{q*NQy{_GL zl;WzOsP0;{Y;nglJ!yM2MGdUM)Qp0bvvBF;=A?Da>eqFvsAClL3A zjjxHa`x8}7KIgu<`I51b5O|{i_6I^XZ^RcczGN(&&RVQ?Kj(ZrUvKk8!(pp8v9;9k zhrixS8QK22HeK3Z*|yE4zy8gyZoU0hO5dOT;%7J9bOT|b;{D0betz2>cTkpJc+rLJ z+P6FN%rh>%?DD0n)+;$lxkxhQ2xoU5u5x?*+;j0{DqA@vGWwd-r`P2-b#<94qJ<}@ zL?RxE#kU=^mRXE^<0d6P0oWbNOl>rPnwpx29(o9MZLVrV?S0Y37u|A8mus)P_NuF| zdH?L4 zSb|J=LDHZBMgoisQKa)nl4-?-gNvgB!*pmEo3~IY;1Pi6=^^!C*N(^aWujza5$>kzpq`K&-eKe}Ojb%kCQIoZXEAI7fZB@I%UAN<^yD z=!*WK#l4vIEdH?O(-+cf2YKf8r1Xuh9uQg9C%^Zz;PQUdz!Z(8qn`0C_<)MEX8glhH?X2#zI2Xx`r9?1 zy%gUt#5T2SbXEV*@_x|gwvDE8Hh#pY@Jqt675y8hzS%hKt$fMMz=okELmy9W9pzs$ zuxiY6l(iJMwV%CY{`}RdG0&to4UeuLY?}CLdfRC0tZrqap2}<=MGfEZ`D@l0@6><( zT5Qcg@4^o=TSsMge`b8h`QT)#>xQXshF5-!FS$cgA{&R5j(7@d(;J3jXZ{cb9|abE z5MI`oy4`qh^RhnKO+!;#hC61yliD$sLYlZ`_l(bM8HvCM|CaU5?j7&mx6J7>ZbX)t zu+vx(hU_U8g#gctym5DOA}iW$og`CypBam_->6cNJ(oD~_uWe?uPV^OCs)?-4+ zUEL4=M($?R-wSC^&<18|3!7?e$INY>4EE9=j zvsu&0uq&AEI(*lEytVsx-43?;+l6O_?uMaA-uK?u9-tk2W*ifr*GIwKDn_mWJ=VGW6RXkn`+DBs z*|zY|XO4eWLiR$*)nESX)4#sdB2Hd3T1{BpHGIlrjwxg15iHxAnnU|~ceqUn)ENz~45qfBKLRV%H> zogJsz2i{eSU!U_=iZ@?&=CS=~au(oyEbV==7RM+VG5s)I$8?X*@w>WSs(;1_c5xH4L}v{&PP>jYzs5pxV}3{KA>;!zYXz zg9co~_BCRo-RBOBuVr0i^IlEW^-cIc2yg0-m599harE`*UL~Vou~^ApHFICiZ%e0A zHV5HfpwSX#Ss?%-u=gEoo4l!RB#$gn2Y*|5bHKLEqwmDZCfK3J?P3mgAnA^KRT{_y zdeWH$gTNW&Q4Tj)nZ*1<_TdWH1o{r(_)dKRtmaM^K8NHzITS9F3j3>gYj*wKmfYVq zMS=J}3z=BP3-0~5Aq+#R0$;@A5GkORD%Kb&O}Qj?DhPWVL1mcX6e=%#jY!XrWGil@SLO2OF$k^|8y=!8B35HgS$ zc>&P$n(h3M#YQl{QK2#%^a55qPx088_m#XlLHAT}gPUoraWRP9)O-!n>k+U)U2wed~IpuK?{U2atpRDx@_Jty;?+M<&W5stS~#791`%b zeS9KL8Ix1eK^IEo=B{ME--G5iSiw@{xI*3Q(>!cSr=g(C3qqD;i4(^)JVvMwT09yP zgvO6{BRM7|pyiQM&)%}87s~6BH-;p!c!y%}${^w}Y8A0TOjdt`$=UY+cqud{>jf65 zD0C1MVKU`ME#hMH+VP(B$EerGuyp=?&JJ}l+_j8T!=6x@SZC#*B7)6+ZkzotZ;J~a z_CkixiY-fr4`UQ{I3;28gutEa<~0j<(-Me_4({k>2<*z)2#2pYA+Xq8Jx-Kd$)dZCZQIY(ajOs;ww7!RRrQ*;IPe zykN}VZ6Ab^AWpsIH2wKe_kORZ;4 zgE!^(oQ=Q##!h|C-v08Z$jdK|HZs)@i2Jqtx{Ro%Hx*u|y3RLWY^MMqJ&&4VMvtJ; zcUOzYv;ywV^o*;5jXui+M~lZ_?b>X!PCXwc30LFF8Y{mjY)i6vsGj9~o~&&MI@G5y z=@-=s_#xSp^|t@VC53shsOLlgb5QT3#OC2aqizQVuavp3n9@ft3~K|5 zHIxrLO8R`f`&>e}pwN=%J~O=F&YEUaMv*EpPv=as2Ap~*a0m=S4^M2oNwu-X0@0;H zC#|z^6Jpd5m~Omsgyz`1BxGSK=o7a$gN!Gr3`jqSJz5T(7z;XpK=aZ`pMqZ68=lSf z@D?Skb0d7tK*eBG-Ujv~Yy!|f<&kE;b-|I>vfloi827x~rCgN%zHh>mDQCH{IKx=~ zmF|~Tm(rK*K=mwinS*_;>ptZGdA*F!sR8kXpYwx0$m{(VRzK*)QUAOf<4QCqgzZ=i7X!{!Wl}c5;E$$-V#8(K~&z3uoegNKVywqZs#*)?_@QxcKSGMvzrN9;vd4GYlj!?tQG~U^! zK|bb3WP}n#(PtSz-KP}Ga;KnHHQ&2Rff85U<*l$@N68UyO=ULnsJIb=LUFU7n%^0P zo!`D@NPWvV@+g*Jlba-@7Kb{Al|^z6`l0nyDV6itx_X)sc{qK6EfEqf;~TwMgTi~4 zsA;cd_=z*+;Ln^1Fr@CgE0ze4ONE^64*z;S{?WGWu_#k4CPwJ#R-Kh-u~pvK?i0P= zKRmm2UyN8fD5W-dewCJQVzX%P6uz$>Z_$1msY9BNAlG0L!`Ta2JlsBF6B$=Z;&k3z z^XNY}QTNMHcyYS$=I?Lb*te%aI85T_6~eWZ$|Ka3KkAQu7T9}ui1c}~r^;GAz1a+X zl%-yrA6Y-PuFkQsZZu5K&#;#0o!uv1|4!7ohA#Zum!r~_0~Bla+wj=q@+(YM&l35B zh=Fb`s)fll!nFB}+KBeVC~qr|_txtm?XP?YbA6Dt3LrA9f{Xu1Z^j5;JTk%@uxn7+ zz)R*ma1lQbstX+0BSI@q8FA66CXP{@h2>YdEIHNoUit5>$PTQZhO;S&IeFYV(v_~} zr+A8nbCMH_+$P=e94yE^cJzJgZn^UIPPG_qzVUFO3gtcTq}R6qebWB)9@sIMzF%qZ z^8Yvf>v5J>%k3`!YJIjdVZfDi!aiN>;xiQY8M{QcJF#$WCa$ixtE@Kal0PfVB|+AP z?nZ&d?X1f@y|~tE;cUnW_NJ}i{?O~^?KthKV8_AUhgZnd`neKEEsixVd5d_Od@ zaU9#%z44oBF`n3D3y`wD{x~4^u2DOJDTA78b<67s!y9H>8ZuOJ9p=JBm3$Zqlnrtc zJhalQ&*)z&>C<{VFq>hEFPBAT6i^flRX+g{26=d@;d*~pdk{0l?_1%NN`=6ogq?PF zWVnm-hWIcMr3!Yynb&g@;Lg1hGfN5_8lf>PHhMVbL{fPeiW4WV1hDM7_9uJ%6F?a@ zl${YF;1GDeH=PjQ!=*BEu%2m0pY%~xL^v8vnmnWgTO*geP?k%xjItS)_U&;;VMdXU zP(l(}l9|kI*d!yXmvh0W5R?dIq%M&Pc!R3K@FNdCPCvOWkFQbrUzO+->eHp7og^c$ z)QWmaTS!dU^ISPr@MhNxFP-B;#kcEDUXM^nA!tRh7ZWccDI1fPip$mzPu+^D0iFWR zC>#wWw+=1LL*7^^4wjvAW2=J6G%+kbLIl`e>Zw<+S*I4)wQsMRccW7=!fq zIuZ2|nnY5>thZY?Db0PujayCeYL$#BD^d_xttaZu$mG@sZ6Qg{{;P2UM&smYpSS&- zHZjeQ^!jI!xhqfYd3KOPrWL*6X z!-pSIh}zEN750y&cwnq%5WI7(5}E2Kpl^Wg+ST57yVSlle;!N6juPW8x%Lxyx_3wO?nb87Ne>S@Al z`#1_Q8{jy!!kj82v`{!N%T32E3FbnVy)1iLegDJVQ6Wl&hj&jAx3tSVdnXT6Pys9o z2?fJeg$q6y#NR)xw66-Zt==?Dv`^}5>wy&I7|Xr(^jJdLsweOscAx1xz5rAmW5@6I zswPL=zLkhn9)$!FX?WX$3Zuq)__GX7As(ZX2&)LLLDFtMo0M&2@rlaWs%(`UH{>!A zknIVc;FeTzK+YgET$KT5dvWQi49wrwF!#5bt#{@ zFsx_Q8bQi7GN}lzCZ>wo*4RhMdl=91nm87jckG)3@4dA`Pe1&h5K&U|w?)uUs@r(O zWkC29&ZwyWszzmo!7ytVVr_#|BZ~X;7I#h&Fdm@Jd8&~LTW~CblW%R5?pI0W>eeEt zc3hq1n5A*hSIUIk9eE7Nd%*v@7X5kFx{?rm_FV&gAuToVlWd` zg5&ej2&;HUTr|*TaGe9E;awhh0t4gDKrvLYKZuQh$`_a2*co zOuo?>0EscmBM2dqs+&HVcFN^X!7CC`!*@xlAG*UGTO2)_x4CpkQZg~f9G?D1XCUX4 zK1#N@*Ba#G|7RA^(h5ib&n@1HG#EywJ@&ac$dfhYSf16|N3;9&-}&hn(jb}nD@m~0 zs!)F&Vv|iGzdpD4oT6UzSah?Lr;gr&Pg!(?%=Z-k8 z9JRgu)Rlv@4FQr&Sz;X+OLhDK-riLwIW8gatmxhiW2fP53>E%D>#~X-`xLb|77owL z#+ZaVVkDSOfA2pZc;yusuad9j8P1ugR;X=`Z}UC$^b=W;hCqA$$e0;_>p{}E*s7H4 zxO#c=n60TGpDHZ#ahV4S?^(>s_Q(>+cF9WOr&$@n7X7ge8M4j&+Nb_yl~*aCmGLbW z>aRUzn{lJ#NlTuGKlY!;;r89qeEio?+7u=^@f=O&0v3 z#&fGQQTAadUhPZc;SZ19>D%|KlKVN|WPeg3GuUp0?B@=|I=&i^v-5n4`c+;GU>Op# z=UBvw%zmBk1Kg3AR{HuwT^{wao)^>ffscnMc}ou<)c}>r1XFw&CKo)8`Sfucn!qz* zatFCpsE7ETQKW}T<5FX^S(*n)%(){!vm})6Idu^pdWp*LjZ)9+wiBi~vb^->^sQyt zvhl^&YEcgR&?i9M{pOZl63+k#tS6%g9hMRF$x4!EK-TB5s?kHCl+5RBk)oo ze52}&&;k&4Ust#TJF7+ua^__OtRnG}D{bn+g{8`YiyTXFVqK$G7ehLx_vuR_6;51^ zjki;;DFKQW|KrWXuO~F>HmvFapdKA>-C(r4kmTD1wRFDqNscj;hNtlw?W)Gj4axNQ`#c=%%mOE8##jInlSHu-iq^xxzOw@Mig!8K7l7^A0DFR`F z2}6{LSgB0yC38m_%Kxz%*+@eU`o>B zt=!W@~XzM!73uRh<@#BDdLBqLthN4>`i2pVF(P(WikxKQY`1S+SL z!qBYPo#eFf=5QD8ZI@WIIehtiYIC20_fH0An?vTQC+e_fA?M}d2d$v#*La`8K)R{j zS!3Ia10V|`y2n}g?3y@kM3Qco`;XtgU;N#s%I%PS=Ck>`x;O25jQIog65^}7dc5~y ze@Z(ml^a|4jaIi@!X;`pLC&ZxY+@LYljOKQB58gGrxCm-u6}JK!_#4{x7{mdN+64T z&ES-I;po-_`j4gGGus~!IR`$kmeMt+%6k?F8G!qohm0A*yTDXo`nv0e15%hKMf(^?|M5CR_? zuNd`APyHbJDqpi@Bbl>MZeaJD6lkNHg3(#gKy7A%XR$z#0On$85CNgU06KOH+bsex zlCCRLdJ6@elY-d!Hms0I32q7N*@)nIZq;}RG^t`>c0^d-f z&+qyBz1TxayZ;#P>M=qUhtk6TQE|vAgHjwRohJ3)>V4Z?8O&xju5hIIOGNTGkc{r4 z8~H@_NfiEp{7R)ZpDM%@we}SlsX-Z`2(H9u6*r@$QeV9J(pi7WEQkH@eqCtrR^;hCe?AR9)}bizttp3A{o6?I z(fztQCW1!eoSoLgOnKEKAUeF5SUe9rRuT>~A7g+0;YgoDVpY|2uTbB%Jy@R9N= zLyZgW?mjl3Cfa`6|GKW!AWbb|05nd(oB>E3h|7belO2r!-al*=NnGf+lTutH9r?p{ z5v&A`o$)b6;tIkk%D2Ung+(Z-K>iR5OwyoLUvBtaC4X4AHKALe2&G^kt4h2y$Ze}! zz92G&33_XUD;F>4x=tLA*~yh3PW}T1g6WXLd$~au8%S5G1QjX4NUhjY@@TBx4dEZ zqGfh`?AyxsHJ4q+FuJd&%xExqe%1TFb@lG3kH*6H=eyqx$CDj?cb@tsPb)oC=9n7} zD^8fIg=NZPh)yOuX)JkEzx7XB4iaH#GA~D(ADN8hBL1PYRM20Q$H%wh{c#0$ zR@1m6pJDPWEw1jZ?I`v8*S5x0FH;N38mDcfetyq-e9E34d|Heo*=}8K6`FC zYP>34KKAT&Rr6U?>w`B9K}kEwb9TDwrsfY)i5&W7?*9y)>sK!RTC=+R)01bkL?81E zA^uUT$Z#gnfFpez`Ykj?^LKFn$iIF8aFI~|oxlEKn{)!ALs~Lj?ACxj@KXBl23l)i5KQdU5tpv05iYC zFB8)5`)Tb>eHLxSR^859erLb^dHb7)PS#obHA*|RI)9vtH-g8fR+Qo72X*@)z3)r! zQL0_q`S5{;E8?%PyLaU`XZAB>n}jUH7YGC3$|Ex+BgJ|8805+9x{2T#{rwKriJGHP zXRpci?$S}^wfP7qRKv*Tk>~>9(jW@?>1hf1_oYG)fay5_x0hR#8(S{W#)vfkoI)ig z6qH*^$8Sr6-gU)|)x%_>a?&)!*F4n&@ULsBOiOPfiooz*M%)gTHz?SQYpBWrHzWxi z3Q(QhbQ2Sh`XM@pdNxyQ-Nd*s z4mp4XlM&~FhglFm)b-RIpgN^cLqm-~PCA8@I=a)Z4)dlIIe9waN^IU}bz`(%D8pb4 z(V-3muAFhvi&x;fM@5ad*|10&EZ9o`p{B>k1^4hB;L6MJO)BcwYwcz9)eH}-D+kv1 zvk~SFNI@fcfXqxb%X2<&coe-#_oJZ;Tuvd}0UkWe5KPdboWW^&pMuQA+EkI8B{sHj z5sNo2te?G70NSUuKTeqfMLX`);zJJP$w2uq7_JhA&q;!1U|l%VT~{)d=1Y&x(jb;M zxR`Rpb}-c+k$K;_DQ(C=iYVN*Bngxeyr490%Q6!N>c>I^hl7%H2UKxgaO95meG^#? zKQ&vD=tn3Md!r1&8H~z^Eg5fiHd28I_!lS%6N^%au@Qi-#ySoS!ulo$fops*dOcp} zS5{1s6V+Z7g)zQo{j>jrlZ5TtyO@!9`>^iSe{0=Nkl<%GVP0I_W@Syk9L9CGW$Nec9&{Ku$A!iKHoU;A&~a6%g# zv7IgFt)*P8BSus_!8+gF8s}14wYHxG=(p7(^aA*F+QoEQ1dd-vEbKuVv9JD%yHNUj zlHf(rgRrexULZO1!+jqCBzU5MSb=23^PGqUfOJK1c{j(w>m?C??8NoADAFm2FgZbP zIk162ysFQZF;jsN6rLq2N$}jvj0lYUUc0;|53wfcW$?odPg0iWAc9J%u*RxLkZIGc zrwXvc5re(Zg+<~uHF7*9EN?Z`E|?UOG}#sXt+0F=Pap-Lh+~$aOA@;BU0A5iYzQEN zsm(!{Kn%_T*D``1E4dfc`9kX1vQCguC4|@tPbl^ALg2REb&*DpyDha)nW6xMd;(X&o6QcJIQ_ZWl(Labp6>W%o0&r|TF+J2MNeBV(9G+aP~GaY z?dNJkFF#@$EVwQE_TrD3o{N++?RclcW@TKUr-e4gM=)(KMS_dLHWZz~st$}@HP54YzYqYR?d|n2k)l1V)Zu;ijNZ9Gt{#T*Nn1JWPy_vge!sTd#6itz-9p^_4g=2ozNW)U}w?#|9u+VCC$#;5cfDejW?4 zy{bb;ERq##hOF$n?&`so`1qlQ6uO|3I#0l0TEQ5NMIHpaJAYY7jBSe%gG;2YDpv|<(n?}yPPdBW&L$HgZQLTw0@-j& zI2GY*K;WGn91Qs7bCnq3AUn!gmQU_spp3y>GAYbnOdq>%>%hj=`7O6Ygbil5LMW}3 z)C*DtL?Kz=Iv^xw49xXB-9qIAV}k^RGL;7bTBlynGjm zF*HIjWE&%14}QW*Atj_sBx%ovDL(B`Yd@X%{cFjHxdS!bqJ&6UrPpMi$BMRqU%RpY z@N5T>wDg-E|5Lj<8#kxbT1R_?g)Kp*^pxh2jas!Zju53T>kGfGGZoqAD*xi|EL_%s z%#_<{rhT?r_H6<4y-VNT>}<{rn$6HL$I)IK6*_ifg7Jp@ZK#V{GeL_I6fZp(aB*!L zw*IhjTB?_qE(ip~#f{_|s!~d57n3(De4_iqZv-ijMB|$FGE# z)Qw&ESC@QdR*yvSQBIQog3q~=a{!|@n`)f$X6@+u`kc&T=~p-ohl3xwm-@1n^I}`$ zYpY^CuTLE})opX+AWkw_O#1z**}*1bNvFK^J5?rW=Ti}qpc^J$po_RCt;hh)T(W6uY2v! z!t)KoONu+dfdd%o?#XP;)x$JrOB-2t8BG(&Glz9JlWRew`@7d{iDh4!#h9y_TJNVE zdTF9gOw*+;%RrHuBdw^5Q{L^Rn zU{g_uk@vNOmRZm6rAfd&^EcZkOO3DZN@V}-M)6jAZ$xs!P`5Xn>ONM=S8gYX*f|dQ z{pm6e_~}cmS@A#08T(&nX>wd0EY4J!wc3@?esfyhML&IR>bmGhBI{T2b03dRpfo>D z`YFOYH_|xHNVa2o>aL=nWI{dW-3<)n zf$UHIdqW5hVMM7;H&rEACn%T-UlvWQrhKHOgdDCAChmYSm~@Q*yEA$V*t*9I`1ShV zX~;`P=dp890zXVDC*UCgbg%VZ05g3CB;LF^*FFu+wXsSlVIYKpuy%Pv2uq*|!MI$f zn2@=UoV7ajAdWyLl?c4hd^G9fcwC*(a8N`a7*sf9xPwOo(BIFDG0Fnz`12zrnqw-(t`&9!`0$_qpaPa6!6KrzCV!NlTF zEi$OFo)d1OZ-YSJScD^sjAKT5x-TA0OfSW`4rUH{(7jb+j2)fiGgu1i47`XxWUG#wAKAV8qD zxPAzx_UNwX<7jUxDHgK}8~8RyVuV@jXi@u91gD8-N^;VB@^m}Gb3*Yez4=N7NA$S@ zfBe?Ai{->l7swcfT3|-K0)F~u;?qIK?}ROC8Y|Hsvvwe75r-KM-baAbds?X zCeaWlPT1>c%nzr7Zo@d?q;X^DWD6%fhd_YKgvwh659#n=(g*;32w?=mQg6I?vY!}k z(={$!T}1pjmTgLVk)jvHx_8ulP5({m=ViCJ&mLh;h6w&N_&co>3x63X4X|^nOP+8z2VC7245UxX+TI@=L=F9wtdQfN;9^g zxRzHU0EmhNLg0E8zNjn8-OApX7Z{WRVae}Oqa;IaIm72xE^1DD`kGa`CX#fwHfby^ zGntrQ#DDXm^k1hPwRoQnH2o!S#oXju!f)d>iE2$-qG;A={Q=~05a-O+kh#7r1a zM_tg)>Gk(!yg(2}hDUSAqLG>Z$}wGQ0HLpgPpsUf{%NEJ9;9wEOlO#wV=#rOim(n|AP$u%m70U>&%xCMJrZw>Q>02!>%3m45 ze3|10E&BWM3%o1+;V+)3a1ZkCfB2Ya0QWu9<6`h?RAutdh$?^f3V2rv_q(u~0+AmLD1edW)+vczK%{a-bj$eC#_^S(A z^`429UOgV-i*=%WL=^P#phc7Klg6(vYG@{l$xX4N6bFg$h8zb8I#2sKsn@F##HtFG zn|jE?w_(TraqQ$nE__4$vAr7{7GLL*9qU@HS)O~}>D)z`x7fg~|LVD>jLc6yE6qN5 zdR@5tMWEwm<9tH)Q{CUuFXIQ^_m}Ul4_E?8**79xc=VY^D`f4wLW#UKm1H+Y4w+I` z&ow*TltfYA|LXV<9G?h?J-L1+?ya7$IqT6wDP1n@Il3cx)V2wL>STW}zxBV^WM1(d z8RLCkWfK+tsZJtGO!Lyg3FnZ}FyZw^T>pN^t@P}}S2_OxznbZXPw@=Z?N>`)PsKVs z7&66H+&2XRZb!cQY?4qoa$VvC19>@TbNjaQcZ(#fn@cvFP4RKBX1?#YW|lE7-%ofx z_Rl=%)e6=z;@xy%`>h*GbRc6Gt5s;vY1d$q*(W6$%x~;dyRR3x4a}|}_*&2-B@kVr z_P^Dyl%!a4-YhC*jhr@veE57xg1owpute^|`g}FVg&{s65gYt?(8KtiV8KEEf4bAgAYr)uCb=xEav8z97x}rIatoM&N}BSdP8Yo&SbAS5gZM(oDm!;N zwO=L~i}xHtuv1?!sbLo!62%g$2IfbSvT04EI8a)5v9T2k5#GK)9Zd1Xb>eC&Hb3|m zvk+Oa7bu*jHcS>UJ|;|L!*D=FO`-5XVjiTtnSl)&x-5`BqU$bLcp!|yXe53t;pHMs zG5w55$Zo1=7K<9pU!Fe)!3Ydzq&Dr5Vjm$x2`bXJH9!R?kBdBRzLS9(mGPDF@QRXp=Zet=lU4*lptsi6Gz|W$vDQnn{d^Xp!lB zYYcK7Fjz4{S%(nzge}m#_L={5M3#{Q=q%A((LfF_H;np`^v{>JwxVuua!`Cq8X`2| zeZ_M@;(8sHp;~=n9zJB6(H3q&KPe01wvW`KR7F`Auou!4%F8JRJ7F7kMq-1!!=jB} zhSLy2MA#|ylmv$RRW^bDToF!+jnGxD8Rk+Y2)3I?CXLQZ$ynpZj(QR)_Xgi7e3lxYGO0cr_xX~PbTK^qkzyt9jTsK5so zxarhfdGg8#^7{AIBmwoC&z+9|RLPz5J6~?wEsXnNE*Q5=86kJ=1wNc=H@SzN%P+Gi zBC#DX9{rn)a|DWn`k4%1 zpCC{#9q=PtVUZ^?dhF-NKRc*o13dOWt(ppZhFQ-?2FiTwfArL%jWU8>_fcUVJ4-ig zs2p+{&_apQO@l-S&Q29|^3<4v)-1!r@{H>JjOYYe@u74phEp!NU3A`FdNYg@6_09e zkjuElU4==ULZKUx-CkC@KQK0%Pq$|$Dn7OrV_sSHxG`|sF~X(Qf<03l@pI+=lV7bi zBF#a_nCEgaHoU$a1ahX$qog4Egh2c);ZRM?C}EJ;hweU|+DGG~(;c@!xJrGeRw)NR z-fM|$>5@axaZCMmVgdLPFX}V| z0Bdr|C;zXXKlcxgQEXQFWvO1rZMq6&AaC{FmCuB4BH#MN@=nvl9SaDWw<@Oegmofa z`a(Jy{3tTphL~cgA3h$s+~tSmqj`BgX{l#*^+Jww?#lcpJ;hRY=hxljTf3PjKl}oMG&}$-c&ak>ue%qO>CyFSu-oC}b z{u5ul@kX=w3)C7ECObBum&s!iT26&g(PaS7y1r4Aj~Dhu#l8LU`&KilJb%dQlJ3(Z z*>~J)2Ps3JKE40h61r0&d$+4hW46#}c31SO5tGfvOq4vXxgauxC^7YJET{QY&8=xb zF~e%gh{JZ_fBrlZ4&X$dBLc%8Jd{K+Ue4th!afTmV4M$R&Wiq;!NmcV1t zPPrDm4VacMg$RR^xHSr+S$@Z$-4a%=i`3<@=oCe8VJeJi@bA=}>9tl5`#^KcU4floT75}iDvd@67!&6ANLmowqcP!c}Y8j={g z;6gm3xmSz1C6?-b>t2w~Ts+S`HxO4>G&vn@6j!L?+cRSRHf&aqI{SzfdnZJCqBnz} z+Wa$ir(sM#6B>#KN`E7=LuJ7Zf=Bn17Es|)LPQK;hP>(&*0u6{u~2jaZkK2nR_rJw zg64_3Bw7<(S{ubh6~kbchlxhBWMy*Nfj(3`qP&>Q(Bv2rP$97b5$Z6Jf?tM`)dG1b zYByX~BIZQCHU=fO#87Cmjy!VF4F<5;poJ{*X@DuzXI-IANgkBMWGx=Sg3ZqwO=N{d zD^w9iC}(MjZw05zH#o}GeVB&9mbhjU(6n#}*PAWuSQaFEEw^8;2O2oDrRPn{2;Gm4;BG~ne!%8_}~DfW^xk6I5>LY1c2 zl%l?e@--^)WOMz!2i{Q9I9Cd+p8nt34ty}_BVP3k7Ow;g%3z5NmaYi?H5veJJl;5+sK9~=an5R00MgEEgGZEUv*3OCg$o8gsRriL4HT-<* zR>QMPqXLBDe89Cq8o>#5^_08`1a16?a9XflKc!)b2sky1I~%iV_=ErZ`@AThfe+W~ z2)rv{rNomx+Pz88oKRWN)DbosTW+YDujn_aKBE5q6srVU*H@1}$mw3Qmiw306b|`P zKn4K`AcP37{~LPRhbbiGi^^$RZ;v)Jhx^v}*D{I;YN zgP^m^4a-}`WUGy$hcE4JCw7@S+{Ecof@c)vItIuW0==t|27e~z3!bq;fWu6O$xk{T5~t+A@18T;o;w=>qi+!L)SWMJZO zW;d1Y_x$-4>5$;VW9H}X%>m;ipDesaHb-(xyju^4s7PV4Q7J;H>Nf&m&P@u$+YAV! zzHj@?A928YHK7n_kXL&Xb2CutVX%D`PfoM>pMyA<0s4dsB1drcY{7aRz=58y1_j9a zyfe9eNu=RrH2gW{xCMT-I^-@&S6)`1M<%B5*@-<+oy81aDeIY?VY%Yd2f&LfL=DOH z=H_|_)0ctCoBqKdD%Z4v?$u>}kT`$;iE;O2jn(v~@0AH2r9YWweq~dDKJ*KJlx*I6 zpTb+&pVEJS)r|FTp3%gEhruZi)qv+wl6ZAnfG8NyV9?DLquOXEFr8uopt-pJiohcL z(x)L0{tKYLID#g3^b)v0xbEC2PU>JB4oW2|0Ua~b+sO}&v{Zko_z2IOx?O=>r(shUL}8$Z6(Cd{*^0Sh#0 z64F6P)>qrO*ZR};k4@~q#yiWq+Ey+eiB6N#82Rxt8aC$V=j)W1xjo$ews7gf0+<;A z7qzMlxk@=-3fG#+iX4+G=coZsM0Ac(7_Ah>i91nWDovmzK@kv|ER3oNReJ3JUvV8^OzC)R($u!I5e@wA$M;9=oOE~t`YnAwhDkm^ z1`f+S-t)3q7~p>`+>m;&M4|e*f}C|JRxxylkodkpF?@^m|#b3fUxZ^!M3XMF2;CPhUc; zqBSo0m%NmD?~7TDt{Xx)sdY_hkUnupFJBnm%7qfCbDn(~b|>HT`XesFXl-v15s|^5 z9JG;-GLD~SSF|-L>XQ*H0fR78nb8#-n0~3lm(ZC{-9yAAgszdxW$90_$7Pp0OUMqS ziBN!Ho>*}nczAfg72@&HE>j~kxbP`TTC&H|tcQT(tSb{2=rh4anR9)x}l` zgS#c5U5G4uB@YIG7^!iy4*NNh4z4U_EHjufP5OA06(?Ee^DMZN&8IAo9BO?M-LF#& zS*uu{BByvX$~DcVq*%rl;~gXsnv2D6NUOV`xGcAUkW4Kr4eL#=>F@Wa7La_PiY7Ugh&IFkV5jw+K4k#rUHk>fD`vC>m ztX;S=)It^K_Wt0f+OBq zTf+^SM^0tZn-HRy6_-!66-)of{q!7dbPl`h{90c=w`!Ccqnv*l`bDQ4Wi znj!W@th15e&!GYb3jFa`c8M?fh`i(DVcu>2Ik9I>xX(k*d-+*WKib)izCO0&QS*N1 zHoSP?$>e1fnbNUN;YnTUz$wpRSuddkebqH7Tr>#$-H6a6L|{5rFuGyQWk6~wg#Ep- zz+k=R$5ebF>4RxV&KSWX*Bg zp69go0P@rq1k1Q^2qIwlT9m5_L7XVWTYP27=w`Ib%pWpdNUiFncnRO2^Y+eDCGZ3q z*Z9_0U~d-iK;&rvVJZ~kZw^JA?DfLGbP{zgeeV2H*)nJu=jE6lPhgn=cWJ3}X3-jE zu0b*X>+_PKlmY`QGbS?yTMb5y(+d1#eA*|I`Yc{RS)>O?{>5YcKRmlXKD|)eR#C<$ z`ijcyP=<)YVjoJvEXecIX5Ocky(Ej%B3f4jKZoh}q`!j)LcT7YGw$o<+>^ z7G;15tZEY!ro3k_q#bt;uP>K>t_e{~n0S*2zbf?5T@KW4r^G!2_Hw-+Z+h+kASOr% zUwt}qJ2xmaDQ^n{9?Ga*$%nB1#r*m{eKFwZ9n^xd3ZRtq%BLw>vRHw7qZ}v_WCL{E zuHVz|^L1zrd)LxY;VMyH{RM7lpi=|b9=hN#TiV|QxN^fNjM5=)@C>GMfU=v9Nqez$ zjN8Qy>Qx8$K0c{?u_nxEXVB(Zd|2>>Jo(3*m+WJq z#-e~u<3{ZlN<5-{_|^Zc;9=r&YO&V#Ejk04B(J>ufW)#IE~8NA*dob%IqVJYWsxp-SbYrD4{5LTYb z!yk9)yeb;2WOQ*WdbWXq){CB5;`RI$0EEgD4>;YX;r?i)mQ>N(+UVSGLWQgR`NQ(; z1F&)YT3oEM$=D~esds{z@6jli2I0<;(lrlz-R1rB;DU2yyXx@M5+C&!Ub>iGn9Dog zKj-y#C&Mm7ZsheNgKKM>yJ6H7*H@jQmvw%^x31 zhxW9XOxC2@c+y18M;@EzF4pb+k@zx3jV$#0HF{(@ekKhNNEl-EyNiSuRial8J$2z? zMy3auDE5xlQM+F{YW6cZdpF(RS~&ko?F)C{hqCv|`)sJN_ncnTOcYzVPlc6ad%hUh zmuz%c-1tNP#;D#Zd*!86q7}swxTO^xa2hd(6J0qAp zaMO=`$cv4*Cq-W`1#fE9`&oYU35^6(vU8HJFJyeLJ!X zKb@)R{MGFAe(dZRYB7H#qj#0}p8G@&=EVH?$cFAB;*rL>)#C)`48u~@3|r*PuRfXs z%d~z{qlV0#C*Y^;l&JY4ITs`gy!T_qWK=q&CXV2CoF#YZ2Jq}+CQP|=u`ma+7-j>T z!mV66%8Ru`#oU;N+kCyX=0G%)MsFDPL2nY^=?M+yCR(?meu6vj88~EWgt3a2EpZ7H zZRtScj<;JJx=C#Lsu5^CoKwIma8iNgswjkJ!GWyVMaYTq2El4byFl10n%1T0PWVoI z_F$2GpcOhJ!WE=^2kWQwIU!`}=K$G7GNxo`$k9#6+ zsR*A!+Qvm*ZX&@DlO5~>R|XYbXy!eA!}`hiq%Qn~g%+ZKO-LJ~Nk*LjS|FiCbS8Bs z7@)v#40e6E0*UznVtIf)qAL&wLl9aI>M42+6m)Yzus()`Vk;v9(I-)IJ}eY$mIlGY zuXccO&`6p?P&p)w1>~x;tW;1MoEOOiBD^3i01~}?8KGbl+$e35P2R4DSLo1l5N_hB zz~Pl^iIkAX0Do~{5mz@ol(r=Uodyx)Ht$5yTNP!m!Sv7Yus$0T8-RG<;8Irabg_X! zx5G9zLX-q@wJ#%FhE#=85Pg-nT!x5xN_2~XM33cI_5hsj?2dj|&!hE_S5>JgAZ<}3 z&sC*qa1UG-+hh9nz0y44RV8%CSa7iEW!v@I=lTgNkt}$It;-!Gr5Xu`yz#x@O-0gH zGnzQX1+HerVYfZI6BaSq|LtpIvcTE!E(So_FE>tIwX9^H%MKpoEFi9XCec$ZN!wFP z7`J>)R#KXl+2gKQ^r@cfsd_$J`lrQi@A#i;DEjd*T|GZ&th^uXD7Dx;xK92t(AN}y zF5oR2;2rf!jd>y}2*~85^QXfCp0nI|g%F?MpLuCrdm-amRfTD5o<3(X!=r%y@XVGc9{5 zj@(5WD`%?rX}r4~%%$T|iBgL)UoUGo0<1rqiu)|ZbNS@OT_*BAV^1A#nf7wLs>|D{+^n0gxebqet+4yBo8M+P%`_h<3y zS$XC+&#>Ya>{Ud9!m))*Ut0EpK!m@Tr{Njg!_I?BWo~2w{(pw&K6TXlpKXNjFMX?C}UgF4sWwL(%w*m~6Psk%k$+01INQA_4)Bq}xun_&VI`uIR*f{#ztE>3;x@L2tpbkpZVK(Ye3IIJmGDHiJfecUKC6_Q5JZmb0!9#;^vEv<*p_F{W zs9mq*L^#qIf+Pqaod z558DVEJ=%~o$=mCnQOU@R3#=e@xww}RapK3Hy{ zXbeT-)eXjLP!L;PhG9N`!0Pm-y=C4dU7hCIvPQqn>CI$~A7lzg4ZpliwJ}FsKH{vZ ztn`G8KV`!WUVEHX{@w3>cf*Z0bm-WjWy_Y=ce);9z|)9)HW^L1steyIpASXTfmk~0 zZ%Ri3@W&F#P(gkyp7exLCU-pEbR@sKm%nCzJV}Wa4+f0)f&0TzZmDoGTVV->!V$EW zncTHDCWG-<)MqnQmmK72gHYQX&M;N6J~l{=5si-+JD$3fKwW*!)#sjfF8$8!+dXb$ z&$5#}frvAbEvdF7Q$}@Ud^2%8yR$M-YLA&h`Qs*UEEB=yG!x{gs6H62@>m6;EZFtj61~2sLN`?HYro&`1ny#w2AC zOZ@x0e&4zcIoJA@TW{&uvHguV-@f)hS%gQFf&?~EVF~haXMJ+Tvz|}RPmH`I_4!ry z-e<+<{W)B-D;zQ8=-4sH3Y7vX7y@e-6Cw_I1VZ+uOF=oNO987uLJv}x0(gcH8@sP? z=OPfiwl)~FNIs0B*C7Cl66W8#6re{J01YAZ_@Y^+7y=mi_OB`h0O%o>7MZHx;3M=! zgHZ<_0?cL#HyQpfUJ8l^{xT~A&{d2E!D%MCs;Vl8Fr6NZd_b!nhOi99s7H;&(NJtM znE;TBKjM{rVuw=803#|uqE!pYkcdD4FL-)cjAJN8GK>(zh++7^5CVqe2Y4va2pNWf z1W?Av1~3GIA!HK5Eb&4M!bPCO!Uh?J9A;^t>Zbl~21F40SWC3VI9Ry4Pu#02^fdYW5 zy1E((gbQ_e4S-mh;tU3{(31+#%NY3uo}o;_K?oS41u~Ef(GHn>p=TCKc)=r3F3`|I z1Au@AfKu%Tf}?$2u;}FeVaV#!fbkI)h^0<01M3MAr8p=&!=fVa#0`Ncl6i!SATW!; z0u(n0Xiy>$Mx<%~;4di+FXmwYvC{DbMsbD}SV@+ugPVHtIA zDB#aVeU8#S(bA2P?Vr0Be30BY)HnCN_{Jgm-Q)c8duDcx%O9SaUN` z(PbYc*A31enCx0L%zt2c)@!ake!yulzFU%56VPlfpGzmQL0A2*mF}IhBO69K=5$YO z7-Aa#qHl4p+|IG?c|G!*hSg7arD5{x$<4!U)8F*X?~z>D-!;Eyu4Hz)Vs*w^k`LH? z_9om%U?`qW=8W&{a9bKuK1;%KqH*ca_@Qa3ts~OIm#wuO-E6BV&8HHH?&BppYc|D?EuTvH@pkpkFOhI zp5HH4y*+NLiFzH`bSj?4b>rPxgqmomu^ehF96cBooz;PcGlb;;qx_@^W*f4UtQtK? zRt+TVEH?zy&m@M@02(q!s}F{r#->IELxiJ9+Xp=Ch9jp~>3i30ME-4Fcy)h*PSl$R7&l#$>&J}?&~ zH82Deu2jfWu+NXRQEpN3LP^ENEHx^%rCt!GB%|`wM|r8!+WcvDWiLqOe& z9EJ!-CN@woGo;X^UIlZ@qjp#uM9smORZ*wWI z5HwaCBnwnL7?qh?K?s-v;Os&mYs94h09Q>-4MPsMY&Ny`gzfgn7yRP&9eDTsXV>5e zaljV>rLce@ZUmDsJ~F80fqrG3A73?icA4Go3BBK{O@}a>7MGs0~7-b{?4L}V8paDZ11JFC_owQo95!-4Jk;-!1&jZ(SrebEfx|DY#@4W(U+mMsdOalLHL z+&PFnYVz$Ub5}GP-?2|*2&uB#?eTa+@nAe@cNni=6FL?VvyDDyyrhdU1rLmdoLn-H zYuJ#k+YT=nyiR7)70$@iRfo2gxuPk99(Ec89Jpq4Lo~{DkSnig_}!oWN?k`y-sy%; zlwMCf`9#U_(o{N=-usFD&1UflUDE!>P%OzE7fBdP=8tA~m6)Bb!b@isPncy-rp#8u zYkw$WGrmsDm)bEfV>uK`{}Ft%vIaHoFtA5k)ZrncGL!Wqb!`dRKJK?(ZMk zH7*r&X0pb1!#wR=BV>i99K$M906?Qh0y6(=F9nXTue}t|4goz6Aqq84frkLHB0Hk~ zhnE7#;-x?j3xJG7BlNNab_7CCV~U|p4~8-cvlUnb!VXfWA7uZNO95lP_EO+zQr(WT zuwbgx6@AyGfE>aiJVV%}2xE$uf>8kDIkzu1p@xGJiOfNV=?DS|fLD;|SqGQ~fDwu; z>3O194R`283;ipQ(!O*N@kG{7j7aS$&$|$mPm`#DXlS{1Z4_2$`2Wj z`xpR>4bVfT0vJme(lcb1;9wPaZCcp1S^(fd%6*2wk^qYU=#e9<7@`r$0BX_#03N60 zDM(=alAZ7p2e~i%(Z!-LlwKO@2nED2!cJ1kDzqaRJY3KdGzd_~T4SE9LJRUiGNo)L z8ZZK|MkoT194HaOkf<^RthgZ@^T10ET9lmdVi*{FVG297YPigkigqSQC{@ES1q-?` z41wSwz(RVoGfQKN9@UBr!~ir&W+=xs3lfiDm;G4FEM(G)zYH-I;;6McXFG1)vB17* zYUc19^W@h(bKdjK@7Xl<&B*e;*6DA@HVw~g8h&i(YDv-X2+Pi8SmTHjLVz%I}WZ5p4b{Ywl;NeVRp}?nopmnVl+zA z#l2FShSyDa#lN&qe*2ifvcCEKpWBc#t6OMU-_ns!JLkV2TQjh1=+DvS}ZN*A0p99$Pm2iO`w>@LHz5mEHYWbnT$XivIDf zqwF)@$sV4X*gPUmiGFl?Z0#W6#LlselV4A49u`^EKe%>yzHWxVLLwPt(L#^E=1IHx3J}9^hNizvi=-P!w3y%fI9!B-ecU zqI-VNJTl2lFi2MVAsn%Y zqA@Hs#L`2ibb?VBw!b#4aur1|0+aR-U>F$4q#AoL4D*;`2pR0ah=md}5Y8+%$QXDj zyum|BgOXlaV241P3wGQoX!xg>0!YYoDewrz4%l$WdB;=BfBu^BIns9b&Z3^wduZ?P zTMCBimx{N`qf0vdeLe*h_0>JSOCX?v)hm#qq>iNwdw5_q1QeN6X#Arvrhn*@N{TUx z(nkl^Qmy^)`E_6@(x^!JM`=xEtNQu(@9tFr3>TFx^(}gt{l|bR)#pEcaRX+6QSpqf z>mQtl5C9md#;F4_gR&3|N;^NYxWoN(V5C|GPo0b+ghTwRH}||e;%LBc)PXEV@lw!f zqqu?Ras+0Ti8gDYI1@>Rtio3>1r`o=ts1~rF9p_xDHtV6D`>36zq%As$wVNW=sN1q ze{?&7r}#ziafjsqz#{@kd{_v=c;i17>J{~0yuP#7)N1N{kK1sB1VAQ6$||&DD){21 zKyILp?eh(n0%QX4MVA6W!$K$#!th^S3J^eCyc7sNQ-p{qhPaFYa4E=8e(j~eEDa0k z(atQ5DSA|cmxBN_NrvlW=KqsRfmz7Fpcj9Ml1?OG=&@E;6+Oh*j6if5t5Yz8O$sde z;1Pl}lB&3iWkxX#=(QzjaG@Q0a39HFSOU>2Zm=_pWcD~(kWW}pDoY>$zyMg}z7fU- zb1IwXU!%ntOJpgD{Q<)~2t>m(8jL5JVkOp?Gnp^3Mk}51YG-_Zxs9Tc^9b`GU>D%B z5nba)zl;L-f(tL8usQ3yXHnXN?T;t;WAMgR%No3hk5%^@4i`)M&m2o$R^N@{=}S(rQ6G#zG#N@ zQiLCPKFQ7uIzPvblux=zvD!8 zQ<*z`pw<&h7@N-K^j1{Y#1qK|SHvGlMkA5Z$~uBZ0ao8=OT~iWjh_Ve&&%hs-f)6C zlc>1-5mZBCWLq*6D_s|l`Tb$9#p!1usUcZDs+9KajS#hN)B3u$*U|suA4UO;n-;q> zY_E1&>OKC#Yh}@RAd+-g8qD+F3DqA8#nQ2OA{b59n;V@0D#Cb0y~E^5`YpAQx}Aw= zAXxal26B((w)^6qFh@kz=8f*J4SJ$P)$a%<51A7?j+u==E<_`y!&{O;M&~fIXH6EW~Ofr%3MABuh@_wSj$0SKS^ZYC?3AlQpPZRq@)wV(L|>!L;hD!$=I0q`@0sysdmsrO)h1>bte^lpei*`qQ7TYNhu9s3eFjDM2DNQJ^9=mG?#Sy>OMl?}*e ze=!8m-bCHkUJC5Nue}tIBWY|~B-86`q=yBJ4gmnJejUFMBer-NoO&rB9|HAQf@JV& zu&{{$z~d}KMGt#aB8iJBnJxR#g(VE7mxekyLfl}-NS%#n$5inD^Gg9aP$EQl&JbY5 z?Vnu=>}4p?Lhvz?S*@CJntgF87+->gAh`#r6ac7)^wfAEMKlnfL>1VHivSV8B?4fn zR0F9Y0Hy;dWDN0>M$}j~xU?P+Ad?1w{{Tp4mIfsay}-=UV<){V0f3&S*)KJWEF8fG znFs_RLC&I`69+O31FxPbOrpmO2qcFE76DCi)XPp_H7My}lzcU4it8bIdJ!OvuoS3_ z23|vj3jl!yCgU4u$vi?QOO)=SLwgPJD1=$+dwe`s=I z&A{x=aYiM%^5g8*QITbRQ#;2|KvsSBQsvm^f%&}? zJQReBdS&;Fw@&NoU-UtK&$!^ip3!B!GwTOtHxJ8~%%CWZtn5!Ao!dGpUotbiykBhf zfZXO0p_L!!OXsAwkDPWSlc5vdJBowMJIF7IcX@lM&8=giaI!rIWPPl8MPP`6WK zCpQfbuOE^y+1`D?Z8}o*ZBE2`1$ZP4Uj_ z8DBdnzxy-Kyq>n%?_qy-+vxnk$=S^#((8w$*9}h5ZyMe(>2=EW9F;a)dncr~jEt@5 zOFTpKx@Gr_%{Y$Kn;Kk&1J205FaGSx3ThF_F)+-sG{t2tEb_^X$>M?$OoK*pPDL`* z4uXrdrf0TDKw?NKjVT>Ru;^T73IGiILi>*UNk|=2z)CQZ4eh{iG1R#)`wh_rGw2~J z0^AVA*;5-x9s0n_#Ug|N3VWb|TB83vnAG;rbo-+99k&V>P{G((=-4nx16t1X1EYcuG!W~bq zqFROp0whqMgGA=NA00;sbuz-Kz#({SNF7?3#aakn7-xr|&7USyEi+4f2$FIUA=JZv z?0Mvc5#?1TM$W_UyYk!wNv8upTUHN#T6iWdJ!N^=bjpP4T}J(4W7b}(tqhv zP{xvA2tgXF&v5xJ%i}{E?(bL8@qsz|s5U{<9~6iKZsIHs5(naj`+w+m;DZ^q!dw6T zvysVqSSh*&Ktqen{+E{m+W`Qtm3T~v5n>JT2tbV~4YhHKjR+_RL{%Xz57Oh&Uu(|5$tA6l<@6TVjxZEDxTNf&KXIv@coj%2e z{XDtJ;9>(w!*pPiH@WpdIaRKKq2=?__ zZzAuEJAuRij~W{eBo3spFXiLH23jD$a|>PQ&DHBs<&2~ zn!@pnFBtI_D%f-^kjf_V{wiDfQI9{Ij2Vl|cE0h38z=%Vyy(JCH*~t~_S;^0_2o?A zytUgLX-DCkID!$U#}`c)Z{x~)OY+q#^94s3@i^XObNN|e=tDVUQ7e|Drrwrw9xzt4 zu-4Vw3Knl5%49B5z45th;^ddbL^Am?Qy1LS z`NqpGzpQWsEmzp+94MBSJ1uP#F?xU3|z4M&d*#l}Z-Al`Koq z>mTsl{GvPavv11JzbR9-ED|$TnKdL~y1m!!yz|c^Lt3?Ib=qmCoqf*PW5TrFh`D?c_ zb!y{)P$i#pm*(r1<%7p^DdV%s$WXqa{Y#YsNNm<_!XBNp40V_od!RrgGw4ZX!D`yn zFv2bj4W#xs#8}Q$kqc=$_td~^2$=v>gQRJbaw!l`c(F&}l0aG^ZYK|0keojp-9_OL zzy*seVTc?Z-Cu40*OvmY>{KfbFIdlr-M)Vad8nZOC zE1J+F1V(hBSG+WoVm3n1f;#}14F)ryVOB;W2X-(dA24Y_jv|@b9u^oCH-y6i{i*6; zfdDrNH8(NgVu%EIp+r6n3_Sv2*V@AiOhcUnDxP2jAVGgdVhR-!0-lEb>>|Q=YJ%bs zH1v?s;MIE3&?u!erZ5AgxC1-Fkpma>h+-BRrqIq5#wfg)p|GF`48f7vu)t13HPR3w zfdoMYYt~%&6evSXf*l$tWdkxTT6y&7?FS_5JP~eOhH5ZMJ5#h5JP}u zt(pQ7)b=P70om~?2PG)AZpE1ATyuNm zHVsd%9TZs9ivl%&Y(|ulc+>Fc`XMl;Hw=ZqI`iG&@_tl?wG&_UE$&UVoUdFETRW(3 z;;Ysf?=VXV?V106RtL# zK2#M;B+ZRY+M6r^0IMumLmB`p!fLW`ED-Bn%t?}p)n`p1U`S6R=d}l!g_zZ6mB}{% zdXU+5vJ@4l#!hHJatJ6bX#iw30ujy>?8kXJ*d$d9VAdaGC;bX`ko!fA@#(uD$km>0bA}&zhOc9CF6kfE}3om0E0BQVu|b zOP17XgMWF|3?ke9`nexpJoSGr`3S9ZW<`TdQ2R}ZW}cJ=TT2Wd-NdsrXGFM z+*ijHdxuF~DQeNJ}7&&p-zN@qd3Em8O-2J)UCmJBWPRViWf5RsIj=wsIm)Vi~qJ50w#-yv@nDt zIhK$_h#O2VTeScBQZPe?50NO34+3D>OTm#bO^^l-02=~~2O%CSv|TWSnFgBw;Zn#w zFEMP<&jC?TjsxJtg&!~)oS@wtJbA7uM^J0nji><#hEcZi&oaEs$UuZ3IS4bREijRi z5(OqVa9Bt4iUShJdZfiJ!UtA(vZZJ|7q`2n`htJ zH*@XZ@*8MwNj0~qlP<1nm>XL&iyC?x`?6I{?G5$GcgvS7UVPM1zvI$6 z>#no@2J5e|!U}&l?u4r98s;>2Z9UogRFa&IuAcTKlT)Lwub44b-&k1PJby_k$7-58 zE1J8UXi;%#dsn}kqp3O7)7Muu?}Pg3Z}xO$8jC(Jn>K7gN&Squi(Ar}bVujHf|B;m zj8-w}HZzUQ^WJN(E=bLp&|z*%A9na*tE{^68f&hx_Bw0twDV49oN-2FEq}8ubH_Ez z8Y`lvRQr;mvVw|+;-bQq4|AlCNDP!p|FoX{&@Lc zbImok-EP|rHrQbK6_&sM{`*y(sEex_$9%H5ty=;Ay;D%K4UJ6&_3aIP+37`1@69M1 z^+|D2Rs58!!bzU5U;gr!tFOMg9(djL)=iYJwaz0?KC76CD>DG2t)si}<1w8h&gy)8 zx8}Px$iDim^h>{JobgUudslPrr45sRyBY+e@C>_2d3^Dszv|N#)1EI+Nyr+CncHHF zCl{gGF_S2AmjW;tCUKnP3Cm;{HE8}9mjVv(S1$z|%e>nR1;A-iNSvT0CfbOnkGNRy z^Bivg3OQ_xA>wxN4Ve6;5MbxX5R4hjAWJatEE+-E;sz<<5Qm}1Lnm+H0F148xiJ*! z4X*^n5RTojON6+=G;LuN-lf22+LG@88z@Q*T#-YBC6Y9f!L)QpMyLY@3%A0g*;ep5 zgm$!x7ca&MJ}IwJdZeBqc!4c_RekYQ4I(V!&>Xdxk0dab;hWhmJU#+A9FqmR2ELIG zB#0Q4a8gDjA}}8h|h=+$cOBSP4ii(QDvEWMu5w_x#c^JV0FpXd?Y{BPydovExV9TCq z_!C(|@RLq2pa|TsG!T$sC0j8)``I&HA3WIb%3pg%-(LF6Un-vYOZKD3+DG2fHuQ${ zs9Q^(I5(q-o&QSno7X140c-e>u2HvUM%~){+EoM79`BiWU)x*PWv4#cJ@(FSo%6)| z+V!RH-qt*Ph@Mcds42~U{%rru=bDGzSohjhNmu#aUENb3ZG7XJ4(;wMe@(q})4=qn zDxSZj?5Xp+-o35j*^BC4y1aMN{cZ2w);00Is+TUW*OR|{+vj&2U;Vg(t?z>elZOBKOPaVk`vp$wv^(CtZSg~=>(wP^VCtiN zpFG(y>Q>!#=kOt&BX7yh_}jookC|y}dhIHCTk_~x6v|tYv=KL_hTc%})Or0SA4za~ z`_iA;Gn`Z$Ry-8JG#rO>F*`D);^^a;oRRZYIdP^$sKSIn!>A<%W6LW=sn{~`Y|eKk7raJo#C4;g9hFrNYMZmGn#A= zF(3_0Wsks#Y8MyB0uwO?Z5KEQuwWWt!T^>!_`ErO{G(SeG4-EdTIDkyt~u%M5>gE9eZo)*qnFd) zvKZgpJudfWkdD4-KEa<|F+Idd(R|`v#hN`WH2pgt{mQSd{#;KU-!6{+`K(9laJ0nS z)+e*VbFdTcEF$>BOFq5*^{P08NLnOh*%yfP%GkfX6!4XYR7b*<(0_3$7)0p7r{t@b z0%l)NSGu$N;jvvu-Lyzf#3fySx~DY0Rc@9>f#V!|>tfma<<+x(d-X>(O&+(TM154x zeVfP2@M|swgY|!VDJ1f_VQI_E$!~Hgm}ShaXC!|q!>8VCtlrs_e%BeT+-d! zU)9()`omdm?05HNx_doh3l=VE>F8^2ZmO+oaCx-0rCU8NoG6>vIrfI`_J$=@tu^(@ zhne!~x{9ir-oF0$z0e&U?Sk!X)qpN(YH2(AnBPm$uDk83&m1&ptLtwZQr?hhZR^O? zEUBzWexr&ZZ^Ro@nb!7<7kZz%h>dKvx-s3^*;Ut)`D8&wce*EBUOneQs69 zd>@@MxnEi~Fi&HB9rtb8_u)0E#@dq7T@YaKs zha_lOhYcI5s2bbaOI!P2pR{P&l7`OiUKb=0UWN6t`i{o#f%5kL1&zH6YcnO4brPgh z9HQM{|N7S}t+dj&4*1so-`aoAz4qL1|NTde8c95!f+Sd@uf6rfUuN!ECw=#Ng_kbZ z_tZAMPj1ov=-$2cb6e6Kt-113F!>jV!Ko^g93z(W$IB}&cyy?>R3$Lc z!E+|g!}W#$5P3M`T+N}xKtvYE!izuRMI+pB0JidTIE>~nf*_aBl1mC020Gk}El6rbp@QSgV$c&hsF)eRqcsd#7wkIvNFmcdq#dAnAI^vBjNw!3bE0nl?V%LyZ3OSDm0Hzro3d!bA z!Qg5n3dc~{c^H3;NPcW#S_(5X#K1J$O>V(2UI&sEdc}isVNuY9{`AMBDUXwXa;!`@sX+QQe*XbJ0Vm_kQqTX3QO} z!-r%)eY*15i>hC|OedLqvv=ez+RMu4FX-2gi-Jcn8bMLsj>tDM{tEvA? z{t2#z`I9Fz@7~t&&P`R%UEK8MwY?udpHQuO#a9b@n8nfY7^LLaM5 z)sYqt%PxMSd-6j)6YkXvH@ zKZ~C@SK$4*MprDo@7=ZN!P7*lTkaOljK8%FA5#DF75e1XVK=g+b#Ks7i}#(IWPm@# zPoBpy%l0vMWT!pOvDBx-a|utL7ddwvmJY%Z;KXohQGQOx65;FsoN2zI@Gax`%!aKv zVn}5Jppcw$4!(3my*Yhg#S=z7L6|gnQw1PD!n(3lZwM9Q&7-2Cy3{9C^oSx4AW~jl z9uGcb6sqTrOJOwlVvJ`E9vyMTQVmC1z;KB0kPo)PVGo_u0fbQ;vn^8b1Q85AadGj} zjAP(%(u@YfrzE^`gZFeNZp@lrJoNpt$HufBe`oQ@_t(TX7`3Lm9`jm!-&HHCzuoN* zub=)Xk#mugnEnmS=Uuy$967Cp1>R1>Se zjql3pbRH{Xp4O6nee90Edr4=janRIflS`*brUv-98$K*9uaAH2 z`TB&?%O9RzT9doH2EOJ};Mh006gbHl1lg!Mgu&JSlS_eABr3L+y%eJOmmT4)Son#^ zUkcJ_eDzX5bJAx}c(M+{oWB&pqAg02OCe_tKhBGOV5&Toh=>cHhw=CafW=ta4TX_6 z+Cm{_L~1tpv+QMO8Hoa;fwr(>@SiHqgag4eLYtRZ1M$l_%fAvKwiU_QZjlC*0Pnw{~=9 z%O`U5{Cixp=FBvi>+LG2agH~K|Mcw#y*I(CKx-dO&bWdw_VQFPcD$QsThfjbleT|Ez zHZ1zcv#6VGNwqe#wDobSHnD zB02>H>m72#kej#OX6x^M@4G+y`Ogmd_95Hvu>F{^V>r;*)>)Csj`*Z_*oTYjTH4!M zlh4LF1&_Af`i92F_U`$W?K27*S~_$J$qz;Wcm#}NjyXoXY1%ojdq4Q#gGUS>u0@ZU zm%3DITi5&-`W_#Yd0^A_`!-*E$qH=`4eEbskMymp^?!O(rn@Wm>#}kg{D0gjM1^~Z z@=SvsU>29X6e#(xF9rJLhf9$?Fk77YQm0_|-*yU^F=+lKmjVDH0GMXhLt$(MVR-at zh(L_5UJ9WkwlL}W7ncG(%ef09l6YwffD90~f{i-fH|URt!3gDKX@*DNo*8*d$FLjQN8Q>t`Js}h&aZso((K1iG{1FS^Xpgljk!ZZ+dlFZ4Xq9{ zGki!(?k9(}oym7fC){hUd-;mer!Sa)-^m*0fvJyHzi` zd*8jaf97)o3tsIUd#8Sw8?Eo&*8Azx70>*obHcspcW$bG>pGot%g`H=Hv8S%%APvE zd+MVa_3jDx($hKqo`zSi)EGCuc9n)!;4N=nyXfK5s~93R?8eH!UD)>4b!|g$&~G;n zy@4BKb^8r(TqAEK&s zwum4As8!VgU=GI1A(qSuAv`An8GJ+p7Uecc7EfF1zR8a*0DEC8~S0DkHU_dPF92#WiJWd+d>HI#@Aj7 zk`r%fTT!J11%ehMOw^cVs1+{&Ti@hTFbj6sOF<65dMVh&`RbrYIFJm%{Ig4eAEM6FWl%+s{|K-Mkd%|P8&Lp|MNn=aY=Mb_9t7V4$*3*y(gPVx zO9RX(Oz6I=om2J2L1Fz-bzYJ%j=qJx(9|$D_d07q>qm1zB;6`Cso*A zFud`@C%P*>myxFC9y*L{BQ!yjz7{dO9X zXP$Wm5{zd)gI9g=7mWEYE?Fq4@0?%TJ+C~~(3}*r@FPH3^5R9XWyY+}CA_z>q_1K| zf4Ye$&RIuVpGuds4ve2&H?uUYEo4RBDr=i&mo%3*_jcs|_36Te3xE9MA8)bc7VECJ z?gkrfu>5k%?S0^PN@{Z7EX`dCEv@Yf7A1eHwx>7SS2nTj-3yx*yf5~}B~{h+Nn-0- zGL7k;!os4?Ojlq30OvX~T@5L1+838Xx*$92zHIZX#!T`z9rUOjUA-Ndp3+iGgK3rOPl~u0&>qXhd1q01RiZ0!eX=qLtlvE?c*w$Fm zHu|d434crHzHux0<+UxDp1zij-lj}{rn$CrN73H<{O?9nICkI_t z)37-AH=N|8t*gJZA>-lJ0GEw_yz`kovv2;OZBFu?Qh_(7IxE}y{(8;z>#VajueRK3 z%fVX@mag&R$0xzHwKcVNjGVIQ-A_s~1Mpoq@>W{iFlx$zIpv+zP09D16o2xEnmQUP zr@WLY{kX?F(wTO2M5h2yP*QQ~xtFZG%F4>)`#<>pw-5dHUVHB~`NPRfByKqOba!1U zBbL+`okBbp6!-RYcXd0^rI%wA5}n2sS6s2lrkkv@?m8>2oP1f~(C-{NaneMxTAO&z znwwLtuOHWW*VAV7zcnfdPPtTVwg`Aq?dx`|(A&plD;=i~Q z%wf^XjY3jJ7=ppaj5(e}n(bQh)*FKxp_321qS=-uod_ddZe+iDDTE<3K+KfHTN;x7 z5ClW>2PQ-;L+!t~6kM;|3lVOh2|5@0Etj)lO#nLQ=h6>P=2*sV9)>W>kwOVhevWhE zu_bS!8hB=o!2_?_$THe2iSf3T4yP+@yTJ)V#Fs2tB1oPP0TWLg7&?r~2*NV&twAI> z;WlbyFS@R5-?RfDXEK62tzpXMzbXmI-~4D19JfIh$xG22H|AU5d|cN z0dQi_5O~%tiA4BDc#a5dki_Xhhh{T6+%pF_3>ks^5-he1@d^+pcFpwDU@HnKULT|) z#u!9YOK1*5ik6fu#fg?!0p^bz-_n~mDh)@NJ}$&=XrMFj`LvKiNAe@L4n3Of)Z5oDdhj%DcJG+mDxN;C@X<3G zUc0jR@v|~xZtI7m!@sB2!lwBm1n>6v&>-{@O=$KT!k-d!5< z{t5STAZdU=%xee!`Cb3%QFW@iQ+@K!u9!af7td&M0d%CgwH=OpQTwWe(~D}A zzkALEc%3k{mM7d>TGqb`ETUzb^P1#wzR>~75h)e%N!H&L(#flj%j!KOcpnRL_VOInY= zZT?R#`}Aj5CVwCJwwIUGr@DH&lCw4}!T>#x1_-W_(_ zeyc%Sed~a4?Y75m2ON07JMX;H+tb_8mz`gcE~@XTtZPZ7l57x+p`S^9uX0CcNA4ZS z$;cbi<+aU~t^Mu#&D>B8ef`u#^t+>er`OVVnK#*VUg(hsmX`8n#wR+f4?(*2{3Z@+Q5#__k| zFRVx{X-LY?sB0gXF~2DHOSzJNP-?EKYbh+reNVV+psK2}_JhY-3#L|8SM@J^yRY&S zo^|vM%$i@gxV)()lWl2Fek8fHrs@4@pZ(;gM{Ky!hCA%IgI06J6<56cvP=521CA$m z$jQG+sH#gf>m)mydZyf!UHoQUV{21O@e#ZtqFHqbs)R=FI2CspPxC{r%OQ10NN2v^Wg)Fyon?N7f&Bc2LLk$Kx>I zX}d-g%duci&_8!Gj0C|Ni^%Q5)5@jSC9AG?I)(-u!=Sx?NoH(6x6a zKL(zibVl1<8x6d&U$)>;M{3v27;iIH?s@R>6;@nvjWyTUY3H4i{(t3_pM3I3Z@DPc z>_CzNQFys|;cz>OIr)oLxt~?>JTR?310R61&pCU?op$7~j$P~io$r2k`t<2`m+ce= zKD;<{&$=BCZaMJWE)BP=n|WfpfwvD#-@RV<8$ZkTccnX$AIl1bNjAQCf+EbN8vff( z;on{gUJ*h37neeO1_(o6x)i{^)F}WM2m$83Mf}@N0n--i!HMt<*6kufTObW|Xf~t6 zJ^T<1Lk1#bmxaZa@zqO#xM7PbOS@=N5#w@Rh2f&lF7XyqC1TT;+w$=%g2#-*Mo>rC zRUu%BgRumQk8TKj8l0bOI!J<%JL0T3284WZh&H!Tct%iah{UHx4p4532qmtZ@WfR_ zGlgK`ye;wYhdAG&%7J;sC?y;K#y7w)!FWqagc$@RK{XT(0~i7U;4?o7GJ(S@`oR#a z%K!{M{d~h09S*N-!64)vVao~8!);(z00>5g0SF>OgH+(yf>+j%^x#|amLA^P#fPWR z7LIfQkQFHox5H0W&S!xWG~1FBeB}-->Ub(xrxRZ`=%fu_{#mpeZWAXfy>VFKBv^2O zxnv3KumJ1|-x4ySrkq{=V4C6iBV%MKkK{8)8@zDLwuCQN@Bm{$oW1~-@D$?U3o1fj zh!hT^V2c(l625_t;~YaXoh*i-P#F27LC6l#v0@Tjym)csM+R{0@|KhFDT;Nm1VKD9 zfc9~ry`!^u%rn(G%=hoFc=jSKT*IqZ7Cd%#df1J%FI`sn$mu#hPEUTO z`J*=~-+#4c;&b(5AFUa7`>cCTE`REr&Ucc3?AkKy#zqpC;T z*EI63)UX>19{O|3Yk$>P*1ULG>dk8xKXRt_vf{amY16*;y#IiP)9#GhkLw(9bLF!a zH4VL?^PL;#+;OZ}O9_JbzKa!>1QL zde-8H&*+`@c-6~S%)0Buwzsb1Hs4x@-8lEYQyO2tS~eCxaz@ASA^5FtUfufoU#nlb zV&Ib(S|>f7`uNT2DQ}gIdAf1j6N{g{vgw_h`^Vl^^4J+IuU|zGHBj?Y#+wocj6 z(*QsTCJ{(h;(el8@TnyWW{Ws*K|uk6^^j8kN(Cn>Fbb7FkWny-ispD!E$u2iRgK9R zN@$>8j0QeIFm6zY;EZ95xDd!P#~B>8iph#)#2a|BIGnL78&TL^FH!CEvw|rue#(Pg zd`PO$f`Z|jT}%q8MX<}yxD-N$grBsmnzt->to7CZzv%KlY9Na(@k2o6Q`~ zJ|_+XVCCCqzJ~xHtHq^Izm4WOCpCmr?fAQw{HF~*__Q&5o-lIAi^_GQ(!)Jc~g2}u7;Vo(W;e{V=|JxVjToME>Z~LD-;wP7V^0O;G8$Z3W zw>$ZX)@vT0vF(wsOP9v@Tc?iR^Mnzn-SOFsxy9LjAEA;z`4diZKpF5^2wbuhqmQ=# z`ceQh!$-!*Ms-PxSZITf8nzYhUU(WJ&j_4&)>JZWkfd-Jwd+z~3lbm4n}IEw>0~kT zPYMzFr2K0y1i?+S9;Z&5I!W!2Z+c*E*zthUN3s|*@EXysK_-gdifM~)cYkm@XG8u+-db?V}#sq-q! zDynocj!6j2H6(vIxyyqk4}6oK2#_0di|Z#ZYFSWPSD(8ST)~ai74z@=Y0E9EblkaS z#nr2J&VDJ=w6(Q&%y_x=ty9ZCdOg#bSx{U%zpSY$|srL6XyD_cH(wy(cu&b&ospN*L}XYPWs z7Oj3+apADnp4)rh{gzvPdCqLK@kYxnx7=B0pIu#3CyVW!JykUg>8^q5#>Dr3sQGe~3JfvdrteU#yD@1P1_H^6TS6`j{ zcCIzn*kFSVWNDps))_r|G__9IF*%f~$_l+zJZ_rCg{Ac~7gx4tl8?|meSOWT_L{fO zPv5p?`BlrOZeO$O$!+^9CJ-;LsPtGN+S}7ZhYnqBwN;m2e)(N@+x1%qd~3}$*L?7S z2c=j30l4Zo)RnqbhaOVpEx_X9A~AM$_tfP28b@r46g=eNhaa}mN-J%@!}iH9Ia`0d z!+!LW=`-i|^(JkF$EQiBP+d1L@457y>s4L9YR3axmR`MT^Bo&@Jg`N{rOUMqJtI5N z7yk;{^P&z7;iykl8djL&2CwkrY4wn*9A$&gM7*pxZ1(Kf0ybpH63mN&9*-DsSc$kS z0pc+yiyz_Jg8$N`Ae?xK*=2$!93z7BwU+`z@pS|`33~i(#rr(pDa2FHI-U6O-k^;X zui{W5e0Z|)ZV4qsY~k37mzyQ=e|9Nw>7QK+lo&Y7(FQLZ;PVZ81!*$zDvGKbFuKSWL;4p{&h zj{|c^^dMrFsyMbdbsR*TMBuprgAksXHW&k)ACxOlS+k4A0S*{~hX`spW-Foynnl*_ za)wb%<{)iZf&pOKjX7es8)rZ;G7yBk@mac<2tE9f87`q2k}&`pa3U=cELHHt9jbbz z&29kfVj`%GRD;>ddqOR790aw77Xf~JMwgSwc4(v7oF9_oA&Ky*jVSQZ+_psUIU)rP zR{?|{Sz-c`3Hc`rW(x;6SH{U#?hVf4!1FoO1{gsWj5tFuaUF`3ErO9W!3rvJ9)ZMj z0*MbSiip}SwFrV?i|OFAWq2CHG@bZ3RM~ab3K*eo@x!YSG>6XosGa;;(PL)~jJqrK z)^)w_-PJwruKE`)?i+hs$A}?~@7|v+_@J}o^Tw)Dl6?c&bVu^5AkhQe?X@!}G=BI> z|J=8l-ngdmrHkucx^(`1r?d?p(lzdG-LIy!>CJ1}G{!@3XdiWJ^E)>dJ$zdG+t+lC zzO!c31KGkUUDb;^a{nHttGB`T^U0PP&Qd!tAYeM0$2U{mSnjU>yKJoZ`@2IHKX6J{?t9UtPoCF5`61nV*|QgAr#)V# z4IX(*%Ujnjy#M6vq`Q+}(>3vl{>77e%4Yh|yi{p!$Y4!bQQh1r14}+gO?Z6Z!$;Ha zT-W&WWdpfyn>W98ZT6$b^wM=xlJ5Y!+7*C$kbmdvusncHA&O1yd0uR(5U1=wA=O4a zq>eJq)GnGfd^CbA01;(I#EE+z=?4fU1eF=4`iVLuMI@dIyUJ(-JuN#MLt*t_=<#EFsNAzEo)j807)rr&$!32%bch3NsG~57D;dEj$6RcGbN~fk;dkjyCmFQsU`Nfr= z#rJH{C*NBJrtf7!AIpd2pYr}?G9`S_X4@hK!$TdQhVYlUe`c&L)CtG8m$i%BIO6ip z4n1@1#2GaWb;)0Jmj}6(Nm0vKzTTuIcBRxZ(yK6nkhlNzQosRleDK7j+Gj7?>;@nz z96@bVAeb%8@Pt|%udTLJ2*gpI!Q7aeYg2%B8iP zr{A~ayXU^Y^U<%!UhdoJ(|&fv+ z5hHMiuK8XpA<4-Hma&>I!9m7@yKS?*RPfx`~A+RcgQ?CxZ|OX zOP@KWw=2`rn}h(yMEvX7&W`qb@4H(^x9V!E?!C|6>u<2WhGfd*57NEaMU4aV>w3#N zvz49w9bJ9df#fVCImFG1qbHYS%ZN)-YU-P7Q{Am@(p(kEdtYls<=wlt-L>|>t9v)! zxJr8HX-y5a`XYx@P}4DKZtddQq=6M9J?)(`pK7R29vRVTfOp*`g4~;S6_P8tCbHO((>_hwYBvN^>~F%@ppG>+PdZxR3hdT zlrJuCSA6)gE$#vh~Us6_qXsIr28F^*4t-PbHsekdX^rz34efU~mf4ZY; z-n3V5JK`rlUUiMtH`#QPJ@?vkr4?7Y?6S*i>zgWTlKQM_NV$uDbqy^`Dw>j?weHFk)wC4UBv+yIE-J2SXwC3X zrDdARs@}Y~dh9(}t!!uVj|!8oAZhaZ`W|@Tfh`AZx#5NzuC>-$+iky{(~JhVwXLI} zy{o2kpsF$X>H7Nmt#ic+nE(LtH2#QYX@|VJL(D4={ zY&LjcM0oijYqTIJigSwGp(6l*NZ*$Rzs-5&q-e-<&;r0T=*Q%G91ri~nh_W$ZG|fQ za2P&PCZw4802cW*D5uR5AtENgU~J(dLJ8%zEY0HbUXv++@RN0TL{xJ=E$}#q2*eCY zYT3MD@{kld{K@AnuZnvS*Rlg9PB)YrWJ54G4l-hAF~rSOAyh`xMAQ~R0piPQoS^LC z;0NCGLy3XU1cGC%$GPPFjKgIm%n2Wo{zxNQ{+G=F7{Z8ThVuraoX^Jv5E;&M4B$95 zG%yT~*)n3WWX@KCUS=>9+0JXrYmS+%aG0JziaOHbMH4;)08>sILVm)KYGgOB!TZHb zL}o}uP`1R&^HAPb@IlqHf9V}{OWli?v<08Ffo`>cj2t+}Qm3RqeyB z?-_SjcEKC{^G5cUeb!Z5*i=_dkN;@&aZc4l;NegAK(@Z2p}#BTmd)19O#W2h2M=ba zJk1xypmuKa#AkYDJm2x|Ed>vr+WqlkeUl$3ed;_q>tDVs{q8N@6Yed3 zbx5{+dUMgtwz}j`%y;)E-nvU12yKz-p5DH6XF@dBRrR-2bT0m|cGQDi< zt{#|lU+oJQ*L?75lC|8kDdElqA{BVggmQ>{fG$Lw)l6c2PAVwgmie(Jd9?sLo0lT4r{_uw_BZ20| ztfKVsw=e$H)w49ExxVp}Utcp*BWl)bo%UdrmNI_kRv)YX)T!=&^2py_H%HUE#~

8_VVmGY%0gOHmb(H_Q-ptWgik4j9@H`9lfWJjVe=wh_GS5##HWi>X_qhFWT$)w`JpJS4@vYp$|QG^1ZLlZ%=#I^}R8%`1iLgIq9BK z;Y;cF&YkGLUtc@t&@;!3p60cdT&8pi{Qvt)f!YMU%)p6k=e6ZE$IMnZ{I!>YT~+{q z*^OA@(ggS~E(QEJrhF1CV>gV_=Bc-|OB_DVh})qD$I=il@rc3z5JIFVKPV9nj1hSQ z2$9Ge06lq~`H@!@U^D&srNJ4lBDfvdsH>{!8u91M3p*BGx_sx0dt{#2uHoLz243E& z?d2o;I$FAWlW#tU!}YnhT&lh6_Pg)jX4`F6S!I>ocHeECb=TQ^i_IsDAJ^U2zp$!n z)b#R?3Yx3iy1aUTnP3s2l6l+Q-dR6Dw(f!1Ro%0z`wCmLwJjZbKdMNv)R@GSEi5ef&Ue0}0p4N9 z9k$$R%dG}&b@b6k`RtkQ&bD_X=jc!hE9zVG<@U){*}Ip^eteDIxS=zRUXvuBy!Y zU7M<(PaH_4s~X!odj}eunyXs-YFc|bYKwY5xS{ovzr}$zHZ}PWBE3GEw`8(KHA#Pk zKW$O{t;*yu7g| z`|;wYirVBgNRQd$HfhqNgAP7urIlCOcDro{4<5Af#v7b;)+N&mnjD7@2vG?h+TMX| zSLLjx=YKu$;@(X+ubR4Z!`?T3k^1cQzJcT^_K-&92i~&~`BbIc$UjiZGM?-Fa|B6h z*(VM&e<|3CXMAZvF4Nh@dtliC6VG5MH$pbgA^u-q3Sc<4;=_QK9-4cW?1p2Ilvw6N z4s-b7m?aT{@rFb@g=I4Ui7>c<8BrUo$7#kAATpfi7{FjrC*co{*)n3WWRBVdz0AOY zM=Zw%1RU)lDLk$iaUL-ueQeV!gNQiPydrbF-E#2c?Gskx%aD{uUPuMOC?#}i^dl-T zbA*J5j3Dx=Lb*KBiO&;i5#c8ofF(d2MhuQ&GRhVhj+sKr5w=LlplUW#;?CnFB|eGT z1zY;U&HaU8BlHBHZ1@mv+X4u0L%Cfe@Vo*GadaFTzNZ&55y+(xh8ywu*ly&RE%D;S z2XW50Ye{h|%n`)IAsZrL4iPiKc>e8%6>|uZ;tUgHDU2nxFmy(GBX4}jr_q2BwWS#2 zvw~%C2r?9jja-Eud>R;vw1fs~uu+DRxj=- znb9_D%s}zv=8xa1{dh!b(Z{Lcx!DZ&lGHiobbIoS;EZ_rPgVFC*`~j~zQIL{PL{nL znZ}B2XJfXcJiy5^S;K?x+Sx+-RYFRH}?nrE32woa@me&1R?p6D4N4W zXRbr;>*^TjO7%2VluaAmUh#Rhd|Km_R|e|m^1Qd9bRb=yX-x_kxUC}*kGw^(QAjPf z0b)+RHt+w~?P%?5sc9;h*|K=rK*_X6NiET zKrq1~$IwxzvCEtXAK!?2up3zl|4GFo5K35NSG?hN44jY+wU%*MmQl=n77i1b-U(p~ zhH?ZLqhGxg;zddGPS_*Z-$xH!Rp^M!y0crEp5PH`fC5NZmHSUHdD3RA6{oy zJIxIo9dhzh!Iw_s|NbYBI`Xd*7ndegEk6n`@+KPy$1O#&8pmhg+cg3&pI|VS(ipkI z|7Vv%9B$+}j@9w0w^)AZQlK0Yhir(1IYi6^LzcyX{+`zM?kk^M@W(sKess}P;mgB* ze;WStzkc@Zvp+cLw$DrJI{W*2d`7(F{;5B>_+zId15z!+^5FP>eA$d=$LIi;erZ*V z95!19C#onMM&#epc4dH*k(PLlgeKA`KSLBmY$4Pzuoz)%k&0ZAiuZhsP)_sz=28fk zfFrSH!*di*3Qs~R1i2S8KCms|*fqFk28f^{90V8+Kf@n0e^^ul+_2?gv;;}cB+5nr2dX3jy5*br!sxX&sQ%=6}R-4 z*EYAOT?*;qnwELBy^EWYo3y;V?Azb|_9mNdviTO9uebhsh@buJ2nlB>@+0Jmsv3PJ zI$73zo|$@Uwxf{Ibfza=TUY9XoEq|NQhPn{B??#+z)s=U#iRyWYB2 zTzRE@x}7y+CAG~pt(o51dEHYV>i^*COjCLCJGUBAlFUkDx~H|Hmzsi##`?Bi2j7<} z=zVs#x)+Yhbau3NXXh>{Z*57=w6vn8Gt=9ieCxGwpuexUs&RHv(qG z>bv&ptzXoUd`RTvfV}y3O9sb1O2% zxj(?`arMX|J}qn+Hl?5{wKQ)!FQq)t@JabI$7DwRrK50iDwUk3GmS?qs_vX~&(Zhl zv=9Bxp=+(R)=@_tSySKe@uJ3x=ALvMwq~w`5#z zb5&z=s}@srH9XLRttbSbbU z-mhK?#1&`cjjgY}6cDV3NSH&!OfY0wWCb%`FEP_B95X((2x`#`1t9Xq?Fh%xumxa= z87~3L;BbZ;;V^>o&|_ByI0+VG65oiauU@NQkYSGLXMwO z3k*W8;srqimm)uqM92bwMXBI($sDgCNdthC$#4}DCo)4nReinPt{6*AWJgy|rl-F* z_uC*MqJRmUAc6^;$O*y#6K?`g_Ojm7*V)yb${iM%`!D&y>Eut;_jl+1paBtjNHHDG zhv&9rBV4jX7^;cdwvLS1YY(2QvXsvKDTww=QoYSBErKOpSXd}^IGm9&grr4f(wxZV z{w1nq^7}1%`>C#LXyjG8JzZa4$GeKE>elv7wsihoT+Y=n&Ac_!5D5%#C5MN!A>u$q zYEYZ}nL=+jw{$wWCfSvIM2IJ#+>@9uW@kzXw<957MwBbQ5y{Nkjp~Jmv7`qPd9ySV zw*&yQ#Q~ZnCsc(MkDi0G>miLg-MJ8cn> znYlpb;z)jKhTE1f=G?I+*|3DPv};KZSp+;LBtK(|60?B`7R3zA3PKcA*~NiGM`n!h z0VlF&fW=FI>3BDS#Q`O|0|V3N*Z%n8$;aMas@?tWITN&$y4GWFU95xBg8un|%H5BB z1Fb>b^v91Le*Oo)xo*zUSB|^l$wfc8?6W~Xf9B^`OxKlZlJ&7#)5Ff2q!-n)>Rq+a z2uk)m?k$=vcRK22V9l^D_czzhGHZH&cExlY|1lkQHMiP4A~5>ogLA*^>c_dimZY8j z&e`KN+kd!a5#_Y$x8nz@;}>zo9}xb%2q?X9nUJC7P&7aLJzW#->eNTCB?>~(`;))r&9{ctoXHP!%#u<}l)@Oa_ z?as7k`p&ugvmabIRodlE(xgrU{DZ%IaLBn+o_u%d5BHi`pu;mx9EGt6_+%p&!_YY#?Z(1ky4h3Yfryu#1SCAPg|^0)#mL+7OmtbOLajDkB8x z!L-E_8p3m1vJoy>A`G6u6E_oq2bQG}jG2^Ri7$I8#7nHQsUY$R>+Dva>`^;C0&t0x-_LG!XG$+4n ztEQ&5xg|w#(#NxF>YA9CUtCw$m=xr~B}EmrEiS^^`ufi9uDXVn+PdVDt#4}OSl>YZ zxC!qc{OvFw+6 z$#y0GHex_pYU>+YJ9{z>B`t-Y_xAMq1S0Sxt5VtDf8TxguDr_1n{TnjjyvtR%dWd@ zxBYe_hL5nDd&wog{@QVab#`>>E%ntMnXalvpE8o#R-Iiv{p~Fc*>qj<>!~w6t?AC1 z+T=S=P7pwrKAm6E*)#C;(@(9i!U|h%xuqU>rIlCOZo6%te|6Z~lM6mCZ(ms3SzKO2 zv$BlRZA-Oe`m&Se){XwGVrEtMnCZne4JjY!bP62vME~};zZo=mkiOl?Zn4GY`yX`Z zwD}dS?cD-a_K^*hpFBODm%eOgfAZ_5W8{9eF8SQTmKuOmcxD4XFlgfO2}cwjPso3E zDOh6WAJ|}qetOJ?rCq9G#s`bXfg!{{yA(W_%U%j*PpeBI9Q$XN0u0%>6fC^~Xy9V__{As}qfLKugZ_yjB%OOh}gA}?#0vQt)82JBU6i#DIwXkaqpB!!?P+ElqC z&I&v}K@BiH;Tb6+&eD=9Z&;2Ip#&#ViO+iABMUr<>=TR>SmGN9<`DS2qTHc|p71a} zk6Ol&BjVT)amg`f$s#FAc*1i?+M>Q?AR?k6tWe8md`x&8cy?(Hf=)9%^h*njt&)-w z-ck}UI?*Z*k`>P2(+|%dyU_s0N#oOr2#bQkCzAIZKY}6x0ME3%St4iy17MdAn4t|b z!VkAC^LQp~Sqc_E!Ur?rI7qPz5P6f02!t%n0i%j+E?l1i?=f#uG{ZMyf?pLa?NRX?1V>DoqOiM7HV?xGDfHoXY zii5KRCX0}Pwp;=O86ihv4gM2}I(Jy4oKZxCh@&CMD4)@WvH|8BJeZldA#XHGF9$dy zSV%;~BJ&6wFFi^i;}U}B71*Lhi|pcXJ5C&5ylhD+CK1`gCyq~q|Cadt#EFxICkPYK zSwfmww*-SXb34ij6GyRyavB7l=OY41iLJ0p8`>#Df&s841CbC?taAy6QDKsTwJ;)rjZGD@?$%kN+P(M40@2aGkG`e7ZZ zK2`&a&;TEH_LvbLH~wvW{Vsoa`wzD+(X4Lst7mnvI?}_>e_!|YlS`**M}hTYr`}(o z_0>P?R4LcTYE$<=dBm@Bf8ZC=f6QrR^~0=SYIg~;OWSX+n{BBF-uBneAvC&RygK)Z zM(*jBA*t0B>!su034?w6tO>_nGihN#nNMJ{O92y1lF=}btmJDW{tYMn>J8sPu#S%zZqP;*J`v0~ar~$X$T&w2 zM{7$%ZByosmlqs&!{jsXTl~ixKOXYpqR$pK_78ZICx6JqC+WLing8u`K9Jkp{_y${ zmwzIkI$?R<GrF6kSE_*3ZONvn<1npwRyFvmfXDELuL<5YOKec#Fr0YwU0z5vWW}10u*DMx< zzztj600zM1Cxw`ZNCLMlBLpV?*`>e-y8)xkAZ`#3bLP+)2|*Asi-M{s585JX9D=0e zhaflNQjnZ~dMV`2#mkLsq@7oo2mnd*n#GAcGsYUMUAED{*McrPdV?3?YG})Rk$+&UjILQqUjSddp zYcjkNNSG_FO}#s<;DgVLlV4@rz4Vvyim^SN{MhR3;`;f;>P_B~x1!6Uw_iIqP+e0i zvD~O%dMR|(70=HWkLp}7B9ltq>ijROXQapjb#=8h8rsP-3#;oi5<0`SR7ZcKizVIBR6MKj)yq0Rd%kti#Kzhx zpO8M9S6)(C-|TSJv@_|LRIDDY>HJ(z@pM!jkgl+;6vPoB}BckPLFc^YNvpi)9??M zLR7V^QW#F=2|B%<4Ent#;A#8XOMxwTR^q9rf7wfcS4KS7nBj)`n_LR40MJY=TLEAf z7!wUfHp0i}t)(r3tTQ1YmYl~oBK&yan85-Nd6Ol4%Xs-v81<7E#6*0XIq=hkr8IyK2fglJQ2+PPq@aYPNA`79=uuBiWgJ3n1=)gh)4g!(} zvS=rVfDw|&0es%#02-5%0z(iXj);0i&~HdV_&@}c6emN!C2etFXoD?Q5CKDw3hTn5 znV#@GoHW8{UOzrqaLhRul6XTKwdjBafK==nkg~yHd~@gzad=D^QkYTJX!o%tB?19M z3kOVewgRjKiK_$3^WiA0$b4W7ZnK4Bwxod+Rbe`^Y8mdyxmW^^uK`w4c^Co=7|k&j z!*h7rA|eCKGW5eo0>R8M20E5@EfFwuqJtnCQ45C&{O~G#Ad86zn5Dx-(1rlxtt22Y zEr_U!5N8($5!NFWmRt(FXCeHAL?Zy~ z!bl?wL3uNCfCk!R)e<1wrZX%W#4#ffOf!6V9_7S}M;<@$OvKm1Z~{g{B#^i|jBqd! zMiAxzgdR%F=m^;i5Jv+XXKEJ*!94>%LI^7eyCISn4~1Zs-nQ{-k{s^g$FqQ-KR6yz zFqn8dV@eb~5f>QQaF_#T{2=HzXu|=BcnKoxMmEeWhHsW?&)Xl7hlxmr11TX9ATSej z24RcO%hwGHTdMS8*9d6Wv$GbK6DKk634Nmq) z%VD&3^i?)33+sP=`A0|IxNzUx_u=K-e@9&L>EK^J_tda?0Pz$D zo^>w8gTMhxu^=KM1I#k=1|I~N8OA`zGOXjk(4QxW(}VchO93aG4;WQ(DR5FYz!3lM zE(J4Acn-q{`iT?4$7JIFzn21-yx~(DRT1Ls;vm9$q{7k%_Lk-*aV~o)$QuGcMZxG* z8x~CNs+nI^UeVQ`e9x8!+VYpeg37ky*8X|5z2{td{hoX7p%2+U_s5X7*kX$@W5)2! z;pr`lYg_BuvlaEN{e6k^%U%j~jj6>;3LPg-B%cG(08cAyp7?o1S9h<(MY;?`@(%KU zaVhj`$}`PxoRWQdaL?o0^iF#us*RrJwoJ!BwydoDu*1H$)6P5XzQ^wRr5$(L@lPlJ zDLJ^l{)SZYZ+W}BGV#xX_?gKCmE4)C1czESO^X@%-}Aniha2 zT|r&CqN%I1qa*n&pXvQ{Ua{txhLVc9lByP6XhmhUm#B89Zy?*2=^Z!m{Ud({Y&aP7c}+Nw0mT7 zw`Bi7X>F>#Hz_2`#~y!di!C?bai<+N-@?4(cH3?D?x<1ti%3mv{8f zENLmLNj^Dr^07P9H{s&G$2aMHafgmOR_&X3K6A>+L8yEM2KMRv(z+Ixc<=caoWJgR z>&ifU8+`EKL4Upa8ifK=Tf6k98r`bQ<^Jt=@&UfCF}aSF2J8Nh!|w4j&NySe_1D{Z zmz^ouaH9=%)E`az$Sw_FF!2~B|1f&WBYiI)*8AY5*{22}PXa`Mo@ z8wiHH9LR>}W|a^HZ`T|(j~`EB@T1t6i$_=uM?S%VAce4m2lkGNI;SM`V+H_|5-`mC zrQn5c$wO%YLx00d!Q0^9b_&c94AXWo(czwl6p_al6%~E8Q=pkk9AlB7B_zU(Z-7}w z-r$1(Gs74WZ|nvWhW%G{Mj#lE{VQ30WeRR3U`no?sU-d-m+m zV+)7f_{5<4X&`QZdE0_H<2XMYfjDU}`Xh0oW2?p^N#=LoxGrK_Z*1Xy%nOxslhPMLB`1Tc$` zv{4=~7A-|hE$7vnB!@UK5%@@sfiDEisB?l$&|?{S#)*R?;!wXgpC<&(1S6STk~D_sLD-Tv zOUfBCa9|KL;72$?o0*`*Og0=)u2C=mh_2kv&dn{TyZrI_Kf3snJx_Q?@1(cXk?KEp z{M}0$OI@fw6EpW6+KC6AG2!Be=gyc@@bIv*-`=ojpOc2ik1p$h_dV&I!M}J$7pi^T z=m!t!Z}rCU-P#?Fd{Ikmx%UY}fp`1E>)KlMp2xifW~p-nqk*`d7NN_HpKzvuC-m=h z)XQeDU5|NgX-e4%$pJC0+tmmB~*7)>c<0KS?x@t#9->IaAlvF?-(P z`lhzJhL(oLCihQuWqEUBeQQg7y0zH{<(#(Op6;&4-kPi9-Tk=X`J~z<(V42;ZOt$8$=pM42N}d^8b5^1pN`pzYEF$rcCT z`G(KLS1$!j0Qh(v$!9ngkBO&=1Nfd+IY-2<=l7po3bxoq0Nb);i*knWfJ2J`d@3o|jp4jq|k%0u+ z*`4l5ezdruY))H!SwTTjYdQ(mr2qp^SXMW?JTqx-{qIgZYr~B;SY?$}HriyPHP&2X z%{AA2{`u!A;rVBaYes%jGP}BW;;hQr=CmWP{o+z^e5$a#tV{;-mx6P23iwSOeTz%$ zQpvxSOTOnu#A`<P&QC_|#r>V8Gt}!`i zbYn|fS#3&nH`mu@CJ*U<_sq7r?`AWNdfMrWYKj`Vno~YXW@}rz${RX7YffX%;L?-JbmV?B`y1ao62<)2*$&&e~gVv-R>TEdSfz9o1f6 zR6pyzj;RmU47;+hps22~rJ^GFLq}y*wUu?vlHc6a*xK1Oue7A*6 zoYPM~ou4bOvN8?k<(6CSw9`*h|M02^Ou^Hjdu#sejj9{hZ@qPumOIuPcz)NqTh?B3 z?s9d{9aXk?UQ1i@HE1uZcpJzP5vedMPD+) zw1oqb&yXHK5cEV~ z;h!Zvtbthk`~SwQQ`<3*25)p?D9OW99t?IK|FTzc}s9Pz5&L8u$AWrVdTLEJ|y=d76;8? ze9lu6yZn?lOWGnKiU9`!tTgdsM2rd`>Vdc@%(R)=jl9trF@nh(5&U?B5JcpSGx)6F z7^EoApBfs+zyYI*QCn!rW6MyVQjL&ap&)B`?Q1ia`%$`&LgIFUE}uw@`H!O)_PdVr4@sUjYIkqiVU z@}_uLCm7ko2^s)l7l)yIO7Wd(JjD*$KtRS8!feEnLL3&^ie>N(#8(F}KjYNQ4kcn_ zoh&8%$)6e@gp3*Kr8C}62uvgL25*M974x}ZT zAXNxUgOe}_Oj`)~53s?6^R-0-h4BdFeL&zFmgeA4Vn!PQGsg&I3^XgkWF4V+|Cp8lW^_DCw!ZdKXsoZPs%dzBT{Eq`k|~lG_k5z^Fn{MKE-lV>dg{Ra9D4+1N8~dhHF5O?hZ|-DOWK zKJVeei=VDP`npg5d~d;N_bfd3!NqqBZGLE2`S_VFh1H#DccbA*Es?AKlj@k${s3UjCu z4g#M}+AL}Q7ncH>mDnXkxiY4QQ8bQ03V#GBXKYbDpTWU)z)`iG zUD^3BXFokV`~J_e(@*J~aCJ77eD;uyp6|?KzpXUq^dEUyA;Z+>nf@}HHma@ zPj`KL|EEQ%+NR_y4xPQ(rv7YMPt%jRVlJ)E6=duRFQ!7-kH;rWd>**N}5?RML5 zcfbJ$eDMDJ`00Uc@@?m3Mrm_@Nn5s{aiF|D@d2l;siE$*vzo47q5p}^N-kNh=H(L| zn%+DA^ueT(uct5lCv`8q{E{Nse2dMQJNS@;*I09nefHUB{P^+eGiM?{CL*lqAz|k%d(xqKz7Psv(Icb@XFrV zXLrqx{7!b*!Trzfn0b7M#+gGqdXfjtt0wG{ipQLj9$s%Vj|{$ojE5^O1wsAqF9kHF zXY;?i6aWxZ5e%K?*yVY=1Yn|52vtE)l}Dlt{?i<`^86r-JlMcz=$l*$mb67ezH}*o z*)k$V-Wqx3=1|2h0w0rymjC)vNPYx5s*Ma#XpCjV02GO4FH{={F_;a2U>ZcC6!7D1 zi->sWMBB~tDTE{*kvOo$ix=bb*o(}T6tF@(&Pn1Z;bgq#A`6I6NDnYtIPf?zSTw@4 z*{hI#vM?bV;$|ig(jCVGLnln4CFg(SCy!?cK`PQ^HbRMEmpG%5UVH^j7_vqOWe2n5X~OY^cW!G|-L z2&WTe051=De?o~700cgxkt+ic;RoJUz=9coBsDqO>`dtdi)5WuR8{R7MnP%mPH7P7 z4hd;+6VhE$(%s$NE#1=H-QC?O-MKe;)_;9&yksyK%eB7meV=De7Q>u;&0d0Ge8)k| zY>~h(z8LeX6So9~3BjJJg@uJ*k;oZ)61i({;EIr`=B)X>b9-{;fbyH4vkXLk1qrzd znZs&_eU*un!Zx*g$S@{2Y$KzHilaKTH{P{5v#G&yQ@@wsP02q%9>=60&Q*6>pMG9K z4n2!a2Bxz|^$G`5P=k(*2$akahOM&y_7A^P%x}QhH<>lCncpIpob7uuXm)^L?8_y7 zW3Q;xVvDR+b5Gy0F@`}mRx#<2FRMt5@YjQ3_R}6j;S7EQ8hl>_cC_tuMzQ6A7(eL> z3|y-bE&RN|;O#vGKc489WhW#6A%R41jYkYUiY6MzBtDGWJH{8y&<$sm7@&YE%C3&w z1_btlg?6}5DZ+bjsS)`0QW>l;l8_z7?4Ac_PdtVTu`>af4U#r@?Y{zy(-hv969 zz9W;05P?9dg@I+lMdGkG{tje3D66s^0N&lxEZ~_@`St`*@4TPKALZK1)NflBrm~(O zN!jmLy^mX-HcWAK7hu~dEQvFRUpJ55fS@KaGsau|^68oU6S|R){c*kM6k&18g4A3| zSRoRCxtBqhxMmLQ^67ymmlKNn?da5%ocfk8Y-o8J_$}gY3OfM)EX5I)Fx_ zOy>Pv`)MS0iBPeH)DJhaU3@sMa#)LMqMDw)7ULL2Fq)!<%9=hFPLAQ)7&(_^x12IcX z3*-KaQxSX-rHV>fzD4D(LCCer(YWkVK}k z>o1neT)=CWYOeQ1Sb|T#Pa=Sq+=)e1C-+51u4qU!A*cP_k;_!q_DiPorZjv5aJ2u; z#=Yfv3;)?w|0VExZ!pH^WFhX6|Ng1YrsH|r!KUkFF|=vZ{S@e~dp&NrgrJcM+V6+v z#m}}Xt67y6mz-acM(rx1)2?<$V)*`6%{)7`X%}=KKMKR5jdH*4L3DXFS??>3^gfJw z9E>7jcOC~{?`3)1pG)fDKg`lIlR91rr|-XATuio|jdxsnUA9%VKaHlc8g9BBX1WYT zr}3C!UM)WkM&q-7a2QXW0VmMNex;|EE!2z`0?vYyW0vw-DhK!3DC4bWWa-D_j`vN; zF8nnvw_`&n0FYMQ_704e?d`SyEnhR^EzosH>I#R%iDdv z?NaXb_le5VMsr{EH&nvJ7s_Q|A!T;8s6~2vN*e8X2;tUqHwTAe^aaPb?@crrSuX#r zG29}et?AozGu{8|^8Rq6l~5#8R$)_KYEyE0#AtqYLNM(7h*~f!C!_|FUNJsQq5Q@0#c-+K# zkQKFFb!yUi+_2f208q$4CUe7eqm0jx!|W|!N-Fd;6SM8q^&iaFB;AVZ_myh8 zb?1tge3!;tdd2vwfl)RmX1>hh-F>6VlE6*JJjv-Jf1AVeM=eKz2GN6K685Q!`S;P! z8xDGMSyAtEa()}W{~*}jfF72u(e@_Gcfha{_>b}$tp1=_O3WFKU zFww($6w<`89p!o$(8KPB^|mh#)l2$ftS20bAavDuB)sqN!53k*{Ob`+J|h^8uM}3u zW+sO{8H`OK2A%OjP|({e!b@?m@O^fOZN=~4OFeb3Vr^o%QCvUsmoK(2q2TLugd|;K z44Y-Jc}SsZx^%6wbO#f+Vz4}V$bsz)qQb9F@wC^lXiy+17#fwN7E*(dNIXa1V`QP0 zA!y&fa;V$3@{y^(s3rv(Z7IH2hoTxZ;-G%a=M9q=5?&bV@__97gn`KhxOmmXVkg4Ga*|Wntss>|otN6DIWS;A8n=%Y9MqWUU+S zvrSd_fu5Qe8}9lqyzi=9-+yO2A>0s&S}qOLxLhk%4QqnvTTL(V`35PWVj4|?@%2Of zzO$!}h9;DMsN_5*CX}p@KSSoY!o>`15lj!OH=mL@By5lyYIlgy5(As2X|GJ9J)F@D zgDzU92qPJr&3ptGUw|0=6*;(!r`C#KCHicI4WZV8Ag$kSboWD1KNBGqnR%)vi~uoQ zXuJ3uC2x0}>4wQ~sP2OGSxdanlC2E9eb5JDKZNL96}xZ9`0!WziJ-!8P){*~szDiY zmoP}=EmVea+^RsBRHWBzyO=siL5Dat&lj2us#kuOA9|Zb4kq*iM9Gu#{pG1Aib9Frz7W$J( z93$Fucbd$m-VQmdIfZEM1NoPx)PA~s_BI7xHbavoOr9HLX|xYnTu`gFsqAy#zcSpU zy`_@pp8+ez8~9)k45_yQo`C8B)*UgL761CceQ7dA>Ia|>ZW$Jom_qcSTXd8|#a^5d zS!D+wU}U^8)ofPY7082P+C9(Ugj`=d4rOOkE^PNBJV@T1U&?EPm9kq-S*u=OO4Ekc zYmXLcMwr!~fc|Eh%hcxkJnNrXpcjY*{?7taegVuJ|C7m(>TvwiDvsnoYnKL?H@%8l zZ8jIoP?V^GUXdE4W$=PW^)oGc+8Hlw=08&Bgg#aW?FsGj?E|3=KEAh~)r`cW7;P_a zD(3&)BDZ)wUZ9JkUdQ@AjeSkH3qQ4B4jN8XR_EgZxrMGKaQFhQi8^e8=%mlS-!*5C z=ko%kc>gqGLjecQSbs4o55=!u9TgK!6X#w_f?ThmAR+#{^^$L|Zxc!vRr4ni;$&N6 zuhOMd8A_4^Q-Kl69`EPuLnQ8t&6gPhJ2`W}b)i=tmEURKNq&m1#Ci&q3dL4OR$QyJ zrl~EzvvTk-qIy7}D3kMa2MrApGh#s33!ebPio~Knipg-og+Pc5l7e#NZ;wNfPL2Ym ztNnENP>GV9n2EYm2&iqI|7FqIu-Qf_fW6!@3O?yo02FZH@mm}4b6Fq9XadFR=pqJ& zqyl0a%N23`51z-0-#?0Nrgj(OeqOFD6ouDEAnR@7SPMcsWR$k^wV^0fI=i|HeFCNU zJ3>oYV(+Li1^Kr=1+O}8Ez2VbrD!q9`x8-lOx@zDg;o3UAb_{6Ty$AGZ`1*7WA{{{_lsIKx9iy?z=e%$ zW4^SkqICdQ%d&ds322j7=qfkWO}3tvSMMU7Ry9phPPM=E_!pt!HF@!L2|}Vz0gxM& zhVQ?;m)$AOF<)NAr?a}LN+3f>WZk?|ly22JN_cA7dH+CU#pSxd8Lx-XKKRGNvbqNj z2>Z+Z;x;8Qz2{WbbEx2ij64xqRP=NJ)K>sdx43Lx#>ncjVwHlvZZsFgD{(0BxJhYK zGTC`DSpTiMu*7Ufa!<1i#QwSxe^VMT%hzsBR&< zQ&l&)N@UeO1N=6PH>G7qU)A&s8vu;qPW2^e^(q|5gW+BO1<(*HZrWwvBhY@8GG8)=T^SU}JE34XD3v+s!NiRr! z2gwIul+37-hu!#nN(~j!)8%7Whm^!(&3ICJf&Ey~|5}_R&dYxGG>t3PYd9%-K*OHP znXjy}{lhaV=yPg99t!vB&t#sW5pBCd9E?UXlBV{w9#w6FAg4tgkFkozdXM=TNgQ14 zza5P-HY!fCdh+%)$ttR+PUw>$3|wr6up*8vx@`+P=9Ya-K9>!rl#a(0EpannMtB6EPMGnwqAaI2csf zW_Xf!Adj?0J5_N^aFs?5;XW_@n_pMllwWukM~bK0tbJ>Biu3LSS#0Be(Az*Mdl0JD zSZIdVa_}KaW6zp!^Tt_NG84j ztO2&aYq}4TsA?mn>XHC_YJ?yd!{{bS9+?(f^lRwucy{su16LbNAR_5Zhi2!Ojw3W= zSu@}RBj0@#=^_s96Rmb_3G!w!KgQGV24+~>Dm+l=CDERD zuu?>BOk=l)`@}!Hjc4(ZS;BET3|s2Y{u=qbc9nrHBw#YeViL^p@fQEH@cQ`kba$R# zFjZ(D6DmIGczbUFNH%K8TV`y)`bFf7s6@* zO=4i;(Zrq)>8c`Qd+22 zHMAd!g~w(rUXGALks_>Py@Hg9PS*1+BpaH2If?*_O%KklHjZ?c*LY-#7RKO{P$@w! z5_POT6%u>rRh&yej!vDsC{%yXbqM03bPx`^U~~`CAK>V6ZqFc-dTX6-M^=JFQI8SB zGQ-0vf=+uPnR>T3M+{<*4*lI2DGy3cmFVsjg%M__zllUw{u}-x#>0Tb-wme`|4Xyk^2DrWWbcViHiM8Gx+ieIF0 zh6fcF_Q4*|o}SN>VxY8v5hzAr&&Du8^6R5^!npo` ziEwyab828j(MZ-J9B`ejizL=vz=w&c;%C+vC>es|kV+G62B0^D9xKfN==#Ainu>)a z=U;ag#+AzuhH0ovyO(cW?KcT@5o}CWCLV0ZH$`u^q>Q{*cXpavuWuaMJ|1Tk5l!#s zpM+W*|759Jlvd46zS2CVL~(ReQ zj=-S}-5m1uy%-z7sOpJQ4fi~JdT5L0JMY}(meokA3*OoBNwZ%`5XV^nSzH1nI0K38 zI3`bGQG5SA0^yHRpRV!abXnN#6j>BDAru9~1{NhU)=>E7JmA3XtqgV7xl=}=j$a1` zhw{nG0x=$-c8ZOiVLaHvy@mH7c`wi(DRJ5>aLV$QfT=&f)C{0|S$i&U@o`xQ;THI2 zV`8S(nm{y~(*-0B=TrkiWIoX{!HQ`k?JNW3gxrC;sv95)6N>GtywBJxQ~TiK0+8y5(hQ_Q@%% zbv|X2Sg^R%)Y{5L!J#PUZ#ykyLFu(LA|do7xw0jRgmj7txJO9!9-lt1)lD6za5NFB zF`gc1S+ziLwaQyhzVh)cHm#Ttz4HDcmjLKBhx>TnthzQjpU=nE_D!uHHzctNANL|V zSf`Nux4eEzpI*Y``yR9;Q~Myn~_Kb~_*<9_$epleE1;C&NI z?SjQMVdG(4>yi-3W!)}B6iuMtK1Sei`uvnUZ86k*4P5thQg$0c3k+#Dfv==djLje2 zjESaYezP;+1N2Kx%c}u}YyG<;a5*(moBCc#zqXcbMdIOf>L4`P$Z&il7tOGd1wgI? zZM<51WGe*u*aU9Bu30FVRorB>+@b+1Hm4;Wj}#r}*%j-Sf62%rYpq0<^*w{>mCZM! zgiR7sB?8BTr|YDk1bJTGmR}xEqigPX z^Nz;u34k4N0cU_l;nNsl`f7Z*Y?hz)L7p#B`XAKy9eH4Ln;`J8uHy}C@ilh4f$;2L z0*;!l89*&KuNnGGys6)Z0x2Py@*+3c04~>dLnKXGzoxg>K6{$TIZZ{*PMX1%>?nOA zY(UTf0R_J1CsY3Q+oNQGDQi6;ql!t%reh!Xkok%-Bgyy17Efy{QN=nzNb2}6+#=^ zBsIrji4&t;(i%Ae0gPQ6zYA{~V-NB*W}tyTuQ2Q^nYbGj*DsfV!5Fli*k9DM;>lA8 z(m5H~${M}fYt#|A7@7Q$YUT8k7eDX#WnQ@e5||vMJ#h^t$?pe?S@kOW#*%UvM}?_oFVonIqF7GJADlS- z9bMhPp>K9v1^D1eFWSdQWPG6RXZ(bOBqFqRRKS=Q8bU%E--NJw)gqf);kijnOeYo@ zihzM@KtVpgt2O8_=(tB0X0H4Kovb+Y8YpzrO1vp%Ow$UTWb}n*zn>}>Wc2L?NY*Y=Z!@*aWhu3F|6ZGb=jT;`6XO)9c2C4$wgx2 zc|c(f`fL6JnWasU{N#Np#eV}J!XeD@?_;*bLCaLTn*YKRVuG#BfQA!I-BS<=72tV6 z7U(wF1=5kgcA(|f$A?b+?G|KUmc13{dAXCVhZL3Fv{g4#D5P;YefjQs#kF?Pddk#x zUh}+qTImJk@y(LCwthLt=10rHH}s*d*)-3xvv+sTTNI$V3lvR;6vtoqeE+rwAJ+#5oXpO>?W4v+R~B$b58+ zezzl(uC?)DvhA~{{khXpt}JcIoG$Z{TV?IZ*FS68YV9@D4kO%LYI-{PWAblDHWPd@ zp4PT9WhGsh2pE~{LG=cLcSl$YoGo2Qn=1;c>7#d4ffwN)Yc&!MnA@J&T?HhXoqKlX_0ir-4ioO=*}d3AqZZ zb1Fsu0T-EU61EL5rGup;4k!Bt2z_R6GhH^R!wqi;vHQ`()BAbTf}uq_+WXti9cWBq zL=Bot=qTr7OAmAw56yW^p1pdPzzsL|*8BX~$pyhbl7vI<@v`%0eK{4S(!L1tO?Unx2Pfa1P=t_Z?0nT0xphlxVaM87uRpx_R%dO?^%C&GXm7dx|O zjmHOh);BT6@z@ZPhW({xGM*G&ehDQmf!bV)GHi^%DndNK3So(0xxu_hqqLJ@56{uC zcgUjA<0KE-h6}-9aTb+lSZSaN4d@i88`KR2!)mr|+Z-+$-oyhwk-<&p65rkQI?Y?}*f@$Ds+>g5P z-0bC^l=Kel{;3`!i9o8S3P3h)21)t$%6u`I7{#_H9Fb7q^}MH3F^Qb~N3{2|F#`}A zekAMfM~M&HGL#Nuj(6A7<4Vzd7^G&$7evO&T|_pCAi^;F4K@vE@!SN!j_6|PB@IS# zpxh99VLA`98Y9?X54-62UQ7JLFxY&<+HzZ5Giu)cjXR#ZU8E zApUh@WCEv>@d(Ax*(}+|dBW5kDy9VsO@=8g|HK8lJF2Jn!4!Jrf5 zyIQYH+_c@arh?9f19?*V(0$P#8=dv%rd4~}S)^_wc}_-EHFTRc%YWo!J??qq^3>I- z*p=~yrJjgijP_vzp7H4GW&+b<6Tyw+TAwQ(9s#m3ZySd0J6HTE9O%)A;#yV}j+ z)L(GR{wtUd7zc%>%>c&f*{74h;~DVlbtARr?^pKJtXMKT#u{8gMKu}p8(aRz9z!+Nocx}lAL>;7O(q>n12b9I0m>FrpV>G@Mg z(}SQLK#fV-x;pEHP>+oL#3Qbe6b{FZ+AdW`CuV<-fKHnV!(U*h4lbO-Q|OF0Ap7?f zc;ada-9EK*>?VY##Aht~L*$uZRr$M|{iGFwq}g9z4CqJKa9_c(EUEfn3{HAz!$fS< zb^z$irY9;>R_7WVKh^Gq|+;eojoQ0gM#*fd?2XO zUXSj_Jx9lpvHx#zeLbzz9J00}dEUJKC*88^Mw6(rrRP8kdDA%vM{V7FI@z5Zh#GjD zRl;gooO3p<|El}%_}^yLq~USSi2;15URzHqurlLK6w{l4%>7x*(r0JxW&Mr`Zjd*O zW=eyTzn;g@bT0q#rTm+|qQ&W~P{^dT-A;-!=X?XLP{!3lyTJVm{i#)TXVH=GM>KuV zr{bw~fQHpbT)zMeJ6m^8ENp65Oj_G|){u3r8Ww;#n{g5MrmJYy@4|Rh+qoz;b?+7c zjwvb%{9|Djzog+&0pP`4($5=bz&(0)a~*XlR6?U!*z#`19;Qoq)Z+h=MhbuGZB;i{ zmzNYaP$yZ-@IJj^$Zu7*|4r7i2F8=quFNS~mYo9!W6WLcs;Z=IKzYng{;;TF4Pd36 znV(!0N+Hl!wT4q~IhOKG1D`$6x7Pc`fctJjwQZr7)+R}L!aKCY=dPQA#jS&8J**fO^ zd|sw-I2--#BKCd8(GBXLMd_d}+T|5xX{jTGCj>$;sa4rN`y<5jITkUSDOGPtWqMw~ zS>m|7R=Jf@Dd{vPvGBvixT9=#LyjN>)T_5d$H6s4|JQS;P%Vb{;0PdkCmpD$X*mHM z35&{>10b7PCB?PrYG~XzBSFN=i3qd3_Md|qSpF595UsUFXt^IQILm6x*H$-{l~2-B z(-8%HH2*xaysp_|*;-pBbnEWQwcL<}WXWWT4Ml8uoPk^g%f?v)u;4zI%$m-N%!eg2U>pH@`4t zLyC>=5+0;==Kz(B$?;mSjHDK2i_?QbgZ^2fR=<(qJXmw}13?Yho7Lt`@E7boA4fWt z>nVWdR{%|eoSDKALh*qu-bIc|xF3-qR9%AKEn4^^Up!75WCs~v;);hy0R}-TcQr`Z zW9=l_>KbRzvEh?Y;$l&ECDxxP;kWx4<=$)Jd?d#?PPI4!lPEwCfLnu{h0zIs38?)9ZtH4ZuyK z8~2|~ptl608LBs!%*JF2Q=?AeNJW zqsT^lia;Yqz!hbID_ZUuhJ%`@*}nRr-Hw8GIFXJ=kbqTZto*0k9xC$d6Q#{=6o-8z z<}TF1GHjob9L+y?4CCZONs)d)6+a~nq+R?3<0Ew zVeM&AJUm)=ht(s#i2U-yaC1=6Q+#ev{`z0``8_=&u?8}D9c)AUv4AFqB`Cn~N?crg zm*Ug+FbWL&-|S+=3|8XaFid<0yJEIieWcD9S3HeWTLwE)%qXcaJuC)1xJZz`G6cpO zT#h-n&bUJdndE5$RN0RL5$RIdLnzyT|2~9F$zR*BG&g(_awel0Ih`8a3$Oz z4owP%zZuu}YBJ6p2$PxyT2#dt-H^hc3<>6maSxd_Rv!JGpr@(#19PMZ4p80GY zUWe?2p|{;pGt%({zlTa-vkYi8jO0xc-C7&W<|Y3Dc8P^3pS#pbm3P1_`JZLtdX5$q z7!0~=%9fkh+-CE4E?wK4?$+CeWU#7wv`>Zganv|F4aCkInE6g{^mFt3IfVhEM#2W= zbHJIU^?F9PQMKrvvejj-MmzHN!tOFbV)LpAa*rar(Gs)GM(p>^e^`3|JY5e76;GHe zTkFS%%dF#5oj>F2_FhaZ?>=b%Wb$#p792G_D*UAq#tHck%Z|0^QQ9C<%x zAO`qcj{_4)T?9-D+%$r_+v169lAHfLAMLP=>hB}nz~wRQb}yp%$A{fzExfgj+vX-8 zw}w7Kula^-LDpKwi}?NMqw`~PYq`z$O>*FTfF69p$v^O49%YukDK2l=)PFKbgT*ag zzQ_+ks)J-l5=aaAwhI`9Om=~2bExK5ba3K6B$~m8?q|>*>&r>ucXCu4;8{S4(ucL8 zpNcWQq9l*wuIu^LeKci|0FC8}JM!Pd2O_sYhzA}%oT)MTuWPgC6WN`1uQA-buQ^GR zLY52cXxbMqq}EUA+1~HWczX6Dg((@{gU3x9&TC<`S+*}>K74Oeha|vZpEk>FXGfCQ zZ5gBM+kHj^Q!98E#MB7}HeiDH^GeLk+x~z%>2kL$IK%Nkyg0*SB#C?Deh5px<*XKD z16+MRF}F{zDGq0`8s~c1$m*(9KtQ>4j}Feq>v$-IPrsRdjwl#CoaH{qo9wdTFvVL;{5WnbG?v`1c0FH{wiJD4Rt2IR$Vw`m{Crus zpRaFW(OTJQu$TccZYb&Wv-Gl(m3F)Dy*Yp#;GDHTNHf*;Uf@gtc4jCkdbW?!9+}S_ z_e{K}{gTR>G~F3dN%-#OmE<-|v%T(K%F1iQ5477Xj>gqA%?f3?*Y37O zQQrV$3P2fa^1d0NJxQDQhung`nwM&|B7IFi{j-`BuKdMD3o5+->{Ul8#qkHpagj{v zXibAX+hOF`aK7+Kx(m{^Zvr5n7&3%Kf5FF~;m_oS@0=-wYCr1({nU%XBJ`L3=*fS{ zaPSS5+l(XOT5gUfHt3EZxS0idc<}U-L@|0jZ6HqsFQ>Q}Fg;JWb) z7#I%QaIHwA?0|s$>|bCqLG~;fw5c53>-V~!#D0?#Ai$g14lBNl#vvEO%7d<=c=R=H zcTsK5!f_{Nc+ed2X{ejF)>4k`dj*=s__XLlSp#|d3QsHBLhV#D0C?}e&U#8 zh(x%eK(VC$ZBY+a-jC{oi9#1%W}^^_Gf>D`8Ne%Nflx}|Ly2Q11<+(M&s`~PrZ!Sf zf$jfR9u-Jx>)U;ian;u7Vf`KLQphkcHzuISV<$lzN`-EU0QFkfqnaA3ll2oME%qbU z9(Aaae;J2twR`-Kkp%;Lup-F=iE zf#axlgWAH)tFYTeCW@DkV%bPRYB4u_p1kkFT+}ch$Nh#GO?-QZg$p<&rcHi`e0_=Y z0dY_Rd{!W~Yv7tSS92#|jWAtVn6V8~JBn-%5((Tu&rR6aM)<0Gq+g3ceQ1}DPV&k{ zh0RrD-Cz8ER+Nz<%T6nf<3Jm32N|AW25K{dEdXm%@$(e3mEA=@tEft3PM8>p zCgF>nEy8C)gtm4h-!x35nOrJ;NP8|_f6RK`HKXC=M+RP8f^8P8>&kqBEnzJ}=Lul` z1tW^2s6$``1RCOrfOj_3ryp;9+`ujwkhPubr{1SO+NG3ofg{6^1OXmS{i@ZvjWw(t?GA_p`P!1jG>ObS~K1uy5MHI zs?`*!nR@j9%ZB=oNiC)LHuroS$m-MrrP&4^tg1|n*VE;sY(KTPN#Oy^ z0G%Oy>86`+GrPUDjmkH3(pxWz-AzO({`1n5f^lCenz3yo{W>chE#epUx&KVkrFK?B z&L78U#x0+k$!_PTH4+X@1v8eotV|TD(5hG77L#c%bI~KOul^3^+t4lEc^{r#i{PFC zG;DSAH~H2!F%WTFxD+kJ$JFb~?1mu(>2Gh*B8s#Al!%gB9C|+{uJo_#c7>XMuc9$$ zdCxb@>AqH1bTXFOkX7j7YU;DVxp})j1!Daw>r2e@d8RSrRDTBcFyi-9WsW9P& zVL4m}Bmo=B#o}fm-Ienzj8vZZ!zMC1g)sg)E~;FCf73eIn3ngdib--mfWg-v0ru@Y z?F}G#*AMbU|K5)a(T$N05GV>+{kb?NNVhouwZ2IgKYDxW=uM1=&(2zd z|6E-bC@w0i>2R?&K864E$3jW>hHPXke1K|mF*<(n!i`fWJH-XNxDIwf(45wo%&2_v*7Q{H%=`9` zv&ly5b~5RHA*r#{oQQU^6kJ|!adx*Gu9@B7Zf<_^%=qce_#L!63`fvk@BF*k^Ml@6fhH2yn9IGNp;J_IhVqmxR>W@_80klPfE1 zEK9W2A#apP*{G*<**|$9$Gbrem@Yc%9Rh_7R^lx{4QOUlS4~SzL8BulPkKXHb*b^7 zv#I>Yx7CEHeYR|=e}Y-O-{idvdg9+YH-jJiT8xj6KYeA_5g=TRpPjAj+|Qsv!hN9|$TkFun_r=b$$pE4qcp4S3u-uzPW`94E$`$-&t@G2OL@S6$5Nin7GjEfrv%R z@07x6eL8P;>T3;ngHIu@;E<8aX>Dz7nQ%r*-Rqu1d{la8aS9VpcZyIG0VDwA04$CGS*(4D|cyKmb-Gor#_lL727eJ#Qhhljs(F!BOcC&Lbzb=`;vucS z98!RdM4h-5vh{Q~IyG1>P*X9lE@JPl&$MU)T#L~L{izefEuV2xM+BMhH(YQ*1{#DV zzqMc>S(s7Kw>>V8e10_MihSlya#MfXj$)yoE)Wq#7(J1mLsUNlaV|WHr-~v9Vn`uH z-X6>NF%sCD^B~|m1R{P%I|Txqf&JF}Vs0UR;y)IBQdm7{H8At z5T}!92XYpfW51Mn_+*;Vn#FRd`6C*QFe7KGKP!TvFlc(8rGD;Up56r8EIp?fhO;P_ z2;i4e?5x)j5i(FR0dh_l2e5)kqyM%izbbSx2UAddwSS*q=!eL)0)`p#0ckCS%Q>F8 zFG7x~Q29T$A+BLcM1GXbQ2}sdr|c9x0Mg5(K848SZ!fJ#EW)d{_%wq}Hx$K(=&vHf zM9~H*D=BxueLGIt;<&#O%>5eXURviBhmEG}Z8=Sj&-N=p<-X1Hv%NY+}nu z`Q?YqK|DN)GC7F9_>5VeMAPfG5k(wxp-B)SCx!aQQKr%QcKkGUd@In>Ap6ZU>ykY z$9nyoeb*$^=~~KY#i*jGEn8)+k^lGO{NDM^vsym=B9edHEaLmg$rReR_W+?y{^Cm3 zjfJ#%TA@AZ{VdN>oMw#TP%9PIp`JDpr;4#++z%HVwFcRja`U_K$-2w8JKqG| z=X;eoG$EVas>-LkzeFaNkRfilma4OI$x<{S)3Ye%B^l;(My4{rjT0UGk)x@RWAow1 zHEUDSxmWL68|ibfpq|*F&;kR|^Q&1i&BJuv;QP}mFYTsI>-z|0ASLaGlrPm_KiiBW zr0j935tm*(zc@* z`t#`ykq#;71hGx7{bVFA*cJP(#fb2Fs+I)tk!a|OkaoAGweVm0dT^FK!|ZYegl_=Q z@~Us=uaOx4B(y{z`wlM!OE2==oo$wgVqENURLGZ07Ay*C3;o&Pm?H9pXvz?cov}oRR`nM2GKJ)Zdlf5rh@x_ksHb& z_V3cA?|nffunQHMoyuP!=RMF;+U6EjHfEP+_9Xk2f$L~)nDtr;8o(RAoy7~Y->iz+ z!tG?b@_FgB!{>Dp9!||G{>9TtN6G!=5C^3AQ3;nTagoY@bL-zdqZQ~|$$nzT8l{?5 znqP0Lj7M;zUvJ*7coO3R-2#)%N2d72#R5h><+NonN9TfwaHKW%jfvy^J|l4*3sEI| zalV7_QNT@D-^ulh;Y)>_lS!M$b7^`)@9*E|*tJ<*dAW1WW`=5#En_dO$|yX7=u;5Hayh= zLi;W+^BndCp=;(ek3}=@C)=4*ISYFoc%cP~?^-tk#Rb(f6BXx|UaF1FyjpXq;a&DA zFH$xjEiV&&6JaZ*uRHxx4UJ6d+S7jy&^fb4*9)gNbhH(-O0?#A&vTem?3sKR+lpQ(EaV$Uw=-3=VfJ?-kMM3PlDw7CNWSPMEC#tfE#WeW-tZ{ zrX6kWaeA4$zPDrtX06+3~ z_jPS}EG&)F4`27b$BeKEnM|5N~ z(F!!P#^2xPNZkT<2JM@3lo4>~F)=s{=P{~b_LQX9&~3CP?RwcF(@4-z$Om`@uNT^I z<}g2R9V*--#n43f#dH|{9XDaI)KFoof;dZMI1SJnOtx|Xy|V^J0|A*cMx2(TH#c#F zKBXrJih6*w?b`C=w<4&%p9A4k+c_8+h&GglCY%yTn~EoSe|=Yws?OkO8Cqk^5U{}G z11X&pm7xl6lxdE$eN2)1R@YqEyCIByxKQ|iKpzUe-k6{Q-(hW}cS=T{8W5v@7J!WU z&fqpcZEpM#YnC-G$`fGM5(_#&kz&g7-_U^iM}EW!=kfyUCd3_nZ=+!BY7E?wQKGi1 zICxb2-)@wjf)N9xMaTKWxM@&WOgK#DV}wV%2Ab4$G+6*BTA(;&hFyo2AXzr^<2U)L8Q7(sE&ZC56ilPCk4EIKAZNc zu&2SK@bpuczzzj6@kJ|ao$hpEBuL~iJA3WFLj8ph4!~sDJl%iFsKt}i1hk$q9fanC z|8w~qs2)DFt=o7nR-Gt2IS#G2|C|aYjmntB#dy79u6&WXZ3N6dFPkk`PA+_+ZO<7z zGVp(w28y9E7_)IP-lyy0g-~JSM_i`TT)~ipqA5ljS!z8aY{1z31rZ~Z5p zD2Ge^fx%d1b2`=W0#FQZO})CdD5ED$)2M&!`mQGP%N>Dq-68L^UQ3VLIsQH;+Fnxcwr zPWMyV)QV-4V-sNiSpmBGE4H7ru>}fzquK}l3x_fK(A5`xtM}B=teW3q{x4a12X#8v z{_~G%SEkO3`a-&?v-g8cV{ye8ZA1nR6E(%=^y`RT(SoFg`@b4F{_8E%#;ncJqROBJ zlI)a5h7!3H)%mBu$@5racW;G-m)48xy3r7MMj5B4-)(nOz5hg{aF*(2Qk8^?^JKS1 zuw-DjImONsR|>NkN&yzR)IYwzi>tfg-&`u%oLi!w7f;=ce)b(wKEcQ9VX3IEtk1Lm z+$ur-Q}+tED@c+?hO#D=wM;#1d`gR(s+;QzSETP5E6uXob2>`}N3`q|w2{s~MST6L z>HdShjEE>+l5K8-zCC&J&9Nv(B&?ewy!6kf@KNoW+1c{(_>e+sh}*WG-{{Go$}I1w zU$O~k;ww*y$%2nuaAosq3|E7`d7izz1e_l5(>hpIN`pi%miOE>qac$Z6AU6Pho zMQ;QbDJLC6t)=hwlm~=oFNHaHs%o50QJRl~jxNR%vsye1?*7TD$KSKx)3sKW=YE9f zx*W$G4>A$v<(IYPRPOEd9=H_Y%4jU}7|2bG&n^OHvR3V?FN!e%6nEHPxM1jKi)m2g zsa1qsnFo{zrkvV$DbQoOpd}Cw_efG*;^nGY>dy+HNcDIQiiOGT#*eUJ zLqlo#g5}R*LtSfFu)XsFvgHv_vEXEY@dAt-Px2PZkR>8lZ&ShHdx27{5x5{0V3~AF zE+fgQ14H=jk8pgu_U5UMKjwvAFd0|_^O#Xym@&psfAErU*hJ=hw4@u0EBcArerA9l zj|1P${&uZZ)NBF6CPK}Ghy4TC4~7|{!c&AnUENVt?lWaIe?ivq>g-G4Yqo-a zF^oYpt=jXx9vP!WhnUa=in8EI?tX5%b>p&>PKo!8`5IsEN_7(yC|_rsSb4|`zV3{0 z$fZTVrDkX7t;YF>F}5teFFDMlv%jvp*inVrHWqBQ->2uyQ0Ab)2NxZC>)!c?8(Jc= z(HEu18<9pqCW5JSQuHekf^h(v49qy@U@W)H^==)L&irod2SZdpEX10~o6zWyGPgM9X zyAHh=b3A(2_oNFFSR=L8a0JpE`O6pZ8!=A-0jZBqvf8fgbkoNmX zkE#6Iz=DHZbJ>0t-zeool|GxiFz<6q2-u*c2 zT`rpiTs7iGV#=Et&NTr@bmne$xHY$habqL<2kqszV5ldD%e>C@$3U-AcG}ICy|t3MGFr~qii^?Y zhC8zYNQ)(}6N(Y&TkZWARdDuZI;O%_oYg2b_)`1y@;afVMKWGAkj7Fp zbAKdtLrEV|3sYk!D^q!{1wtWxq1czklgj;1wN6olGk!pj@o6x*a`Dc3qI4 z&$U2dW4|8v5?fc4M?RuuCOc*-K2eeB)o|=rRQV>eG)py{r%~fo!cUy$)XM$X$0dz< zm)j9tQO}+(m#1Me@3YQ*y?zJpV)C4FLZ!GlTZR(#Zz&otcHn$vSGh5N?U<^{ zE`1{HtX_n~WX=D{FM5BgcE1}aDE3WWxLYQ4raT;ZI{tiE$Xv|=Fw~yHa$B=AtADci zn#@g9w(i6^f8G5AqJ%owjCB!&G!qr?_2ql{kcCX04#ttL2E8XI>HA}L8x0*T1<>Vw z5K4A(eG=!R>U_g*AC)#?dDD>p0qZ~%zpM^ar}~Og-8J3WNpouE)pRdv=$l>DolX+D z^!d#X`Tr7U*+FMK_4yH2mM*?-L@K^CSTTZLRy@E-d3^EmiQTvvbC9J&?D2Sd%bC6X z@}Dut2FHWL+h_so#tSN!w14Onm@@)qP@=TrsZ5fX8(}LyU?7(+a!cC6`L7)mF8dT4 zVQA^%i?J-{YqjwzU-o;jXu zq!7THG+>pLm8=Vl{?N%55&lz^KkRt(qVes*aGPn~M%~a;TwH7y--j?;WXUsExRYaEw~2q5#OodC?<4 ze1TxvQpcp^lekJ_mnXIicw1DV=|NaJCaO5bsQUT;arYl^l3vxh=&gId@7!}wxF_9X z`Vxk~_Cn zlLt*`8V>aw#DX8Hr8Uw1?@%m61&KS(La94II=5Oq!g7aY6%=dDcU zqmjC0BV{iMCpud}!O)<;=b^w`R)ms&`aIO(DM}2bZxwPVKvHU=gpVFTLAatv2_JeK zG=fi{6V;U$esJ3#pLns$?PE^A`cbD|_UEs<>Q7F)+|~D?Ctvi4m;c0l_>W%n!zaJ- z#>c+q8h19gU$c}n{&SCYjeOD@ZXo~JE3b67%nwBy(*Na~ZlZbci9dee3Fk9s=(g-W z?6Oz<4)94A{>{60zvYYVy#pgYfygn-Dov?LQ=P35*-i*~7{lxzRmvMolX9g}o|>My z>dra-ANZmRL!K<7zkb_oxsJ-wO`ae-Z2#Z|-~YYme-|+%>Hp-FSHJAcJ(KgB^~GX) z`*66tytJ)j(S`O2XWa0L&kQ{4y>~tL1N%=or|q*B_q7jIr)OqX8}sc$^-q28u5-S( z=WXY0f6dw3U;N=++&=pBYg~zc{{=tztGC=DkYq9W(^p*aH}Bk`0&4j3Pj(mA>9^cs z7y@9AJmpdqQ$U2>mLKrE@BRJ>7rgL&H^27_w|(o1BX=Gi^YNxSKQ}sB{EEJmC9Yfw zqDt16kVn!^AQ)PGTSeV$#q3ykyE^-do)g8)zJgcqlvJI`9+_+~&UwgoVtD@#h3vy@ zLao?#&DVHr(I6PY!+5yx!5_mcH$DCc0Eaxi#|JTNk&L%&42B8)|IDF~UB}_pLxC+l zbNEz4A9G15TYFdEojv6PqxIW5=MMKy+4eY#1qnkYl;)~ST^FwZ;33Oj`|XV%|H; zDIoOp-2CkDfy(e+AEkW|umxo_J~_3z+?c!aUEOayZsfhkjeO&8=4YoD>y57d(XOfb zPcX_(TS;QV{LV9V`^cgzPeFgUMtr(mKya#-9yv0_4&%eoks=-$7kDm zMti4M2S%r^yR)-vVzHxl_+VdYdcL9T&XQ8+j)kATdHK+VS-zA}#b#!v-Nt*y=6eQ) z7u+TbeZ@6Z&G#JYn4F&J9U7mUp7Q#hoU85aE&c4yuCa1KcyeOWh0``xsK)Y2|3qbI ztbo}wUTtHOrEZ6FZF#m-D(cWY6y!2HTk7c>Y#$i!8M6I~AG(~Ln)G?JeQe>f?cG=2 z-t&`f9bKcvWo*7$+h|lu-+6BBi~n`ydk>j7`#;ye{F~FCeL(;2t9u8F$J}o8nRmW| z)yzeBi`_2@rt>M3wwk4?^8d)L6; z;pHo~cV2x*-}cV=8}95}sQu!mfdAss%I@yDZEZ87jm=vRkKWccy}f<nKoK>!FrDKAeb1$g2RW z`?x8fq;7_BPGHrnaPe}}^N@%*0HDXvklWh9}1Axf~;ITa8+D@g+~YjE==gN9(pd=gHrOyH8zIQONNF_ zzyMI^ox_mUqs3ep-ok@E7`AcFt&ct_C=OWzQ}hD){0*aOW?88$B^V~Ljg^%2hRMQg z%*6`ZxJ8wfUJG;jWMmd4cmOgJLD8T=KIYP468}u3W22iQ(+jP>*_TN?ZpkWX2*533 zd(3dI{I*(IVgA*7z@F=vuR30x&@%@K0cL8aOVFbX@)3iW;tmgHQun&rGbL{_Vop#uR(#Sh0f>psmL*8tkmTQx zXBym6H?<8JN<*$_;)jx3%^kylO9e`CM z7@`e^PkM1F^>%3jQ6h$3qHwE)8xCLuO^G-Zovdit)rPzgXj&MySW$A@Iutb7iNzs| zxH%Naru06wNb7z7c;JsuyyWDwJ6z0iJ9T?}&ii(|p3%@7x*xivxzj%XgL~b6U-%CP zT_&IY_U*6uOus4rz38Kd*ya~~*%I9AT!Y{EkJG?UdGpP{xd6L=0=)DSorUoJJumq1 zfv;V%4-M)3szX7Jt-2|KN*V&lLcV6zVRfZ(-Hx8q&h2(bb%#VoEP-4*$t^TlS6@KmAx-DvH-HAwLZ`SFZN^5L{aP+3o%3-!Sp^uXR24RhK^J1N)!&hFhQb zcQ-!w1AAO+^DDuw-=}@LPeByZfAlXqr%QR2R2dOQ?9JaOJ?DM9p8D2pPdMYIhrR65 zC%xhNr@rOJuUXWyqqM<>LmHwDR!5*-4z!XhtiUy-@_L9v5 zMz7lRspr;1ftB4t&p$Av(9Bucb@%g75Ivp=dGPacGqm&on3&}@>9FFe?c=MM!8IYd}v4v@;Q6*SKyyjgmleKHyv8SffjY#U#? z`i|aR2Rhw(8M=roV9=a@8wVb*QKxg?&MkjasErcv-;gX82-CMN z>f26`VUjnz)I42aZq6=XW>XxAvI#dTnfe zxqE)~`U4YvraheqcY*E~Aa+T!Ng>eQugoB#N~+Wf}vPMrC#m(TmRrSCp# zab{$G;pit5ZU+Vj+q(xw=N8Mg;yd|bwGM^B=AqC&I)7Vd`S#A)oA-}YefYimrhw$i z@)B29Z0|ZSQr+1#b64Md_iX*fJ$;phqkpl5lj5md-{_jI@9M3L)z|kAEgTrBb_MK80rOr7d< z&w|PnNi|duR*DwA5X?FESO!4m9L#Likv^MH2tjdUYpRt#&dGva9XL$BW=(;i5n|DE zqDhUOa~ht52VgE-N*%Yd4!~5*xh3#GNEH54D{_3&D3sYm=gJT!%mMV+!gJ2hlt9T; z`ji05$eYbZ&(K3^$d$T*=>b@&8*s`<&!?8XY6!rDx%vpyN?(FzC6!GJllow*!CRZMGEBVO!iOLPLngv;h#M>A;xn()gyxoQQedk`5?&PMdid0hLuF4*G#YwJ z9(W6qo`*0uWdqOz1E1b(R+(T3DO?OS8f1hfFpQi)kYptFkb+8tj6bk~X!P8+{JYP0uBHwGceGeHINwTz1ar4^-F1rtaBY6;x6AHzZq9CWZlP{{FaFqJ zNJ>_sxB1U%7eC&2*DTKQZ1s^O8?Fxlbw>;E##nwXs%oHbN z1y^bfCLYMyRBUZ#L)%XSZtd+vhrf?QAy2g4mU9+(|FH6jHhPB41#KM)Jn+2rP!Kd= zAxsHvGvr|m0p`gx;!P1adH#TP%R=k{i0O6dWsaB?A9ec|E_@~R?{JpVH{O8i=eyi&} z|90%m|4{wnZ+5-!Ka@MR<78>T=H|-V4h&tlZ~U@t9Uaq++dHPOx}$%#Av6}hI25{v zr|;@t+}>Hfa%XS*h?QRUDNQ&DHnUhC92p&+oSUvJRThhS+6>AY=7_n~R2P-2_(m(@ zYNF2MmDTmhnaawVWh!zvWnHAuJyw}qC|;7xT@^PQbL)40a`W(cwV}NW9XD=_?OtmX zrRBzI@f~2> zeaVKbR3_(_OAE_GW7Bu_&Md8O_Vo|W*NQKR&X$VbPj(hm=I4FF>+9?H@gC>-`QlJ8 z>lm1tE{%>)Z!TA-um5Ce&n26EKP`Ruxav0_H@W@0<%>>R+xxBJN3ZR!;yzOvnq3;7 zUEC=Cdi2plp;~M74Gi--KEE_MUp#K~m4(JssX8(-GrO`jIJZ1kE%f<2Rq(^3#TjJ( z$euojLTSEs=aJ!w*>b*{4KOk`H9EgMQduiC%ZR_VAUMt!7mB;+7uPj~iTzi+5>c5T;@;o3s6WHvlMQ&W@6%PSpYwd?kc9T-`@ zVc*D&`^WYSEZ%Z>X1MrS>E-+qwVmndwp)s=b@xqyz=>P{Oi^lK&htO}P!NJ#Y_@y5 zDG;x;c<(~(Q(rYcV(X&DTv3%%~H4S=6U!z3H)08wd z0s@o>Brh}~cq8#lpCa(goRhq%0BGoGf)^_pnH999N0pv!iX#gi2&o%b@ML_Xg8)oC zkeQ2u12V<$03*a8foW+HMoUc@WC#GJ#k*M~2uW42)<<4pa1tAs2Qp3GjLr#F<|=Ct zw|b2eu*e$Qcsn}Y(oD7bRzo0s2(1(}NpaGmEu6yXgF#Z1!0PT?j3132e9KOV5!0 z=y*$u@|YA~{AlR4zU z1L*x_mMjH)OeuwZ#j`5WLw0p_acCGa{KN?XldYvNY%SR_Ehg#H#1%2*C4N-fq}{4p zhB$;|Ld$}Zz#LopES6OZCj0?Xw^nFT%(8`~F`Fqvdq#rEMXZ*P*;EFYf5Uv_jUQw} zUIFt|W{OE)Ump+1Pyz_8*Tl{9(rRo&^_UiVyhTWZ%tL*QAO0;9eQ4_qDRJh3fNJyv zl$0n{(nErIUch45bXhdRY)i_Jgv^w(D_Y!YY{Akpn+?MQ6I72m6euBiAk(NDu=CZ` zf~y>majVzh!6IvH6*-u#?fe@jpZ<;=r<~jC66j9&mT%6weZBIt18%}Dx-b7^w>z5~ z?5XGWnmzgK4);kH-Fy=m%#>Rk*@ewb(v-X9DWB@0ahK!4wfULv+Uct4&g@Ca!%b@Ew2=b_Nu?elT5QSHNcYdN%ITYFFQ$Yeq9*-|kk8EQ1v5e+iuTT2?HD3lsX zWPQjZmc?SFg?wPjBE|GuNQRJ!1$qo z^5W{|Ty<%zywX_R@a|s9zdy9GIp3t$JzUy1Sp1!7HE8WZGqNQ#?^T5mK9iNk!LizE zd7ysI|6cjlUu;hA*|_!%n|FO?b*a9xoaHW7#Nu1MiMhtie9Z?giO)B`@jEiRyt94M z9l`A?`=_$7I9OiloLY2suho~`7>lpT-QA`amWQY2mCqi?KJhk{4 zmAi(QI>rmPE?#->t!%720H!Mo{rv+A)r#7Rt6WRXd}e1$v!eqGhkiP>{kxmB@rly> z=;(+N{n|r8QF6o_9dBt_*4Aco&z`Pr9v-di=$xLb7k|0Bm4YTIwW>7MI%k$f>YIB9 zYrFd@2geup4OQ!_>&wkQK^K@!q6qeU)8yz)!O(FgmZ_~|VDb*ho{UBh$>Dt;3aw8O zY(13@QyN1NJ%*xafGUDEz7`wWy)$tCJilVgtsNJ(vg$l)_l_VQ4!9CNIqV^d2$f#?d=_H z{$RZx4DY;}1qCLHg-m{;0KiI%q8!}vkbQ5)qvqj`t&rIBv$GcTliMp%!*4BD|$jJcODGWD48Q4<}Lo{ zC0SE;3xS3$fJ9QR%o5G1ZP6(#xM<%#wzoZSn*th{N=_&DyC0RWf2$NF3L_* zH`!SoLq6%1S_SNLKCO<%m7ZR73=I+BjgW0AO*~UKfoK54WtD{%R8LOL$r@O)$S{JQ zttm)6v&!UDKAs7N5tv|-D%t!}#!z06Ff{a8g&-x%D(znDMk5PTt-5h;7t!;hN*>Hq zPax?J4h~9_MmWoqjIwY%C?h>Gd~(hq&l-SYreZh~SP}H_dC7#KUR==$VJNP=TEnz} z1%l)`g4`+5Fx1m((b9=0A* zdrz%2FbiZTO%Zv6gkhU9s!|>(NE~?33yoyzsZg3(NLKV_VOVWtC=s?add((h(i*0v zCXn>{2sAuM#1Mc(npVoHA+8+N4M5PWS6DF&TSz61Loz)-$3)loVHFyj(A>wNpn6*m zg_)_ziBj#AXYc;K7hK@3<$)+zdQrM7y2L)=_1C&mx(~bYx~I9A zxmZ5w4L7*xx~EaT;KTb}=Ky$f&2!JBal>@GZoB@PL&0LnPKjEFLh;vbRvI0HbH{(+&eOjzo`2BT%~nJ=d7;I1tAE)!UHPkB z`9^E5$FKX+m>lU(_{hQEJN|;Veg3Zbh2@#)$^4E?4h7)``unG+k3AH~1l;m^r-95G zW!JH_@z++CR*Sz3w6w9>xc08nGv9UlQ{P(rV7Z%lzTd7CYK5nQsD^^S>bybKe)!8S zk%biSN1IY@pYe|EkAMC3&wkI2vwzU_p>OQ{(6>9@^UcmP&fWFtA9r7N>)`E&rrfm8 zy`cTG7j=I1%Hi{GDqVEb$d3I(UcHO8YNPH&@k@t-dP+ybmL@Ns>@n%IcI?(>v*oGL zL)xEP4+Wnx?|CSA<0(j`%r*S78yp+ zv*iI&6c{wfJhVI$3?ne%R$Rkhdngd@|DnJzb(7k!JQSwq`mX-;=tusKo_GAOjc@#3 z>D>Q3`SE|d_VwQ$zVJ=e;w@MFbUGTf+Tzf3Wo&VCN7wA3@%pa5>Qy^>rsj*!I%46B ztvBw0f!X#c*W=n%ck~??aWyMGGaw*t@xgdwV`^!$ueN#JzR_C_j5Jn$iTTp%`rd)c zwfiS~rI91#<#wMqi+}O_lo9Pc7 zSO4VyTD|zCZX}T9`Gv`u;twg$Ep4<-F7-~-)|xlQ<@M&R)qdF6oUJYmPRte;&%5`= zo{rHgcJ!5MYo*!wJ%_pmhlYoS28V}=L!qm0XkUB(*u>6`oc?tuecqe2$zSX-E>H16t~9a&tT zYHV~2{NgkAs>klgWgB}xyt(~Nn;k!hD~+FH4u#3)ALbzBQ1BASp&;%theAG*A>+Bu zM$K#1t8867=gVyIQP%o$#Xq-sNE546U7T6o+|e<0%fXS6g^hB(*deXuOG8YoJP3yA zqo>pedDcwH#ZVtTCawLZ7u^tnV-5vFRZ6uX`AK$(1+ev{(P}(s+=>MNmZzSE=VJ~9 z1th4F5}^mcKRyJm?&DB^fj67FnMIPuEb{b({&%i={ESKZk-A&&`;d$8~jenX_GR!rLp%i^*F|$uv`9+goIMU>L_kdwV+* zTM(Y6t*wm-cf}{W=AV#Zs0UNWmN`RZLbSWPn-veLy>ACPzxPNs5)BTE$hKb9h67CJ=pgkD;0na8o^rWcRQ_j~{hYF5tijYyt35 zA3V9GgeOZ=B3y~C0!l}T7+1(A>ll*7;#`{Ws;vQcbaZ%J!IXtwdDV?`{7vz1N`f%_ zON0Q%r*%P$XF-KCg)pm>ackYMZI0gNn7+asBZjvhfl2)L1@L$E!> zQU_qeBS(%zsh+Gjv9IufC&VG=UT$$^6$}MMOztqeX_SVFNh4V)q;8m_Cl}GxO$eO% zr&kcEaR_Nj;tUgxUYgml%;DpN|I`OD&S~IbxC$R7N~zg$A{;(?7QwT!1K>{_4?a)-{I=(0`}k&f9yWyZuYR37JnSeMbUpQV^2Ke zI=8hyd*zj`Y5;Dw?q-BPIqmYNzkU1TUi&k$OC7=W*sa*T?loT+0sF%j{=hAo+k9_R z|EI6G;*VbRL;iUt{MO%o=Vc$>*3~yUUoPGl(wBwm$yBxFB?S*Vr6EDS%B6rb-Q8W& zQ7n0x##jFQRafKrfaiUO=SQA$sX&7M&U3zn;e%fCBRw*v+`#eq{o}s}K!fv> z-@NV5PQB=w+ls$co2{a5dHEPxH9az04+R?l8F;YZ(I#kE(c3v$0!YH#tgX2IjVn4H z{i-Wp@ZkfB=?<)J3YG8rDt^j%%BOn#rz{UW`Jz96)m2h3_2lN?A#=A^%txMj`Qu)H z<9~bBw}1P2KYaKpSN*|@F8b3~Ui0U#y!_8!@smfLdg<@I;D--7>EZ{Sc=2Dn@#ZJL z@rFmf^hYPW=Y~&w>-IzKy$hAuuFik?L&2l8wQdq`mZ6X}Wl=zn5-YI07*n5P4h2*6 z|C5IT+Wc$Qi;`Q9kEA5RgQ3JtaVr;YMK?<$M;c9Bv+xY_0fV>Jp^(STYz_r9wjK&( z_2J~6hk_`{9a~x7^H7kNeX_K?vbrT;#4&Tnq+{nY3{XJw(d z`6ThOx8K;rbbaIJyZW|w%(RU!wGYm$HGia>H;GG4K|1=zc6H4j8DIYC9esxe=H@F4 zE^J#5g@Ng6X>Ie)p3*h99h{o>*|PZUK~6-Onws8uu=k2>M|wt!+m6(1kGnIS>+K&L z9V>qPL|NoZDIJ3JRj;kRW5S^@I(nq7-DJ-NZ|iv1e;z;kH;I$E!P! zj5e0n%JUWX3FVzF&F(qa)iX5R(?7hgYy9BA?8sDUX0|+Z_|D$XKV|;2|9$YhKkvNl za+*nLG!KQ5;i0~vvCFo#-?*p8ev%i@t+%>&+R)hKf%cxmN7~$4dwYA-cYpWT*Du?7 zN8!5Y#htlj^ zd2xAYWZWr*aNbDSAr6J&Y+Y)st*%UMxhdd7pF;$uUSD(u`Rl98j=r$&L{CM!eEbd{QP~7_ksABx|i%ZVmMS5i(2QoGYO{5t-6VWj69wefkK;wCJ^? z<1LL6TYm7j-&#u1g-&nQt0bETPplLzJA_91l#tR7pVSQ|Ndd5JmaV9pGOCg(?;5=p z!zc-8@W444H-TapP3xgZbXJjD0E7WV)Pf11B?lQfLTh+TD{SsRgFFJ-e z>#eVsTW0Yz^pIM2LmZ?JuNv03X?^rLg)s~4`Asf{3X*N0&Ng8-Mot|L4K)#y8WVCB zj@;4^(&$@tOHko>CX2$5o-%-z%ql{wwWf|~TdlS>N<34L*8bPT&C5-X7~$6*3UUXg zX{DT3J?A+THrChn_Ab8gBX|ADX;-@FKH>G(x?<%I6uT3idTwvNC;7~G?Q}PO**RU$ ze($dQT(pa>d$Rt-v)b~l)RWKdc<%e}a&4n|>fhfA%*51Nzg>3QblH2>d+v1A)H9^v zJU=yk(#P8&U+|FwCw{!^qHP5|RcWU6PpjL7+pEuf_wMJs?=GPc;QYnSe{e|e>gZPN z4k@l2T_D}eUEM`@pLeBv$(il1{`|-nFKMsL-}|AEm%knBG0aB7!DjG&qrabrLZwpO zSYNSKKlrVV7k;$OT~~BGC%T^ZfxV}k+k3`Wr%pV(>s6m0d(oMl zZ}>vTfuSO!tqnaSv(03*RVkP3H+7J>W=bNqnW@&R!{h03;Ne#t3U-|maiS@OVhTj~ zzx7bS@c$);LN*VcSZzHN>=sH$>4#71rm)LCtZi(L@4aSr=U3M{FIXM8&2Y9{Jorqu z9tu*KonI_1G+f>mS2nCJ*TA?5l#(y4ZY(UX4^26^3;$T^xQe{AQoQ|ER@Y|BRoOKE z2G%bQ1vSk-P^5{~bpMOif*sT7N9LBxOGgcxZDVudwvE|6>!tSEm8WlBd*brJ?=RJh z<(^sG7@lA094%L8I;%TAx7c;v>c(bIPw!}{HeTH*SL-vC#w`bi2PTSV4WsF);*aEa z4o&VjGP<_0IaOKhDHZR%v5A>Vz4#XE`1sh|e06Dgr6|SPdTF|Z=AwJ@__$PDn8!Q! zY*w59AjR6+(#rZ`!_{|vZgI8v*M=7tOO@J6u}_OyTHRv5t!=2GR$g9fAE^{s88nw{ zuDW#Fk*PgHi--FrEP1hP&9>Hi!^&s>%f@$qckL^`xw7kPQMQ`J8Y{1q8~0wld$!u@ z#=+6r?t%IK%I4to!gBGA*rKiMJgaopzpi}!_h&xy8}%>#p9|;zRnPvNoMLBvwW+D; zx%!gw^h_*{PpI3mhr-h8TG!xYy(mIsWVHCPGMms8A%{h=AAA~FS)Fl{ZhiqPr=;zt zGR-nHAA#CJqfxh2loZB|+Q(S}fSwYb0IU)CXHMxUh#$%TBE)m#G@2IdnD(otD1{J< zjCRYRO`-_mdV$N=8!R^kiNF_op!orV#zSP5e9WOhzMqGJx13jjsieseAA%_+%roRx zPu7@|^?1S%fTQ6AK%Y-IQ3eo!W~-b&!ZGbv={0&$@|u-Vlv>^@qD$>KmD21dW9);L zylnOO(U?lrc!9xKHOXGhDO0K`o}xphr-?WCl*4tOTeHF&Dt&e*!&JdLD-K}U#NYAq<{N&vYMle(k`-58;v3R4;{xHQSOs1qS zC>p}iXewZq|Af|P08G(m>j;#(ajWMxbptTOBt1=fcu_QU!#Sm+muU*fkOxh;IK&ek z!`5jeVu}D}HVXl7?I1^*KlwnA2t2p)4L)TNlprtWW(@df9crFsYm9V0yFJW+{S}DoGZYUX=hs zn1AL76SPE+tj@u!Gre%hf)&pyAY9fZdq5yl1Xld(#Wl-=MlTR0GWu+94$W$+sxb+kXFj!5Ta^$dCu^*v z)3iJKiI5&3%O^SwlejV^BHCi{kXar8fHCnJWT*m^NUA>=A!*XHB_thq1d!*Gl{C%5 zdyVj~37Ry+kk8bIZOjGLQXhEcVEl8aXBCHLV-ACf?8vxfS5xW*5{@@L6PkF_Qxc9j z6h!AIhJ1!+9L58l#~cdlYbz6TODBH#w#T1wqZ_G<;=^BdiA$IMPfoksz4wu)T0k4Ok%yjqv77TZZd_@sD4jUP7dW_8CA-T|>1-zvH4!Z| z8uVsypoG^HHiv>)4-THzMV*5$*p{a2iwhUuH2BwVx%O}0y-U#)-2GPFluH@^^c7d2 zt-Oyp{pvHmGU0yf4(zUuup6%eKCbx(w3SYR`A+)@A1S_*%#fZdLr5#d)*68^C%a}B z-*f)En@;=8z&RImZr?lDsMjjxnbqQ7PX1>e3VFl;fDIXXnxc_)dSxN-V=48TD0w}y z@|cjB(m9SW2JW$S9doLiCT@AXg+g`DUF&7uU48@+Jh%!+3mgwsQ2 z4+vz6z`4d&+@!403xr$hW|)WsO1-Vip%858(NMP-`Us-<63gbHOx?UCfC=^GwMuQ- zZIHX=mEwI4!__f|!hE^-1zIkr58hb0^9POY+g6tv3$^-G^AnwXVX>Mo`zW$HJ6E2$ z`^SY+sL|%3fQdw1_}t=LAOR@xK@w>xkwvj2#~cc!x%tkaQs3z8c=PN_HR#7mwb{jD zpD41*%$4U|)P3Aux#OI*um8rzMSryL^+zlY+_|)}kzcT1U!32#^Brs7`ELu~e9UHL zV4_qjOMZE&T%KQCTfgP-)a?h0E6RLhz3M?FR2NHg3bHXUQ9U?VY_lB)`*(I0pNhw( z=Jxc?^-eWbHeAtx2hMru`o$;AwBKH-uT51NJ_6Sp z_38P=g?jOwH=ppNtg5bX9uO7ln_1p|XvC%33u1Jv_+cWY8yFnk*xZ<}EpKm|>Y7{W z8lIk+E)Io-xtYq$#QJ2%;#VG4JL|ZKkN@YTj-RTX|>aYrW%@ z!P3&;L~#%on&!*R=gn%R*bK9c)v5Z1$917z90~|DY>WM$tAF7?Y+m!^=yMIEMQY=p&eYQP3pD>)8l75~+;qu_*p`%Y|jRqi7ggncs8@GCHP3ajL3L1O} z=;7o1n41FgJkAVx&^)AZh^Ha&)rnG0EX~*FiFw*OpWr& zqa@SAC$2y+1a4D1Ou&+fo<<`xkDSIZ9Hf*feOlz0aNg7vq4layBQ>=3WQBtlh{Jdb zAAPH!sH#4hrnRj@K-OlZgEs%Em00Qk52iR=*#t>EoK59ZAf>%RInexpaE3yJ23y?n zK|h;-034nI1?i(9ZbDTukgey6Ql<IXY;zSV6KP1mA*1Fq;J9S>IZ|ybko31Rs+O z2`ONFDp!`9p*omNP#6_U^~m%ICraKj*-?sMdz%8#V(3E^N_n}Uk!LNt8f_-8d#24`_qKIzbq0Wi#h z5&+_d2UZcXZO8y%c?P9JFst!n>Yj%}5>G765o=1;dc)v(PINxWta2!Tg*G8^1%e^m z_o49quOIrWx9xb#H)q`y-NanI+?w24-Cf;skN?oVe0P`9f2V!A&s4tI>l*3C<(}!H z1@ov=FLSFj`>>Z@?5as{wR3GVMenNVZbsmrPq(%Fnz1Wi@r%bFJtXu4UwrY0zTIw> zEY9Y}(O0o_(3W6o)!YNcpDlGyuFTJ_tuEK9vp>4FYm1)@paiqOqQ z&PHmrY!Axp3L0{&)Fy7&Up@W2-Y38LR(ziN_qQsbl0Nk0i{zd!9JsMlB9=P;?Yr;5 z5Yqit-C&;e?mJ#`W*ZpU6lwkJ$;ws;%(XkA@hJ2+5sms?ufEX@?(3;=2!3a)?Er8Siroi26- z=9r*RI9gll8lGtzU0B{I_%Bp{aVYeT%-nQnvTJH#YNq6|0Tzyxy;N+B=Alr0H@r9$ zrfh=cThCnn?7!dq(I1X~>Ve}2Z(3R_D#p)fZ|B_i{$}M{|7Ypk2W(CrSe_efjP0q_ z7yJ7M7aB{WbM@h|DQVo^Roc@#s|xG2nfhcG!^%Rfe`tcHf2_2(w+Jyg*El%7I%JVo z$CrQf=ZhaZZliMN=E0AxpLN{ko)4@JUAO#&|G0U{BN}}-uB>gWtQX&(l%)dm)+~Fm zd1{M|*~OLR4I862UteqEeYSYJPEAd^H@d#uc5twFx-P+)O2a~W7uV_vGPAVpZS@~N zcVp<*m9c$GcYUUG$9Gm6i>qrJlTN^;M!A0UuS0vK*mx>Tu(Wdv%Lm8mw{?}T-Px{y z$~aq^ZPXV_vvYmJ6RYdRMk?0-7l%S^uD-T0czf4-e`E3U|9SCSzgs@@-)#0?(O9ax z=x#j}rb^|-wav-W(Z3bfddhMr%r@44zGwK3?%C1mMy2lUcXWdli{5-@XKI^=$JeG8 z*N;prb`^hYyZASyGo?=>56`U~7+oHytlZICZkt*jo?Dr(6jv;dk8n1sr$+Bt$o@Bl z34tbj^m(kZh4T2&FpNg8xz`nXDo43D`fcy$OD+tkfe1UwUh72ABKLYpCFIO}Dk$2@?9 zQ>*05FdNdA;F*Ruy{vO6cu2{4*U@uw90MxVG|j%XVAzDESsuys$_>dfq+w7DJ_+y` z!_?iYFg##lMZn2!;1e=dFf?WjlL@y3u{t|D$=M2=gKbR!KnNZ%*J$wPCrARMa6B;Q zgg^FEg*0C?WuLsfzZBnuu0Du5d+0z3_3$rnJcaYd6_!8mRy zd7uy5-~|mVk3sy4Xnz80l<`KOm%d>rQ6i}nVA7EzjLnuRsXPFs1|w63iq?Xqfa21J z0D+<6Bx_8vJ&;5=Q4Cqp>$&ag>r18q2ps?o58U#p@sOT}qzuoH2T?SdASo3=&k1n8 zsz(n)qmrgH&XEi;`fOU&@SZXx>*JY#l|Yp+0L&}z0 z00ksuy(n2>A}(1L$QvpnVy0pxiYYC{H{>ULQW?yFO&MxDu#zTkiG>eycn$w7Iv6>{ zA!qZ@BLl#jq1ku{UKDO|69phaTX+~fK&+&nDuD^azdgf{%!HnxTqt>bfcZ~hrB8{l zGz0VApaIBw!I70!TFCv7^?{o zTLQdUhRK)z6og(Mw!vpnlu-|y>Ln=xOsoiIkxYo>#YyWOod9)|TE!tCoacAzpis3^&qUC3iaF%>^be6LnnMtUi;u5{<2GCAtSD=!edUq zT1j7WWSwPOlwBKzhZ3YqIz(E!dqx;QrMpwQySq!IVF*FGLq@tmx{;KU8oE2@o#*rW z4>;zy+55WoTI*b}B<5U~?^pY*97N#zi?b-Mr;vAXcd1?LflnX5JTFvEQ z#Ql>Js~^>dOgI}dw>hKdu?yl1+~~UP+HD@$eL3v)f&YBSgg3Wewh!-bW);OmPpsYa zNT6W(y&|n$k`Px}I-;harU5>z5>Fe}p4if^BK#35hHcO`enU5~`YEwqz*HqyHGA1kR+IHlTltjL%Z!e|ozhbF zqqee69rI&_KMCKyO;U9Ry4^hg5~`Wpl)v8pdvP<- zLU|L<{lRDd zSf9-1%3$vL=Xy1@cu=uc#fmq~a`%3&#l=ge#qYSbhFvJGuD(u(mW(s7-P+RgW$2TG zyQ2+*@he-S&DR0XDC#LGb7|L(7sIVk z1dl1MLqe>JTbna5$Mk2TN|y1;ykJ0?(+JG@yIjPvIMgx7Rv20rSXRhI853yZur;)| z8IR8V3YH$X-t4dvz*6-l!-I>xZY`Uu%-}LTK8)5FbVuJd?z>cx-VHVfUE2Sg*V2~m zS^($UnV&o^9I*yQ`Tr8+7qyA+*7+7Q5CxX)`QNjVzxenwY<=dLRgp?lK}djHDwc5y z*nZy$>CM#KK}()E zGw@F}CV=fAa0x9Xh*0wfs-r*9}cP1f;(`+{B*pbzGJs74K z13CE)IG;(rEuRU+=^&Tu6QYNGmSpHPt-}5@l}?P~=5Iao2PKY?`Y}d%ZT7u41!HfD zQ5u6%0;t2(6AhfR71fO?p^>EAnT+WG#W+jPDgzZ^PML)IpLxm)>PI3+VCO}$W=-Wp z578kpb|8;X&>l`OyunYUg9ElPa!`jERQGUX=pZwtnf>7adMv4f^xrOx_m>28QY$5n zx>`RM2{qn)5Pfg|Y3efXfi1%Fkazp{JLIiN!8BD)Z*vSw4hgV=^}l;_7Haj#RLj=| zZ_{lnDIH@0V~Jxi<+CFvnzFw2ullAE!7i_Ry;>Xc%e_suWr9nhHIey#YDlndB>=MTS^MhjcBoQ#B>S1i_V$ zGlmqOm7N{I9!Hb=SV1g`1ekkeo9zK~t@2|~`WzaEhnuZLl%tudi|V4;REFz$7Wb_BL}Vy9ya-Uxod53l~ZRMWv}ZhCwtK0 zqr>T)+;Zi_UzZy+6fXaD#h{ymO=AX64lkSSOFCx5XviVw#9efBcD^pf!oUr%ZKJ=5(aVtTl_TQGbc^ICZ*`&08k zJ9%%k_|k*bsjQ+9%1+~Pu)}q~*IC-Nvm0~|qnsNr_$0Y%kYAm(%v;p}EB(MBkCK)&oCOwUvw$IO% zE~3#WGM8Q=&m>w`pxT2aF@%ReiJ1RoDGC`mr!Ffq_ki|$=g!pj^`oq))q)ol1vxqO zbtY>Aq2pmbx0u+11h<~i5)}mE=1{t;f}&Mcfa@3y3V1$f3iR6RgWGOk!2@>ex)y{_ z;fw7LGTCwcY^o#WHyb@m2!aC&y}X#H6}lZ|U-4#`7|>SJU)#;+`oZwK_R-!dsQ&Jc z*rONq5d{^?%iDMQzqA*$#3JQL*WJ$=!%*nA`UPV0zZQKyBM9X2Nbx%t>WkI1EGF=k z-Mzun8ky@K9!Bh*H40x7#wQixzbf5z?>&eL23*B4(VG#mQD&$0$Hz+;XFg52KoQ&G z^?*>q)y)`9r)Pf9!tcA^Lw6eMi$~rqMmCT8Fd_KI^>u0?pRLjZ!-X2d^Y-}0%Lh?B zMZ88QrIV$y@hT_c(&U+QasBr2XEn4K`xX;*I{LW?-ILx#?XCR&d0CJix`cuw%YvOB~?gT3$O*oFN2u~YJc6$^K9b1R8hX!0!sQ9{h_Cya3# zSz$cl5Tb-PlD1t3CI6-YXTK`M^BP6rcMR`9M*I0aEmdh4!sgbf7N3Si+7C z3#^3_H_9EXDz3O(cHV)pLFnFgL}48wy{dDo#$gPQf(*fUQ+aCv8UgVyjzn)!&EnB; zWeZIy-zUzfd$nZtlIdJ{2Iuo8g{TMAYmoQ4y;C7kNTz5{cEK3SF}mme_!$PN8-FQ8 zElgM@5enzC$di=)TsYsuQ0ph?tGFr*s<5Rf0hUNl^GYk&NqrM^;VCk&8AeVXsCV#) zcJTf5v-=`6xQE+g^zRb6JrNH$JJ^))v#h00ojiazmWV(xgnXtlI6qe(S*M#n2cO^n zN=wC{iv6Qt$16*LIRC(V5gUOAVN*YiIeT7PO)*HSJg5G1V!xsQcIKy#T$};iHs$(k zXvGN11)_kuDF1`W$8S_W5g_FH>gsXXf^!o52^w|tP+-jk$&jp?1XvFBO4vCr;Rtmz zQA9t>T=F$Iy>{mlNo4)hJG*c*isHSe-wZhM;=Ea`9ZMLWyXMXaw6Er?c3>)8NhbUh zWTEYw2J_xC!349?e5n}-b@JS%%+cPWhq)26hWBn;pa|H0{`tptyom?K0aI-0Bs(5e z!AB>Iay;5etW0IQ48oY~4C+j#Av21OSLM{20)I4ukcoUdewgqN&fTOA`{b}B?9PVeG%N*zR01D~uWyDM zB?s8SI7r@d)ta8+TPi8IV3;{Up?Jx3A$rRj6OS(zvAN4fBz+jwOf~LP(LQS)+%toG zWbsV)JD<3g9)*e9heOnb`d|q}wRzX^%enU_VtMd<6g=PI1cP*g;MLBR5rbl*si%zi zmG`S;s||ar+N-rM7559-hQ$T~hK{BN)`opXo=O>P^K2loe;`UW>3Tv zBeo|KK;`?Db(5_-Vo#SHPDD92JMb`~*!Ey_k-xm^m-o1~41cH=l6cytmADP?YCofY ze0ivD0zOK30Z$qh+RtclbNoG*5%I7~6cD8IUwXNAp3kLmhsW-E=cCfCKBJrqyJV-u z^AT)PM7_lEzVM5A$4J|9Wu44<9%i1uXB4A4W@I`xjC?$(_ux(5zIMSDs2#qui;MVK zz=b>Gqh4d;`(N#H&nLbs2VOdGi9-*6D_^~A#BuqqMd3`J{~aI;5Y3? zpNS&apuVT*O4e6*D!k0_E`*Y(@vg_3KM~bupV?{z)CS#6Mxc$Ll;7$5QN#pAeG#L7 zZA;5Vn$T%SL!s+v2!YUtJPcyRk~@6NCk30A-i+G7-CHKm%PA=czFso2;&!<(cLrAwF%a%f|7tsp9OC<}x@nyVK<1FkjC1p$WET+@v1=-~7cJ2!t751*7X}-lq#5a&u4$k>iNU5E?dfH~O zHWg<7sE@-J+ZrR=<@V?J?1e6WsQ-`7%gfPqzp1}6%9V|V321U=L@6m@hS`rGp_eV~ zuSYG7yKa+Iezz{!O%i_g@HY;5K7VI+g9<(SDHkZQw$%Ch^XnRMomf?=slAM=#YimW z#=W+-ueJ@&r;{c-_a8cIT*ONGwaIfJ#$_DeNP_ZO76ogZ-a+w^wK&$lGFzGT>Lri2`*X0USqb)4s&C}bkvzV zm0AyAxjRx{Ut9srEKZ9E-N$8gU}}su`B%K8t?NEq1T8)7o0W2Tt9lfyAFoO@HQ;9{ zE9DF+E$yFfsgRNF(RMzDyjjgpM8~0t%FpbNbFx|I(`Yk=-!;;w^y5ut#2(`qi2to* zGeg8_+N^5Vg*pqNzo2%o6en^IWew?cd+V+v;#LgTtAjJ6!*?8heruty>9-UhI2AO0OXoy-SVLNc=R zKN_W`GD=7gg+}5nVaBqF9TFx}fGabN50BKRqrV>aP4V%%}Nnqxz*cc`qgcVmt)c>w- z5K?vJ@A^&M=-ivWTZ?T-Fx&a_99D!CWc#x+ST-yOyisHep*A7M7FocM`b6nAaos)U zV^+pYk76^gLjPN(r0ha=m;*K}^HyX;$!P>%d99vHlU_?pLpWYRc|U}}&=jX*LzmjpIWovyjw@VjpKyab)`(`)X<5@M6~7&d%~cxPdVCgOpQ zRtw=G+l|tfWAZMD$Ckk1W?J$|t%BfRLG;-*^nJze@q8pLz8glra#OdtzYvT}2Tx=8 zx~L0jrZq=fm*p>+N9C_+{aWwFmKjv}(RR`rM|G*yawMuwH~(J4j)klK!=@#k_1#c} zav=8oGzKAo5~g?kJMPjR4v#Au!1uR%EzFJG$`8~=9 z%C(LFa|!11Y%1~!1i>-E2y<~HPNahljtT`LK`q|3PWe8@>lbe^NB~E2`6HC_`TN9! zQCI949M#c%BYms*wcc~p=qdo-3Pkp}eWO%7VDeHJqi~f9BSZq^=E|ByV;A91Q^IvPwM*m*z6g>VX`K7q$y9Ri~ySun*^Sh^@4he-A zP8!r;8#?x^)EdlO;F#Ykc<~AGcyTnT;~K85G_SNNv?NKjmb~n<)tF>EiM3Uex2Cpg zWV?QU`Mw)?n$OjCByzfT6Ta|#^s~0>o~O3$e7d&fX4t8fT!=>63gc-ih3nxz4?m-L zhTHF}eo*z5kTDUd=^cXR^h)7n%Q*1Fl&eF>8sHKkcD<4tmFL>u*5z(>xo{X8pCnb> zK%!U9Q9N!^<|~I|vpe-ihqtZw2$7N=Sr+1bJgM~pBD6e2P!2u!W`6nQECQ4Y<6GB! zDpap2=VcV%`Yx91JaAnLpV_nGqU_opc$qXFt9unpzWjt}_r6$@-Ql!DoE(ThKbkq#yh{9%$zR zUHsG!ew+!1)LO8xH(_4W=K8PEe)ryw>gue#bLm(zc4NWEhT`etVSTl%{hJw0Z_%67&<-Mv;nE-8!|~33kOD zhJ5SEoo;D>jrI(334JK;HV6>T%wg{&VU5dNa;@$($l~ZcS2{h`2(}vax*l6ulUNYb zGSYkK&!1Xe-uhFZh6oEdZ#mhW9ytawtGp#BT3P)QP}Wh%zb3@9sGCbeeRs7*0=zw? zG=56x0Qt*%LMjcblcIi=t$bOYMEtD}mbZ9^(12(7nXy*qRTqcxb!hy+*wdyQ-1^)b z)38RMVtn25%BRuI`^LmdwFzNr$t~a9>im)RaA008Jk4$Fx#d8Ed7qA`7NgG5KmK0v zO>siwuo96quzWA$&Oe`x#(v!9`tKQD@szZc9&}bWZtK^g#-;dmTr(CV%%GUpE{a|% zJ6cJk&MDPzim-<>4am+N9IW;=HD;8+h`0Ch0dF7veSjMjw_cu2y=kI3A6xkKcv^_Nz25gq<%8Om zI3<^&Ff9Rw?iVpdYHXJhI=6<_RyAkg#bpWgbx)JBYAc0)(!+j5$x$~$Lme^>E<_li zQIV61j1|6}-l&hKd`xR}Kn8s1XE(oC6zn6hQXjK8==q7$y%zy(*jDob`iL$m8;L`0~^zq!jAN@M@um_J?NCZxXMhVxxH8 zN8*1SCbRQ~#0TRL*<(ar(0$-V`bUR251|yrXUKhF`@<$@k-au_a*3}Qmx;4P98vr3 zxTX|4ax2F+Qzn%u^s5;m4m%MLOR~mPUj+?y<-8wymKFprl1u^ho8c{(ugJgTT;kUa zh=+W!e!u)Jd6}swaYKL%&^Hwg9JLuyQ5S+5*z_i$V5li4gt5x~#3+jd=?bUzs*j*9 zD`62q((&7YJ}#kQraCqz1}?}Sl%||V@p);mmkt_=@XY4)sxU6bBVT{@Niv20v_Sii zw*x5L1<_#ipacuV$I_%H^c* zcl7sn!~;sedx|X7-`oowz8V9Ggfw%^SO*>_ za&SlW?3xN)837QCL~La+6DrezY~4xY7sUKK$%SW5(Z@}k8q^4JR#NvLvgRy)m0}bZ z1eO3^6ey6CU_=g?t2WE2$T3;&Z!u(P=;yUIV6*DKT>qSN7Mx4|xnoSv?A5`FOf(%< zx}B~jaP-cbq9Yy&pKXI5*X?b&8cPIsp3i;{9|MB%s0A?SIZLT5+@lEa#WAAquJpY7 z5LvxO>{|jLOvMLrykyaFg8}CJ+|y8pFKBrIgl_+;oO(B^CQL`g^M?WAsDSkg<^5k` zFcoW2&gj>r&ndWQs|O>5`;^+(5)X6QdG1PZb$H-%nDSGSUoArA`x}=Pls|%YSCr87 zn2`MRm+M=rTWfa5Q_5;hCzr@&^l0^RNnDCP2@%Xu*Ks;=?A|5YmB)Xq#CZ~*-VTAeqVENR48r|#UsLaq^|2~3t z3E{q{R-yGstT!-sd5XGWrKSrkg70a=HLi(CBEh~`rjU1)B1GO6=tEwo<9fs%h5jdx zx8hrdZALf41=cU%fuI#$bKHNuPvJuLj~8#o^PX*py`+XMjR{!XOx4l%t=^~oXlln7+Jaa(<@hII+Qx)%4L1xr~j zlM^AEA429MfR{&w?jfdQ;bb?F^ZVKT&;O8;|J}z2IpXv=TP(>JvY;_d`?b80Tv(XT zAYJeZ`f^N(rzZxNv?G098mM+!GN|P5D!G)8>Mg(5S`xlWP1&&NpN~^M^up6AQ3~eFpETm*7zSD;CzZXeAANIzkohfpw!KV51 zWVv=4+Clp&DuN!t#ya-y@#B}}6rR%~53q{|*vQQ0*d(y=E)1l<9{6{r8+YSZOB+1d z*=8R70oI~Lp=-RFI(yYXyWalNaD5}M`8_IP6OWNpQxkajSDbhrR&m`}1N8rw5jz&! zq572B6kpKDic)!Ri+Fzu$*kn0rl?frpSK-l(<(6F3|wn|tuoY*)-XOd+*e5os(xt+ z(!XD!b^Lm|)61Fh1K$9#^P!iJlu%GYcj~L(NkPX=aO8?^kfveH_0;n&6cX?b}nk2kbjfyW_syP)QW7Pwy9VN|rTQwuA9y7tK) z8LhtgH5*>U&KoSREA<`;JTwkJ1scn8%h5}-u7?tC6{FMI8byKmCajtR4;)Au8j#F1&flFf4uCQP0zO8)_ zzsoB37pK3J1=KBVLOocDcm)L|BvpI?_0B8=CJ3GFQdGf2PwLFK(dAv4X&eWcb`C>X zRnO452?jY{qGKJsp|XXYJ`2o|-IAEHKNPf{P-$s09rgtrT|!Cu?b0K*S6)bxcI|Je zq_iptWse|Q0uB61WDq@2>J3WJrsm_!FFFVLj(eKk?9+T7_WJX!66CE-nN`7sYGkgCaI^AEobc>Zj2$vCJU2I&TSF%X zP?^0~U}7z2&|)2F*0p(!XHU&1((m$FpdZ?#6&f@hV(+pnd{>da0(4s?Mm&O}p9|Qh5h>@Q(;3WTQX^p{fce z=#Ly7%#Kr7{F$*sRaN_-#BZ+|Y?=;^85=M~C5t(G6_%aL5%MM(P>$!HOCeWoF*$|8 zoj^Zfb4HH`Q*0Ku8<(Co}#0 z#@>7IZ8LjA`7;H6hug<4n{(7CDDIp~%No724A~p+rF=yKsvNyOHR^l}Sf}xxf4qgC z$B?#l0*|)iXdbid48je5uFSt|{~BHWj#w@nI8`V87bXy)+)TD&yJK*6-O3*W$^QWD z-OcVhwfgs`AqAezT9;9A-u8ICc3zhGrNkSctJ~ys5S=( z90<}iUE8+2`ewRpiQ`a<%%4gqR$X!{O7@px1I%Iwphe_R@%zjDhEPzUM)w-@v{IY; z`5swJE~cowoUnNCH%UF{^igG~PiE?l=P6H|c#-!B9tNh1NPa7U=c9LzE{HHgs#oXE zbx>iZ{E55V$uuOLSU;PdnK+$LBn{%$B~$h&_PpYP^N`b0HcWP~`ZJvDk*}=->wYmQ z3XN>On9UKl|5G>IBg<;*aDc&{`~K{-QkFlwWySaX_)uEAxYT7;HxEQ86B@~G42nNB zzb~n|u#kxbCV!WEP&g5k;BNaXVsuVY7-fZ#8QL~D#?D^jL>$pucQ+X7%EC`_;P!ny z4>ixYieuhzIct4JNPtK8DZQ2wwrGAX-vv=nQflemJXGMzdD#K?FdH#yO6{agOD8#< zZl-{g#fIpwzID-=lWF*MY6xXGdDuVw{X z!z6~QhL!n6BNq@)LGxq}vglzx6tCCWJe@7m=WF4$^SE4Ak?nvmZ&Bmml^cG zFBVbGp>Mb?4nBl|+LsWnMprt%S?CghdMKZ6HNK|c?G?#u~p~k&|mk3KHzn(lOSrSA>tCh1% zpyd)UxuDjs145^_Qj&c^XPI+R3w%8|OkjE0;IEc;tKLeh(h8b?SfH{P zA8UD+*2WkS04Q}voRFZkd=oE(*Wwc`Tclb^$e0R!G@(90<{^}GBpUA?5oNWummq$N zzyxZg+hWBx-oI8{uMePfJPn&mPM;S-_+c6!-(d1L+pUWpN^rRlY$zzE5|R6 zxlYfXnMdz-5tjRbgS0$qXClv0-{*|M)pba7Ov|;5^C$xOV6XuaS{&@Sv8wSYc)G8w zacy%`MsZ&9j1W7o5~S*u=INJPSqHuNnQKdG179vn8>QXp#vC&9vGVuoyAKkK{gFEI zKNNuOe$#@^L-2e<6S(c!|VWMoicFj zF!lkoGcLp${r6ypEy=)<*6m>~@rJ{A$KqK7S^XjZLg|SC%q6fCw1#=32o8 zBdtGe^*If^b)Ai?aeC+P=wcd}n?)(L@)>5+ekaLUji0})nBbr|r>ktqHo5uP^ zqgm8Wabs#SvZIp|*DVLytV)4-k_t_{tp~mH@x!EP9$y)K&q*&9cdxj#x!npMCgLb5 zmr8a_*DDnr9rto}e#9$a*yZ76f1I;hed}MKk+Ggd!_?DmeS#qEsX@f+CTfZ{XsNi7 z{wWz*EjxeHVI;M_zmp=`IXY**l>n z&vaMh@GQjCp^pkRG?!ahyMQU5QnjCz^u^D`7Y}ebVhX+~x=>P5#7SWDR~7P7pqk~F zB!)<1EGebtnoDI-I-IBMk7px0eQX%F(xo@~G>JJ`6_-|^N}Fqu#XhBl&-5j;-Z|2! z*E6meyH66&X?Z*I-6taKNPViKj=f{>1W~`rh<*RKVh{TyRqQDKK%jhyBPK#qM+pY^ zaK})&v0#kHX3-sw|?K%EA^i$aSTHAVkfUjHys-3pLL^LJJEV zI`!JT%tB;;14l7NJ{S)hpc(q%Zu|U`4^FYkGlV{qWh}(B3Zs|1oYLPK1wZ^pjDBMl zDZbMgRYltS>EL4NoWQ!yE0N-oh7u0jc{=2gE=T>^z(eg>-K`--nzNO5PlDL z|66qTHH@Va9#cD35#~zDUt{Lkm)9RP^>NXZehZ{+@I)ayMf&pMA&#r?#CoLd zIy{m(-}eOqhj^yt#eZdfUgT}eIqeTP1iwtBTxJxnSN_s`5>bypqoKpxZDh#-`;%hW^}YU*bvWhbqU*31Fz z&xptqVq7=X1~#$7TfACUcS@`Bp4SW`YsxtTTR?5S`~QW+K)%y>Edj@*AARD|oNK<3 zUjXp+e}+4wxR*~TlA$xG7Q><1MjlU5crQ!m+OVDMc)nG;=dgqp7Lkh_0Y+pS~#wPLxVLZF01ct;^^L z4<|n3*N3UI^$Knzwpy;pr^Nen*TP-8sL(5PS*D8BWvkAI=5jnZmxL40anlU$_uOlh zA=cJV zBYf?!`&egK-gZdsz)yj6$#8P7W3=9mz-(JAi_XUeb>AQwwH~2(Y%)9A3tkQJM>e#m zpH>+d>0xeAC~*3AjGfk=tMjMwdh?^onUt25X2a(df=FiA!6@6PeEiKsE~4}XI?}jd zYF@z4=l84k4xGhp%|Qyc`^r@HLGDW+xwp@=Tus)n1$Ld~^%1;59FB!fXerpMukhmUong_p8}V!+ zy+X8oMi%8-q?Ws}L0u;1=FNAms?XYM#Py+whDNmbC!a>x0F+T`rfyESXYgp+1v>pH z{q1*D-q|CE$0(Y$DUHouzf|k9VH7r%;qD13@81X zLJW(F0t*Ktx5y*Wr4~8#I{-r=xp2ytY49F|jj)1WCV#2Ymfm>_!GW^BHy5Opx99(c z%D0_WtxIM?Gv=DSGAkNL94bE0qabMBgUtz?RT^hIuuxYuNiAalQk=}#C!Fq+5IBtmdN(ud0g@j-`5 zZI*yW+CK4L$Tn3MXNBmp_|$|SezS+W6Q=s`&hTmoAv^PjG*G-K+7l4Vs!??0GhrfM zQ4}=`pCvM4&`3-ZMZ~b~XbRookK+Dh&P>@7p}8`z{pv6KTByc4IYZYspu2jNCb?ag zm;omQTJ^dD^0b|=HP((AY=N1V0e~S{`y=YFP%d<{rarMbdo@+H8HFLi;+fD0D1_D& z$YZm;e$joUQ5gNx#CFVnH`i^U!@+r zGV{1lIF~J4dSy=5k>E3TKXd%Cg6nCha|`5p=V46Y)^wF8Ukf(~9(KLWi>ov@eu$YE z?0Wf&a31U&0+(+Z*nEwA<{Lpi{mQhDt(3V>CHgN9$4zzXe1J?dCszA4)D< z!pkhub(=AoV~_o~EU(szCBV;Ahfs@-prXrfs) zVB+Z{pUZgW<;v?g@IlP8Ec>9msG-guQTjOZ2e^8xjbQrbb9Frl} zSM&F^IT4?}&gpEtZ@0?q-fg;is?ySv`P>o$x^=8CJb%YeHuh1z_h)da^GLKCe8V1J zZ+CKTXkO>^X#teU8mR!+1hnSwy9yoreLTk7G-cPGF-OItdPn{a%(|bm2DNICNHHW# z&Vwao`?*d8;ka5JrY?a$@8dehOT9}vfq705m16^zX2pnx@!X#WSN<-T3S%0r^4G-; z9vQn40~Zq$!!=2p-mb${vlK)r{Z^-6#Dug5-?ZsDvCors{6>dqA);Hyd&!a6-B(k4 z+ar3a{vPU7=t}3*eK4Dv8osZHe8+wS<>k)wzj7W!GC-f0R0gzJD9vY5}sd+>b~cozF&|gcoIp#+wge z4&Wn6YDO}Bte^w_jBUxFB#W}XR7U*Ypn~Jy=*pLr6ettL>Lzv@tb@E4J?4()}}MQ5Smo|^DWZ%yH{t&xt$Rjz5I z8zB2!QhZT1cD4;9vyj3t1@vtvlSB=J`Vht|LR@5HM&48pMH6a=;A&W)G zqA_+dP`LDho-Zy|nB`j<>6qjXOW5B0?>-1mUDBFg_29EhOiB`l@<=n`?y#tP&rM|u zn6sTfy0Ls9>4TxK+z$-&d-3N!<}TA*kK}=_kGH$DCh{if1N*M(?0T&Y?qF)&{BUInct8Y;5V8J}mqXnz;F zyIs$6b8ySw=~+F+G0t{Hcl+*!MAG|=zsT-{{rbOV4&9%;X?aPq`v{8c{eP9am`wm* z$5p?cmB|PeJleqd#~c5xECRbPlngFAY9B1L@nt@(UR9XBmjW`|j6k9?sN9NS z6`GpI5U{CfKFfuNA500@b{t{l3GBEVK3?7q?Q%Erhb0O5J6uq&*NP)54VCYrz_sE| zS2m}M*Rx(n!26sRC|9n;)cW06!nd5jll+tk_Rf>DR<3Wko{p#F#x&Y2q^r9@d;hRN z^Ci7Ow{xF$FZV;AlcBNeslfZOj@k$JL0!_xpnv+S#_g_0hoHRs#app1=bbT-k%Z4y zr^sOM@3ANCAS0iik7Bfs50uIhO{YarvE1ui!_t5f+75M~#NBq&k@x*z<86juY^meU z-lHOkT6)zx77YZj`Z~!{kW6wq6lus$IjkK46BKk4C)(6a2$tpI$J;2h80L>mRE=cD zrW-*;!(CHR?lT3benI;Hp0Zn+`L#KN{{J8GlYvjCRn-bm>y)N;Tsw}7XPce70Wr`@ z{ta~7)iuy_L&|3jWcEDFuj>>6IhWmpb?LSKlgw@cRzB>kmj|9S2?m}G+GPOEI*gv| z>!yTfDcHbiX}K-Fa04?_A2&;z!n;eQ@lZe!@r#hYgTnZm^~qGb^QH_z!D@GtWEnN7 z>$&*+`*<;5*zSSM=cV4JkxdP}z@H~thO_bcRoSY7Yz@UC!@Mq{?A3S5VF>EfRn8bE z|KC!r^!eDl*=vSrB9rFtd0a2K^7%=m&bSe2Y4;HWzujF#Az27mp%U$L$-H&Bk>ksj za|6dWLZe38Yd#Jta>`<7Oj(u@{iAP%wC+AY3bcW!v;F~%7A=P=t`=u5+SMCD;`Ug& z`mQd2=VmRVrNuc=kayMHqyE*w>sMgs+clltr9bC(xDh^4y%(5j2!c|nWDM!!!3h{? z>*B(4dG;ax@#E=UZl=-d5k$v;lji%TO0bg}XY%U081#7P>gDHwf|Qy=-(F!d-iLsSq5ps@1V)Cp# zdCdrP8k|IB!$zzb@P!@xFI_M zkc%DtEiFQ9s-jzCCh&^=r}u1L!g$UjJqdfnv+-yYQkWX4EQ0GTy&SRprYmT%jczy;B}a*+n}0I@g}0=jY=m%NSuiSfA0o z?Z)q0gK>=$cB7&ZecBV3F4!{hTNDAznAb#oUgd`x^y|y@;4@le0Fh*geM4pyeOSdr zMSp)uuCL7gz{=!C`Po{vIjw<}i2~O*BGi;qk>+i26*??R$lgqT5;U=N_VkuM{OB%! zS}I#8wf=KzlGVRi#ZdkytXL56N}R2brO{%nPr7GcW?Of}a*22LlAfiwG$E&6#`dnc4fduZs-GhXv04fE7voF5Q=N z=%YyybSUcoBtF~UVWopJ245Fp-wQYZ~w48KB>n$@y-ig`dBO6_ox#E_VT`Z0kP!hKSXyi z#MixWf&W4JfII?jrXkZJfV|j-w%UFMcVCiX{Mg0T-9lqX<1PQ(S}&qbZnCrg`kyok zUg%Sd@nu^?t|RDH(DWmk{sRtK;J9bgV_2e(I`!gnRxRjAx z=OsWp?d`DbeML@ps-tsVEDrGzalD~=HQzufn%&oTC_=BZI3UG@h^kcq5$=uyCutoj z*^E}Xw1kKN>id!%q#UHi{TNL>=?~oGq90dAsZ! z|6NBYt%uoB#@(gRxTw|j{CT1YXF$5!W=cxS0qGi5_+`jmwz3MsAV2dGcZI*|Db`XO z$S^D{hKT$iQSP?*#pGl1^6~;>e6qSK1;8}0H@~ghQC+pwwQ#U5aXjaX$$`#3YhAB1 z1+{o#ooW&mAL>}AM!t_|p}oeW ztl5@q8rU3j=*%WlHkf0F6L?ejctvHgXTDO$^O}zjx*hGc_D1iNt2~S?*EX9&Ve`(%?3x5T zQi#~0)yX4E(vEH|%2vQE0@X6$jS1=zImu#)e{POG9*G_fKYfVM^3*)s$d2cYpsGZk z1ZtqZ9?flS)vl}2!N5@NyTxJ`AbM6aeGgf6f2ABJc30|}!rS%^K4PPxOFJS+5uTYU zVEHTPUbaMrpx3MSSMJ6X%d*v%Se40DD6f|uJcDI2lmgy+4i-$myGR18D+A(V{6_Q} znHn%mls1*xz6hXJJh}J|!pzF6Y)46V`#htHb9v?^1P#k-NMCnN#buSDfDJ%)(FVbQS*v{3~sZVF})uM6s7W zA#+Wl@zG{KKkm6i;hY@vQ=W*(r^~G6%9j=>^#nF^K@VL18R~zeBE% z#d#SzTx=-2=;TjyR5DH!GNo2gZ!i?*G7dQW)^6cm&3z$2x&_tm085(n`)pDSEK@i} zT#(KrGDxz-mb@;*7;-0>`;hIX2U30EE)a>Z2E0lI21l=UjmFy8m=cF{0=%jJhv=Fc zX+SCwc|+P%sbE!`G*sphQ&b=_@jyS`Z;22S#%HE>LV{$}t6jxLl zw$(U_DZnTcn{rRQ>#OO)!b~oS0%C9`onM$e`5U_xS_rbDOI{m4@NYV z9aM6n%JMfZ-roSEhw)v(x=Y*2_vF{ZO%NbJ92cy*8#~Z-^qdw$PKIBKzhAyw|1}}U z*xOqBpL$+9UfW^aXx(vnrVR*}TUA+&0=_JDaXPM2@{8;n+=t9_y4rjx|M=iMZ- z;CcBfSE1Ji%tPA4u>hw{giy( zz(l!$ehm%*0VlmrPv7)n7D%bA02+_YKwq*`#PXD7V9s|ED;-t>6J;S0f8MURN!;3s zu9Dt8x1xfr>_c+V=6URr$aPxq%>78p>!vDE+iheShM_J0$(dIT?`tZ)Yalj$R?{Xu zrr?~UP2|t94=r7Ko!a$(`I-+A+RleV_pPGVOZ-mj6W#BG1_D{uW$uqeAn|kD*YGt5 zmpl2ZG6`KolaVHsreH-`7)Yv?{H?}@v zdH*B0MmTpHb`KZVJ4b7NW$LcyNV=X)&12qsK#Jb6w{MqC*Xo03_{Gh%!|gOXT4a3} zqQBp?+1$piPI>F`VqM9M2%eu`3>gaB(Uc|>{+4@7^7!Ho5TA|6OaDHQfXbB5 z+CO}3wGRilm^y@sJByny;Tz7N1=}AR$l$nDL2oYTT()B&i_gijF zO>=8!O=)9IJILr#@BZp(1nA7I%`x|l`NHdf6HgcqDOi*wC@e7EiBNx&+-q3!%JeR+c zuS0^O4ehGr$GFScli!kz3|`hFOWF_2uoRGCPrO-5{X(8WpdS-S#%Aa%lq2o~BOV^y zwj;Qw#EAsw3SlD*-9__jwzsIHCMuGajPsG_-_V)H?@kQu$*yScpI~@GZzrz7H)`xi zv18NM2@7r_^#srZKLw1g8_E%xC#vHh@1DcH27IRt{V9PY?FMvn@M7cQMS4}&*glS_ zU58H0Jj@7YzV@XlA`^IvZrb74Tf6c%Ao$mMYF=MUz#dY0sX#ia&mnj*MJ~dg@Eie7-Evv_Prr6VJ)OAbwK`9T)D zo-_bq&4=D_;-%92lR*qd6L`0WtQKZZZh&X*fE0usZ!7}Eny=F2NzZ%Fh zZDDj`B(G}mce*PdQ0WQ&B0Xh367y%IpGmk>LJ(8xay&~_>n|!l-ExJgFeSW=>R|`| zhsLfMlPE+KC=aWj_0@=US>sabq8Lm`6jk$HY3O7 z7&;&?^34&68EgcM?Pb9ejP>>ND%)Ec>^Qbb<9G=$NlvZ`yvkb#L936LyiR{3NZNl0 zE_wduWNL0dKQQTpkbbwls&f@BA_rQHIP@~v9Gy7kc|MD1^lG#NSEWAGeb4~x6N$rJ? zg{5rLozN%bG-_V}msU6a=UdYY%iebRCc`(O0NZ*203YG?S>F7n*>^Dv_I!M#=HYY& zOb~tEYWH6nS(~2Xk9VT1s!O_ZswRZ)7fnpchDD-TQ0B`E#aFAV#)`V$TF|6tpJ-$e z!0QA6*}1%NMyt4z)34#<$#x*Cj^|{@X4SRdso{+a6;);Ws5P3u$5DuTW^Pvc)=nNk z-_$l7TpS8?uJtvjJ7E3oqfD=|4V!nb1X7+{c_K{9#|!#N)ofRHcID;4hXAUe#}nI} zl;n>af$CEW1y73xj0AMh36>4&WuhhrQ#WfylQapn3~mTc10<;QFDhL2`)91k58V>FZm3#z0g}-a1&3lSYF-};<5EPOck6+4 zp7)W7mG7_5!`TL#=Hm@>MU~}ri;0WY>w;6v8nl&wV1Qu}pJR1eq+8R_6=Xjt54zL? znoqSLyZnu{A&p#NJKFUn0s@AQZv1(o^6dPL1WnAY4C z-F3IY!Bjx&ZL`m{Xm@;O;GtDF-`sT}(kUf{Js z0>OTz8JKG(G2!NVgV|0L#m3NyXq5lt1|;Op&!3tXfTIVY9r<=*8f>UsWE+PC0bLfh zJU`6Xu2hR{d^i_ah+hspLM|+&hl4kOtt*@*&TsYiq`RdsF$|>$L_}23ES($&e0$e+ zH#>e?@{*+liLOPID^?hsbWd$PcCTi;@WkqrTOc`dNij^oA8~QH;V8LGRLm63uU$Xs z4#40BLo~&~@T^Sl41K1CV!F()dPpZB@&n>C=yAXfokXJWexOQU6NgWN524i9f^&tD zCUGz^Wm&7lXV`ndvM7dkA52zvaS>|TnofC7BXrjc!!A2Toe-$qbxF)({9x3rwHO9> zaCT1Z`L6ksL=sG#pZvCu-7wT9z;3RWwv0Nwna3vID$cDBR?o0j94nLVvLXhB+9H7O zsf`FP%4m59I+I0GRbvbBSN0)?gaTTUIrAazYL}uqA_C6s6=|M8K*JBk0!|FyF_BX5 zp`TzvEP|P7Gt(&2;8i;?LRyGGX+IOv3YAs4(J$99->TcDhof|umHe=28fB)crZvep zNWCLs2xt@{)c&aw26H(*_14MS(@!Y4Z~rQeGt!6YJBI%q2hVMUFZE3w^%#ZipjZ^v zFf$82b0FLIk^NH(JmV!vFDJTRAIeCa!jLmXSPo!tXt9nyFSJ|-^L0;Qcn8KwiyK&p zeq6^kWXl7dZT$6%%v-qJ!}9HsZ*b0|uIIuIjPEue}oCASF`I!Vh( zCbJihh>i2r>C-D?ED6w{5PmQ&!K3{GDltotMj4``0K4*l&eSJ^GlDY3IpOw0jUZw{ z5k=cMA7IxIFNNYuodGG+n_YTx#U~%jw{xt?J8+ON2w`Vt5 zXymuWAw0iP62kv>`qnK8=ci7&fqrK)H`qY8US<%y~_AD3a~=(&_x;KZXK4-R5ri*}<7U9aWVk^PwT$ z;&EV_$93&y>+O!_z@Vhm`Fkx;bzENMcAxDCw$`2h_?J2``EL8@DtO#(IC!?dI>;-E z*Pc879=NiQU|vd#sKy!G2vjWG{;H8XhAQ5Ju>d5AZcGDL(`hJo154NO7tWBxuzUr} z149|u(Q%0YJ{RX;@c_0|OK4qPEp=VXIrI47>h1e^a^lKg*^FPz@9vUl+7!-3GlC85QgG>3=uoxTdZOn0mMOPh`5+I4j> zp#1v>k-vPL^cQ`FIJL|tup859lm@_T3y`DV|4Y3aN!>1tc&k%J=2c(%`o8vi{B@0^hB5VZu|}ew9Wb$~!9-kaBxyhIvx?98uDw4jjvt)cn+x|xJ@V|}#&fLoZ z7*9-2d7vY9r-C&u>FAStZ)wj>H^4l$$tuZV`biz=%c;=(JnppCmU>oqe^AMMXzN{< z()HWPU~z9I-udqGqVx(@ zbm1TFqcT3ENe2a8uGeR4t1>?2vsjwq71H3Wg+CxfSs`~bn@?OvzLSet{{o#rr?J&y zx#4Uq#h^C={PfwNA$TywNkL#AmWD#W1>kl<#e-2`q8y=l4oR`>q+m~DQGvRSR7EjC zapkGLr2LI~cG+`4vgSL3I(%s`R3vwd-rzNoBw3R8EPg}EvhwBzn#yF%pmH)@9#a53 zDL6Ai{-1V@^UcmoIaL@Wf+1liCnqe%rh^AGsrz!aFpcV`JxK~DK|xp)wux>84csqz zW;ynlI6e|;x0#o_Fc|~1N#2E7dLh1H>XIZ>84XB$2O?Ihiv^y>n;a_ly<0yD#J{x3a+k0H8))$8*Zp$ zWC^cwd{g2-l+ddYniV0-sJhuil%ABnN5?UOBqHoSUgIHE5Ohyc{f2wZ||(d;6xNRhG0ZC7&2cB zqPhvwm&LQjUs$@Vp@HK#G>40STo+D>pihz0MU{!#kp?+4s~8Qpqu%EkBU;fvIrlpX zUICf{A#6bxmztsDKQRfcotfBfgnS5#1eWcoZ}vm1EO;_IDSsmj-?rrbHRLIB_Np38 zl(*SI%p$Txd8@Asj=92jo3@pIkTLCm(T$;X$CXR)x+0Q$lPV!>iQw;<**7Pvlo z5rJAnSa1`g?mjXmO7U1PNl%RL_to3gBQ%;wOw{&YM38Wq_ywPBDSSw_aV6!;<`Bs# zifQzxVa-&nm&}Ybs0mq43e-FTc4)pVpA7wCWVoF}1k9_$*;ypq7}6Rb0an_C#K@WM zExBPzwGoq~5fnB(CJ_PzaF$T$(k|GyLwTmJa=9jEzJ+Gq@rRP}cBZQr7muE%hqr=F zht3(Fxj?e*7efU@{-BqM?uVt0v+Uw@qE}7oS%KLR$7_!l*OBPS#9P_p+ObZ`=*fSw z-hhgxa%)s|K@@G-mI8t)&6d5aTh+1a;_UvL4Hs6h92A1eZ1ZD7*Ol} zuYdJEFx%M!F>WpRstHud@H5^Y%;osaAK{3Xt~I@G>tQlImX$W#UWqeZt^rYQ@2-yX zd#{e?GvL5Yfa!SZ!A@U(p0Jin^E`0e>}<&ew*Crbk6HB>r%>NR?(tr8Ld?OKdcK)J=6b80}9H%kqhDRXO>ym`S@)?g3Vi~ z9dH2t1qnOUX%u3Sz%O`j0IUZL%oV^Yb!C$VAY23J+GVDloF9`~bjXb0y+7G#O<)K2 zl0u(7#eJIS; z9$isER3W>r%=uj9B0k)u3)x+m=$F?bdNVY{c*Q0?AYezIb>MhXv{5tqL+kg87_|Z6(8p<|E+yQl-z#yqOIL7 zB9KaKaoSR9X;}2s7!)eA)S$Vk{vbnsPs}O0oOy_5i zsO|4;YTbU}#+So8d=LjX5w{_XvJzk0&|x9jKj1pDHB zaq&MGJSOW1+N0umAMCOZyPa8gtU#Xd7m=S_wUXWlcT&}n+VYPNdvN3!0S5z z0Z=lO^k##6GW0JO65h-AI{^e(<#{ooK>;Q>J5eIrT%O?)C^D133?@x)x^YCypZCAe zor*2gvP;R^;{DtWrxw_T}>2Qa8NL2w<;9Cs&L^~iyAxLZVs`pxWmKYL*RB#7ljpe znSp@)A^Q%&QHtto3ik%lYeVL5f^!1SHF<&(wJ0)RiO0}wvz1DbdLI7K&&QV>+~V5;lsb?tmV6ksNyWC|;7%Aa=86Bp6L32(d8P(`$KL16E_ zE2j6c1UJJw@kbYrTiAsbHRUkXFV!!rIV#wpl$qjtfILp>2_a@e^j7gxy|>v#WcfJ9 za#NTph$bunTRSLb&Knd1nSkw$ekbmM%$Fu<4-k^-<&d;93o>qik$G?pf+Nk*u!wa( z=?y8XKfwZ5Ou1_#hZots#--t)NiS1EBC)gil2SG4h(sEL zuH5Vbe$Nc5egnAr8Sx1k%DK{nzopq;UcIRLw5Uz|M&;p$g;A4gcVrlIfx?0G1)xrn z)+8**FhZv#AQLN|(12|Ziepw*p&jCb6Q%CY7kwYPx@q*}cu1M7Yd?zx0Xp1@#I$+W zk!DaNcl*=A#q4IsI@G;iB!SJbBd;SfMdwW|1Vj4=@ADZFjuJzQACQ<%%+&EbrsVkq zKn>ash}vP=!OQ>E+cKUj()Abyo>gyw?D$O65etkvVCr?7cy(%(n#GTS8@I-I%(y8g zdI6$@u%CbgOUonoNv4tS@cnh->EteU)4~20*=l`{;oTSc(rX8Iu{HJ||4y6~Fe>$N z2(tM^-?TZs2EG^EK5SIwwkO{h8C)NY%D7@`QNz08qho|*S(!mW=s^vKm?pI(&%<`t zL5_kW^h#{Nu_4@pr5QWIs{TO6Z8Y7RB3Xj=17cEF(v{Pz^miP+!2E}$1w2|ci6wM( zQZJ4hk6s@Xt3`E;ERu$*)~{xE1`#}AK4VsMlUs!1{xp_)@;oj2A6!0Nza#N+$Y~{6 z8fc)?*3D@=XCULhekc7=y#pf+p@&I24-xy-I_f%8#0S03)G&}nhz(K%%wsMPnk4xH zKrT)9BTlx-jhllK z(k>dGPsBWcgR8rljwO!us(pKf=;EUaqFv+T^ZRSPDb zY6%7PW&b&S>)itzon;@@IK>JNadV76i!gEcu$}KG9#lAxA{U*VR79~kJ@jPALo2kI8r$h+E>-A&J$JYMV=PCsT5wQLJ z((k{`GtW?5yqRQ|BRs8LMkr>A2gCP}vXsEh=NeeoL)zA?To_#uN_4cOuD+wyM1s&4 zgM@^HZLQt^;7JgC_zh%z;-S_2{Fp~0sb#?IW|aQECQ;Nq9ba4=1hQOyRZ99(8I2xf z!92t#aw3C>gtQ}4g;p-~cIYx|yzDY-?~4O2B5^&iF!hnOtxM+CduDJDB2;DD@4rpz zp40doi#ZZQMbnF^%Ekre;x%pWZ|v^Q3q}bbg3$It=wsXfs12e27#trSBtc(@ml7n? z0T!8Ktu|n>;+9x8)l=k@MM&Pw6&pigu1JE|ilwK;Iy7`kBOihT4-gtgQTe{>Lt9&1 zqC?WaW#bQ_@h?(fm4X}ZHyvgbLb3WO2U?)@LGEWp)dVfg&-a(xj4;TITa;R*ZIxk<%FBFD^0*cGkfh-W6AHN5 z$;@KW`dfQ^&dfJFBZisjx4TT2!H0g8U5L>yA2$c%tr*)u4h=0*Q&=cg@O1iImgjFnl5Tx8tRUvOGAre|cr#2;fh~ z3~b%OtWdwL1BXX>|6$p6H^ zATJ`(0*6Dx_%H81d$(zb86wDO;xecsm4g48#5myO@gfn;B8p~vGxt2VE>vBSlXMAW|F5`+`;LKsOuJe6r^7^y%@FQwfSMV~;L;O|O zQ|)%M?aJdL?DLQu`}*3JmdR@~UhZ$^l(Xx}1IjpbFOi!D4`6R_E!QKYGRVr3CE-TjrXm+KH{(P!#F@=%)eNsQ- zgtux>5sC;na#;h6S#l&}kRnw0NR`TJSbNx1q+WV`qW3uIYz`=-7@#IZpU&VF=o(6x z-YZ)%Ed1I=_J(03JR}1#$k_WaGCi`Zw=#R^|1wsMKSil0WoG`?YTw&h!nCYyeKk)! zBPLA#ou;XNa!ibySvEF~*@>ON-F=y;e4=Sc25$%(H&Wf{n^9h6_ z;Bmk5Awl-*p+Zq{RA7Sq%YGb&)~yCxv`6-4Am_D}d8Qb}45}SzZo{bg+PI^b)wNxW ztXI90bv`9Kypcz(TVYuVGe2Pp+ph7D|H(=RZz5Z~$0{vr+^f3Z=072;#=*=qFiX%-}EEgtEm`~`U> zQGuxVD3l3!aM+N4)W2MA24XYpyLtkVsxY;cqcP4zBTCegvrqBuHb%$D|(%K@rG0sKounJLY{&5DUt|64kitR<`G( z1USGx=$QT)VLoJ8%7!XUv8H&$l3=?7;+#9NyFcK>bv$f$m58j_3(}U(DJ0RTW66Vk z2V|#>LyEqS(@?ae%!$g3;$~5XK;#eEo|$)xH|AOAkkKiI>K7`pQEEm#l#nT{-#RUD z7Dm@P6k{_Za6`&qOitNs_-Z`RYrq;i!5ci}f8TO|ic*iCn=ARrjF#3s{FnMpJ*?)4 z(j5m4iPY#j-HY^g*D|!NY*YTv_+YwYd}AKtSu9afI^id=MDk8bCWW+VrTXH+8Hw2t zzJ`!-*M-a{m>(N_T(a63m4<9)!XB{XAoPsccxt&|u0b)l2UNV6Y}9V_CY0?nK6GKR z$n-tBcm<&#t+2P_r=)`I8zbkR@uW3@_}f@=0&t1UJh=}WcllY46Wnsh)E?DIF!Hd` zLH=Y+lh_1`2jO7fF-(>>rTYt3tA&R0z2TykB(8~h4&KH0w0SzKlm+K>U!NY`bYJ~_ zUfXwScm=NS#5&)vayM!=v5VzYHxuN%ye?}6*sh+GA_X1@193qqFAVvgz4(t$LHT^Q z|K868{yp!xKNVk|diLDqk`u^>oYSJk(mPm1kkvPD0+`uW~n?uJSX}Cp!J^ zVkV{c6N7&3Gw!>MxVL^hU2opqpSJRJE~ccSY&G#e=Jq!6zxMv)1F30(F2rCiuaYYH zpZN(Z-xT+)b)A-hU)qwmG;=>&eb9Bvb4iXmgCb`X0WqvL-6~G?)=mEz3MNZSccS0d zOARAWu@P=8l#L*y<_uLh{6(IQQtCP&Ln!=|VD+N7C82)w7Vfa4C=dG!UR2}e#^=*O z8@^^OMyeb5DH5GR*GY7R{cBZ&5z-v12gNNp>fD+TxH=X`qCLO=Ur^I5G@Ig+irtmu zbc!OdT)*tmk{$vwiZ9OFFmSAQ6sz9n^YgP8HajxHYECt4P$s&l!vJzZxZ|wl7ac2b zI#o`N*3O5Ke&jWycfn7W3sB?o+d(F0=k;M~=I8mqFGfP*BVFyy4(56f{R#mE%ZRbX zR_MWYGtR|BbAIgkfd}4PADWW&m9jBLolSmMLx*OA7F&lprz$VE{CmcCGhgVO#+)>R z#GWgM`<;IVVw9nsG84;+zrW_8lt$n;K(K}f&mVMW_tQSqy@KadRdU{_X_l_U%`6IX zv9a;7@~M?mZpBaU#JW?P+VF`OHLnmwzf@Mgr}nK$;gi~ zkjt;+$~=mzt8QtVndVhY%!(?Hm~O7rbt!VM0UBT`{I}$qx*zN1lOHb!iz^0A7^>AZw20EQe(TU% zCC|^FOLZ57O)><8)cYK-49y%IY31I39V?gW{%rk-1$tQbV}V|+yX>C^?}3jRpJUbx zUWe1Aw4vy+t6mNaoX56_z8O?}#hR}+z4=TmJOb)(gKg#S|K|URd|i(R>ZuRN=a3}X zbWdSr42<(YnC_I;Tr*T^-XWF5u|}%9_SjaIN6f!w{lP#E{IG2elHwwLnE z3YHvF4p_}qbxL8975m?T%tF%`w8K$tM_5}k)A#h5f8CAhh zL0L?>>ZB`36TI!HqFn~4@D~XNsDaN6DW6*E?ATof|D8smLAj)9HhdB~nLj_`nBjyM zsmOz1AqODsjC=~pZ5JpEI!3vFp2^FW1Dl?;$|UOcR#U5^Je#myW2KFSvGHl-*PO!N z$4uLkV(_KQn8>xniqA&|FZ=aYadQH=f0=)g9FI`I!kDMr%=aV{`q;3-e-D=2R30Jn zt5FC7_t6Wn;bINh4^VN6kcE?Lo+(Ph_qA+7MQXwG$|!ia5kH+|Ozt_%)&6ZveO|K{ zDC-*j+(Oa=RUm{<3bl0C-77~YVF}+IT>Z7cNeteqhdC}9VqH8^a59eZtFiJARE4t~ zlu*qT{b0GbQPF&BzFJ-fQE7EW-u?~<@T5ZV2W87m|J)P<6rZfpH|{J+1xI)H*1Y4+ zpAj%r-yMUYd}ZO!PEK~lW@Bs~o=#)5JcNh;&`!pOt^KT4s!K_)f(eZ27%pOvB*G1m zoQ+jR9FJkKZAgJ0u?j}>lA^PL^-$U}<&xq%_UI~6!>~c3leC%1o8m{{7qAV=E1mND z>XXaOU+z^#_HN7>kC9^E^CQzg$;_HaGi^Wr7JEoWF0HZaVDkBDP)XFuW6Q)S1)bN* zhUz#qLAXF@s|*Fn!Ix57?*+??2MSyY15G`|4L2KnJF|niMrfj-3sRhUW}Avt!7Mwe z#y;rCn+A+Um;`tocD0+;G0+ivxlEI<`vq%iZeE*07p3tudfMhw{{zmM4%c2^gKwQC z$6im(U+WBmjY`yesURF6==-F(rl9elAbnQ=pKh-U^%~hDab$s(v3Q~I6ZGlA@tUAZ zVDrIOb($)&X5#)iqv9h<9me3FMm9m2Zw2O=BVkwmZ}+zo?dRV*ZcdS(Z&C%ls(#nXe5xe+ zCL|pC)f#|>1nFbPvw}^LX7^Eks2U85C|n>B3Q*9c#jbZi1ow>B?snNU`6v1wPe_3u z03S{+H?k?sQwj!uzT=+TRa(0W!@Ywn$vzlPrye2#$rp;;7AjXmD()o*gBDAP{srd8p^Px`8Iu7q$9}PR3uX>D({yU86H>{`6#2H-o*s21zt^ce) zKF8V~IpQDJjXv5tr}*x&Pb3X2+mF;=REx(BtaUZDHLVe}>utMd4+K3|SJXaB8cyFw zYtiRdMifuWckbCVH?M|QnA`c-)GEs?ydK?tomfrHX_l&BCz#dNkN4)%syR;}Ok#b) z&B(c))YGobRm8?+Y%fFf-m=n~2lB#rqz0Q^;^SxP*rX|skg~AXgQ&yC>FN8#ljv9KSAE>1EkbT^q<*v|T!7Up@U_}SJ4S&FSUjyqNl%*^Bc zPYBX>pNR>tsU(2*SG-}!h5{^!^LTOdJ2GQE8*w_4M&%*6dEV0Q9h*CUd4MQ zy-yLEFM3YdHz;clBgcsr_EgVd%`R9&*vgbes$hvFs+#qCEj&d_Wn<2zrRWl+T06)r zQ2hSfh&e3mum&u-*(`UwwnW0>e`(9mhV6Vt1-+3|Gc|2in! zS!2HloIhk#!d8qOK|T)0>5B|vt!3AV3ZI7J@zaQiI!6qzZ{FW1D=|1h)be2&c-B%? z-&@b#?2Q;(9?(6g!KQ6ybF2qHYMV}^xy1tusX1W~xbP$m`cz%~+C9Er`*n>c`sVmf z4vtEm(z!M>_e>`GQk!Dhvg*P=!)Z7v4N>aAmkfMA7Q!Xp5sK#AAMF8G0m>AuRPw6f zrcxd|nF%#{)>$>Y4o^u{c}^KeP<}m@hxsIX7}gbYxf6R^f8eEXF``Ejf`ts#ycIan zdyv$ecP<@=gYv0N6|3^sTb*aODG9%EVznO(_&QJDEc{^m+ec*Qq%HcYO`|U{;UoF< z)$gpkYeX5dA!NEjC;$SBq#+1gB9$cRqzRQXCb5;gbyU|Wqc|m11rSN6Qmf|&3kLx3 zcM1%wBr0-Ve|5l!WRv!1WCy2uw1}$t2uy|>rPTfLVqaBx)lG(0o@YKAh9iTNT2+U~ z%LyK))Z}M1J04l3%6`-pMp1>I5^OF=L4c~+K|-f*hI8AdDc`!l$>*O95`1(71d5aE z@!F9vpTRaXVn^QD7YNyDGM-i&uA17f&M;I2#tJt*Kx5YBXc^T9;{&JVN4lIz%`K{L zh60R@o?0S?sKW498LsUBQY0o+@oh`v~q<$DxwO9j^c7Jt%H zC;IIs`!y3~HvpO7X$@mSztWMtw8ncsk|~tRuXk3lC7hCwIW_50B^U#0A$Ug`HOWp- zc#Cn@2Li^=yI&GZ{;cQMeqGnz0I}Z9Z~w7musIYYjIn2-tu7@Vzg}<&D-YkXoL*`s zm0EkfLJ>W+bZXV7q?^fV3HNUJKKfQu!^14Bj5WjW*@PtoOHhhW=%qJyU9*og0&&Xp ztp*8gbbQmbG~c|c-5<`TB~0$>)LQNY3#DS=Jl?qToZzWin2&L&dwx}y@=sy|6~@4Z z83I;s_3Z)u_*$yIvJ+@Fr|mG4+B|jYrN4g`VVr!Ts>e}d*5$xNtqN-Lq-TW`yoDIt zR$4HggsM)mcTGnsT4IP)Rh1%InC7Sm?Wt`<*^kjeV+!#(6D-VeQdrD>xt{3Js zY=@5Al4IGOz@ow3}rm4M7GD0TDU4IlX>Zt}Ni?&KD)zy-cQ@aHl8E9mhB z&2y`?vh9@BbE|i$L{4j9b?q{@BaQejrL^n?t>d+J;*K5^X`JbJNSXf778%aBoo=c4 zbTJNd6}ve*yiEBRyRqIqPD8+!@o>p6F!Xr@2M|-;AMcP>H_tzRS1PO&S<6a2_zUC6 zwP6Hxm=KpPhK2xz>u8bW%LRKw%sa%S;cE-QFDgO3X6$y5iI|K-*lzE zT63iat2_R3y=QIgtOLL1mu2k0Wvf>x<>O8DM7QSmug0(s9ODZHS*{kr5h>kQNbj>X z0*;TVG|tku`~XJ62{Y2|UPNIe`gH#u%D$#;2wVY9|5^fPYCS5HKUfMiBw0dIQ+Wfi z5lb>!@US+lJ&;4X1L=vrD!@XuzEM;!FSk6$FFVIAa#F*yy7TPz-4`D!f^B8%Hq>GDAMTq#A-IPV@Ede7K6HM>EjxdD9m>8ZpI~3Er=6x# zd%DY9yO&&V4+yq$Y;?GvpgXTV-Bpfv93~!YzTcu-3;aEDyDj9J-q^Gw`tR09n?%x4B(+2bZoEGBoeBEGNIw9fkmZF@j4z++9lv9UbAB zZqr@Ym85M4hbXq%%i-eVof>UF=jclO>ubfOW|EdVE&<{E_CHYkw_J9C-dyyKMP3SX zwK}=8lN2JHjH~jh!p58O&`6y{CGItLE&*<(VopXLrj|-;PpfPmX7*Y(=BlMmuljrc z%QqKXb8P8U7G~yUbxUP6PWPA4&KKF8oyHADdUsrmej;9B2B?poNnFfur*w9{4n8I07afcm^)Hw)e*Q=a>1YJ`q(awek~F-nFdQIgT7{w%McCX% z1_3|g8?@>qp?|fvicu>iHb|Vd)c;*rO>k`cqTR6(2)w|Bqko}@5-+m{HyCG^o7hAB zm;XUjKZM;zv1W=Dvl#l@wn!T~=70>IQa?%v)kl%Ii0L!d`sK-qKBRu>6Qo#^Gjl6l zl6pTTt5lE7XhV(7&;;hV)%*ZA`=H65#sjCN@C;lOmEqDa1!3<_3Osu=4VM(Vg@mU( zkEggTp&?W_5(&Ko7h%{SW<=^)M`!0%DFKPRa9}!t_4fz^EVJ-!ZIk)~pHX-8@697F zV{C#i0tt1aar}j<@PX9Iz2Q~>WMu$sK=(nNE&QL2+nGcqA9pHk^Ly;<&f+fE{c*p+;6F<>R+f9(M$fy4~Oe7a#tdZQ!TyuDA6sAogJ(T^sROOGlM6bZ3j6pm5+oO;uz6lfbNm*#^K;#6%DMfI>{^80~50}PeIMmie9 zB;G#auPU7Wuf>S_aW-x8H_X&T(U$(V^=w^>N#oc0Ou{+(c_w^>BVG2Y;n9 z$!>6xY)D-N$Wj7fpEK3j|6}ScyrO)+sBbALC5P@3hAt^7=^kKcM7mQzx$=b0pM8$uZ5FYt;@jZR55In_#i!yQ z%@ee&HiDmTWB$2VsGoW=sXO*FRz~a0BU^#cP5c7q2i}*)mwmtarw`OOX-B!RoVbXW zqs|qHf0^P+xz9i0=&M&`S_z|*M1kHIVn_si|eQs6f0`|oA0mVH+ ze!De=t>8XqX;i|No#ATi#&s^#ch2&DQtP`V>sS8R{UlYmCdR!m;d}1ep0O?PgNC!1 zx}R3pPLh24<{{hNO3{|*5s>n4mSV@~?8%#cv&?!mw*8u7bF!OJvU#>PbBpOY%FHYe z;sTenMScFjJ!pbVx(ES4^E6ufRz(cC>0A@f3|7O5R&FAN!Pfh+QXQ(Sq^I(p13hy< z0r#!Ofi^r^(_N7XnZmS2#LB6wf$1tw2KF&Fzsdw41{TJ=Y#5{F^3x*XHl3aZ;CPS^&Md zwarhz8{%PBSJ%D{0Z&d8>n%@*%z6E z-g1=J2Y7(#N-@eS9mhDG#}=ZU?lW3XU8=as8WZjORcjExwaLg$`A}{EdzGlVS-8Dj zSmW>V*I(8FP9BKhrHk&1yQPL}S+^0Ecng{uXwoYe5J-6GbusmTMVggymTA=1=-F=;e{y>&9gaShW)({xwEQAHRN0N( zUCf+1gthfa$q@phy~RvxfL$Ppo;VYjx{KilKR&906byll;H^o#m#YEb^( zs_LBy%cmHSVAO)?Qb5uM;NJ&~#Q4l_DrAiozW|$sRlYVmdTkC{n7^oZI6FD!uZhk~ zA7Q7jEc?_XGoU=1KmXM%=j3qs{L~1YTsPg~D0T=q0%ekjwzTl>2ekr@O9+#cO}#uE zUB0+g*Vg(5wka|87A|I(cj@dM?+Ovc$0K$|+6(HWbNwO~_WXoJxV??x9;1zJcO-UY zPjXB}StaOsH*tE(?i69@33R!=9$?;$Rx*sa^ijd9KGgq~-pzgyhKE-W6@o{@Rn|_N zG;FHeu^L1D;$R#$4GD3X4B69CaIv^{uiMVjZDOfT%S%s-k58Dt(n}$BN{i8P15Tlk z1`4gRGy=1K4(0qILt2Yc{#fO-34Jxr>RW`2c)hA+quE1sm1Mw*zDSur%CjjOz77|} z1%D-YBFSt2Tdm08@G2T#gSe(g5uFE*)c4Ucs$P2t^4ChC=X7-BK|y+Y6u6n5i3sAbv2NJWD@u9b%j zj>M-m7h#B+1_V4NP}TN_P@ogfZWLmg(fyu4qK$x|lBx8UkM`1MQJ`-QUZ;uu?c+vI z%O4rA z;1Vhy_hRxcz2_hp;2RHSuZoew>GjSp6cMM~F@r#mb@;&9B`m-hN1T*bugMhDbRUWT zX?VTPQV+9O@8cfAjQn&QX^B2J&;xqiV+x3r&L>UAVA23)Av3=r%89!Wd_DWiS?9qJ zEs~lt^%A{OZ^FePH|m}ldpQzmD2*ae=`o=c&A@W9Q7W{1;w^>~xeXQvqHm0r6``9M z$l(xBrMp&Xp*tqEE?_c)L}~!6<;0ghIu!-)c84@-tC)d|bn5)|Y%$tg#A9|xYFGtU z#&apcvvYtiS#p1eYw&HpQ)9L=8EmFVbZJ-6SePs9d>o1Sorj`d!pYKzE{I#jBkIrM)(CQs-7P(Q z6ZdT`kX&ZHI^;Va9)_Hgi)Nd6wR%YMvE-#|P`c}sz#QrxhsAw0LjqpPwGw6x->7mA zBN-7XOOm-XeyTDOS+LX=_|o(beUhWC5m|L!>{bl%B%QfHnS@Y$2Z_mVc7;57@i_;bqIw049*h+9U!FBRb+(g+tsm#@e zxFK#Tj@+&f&d&V*p+CJGwn)G-NphTh7OY{2i)T@_1<^8jBm5n|S5I$le;$R-lax=I z5aR?s?wny1uAZb@cRwJAgoWaAuFsiB1aXDx_pVdQ*FzRhiYwUCe!nD$BeYrhqQ+W>$<==^MLqj?dRG>Q+it^`-SP z7a;nwDT|L>#hm}Q5X%sSs7mKDwarD$hNwdtaab~%V?X1-JWE#6xmLEM&}tHu)Uo8$ ze0Ozhw)G>5aqHHZwZX54%cZ$CFWIN-ULCM^a+v<7;~$B}((|jF(;3x<{ji5>Lx(jnmNS z?evUA>CP0!C!`g(HzY4g zI(z4)fFYqkN2!-+V(3BJaqyq1TS*zpSJuC^yGI+_kK z#M+LcuV5uGxeUIj?r>8ogc;Dd>d<(js?r31wva%L2Tl57e*g<8M-uW%=)xX<(un@8 z5|d7jkhkAEqd5BUO9bS0H6R@Eo`h_ z#PNpu(=VbYz0X)+ad(PX*0LB*=U)>i9I`mYQZpS}LR3%pBS@crtiuPi^EGUX z>Uac1YCGrJ56}14dY}h$vC+6OZ*`g~PcqtJl3(-}(KzUZsckc+wM0_1mR#Ayu`L%U z%hVh=(e%BxHu^`y8ELjQM`weRw4?CzT!=yHGnm1+=~ULl%IpS19}!3MPQ77NHcGds z>M^(ed7|LoND398tNLt$dpufsqR=@Hfs<`*yLScI<}fw+@h{C7FeZfz=kRU0vDGpvskKjHWDPi#VByvjF$ce=rV?_HFY2N- zFB%IJ!1Xy@SZ+eiAHj{Eirj^GU2QH{BR}FbB)_T&lP1Ui_-+M-(NF4I@rmL(c>0SO za5uq1R4q=K$~2}9Ff*;3W$}?=h^3bflr5>HidHmPBuD#PvEEa)HvhHuc$Fn9zC@4i zm7Du`m)~w7=drgO+F;%s7C}3%OiaFF z;h}F#fBVRwY07k~uB_!&hWh)q1tq07Zw+DiI?-SVNdySzt%j5uL!iHM$EAVN=6QuC zhVO($5xyKU_ZxFXfGj72c`K?hF|oJuOE$qWqsGukEV<&6Apg#LRl%g;KZdkv7-Ehw zfdD5K4VBab;rBQ0EIs(V?++D^M>nOXHyxCg&LxGDErW%;THRnuJ+TzlWi{$qrVL8n zlnRf7)YvK-6{!?q(DKuMZP!|>!E|~`Ud0C??);z5F&uYNDd{qUc)wGui%u2j`@tnf z2E|5LL+d@*AQ6{c^;ho-P|S(cQt$-E`P8@u2z>Ilq=gEFJ>*}2X}#z#^?&QHxzHvF zVE^aIOQovvuf1k0Ww!g3gDJuTOW9Uz>=YrFTJUujAgS}Crj3&bf#6KKW_xI*Lz%>r zbO)|~UuSV=)f0_jpzYN*NbKPhDHQx&1n4u)^6>csZZxqpKAv+Ei10{GM;u ze#leD;c`{>dKsaT@@7WbkbwUz`UwY?&^uXa=L=|F(~BcSO7zNME6be5bgU%L!Vqm{ zGv(~pCoE()U^BKWj74}RO=#-3^2a>$v|`LoZLA(fYu;H51|-sNHH=a8x-ka?u$OPj zNM5apGCM;ZfCSMC&GXrd>CFK*#6aefiWVYP<`%%KkQpSRT0B%InC2oYd^-E`fHgmg z#yQG!`wK+M($C^{WpWvIc~<3j4Vjm?q8LA0Z4>q|qKqv1L$OP@ntwAPh;Ba~47IwG zn)S#jbT+J;yP?ie&V*2>P81z zsuG2Q=W0fyxc+{^!lI$!g1;55a2xZ}F12^(hx95zc_Y+0!!N z!6k|k;Z0U6W{MKgjv_iK%pPA%J6qSSj95?(F>LVox3`Ws2v0D4`#?g9TSot781BvKrv`zK#-I<&(zVF4a`Ze1%q659S z^)F_|niC_ay^W31q|%BGpY4-gGwV;$hTAI(S+H{Bk~nFCdC`)%(6%Ug8y0;owTvb2k}e8|a(g^~qwJcmDc!xhkp1L9)qEP%a8Qw zs|HQ~=iRToA9O$$v;oZVxJrfwPVKk;`sJ{@{OP5!_PFoW7ZDNJn7s(gs{3h(fa8J z2HmmJZ?%gs6V`0K@1!T}(JYL@U{|0dxJ}Z@#En2Ng`F}^YF~72BIg+I`fW4vte~Y` zs0*<~g{uyij~r3D85?Y)j=09mB1dcGePqA-J ztJZIHC!c@fF2E?1|HF14rfxp^B0TZQh@G-bVNsvp_xE#n77^@S2_T%y?9)4@x={p4iU`=~R zsCOi$#0PSsi3w^)U!?_HPFn{*zS9|EX&tK602){Eqn1w;t{gAf`16Gi(ocCr&RG;| znDCC$XVoR56sU=aN)@7D(`1|oU1&;%QkgU!6Mx1MWs;4dLL#Qy4@dcBVt__J#j2;W z1uC`yAWO_cgNQ)kZd2MD37g9D>@{q$I5PBq6*ikrHPs6WU0i|tEqdN=K*@v*DNoI2^%xVLM@f)O6F{Jqdj1)O$W9Oq=vQklK5w!)^#?*wda2?7Kv(%5L4_ zlNQTvNZleSdVG3(9U;fHwBo64y<5uwwmv(gNH@wz&&jwkt7>M8hES06KAs<*(AdzF zTx-o&ii*Bg_r$Hgp{DxW{BM8%Q^kFg-EU>O7m?|Wjqbz(NBIcEe_DTKX~E+zHYodq z-0<<%(y`5lL`SgE?+-D>NmdNW3lADiw*J>KySbK@6Xjqp?mdHXPqmYGJDbzr=Nh(9 z7TKJ?l$4JAW;^;_c4Q>h(O0kyes*Nj^|!ew*L{=q^fP>P%&y?R$Jw@}^Vh$5&TZj3 zb+IY2={ZAKiGla`zh4}LcJzEQiFBndWVMcROO0kbT;{(%Kdqooxm6;%&eLCwbYB0*92F^o44`zHkY@PC5R&Uk!k#kqitKx?|Ey)Y&QDOz$}6@5cB-HqPOs8RQ<^L zO3#q(6rv>)tnS`$^Sh-5FlhacYe~>+B4_jL)4Ye#WN&5M2x3;nV8FGe%NYMhp=dWK zmXIu6MVGPU$uW#$_q}ClvVcY&JdbWwlUl9@`K0$dB*dLPi|p!;)r`C&dJ1)p?Ycr&i+DLJDfcWPXt9TSRsn19T9Z>KzD4EtPxyBG; z1c#X#$RsB6Wrs_I<1QluHLozeV8Zra)e78Xt>uHPDI=R+w-tJudGi{i{zlL4siphZ)LeKu*lJ;{ngT->ob;xfyo1LgrSsP zuM>Ky6SS<~Xpj8{{yY!H?dR9tCmKjf5G+M5QNL|*GGqMHCXNd(FC8}kyRUv zXc0`8Uq9B*tCaAhc_f)63EvErFNdGh5HmDGUZ)wc`}E*DFUqUPmzU#Gw3`RisR{q%gFM?C!^nd41^g<0+>;yeSyR*zN| zh3CbnLw0%PyI#`{SKd6{U0CoZodBK76kM#4^jsnYUB?Nv^gec+cF0i+VlilQljYYDDZzaDN4PDDt<9`r1WZT>^$M&$mUi)=A) z?+qb7Q{qop$Gs@_4efw(gAj17WiS`R&pPby`x5A5q2-)4{eM`)r&&jMtafmN!|1wM zcrT0V&Wq1Kmiw{2<{nCwu=pVyJ3%DqQ6{=A=?YYLy4F;nZDUEx;*kSuj0_LciR%el z;gu^nrv8@=N!ZEFj|r1N=hx%jB$LGQl|(%>J9;6xG0VxnC&Z$;FJby$mE1LGU0t~a zOsER4-n(rKt_z8FxG(P-Jw5$Pi(be23?qL0(>q=qJZT<(Gv;FK*jZaUpSAMzHys!L z@kZ=r@{uIK^PsOw_^wZ|@_iJ?6i-8p>Nsd(;mO(#y=^E>7qMfe?xZg@ad~+y=OENk zEF#_r>&h(^dg$8FS)2NtE471N_V76BYqekv=a-|(J6@HD5*qjqn;!R zyt;^5=sEwiUE8=+CbBn39PK%MKc*RIdDVLQ(35^*>}u@j5Tm10TBfFZfy+zeY^zNa z*xh)aJaUmvCbXfqq?KB`OK`)kW{`OV+6mE)HlyRU1I{`;oS+%KKR4t|eFBxLk=VXHbo52H%QxVxSDJoQh;@wy?}@V|Jb-|gpPuIS)yu1bGeX=3 zh=DssP7VhE^tp?j0)8yLf=R(NWIM~RR$nY#JZzo39WCc3QC1+xq9HE%+}|aHFEpoq z#Ymh&@$`bO3sJVb79oDXpsmTAV?P#Bf{eKlL-A=o`$fpxj(>!L}qLdhGpK+WPDwtKGUL*+|nzFZ=?BVl;w{h zf<*Sq3kwmrvVyXTjLPsnl)ydQ+R~7CTx3{JhHK-0QoIVO@GvP<+ju%QEJ7j>g2x~m zmBn3lXr^eAbu+Gciz#&r^yh0>y8UjbCh^l{cn-NI(gmk%&P9^6LrbfXgeE@9ELF}S zB4!4W_oKzte%zMSYhY|xo59DEC2iS_#_nWdoFz<>!BgMLqfa3{k!=nqEd{_$f4BTP zTzt@hxFeX@(v2$FB7nG@$}x_49D^(!Wm4qUkiGYkcdY`XbAToU=%iz~8m+^O%^)_W zkEdQ0ifY`Ek;kEv=)M-lXE3)2BVpKzR=@}}m$KmBO-5E!Am>p0h(zzKRJ4d+W4Vqe zofA@;NTFN=l&`^CY|+QUXanLYxlAQzhl)q;zQYe=oFQz>Eg<#tkOMo(W*X2*c3(n5 znDiG9QjWPU4R$z+{A!xhrDmaVaX4hzgj-~PDmPYmov=1-S@BHN%0H1~q|3&h_u<7Q zs9^eSV#%=IU?~Rnf)#qbzqRw_CWm^LD$v&RPo;F%_bcFAGA1M|)Ep|EC^F+4MOtOJ z&hmpj;0FSfL96?N{GUK6RaoW68a|OZf(_`zLcQ$5=2H8@hsZZrgcZpXr7?iNgq#e) zGzA(8MF*Ialrzx913KH%`Y?uWDR~uJGsWr0`MK06ndw*py1slDGa|7l7m*rI<~D$y z3de{Pgv3PX+#-=gitHDMOwB+9s#Mfe;p(C2h?kWsLLiFc?k7GMxE2k59jr}UC5)# zjsO32duJ`0)=p=AYS^Ui%U?FGyOyKOTicg4Y3smY`>Nf+C6dbyWA|X(<*pZq{poeT z^UK4mTGtBSQ3QhV74o8B@mY6y#3SxoB1I6&)(1P z_4);7vDo?Uo^h?U2_hD!FJt7zY8(y7$-z@*oq+=K=?BP9(3oxx3w6}*>s+=~=ngV- zJ~*!~>YL0w*e3$R<28I8#mqlnrid;p%3KsK>UiX^&x~O6!SPgr4IRI9K_MXqh#SDA z-WB+30mVMGOR~&n*yb=DEi#DQQbjneup3VyrU(Or(Q=)e8BxMczYrfO9>Omg*OVl{ z2qU1pw%7~$rsot#gQ&7(gphKv#~_n#a-i8i9GpF&MiS}w*=7_XbwVv|)3l>WYHx%k z^7_1AnXW6;)9H)1Re<-;L-~enE;JZE;mo1~^{uq(5seR#jh5EZZ3s-q&CI8^WrfKPWG`Yyk-^AOkVkeQvKBV~-+5sk^p*+ed!{w-) z5ELk46a0iFPHcGpHkLF~za2I#6ZrLLYVoikyAC_LQ&8u~J`*u?RH?wm$VR!=z<9(t zZ9e&#DpVZ6wIs1BD8eTy>gvC@|J5JcSj2bXj!U9d&yb3ms_Srn7}52)|4Yp#Ox;~t zN=J!kN+n4?FwU1h=@EZ88+O7ek*42!4xBvDbP7CI}O)h(TZ( zh@1;ulhoaQPG^hT-F3F-^Txu&-}Pxh9T=5^xj9Y_Sm}$BthWbM{Lh}PJDR1UmeFz_ zzo(~9-*Ug5cYRmxVPOcj)>s=i!pizx%&ufGW|behP-liCc*#1FyW z+~RM{IdYNw!NW}BO0bzMU+(p{z7x=&@u)c^2X8GMM4-B&7s_-kh{TY(+GV~4tf~_b z1ip@yCeU!&(%eAl0W{AM-<>FL0utjQQ;?uLHz}TPqjBUSn1T$|ezH&{j_{A?yWpJ; zSYyw!10TAl?dbr{$yt2hoK;QJFejqlC*Ex4B1xqzIz$ZIHIWxJsH>6My*wIJ|705I zvQGNflk|d@jDRtyS5t&e79>A>=4^JlHZ3_!9B}JyxE1R9%b*s#m^}DM(}GY96IqLF3)eS9D2HmeWi)jQ-&FrA0Oj zuVPW6uT*=Gk}utR6={;DBmEAQ?!qt%+iqWNm1}xb=UME%i86dFYBC7>F>|lZy~$ND zC-jO0Z5}`#SU>x=_&4Bfe-c`5zYlj|9l0Qxa0)$YZdMtF@-mUR8bFVNasJOR5?PKy zX(EphYtr;EjkJR-6EM)mG>2Wz$;*n%!c;>D9X5wH#hPvOFsisNIeo){OT}WYh8W6R zgDgD!gWx)LIfrNl8i%5!um zF-8$3AhJtl6F^XZY^C5T{UO}t+u#s?MI9>Y9wqMVaYj2pzuZ-=&r#leW2!kk zh$W>L{TE}N+WzLF<&ZF5$<0SOIpzH&9Poib zm(ct%ReInOy64{${XN(LSnV$M5#+ptnE$2MX>^6%(&=#3mR<4h!voFB&10MBjW2tV zxD5^b+uyYRbbr~J|H#(Kr$q&L=e~8I*A(-`HvDARzRSS(CUC54gV4OQk|yvFF-9x^ z%L~3%?%TCfyVntTHhnt%sPrZCNK;8|U8@2QT;Cu&Lg_w2SG@Qx{D?6(C0E>K_*bk8 zYLTxL>WmxE;%;fvVn{f2tH@bc>Nc^fQ?bJN$2lZX0u`rQHu(MfOL>Y~yaFJ(cPrgS zC?g1h96i@OVq*}6cQ34qPkhb7^G_zYq0X#^_utOBN=H$ThDPgede;;KZwyOF1*Yk>E^b6I=i7DV1Nz-<@Y)%tb5K*xHBe4)elfUv9e zzUJjG?9$P?>%M#0Yhmjym-i+OEYRt-^1UgW_bF8OK8T8f22Ar#xWj`_j4>nL5PIX= zI0s!hqR8}JmY-Y`bKhL+fp22wt_~sMZ>v}u865_n?cYplt&(-lSnm=03=(rKuXvtJ zCw@|HZ`?1b$Qv*e$hB-wJ2*5o(**0q5x4!+~_i|!6XDa{r1wa*Tny z#w9~&ItMFr5+1)i{cNEDb&!zl_Wh?NY|}DfZD$XaKc&A16suE|s1!iSxkANkSHCF? zuLg{Hi>?N0#vb;%-v%Qlg6=>!{4xxnq$4AoXwU9x`@2w+Q5qbY5-I^QD!SFk6YkUr zJ0Ul9c2v4$1yi0PS%AvrRs(qfyNis*CDdeOyPGsZb1_k+62tnMWt1@mPnv>_IK_Zy z{T@nd`?(IQ_{TRx&5dMn7j7xZHJkT;Q8*Le;1Om%4dY z*taGkp0}qXVQ#eaS({EEgH2#FAdN-g>`hGdj%AN(*L`6?>V94#h((q_mfbQHAG)2C zMz0fEYrsoq*6^Vwcut)R_@NCSUttvBJt%Xcl40cpa#C^FnUGsr&fdJ=SxwQ*Us@(C zn`POP(^M8dT1|N+Ph@H%lVr)vqp!);rWCJifR&p!?fH$Z2W5<2z#}s}^wZGIIIAfa zI4srHgdwI!IGx4X`l0st4cBjBwQf5FUb)^O>5#6HxZN-B8{TUQMVTTe9FIu}S!fS# z3n7q8Z_g<{ImSzs+MPEk*Bg{gXy461ShHG*??|XQTBb{tH-Xz~G~S+VAEVMnF$tNF9NfT5oztb~>A0KBPsQEBs?X`>xL`Z?2%4tCd124bV%YPHPh#<93j{K_^gpVb->aE4$sMBf z+k%e}c79!l7|~NsAYuiHTsyh}Uv6v8gpLER(P39PplmSAU9Dc^<}gSpex+RV9_G#! zz7Lq~mUGH?#$RblW<>tb_uDm&uzHR9Ln5|7g>vwZkmoam9Qr7`xhF8(Q=NjfA{vXFY zpQN6y4c4XHT!3BwT2$xS7@n7aLLfD@KZb!XSMZ6%&dm}82Q^ZXzIm{G+Bte7tz5>j z3SaVB|8to*y_>TIG52f#yl~%3Q{{KjIPSdmGp$8Cz1IqeJ711>rwb~oX%Z2kT?0pN#4O6rxlf;$#9tp7j<@Vqgzs)iBxa=T z{roz3eE+Z8qQTk8+_j@b>_}<-%WZ&+Rh47TMK$zp-3rdowIces+1u38I{o$Er8bSd z+G$ku#uN+G&Fp5_>w*S@ZJ=r__gYhOP`b6gnOpdSppf_nT|*h9&iv z1&OAwHs$l;4Wg~9SrrveWS=xR+P7uPQL^T;Bi{Z2c>y=-_<-ie%!FrI?RfMRC#^p< zDm=U6Dc6%KicN}{Yj#k5)PRfslzZCLFh#ZT-wj?@gwa!Ka{0!o9uIw=d$H#VKaWq@ zm5DM&npnZAgg~m?hN4eZA?rAWtg*k*eb!_QY>%D4Gi}1C;t)OhtX_X(Qxoo+H`g~e zOA7j`SC$g1k55s5Xwh7Yx*sS-+*ualZS_W2rh7usO>1W_YT70`VwT>3vwmWlYWV5u zl1#uNj9qQOm$s=V>yIG6@plM@q}Xbv&Z)8gV;c?XuX zqM_#a6TR{pi8(pcj6gfwV zH27@2OTvGO&~HlZW#BLqXjUYt@*XQTOTlJ%Kgp$9@1w~_Nq`?EBY~M#GdWPFCKbcs z@y%ODWN`Dbu$nEGieZ9_xNY8fz1ZJvT=eo!joRkH*cL-N(L(aAhWWlY(n3uQaAAjD z!t#8^B%?l6?VmLOoR|#SgnY^8FlXRi1!7@cR?B9ZfI)cZw-`!1zPX5c0Gs06aIg`& zOb=ip7(WCrYjZ#KkB53kku5on(!WVFnb5?f&Ry>AkA@=I_+<#MR}P2!hQpTw_@y-^ z;e^}6!-HOBKgnQ54ohWtMq?&WF?A$adeoZPG#?9Bs7;DpamP4n|^ls5VxcQn;i#SKyMgo@Ut(mtp0k?6@D= z+E>iOzjV{D>l0<=Q1AJc&1zw4D_66Pic_rK`DS*jO1BlKC} z@%cJ-%5GQK)<*3wM#jzm606$o*SI?G@tuXQpW+_}oh6QyJ^csC0-xL6;Qs-W|IJ^z zgKtKA`mGAW&Jc#}F2k)L4eTJI^R$(@tN02Re!zz7Gp;S}(;~K^tqVgKyH4$s(Oj_9 zr@%2!E_4ib&wv?QPv3uJ@S(NGfgP0p%-hZ=M0#x&er;>*ca#6UA~xT-R8mDY!=zLL zr!lUEMU@TFRH|o3g^?0f$_4AxeKeW1mU~Ob9lrN46H!l6#GxQWgC)5sD!emw8G$lC z19AmcvnbgS38&Zo+Ctc=^oTLrgngootLnY$e-Ih84L8X#EgC>2R8O%~j+wPs88Ala ztAQ7`x(`k0`<9dRP`7i&D*-Qo~jeKb<8NFJ&5xQ?nEKQ8k>$a#Lb zbW6R1^rt;m1|J7N2$M)pAO8DdT@$K2S{p0-~Iax086B83};$z?&Gyd!C`}<9t zBJLwS7vG^bYdNP3Mkup470S48K6^H=f4@U*CTA|%D`Hc&r!Z98-rv84n$VQD=DlVn znQXRLpL=SXn$NFU+Wn0K%JvwU7N@B=%8U&!S#lQdIMSAAx~y3@?1E)0ELh7eOWfR# z#IIMhyinP@iMd_f+IW@U4eNZhDB%@eXccgT4ibnZR%)gjRgfUs8c@z!@TQyR9TlZL zLslcik4^kyY1rHf2-cYvEIP&$M-OIFqD< z;Td*lZ#ef8g)bKt{owhmGGwoI;5P?kaDIL$iC#zl;_B2==V?)D79X`9SAV7H@+R#l z_Uv=>U9W%NT&&g0#?(F!@i41wJhT^70m!t15GaMq!=5*AH6qV-^4M_zIrsw zz2w(ed*3AzArh2NP9^OCm8JKp=q7UIr|kg5rKV;U6@O`LC{Horrrxpq4?Qw5}y6x_Yq*hWe=p(x(i_>zU-ScnlPF)ekfi$ea!a4JhY_!Xhr zp6#eGJo2M7dnzyaf$8bk?g8rx5$gS`gA#}u3uAT9^li!r!8ew4WX2LH&W_m3IW5Pz zVWfa0g9b$Sdq-+)7`=RYsXKYV)*`r%BPa&>?s&<3q=+$5+*gbJ3r_Mzq4Ugv;jh7n z@Jw46(xKkt;4jX>a~`FWCAAu1QaQRJjPv@IpFQa^_-x!lYrKfwD2qMyyCzxztE*@X zW7+Y~2sdhxlN*=d@PqamMtm3lZ4iHiEG=FRWsKM9T8AM>vd3D31f;aolmf&nKe;ul zRhlgAR@u(2*m1B>;q*XdS!B%;L&NG3-B4tFAC6*85N^0g9xiP@l-5hn`dtN#)=f!3 z$5g9Lj3aY218dI%#u%uY?v>ElhPZI#7fv1&mar_~?j4K!;R5ln(9QRm+9cteQdl*k zIc^wALLi|7#dMY&#XYi~2wAL}%fn1bS~=BfF3e2_#uCU>OSTtq3Nw2cN5)PyGJHa+ z2MGh67U4c}hS&d&Bw+II<8#&kiDAas=Alx10`riR95Srl@U)nHSqw0MgcKUcZx&2a zs$A?1(lMCsk!96V&I0tTm<=7%bHzUJgIHbhov#aG8@Zkm z2V#H!YX^KqpV({LH@>fi1+{hboZIimxsf>0QdXJT#v{9K%jW9*|muFTLUM= z-GqC3cd7gzx4GUS9=h~$nhLqvgB5yuie4CoiV+2}w*XjHQUCoc>PG(sJw{>%5G>{`)pDES4@4%}PB-Y_ z(hWnK5|%2Kqb&qogK`UXICeFw4L)NfW_ALy#2_IYMPayt@$F0#rc!kJsZM*)S5f~} zkXyivpxjrUZ}A$mF2q>qbftK`G)T9IpBY9_nbFI)mHMhgFzrG+4~7xe$*I0{GwoIc zlHsy}n4;G6L-}Ll!D#Q#;P4UX%`BI5*Ups9(6vFsnv@L_TBgh{w7O-k{Qdl%{eZFQ zF9Bt}i%A{ViEpEZLNslFeNW|ixnIjZ&k~W0joQXSZV|TrOIyL?g zxHnnu_uMnvfxh4XA#7;XaRv-&rnsY+r?SPXe5ww#2wY!%9MqZYK7VLyEh0D6{W_M_ z<>_u&(9$`tzO4DO_Wfvb&A{kWrMaHphT=SHF-yPICW+>Pn1>wOv95j)kaZdofqW}q+}4;~#{`+3+Pb|scNei3!HhUi_iO9bV)jGtCd z5W>k&iRX*!iFuQe*V!b<@8Ke|>}z%z)l(Z?O)9cjOH75D6P451$v(}(uk`d232IVn zP|q!N!{xLYpze-UC~=`lO1f|StMc=D*D6oLjJSSRqdk0M_)r#o(5fuwXxtAZMJt=@ zjQ9&LlBSdINteExQNeR}G}V>Y0*cP17gMBWh|M383dw4B;m|XKTk|9NQQ+mesUP?Z%+0OrTiTp zTJ(t}J_}#8#8*=k_FDb~bnOgBDU6J*>ol#5D&N8#=P$=FOHd8(zAj1lW@DmIWRxTq zJo1CrT#%qxi*xIF7^x_?0+@uQLFLjatw5*q;DUjSE*k2P>ZC2Vn@7j}yy=i?)KRor zZTaz?rPXiJhVanV#ZB~80-mp|_jp1C-;;)ihwL5|A>=eT6BKR0Y%|5Z8Z-1Ct%VzT zDC|8SW5T8QgN=v|ERHErLuNdjLBuPGFN3e&vVV)ohdIb68m$xLxKc8UsEBUU;zzrd zvxa3`r)wFlYAIRNWH5ovKL@TZ#)^J1iLd^JQ&bqo^lcxCTcSIu>TR$^Y%0j4aY-9i z;SzqeN8H=P^X@~m>-iW(Od>VqiBwpPxupjXCBFqmH+19YzgC6tkeIh@aIVC+K+%F|ie9?Uy$h@dYktL(}x1E>vaw7%l$ZRLOhs z$n(FcumLxL?4pQiO8=3gECcI4H_gtGk0%iUrCEIKDA`E9+#jn6f6oIQRFO%ml?25 z@s}%bqLoRpdn-8dJdJ5hj1s%y)K)Kxic)+U|P>ex;u4?=2yiS*JJg7gRPy{$*Q%0#1q9F?#tt& z;At%!y5bn{Wc*y` zbBEUO-mzSlt>R_A<@0r}rf~^KMR#y7t(aBTsE;s}uhQYnXm#}icOU{}OtXdI5fazv$o%{6o<& zkAC&X{UY93!|wq%mY7S>e~Q=~$6|BUXM7%Fj{`m3)%I?7eq63xDv>o77}(UhyuOY_ zyq4pp)LfLnzYpYmH#pm0U4Hzg!!>u5dQ-7E@K#jk2w^b0rRsBSY?0igm6kF13aWMK zUR}4vw{PzizdS<(-JgziIaX@T125v%?2?^IVm-%j%-YzNQ#GM_cAN~0JG66k#-X4gk?^9vHNySH^Vo^hE;J`Au zqGe$N)%<~}N_P*NDKe`L{7dm^Arlk--?yaupQ9CFsKe+F*Zcn+mQbUjk9gsxiy1!h zOUPJ~aK9~`TlC=b!~uSb$aZSU0N85foM7f~4u0mh&A&$x@WaB`oCj_1Oqq;A~ zh8u1_@;|GF!aUg&3$IR1L8##(m zLs9@v?8vh?B^L>Q0PoNo$Sp==L8w|Dand4ENg4EvD`0|ITJZR#x%!k$kLN>r2>oh| z*_UocI8uxR%Wl|b19oiLwZ($IpN6WDN)^4EZ`4szDgDYyqH$$?fkhn^fsgDswg$@s z=;BO}baqA5w@ksjMMkh$6)+Ay&TiTl1@^=c^+IJM%!srTw;0Vly$vkW;38svJx%8d?MCqh&g-%0GptV#M?e##6Kqp1x%-2a zuiqgZD0m(A+w6PhHpHEMF$v3jsfW|=`QImrAtt{<2}!Jt>61UYZkN4zVF#*@9VlgQN`@#$o=ylqLA~ORV_?+ zE1lLuaB^>mIJ}k3xrKZ=rFgIIYEgf>4j@d(#vPX8=Hr-u?_;L}USOq3_=tCmxmvEh zt;Ed_U_E*@^^Z8S(EqA{r%a2n45EmxTbJRogAbn))+2`|X=@-Sm!T%kbU?wb<2Nm- zCKy(~2^X8CCfm&VLIw6$_2fa{?PtM|GTJaXz|VE7KtZw zq-;0Px~7Aod51T9y{>0zpBZ7l%VLu z_B?G;@l!ca5D|Fp(J?;q|F7Bie_HxOa*0hNw0|0Y*p+1ba=$|4=d%9w!c~~V?Y~64 zQ#}e2-(9lmLt;i!S*|42GdV-vH4NGYU*L=D7w1`5Ap56kO5#oOeHr}CsN#-wquWc#zb{?4QyVNWv(wk zjLIeys-GwYB%ADX11+Zh|CNXWJTLtCH=mLxn8ZKeENTzEx3ceW-@!>7fERp6a6H}-mBf44U} z^=0QTFq^mei`cz*cXhfb?A>0)`qKOPwk0(!I*n6%m5%1j=C@nU(uD7m^2EPq&*u;R z9AA&8K6d%kJh&M(6Xg$>H@HJ(E3G5bz-Mk6mJ?3-j__nwPC= zbF%*1@dt%SyM_C699NBp+p}wT!&9KKtyi{$U zcY`S?N?}mWM5t0BNy@->Kv4ngxlx7CaR`-0+SMpchhtrHh24d>-8+6I5uSnVo$E>{!Dob=8VK#Y70fbsNwtg{~h zOLs(CkS9N#+yqKcHGx1wfZI`Rp~3`96J)BM+I}YK8(klt#t3*eQxVOgQE4WA z12riN=F%+(CN_|3wmbmwG^w`YM(GyyFx2m^7U3r&Freo#a4-&!^p=O!8juqc<5ZhJ zyph~mmyNJV(;ZRH&AklCC!Ex7gJkqs&tp2Ntl)-Ga3CeOAfix1xN?US`Jja2Q_0jm3T-JZfpfn>)cC73~3tTVO7$Zl^fc4 zLoHPN&myzj+!7s=)u|<~La?JvL5Pd2e>H4WSW`3Z#-CMjo?+gfvvSRh(O~$HK|9YTm*C0P-g=>KC6b-89g{cG{?W{q8~9!cTI}P3f+3Fy|!UJ_y@^l3UXE6 zC*^F3z@;{jdBOCd?*%aUSl&*_eB7d)oF4pdo*N)x7$F7sa|HPF4 zK^2U<|1)Zlyq?V%cLJKqyUWs?+-{i%0M=0T^g;gR_OOM#2cK6R!{@W5Y#t7F zoib3jfHHGtO!JF1Yv{~(GLdVA0v{H|`-60n;P?qfm}JBgh&2=^pSKYFtsSIUN+tLO z5y6LEHKOB8?7UbY`x}F$;+aso&;%=G`2(fyTzKClvF-58X?`w~OS+}-+<-j4x{PgBs2n}^ z;eX)Nh%L*#cM^6y{qr^Fb(dU5#apkTPCes;U!B?|(KkbMTeU6<##0q%N+5-%B6et3 z^E^*R;&aK5myL1$xVHqp3N^ML2D|@c5pkhxdFtwi^_6l67(C5h4M{7M-6}FQE7jaG zI~w^|+gf|AG-%o6CBdti)*qNvO%?yoJIT@B+Q^a{N0-m;POsa8D8t>pGh3Y1N8Me%9%fIU zS&)hG=Qw4;_JQar=LZ7v)19XKy&?5K?u-3`GJwY}e*D`s4e7hp@_6#io0(^JR%C(i zgy>ee$%_TdMu}<`YW0wuk!a$O?0AMjJ(1D0Akxr-=hR?H@t+d(O-v6Z2Y6zt7%CO( z$%>|2gv0G$Ae3)KEKnJyKK}npEj2V3;vdPtq0d;c&x%V?L>k<0Bp-=0`XMyP3d?`h za`(-|T%D`G<(50TQw?JRuUbqdH9mJ&`pQ;$_*X}Ss2%YcOG44(QdiCtxrnaAe3sHU z@SVX#P3;HuqJ_74hAPhyMI)N&r^SEl$C@Q+`z8q0lhtw+ghw%Cq}_!D+eQZ+-(G?- zQrDr*5>xYUq9?d})S_cz+yYmr6Mjrjl9&;F=U>rV4zyYdWROXQVsX?1TdzH~3#$Y= zp(#*4MZyun3@6Rf3K z^$5lj_med!-Eo95-Xol1g>6)Ir!lMz&z0{Vr$*kH& z8tLo1^+cAx2Qt-rw$bv)Uh|zbaFIfHdCSCy+-NMuTB2Mw8HQQNB2S(yLDuM0_MW6k z%9IGJX36v8;o?1?wRlNOctuOnXHOAG;WU_#yu%&Dp{Y`{0Fl*^DHZ4N_!t3!PX)8@ zC>_@zs+<$kA$Ns$GLaDYvY&j4Yn7xY`QANMA($RaRTJJo5rf_etfDsHc#0K_IgSNN z`HM&PZG(E_g5B64(!2$k3h-LBrUYJ-1RNLj`320=ty@L0;$x?reOr|Amp~WmvDCX& zd#TP_?F3RNr0rwIOc=M#Ol=2J7TH$e zxKD2$uoa4K{s_T-wn#%DwGjpr>H!^s#fj`pTG@F@d2pQ|XFHpK@tSMxW%-6oH`M+2 z{{l$w*Ii#uAitk?hW+Q#PX9yjtce_p{Ffbi>GWRcLjp`bz&1ZXE&1DBIrPj_E`K9oL&I|&CYrFsKqM+9MNH%N z3=bI1vqSOe(tI&qaf+hRg`&z=q?~bJ{A%BAL5dpTz2#+`@pD?KG*X8J@>V=}N~%O$ z|5s1`+c3%msM`4wcz{xYdFH>MyD+NubNUX@AzNEhZo)QU1Y4$^8G86spNRF{chuOG z`{SjR>8D@9%Sn>T4PH#%`XPG=97iguk#N?o@tR?5$LolZ~p zDJn0@&k`*pf;;n(qZy+aZRcIh$C5Q^c`7Dy0;_ACD1nN~N|UVG?Kj5lS5?C-zMDip zjNHfOQT+T}kF0$Ur;myLHb0#I)_q;vSbVv}x~_SCe&_=v_^-l`%^JE+9@!qzpgqHPNwz~~(SbvfEhl)WvJ&EMe(p6oGPv4FGx%{(MXI&i1R+stxb*6HQ zBwVXRmNvZZV}O_*WgEvo^ai|q%q84kea(yPOnlr5x@I40wto2LSKVIp7cIGIu`JK= zeC&RkS}J`+Pnz8I>(~A91szJ5N_Y9?>fbhsPYYi>d=@%+Ir!_EyZA(egclz$D2WKu ze0s)1yC<$gmqplG|BRevEM1*AULyZN7kE*hmH@jzn3ik}H+;#>F~~V9bQ-m=-Y(G- zMZLNiyyM1hWr$?^q|5M2#E4GYmrp;hqPqDOYk`bx0aiYqWjGgq@E)DQob-be(>M5L z=Q#@vEM;Wv!ff5R6!uablLrW)l^Ty11n!m?q108j6D+9~#nL2PncSZaq~1_k8d7lwS;UA=Cr67zo0kJ^Zmz*Pxy0j?Ki*&U}X-K6Z^FOh)HO-W01e1h(BiR!#XbN(A za<*t4Blhmze~iXtqbunP46mBlM`W(ly(6BBMQ{$UwPQtToI^5WEr4N5+6K@*Z3*C) z%vz2&CU8c^nhYarsHn8bLIW4d}Qlk$;Ql*FY%mk1(U zv#`Lm(@eW;#^*zrBUBwLVgU0B*X=f{dZ1e^Wz zbpbPc@rJ$m_}zW~cH#YG|rgkg51E3IKg zDX0-4xyR_A2(jQjbdJuUweWTs2iOE(dv(TDZq;S+8E}-{A+$??)+U*V;hC$-L@LY0Zvo0=Bp9!1i@_HdN*5e38h{Y1{DC zZs&vl?9&594aJ?x&1!*DtlyJSh4J&+{$GEmYJ$Lo?c4koKb3zjzEy1;EB3GJPZ_K^ ztJf1l+6~;lmIQA{8%lH4U+0}1eDA*!bzlCRI6fJ>&0V?7)X?s78y@mscYZ-^vAOYa zaIf3aCeASe=NSyqrUi|Km!x@rCT&{Sb}|X8L2GJ?O@IycR&URVFP<6emJ@bQdtE4q zt+iB@Tic%=XNvGQaknj2Hm};F9N1mMnyO$aW*YiNp@-^y(c_IXhrn*e&!nuq-gAFJ z=n*AabvWZ|XPuD&%W8EV$7*FQwQej+rLmj!_G%Fg&lAD}`}x56*LN=8BM!`bK6m*x z{-~(n(A&t)VtpZFd7M<}J;&V(*GsKi^uHc5K04_X5;FS23+&^iKn@9^=Rk5(4xJt~ z69QzGt|K`oE{3V9Luzvpdecg7ZV)kl0+(1DZhbCjAYrV6B^>W=&`}$@0 z3KJQgE;B6?ltFX=IARo7@0tWMsd-!gFK<*%0opI(#d9swYyT@e(-cv!m|`~p;7^|9 zSVA@K?q_-%}9_Xe4up!Wl8SzpIPswqdZ$Qyl*$ilX}%-O5WZb0s!c`}M{RxzL}b@5)K&7o8xIO*+REVI+x4JKon_EYS~?`ACAV_S zepWPzB%?{xZlj7%3f3~Au|`t0-4cgWpEhY^j6#t4eJ8OmCzhCipoC6o^HB&B?D+hA zlnj*xsfh#kn$QxvyD%gW4*^&+r!&O*Gdg)D#pZBzetk)%o4ay3EBVWL!3 zm{zXWYExu(9SfBp=D9mO3V`Y(lHK$Fsf zbRFe^(%bAYmUi@E`d=-$XnaAR8V{5L0gmy99V7ImzyCZ}1*$!+*46;^$~d5`w0eE+ z{KZ7H?Q^*#lv z1vI|D>av`2ZIJvJTWkuTB+PbqiVJcK3BU3AMG@gg>SNnH2S7x@ z#=CXVxuqV@^A<+g1`48Vbuzhw-k!~WIzPy6vmtF4515){p4TQ#36zM&bg!Jl81iaJBrz;BhrCuJb&( z?CVq9;O*1;Vv3VdZl2L6MkA%=Ur@-rcJYXJFW*grfvfxNtPX|d;~_<*&kpX+gsA+Tf4vRtG-rZ4-RTm`Qe;^v-!CiHT4+% z&T-_f7zv(NK2;O_Q+%}hje$@l!dND9l*MkrHCCW{-LrWEtNo!*ky-6`Sx7^4Le^I9 zT5Z*F7im2iryjd75qo{Kn5T^_@J|r@=v~ml&11W;o&1iZ?DTIISryOJhLFd~)@b>y z*&n8j6Bt{aE(Lhw#R^r)Rh)senk9`{2qjVcxWW!&(0J#h?Sl~p+qgpSpLOrTD*qCP z;=;a}d;N24u_nJXLjOir;T&l$i&58v(yZWS;=N8fK+=UqG>(axhHwGW$c4sm>^q>v z7DMqww_0J)L3LfpgbQ_OxpT9o{lhobGwsenSo|gM%}RUDP`2NeW*~jYMcs5l%MeWA zbv1|JhTvd5IoH}YO4cz#>VT|rgwQOlfv7$|(lmrlhI~4XH>&r2Xrh53Gslr>;!)y> z3Dh+pQ8tmm*Rmx1!Yv(In`>p`L`r&WG*NI!dem@0-$*H~B<{#NJZ(De1#)b-P=kB^ z{QemPDh~O;40qJz#)bw?t#exRx${F@Me#7GhInG%DA!w>6|^W0151bK26gTcR5r_@ zST%L#qV)PwXE)y+$lxSXz3YCDtf?Fsa-w1b=20^Op|dhRLvt!=D;FqP`ELA+>bG+MVUKB}uqc_L)l2MTSZh=q=r<(cUu-c3r3{dMT( z=2jhJ^uNyRsbup7h*Fe#Yl`nqY8QOS=g5W*Jv#I)8c4gAg7l<&tazeqC7stgFD2N^ zg+wD~AsbA0^3%*Vva}kZj2h!KGR+(%~Xjyi}lytJ#TihmUlC zbgkYZ_}h5jyYLPNf)wu5%|b;>R`{Y2?m_hx9?HoqUD#f@&JgY3ry?e)TbH7dg`+S_2fqma#}WgpRLbKu_@`+GR5m{0r}lJpbdxiTof^zvxFAY07mwF*-XrjnEj~l zUDWy-k`4SIl>JyCab;cS$!1oBD}1izKe-{8SQw+p*mN6Va_}ScFK$00=`=d~;_H9Z zdu+Vqw)lP7jr@0X4`k0T>Qw(*lj*SeNAtVmU+$F1lFr{e!7YRTR+RoPjdTB_HUbn! zK*3_FAbsQAwfR)q-F;BrT%tfw$mU?G%joA7|@*5tHPB?PufUHQk6_ESGjQShm= z`}RuyOB(}b1P+2=U2$F43?G+)-bQ9cwYJ^btIe-NJsPk_376Ki2A0Cq$j^+W8wzkW za}8mcP->a@Jwp}uqV4481giRv>_Yw)9g9Nk+`@Y6)=}!-D?A#N41gTGg7bOen+mJn zk?=TCM`PP`ccbct;M1?Fe@{oprG8F(_}%SK3C51O*R^AtUAIoE%!>~wZCHMhF=+GSb^yB#NeCF6h8RKum!e=S!NE1??gRL{~+PJKUp0v zYBAr$N=%7+IiJy{)PX(4)m$S}IMDX?T9-Qs!j>~&K5s*{< z-RIDG#JO;UK&5u17Laprg}p0M`^^QPm;DQDs8+HrxVD0-G{>K6(Gt}xsv(UTh~qt` zxRA(S-L~P(xo0Cs?|?!RIHi%thYG@y|IoM2s2F%ec9A{ferGPj`^b{2N(@;CAp~Nv zT`9W08;~C+MtLM&wT_@(0a3y+mkHf$Le0^V3d79(GR9YNQbkD$m?^!fc&2*ynQ~Y^j#ShUOuwEdy_<~yqxa&BZ6K& z+StB(T8IFR1qq~Q&$4lBLKvYSocpzrhjP}Fu<{}yf!x5ss+aKv@M4i@NNZtO{QLX& z4T1bQHoVuE*r;YF2-OCmky2F_!P3p^@^`nY8A^pn@6^y%9My96ja#lzyLru*Txv<` zT)MieaFan1X-6A-y;g>@ev%934p5&M%S%Dd4I>b%Gc*4!IZgcKN&S$7iUuwUOWqJD zi7%P>qFNMRA(THo>Jg&UD5b zf`^<0n(T`;L;6P6{yn+JrCxzb!*HT`^>;?u%vM>-S3mFLx>EOze*|fda4$e?qd(C6 z-jDgtwhLUeh-&y?YrNdRh(rLnU*7BajDW~dqljN$%jRL&@d;xX{~aB;$fR$Nw%PSc7}0`}@QyFJcRZ ztp!(L`LJ~W2$|tIMJr&{*x($KO*O#skxonDxJouWvJ|2+_X)k^a#hEug?EvlQ;Va7>x3LA}5G@fqa6WMXOuP&9a|X5kPzw)7 z&yuc>AANVy5WEEG7+=UYw$p;ztxAT-DV>U{Dt_xePP0yQ-0GB5yi6Q@efe~GL9cc2 z(C+ns+;_yc0_cVZx{vU=riR4-{QLOHp_29I1UK0whPkg{PR_T0(+}>oyo>}z^teHqdC8tk0~LAtl#vXcNsz)T|Q7B2eXxfa!&0ll=0Ef z1^qv)o8vfcnARDjH(U1#FtDQ2 zvY2bf`ji&R8Kx3jR9TQuC;l+3I0xHvVJ^UxsAE06&8C)TqA=*8PN3tuQZm8<=!Fp+ zd#R+Cg7P{>=%^SFZ_AI@c+ztWqD4~CjL*%OALq0RLN?_=uBrd^qtFSf4?Mrm8#V8g4^Ja;EKA?*U(+X)KlPIN~vZx1#eiONPJQ^iN`~1Ua`Q2DtO0OZoFM*+9 z#SpsZVHwUyEe#SX)q&3xp&!I}@D9251&Luh_+hwea5F_7dLhm83}q2Bco^O?GT}yb z`MuO*453DPN-YUg>hWMih$u`Q9jT9jo0VK6Pgj1kC%2Q5I{_P5C0LIPevd6Fyg0iU z4(UGTMHTDUycg#+$vQ3COgatDXFe*8_vkYXTpu%jDjRp9QKXx7okRUDh#WKGnqNEx z3Sg=iwRUfF;lc}Janecg-LFX20*EJrLBY<2pI0*Z;eCl0IW1s3_X-;|XuvX& zqqS%)WY&2EaS)z;Sd^MqE=2I4GLaI$tha=qUZ5pARF?xU&?kR}`H0M)ABhS9*IJAa zfofRgHZfD2A$7U8FtC(@U8x^mJc8tMF=fR03$aILR8z4iZ=Y1JnxV23!cIPR8^|Mb zl?c7D7CG0IPFrCs%f%d9NOMKXvWDPqk8FYlxe7W(?n%57%>9?@wuwbxUS|Yi<0o`R zB`IKihZ>fNgK#H1Mjaw0ixu|CjqKEuJ@hA*;3G9-$jTQ{Ln`}^SV(lfhzMi%1yCI1 z0d*GStr+={Tr+Woi#OAFJwQ;l8r6D;E_x8@OuxvUf&3cZe0F2(LSW>ocbCAIQhNVa zthncgx!=FDL~b90RAM$>3DP#6^{jsV+e`ajwj#h#{||}rAA-sI{=n)#m(K4;DWV72 zm%fZsDD}l>qQe_0mQ=9)P_k(6S*kJmNlE#L`ymH31u5d94P7!jzYmTh&} z*Zy$bkIcX6%^KqRQdHe{S^lbqrElfu5C zEi4wiODqe|n4(_Gh&=@~*k>u8+b|O?O=VnvMP1EdcqY=4JUA#IYu)fa!q8={}3i)>94hiX3`R!KR zRWHaVEG;Id2KaC**Xf0s!mV_|-$(sJVr3n=LTN>j=Nl9GtA3WK5Uofs`+zn!d>J<9 zr17mAq)ob@U)MdCazD{^xi8|gcFqG#8Fp)wJFl%Wmpa4yi#ews=$lJRqKE!hR_`p4 zm`EbaXI!}t^*1)w{*f6-l40IQsiH2N;RFe0KCS zw}aXWzdEvEq40-ydCnv>RR3|xTK~?(!pZ^~URL)rZCf|e!pVIG7|o!kJi|& z7K0lY!{?X3Yc@*LpN_{6FLVN2>9Uy$RBEUe0#~uf9E0h{hoeDN;hHA@U1VBJR(EZd zy34Rd9t|~5GPYwfuOTkzQ zK1owRcS-RK79n>$pKQYI$MEOJ+YduPSM1EP$M1E;!1Yp%>6l6IUOI4HJe?Cm1uKLc z3&n>Tr*hlmwKDTq3JZw~9W0O3a>kQ7MUN8D!)NFG!0=Hw)xIHNvh8iD2KeDql(v#7 zwW!z|`wYYT6_Y@Sq?*afb!?U+r_1D}$q%RB!m1am2#QRQbqFn#7;<7A5*gd0$HXD6 z(F7e)GZ|&+VJ|UK(_X<9jZvmL2`rSHAEe0a5WJTiqsoSylxgNC1lv4(Ze#?sZ)(~J z;Ta$>G@`pp4>_m-mS}Z9FUAJ51_{IW3W|JKjt)k_zOaxp2(kNOV2~x8m0Bb6k~*MI zkWRP-$Nd&2iU_}sQf?CyHng^XOOfgjcEB_%mLDBN6N;M*ML%#EpfYbI z*^&&LURfbA%MP{r#{j6WanPUGW_SqA-&wtI)Z3YBqqTpHAC5;BsxnU)Gy)6z@M8TE zkk3D?jXB#=?bAkCF2b-tp~j(fjCqoH8}Y855+|(O{D3g@OwkYo4$3Qcm860@P@zN} zy}_0Lk#GjxKk2YUQIg0-;9N*)C%nLM>6qF4`B(bq;^hGxx8gT2-}VD;MRqcvuqcoS zPpn>NeGa4%gj~skHav?WQW&=4?+@Unt1b@0Xw91enOdM)1PhD>J#2cjh?#9O_fsEL zda^wU3Qe9H;w6|q8^}{`O(|svNZmxr$WfD)UYP^z2j#N(n(*1dfbwkCbQ9?kU}O7Z zup%!EVucst^wD2I@BX!cG}EB`z>Mv=-nLvFi2-PQY10aO(6121;#Vv)vU1X^9EBe@ zmY(`LMV>bOyH;QSo}V=2UM3X$XU}gJ-a+YpJY#*@D(ZeX!N&e|Fi7+Q#Be;d`U_m7 zP4PV%vGV?Vsp&Z0su8xb|DpX9;SYe(Gq8pWouqwYwgTd`+>vmKG*H_w+SI7MfFeQo z5`YZ=rr<49U;rJf^(ve0=hCaT&}Cbr7T{{$lT3Vu<$P!&Mxdg6{2;rs+vvqrAyGcGS& z%cln1cvIE*;K^)))>h4|?3x-!(Cc@mi<3#8@(*7foXhUU3)A9!ydN&H^`9q;hPxkU zSFO)wqKBnr=s%}nVf}2mMqGbUsAA{yx*8cd10HNRHu*)8fbiPm!h^&=)5M-^ccg5d zC|#+#VKILfxI^vH5x`Eb>b$wMXmNdgTSvX%mlJj9 zXCwqCB_c-G%MW%FUgrJbb@9Dr$GI;sL!rwqWmW->FDt!jA1ba-jiG=~zPERwkZ({x z%!W@&C>USo>(3Y#d#1&x*J(ICs*`%knBo`W6(L8*+On}eEgAZoxXP!^?++gfVAL8g?;6J-`sk4z6SjCx@pLgoFsGCZl3K!8G!5 zgnRB82-$N_%93YBdNl)QNvg((!BpD7nG%OayfU|el-bWW1Dj3gJ)%J+#>xc{rYJ4; z?Sfs!@2X7gET!Z>rrJ{%`K)Mwe*_V++pFmw2kG0PDe#Jwv z6~^tJjsS^(VXV+QSZ);wKv6?;ivJ}`?!m$A(!WRNB<6k6D$wAqNUlZ?(TmaE;uJ56 z#v4~o2om8S#S7D|Gq;Q+ryRsX#;-W6li1AG$O;=tzbTnoU1KaX-I*oH3JuULjJnDb zst}z|q;o8=wMY|6uB_jrlq6J0KB@W6g@Y=lZEAluba zjt_z61c$+gNlg-dp5iD5NPFWDpr8-Wl8&_O74#+-fW{J7r{sv>vIrod7ikTKy=m9a zFDM}J`&BPF$|`J;lBJ7@OWc@EeIw{gEG{AKA2VIM9Y!FEex}>UP3Y*Sel7(sBi)vK zk~0GDu}a+zbE6p!OQ0k{*pf)#kKHB_IB<((N$tY|o6@{L5lv2oVu@ey;;Y)$HDoIt z6_ERo<5;5!8Q9NJ@di$!Ip!u52j}??#P%sg*yK7R&GHz0j-usKD#?l%HPYy%FM*8pZvs2fUI=19p(j#PJ& zxc>==kn>uZc@wb^nTDVe*?Nu=isvnFav%qleLd=#%R6CxzdkGHUI!ElmEzWrOuOz~ zu{Z6bY&?;&9AGcmA`>f%&M9?9fhaQQ%1U5^ z?kuL_q1j49+t4R;+cY&oNB!Z3Yjs1XKQ-$IKm`6ixlG>6%P&A{jYrX=;$gMMDLj3f z-a>If^7IrJCk!;%|9NEqqx|yHKamdSDS*BG1>k#Mgt|soF};g4=bIz)4<%mxwHJOI3FZZP%Skx%(^>Wrnb6g}xsN93b z2NCj0CF>ANQA2|H{HZ^=zksAG`0+_IrNc{b2LGd!y5MJ(zPJ8n`7LRO>SNe+{0xOE z(g#QJF$MVdq2z(Ot!)TE%x_Fj11qoUY%G{;Xjy{Nhe5qmO;9P?vD)b;^Mbd`=MM@M zAFfljc{srBpn6up00!nQ{1-8w%55w3xB)_yZkM6Ztn_pvW~?C?)dX9teFH@ zfeSBi^k`+WYb!J~=$+4tiE|MYU%ZqU7y2W-)J|lbbDgtE-MGpwi9zVrD|xa_ULm@_ zVd0bBMmouHnF`iBJ~t0&zqeNV@;WR08_jE56}3naVk~~} zGK&DZvgRj)EbVN5!XjI{rc(uY1QhH7)>fZFntjuAA)U45AIBqyBW~wmfpfY*-g;~8 z*YAImuFDahmED}p464ZT(wk{s4g}MW+q%kT?)CKbPYy|1JydRC;nI_93!H7bPqcjO zLQ6sm%L1)F&!VT9lPeY2ZqY+NkLt_zfX}6dYmun@OQ?;DvW?2?$l&7}Y)mbHj_q%! zT5-xDfZ|YRd>@y~^v{iKsViAu zJLA`e0dUHQbc z$s8k&w5wRFsyjv(mFf&fz9F0VQDJ>xHWHJDsqV5)vQDz}`==(}Vr4Cu*fHokqnWK1 z9Vn%E20FW)55I*-eNGunvOtpp69)DsCCN`bj8Xw2o@G~gviThRznQ3Xoty{H} zms=>%VXO-eR^v^~7^12?)P+HXNg4(+rpZBVca$bt?O*|{haU0zDle_vbm$NTCS~B4 z;sB^JwL(au8*Q%X$VjZzF-W)8Mo4@>(|%PsQ2}+dEB&);8|(*avzP{gPjNe zDW-{$u8=eVT|q|}(NHwD$|6EkIEH#{bARPHhT!r<{dLAFu_@#Ib<{9F#6b?liZR8Q zmrUjIaL+@LU zziqevgO<16_prFf7MiN=Q_pTE6N(=H+p+P>DH@@F<}@Y#mwlJM?_Q5IRJx}WSOj;D zN4IOfY%sdh*8+V?E|(1KvQ4|ov;6L;)GYNomOIyCjKYg zw6)3WjdN>0kiZ;~QfYkO=`Of4M=w9+-pk$cw_{GT6(qA#_7 z3~IDfP6I7cSNrM^8GtA8_WceI$!>YPDM}MZNH%8m!{!bx$p6v@gPs<=%&|C-WmG>{ z5Eyhge70hK`)x{DapJqs8hyFH$@e;=r{*AFoUqYi5AWU&tF7(Of8vy?AX``zd7XRs z3gaf?&J2IgEklHXbs^7XY!_2w-xSMygQ-$~ZqMvc`4O0Oq>p!f`NnceVf440i)CHp z7k3>~69wPWBF~3wX2bIW0gb1HxzK~B?Zl0>^wV`x!6Lr<{)svvgIPz%*8}X4*e1+Z z*SE9jS4yd7EY|Bd(GUIF37$l+|M)%y90EHM8;*E$D{Ziw7hL$AB;ig! zen4liTw>r2=`jVWC(6(+p|tpzi4KCy>s=x@%sIzfOMIjo+6@BEJzpTbA7s~|2pbg6 z9O|*mtOn*@_te9^ zBCz#4FQT_fWbzoAW2B>1NC1(xhoR04e~Ln@!D2*Cv-!JNEA>l%Oziq!o&6k)^)xsU*OSh+TxXRi` zX+=R$lGmHmF)Zf6jrS<{vQLO~#k;}H!q90UbNS6OG`E)%F%zo3h8?V2>S`4ZxfGV?h=j_8YD7v7k{Z8i)Zf`q| zDn*Ipc&`>*%zp=7wj>HN_$H)XQm83|YX^DB{Mk#qUoec1PpDDB)Y}_EEpNcv@aK)y zk>(f)77F-knDGT1u@udKDy`WDV@7DR5f`n`as!YI->SZ!paP2?O(mKqy1hua&_QB` zmlG_5V*={|F`X4YV!g_JpMBBQuRrHZD@^Xk?LJ}?K_@{9G3gZ%r3{2>8RDpUZ1d`& zz^{Y!%fn~QN-chsmu$6qy-9-`mJR&e7=5DUY{JSOgg^k#WaT@_w`-H>5>t{;yZ0t_ zvd`F-@CCuYQlZxaKP^bI+@wxE+1yrToP0|HFT&r`j|rYV6JbjFZ~@o=M`%@QQRz=) z&?yZ<)+_jz04?{guB&tcb9!(5jO#lw$3xsNkjfC#wnsdM_)cZF{1_3r!m z-zomf$bYu4(WU;c$|?`P5RJdASSgFl3b1hrX+7y9X}fFVe?l*!sWM(DWBrQt)95$5 z_t6(a8L!X$C?CeJwRyOY?_tc@Gd&t8A*C!rbs_#C?BRU>s~-l9y*v*Hs%A;EwX6}K zH^S1dyHpPd;|2?Z1I}7N-?_LSKg3T`g-@%eF9+F^2xzD3MnEf0yr>P+c|*{VtQ(fA zF4RyDF4O~(lqBDpxEr@#(m_8N0R(j?aEmoHG5!keKCDz+G3i1l$6~5b83@q})4BPd3g@Ug7Sx&*GcK`cILkXRC zB$re?B05hlKV0r4pvxzyDuL2ZUlzt}&8zCPuN(@$KtSEf2iHab$l%?mQ}v=;MJ5zK zO}t!{cWNuL4RIq$BV~KaH{A=@j?iJMNBnmBYW>qWhM9@4*r%>;r`q}-nucIoL-ekm zN9mHuALY*`{^vJy5|B42;gcOFJ$t7qe^6523}>UT_Gd&MwcVWWZTL1t>btJYW= zu=ut4`I){9D40G5+(%man){iK-nz0ojD9)A2Oz{7JgqL1)m`Ip%2n0gLdrHd6eUQl z$NU1(-G4)@&Zk(vWV2sQ{wDWbo2vFbx*4bFetzhRbNaX>BRw2l^mp{StaC?!%D1`L zNWP+rq78I4F?8oSUrL4|P>4p0`4z8RLF(82;4xUdVNlDOad2RuRsYKL0Jf>wKd;Mw zu9vO=pK+l+BGHS9B?NXU56)LRB4{})E{%nhf&zh5>RUcu!4djhX;$Qll59TW&h=z_ zf(W2{2u*&m@y-=<_tCU!IyCsB4%e3ytZ(twwNgCA;GOzrfd$Q-z>rO-7W%5TGXnrj zW8vYo!F{bwOcs)s>#ff|QI7y_UR3Xp8QVYX-RBDM;Q&OVH|-hl&+alKAA=YypUn=< z@-II;W_|9ZqrNP+#2plygD`!|ECc`eto7kMpr{Jmv+A@3c45jcKdZ&mRab<`4m(rE z2;xRmzuj@hLs&~%Y!jnAWoRL>w@%mR*v}4JNXve!c2-s1XNwc#K?)!ib3>|q>%Mad z>n)(rgjCAQtGP4>0&E&NrIT>n1vdkaF%%4$d_=Nh2lFIRpV|fdL|=gmj1WNNJH~Al*3_9RkuwxAf>5 zxp&{+`=0l|{ju}xJp0_|e(vYGufTtL&!0@h;7h!veBJ&OXrAo28LCES8DTUhs}}w~yLXcg@6@29Vsl_ug3r?qSZ1ProeF`L(d0TEYN=$htU8fGufT*Ov z;4KiLm}VF$*IZ0wt$S7IK%@tP6*cRN%3;~2L^0&R(BgINwZR^aX!F8v_|{1^NSXCs zoNN#Yb|p;{^f?jsfUJ4fMUJx=-b|6s`f&za-8iRV7(g62+BSy3E_1qM#7x zSMmHC?-H|$Uyd34%v#|NCebY&lOqajMNug9W0eSrql4NYUR^Q1tLM^7YR7@S3ExaK z)hx#_KTpr1+gipPY8^ZqK5N`_^Wwk3jmFdQwD|q|5qJ=*hBeH% z3eYn)yY3e`wD4Tz=!+)x?>bOIUbS~EyKJ*AGwts%&061uh{XRnpV~=l>UvN|>RYmZ z#Uy$*dFlFQn~LW3@jim-E)=qKd&Rok_Q}k>Pxe?_#kr;lKAyF$1>LgAbEXKc!S?AH zFJ@1Vrw0GVMci7&kF_eb;}~DFHeli2%xtxqL^74%8pm2tQY-uV--#KH5TotlINA60 z^!$NG>^;%Lna#9U&SZ8!-n6%kVX*-#MYQ7EY`m;o!Oq#LwGnM*&VCVZP%wwrs~C1j zloZx>Do2UnQ^ig(ir#Q`YIVZgxz4W(4mIWu8qz9rcsx}443+lNlq)m->mk^Nj08HN zqmv!)IDDr)#T^sHxSz%4H*unR%*z%g_3`6(LiK8>by93h&%yqyb$aN>dhdEy@@=JIIhKE%wmwW*{*ycW&c zwv+qUI@9}ZCFCX)lE)-Ya{1PHQP|(w!_%vNhGwT9eI~oLGC5b!347VjVe~Dhe7t56 z{L|>|(YA=K9X&#VBZh=mUDwBrTIW)|3`KA9S{&(ekl8Uvs!{47?E5Rz5d>r`e{%38 z^RoYn^zLMh!2ipRMcWjnS$o&CS0^%jIf$z^*e|iCKC*f0vyU>@wZ?skUZf@P5OMXp~$VgePS`08fRb;=VF(&dYYa5}e{-$@!u3wf3Bvwq* zGIG?+QMM7rRZd+%6)C+>-6>C$ZoSrnEczvSIR6?*s#Y}Dd z>B)Q|wV=TIW{pG8ZfEqZDrY)NcxJwj>bk z!#KG3l6Y%Td?G{*F2cj@H9PGpU`4`LjGs@ct$&cTt2Bab)bUoac!?NbhyLf8sehDB z9=K@`=f_vYiUsCOK!_aWcSQqurSg0A<9|%V8P2cpKU<&1D*$gflf%QPk#UKv#`Upl z9rZLFc%9GKjW;abLv7`s{b<>#aoI@w-H{wlno&6)|5+aI6UFfvfQW#dMqyc20}iZ2 znV$ys$&kitzRCFhhBcuRB-5+yk*$_w5s|rwr{E~K!OEtIE-Y^u4A<#zdXF`RniVDr z-F6bR9Fh^})R>5JQKmOGtO_2e zxYeWDw@?sPu<;-&SGq_WQe2r>#6J|6`k%yu(|#BJi+iJeOc9~TIU2<-NhI?4?as;O zO1ukIqGloz8(}k&&uT6w>ZX8=Ohy0K`M!o?UL*ENnY`!nmb{Mqc-w^h@y}XK9G9?J zFyUi`hgkhH1NCyRKYF`j3CnUopILft@0BC4HrOrG#JnC05(uf|j6CkCza9FXQ5y3F{pHRs+g=YL8_()K%Hn?Tn;jNSxa z6|-A_hHX8~1|=fY)DDfn&8-IB5ZmLCZ6E0Z5<| zmKisOT#cEH#wO46IFx*t=AV#yjYR7DK(PT8qVqBvdsK5k>Hy6%dBh2W6QAM0r1A=Y zzwWKnDx7)YJIL4s@$Q)>HMVm#0keAqcf#e&b(B#H*qp8vwdp6GAVTNC`6#*T_4gLI z-LXP(aNQUkFOt^{LhnSSNeI*FoYu*3(+op;6Yv{BaWm^tRG5z%t6cbYR-Rg-d=x^= z@35gnsXx0SjhcxD!pmBK_Nxgl^}h=ShoyF0RODttXqeg!Ddk69mXt?tZf?vXTrwN0 zrHAbK2MqtpsY#Aw{CDs1u*B<?i@E+}!ZFN7^DTB8zX`C;sdRUZjQn*lKcng1C4+;@!4d1?UBkHC|5|PzNok0kR2`FHtB#S@4NpoVhL5Iv1HxPmuT?_(W$&ZO9u1 zuDN$&c?c#^Cu{BT>P0t+EovQXy95-_ecZ|@bbvt!O&^yg4RHWDyAW;DBXlBA;ospBa2~OYEK&cUxQ;R$nbi_EUZ7cL#i{MQfqGu?@hNyMUUTbCO6FJc zB!8MvCGFYM@5IR(O!_qj_B{V zA{NM8$SXwGr-5NDaT7(EC{#R6Q$1l&CcB9&R$KCp?ag@`SU9V4VjeUW#n2@5Rw!9B zt{LY8d<~e!&c;8bHZ}Hz@_S2*N7JuqPSF?Up?zT?oh9;P1=fvUgUt&ar!`b&Ey>vw zsLqbHj;e9j?^jY}Q(P94iE*^yW7w#%99Ae$5CINm3D>+pz1}l+em%w$Br<^jg6MUvMt3UnnDP=~85MmM^u)_;|I&Z|qEo_|~9= zWc+}VI4j=et6K-p3uokhr|JFhX%;4y_co%!>qHQFG23?WK-+)wkm;)BP;{E<)^GLF z#)93Uf|xa+`sfH@Y8^61^|PEKMxmC0Gr=J(TitIXG;) zpEJGvtKGIU(zfbBLCBGa5>(kBec`C&+c6~sx z!U^ztCua^~wR!jy>AyUpSo#kBUnSwbqr-RB35ZUSy-DTwA&4-SkNSUAw6Uh{ULIGK z&u|djs`r$3gJwqy5Emq=?@JcO6I1m4v zDBAsv_s(jbh=clwNyhC@O@!=j+vMsZ(M~c{{xo`f4t277a6g1cEomj$OU2+z(GC zGwRNBejgWMEQ_v!Gfb|q^zZ^?+Vtz_GUHug{BkX)(8$nlPKWRn1kW-Lz9#}GULLHV z1~ofQ%b(9O)&F49=Y`DrG7G2PvtUfs`rWwtO zV^?*$g~n796YlnZz%%GS(RDByo>F@z)B)p%tKYmvH}|Hk_q=cH4m<(0 z5FGZVnWj+~cuq7#NO(8&`%|jUcnKKDCz1A43zx1{7{S9IbGr(! zA##Y!X9idJg0{u^}I5N+$)Yu@wtj%h={7bX0ZD7!+4hhp*FWvawfB z%JB2&NEeU+n%|v;$LoS9`xlvxj?CjzY7OO-%m@TGIX7v|fUlh>N53QA20d{QiP;vm zm37M1G>HVU8Y=)=wvVnKJQ#Ii7*}i0EV(Z7j*B6N5!N?-ptFqRcmW-bBLqS|z9tL$ zra5OygahphepVGJ@a1DpfKEnHd-yTN&Xx=m|@d(ElNHAW47n}oVO)ElV3Tk_~j9@JW#Isx5fqp*lJ$zc#sm8;q9O~ z@UPHZFWWtk6#*(v4Cb#Wez5m=nN_)0_kqM?eWxPFm}|0;sKmx-z-Jsa5Gu2Scw#(&`7bQozK8;>N!T+y?Mi}u4!uFN^8$d9 zgdumEO3Fx^iwnpR>e)E1A8iV*MAIRhc{9ul6j#97-Vd{sy**%k{cJ9naVXWodu*JO za6L2v9($|B7sAAg-}lW|S#Wedt;zW`Eny-H^QF&k-qdfN>3Tp3`{A}|`M$~F>@7Bn z<~$4IyzFzU;lB<+HewrK*7=i**xUU+AG!PBwzG#2|6?N!|LbMnYv=pb2#x!aL-Zu( zuGN17!Q<15wP6!m{(3QZzp=n{BbA9xFg<!iN=*;&sl64dO5igWnN3D>JY0v|zQrAzXxH&-Enx%4jm*DoOR{JkJvo11p=td6rI zWD4$$WJ)L6?(0b>#A^h;vOx`hKFiI6FOZqwG%!{R?iHu}VnN{_8NXP28ppS(;|k4K z^~O`tAW$%t{P4e%M;#9-N6ZtpQ@7W0z5Zq)jXigF5I|z4ce)X%)@0iB75 z+9_IBe}^t=B8J^?6uR?Vea5t>bRNOx5jVWX24ccBt~Q<+)Fi=eX|lS9%#XDQ705?> z%ggKQ`#<}OeX+&}K@qITJ~ltz;&BtJTvqo}YY(0f+&uI%Pb?UqE0Oy8!&acK z$vurVrIk$!kS|_+Ie&CN{J1!fX$cP4fxfR}&x>tIfag3)?D%rIG8CPZQeI|iw1lYR zLkY~x(!)}8FGl|CXJ*W2&57#IHKvad69Oc@6tLYmZ;=-GeccLi$h?l=HAUP$9=s)X zm_zF^wOu;+b&X%%rywu~4Oqj#irKpcrUviL<+8FTOkkDI#~Kmz|ob@g4C`Ku_)lH3-t(mc+KYbd*42UK-d$X3`k&m%R;X+dyoSWlGxFymk6$TRDkyw`Jh+% z?DdUub`%h|-Q+f2zp@t$)v;2Y@g!Fr{~oXRUuWor$kYOYU|m(nRmEx=t0DR)(15s# zQ~yk@zM%2E?ca~L;wN}zZkljmzTcNFaai;3651&gT%6|lN?P=V%5|tOvV^%B@mBjaVxmI%*t*lyA{2=a_ z|6&4ErXrF4`dlV>qEKUx6o!VrdatOx0;Ij=Cnu7g>4(^=0@N}HRJCzQ zr6W>Zzy&jF+QtRFsPiYzp7=Oj35+5KK<&2=Nj}}QtJO&g=uEm1a+Az~@t~h+LRu+V z)UD(ge1Bc3$LkPD=)NM1GFg_d!E?MtJNY>N@+P5|fKLK0Amf{tI0$ z0pBBt3`-=luqpv_h)z(I+m4D5EintM$Z)b}@s*Qa0eRR`iIzJk;Q9Xw;~JDm;zIXS zVWl&pwO^5Zm!8fg1OXJH?wv5?;a8|6mq_RC2&^PwuhP>AdMpVA1j^{P4P)7j3ZYhuL2CydA-GQ6~5^ zp^g1l2AS?1q}EN1u7eJnhL)tjLxa=M<)2dfC0W;{ZI`nCIYP@)Ck;%P2d2j}?)Tf; z*5>2(<}eM{G`gB;5xysfe523njE$#Cez!wi<_k*-7$1fR?t0F5aFPIsaVoVfaV!pl zM@7uc2zgW#y}OBj=+2LOwX^Yzy@aLE6}+?tyb6|7l@(>1kW!>#Jnxq=Dj z=cV=06dUG3RAfZ`S+sk+q^=P;2+Zx}lA$!6a(v6=7qB89JL0?J3ewCq&X#AY?0 z{<{ikXggdO*gcYXp*6|F*Gzr97DI)QG&C}j^t<15PN8vdc-C^$1k)?DAKZOjCe2!3 z@ak9L2q%extE?-w>?-~^wC$(aX=E6+xH)?{odkBk9rynJiQaFmp(+0bEal0O6n0%y z@*9h^D6FLV??0d=0mNCCz%aj{_%kBQ^ z*&F_w(Xsj1%%9#j307Mv(_vDBtpcvsf3Is&l4BQVnw#+4E=3eL3j5)Fx0Cwq=Vgl< zry7gsrRCN;);9agLchVL3Xet9rGMvUPhYtyqW*YWCGBANY>xp*gQ9kx2-wgq~E={}??LA~87M7n3z9%~Rn7@<`p({kwcT z)I(GF*Kaq+!ohECa^dfN(q2Qui!6GkTP^F~)?5%qyF{<=+j(xF%9T+#U;+M)!6T>i ztLFxsPxp_>N4I~0u5~pz@CrB3FB%nc@$&OPSjuyIFcDrtd7;iOu<1x-L-sQ6uXOFI zK~%x_0*F#zMZ)fPg+MTBMnE^Eh~L{+PQMFZCW$11%AIH~svUa9gRf=_BjNi|<6a z#|$7$#E+7EP417Tgx&-iJnlzFZmE&S!-IARkAX3`j}@)R^IiEyghQiE|&r8i zo%Bk^)^3m}FE-Q|x3`Cb6jG2B!S+V{g)B&a8yL@O`ry0?j*=(iF&Bs&bqZ|gV4<(0 z8v+$-iz`l9@0Q6_(~qf-_0n;M_y2ei^5I8CR^m0Yy4p(m8q_w4=J+$;3(Y?bZcq1$ z!7XZ!0#f-e`bi| z*yr-jj@Z2!xW1R&7b>v{jOcV$!YU(KVn)PSDwP1-9|1reeSVeWXxtw}xV^ZKLOIMD z3i+avK;Z#UwBWcC>;deZBra;ds6au{5tkB&ofguaf{ln(WaZz`TFQKp2VUDtFA}|e z5Nd*NXnXdQ+;i-!d=wA4f?7vY<$I*4)kx+a9y*_miTTFPP76q&o*sa8>(AV&5+!Yw^=1Disghe zz>9memxJl{zhKc2=H#d#?6+nmo-;)IIAzPrX&6R-d!x*O&UcpE19B6l>S#ymPQy;VzAiTJUXVDoH4&^$WX&*od zMV{KG;BFR#=nykL#sPTw4ssS?{k!@4+|I7!c<_5;*Wl8D(<1R9Q?`|>TB&ENyOS9l z>O7cB%<{ze7{Z)yUmN4YuPh?;#Foe3x~!O+$Tg zE5UgkjM8S4r1ra{uh|L{~(6@A#C3bL!QL{52EPu-y4%U*3r0!J4l=&Fmn=b z*6p%FFs%MJ{HCeCMfc8_qklC1hgTe?&8088-$fQ{8rKc#>+Pk3aNaQzBeu+N<5l$yu9#%o>$VyUI-;m({&a~D+xG;wI8uT{^Htv-Pm1(>RPyjC zY@LIzNT^(>hd-lR}izo_Ej+yv;=u<}S|HU_4P*9?+wgttGY;I}1-Q;aLN~$nIBQakw zR{n?4{zu%@$UQy#*7MWC@()XMA7&-5EsPv)a--evrZ)Q8yshr9FNTk%-#IhUZ@(uk zT%$_qyj>gU-K=a=cj&_|U=sFDCnwLj!+7vrmkmw~#XQhG5C`uw`16zTBM!IDi=ny3 zs=(@!a*JDtKj=M(78~_ws?7$9YQ2-^#Gi9fohO*E2v>y6Mlch?ek*&{K{}onk!I3? zz&Pp6;O39sO*^~j)Jxnz;HWMBwc+!a{Bs!=)tI-$gM{FCV+%750Qidf&o45?5^Tqk z=4E$lilXA|!Dh5^3*ZODr&t3F-?vu<+NQmu^%HJSJQAR~IH-^gTmNuv!c$*%0s6-A z(AVv;;!L1{Ir9f?Hz?{$0La1##gyYRJi6;jMiq%}_iz?Tnl#AK$BNVVDou^Ux0CcXmOdkDVsn&tHMW>R4UtD zEMsEuBt7`Yw0F?jJO@8OvSGn69cm4SL?9=lx9{KRU4gQrYsIh>SwRWCwVG6-!E&Lx z?T2vD0#u@I-vlSZB@XJdr@;!zCF66|sRQrkrV4C6%OnAT=c3k426@7fR8PT(P@#<; z_^#+~A$wtS)Ra06nHDFlhwnPK?9{4hYY2SXIaUkbmX(o!K!*ns9b%axlBXDgjYq;Q zZZ3~>ph6nUJ$}OC;YsN>!IB!&m)&YHlrcPAyU&-~QEp4M%E~KUiL!nd5CPT+qgs`? z)tr}K0~HNxx8uEs_5O%dEDTp9=W3B>NyVj{sHdm&?Ru)uX<$HXI`C2@YM9dzR^)j|LMj$ML8g;`BBOI>+NT^GmkE`JDGJ4ax-O=cZ6%43Y zX$&YAK}26;gYGlfg#w%`2)I2;zk>60v}5RG-PyRpc*p~^H6PUVyw?!d)3vA;y>)lL zA%;OtVI_9+1ei@m8q9V|+j@o1C6%eQFV4LMrjHVHYI@fsb@``H>X_KC-k)Vg#Ax{w zCT!%!X4%!3|6bDcx*UvrhB?NZ`et2=EUzPuvDh-do3@*2tS`YUzfBQ_t9p@P(>BT1 zgSKqvfBL__m&iPS`;ycT#5Zmr?}2rn$;!h%7(IJR9k4eC97RI_!OBkt|FO{nvroK@EK7PW!>!km6&e{Ls-B6Eo?bVyD-0= zt!SEE4MT-{+IZ=iH2FF24zHm)7cpyd-&cTaW6Tt3OD3~fh7zfUvk0;I234HU36Hxu z9n)xlN1DK<`j(xzg-+38bdZlJLD-xLxwr82XTAVq*OCzWt|hId{XR>L+R_>&k&6O?} zn@3OFoVyx=@32rvo5z>+h0dk(kku@5y}bOO&tJ+({rhG-K+Ki=Ek8m>Hs#VueaaSn z*R6Pbw<;R%V*NITWBqP7DlizZAExiw?a(2@dGk?Y2z=^FLWJ}}q=(^N7kUqRlpZ~vaoVjiFYJQ!JqvAxr`?Sv?r1zN&0TUr3=H`jj3g^sGJZW zDx*B8Z$Ozh&p!35&jvg|upP@{3Q5l;r^IPmr__lNPB#Dfvv-xBJZn-Urt_hrYE3vR zvVK8wE5U`Y#n!J@BH{m*A77AD)Z+@$9W71-;kK*&gFLGgC8eOu7QXH0Htt+~_avqP zRY1a^*n`Tbo9-|c$~?^%kZ|2p9^iImaLSa&1+G^Gj3p6x>&5mMbqK@IV+eb z)>^W-toebW%63@{g|wKfBMN!FpJhSL)bTV>GBEKO1-pBwEipXL!X=$VLhuTQl-NfZ zxu(4~G%Raw$%Qp1MQhbo!CNTYo>u9gu1>cMdM|R>Br1J3M4JbPLo9aK)`)v^!+@R= zX5b^sLbig8bj`T~r*we8Zn~}qeQ%+r+vAO-_hFXZkvB8RLG$LMwuyugop*C@Ddb{Y zOg8pC!b=@GtGO2@zwfNPB9{rK>PYzfO~2(NvYmu<^vWjX`LPJrdxujq*p3j^oKL7m z8!cBIF$0Si3q%D6Oa<~IM73_BEF)UMU@nCy7JSwg9U)HmgLR|TA91aVwUgEn`gBYz zLyvfi-tN;O&_K6qv(@ldxZ5~{8+GQj-S{SWuQTwzSf#wry_VbR=Pr&b$aO`?la@Ab zKhh1e8Fh9@2hMD&a>cB;C1`#GxCwDq1Nc}hfbvGUiHOD6hx&K?RD~2X6Ct~Cu}X_q z1hDLt5g(}Me#WH1nUlL8^YfQ znBdHbSV~xcN>~k-OM7vPyw4e4BC(0d#{h-!XK?1FNWL=@FKntNVH8+V`=B$XG-{yg zU*lgD)x)qZTn8O$G!H)eyeQ<10bVnpFLL(OjAyK7lAi|{uowu!x>P_DgO_$Wacmoz zh0_%D)6eNrf>;Ybnw0&`dgi(Q&6J3Wq9ld@g6Jxbez}nZ=ntwmQ}zKVRrQc8$@ zPmLRn6>X2}{Gqj*E>FJ6PMp`ApH18Gzan9l65!xVvM7CE*^s`*`PXuw(}bEjsaKUq zu~|o`{iw*nhx@|=oHc_bMM&@Zcpomd0_}%OU%Q<3Mi|*? z!_o)skOj-Fz`qTb8YUU7tu4YLZK6J>{!I?VgY?=pb_s1xR|nLjce4_yCX4Az>a&4A zO3t=>(yVyOU;8?3bVr|OwBB7c%{Db%g=I=%k~v0}W*CrwtVZ$MoP+)OH!yqS=BA_Z z5D6OlGW8Lja3do;8@cm|nwn~46{24B=7VH z?rLLdk&!oWbp!*S$Ud(9HzOzhItl`dl=8P&olL?8Vx_+(o5YLf*iw=^So1#EO^*zQ zv$>36kAp%Qug^&De6)YzBO6LoG7O&>m!8+aeo(ch+!;AnC<(W1<7xX-VP@>hXrQ%Y86t@QE+Dy+a2VkjT8zKK(cVKB2vf=%SYQ7&dpr^0aB<1Nt_ zYvV=CQ5PGxSEuV@{JS|t?-*&3t@!!Bs4O^TQ^q(;`*g$=@5lo)c+^dDsVZMM+lUX$ zz~fDloz{zGiBjXgF<&d1O;aLuB^-tym_kq?QzDSuo&g)7Vndclw>nVF6NT3H1h#M3 zM8H9Nm1Pfw2=XTe@~lyF`hj&pA!;oIInzuf>iD?wS>9wbJ>b%O;YwzHp|_#gl&|aA z^4=+K9EC8&N}4B}%lz9nGgFdQgDS3l`NS1Y(DAGMUP8`^#U@XQ~< z;C&mRln(plszfC5zp2Nfcn>?&~qT{WVB+242qgt&ac6_a4B z3t;T?Ja+9ePIVTW?#W-&@W8RzDIFtuvOkL$m=|b9Sk=KWZ~xUst|RsT4){soQ8ABD z{x-M@lHvW4c5wL3IP?EbIE2RRDK9?1!8&Zt&-a-SApy~tl4)7Enx%{=haa9U<89QZw7&($jfsBOh*t)H}A$qFeX*Pr-F=D9cj z?E?`fRf40^c zr*BActFI61vZ%uT)OIxfM`BO{CU>gmeo3mn zFypg2x9M%ta{RBU=g;pw8JoTlW6aLwGbw?(^Rq^@Z)rgz_ibVnPz*Pi!H_iCL|HDd?yZ_#ryYEm(y5CkuI#$=|j@d2q zKQ`SrMaOR>t;Qlnh3k0}IKNG@XxzpVyJsR=9IZ~F0}?Yd8^7PIO$740K8uVS`txUZ zeEhz{qOf534Be!pF_hUVzDMtnf~#ck44c$#j6cUn-&fxHUH$ul?_P}OTi>^ISVL`H zM*6LVNo&O0CQ(^%*o~rI1vAhDXH+`dD$aO!A-+h=(rQat#pGcAX6JaI3L?{LUY#u@ ze)7HH!|r}7ThPinoY{f>r>K)`Rby4E?I%(&jgyPYMw;R-7Jb?eX_ax(iFG@?y~UW`BYgcjMpmb!NMByo zo%#A}PJrb=ozh1ASc`(j=p5;)?4fPv?}%9bgUwQbnvSYJ=^tFKX^n)=$bT~#0sqj@YX7L$SR{*5rWTU_B*Uv3do~ zr7cM9U~T=;3&@6c+|v@l$lslscr1+GH=Hov)t-j7*J>=R0Rjj=3b$y1xdMPsl7{9d z1KUyp8KM&CNiGeAnF{D=?Oi}qH-}k#t#uu-%KUSZ&4Ox5qKdVW_hdZPspDl|k3Z=p z2FQxh%PaDY&;S%ZhD_tJFuTv%;Y!r6Z5x%4ho|BzVlQYQzDa8I}!K3Yy#ds6bB00G;A>0V5))l41W%bXxNGi zbXV=@Ds_6Dw}#UM47FgaRw^Tdub`hF}Ws0qIn#h*3)cfnLSI~_|Glc-^<+pNQ@m;O6{vQFTKSBboLS8XT8 zH2(n_e`%o09#R{Sr7JPa_P@j1<)ssXwlywWipga5d1-RL&IE?CxW zj|1kc!t+4GXG%Nkl5y+J<@|`>I8Ez*8|G)$J%^O%LIM{|Ryh(yd!efr&iH#x-oUaW z*~pY|;;_hej*& z*Q+3R3$KHoLCB%c{oDkNZszN@NmKX7>ovcC0=DsnwGakL-kYI}w4S65NR6EX_7cD8 z?M?>|3a~A+0#=efpHfcR@U0>Pdy}GF1-in?<|Z*vubIEwv5Unb$0j+X=h)vv)oW;XZZn`8WA{=e%fs>EZmG`@z8egy4Le;E>=ob?JtUbMaao7O<8 zm2j+;dP@D3Mgq^6h@1X~!_W3gLh2LtwQ2fB>h!l>+p1pX)xh-r?WEObp2f5#*Y%;c z+uNN(^vu5hbrnt9Mas*z4S%T_!$wI#pQ9Jo%rIY?zmu=TI1;Z`DQ3Ob`ZuyXQ41D@ zG?`+qc6+1#XWnS7Ux6eKl}LY6@@9Ik&JFyYM-(1@)+js3MAkJU>k!Q+ImSc4#>asJaf5S8Qzor&hc^+6Hs6w8snLF2C)lUS1u{*uaPvozNdUUzQAqrS| zM;#IeG&6>!udUSOi3lgS#wOa6{X+kmbRXT7mgo9_nfr|h5ykNlquXdmlBG(kBHTl*{h02ag^Cwk$ zCy7cG5l9#jKqovZdFI`p;m4syX3pg*M3ib=1r4s4s{iv|1TT=mA%!HX7)EB4TF#v_ zXLC`-$@+$s(g{xw7ojQb#>aYz%koKe8_!DEu($-90H#aK1NE3#+kODwRfFeAul;?c zKq@V*`qRwte6#pDNvsZ=#6f$HSy3c|S$L>54Xqjz3Dhgi@Q<Yy~m0;a3?(>PQ zoTN6OU0YZGNOiVUi*ShhbjutA`XfAlFMP|Lq&}H>Hi-$LWeX1 zU7${G+K;`GrYreBELjE4Jh|5CND})q{U#=>5v_nF(vkZ0ux4Q-r~NNekXw{(M_X@B z4_na@rs%)NhmE@qVfX8pt(*TrAhi{KyAzm$iMB(BmK(vg`;fMySoQlFk&L^JhNbIo z{(BK4*P*L=1!4YVXxP&EM64P}-7)daBqV3Qa*?)rQUu`EpP6B3rc)*S56f){kgj&5 zdDZuP?~Vum8VlyEhtk0}Wdo;ed(~MbL&*shY2Sjr5cMd}uy2@*d-LEcGG?a={2+pK z$O~yvmz)^Zu>l{o=Z-9}!xMP08NQ}Oxk(KxoW8UvvPGurT4cfN4~&WCB^r`nsV^+~ zt`5w>;onlqzhF@Z?8ECF@Ns@~@DI@^3?GO11?G*?wFSBR91dG9x69T=L`+)hz1GJ6 z6;hBog7ghPm`J*9j-Tvq&h2`D7LZ@PS10$&E;G_Hj2V$fH;*mfEA)x#hVkM*$pN@9 zyFMt;STCT<6DIWdS!KL1oUynx*DwPWzdVgOtXHfRny*14x zJph9%O244?y?4Gmdwo+jxO~nu;=haql{=Y??rGYbuG9UmmNfi!56)TpcLoP~F87yj zLpEwi9n}34uI!gz_?yO8{`hQE)w-pXYHBFq?|nRXyE#SQrTzF3wjv=N#we9S$Io)S zBc+mlpN?}_MY7&VxqIKNbpNS~-oL9$TFn~YfOtKI$$?69v3*b0b@xaJpYYS++?z9b zD7HW4Epk!QOKX+N3g8}jZNOLly%Ty~&$J6)q0dWrI16uQ5e4{=t3@+8f?9mQ zeYsI?Wz&t;;9YaG!tmZ<>whNgXiD*jeE9W?eqXF_V6Pqm_&He=EW5!j@$u)N`88Hx z(}|xg3SNj7>m(b)s)uNxn#xz={(tqw*03%)r+~yE zJuPZ4f?QElK~!~$kS+>8u|Xbu&Fta5+_gEoXV+$PCvU>(=~*SpK+&<6j)rQ5XX_oi zJlY}cDS9$QtQ9ECMORH+BE~Z9*d4A@$r;Ul6vP1yGRoDf0}4MK5*qF~1gUn*r-m>_ z;TuJ|d=Tegka$*r9Zoxy9YlzTX=*#<1>w*Tl?XK)AY2UEohX4=8GhKqWr|ZrOir%x^;vefv&&5H*C<`rQ2c;lcujr->IhgAkDA33 zb>56xnS(o^fTd7A5Po27dOHxOZxSw@*_vrY(Oo-2c1+&(RgLlS1yPQ2HxFGWI}3^= zJ(4R8ege`8*r^0%^0|(8nTvNuQ4MFnipGH4dTNT+mJYfEZ_{j z`iK^=WgxEuD{=h$xc-0+vPgMC?f2a*Bz$ZV?h{x7g1|*8VTmisn23-4Y@xnigkhmgEql``iE^G+OL3g&W6OISJ&GiNjm5p3BsV@}blYpi5uzUxqx#EkG40 z&cc(qb;0;9uT{H)qB>VW*S*#vR1p5Mto~^c6R>1bH@_}0704oLc>Yw9HnLZ%5|>&j zaP3`gpxfh+FHBoopEf^P9e_*ymo-|@=a`FKEC2O`tYaNg|Gy$F=y}YE5e6kCdI2&$ z86LU4-jX_$7`}^XyA||5;(m5N*>;sFb=&alJZa{P6tmy=A7ulx#3WT;U4LgR<+i5b zdk4!pk5=+uUPfPGc3^(@txBP+s`+Rv!DMKR-b|kUIS8CcQe#~JEYT@5E&vGFlF;(w zLunS8D7v{!|BQ(&vhv_7L$CwqqzL)kn+Pq2SBfBgmd7LU{4Lsj4MxoM?F9+7U0E_! zP;<5d$=FBrg!*-+x?|Gm#=+ZZ0^+ZL05mY79cpr;2oM&65F^LKjOK_ za0@6aTTJttf|z;FD^+uM`G2@Mf%8eVp||7h4t?x*jYl*jz1D`$S4YSXO^8yxcRVUZ zSt?$llKUVyQ)_u;?bw1b;nS-i-J<^70`&RwVQEIf>wdF0nRnNnHzedymb11XP5B7= zNPo&pLQ3lOTV$oj;I{}U*Gc~TVH=Rg^gaM0bG5|eu3Mk=M#Ot}_~2%kr^Um`&&joG zdVi6|-*HvKzo)0-4(r=`q{1zAOHbW)r-y1g*BCbSv2pVgy|6R#PDc=w&`YFu5iq56 zE-s!?RPN>|WD4A-OfY$XYHzTtIbesJjJxGq-g4|F^3-_5)ca;4C9|#B)63SSq*H07g|@qc(a>!>Kdc)wA^i&&gz&U4Op@BP^pxG+^LG&{iv<2Wi% zwakEU*Gxx*h@UWm(ePv+?qWn0CZ9Ee#}~U_%xXfIDuP_ydd}1j?7W-gUrA#Vb1Us_ zu$c7J@RDIJkYuw^05l~?AHG!kJm1`?e7#1Sln=Nf9w(_YBO!`bJ$$`%ZDz-Ew0K38 zngY10wd)4*42Tw0EUO;6m_>IX+^V58la+8Dv}dAb!I3!C%-2`7Ei(FC<8GSJlz0-i!wO!28e08Daf2UR2-Eybqev-sgb;%uzK1F6$h`=k)Qj{n`s#Aut`49CN z7r0XEBbZNj8L$W?=;prXbxL%Fk`uOd$yCFJ)H_?xLf_PFA_R&Zq7&(3c#ZJ3yY%U< zt6nkZl=Q80CTLo*jy%Ky0e5KJO(isLnWT69R^j*-cZ+dMhT+OBo4(~O7jp+W}$fr51W81HZ(P3TKEG5Q)0HmmLu1<{>D)j&qgO%ValNC&=(SO^yy&- zxRUf)eT2Cjt~PQYe+gf?v#7c3zjd7tMr6&7&n-wJh4lEHrjl-FQS%m2^f7WtVbQXr zAK%5{e?uDjO^kHJ0Ef-a)X#*ooY*mzxgJNCjy&amFQ$4?7vHbwo9-u1_7vkQ{Qh=` z-tU=Stsh@+yH5l@c+Uhe)Ia07yr5DB>z3pxI65)j9a;#Spn?QXLs4ReMQd$ zSTM^ASsDM^L)@FwXep6;#o0C$bUdU@da-9mpAAuH{Gg=0_kh7T9g#gJYOpMpp7rLkjzodo+m}1R+0bB9 zLINz?c1WKswXL^&yEyk!I5kb^%4w+hO!}U(ct6#{`%POvxcL^zi<2~C@3$lJoSX?M>SqO5JULAw}fiaZ8=N=iyv;9 z*mfJXhH-^XRbEzay*)(TZ2DwnP0;&S2XV+qJHR1}rSX76Av9+(r%#0qT zp0K)xGw_YH{Z8+)vgUj)$H##=aQSlj@|(uS6UzXPeFucs@lCubfGqm_FV)o3FH8X{UPCvd&zP}k^>35QF#mt8d&p09jjnO(+K+nuKw<;VMtI@67D9YtYOr)8L zUBFyWY$TsOzoKVpeY$^W9Uc&+VcJ`2_g_WjNJ5S2l8(hwpv=dlHP?k3e_kwMgD@L9 zQdI3`*c2tc)1*ZFXx*N)Dr;t(ZiCO36oh&TO5*^;6pyv_un7zn>%#Q|=%iRyJ~FPB zJIqFh>)LW(G_M0;LD6|C`dZZ!fA$xS@u+HjG7M`l0 zBVUQjaWZ3)0F_iS$s7_IZ?`rLF;!%p&=zBjsu|-eBM=d}?pnV@^rUXMSOd zs^UkY*=bnUh(?u4=IxPx#TO&0-Er}GXj+Q32>qyD%w9$7ssairTorF$mKID+l2B~N z44cu>GK*1<1}CH%$Q^EqSkqXLBNEi<$Ap`dG-6Ndl(evs3Tud$4iysMuO@W-?D0j-~fugS#S+!jRvwdR&jQ3CS1D@aWWw#Z*P6mtY1 zA1Hg18$jJx-8-)S9Up$K6?J}DyZO{jU%g)!#g8Ol$=Qy?d0;Bg|46lYJ*MI%H-^`8 zC8qhY>?k|Qb8uz1f2ENpVJ;}tnGo6w`YUA~+A8+hYLbl5?^du}FEQ|ZBn#rgOTidk z1`KyC`ERHY#**G` zt^6$`{)-BpIqplm-#^H_E&mqO(zutE{B~LCsU_m8aP9*m1UVorA}M|Rz$}L};E@>N z5Alcu)U^LESZ?6yIM!E2@!WL1ocMHKv4!F2ni?;sa_*mtjUR4*#;f^{Q{MexyjeK9 z#W;&zo&+5B-_)#V{7Lfq_+N7G%5SgbGGR0AC7dtVW9m2YPtDAhVmtfrnPJ=f>bZ z;M4}y8fxytb6{2~`o4en;Am;!fZe`<`cEu_+7zA`4Hr`-UCBkiwm`t0Vf?B7&YzndYB%k21Yy1yO;^Kw!h zb*Pa2;O^>Zzp=V^7CmZWBlIIRK)OXKS1b0FNb3FxT_$$FOMQ&YXAT~X;KgdloaOO*uy z>BrdAF(fvrH_xBv2d>APE1K_7Q-@J{S$g?Xu&|aWlwuDp>mWq`^Q}>9y~X@h;6u4! zx#Rmfyh_EU;iA5X)p~je8nL?V$~4&oJ^-LXNa%?mcNmAt5V2nV_?%kof!GG_?Z+x3 zcLfr^Yi#IOd$!f>9QK@?S@w{1mtVcH4eTd}9a`4?qdI>bYpMNOar1=nu<(>wX(dZ^vuL1^EG=g^&m)b;Ec;_w#KL&e z56l!#XR9pVOXa~M&3MqNQ6lTKEDzq1XIU7zvqP2aiwB^NSlA;`P^_4BqPKPTRECjG zAROFs`L}#3ODzi}7$Ih#)> W#t2(BzMOWMzGD1CT&2z8>rg(6ZW_| zl8+)2pR^qn;}|7Ji1nhq4S>l0vAQK4cDDWuj;%Sn+058jFjErl+ z4l04BOGyN~(o$?(JL43OZ;IQKDlD3(Y{Lp%;BEl-PJv_Wb`(WBA@CZ949$yJqASd$ zynR`y#U?SDd-(H98+JW&QxzQ}2?Wt>ZHvs(WE2~MDmtF7g5BK;bN3fc_n8exMK zr|T#899)VK4J1fslBp_fm^OUtHOnh}aN;WB_=#=xVJkRq?OWsz?#4ZX_DU$e<-oTF zi|TAKFQ-=UEQB!y76dyyl^8%ViI`S)e+W{Ow;X#c8tp?aBNx({TK+yXO)G+HaN*PN zK${Qh_Zo_}(~4&pn19Ax13HAuA0=+Qqs*qcXY(~LY})TvjBn3Yd`^S|Ml}8g@dO<0 z`1dzy+?Krf_n#+?EZ}NR@|^tW?~J6^)Kx;TuO@KVTE5(E>bQ_C8eLglSzz$2$%KMy3kBmV$yAH650gjH=vC^Vl1S`Ucc7?r^{W#BM*>s(<^ zbxLepXmZMSxD6$eB^{r?L>)-f!KqkeKmLLRNhnAx3M)v13|!1YJ8KwZswV|l=08<3 zM6AIz2Lk7oGP6vxmnFRSZuZG+D6?NToR9a;9W1pqHO&dph@-HE0Z*qh(&x91s!`jY z^C}{ZOjGamAB(h%uPz3n_U2Ns>KnbUIym>%wxU^Sz{PWIqjQEB0#YN78Hx8hl!y#b zz?Sf9?2SfNX4~ucEt2N-kfM>VON(NSE`LXUVEno9!wOJmR7xTRRl}(3yIbNtM~s_KSvJ(zyBlV{LX!+mF%+6c||n9^8Wg#qwZ@z z%(kqeQ@gk0-@6|pC{Bsa5uWd58m8g_m2Uojrau>#0`7_MR$$7q>O2!}SK&Ed34-DF!n5LU7=+rL?_D#L_uVqKGzpRKhdUh`y{Y~rI?mK=0*2m|` z-6Ti4UBl6#ct321BGWO(K2n?Feh}XMdR@9*V>s>+Z>fOdho*F7-*|U#9wKbg3I@O& z@Vf>wM@*UlLW;r!cUT6FMk0~MSQ)aLJ5fXrphm#)%k?k%QD%yPd#;?p3YRzG>AGX8Ty-;`U23i=VP12t*fea`dqL_5#3@iD5{=n))h7nF znhFDgd*Jc`jAnAvm972niLs1l(B1k;ax^EXQt`qVB0g{j9&3gJzE86OB7z^s1R3R`yPr&jjbqiMv`JWn?yyxuT3?X4Q&E^_!s|4H4ecL(A;!G8JBai+`B6nNg{#s} z5N<+Y!C~otb|EFzcWQ(*XjX~FL0fDZ>_Ga~fYxG_5}ZmMfe$3I&v_O_VTCt8DA7&T zJ$Uf(k?$fF)!n{hE+m?aksq-)qJ(_6s171+F)_0~5F+;EBzIxF5WctlNXsqQ%zYBC z0&l79Cb8)t>+AHTK|H=vUKO*VK*Qhy1DacFR;=bv>`iD7>zGis*5_u}eY>-oR>g4c z{k-2r5UR}RgK1@olc0mRdwh|sg~$_f4J3JVBJ3P$4#Nt6X7r3c9olwB z5|SIZwhetdLs1uBDqSh?46HOu8A+m*f9ST3vhR{Y1P{5M!nnWARGEPJ?f%qs>$S z@}`L0_VoTuAJL8tz*3NO^FQ#n*=7)b1>}=a7n%MMmCe^(!>|`aJ$mddH4S2zy_zED zuj$L8uI^_`JjTAeyXUckE5ux|BBc$#mnm_*O7nF^B(+KA!i_l^)z``>+7s>(t0GFc_n_)DkBxy zNm%d?BISwTFY7$*9%ip-@XT}j3Db$Qd6EkK2znx8zH=)`efVTQYpXL;b;U_X<9kmAzyN{r6tjR(sL=J ztr5g~I`IPAU*GwSumgA4S>(0k%W3;u=Q|UcH5#JQyHv{IQ*!tC(EKBlY-U3^5R-O!3T>Ee=l?Y9mi0|IMojmC=>gMo4G@6G)E@__nVz@84~L3|FTZH*QSC{ zNqg)a9VK5W<-6DNeu@@g1=0^H=j?#AKCm7W8sY!<$_H{>La3m07_5_l%5s9`DfbVT zu*JR=?)^lsY(@b~$gqy0|1mILquh|27n`_NW0_uY4b3<o4k?7mstD6(GpgW2+u2=IUF?(F{eP*H8HAdag7{NY7W*F^1yo7016 zn3#?A)$-Xmp!{dG2>wnHqqFPsf9vls!BV%eBvCsBy{lY3(SCVtM;b*Mez0vJz{(fihQ-k`_vhV4S z#S>Wfa3_87GrBRV!cPqp@&}p1j#{L|3!f@hFbaJPZ+>%3&F<~3rBScdxIZh5L$2a1 zDEk5fSm#l$?+1*nN9X6G9WDo#Bb_gIoB(a>-@`h3oS{wQM~<%L_V4)_dV#z4fN))u zN3!U9s7f~$l*f>{&k5HZYWP)y1fc2IBSq+q_{28F_53#a#OK|x4Dyt4`}DtNCC)n# zT9T_SuxQ^k1~q|qgC}uMhKDmXo5B0x#XbaV^#H<|TUjBoO(R2r3PJJO{h?;NE(LBR z1O&wMLCSm;K|>mR%+rOS^HehTclwX_9IcJo3T3p=&&mBJx$#ohpO^-2)uZJ~Lc7-b zHb*nne#h-X?|%D|#1=A`aP#7>?oX9ouz4XN@>rx=s);~@@ZZw0tca}I6N83Kbb{L! zTZG56;5-^a*DhGb++!Z>*#Ex;kgu;Oo4X zj}>0tq7wl<`{`uzNbsx7-97_s*Q?`{yfi^A%9c|T4rT}NbC$#+?6exxwprkP0Gao-9fnCi;^Vk)ceC4zB^amIlAQHp|+$^_tpA|?* zvNOOJ9#fzZ=eyEzX~DWAr|`N~DDX;kNhV>-jcHyY7+n%D*m~-nqz+Q@$!sc;95j%@ z{v`h`PFq)-#_=%?c+-KT6&1e;4cGd072cQ;Avqedmr0ZQqmRAy#u27I3GS`g#mZVah)g@cl-O23hiQ7majK386(YXo<;$5Or}9I3x{h`?S0@{5$FuR2-|h3Aid62R0B&VfHj30)L!;dr^Qfb- zQ=+E!&-9f^W37kFJNva#J0;iGL9yuE ztMY{d?E;X&J{v}icy+vDkASZvV{}z*DxQ%!-R^LkiutUiUaK$$(=~&ywSBZ-5dcV` zueG2zUuYY4^i!{%WQmHMT^8}I%)a(MInDfo68w^p*3D8;N&Mz$@FZ-N>9a~uWpTQr z&x_YrC+B*^K`-`j0}I?4`+cpT<~>#@ zbi+Rv=q}=K9iw=m9g7Wvu)lxPuz6U*8PDNTqaGd_@7mrN5dOq6%U%2ntNaQhvUjO` z{eyg?%>A3IUSg&BILs{c6_D#}ka1qCQp~by-rX6^-Wd>QfHG@(?^UcGm}=meV`}26 zcuxGSHfI?YBr{20TJgN4pic}&g)p~3^yEBGe9dZ=hvh!aCt-ALlvCj#O|ZcrD7D8* zBd7vSl?b^hFCQr{UQOSP7im4GKX4t=f1|p0nlUZA=YdddPvbVJF2QYrRwXO3`@}!C z;NP~bBj(f=kTx2ZWjo$~q2O_86j8D&V;B6qfkafc%syEckwxaMa47m5a8A0VC04%a zm6pdiKE&Q7Py*3>XO^m115?n>%n7!+tjUmo3<_jb>HKT#=hsNSim8rGMziub9@P;M zSSl}+4u6v`%(J5h0nsm{Eaj{4L=w|iW=7`Zh3&;lli!|{Y%eeGg+OBDf|XcJSl{a4 zS+ru_zpsim)dxHjh1b6vD3#X`zI%s#D}{i=h1g6+7&WK;z-t;XjlzuF^YZz>2iGZ?~Yv} zp58Gcai`L@>gh!8R`MTM)@c@$n_wV|4m_EbPoUWN(F&AuYl~b_%2ljpj<~-QC(&CkPTqp_grMeVW6rhr?B@j>v^-HU4tl9)WR+^0t-Xx9Xl; zghpQ*P-De_F`(UZ@&Kt-u>bf@906( z8_^@pez{(nS&nM^3!Or=ktZ znbT5h6aSwg72&UuDAOJo5T&a~2ghxoqyX{LOqA*vT{sKZ8LOxGX$Y6#aqJh$;`-0) zNj`|8tDML0&eS?6ypUEstgbnRM=#Uh0r|2ooGd<(CxW{Ao4pmK^C&58zg;MHQnFb| zzC*Gc_`g#K3Ydn;g=4SOBkhnK`&Jk@n#`Q#k0wtThaf8F@&7IrFUi9kmEH#25L(|S zaZGhGpVlb1cPR9yH5Lv0e}AIPYOlQh5!RbeY2z1RvSM(xHq%f)CHUea0Iao5JN-?2 zUzf)HyzIq<@Up{9c!%?6*S8<`1}W7U+p12Eqr^rLMz1{`{zj#ZK-3r)CT7|JaLx2c zCM|cEI?L_+{Ee(ewkW`dUEe;fDJm>Sv8OqmA6qK+?Z$`Kh$%|1W7TeiFJ-EEv&FN&i9u-2Vrk+sIkvc&uQp|3~3 zU%osN^W54zKLjv1D;JAX*}j+a8~x>gcxB+T`N!Sa_vW-EtL1bNwY4Vs{^RxL-moyG zAIbc3yNB=AfrcrN|C%SWu{LcMXz38Xqt3_9#8R|AooRX^AM0N;*;IX-@kD{{nV7nH zz~y-zW58$>nQ(*CqT!_9mKcr@Y&Nb32SLa=JY3^W6y5Uh34Pnirze@Mt*rr$o^!){ z^HZf+Ox)EP#2d%vQtT8+9BuY|&2^T*tXAAW5p@r%r#0G8#{^8FEaQtOIZVL&JssO1 z36C0Lu<7O|C)7KXl#T&oo1%EdoibLR$v-bx#pW>nI-V=8-sJnJlv4GZ&o{zMO6{*t zZs7^L?P^W@QNk;PIjJX0qVoApe7P|QbeGx3LS-j|PuY4i4PElzu2D-E)mip?7UE4DDc%2D4 z@14oSb9;(B^rp6!ik=iMt=uen{_34Ujd#w1J#iaD3@s`=J=OYp?EA-)O3qU75i9K8 z`?O&uxLuSFFIB9aH#xUwpZ0ZC|019ne@pPmfV9JhE5&0x-dwmYlDWduJTBejcO|vj zMFf$FU#`y20aw+27>a@0FL_0gtf|pJa6bi=5%YkECJAZTlR%G!Sa(R{pR4PggdeH# zc7`4JX4+n|t7V-)F?OuiqEJdI!`u2;dyk3_2nHYws@#f2u~kHF9pk8;OqqFMuw z!Ju~sB))&M8;RQ$u*UH1=zIi7xcRXspF;8+qfkk|D|Ou(ozvYZvwN5Abac<)_%Re% zE}axrH-#?LYp*yM4GzqLfBA~5yqNTcc-J=RGgV-#yhtWlKGdB35c?C%TUo4`F<2_w zb!rdvEk3PjuZsCDq$feylMI0Wmy`eRNm$R}Dw}+UGjRcsyG`Ky1trfe)bgLQz&U$L zG?8!9U?hE{M8da9 zfSw2MKqiE{ojZ1K{yFYyXJd`!RE-%qSt&gXRx(1VQ2WFOq9f+ZQqM>2!?&lPMy&8F zfg6_IlT^8{+sM|uDl3L?h2VcnKsaF(wEs%SbGK_6^>n$a79moABYAUAT6DB-{!6ps zazfh2%6P&S0}Pxeb(|`|Prr6~=x}9v0O!3YH710?qT3zI-(i5l^zpsoEtoKnGH+k6 zll<>J6s%!fBQvb-fNr+7|o?sq$W3d;_SU%P% z`?&6T*Y#8QwcE{Z-IP0!73;XX>jYjKW#5+IFezfdPuok z`gAz~Pgva6@eB0sbYX5`RL(Fr)&p>+42={GYRC!~r&5K7TfDd^l!b?taG(l@{?YU^KMjN|(Zw;i=2i@eDs1#C4 zzcL1tQSy$*nNCeoX=MI*{iq?$?aTUkcC#hW0I)3-P*4P#^a;gj=INllH%tt zFUvx`RJbo7Z%osKEcZ5EDW9~3 zN3gry$}#5_&$Q>=5%Af7f+4oo;-7)B);h1Uz20ejjN8FXd!Bx;R}>YW(IkC zr5RaKAVf5uMk-&ZOm0A`b*%(`37F<11NY?ED^ruk#OqV>+a#3c4->i(snzH8B-vf% z$n_l=QESh7Xr6hx@(7n zhc-D!(&^!M-96r0+|_&qC>m8VvJ*2-Eap+P!hKK8Wv$xdyYY^miFdb>+-5ilUP0z&6z-2uo&Jq72ZxsO%)zG$LTOmAg%efEqeeN?)MNbRU^^*&= zW^v9+6r`CGKs`wM2ZN?DupqubNNZxutxVbY6S574lv6n3u=Yzj#0o>q? z+n?#X)9L%|k>&B~qt7@&Rs|eo&}Oe|_;J8|xYdW)%iY<}4%)-MUP6~Z$->QYDdEar zA+JkD$&VYKVVt8Th99qB4SK>?e)6>>GU5TAH(?H6Mokeun?0FlXSct*B{e*lwxeyF zUVHjn{`fJ{ivs?-itNuc_Y;Rf$QM4ht9vicMvcF=w7sva<*THxw_&b%=>>Qbyy_i? zhSR!o(-sczj}_5o_3(w13D@*}L420!lA$dGMAhwL|z{q53kIMgaSk4|iT>?*KhDp_9T5K*Bl? zomuPWV1-q%=*DRLH6SLi1{#|q>Jvs;jq~{0Hw`EURS_Z&(gR?G8-Xz-Go!;zdNRFuGn{*v^HwLM z5&HL9(IO%Rk05{VIw(FY*i>@xDa8e5Dp1jwGhNKj^Q4JMA?Sp;9`|YY@g+I+b#P=w z$oo%d<5uq~;^%%u!(#$Tg^PH~@lvbmDI%@x22l$3M7I}%qi0ON4T|x2AYw$O^iRo_ zCud*2(_PV#L-m?MDfJK(bViP1 zyK>9JpCsuVRL&IzDs3l)54X11-4w9(+M4^7Tyq?(=Xx8yBzJ8)$?2*hD`RD}L}=dE zVS@2(>lEh;Yrg`zPayA}PjY zX*6J6gk4^%H>dH_WuoNFUPAM>$iiG?AU#yav#CeAU3S(}TSqHauJ$9{Y%*FWCmn9X zhtytZ0@|SE$lpRBy?ka-q+0rAPkG%Y*&w1qh1HcgayxOJ2-L*mRadf$0+D07y1cX( zFfXC>@JK00h1OkGW1)OP9z_(S0z-~qrWOkg!UIcY4$MAr{X*($Bu{0~7dn<~;y3i| zs$7bRN4fM{TVIiv^I!9**A;QGY|KCt@VZM72EH2RI5x`$sCnrsMSc|0Pe+^-p~@tv z<}|T_*0*wH78gHjTUiiKts23&<9l5Z>SiAkxx?nW?tw5m$9G{;z{8dm=G*ebnPAoq zAk&XLG0op=9HUY1>Y4Qg6K4S8HDruYxszFM1vE6QwHbq3=JVF3 z;N0U&s)=8VGUVN%f+NYNalT3pa9DoT{09PNCe`?uHe2EM)!YQjq^(_${Vg__XZwNo z-G)LH(8f(wErZ4{87rKjD-I#y?QgHQc}9;@NmwC2o>+*>DeB5wN&1Q(bNz+ptyLmD zp9-*ojXUs!=q?i}-md<+QBTh4yrC|J&EKJ^I>n`^S0T_o<~9 z@upYiAK(7@n4U6pnbj!{fmsTc=W1BeBs@2! zFw%AA6X3sOFYL-l$|z<|EX`PT-x?w>RU>dp3YITxH%B1im~B|iEZbth?;Nb(^*0lK zY0-KE7k!`?mbY6&(p~+95Pw2Pc3#bIKPjKz4{O_!n_25}AigT1-tI>rK|VY2>Ew)JN9jMb($GNS<&M|!RW>S^Le+p3ljK`RQxPK(JGzye3P=- zth)v67cX`4oY9!xwE1LaBGqY8lYCql+g+bgqAzFL3}ic0=}eJDv0L!8lxb; z-%$na1ZK?biFlv7IP?y{3u{W6J&aLNOicOs^HcVGP1;rhT|`|b0q+vPiv+KIgn}6y zKdk-X_iV;*aeCCTbbe|>Lo)t`yuc)(i>R05s>)Jf6^tvYluQF#^|jBCaqAC7P?QQ{ z@gelYRSKJzX5RA#$Ap7ZO|+ot!v?D9k#_nKzYN%8nZf=~Q_~==x~`L3=;*>9-oyuA z?pEvFVp>-X6GB-r2yD!r9I85gB3Sd+H!I6hGlgp`;SUC)Pk>ev1=V-ck;MlWxnsGc z*+9?N^tooKyyP5ptlJ)KW-u?%65yqhqCowje#}!&fDqeIuHL?+;kabm!74GYff~<% zppgGGZ_-A^ifZgQp;|z2TTC5qO`RlLrl(ep_=>Aw6*q^i%Qm2YZ`QNR*5?|&O0+m} z0^qN)0gtq6QXJw+wQd+(dIHbsp+-DJe1M$O*#%b~i@Xu68!C;>xoT&QfxiZNxZ5?K z?rN%GFZOP-i^!Apyo*}>0GQp1_AS0e074A%SeggV9*RKqi9;945a;h6vI3cVbi)kl;v@QDw)E8H;qXd9lu<`R4<~m>gqqTCJnO>K_Zs zjco*OFQQn~^1E;%dvVM>i| z;zDTkQ2AI?gI!!u?OD@?6i>8b;d6GCDLvowWFf#`XN7Cm0mP%-u#W9RC%I$sUQ(z8 z;L9_HZoMUR)}{OIdjJa}CKwH7Wi`LT)D)4W^wsQj0i?0w-k0tzz@2ryyWdGXz-~*N zXQ{DHs21-B`zkK`Jz!L1EP6LxUNJ0o%lXC^vGr*`{I{8d^U>YnWqjN1?8MHYvFVcU zW)Eh4XnXzczx``da`6{`KcfM+e>80ujgn%Ec8L@c`;|S6*0JNA0AA3awZvDA;^KER z+l4+v0UO&t!%}{-6jfx21UMd<1-PyqqAFW!8=LDr&qnTs<~QpqkFnB%ae5m&8g7Hq zy0B!+jS(qF&@iLx2dFg2cUdoA9|!G)#iag+tieb{mM*|W6@+j4E) zPJWQIm3R>d?YpZy zk^a@aKqT|Hlhw4-kZv^+i|H&d4ZEI3=0hw@`fIByUUFiXTnLMoXrge|_v)R)1QC3_ z#79hKmi{3aE~Hef+T;M637uN$T`Rbp(DU5~Lz$!{M8_%In?9iln<+K;a9=Dsu&ygPt^WyH z$DmmEC%43N!Os>(0T#n~ZKR2|n)C0u_S1)mjB(pf*PmjsI9b5ufQI&q5;u^XbrcuY z%PqEd{x}=G%#m`*KwjCt-!RfnH##ax6U>@#Wg57bU~2>9V?>p_Neo_FC-mrO6@rwy zIH#p;C|B5ZG@_kA_@&>_H`a9{l{kT}LH!A+VcO~!MbEz_V~49ENn&L70{~e9%e67u z*o0Xrlr|IFde9D+tVmn`bD;`t2+r@2=bAChz6g&m9<9B&h3NdTQbW1pc4@VKnaE|;HJI(!+fWQu&u3;6q#POy&*Q)Y zQFL;rBcCuzO?cZ;iao+}&lgDtt0CfoZ42%ED_Pae7C4M{^jg+`v~4dy_mZ{Y+@4r` ze!B`=vPRhGPDq|hkD6$4P`{dV{zt+$bbGjz=4D+Aq(74SdnUyaD(trKxoPD6N|P_c zWK=>^(v5kO<9fl5Bm%Ebr=OZBkuYJYo>(!Sxsg0HzxGC2>)L@4ucpP%<)p~75?P`F zf&q#QG0@S6lF|}u@#xaS8(9b3e}U!=^C-|!y4El4jafF3ASt&3-?KR~W%6jrmLz$h zFrZl`@Qi}7vk5Q&1V#mpJty?4-9*Wj%-jC=Gz4GgRqc}VdWmMiS)5aPlc00}$!P^# z3dDI#9Up}&s}-hCGa8}|08N7cplZKjogzI8u=G}X1m323*q#rk1)m(F&-Fj!#Mu#Sfte5kj<5 zu+8u{zNRBJp5z3z#$b2>KJWW=GS3gM;tcm?Uk5cwe%S0f(-&qC6FfT`HSxc>TVKd- za$CO{x_RK!jantc>d#yfk4MGN8Dp?5_VZ{{I@;^E>E1cbmi-4->d`Ms!r~VP-v=v% zSH2n=EzsR>N1{+~Cl)mBXQu*=vybj4{;iw~|BLXtUkj)`J?OZb_PY0aleW^(UiVw& zY0op$rR7(`HGelhH+^3c-+`|ryl8~f^XMR%0V~4#1OzZfc`p`H&Zz&ybgZ?#SiYY` zd3AViOm3~QRkq&U!=$CAI>ly_m))9mUV-dc;n5mp)i07bC>Sr5R~XLWPw9ls^VMGY zLD;3Ijth^Wg}OQdvDn*hb=i40zgHV1g}wFrnPGu?2|{fHAf`Z)?BEY?hp-iDDK)&6 z=ODU4F*7u2^SZc7Y9O2(D$bzbC|$zO=K#71nV{>Cqn*bAk7I_Q`#EVFx_) znetVIXed|-!X7-~s%h=r#J+x(=Td8rROaoP86Z*i&o?-D$<~_;Zy0`SwI*Ldt4x6; zAw$ZMkbO=Zu`m*Vuf(t#&_7KT2W^++u*?OG#fpL`_$!vjK!i4%{d+%Mis<-kp)H<#Uh(=s_y zM&OxP0TWoeRH2x~k|&beT&Yh^P;(>}E_S@`J1U&y z^~%izoJCQAr6nRcF6Bu8UfIC_K6Y7lhAO1p=HU-}H9g-0!PtOv1NKI{w8UMUk<_8Q zQK;ELPVu%}OMSX0`gK8Y$d+vfZ^5x(Y8dHb6&apPT@^po*rpw}x&d%s(AIDVuKeIg zRr??@Fn2j0nfdhO0&wk|#|)2uj>(0}XoZf`X|Jl2NNtJ1n#`CpMs_Q86^ilhfOuUT zm<5)U7_)jDEDNt5euIL$g3lb<`SI(+vZvbFi-jCnXWa4Y4t}7|$T*r|j2IG&F z+QIn}UXXzW8x>xl^9E>+kk4m4q>D z!MMFEJCf!P)tdY_g1KkZkix~-d2HD+LIBy-PXK@?o=%8*QcavJP77GRt)EGjD+ihh zWQ|Zg5lieF27*C}Vfk?*BRm>EowJ*PUE)t~zHmbv!n9dXxK-o9y|3>Mw~3gS_nZTqd+cGWfT;T4Us`RyU<2!IObFl5Y`Y}FQgM{7CaxV$ zwu0X#luxz&#p#cOYmwce-QV8a4Y^lHHePRE5zQa^FQyouJd($Tw|`e#+>86 zfA^({wd1z67!c<8(&Z<19kU{KpS2LQzi{%rKUD3%UTx%elwMJVl^(h<2PBVFp5$bC z5vqKndPWBYR5@$yYDQQ~9gY`Et$7@~6K)83MXqCm_Hk0eo;o7N!icIXsoGitUG4te z$8YL}oq`cGI_vv+-j6T?j86)jvmVX}Jt>m9F192Y7%sVyVN&Yxg;puJv4IE9*dqrb z)VHQJQZxP6cn)K9JLK3K-UkjB6b%g)k@JM}Ge9%|i3fE^eym@!<#9 zjtD+{q6o^z5Nra*Gdgo5pmUPsYPGo%vPS95Mg|_(AsL8>Fve)e&UNn>$pO25*m%e# zTrr(%UV<+8BwRMMTfhyrc*JNNE}%t!{=OEubSm`dxuu5yq+2!qrI$%kLT_v9W5!*( z%N!yCLW_x6S+Bfxq;tlBKsPGBs_j($82B9&Sscf4+F19jw4@!Jo6?WNdd@uPIp7_5 zK}1QIiHE1z5K(EDieoZ_BLgrek@<(-wZlp6M+OvYP<4>GTl-RLE7O3e?15QzbYezYf)%1~Z^ExvKY6p4Be|5}Pb><28Rd=n zab>@bI9(jG@9*+-Lqk^@=C9OBM=3Q$J+rw3H$QcP?9yk(4LuIi^eq0m>w><%99$ri>(~5$WZ%65^vt#FqAATb=d}#cm#G^X^`H%IB6YiWP_ClkXvXN8 z9w}sC z0s%aL?PRp9(6S$LUNNe`Fl|wYJ%5g{!KXH(*Pz8kLeO)GU_iTr908iNuNx}$(M5#2 z5xIyUf+Zaf`c=L(1lD5HcK3C@mWT_)SX4)rTpI6Az7d9Af~;On>4q@H^_seREuRKc zG!#eTVnie+uW(BpO7Ujfo7p8VT&i&fGRLIZxWPpW9Ls|Bar<|$%}a}+v~=wZv8B(G z1GCK#cdp4AucGs0X;u(%SmuRUIuj>X-eHz)04#NN5kXvE?KnByVTgn^L@LoNJTIEc zXCky2mBH!%T?kgIRk52>KY(pdLj{#b#xv%^ql$@Xj>DUH8*uI-e>!aiGj+`2;!9;h z78p!rGnSQNPLN8(&g%Yf2&6#VHkH#+zL%m|OhdIhz=Cq`6>+#^3ardH32`IG!gzmKbBexo9U)@HI@&kT-URGYO+O7z<9qs>RMac;PaAXzC&P=v%B) z7fAs@pC2}Wu!z~M@uJhvFJm5e^G(=m4_nvP92``cdN0k+LC*ojPVCjEz52VDjH5ub zM|YLlb-%rd<-g-t7xA@Nr@g%hS(wqwP<7x* zP{Xszb6lqLzd1#*n?KD?xjKz2ibUFhcldjqPudji2VMZ81m838j^E+Ae7)g;Gidc$ zCE$J@u;n0ZEWy8*0PtFcVq^eTV=B9NZk4XscGe$7G@8KZ@RwY~$H`|GsgoHefp=8@ zsI#03tIOR=zQHI_#2xhBkQGC->c>vfFfF(cY9NJUyapUgh+ZH2^LRRRGoh(=_m=`I zu`4wl(JxU`vtYKKjS*@k7+-mF+^x-rIDonzfJw)A3)m3{A@&8&!Jm)wzDS1T=g~07 zB(mw@b`Lv^#C4?DW0pF%Uy+DI{>peCOlpDs=xMGAsRk9OO}12lv&lK#3vi5K(ZFC6 zss?T~iFe~8nR}4MOU@xJ59uZ`Hm@bkuv3pEcVKD@`HCa5Q@&D5nsb2#mS3m8fULr) z)>F2XdG*Q?KbuYDXw=L)3d3y-%_A(E6^7~qG*J})O8t5t`A#~F4o)qjczDvX@jGad z&cxf~eldPIzTL6Noz0};y)>PdI=3IcZoI!Av)tbsl_OwZjo4g^L3Pp_%>9TVtfj?A zb&~tdKfVAF7%S1?qw>qDb9fL?J(;GWrEr?x1qGSll0@9(GbAYMh9 zY9|O3vM?+YRIhUl^-M(g=Q%57d6p;A104C zIo{5o{XUnRv3C_*^IuKrz0Rf8zcUb;JDN`9OxYz82pQjL@gZkyL0n#eDqPi4*}6Z& zC{hqVPT+}{m6b>mjM?Q>JD()f0B{96?y_1b6E<4tBOi=A!jHRhTH0nujyN845GwbM zhKHQX@$D688kZ{^g(jj=L7g+!``_*Z z>&iK3ZzN7zdwjz2=@|bH06TWES6X{8#`xULvdT0LB+6|a&Oc7Cu7@W39}ZRuWj!Q* z>%9C8A2|5WEy&)vd(K-<)@S@l$trz*?fTb%;$_<(C(f>a=Wg|6LJ37G9}s|&dvj|CmF$A= zJ74h%t{sP2I-id3t$ne!F4pcC`3q!h=VZ!%@Km=TY$PW5F9edF^jOA|kgn7j&0V;V z<7>{L1lo+QWXq77KgYh*C&JFc10YqsU&4j!Kd5PRJSWu*w%CB(4g!byX(~;RN{nslxVve84CtBlcLJHhM9t#2+U+UajgB}*CC9(lxi_j8|4z= zTl9vR(aw+L=W4?A#GnE2$0-&Ff*`S@x_J(PF(g*2_d89fJG8eBA0fas&D}(pd%6`9 z@{S|@?F+-N76qoQcOzziF-EbS-i|LhUu(z4j^I^_xkYrOP6Rp@BV!!%8IFysjHV%e zOVqJ=hF$t;HlXi1o@t%Jv&hr&4fA?-QEmCMs*cKtHURk(GY~SP=^4XzZu!YOjlr}w z773uoi;3B%`3<|GN2ireZ5Gr>b+brxr>IJs^YgKEsp45yE1Gy9{lXJp5$XSWrKASB zGT~yAsmT@Rtk&DS>)A0=xJ8!qeAPc|p`!M{VbX>)f4*m?sg?u;4f^H7$I&C4|8mKT zEV!JvA`_=+?H*=-pA{XE)MN1Imits2TD+~5bZkjZ!1Mn7EzP_Ik?&CLs3iA1VZj%z z^_H6QuQ_oHorrkI74JPnMIym7cxsd7A<`R)B#T{-?KrVYKR>_Q!a`z8Wi}=*FG9wb znK|=CnQ)4;w0PGv`mrMY8xMk81ID+hRPHu+W>|1}6&o|k&Pu5jbB@4C`snv>uMcw3 z4n63p4?zAW6>MiR>cuFFvihGtS*nyagN^L?DIVSvMns~v_wtg;?iGQ1C|W-gd>qk{ z%kJ@Q8!<}PV;IJPEt~O0CR=k-V-i6;)#cQESH9MGc_ZV7R9DUGaF%nRgnzIrs0>F& z`krCN^mXbA@BxSMH0>O!?WU3Jeq1@lALFGxS4!O{&`tB3rnih(h(lq>CDd7fjUH6W9EN#1V9{xR$%0o zh4j+k6KtK;J+uG7KGvFqv50O_JyCv*FJgxf6CiLBA>1Wj2vKfhoX(pYdpxrmd0l1&&HYXEf9!d=UhxXN+inWl?-CHWKUu@(E8>k@@n&|< zj%$vDDKc2=$;NMhb-CjEzC=;N|{5 z@K@?Tq~3=$#AZnb5B$u>k&(2n)-Bxl&D`DYo*gQjjt#3ZYJ~0Ifz&^pr~Yt7BR2H6 zR?O#)u%Tq(+@3UZj*6$w;U5qtHJswp*G2bp4u@82I@M4N-{Ol~?T~!1r8+UgH^Y z;Ib`6EMgpef`Aj~Yud?IIBz^N75_@2;OCKknCDNHH&jAa!*yY|l*q~;{02=V##Lnp zduqC{N$WeKTSqk1AF~a!8sMn^;^zKJ%IyW)AyC4|ixz-o(-Mvx%oHP`F^mF7VxL-j z0lEu%g(fVwCuk*Dp=cOwDdD3PeGx5^K4N#ft8WNS!dDR0r)lyK6m2jTh-kpmK#4|3 z?iyhY>~@k*_C){*2YFH}TJ>XSjA5*vby?L`A4uOrAnvD=I|wa!2wz1ezRZYT&2_Ec zR2wYpl}sQBX6lS*+Gq(#GLXU#K^bh&J5J8m}W^}q!wf{PwXRT*TvTMdBkaB)n1FXzY`<5RY zJ_p4DV2MJ%T{tzh#V40-CemQn{!KW*7l|pPtGv*R{@l+RuB=B8p99Vol7<-Fh0QgO zL#4)LI(ktv%wqrOU?=B{pU-hbkgj=h;r)fVN4DwRK@KCEn2d1@^IgE?&p_-399_r= z1MFFjAn4bEZpq?p{f0`tvxnP zM4sxFWhkG*?RIq5r5O2mO|@|m&6}qf9kcI{#m~+V?QkOuF%sb2*=-C1EQL9i)_{h} zGByt?qfWQ?^_SW^=5ShKy&tD=lVv!ysMcpXHM=&ylMIC^`6S%Bjimc-xh*zKI#9}p zsZ@rffE}Vg*OD7s^&D3(OVg{~bi+@dTx%5&ia0ABb28Te0MGN)zX)^wCMq$$OCW}R z!q}k2GvLnArPx(&gT0}~|Kf4>nyh(m@9#5$-npri)-y07{xPv1H#)>Q_H@-dipc7e$T4i^+)^UW$`VgL6DjC z%f^UG;Pr9y^II~ptMyL-Go0)H7O1-Zaf<%kkd`*g`O`$#<&q+& zl4Az|s^=H>KRi7Caf%^&x0sBb#r_vkQ@IT{0b93&so_UDbs)5=f68qF+&%Ff>VJ~K z2vk{?3dLB7>pPHcstWU&kZ^6Z9JrS@YNW|so)Jb8SY4W=){MSx=7XSElsa0uGwm=U zCtDK~`BG00-QP$4ZA6p6P8k4A;UZAbDc?sp%F5S~O442wo!vz0<2Xjck@YwMl45Ba z^yat=YZkF5sD&a1Y|?VhdKI#d+4x{NZNqH-2l#hUZp`~wUITgz?yoIUCDQ@SYjg|& z)P2ng4fOlTI_VW5e)6=dge>NbuSB|zySJYS{d9v{lZ87Cw40pM@P`x)S140o*>8_} zNAo-{MjYv{W`42E8lEP^+;K9+v!S@%&G;^fsg_{%e7bR2A0!j_0{*beE^>jrq%IRg z9a>F0@hYRmY3o7PT5#spqlVm@mbta^1l2d93{IQ7uTAJ(JyvSTVSa2ywD`>V>~+b0 z#p(U=A~nnfg)~1mGnf!`;x!5N$(!w>yt1K1WkL5m!EbV&? z;nA*YMN{E9nFi(_FlP7d#}4q$bdVy~HXvsFUf)xt2FDgNK&R?~Z)hg@mCG&fk|K&n z!jz1Z_>fnRE?0whH0O63%a_fSgQ7p~_}*1ud#6-UaVC zB12j42K(($evkU|x;L}Vp`pb!;Ov_Nfu4vl`!`X;&%lJC?VSV|ugmXcnx)dyIaW6* zQogE%qh;|d?|GK%F~NEhdnK88dd*QB?24~ZbqIk(%z;~xOl(yTXwv;)IxcFg-bgtP z1}83C=3&;wK}T5ds!4kXi=ZjKT%Q$|T{RH#J%&uix zRB(Kbrmo8fo#QV@s~?Vzq(BcA`_$hpjCMYhcMLMHpc4AH4^i!&EZ}DVBcDz2C+l9= z0Z>5go*ZOP&=t#<>hl_l5a$B7p{}8*heaQ`M~XMWT(tIIzkFvBK@E#?FR`QZbF60n z9l|^}fQ{Y#&Z68~Bo~*^C&i2Oo);#DjVV5r&>JJlpN*YtmOn^&$5GO%v7uRPpMMuIrs7 zn=AXjLvpOoBPfL4_^d1D<ZrB{(3Fih8Uy4AD`bk#In!rqQ| zK9yoFEZlr+Yq;2&+f|=gISssd{Pj59J2txF{5*qN{i1}qerfOYT=23pz3_A~M|JPf z_Hy6VaXr}8+3(|L`!pnGzwP(@h1K}shtT>>`Hj)b`b5x7P|Nd~HtYW3^-oT0ZxFxM z4N>*_hnMNc-)F+UB+N>1q?Mne>j>YQDLf}rYpSape^sAUIbe%f5_6(N`IrYh-Q+AC zz&A&9jBb@oTfo9-Km|946eVQzUw{_wB)QbO_|K|_1wsz8NxCFRPUaT{v0`N}-Ep^n zcsk7aKfZOq2OEg=Ek>5~8dR?<2k<~J35 z4*ug&7GaLaH*L>AE|M>-bddV~Bc|YYI%iKp_0QelVAeLCSoNgyb=kkW(a43i<-gIn z6cK;_{N9W}VXyu}Z4G;#=~&i5bozliJRm^@)O{r-~wdXp;N#dSO9^rhoz&_ z)&qB6hWpKe^y23Y2C(5fWYHAGygzL5$|`A#JjlKeJqq98jzqmhQY_t4|?+OhrlfzU0uR z>M@mVATm=&;7;4kEiuy$0EV#p5_&Xq++d0+;5I6a8m;Mq$4Y+k=)V#TE%+4(@L*4- zOXCchNaFel`pUmn#h5A^ZRq@93w%=7Z#R{hpgF)~odl@SjISA#Y|s52c~;U?aO)|2 za>hY;IFfKi++ZVk(-FbY zpH}|>F}&XPfxwiye>Zb3ep8l4MD(cbLAH2aWx^r1vmO|eq-CD81#I8^Ex6T8+%n#3QslV zAsK%W;JP0Fx%PL}txAn*5WW#0V1ywOhMd7*dVDPxbOyx2rK`G6;dpl|hK!1&Bl;S= z+LuCPZA~w>EoXz1-CrK2hekChZKf5-0QvUeaF=R3j9&mm;*2dOHx=zWsnUPT#n0DF z6Td9(-BS{94`ZK(qEh-cNrK0hw?;i2f+=TlWl*N0Eu#u-5zYPHC2-W$E`;2{{Pzo2_5wxe zQRr^fi!Uh*xj%g=?8U5wgRlAy zcYc0(ZzRrPll{T12$m3mPu_q6iXZtCYF%;FbJQ2w*5## z4()|Zio)tT-Lsezv~r)NN)%i7_3yUcVn_Z-?H$IP7Q&1i(C>RoBQe-Uh3Y9&siomz zTX5qVMeo1KY=EdibiuM~L=d`S!%dTHQT;~dIh4}L|GLFSG{61R>@2fw0% zg+gCj;J&>mXq&r#Wm`BZs*Iljv~||gM{wKp-n-?UwO1V%ko{$=9vnw+tT}@3&@CNy z#Bq^P40@DIGc$BClN>e5N9NvQpRDdp4!VRi*Ua=+<%z=WZWAXV@CFG*4 z{H`6)lB*U>TD=9Tas%u{#q#OEkcIpxYxRTQO+~K7tjr%JTHV7n*>i}=TfQVBVLz@O z-PlB7ok#X~Zklm+3 zCK6>&reEw_3Fu#LS{37f_%8CCWxzplyR#Hg?)6u6l^mwcpDXIQd4GI3z1Q=VGxZA> z1T{%x4tPH%{z&b7|KvmPO;c+XP2K!X&*{?FF7B3Y$y@&ct=X!PIR$IYEzC$LA|q&4f{Z z%zPZp1MZL4gq}yHn;&J#)}N@1AKI$h{>8ua>=gtBnLF;sKo!fg+E(m&IXivMTd7uz zKeYYWd$?0Y+xtkxm?Il_w~)h_E}3QKvEMCq*cFI4xs)@eUq32aRY~4a8+f%h4~KUw z4e%MOcUSbF0h6*2A-K$v(9)1CB5xoP`NWQ_H}hhSA4kL?-jE%xj?oDu30M4`y0@a| zw;FNmc<+CZ{daZ!1~RmWh)^&cFnRqyTZD86@L#l9&Op1MPM3_IBcxMI4`n7IXa#Q- z5f=1{K@}yC&C=RZWb^F>tP`!!i^=?i{4^86d|{+og(z4#CY+{To2NRMv~4MMknwA89897&_Sh7FOF zdpq#?@n1>wprrG5{FXRIzSn?hdPF{b_(^7h9DQ}OqbvzRP16^lxSDf*U%CYaLFp4( z)k1qDC?g25;&o5LTDA}CgdWndOd1xXo{L)x?7>I@=BELbPI7R_4;K&nah+u zJ&rhqhg_x3MPNnHk`FGYgo(utffhdwVP*}I2}(6#0#q_{D~!@mCZNbfvrQukudVYl zsunhi&tDKMSXz9I5vCkJEs?PMy^Os($&sqCY=Fjw6*U;er~HmJwgB&tSm;+_P~SR( zm8J~gK{s)$BGE?>2Q4cq7DTAm#<12u2-_TCEHi+bjh{r0 zfmoOp3cP}Hp+y_a(GtZQc~Ibu71xB-Uh@=kOPr^sI7c==WqhJ6~5FHCS6=%3g^!)gl-9V|9`4RvzBNffWSB4!~|I#AlI ztv<{;-_4Mv`2 zf{N$b)o1`a2-6Eo#FzrfJHrll-frmA3yELJQ5GyRPkV!vE{hEFnSJXR1oJUux0)f zI;l1&63Qv0hZ>-PHjJxdWrnB_ykS76`ttJkFPqK`8|$ebX*eASK_{X`Z{By z_I!e&(aXSk;5EOP$7Tf4M8|Cys)}+@<()`ksP^XFd8zYTl`2sT*)?ylKztR|#H!yd zfXopJdRlv?d%JL|5<#6KSp|ex-i%ZS?o9dx{+VoTOB6jDIY5$CzSC#Wljk&SyJV&M z{W7&Mzwa{d=Zu!S8HLik`(Sq-`4sQk4^D)yo4c!+xBJ()H`RA*;ZtgR0 z0}da>0@i!Hg7z0f+}k%kkf_-}{MEWKxj z{uyohyX=7etfiz9s-{u&;p3TnaBfioQvKp=XK3Ao? zy7z*Z3kG2k8F6@viNi7+x%;<8l-ZuHV zjk9M8#?= zL%;X=+jg~c75*z4IpFJ_wkj`t#0p8Wxn?f|BUTGz+}mnv7^W~V{Ln^v@NrkvXKZmV zq_uu`){>7G?{2fyZOM&R4lkf_px+h{U_TdFY6>OcCboIq#>L%0mV54=h$!Agv&Vt1 z@+ce-fJP(DHww|e!q1Sk`vu=yA1%OH)M~ucpkTPh2;N8q1rr#3z*1}*oDsn|HtD1g zPX~xf!wcF{Z25o`YTYCjAFFgVLz)SsmxRN&7srgHj zCJu_V%v9_nj6wgEpHf8F?Xd6#iR(V>`o6NQno{UtV`}iaaV!WsqU&4R_FI+eRll>t zm`haStY;+IK(d`>@+#DY!Lax!^;b{gD%s}V%79v@*PvkW^Vq8N>8u+)|hd@iSnp>S4~ zDY+=vYXict8a=&_82tE1Ry*!XBjbB&)O4>3mQQ*$+A_t2fmh#89yV*1_WjfQ*G*EN zA!w7%(LTkpAyg2JdbU?U+k1J%G)ev(Lm44;F=<{@XmsxNdJ!~?IYd4^U3D&%7>Ypc z+%`B;(4B~kRGbG1d3<1-%`|h5>{uMw;ojSGc=r2@-k8=Re?V@dy=^z*S~Aa8+e2-J z{JyPXhqh2kK!-+jbPe5Gf8guM-rJ85nR;J5nZenbR=xT|;>ANEsJp}McR0di>B=;x z28Y%+RM%Ig?zA*TO=n^8ou6r?B7EM3B!5}eDrFx#PfAbOB~}vW2&Zw5ameJe038;$ zicZ>c4RaJOF>v56^;({KwLVYsV(HIrH6wGFuexx@9!7#KncF&-wp0>b+RPC8UFQiE zcOX)VWSXA%OEqw0>$k{xa6?7?Rpd?4dV2P#)g6LSrgSy3+BtYX@5Z)!>GBpXrZbm+ z6a#GxsvGKIZ-!%Osxf+9v@~LYGwcAhT!yl31b0riTN~{oxO+JCTa6Uyj%_GAv7!Sc z!`>XJ#RVxZ^DU^5B+Oh=v`>sTn01734AKDB7i_gdl+V#v==(0_N^jLBdA6?~^MeMB z{iI2wQ%jXeOU40oEH~-Nlt#zGMS^h0CnaZTHkjn_=&cZs3jJnkD}YV2Ov{ouMUz5< z3z#=WXM@aAby;BrjN<Kl}QM!A*DU<+CZ0s0dcGizaoKVdv$^QOk#rHiow=P7FFc zT&c~yoBxu5VCcbDlkvnX>fZ->evMA3b}SFCPlG@(`z2)M0x3y{w1`MV+qLZi)o*ci z^eGPEHW6V2`D6+va_?L-Pi{n5;^}305zy7K3uz*j@T~dsm<|>L(ysBp%l5c1q5X>= zCJCR42~Sz><=oyUdn>7tA&XBu>sq(M(zv@p!^tozA@g5B5hkj{U@YtkA$(EA|EHq# z5tI>s=WJ44*^b_5lAssBK#JLx6=VVG(0kofhTe0g8lUhPMnVwT^71q!*2Y$UZ7`CZ z0gWhha=Hp$IUMmIXMgOvsANaxzr#&lR{X)~VO={`j4$8Bc9Itkp6-NjU9d zfq&-}lu^Hks)7`WNtRbgbab~MSa#ED*)s_2ARkiy{(UeeKaS)@jiba@Zh<1paPswwVd632-&{}?C8rPt6{=}cy{zg zSuyZ{Ygmy!P}nsD-M|O@81cLp->9DMMA_l~XX`0`fkR9<;AAuHh`)O51tG%&xdPz0K5Y&zuf|{UQ%!jtK3WE85$OmjtnIJN zx+#{~AZ;{PK=jLI_$hnsDukRmJ=`v-wjotAlyxS#cWEtb~huUKon~#`7 zx-H@a2X4B8Hm~%Ckh$`R3K%D;umY`e$IBU#7qJ?8X)u$WR%8)6Pit9mrz=Xrmm=O3 zCMlAAmV`CWnBHpIDJl_KHt|uS1O|(u_U=ea#()_b2aIX5(IQMJl}t()DCwIN96xvu zEB3Nf3D(VdtHggW5z>|WO+w~~f_e>{-^Eedo z@eLxIR5K=2UgGRgjtyfi)G#f9uI+T(mc%GWOzKyj2W+c&G+6Qocg)DtwpKZV`-wWQ zba)o$hWB6b7jEc?UnGvH7 z|75Q^+=2#{;q$}U!YzMJ2P{^lM4crZ+wXA&GD7 zZIx1@fb_k8!LUFfpl;#Ul={evl{67qA4sl)29?d-HRJnl8!vQab8$KMGDNA-l z_Et~seGH z$LYu}>+Qm+VMoXL;Xpi*%Id@9CMyx8!{hk#Om$A~V?d?X>1v1YOHj&0cAM+N-#))L z{Mb~hkGEGP3ns_sYQea}T=qnc*9ay){@1Z?OP>NQ6W;3`q6bELdN^_zwV&;8T0j3p zd_}B3bG@>-7__-3_Aq>&uDmJ|a1hBsTPvONp)uY)UwW~%P)SWD*pVtCkTra9H(l_l zcxu8F1IUAB3;5H9P7xsM-NS;&==qxVi-VynL%O^ z-Dxx884k5rH5T71wX=a%mFI_5)sLRjl$EXZ12yrZ&Rx?#JtmoyR4qM;|En;%Ia8EK zjE*qIh5cMek<+x{!{#o z-po=7;KHYv1B;ZC))q&;0!x|FTTRk{2VP`^d3JHB;SvJzHs6WMTt7dn7kfHT`Sbak zw@JdpOC!I=TjlKFA!CGV%t`~3M=ToI^*gGZZTUQIBJQUTb&0QY>D}rMh|si7Y*xlp zcvZ|?_1+6u_F%1FeqZ}6i6@=KrCf%^#emaC4f>So*Np_lKw@y6lL^TtzUsGhB~{#Q28OfVh%RRP3xr{Vy_e}3CSMSM=vxv3247gK{-X(ftHG zm=&IFzLJqD6=HO;Tc-O+rX(gAB(N)uwkEWOW7K8YO2U|MI;!CN`AiJ{H{37`(?z93 z$-}G&O5~Za-NA3}ePQKDeTCp-Q18<9B+Mmn^JmjLR{BO* z1Iib{H_Dr=0Z2zf{ftR8((7L< zHLjVy>j6gtdtjg7|AmJxH88=IK>h(DlM5bUniQ9O`?kG(Pfw`}fd9latv>n?3x8lI z%dRttERM=syNXL;(nBQ9ZUUneg^zQKT!;=7Q2#EDLj5^X0BZLK-;GIoRLm+^f1pGO z0ECT{D5bIlkJ+&8d)?)HRrYQV8H}BOK3KJnSkIC0BuW%6q(A0VD8%{!h;=3=HfV_q z^uewA5{?dn%v$N$io$is zthb!ycC`jRMm%wL0OsFWl_mVM`=2w-f0ctu#6Ismp7`BXx1T%5HkD)S8nks5r6_7w z8Mg**uiXQ&To_iHkG*a5Fe~^{rC~QQaYCu6aYvx}$@?DlKWt=8k1aW!zCfhP{Mu#S zc6D~E+g@+lv)F{;`v$l5_f#l54Y+hfZxdO%P0rjsB`1FjK0=*{M6i_8M|x;f()448 zytNWTb^h;KsiCP}!pjH@>E~>-;}-+HF;DOtkqx07_eBJjM>2>@t<&kk281IWV}NKr z%B(G>3%iSWxH<#*fzdwBB@)zlo>PZ!8vB5E(#Gp#LxP*{)b{^BrrtZ8?LT@OkAxti zRE>m+U86>fT20N`EsasDDs~a0sL|G{(ONZ1Xi+89Dz%lg#HhV$)2h8yW7Y_se7?`~ zdw$PCw zCf-w`J54CnHqmUP!L+%e^- z?G>+c|7ZcPERc==F*UU-E0TqQqR#X4&?sHw0jZ&T=v$%!dd~JxupZnP`6wdt@}oNJ zN~Gh5*av)-JBcPH#Vu-S(7X6?;}4{F&fC6M;vg|aOEJc;DFmx`?1K2$uh4{r_D_7e zatXAF&8nou&yZVo8HC8&k~}olh$!l~R)O0P1J0+c?XUIwk%5#sK=u>t!tw_Gy$1{taiQ%+;P|S);#+Zh+HWDl-Cd*}nA)vTz1NBjm{MgvYWYqM@ z>&O6Ov%3`zQIWzKcCK+~{<_-~z`;D$IVg=~UcXQ*{nR0vh?#&!(>Cc)g)F0)HNb7+ zICUm5eT*CMXVP~`qv!^;>D@V6_mxi)GGL-}O#d*t(JT2sn1`4QJU+2kGk3;Xx*!=w zY0p_K^#vI$43QDS_y*-0 zB%^gHW_{x?hdAuPiV-+!hS>n+lM6HnVWg^{F5;^qCcS+5?K$i7tLC2{UbMH!<|v=e zMR6Eibo`}ok_FYx`{Cw^SvCakorPmxm-3k)((lBthnqQyJGq+Xq0cU&5_t&gpIe%b zcN;VdC3F7$%hBOVX9^{^Cz3n4{+`qug>7Mwdo-SX&};sY2a?ja$s|Ai_p=x3YkkNu@teU&X!r9!9{iz;st=sa%?!&n3ymYFo}V5{7|&h|Z#EwcuP?5infdRT8}RhK z3pyS6_J+eNc#HVfz5efP!_Bk5vJ9h=w<43#k}J!_(X4$}$bV8n>et7bhZ1 zyn|jGlr>m!|GRPvf;X0pA3)|;^nUDQ2XWbL;TUUhN$bLz7;?PJu85#i$UNAnCZ2ji zQlCQWH>2$+9Ry5`!KiE~Yf@M5J=6a`a4wbm-I!Op1<3+T&N=*CMpxXf-4z+F4}NfN z#5yyF1-+KA;QU%E1u)W*7awU?(ze#^!|muMzMQvOtZ}#GKPXBVF#|!;@*G7Zb$B?)|Di)OZFv?j)H zSKA;XWPh?-|Hi`RW&2%DoZ}3wsiv0`r;1kf1)`g0ufux2L->p!2%dp8iNqhE&tCIp zv9#6`T=63~4bofyrF<$B_is63m@tDg8m=xJ=O#3ps15HthDhU$wX~?>-_FMC@CSxH z0x?kIuT(pQ0jC&yU#IoYK4Q?D3w%@>OCg|!?(wo9n~!hg>$E6XyvbQZC+W7e6mg!_ zY`r&sH@S>gV@kXY)^r2A%tw2N)MiKnkh%$PT|9rjM?^UrEE{Aux4ce}4$S`$S>}ao z%vU2|AWOovIxXe?R7amo-Rce2>OE1AJZNz58t;R`hW%T&AU;pdNWQyBxyT=ksWcK` z%`a$IIuGfJ@D>4AHAA=GN8EtwUJAT2nYn!bAG}T6*r%-@hA;r;zR5%Mhr64%bFG3{ z1!vaLycs65!1OLrq!?tE1mi@h7Wn*-QkV~JKrs9I}b!71AIbMQ;oGnQG8 zJMPK~%(Grf`nK;fX-{1}N*$r2w@yp^_@|kF<9}xZzdYWWj?m=zn?pDyO_Nn4mU=(#4V*;a z%@JSyHh!P)ZN8M8Y5sD)wk#W<66_i55xf!BUQLHTLZ9z0 zz0Ium%xU%x-`@P({PjZT;^)r`lJ)k*zQV)PWUs*e*7}Fa`#-qq^|B$kwtLT5P470Z z1Q^_8HLx+8HtpRv3F&2AAj>#f_*qDh>L>$#I04YnkYeUW!F+jIz(2ONkdah_t(p1Jn!Eg z{0Cv96Op;4&tBVLwSt(LL$od*BX-~s<2>0-+Tnw|MPGK*<%}QY(*GO|&=@Xb*fH1E zBuqml{{yv4B9KC)oAIii8SRUxZE&>_ohi9|1YD2j^82N!S{moLufoBs+TE0}(Qi-8 zr^0kNbI@nl%+tt#>G6KoLwwf{T^oJxep7vBnKw?SX>YKR>wYD%Vt3~it)US2d4(D6 z6sPhudKs##9jI5S{!XHxs39ZS)Ov!FqE8-4M19@uxt>KLqv%cY-^>M^1~cjQ1&X^X zz^mw}*l$WYVM37-SxECv_Dmf%SR|2^C2>l^Zc+$pVS|hwVHpF(%%(ehylpJA!9@`I zN`fTQa3StWLMFM(T#aFVI1y=TWM7>kTw8*sv~h9o;(5*$r9cv|Cg?}&brbR8r|zPc zp;QOC+tL+3z}Jvdx{6eD>y&nA{l}EY#z4$OJY!<4A2d-ULU(4wEu^NdqzlT^?2z`2 z%61l0VacD2{vvedI8hKH$*peb_Q~nus)#hoLrWyf&YTY#f?9HYRUrHz0h)3<*GF!n z;BEhhH(M&tdVf$8Sojhvz9!`ZN7{-HcU*w7$mtU>J>^du3urG@5fl+c3KZ0ey8X!p z8GfU4u27whD={|kcA5dZD8<@@*Fv?oRj`%Hwg9}vBx>!DtCfz5tb$1)cib?4mIcMd zio*{Qu4uFFWD^7`uE!0hVoLLE4D7Sw#3q|KyE0yQF=Sq8A>re)*9kD}9=O#%eSDRP^96EoLJR!80n!j5tVj9gk`Fr=yN}p)(t1tzX%T2jCmuU5k=N(8wZy zNjkmVb3aOrCx;IaG*90zpu_SZ9xt^L!y~Wop>7?YalWdJdcy)BIAa4%^SuJsTJ9|E zqB9x~JMb7@KD~KILAIu*7EJZ+s$G$aG;)68iw6IxKVrLcJH1nh#9j2Oo*zZ#N?35V z9EgEKabTugyvx*&60>cxj8wf4l9*~4)F#j#d)7O*eE02~ylej;5QUdvHka1CGL9W0>s5UtEB1=Cc1 zHxI9Sm24UgXs2Ym{9zOz?YhjA$&tkq+zx8P4h(7e;LLcz$1=#IKQCK&3cP+b5&TzM zP9k2a@b&(z|NAwBJb7KmFqnLBQ|hbV;e^Whi5Gdh7{tLtJ`pw|?^^t2DZ zTrAp#E)!Hk7lkiIcf2mhBccD8W}mN`=NumfGo9~*9?q@Mg#K-KwljqPM>bz=I`bV5 zS?W~?IgqkFKbQJ;8ezLj;<)JPcWCzAJDh3Lc|A)AIT?6%k!f^(5N!VYQ0H&c-gU{~ zK@OFp?$4+*eCYgeuF-FsoO6@f{Bh~M28qNMbt04zZG#h@HiUm`J=p}8fwT8I>Vt_q zH=F$bw)}nn^=zAo=c0Yyz-7?J`wym3H8ApK&lO?$3-BbKNbf*eEA&_5SkIzM1iM{h zg0Y0-poJ8!qmHFV~18FeMP;wzoBKz^i+E{b>yax`Ovu~cM~V7n1=wPH#i`8>Fk ztsQTcE|iIEm~@O|xt>4L&KspJTqqu+{-|_u&XF{#0I+^-q=nlT=b>3#N6;Vyv*_mQ zRUnQg|L3Z4Y|%7Qo%pE&AwmU-1XV~N`K{#_p^8zg&~-@2Nut`~LJ3B)1NOwjS6a&b zL7gRr54TY~;jEK+E7D5reRysGbLG*VUs3$iel^{P1mbk^AAtU}Pazup3?8^vd^)<( zMpAgwV(C)6uuc+>nk?aR@V?(fg^G64ZGdW1blcv+4!&aYaF!ib_t*D@;Yu^_w<|wV z$tLl7aa5Hr_@QCP0q~^E@x^GXuCT(S_;Sd(@nl-I7{Gs8oH5#YxPd>q`Wn}bk|5X( zVSF7|23oqkaoa`~(RBn@D&{6DXJML6CKqCUsr~kn6BcyP+UTi>v-92gGViyMX*uh- zdUc*0c{yz4KEF*J=cBhSN+iGR_`rA4FsRvH1$^fE(Md;>2kts%b7xGGz zieXA0c3zV_RQ#+dSljd_BSGM>G9qx5PKst1sB={GYDWD!?WZfNe=o)J9T*>{l)=?L zO{rPfpo*$ymQ*ASP5C5*_`&oRrmd$pCd#+jjA|yb_)rd8(Q=y3Y+dYMXjA84xcGPeR~akAEHoG zqiMGo+KY&)TJ^f7>Dz}h-N`65cvaRY4KC?X21xiWo^Mby~;d*%sQ zy*jyV8ZsKh#(LD?DO&gET>bT%W&muIx3W`2?pwd|SM#5`wG-SB+Wp-{f56VBWcz2V zL%Wl)v+TkVtu0KJge(F1Io)X?LOK8JA|7eab2CdTSoSaF67v`vo8h4ud-C5yE!M9q z*#v98MUg14iut`j*2(xHe@=g$EeF~iu_)ow%0!@DPf(*ycu^2#iRB!V-9-7UV#DFw z_YnnEzqMW3OAnu(O-C>xz8syWe++%+{r9}hI_K#`Th3V{t?EA)`QN8Jzt49*H=Hio z`d*};pSjPTeh&!U81($56yS2!^7h~JpJzE2BMPBMy@R2HJTphj&EAWhO(z{p!BgKt zNnR*&dw|^+@9l+eiA}+a9L?+P^}*ZIOlLa@ITs%fcuwCX{5vn8{5-+gg0Eho$=r}2yR;jdVn+~7#{K>cz zA{3L<8scb}4W6xe64~_2AJ~>rN=Jk_&4K;;l{#Y=x)NS!IAp~;t z=j5^M-)isEu|5%Lso)_Y<~uqw^Pkso+c=^4kw2!KEU#!bO#xqPQ+J3C5nkP19G_-y zTV6t-x-<(wYWCx-QjAd=hJzPy&jy$rW-hU%TtrutG@%Hqjt8t$u`_fenX>5tHxC8d z0tPDLN`8O87K={b`UvqoZ%js>+lQaldc^6>3N3ITs(;)UOhp#mjaF+Y;>>A`AQBx& zM}SK_D&hiPae2x&E+#6>V$0qD-&DHyizYQUCI3+WP$pNh%Q4Wc_}Ko0r{87Gx*vL# zUh`;8FkdM&YLWG)XOzXbHzE>?)MU#*>$QtM5ZB;`57T#EZBUzshUkK)s6-TuQ)a_- z82a#e=P~K$bjdZLxQ~>z9lejtKc7@z(gSu!w;KtI>9r_7jySIxmE$vhrP1qUp2wL2 z1}SClw2hiYT;VI(sIuk*EWx2D05+ri?Nj=3g%Co`WqP8eqM@%Da&4XUq>-;by2$j& zr>!HZ2lDTB9(|%LpF$%(JijEPeN{r1jz?ojOx0c>S3W|V96OC(P`*MJ; zF!c(Da>B^cBzIswYcL0$T^|gPNAn->^q(P>>y>dmo@br^gZpcZUA(%XZjpU3JbTz%!P2$Fi?lULyFZvL;Mrpp`* z9o>|o4-l8Xg@2Q@Le4OIX@Vu-hdCdvG9op{GVBB?|4bM2Df}c%$wxm@wkyn04gBGk zE`75PG_WSfKZrFFL|I6nVqIK14OolAy{It!^`TiD31OwAQESf`=i5cwclhi8ZFEZt zK6xdQgl#Uqo$C( z`iCk38!Hqm>xAvi$DSvv;6!;(p5rq2zefsE&;O=>x@hzIdJ%dNGctSp-CgytcH;LT zjmz(IuUlWA9B=>Ol4|}VWpmb~T6HdK8@l9mmP=42vlUVb$(-W>DaF0AQ^V#()oF`n z|C6;+g^QdE%7muVgwFGcL7Qi%%}wV6pH(hwLXSEw4k)8QFF0n7buPNIdtC->v(B|p zrZ$A9%ZJ|*%nfIh{pQcR8BS!gF~K8bSr?S#Kb4TR*3(1Vldd1`or8v|PRg$7xxW!n zFPX-@%5ARWatdXrCfPj4e{)J+jcHN>8m#91(P)&nk?+W)w0NGe24*qji&O3~`;aaC zP;I1iH5DajtRL#F8?j`NN_Yis`J<=OG>Ad^)cxG@cZ;5)ARY-ixj;(FQiRRTyOIb>(ZUuN_einFzu93|g|PC^fAUIU zu>^V8z0P8phsyB6^8kl-s@`(|gD@VcN32g?+L?z*oGZKc#&1tnI@A$w>*+DO&_k6J zgKC;KyO6K8RaK}y&rAl!Tdt;B(GBGPq%q)fCe$4{eZp7+BBz}0UBBE+#hYb|mGIYC zF--pRl*0cZ(*;n;XKb&eFZ{DAmpF`Ri*LBwhT3pM#dc2cM}}AvA6>83{#iTv_I&T( z7KIXSyMjqgA1QLpR~}GEHGB&B^PGLuIt9QRe`};`lN(k?Mun^B9$Z+;42-& z_~_#WtrCp6WZlyDYxg(1OfG>Qg3h#>$p`qbcob2#?@R)kloQ4*JM9g~kZV@e`*B0&DULbA2G9+DCc#pAdf~ zv^wj7H5KtQ&Q)U?2n3?$w!QxcV(Se^7-koGw*DYmo{$vcA)-TUL~5J@Vw*P;sS=;5vWIS7F8`cQyJbVl53DO08z&X`YUH0?uj)O@v-!K#4UB zwQ>QH{Iw`*2C;j`z#wRN0lU4fBiv&euw}Iyz-&CZQ0xu1iaBDm&x^`6F%2Hck&KBh z`t|^0CCDAo#h3Bs>~|R-L<>Uy;zoV07!BC#)nUbEqSspXoTHH6<|Tq3`=*6 zUkZ)m)C~XoijHesuy}EtjFk*ADMM79rOZ-d60kMgCXmE}#Go*X=nwZ3V(hxUx6OK} z=P?^Bu)XjnKi&HvA(cNO$Avp6vzWNU=5y-@p0_8-oOjuEQ#nT87(!q1$+*VYG<`-z z#6a)(`ty`8fvj||JPjIM`->Uj<{0;uG zPNB|ZXV0aw&!U>8&(4m1ob~=a`RqlWOZWVGs;YP~V@sYBK3|IZd+Jahx?k#be)jn* zX)!ct@qBuD@ug?erZwW*X=Y;ZX7ls23v%qK>W=VW=mf{ivrcmx^1vWrZzObQ{!d)M z_FdH(pBdZcXY(iD{yjfB`g`?T@cxU<$1_GQ!I>qQJW&&dS!eq@28Ex?ZNH*sglffk zqVz~)MYk$_La8#~0|@&hh_&KzBP>IDl4UZ8zP|T!0#X@UtVN;AkZz}$L98T_YNAey z&#(D3ot8PB-(_*Qj2)4%oecDjZg|d2ZH?pUZ;2-zcwW(G%jhssnh-Qe`_|pPzNZw8Z4GG*N%L@k4E|- zhM|2G*0bV|8=Xr&SkAs$s*#I*;n=lZ0UK$ijvJb8L7Ky6hFSslit>e=7{zJ_J@F#d z5(X$3gl9m>voUn4t*uMD2vrBa!w7>_$&QZe9g!8yG?1zSVcMDN;`ojq#QTM6Hi+T` z!}K2tAbc|vd-mS&!?B+4Wjk%nRMG74*-uZngir;3*>nzYHzXWH z;Jy0D+c!43nn$CFo@Vf%+X=C)SG*9a0+BmKl_5A&Oz>iAueZ|9m7U&0Xk^PPw+UQsTiUERyS39(wpTgm5#bLBySuCTN#V4) zw*gRDjTo%@FqGFOGHuHH86zPfPubHT5E_;KTDtSDe$~sDmt}+Yt;g$CXu);<1U_pX z8iVLd8S8=(^C`Oh_lwm6p5)7infx@Ox|0Z`uvbJ%iWIC?dgm#WQW^tm=#slGQAkZn zyKA0^m&A*}5Q0!>lKm#v#nr}R5m?@Cd{YBo7C=m9LdXTVh{`((gwY^%GzxuWiskp$xqH02V$d{!{cjOxRSW9IEcgu zTSOO;Pn<<-`6@Drp5>*~0n%O9!g%hal9ZFg3?T&{^f&kOO(b1IqN8=&n@8|-DU@XH zD6nszguz|T-7YBfF}*u%A)j>bf8b2%8E_~)*G;Wf(>|Y<>x{3y!eM*`hBMBTn4#8I zcv*Q$q5B*yQ`_*`$Oe6}il*E&o5p4QP!Jqv*a-{PWK%8f)uEdI%|ioMVubDX{JiU9 z+e(;wKE)MaICD02vA;cg(UTBx(QuG+QbMb`Q_FR+5E}Hw-~VLx^8NMC&3_gGLbf}k z$OKB7SaJ{$azL@(45H@^IPymGVouzu^|t$-7hZ~yi&G9tx|cq4R{8nX zNm)+71%*3Hs}F8T$T_Z? z;OX&C(p}`cULXpSH%n)04(g5aRzpyk4Xtv{XN3rJ^lWSU@@eon?VJsMj9Gu{=yJ;V;Jnr zkvW-%!%~sj#mBYs-z2dAT+4XN<6?QQ*l_*{5hrWhl(&)Togh=A@rQ1v!`wD_Ojwwm z{yC3CEg&xvUouFJci3zG7KSQ`{1BDgTdpqa6EoQg7gcccDePdH!gljObA=*!n)7}1 zeoRn(WJlL2)ASdIx9*Md6ni}8%%VH)-)a=r=LyVjTfaWiSY>cKUqvK~R+~;}gGGa> zu-BDDv{nX!BoNr8b$SGbkF31aq-Ql7xE8J#-(tyEqG>TJ&SuQDsg^y@;fZ{q<*pDB z*osZ&w&r;Di~77ZJj!v@;zf`TkhVI_l&wLKCD*v=8qokf`)X7>C@96v)xZ~cRoPEB zj#@u5Yam4X1P@Y0sXl+Pz6JK@37m7XlOuLqHhE--tfR)v71Bzm!n5jPfzCBGLg_ZN z^SdIJbiyz@=Zqgl=kcb=KXmwhrPv{n3e5i58lI;j7Qk1nqRC~KxP3P9Nfbt&JlaY! zDPYbv<-WuCW4PR2lgs^8{8Hr=@n4^mvz~mA>ArM7Jp0vX7y3Zt%hC-uzgj0O6c$dV z+1>92J($lb1|qAw>nP~!{!%aiRqYMmsUQuvkOI~=D7`Mgh&MpO9&bc#cW@)l<6x5m~l#yZLqsQz}XQJV;OVE)8PxOKAwjQZ?tSd^z8RgO{3JBMUp zVWuV4DiFofx0JX@CsfN#E}vjST0iCiP2V{dhH&-GQjq6YYF?`xU*C0?Jdw zY~sB=c0@2LzK2^UXF98gp+_gQp^p|LW}ogBo=@-C2L0^sUEMA-3gv!B{k7@hfQS5V zJao%;CU8OlOCC`T*da7y{+z0WE(TxBwC$bppr%Qip_>AKe;q}IuCCl{+B#P~YNV`) zOz3R-v$uV=H1YfNhg9?4IS+HlV#mI__D|>Idav1ij@_V!x*7c3cEpo{O_zcv+fVv% zp3I*k4PV+JdF}c=6zaZ96*({5TJ=YS-@iP!e)T2)8xP(!Vl*#N^9XU(RDm z!SFdR1CZ_aohvc5$zVhIkQhoBIMjEQOH@J)Oz9ka;R`XApP2Rji-hp$uEaNtnqeEy z{rnCy!|u=SS2xjjj!&&45?784Z*mHfP>+hEvd)3x9oWh3-!OhB?*13acl2G|EDiZA zVu2OChQYRUiJ6eMPYvAMN`=y_h(!Xdg#A=ey$O^d7?9{4bA;wgebLF7RQ|Q`+W4LK z66h+Vn?5jqs8}}=2IV8?vp9g`cp~Bf{+$+<^1Ns#*)HB(^xuJ^c#@C<(HuS~or;TYq|A$Y#AASVb+;%;JsCbB<%Q5h6Q z(R3K*+ipxNmP1h4L}TXewmG}_N{_(J<+f6%R4R3)#HLrEV!F3{FixmAow=s^UO+r6E+#@8pKP$P7 z?y{{UYG8&IM6=&k|74H_uYRnpD3#>;?X+o;(9TT%CZ3|4z1OwYlXe}MSPImWmp4d! zaSjlPHKo}F?G3G`tN%{Z2{-w2`+DMwOaYsqZjfw%*D*H)WULF!PueNwiHdQmyb5A5 zlaGiuY}bvi+~NY=sf0#SjA+sKz2B|Zk6xX>{gkzJ4N;gs!!wtrqy7?3OwBm1HPz}# z<}T~iV=|O2p|t29RapOr?84=)H$ELOlZm=buIMUQ)m%MPRO&rI;Qqt+CAxsA69Du3 z9GF69xk|nVwXWocgR_LFlnak(M!3(wb2xs`7La{esjBpuzH3MCHE^VcJM_Y)+3!E~XMehyO#^2OW`;;-s#o~YxA#iQbC7b)d_ zT7`03LY4o&fs=g~E^~C(SnW??TXMgw>ai{2e71=+%yjPFd49;zv|Fbdx_b0d>S2@0 zEqZr_M4prVZ?i|49Ov8VpU!wfmwpeDV>B=Jny!1DQVb5Op<74$&lP>~MXJJi*0w1Jpv&e_pAZXxc zG8y&3tfuoX>_V<30nM0Gq#x;*vWsqX55ZUi@9gs)|qpK>pt>vKLd5VZukEJ84vV9$>Sa%VUN zb2#b6n{a5AnU@ia**sko007ybor&~q2r>*FniDQ=!)xgA7_>`(H}MzGq=fikpCsjv zGe-**G9%W-uUAV_6_v*U!)QOgnUh}X2OC&~v`uuy@P(BHLYJa}mw|rGR8~)`YteZs z=IdleOK}vmu<0?d%X2MPEkXhXt4;FRF?W?Ajq>!Xa~ZolB6bh1xh_!~8dcu#kSobS zBLq>PHdj3`A-)dd?M7#0*Z`}O;RF_dqWg@(8ev%nceRpF8O`FD5f$ZEZb?FsK>+(5 zVo|BQJ##NT@3Trwony-`LW2z@cSJnQLk^}z#v&fB7b%PS`xAF2B! z6AR!>n*P!8MIuXf`Ru|`DDa)EC9TO1ZvY*DNp5&ydB5ssjA9xFX9anGcKT0NccU#p z`XsqlNT2CU6p{gsj2&|f3~q~eS<_QZaRgZJGEn&|tC(2>^4(P8ZPq8FXIlUCFvK+E zW99knVsRKVsyb~yH4Yz5g3_1ur0rwlg$=L)i+s)lasSyrPYquEYSPJVG zUKpWCb0yU6G5?Y@WT>c=IUcQXT2&fZ`DOz!w`CUq-N?(D*cF_iXqD2a5E&1J4a8n~|d z&-T}8RP)oh(~E@$+q3sS(+A5`vr;KNKy|G;KRuT~NAqb}%C|#=5C$|p2^FKjg0)#t zLf$TyPxy}MC5p9`G+A?5?ZXzu*M$jXHv^jG{qDnKEFS_4jzWGp25sSa+skqOM!FIL zZ7C)X4Jb#?pm+E3*WT`_t^wu0z#ATs2T-bw5mtoWXB4*WGpb@iwC;{=C$+j;Rpoi}Dj^eI=gf_Ao%B`qu*AwB$fqsjoA6$UTDp zw@v|^-QhoKJ;s#4B_TFY5HZVmEv(GS(N8tM?ZG!3G7V$NZh-Oc^*D_lnTvlpQ%2Vp z!RH7HtDuI-#m_PXXxa=&f`f}>eFxTEI6G3*E$ZWPS`yp;VPY!0pAu`PC)Vf!p}nui zV(0`lx9+H(Y2H1j2o~F8h(GPG=QCi6SA)&Xa_0r5-2{ZEWS8Z3q0gXM2l9wjcao0G zz#}Mu-hJraFmT=UvRJsJo^@C9ns%1{=9TEnc{Y@;vr_UK*4#|M)*!zC-YM&n7Jg`) zQ5Fn#Ot?YtYJ^m8acTMsn)NUG4j8^q8a4}DknLmi&!R_`dXh44_QP*7%HOgH5nx1O zxiy{Ap~%*K2{D7N9=n_FHyWY1>2jOhMs#*n!zd}5@W+V0D~LGf9;LdPoQ$=0G#6i) zmP}$Xjb^T1A+`N{0spq~6*if-!Qe*kfW)=2gJoGXKP8d+4;-P;RP!i1^S4Q4PAAuT z-_-zo&!dlZpN-fLO1diKG<^=IWID!xZ*-sCf{;`|~V zvRMSK$LRbPLnxMz!aI#QCGy>${SWMpGP*&YDk`-;?}g8IPzMQMA=1_vdPp*Ol48w~ z?kF!qL^N~TzmzhEhP!%=Ge!y}O+6AY~tm(tClw@*5op0H=_ zD9#FXE8?ZM#uLDd^EB+G{HDNv6rCt#3I?6Kl)M7fkseRf^riJCv(YLq=+ttV8zRTo z>6+2u{{=)_RFIpzV(8mp7;)E#qc1EsS4LFbsoqusMN!un)0rtK0qrDLTJBD~_xa)2Ls@WfI2CNsE$vadP75l)X%EfpX>f?j zIL&?YV~%>IbIOvodh2hwzlj0DS-ZES7oqv7>9M_`X8j9cRA?6%D&00E#g;)l(XL~` zHmE-N7$4jUr7ROtKX5q~`QVh)FLg7lfaikZXarFFl!=MJn}%We{_|53^?x$;83zI< zXJUcI)gBE&FQ0q1dV2;#eanZeM&j!Xp%xy$iLV>7D3e8apudqx>(h)j*zhYQjg`J{8PodxFr z{DnBpNRtUXWxl}bvAKWC0ng%zt)~fw^5?JNzkj8*{*rpqDpv^F{kG$ai!$uOl$(dc zmSQVJtbLL>R9kTnM+QFLLN)EDBA=emH|C=KM?O&-hV3rQr_(*86=!?ch{$+7{9WLS z{}j->bFF1gW-ii|nHTTppD-;6X%J%JGyZ2bnFr^x#yi>#35Z(hT0=tyIQhL^NDD;% zHBS@MOK8{qk<2&mxQ9$4brm$8fZNs|ZM7zGK72^#j7pjnk80`oAlv#~EHZ!D)m}1A z$XX&#+dRA!osJ~JQ14wR!{J>mkCIDYgURF+$SUpio5g_@(tX`4opX69cB7Is3zsdd z0gW%$+dBpUD^$qEtM%W%WBk~~AfH4)7VKCkMRN!!>=eJ+EMf?#K{;+_7{6t8b$DXQX5n9QGHkQg85~K1K%pFW=!C6P3ozz3L z?otUckC-jTNHP2c5TA#2GCF38Y`c8{UAwpv2-jsN!@jw0~$!181tr~kgY5&Dx zy(RI=M>|)*kgx zhsiPP-LMe{97nUrK!{u*rSZg`228saCqu=5`Ms_ni?ldF7YmwiiJ+AR#FdOWQi_X= z?g$QxK@X1$k-iJphwFkb)K5F`6(O64tbu!n*_-Yrs>|huZ70{d0d8Dj5j`%Ew;b-PE%jRqT1bp_4n^kE3Q5 zca4F?-Z+wQ=X^#P0ikAG1Le^*eF9D4NwMKu^iR-HXP5Dd7%f?x(2N#~{K-wG6uhL> z9T9K;rj_9zOdY(%4-T4rQa>7-O|a`(FVqM{0<^!?y3@OUb)vA|i;=FnF8?9)Y-z+c ztReb!QE8Gyw7zu~jclL{Ga4|iM+)%4hG#`7zCY4iP5+`&byGM4#aL%zN1CAHC<42B zp1;(AXw{(BTjL7!{rf9bxepRn$sRG zktp)MW!6(SYcdjKWVfgK_miCV!kBw^ShxZ$MwZehH&P3Z>q+UVVe759{his`#Z;Zo z5daN_)zQ8B^<)1Vnn8SA;`3E`L6D}-2SVQN^JOR5jIp(uG*&>72F{<$$>>)F$t`*S@B(Eb#&sloY^}ac zZQ12}e3{n}EHXQ=&Z1dVf?#Ou*Pmo!NN@Bc?Sk8aet~Be2fh`2e+kV z!F&j7B`tb8lAlArnPAe$E4T~IxI)!U6+%V}I27M>`GZ{LpOW$trx*{n5w2N|5}bV@ zuK)dZ^aIM2m8X3uUB~cxHgPi)e0ZG&79lopO9gV^Ps*5~(vJA{2d}orjO`|NTWX4T zzi+G#WZgCBag{&fF89U|$Y%X(EFC5Wg(3YBJd@ZW13v$$+NaOO_nD!y6_Wwl)QL_R0 z%@55A8kr+*NmepYg;L4asa^p2k|E3#McT8Wt8j{T5!`Y^)Ycuj0 zr7FSe?#0k_T(J)KcaWqE-eC!eeDd4)i$q;7_*$(E#WDg#fWzK;yn4E!!`CM1T+uRH z(R+;Lq2Z$#4F*gkEnmQ)@1ZaoAXmacvOVTar{yc2ddumR(BiR~()x(btxHJGt@FHI zDH=`QWjUr69JE!@z{AolLJ&4UPVsricuuM3#KQ~A|D1?S^23^JtmEzB#)Y@}br(Qt zp24hu{e+aJOHiXT5#s1?y|V|rOwkQI&nR9xik~hF9%Ft<6%-Bjt(_qLpU3>^H|2zQ zxl+2ReVtl--nxh5I^nuJGyAF$j_9x7QsLx|xmu^GaLb;AMtc~yk$gN{Q)oF-d`NuU z{H}>%#7yuLq_k{1&@UVSeSc}vQ?-4=vCR*w>$Wo|El9)cls}tdqU5|gchkAX(lfJARk;a_+xxo5M%+t7z9@sWC~d+XtT>hRl|x{t4{aMakCm2$M8BL*$;K4{rD3)db&gG0OyGQ3j24~Ogh1{BXDK=KXnOA8aC8AS) z9xmBz>!=&N$m-e6oR@=BEU4Hr&&0|ANU|*5wxxVZj4{l+$oTn}^^x^XNX7o>+jSL; z$if0<1bnd=t@OuVE@?%PvbGdE=Z`PY-&9;&HT`IVf+CtlvC+Vmd!oNSfx0}_t?l>W zX6Yu@`w1q(j7I|+SS)U3nl9%YrFTPoM^Oi1s{M`;f!(Qq&r|6;LXj7Ag;Uu2re!&k z?_up=lLFtN(K`cG7W{J8N7B3Cs+xFMB)lGK7T?!v(N*hlb63JQXnMSelwH| zwHHzE1r&La;ve-#;5+~p`s!?jBr;~6YQN#B^$Uqp=cUA!sx922FBp?A{A{1GFY68Z z1AH>rq{`bMqQ8xVH&qk>3(+D2{RXlB`caS>p=HXOZi1G86|jogn&u1v%M*Yx^izF_ zLHZRhb;A28vqS}2VXcLXVZwOr^qXx zv)D%Lg(JX#3Oi0qsIkl&Q+PUwB$M)R2S5@4)}~5YDR+<1iR}VqD)lEFw9L_R^;cfk zI;&aYu@3ij#(+(tTHwv$Nt}gl9L@6`lxgliF(`R?;u>QD>3t`a z1=S_T-`?${?{?LVOnPYtRsAaTRU)FrRbH?v$|FokB8n7`dr|2-{pS&H|6>^_02<%e z6Q)pPOo3h?vkz@7{G&Ds33y?2&KBVD%|J%%s40f0NPQ{yem-_h&HZiV(Z38fC~}Dp7WB zGgC!Y+(7!#6gW)Ca91&Em6n0&!yqmmhv{vC`?jx~)ueLw`8*%+hp%@df@;ZRlmC|Ub^K7a_Fe|`R^S!RXv$TNBW1TCukp;xz4lh3zPeEOD>bD8|7 zv};(VYHyICSbrLpHzRZNomT_p`iaCgTi*DV*Khteg8g&Sn&ToVtRmDM!}p#{+)*F` zk$#G*MsNZQ5ha;%E*r*1!B2x1UiH86Yn2cUSEyzT2@KY?0|^_2&ATi{D)gp|%q80= z?PVzSJDX?8gb?=?S;{U^<%?6-DAmbz64uBPfPmv4jaP&h2V#`2x}ixt3HidqTDp_Ca~ zcTzJ)PmIpey_MQ%n46kjS@QTo#~Ei#RKFuu)lhtQ(|qu-Hd;bcRM!)8=bBcCPqU;a~R<_}^6A4TqG4 z5M>#InW$m$Mf)bDP<;9FW=iIhpB?eN4%#;B9N*Tfp3aPNSmNXA{IX;|BGlqW$^$&5 z?(1m*o-ftp&D@(X28up9Wx6h+W5Bl)$?Ch-!4_wqK96XA$uk244m{yGXuWDX)e&ue zVyqPGQFg*up)Krzjlp{LRbMZ$^mODE+zH8eLtnlc#nGMK8=RZH=<_CgFi_Hz6I0*A zk#=RleXa~tn80bTWmCx(hX{`m`Q>P=se0jI&$%mnFyN|>ws+G;2>*K<>)0Vw`DGU{ zeIpXG{ehf}%k&)B8p@C}AnD8_XG~rB9tq9NVm?M^XvW{+i`H6x&>d~V z%I%U51q3_IgPowxKI#m$s`Lv|Ao(HOY>R_QY_?C1$D%LS(~hlebdT$~3X|l1gcGn? z96-)6Q`;Y9mk70`T0#3*Hv`KO5p!qhKC!2FN{yOwoll1ob6CZBZCgt23&xgogbvbq z@)Vg%dUTKio^va_Y5n#1 z6NtQfn;%)OBvv*hmObYEyG-1UeRoOv0kE^_@3V%x(M05DMR!2-`c^J zBU48%S{^|=8t2|WHJr4_1olP3{EI3+2Q~}y?SVG|6*|=YRMA3o?zpXJ$){&kf#|WB zj)1JxN5KNccf(uqN9#&g`LP|*dL2)F$ue6525kB-U9FkFFT$GxHiRDU+b7^ zN|yYHXo~;4FAfB8uU9kKf+th%gUC5i&}MVV{D;VUA`PWZ<)JPtXP=vpEaRFN(j9_a zqi>x@SHf-nasWNP!UT_IY;j!3(`8rdQC+xRo+&zr@z{<7h+VuB#Ljf5hQj=tW%YqG zileW`dj5d*o<8&7#EEdV$M;7@sstW+AS=(F2DM44qvE9v{sEm&^+f%}-AWaz-$HZU zFu2Wfs9!g3QKqXdm(Lu(3Mu>RJWSJ9@S6mBT_{6dV*|__{W9_(DLqpi392mDMa`Ta zf(}yj=A-3L>EdP-BCCmxUCd)r(=9ruVX-UG?ZK}1*(?@u)*e*s>oajoJUDIf9q+6h zIZ1YM)*A*rz_k4KeF}3rw1t>kl_iHp1F{flgFk&T_wF-w7ERR3Uogx6UugOB?y;?! z%NYLTNO;C-kn(cyXuEt&z9QMM`qDyvVO)VIE6E)dC)E4HNODxUSJ9ExpBUbjDbV}t>j6;92=;;?kxDJA~k}C3hy;WsBGca5r z=3U0n)7mt{NzjzH)Mbj6n+Mz1Y$1J?iHGRDu7)EKeRJQE=?aC2u_hv2Hy^=1;JGA# zKkdv3q2!=jZs&y$&`l`5d=cRwxVCKbF(c$_fz!Opk0QSPhw}>gpw4mL8=Sf{m0d}2 z#!#m^MbE339B3Awa#q0Tg@MguOob6zr5QheKDcqFs68n_$rEm2ye~MV`AJ&B%8{+; zUV1a~L(M~*i;K!}rX}3XcTwlJy)()D7kq{Gl|1$qz{V7BnGXDEVA0LAJIZ3pEuSlpebUE0`_@o4j zi|v?!fz@8>is7!Q&0^G*E{>Z|wtt)QzNO^PWbX$y&W+N@s=m35_0m&X>V=u-ei@hH zFRrVt1Kwc)rOJ{`-Dm5a)`gs8CAT6Ll-*1GLq0_JCFUc~TuMi)AqLk_+7eNq+Axn> z+EHDbf;7~dI#HG=!c5~p&Ae`d6xd4k$_wI*rEx~rcV}-glm%cv`)bB7WgQq$&WhrT1LEiIaHwoPeevbt2?6nc0Y*5$C(Y$mB=H` zO(|$DHZYyzu{1EpzKZ?`OxL!YBlr|B?Z7}rJKgP*+0Xibknbk-L;LSf7!W_>eV}GP zrwvuY@5!Z?;6;HHVfeGG<~a5Q?o(j!|6(%Gx{n>!26%c0wk1LXCZsmL^6$Gc(bJc& zZK)}!LR%sQ@-{U7KMbPt+W{7&?v@3LYwbS}zS3X`wbG&R^dQ>vcAOq)WJa4G? z96!7M#|NkUyJu|mKl)?1ApG(yW8*yOXY1f(R*H6qExE|X%wcGP90eH zs%wnqG(#Z&MdK@WI8{*Gr)B@LYS!n`NB?)8zIA@)Rr`%ETFj3-1LIsUlWH@b3c6Rv zwhDs9B^FVkSZ(iSzq8JMhBpPXe|dEEMJJ`cej*~dxU(Tv4JCo%#v|K!54(+-W&8O% zX%4s+ue1gUrs%S+s~0p295u+Mb=0P}^`A`QX_bVq5tv)D95R2K;EozL=d(5IJNtO0 z>prP#*s2b#mM?OkEyf~kAZ~x{p zD%ojFp+P}f0)!}2n;_DophU%iQBiuT<@}Wx?1sY484pv98_Xi=B1arn>=4<7{mY4l zXmc?Mk+>t-x^A~DB9W{f<02o>{V}WN61{29OCW+NE<1uc_Qzdv^u}DRVd?CMt15g; zuA%cXZr8L!md-yeRq;TgR$6ZqxC(PykRa@0<5Ga55!=W|0dIS4h@=_F979ngl11ka z&!I#HM(%=;`JddpB%UpK9Vm(I(1nfKx1}Z8LEHTn5c-$)Z6P*bkb^%8!`OuOzH`fx z#GV{@!PY3HuHOCf2wk7B_fbV`&rSvk&8}0C$RvNbnKMl>Y4Jv&p3E zVkiTzgLXdVbHdxZ*z&D>O~vW-sjWjZ`yBT%tEB-GB!I3oc=qZKFJO4ZA^~OKPoS+Y|J9Z$*^Vrg$9|A4J;P zl_`p!T+E(b)_AENp2(!?D>1W8m8^RpJE7E4CGNXHXMj%$ap$2WSs1}ED@ib%p~MYg zosd7l<;aa_Ub=_4h9|)HQ(>yd>p{7~Ii(K0xx|V9YWXmZ)tKzuNYz5PF5YjaUPMS# z+)i4{MlHA`7TnhO^T*Of|6b_{5d%PHiF(gu`WGkSZf##TSmNGm;1o6we}5s{#rVpi zYxz6^1X33=Gt{#ov5GI90IQdPmC|)9{4PjaV$>m+7L=2uvxjTd!(KpQ23_pqxitCv zz(lW(=~B*NA}IT(%PxFsS7I}IF||XHt3|nC z;Eg4m5=i*%kIBptCY+t+BQPdUL}%x5MIq^0Opw!1h9fmR9$)==eY^pH*Su^*If&;Pg@n=-RwZo zUO-#I;X}q)2+YXn0$?t%>X%PCl@u@<={9R*n>7VRVRsIe!b3vuO3ry9UoPEY^XZ%a zx}uUity1Co?fgC0y~wju3xmzwiNh*R=J!-2#)@yI#b1$+Q+7Wu?!wo4X4`a^8(qSta(QzF91v7S9x8j*XoWs`jV*V-CDr&F6KaA%nK0VA$jM8r(DSh`}Q+qOl} z{PWW(D@+6L1cn%pid5q`t^tCSHhobV=94DTW;icrGQi zuUK}-bCFM&g(@HR)da9bHamG~xR{PQw%{_#oa1Po2^}aH(LJ^<9e?t3c}!a|%Ojz&3-f)eORc-MC>*ImrNb5SRTR^=Kv^X8Q)Q-L{j$U}r@oKt2YZ$0rz1oQwD zf9}Mq)@4x@@w&~z^MPNEWyUUc6s}?ef5QPbzSv@&dp59UAcEfpps*k69U?^ZCb9^* zdkMO9sxS??84mP5EYM5RH#P=C+DgkgG{k-aJsfy8r-R5Wu0;16NiBU^?0J=VNb_Vzk< zn=Q+p!|U!+Z~8Gfz%&2#=RbSuYg*l~=zH*%qqH-p$x&Uuf*ND>AZ1sJz3->V5ux}d zuvbUd?kTbNurfr?6PY(RC?&-F)27C@s!-xKMC7#IcZ$3B7oA~OGY76r=TYjO!)}9L z+BDmJ&@=-5#t6?=boKjT*ul0-!IRX=zr--ZOov<&dpU+!`0^fyYMVOkWvlEv{`UNO zo6sK>U-VQ=VaX=Wk?_pm3A}GX91T+kpkRlFM?t(sY zoJQ?ht#gJ#SG4c6tm*u`U&;s7_Rz%l2&t0_IX=P$VH1e8xu9epB;msnOBR9#)#V{^W( zEp~->K%LDXn_!s)GE`PbSM>%b0~A&2)~=-0^EXAI^9Rc~iKfE|H3^5(ZDQT_5ntHQ zIwY;h5|9 zFX(3cBANW?V9K<(2Esy8Z>A+(f0y6tJkYACg2D*GVm)p>U&-dOL9z6TUjV1b5xr$UKMeq^Rft~pSuDF_ zwk9d0>p~t`y!EZq;_ycb*|ya>=piaJqw8b3k)~6>mdSi$RiUXg@MW4M$90qbyFZjp zqnG|_tS>aB;lD4_7Zj+#YoYUTcMET1@fkQ!VJ*L z>89q@um!Cxr}bzBGW&xFLMiJiyG$?51K~%nAWDFOwoI_ zi@&(+S!Zdx#7jSmvi+? zM$(m#lPndX>@P4f?mtYJ6x*1qVysC=Zub0=K1C)^Hi-?$LL@ z<9y`XWo=A?jST4RGWW^wb~4WPGw9;e!l(WKmv(jul?IoD zxsIJ_;O(hVsK3QtF*88deH4gkD0x$(#J*Hf1%X8Q1JYwt?e@I{Qtd{G@9#w)vO86B zLLoV@F%w^09S|8pTw7{Np2y*K$2|DiBv@Ll!zvb#ktM|Fg9sTU6b}2qAZzW=e(9#G zmzU|PxR|@z-z`hD{Iujo2j3s3$qdz(sz;F(NuDu;5S=Ap2w#CcjaDbrp>ZwGJJ{8P za=lT9&Yfpv!MbfkEf8iVJcQ;XwZjef0tNrhFx8HOP)ZMnnp%V9WG^lkb^*XnYzZ^x!y54juWu7*25N3V6O6CN)k~;!>A<`sPpPP^*9FPYAq1Q0MiO z4U??Ver{@|u{ZD>M8&~ql1uY}Qd7<*v zF(%M-i?mZ*eo)vOC-X;@r$-~-`4Si1I_W+jpihVU=U{CIA<-T^ba_I?RJF|N<%Og; zBnPE~{mYwKr!{;7DK4DMJQNf!P6EFWfl!@Zb7Qgz-lpuX zm-C5Ctr{-wwz&}vJcKej=0SCT)|yn$Np5yt#?OS#FG&^Yu(+Knb#A?a_4GJ2jkmVN z$qp7nv7c716ov<9UB=?ZMg`;BGVqnGLb0ZWH!@2R6p;xf+=)VKAE{*xi6^tg`EL9D zoYwPWvoMip$eTk?jE`;CilOTYX+$Y_J_?0SUxhXm!w)@mU&c|x?vx%)Xx&`yWGlP( zF2j1>*J(=yFpP`7il)tJ4Ez+i{3l5mlac72%^NdaPqa5MO#dwNKvfCeCe;ahvBK9~ zgvcgp1M+wqGp_u4km*dcO}O*u`Q{lwe9!vQ89wFg79X1=C|YC)#WS}9!_M+7P%^ENKV*&}Nx?-k{54x^s39I-;Wofv2wfi) zwZx9fR{C`s)c!BH!?Go-j7dbkN{)17rv7?GYx}PT&noAlAnb5#VsRj1CVsMtK zB^?_XkL$)y_VAqi^r?d}0VEy9CIOD>`OPdb`!WaJs-NB;%B*T}BmY-5&d1po@Llol-T4n*^8CQZGW=i+|e3B zH6_Xgy8`I#*@{2I2UEWZUBY3^)JlYsFOOMLVmf28atVjXjo9@;vfLn>s2<<6? znNcuuDNpE)&DoDTk@QZvB?u8_>*Ciqz>k1pAUj*11T`YQ@a_E~D- z6>o$^b<&&$iM|Cd9dw>LU$-|Y;<0~JdK^8jkxkfl6muw;sZ2NWPF1xI$6m`5X=p5xSAyvzYwHyH5E46~z$w)imie8?@)vW}Ex&7}zNtD+(eo1AtOvS=wv%Vx9IoJlE5iBw z*eZk&`-Wl$q6~nz<%{M3rGb%7bdlyR_D`FP41tI;S=2?3XPX-<5&yf|AEsr$*8w7& zH**VX@8h3)(z-Ud9U^0Ix_~sZ{*w3?Uqc8-|amFP3vqspukd| zXy{9l45S3|5zDD>sc}zPBtD91(^oAj+&DF6bA}<5@043|TRgz{C}l>*uz2iJ8)?3r zJJnq%Y0VskE6(3}_s9bE4R8;&pL@7wHq}XISf2u1ffRs>sCFZdq4S&)6WF+ab?dKm z?@0Ec3HM?Ike{S|&W4>|t!nD%=0ZZ<(GwkxuG)(n?Fxv>8ZFemKbk{-Ouj_j(_5uY z*8^ze9QEscmw+Vk_)h~xy_z{;so*hVFLP%1M<>0g7_hv>H`Nx@yRk;Co3wj;Y8*F7 z-Qxa2XGq9$BYv@|?Ztb?@PQwB{u^9=i7@K_LWa3FUinZ{t-CwsbJ8U1r~q9_RkL(W za80d^QBy=oZP)4QD+K+1kU8>JG!`hNjn&JlqnNM{Zp!f8urDY;z+2`M!<03h*J^n^ zle!WTSa4R79ma}Qq3s|#P7Q|m4e#sl@e$z8cJyMNVrCdXEF(XSjYk#8Ulxnzzd2Fv z>tZjf-fXw0e5V6ErSdLGOAczgWt&??HJIU+M5xCf#cRi0)rBv=Mvm>$(h@fVk_&mi@i02prco1htc=M0j zmb}+u=B#+wzb4qrD#pTi!haO{A^K6JbEIyfW2S<6m7?}UB+%x#l6joS$~a3$*0yAZ zqoyVJ#uYdz26gexpUCGy;hVdJ&ifgzNoW4;UtzhAyjHQ{~i2uR$uI@(bJDSL~}Zfp%HDn99Xs9vE1+Sq53) zg1+|o`P82^tomEGnW>!sb?be&qmf}*q7@Tt{Ga00@XOX3so zJ|!~mrv_)4Fp5s0Ph8-*(T^c zS>zj~Ou*{rfLAq%AKqZdmj>wx;QRoi$P`d`dK9i2S^bb1{0xxZ+%o#hZ!E!(W!MC^(vK&(aXw zFT){pu^A}20PMI1**9xLQeMN@f4?M|)NOMBZB7#Qp|U|t#Y>6p9gfA#nLwu)+3UD9 z?UQj`AgbcMW=loo!z)|nozdp=aZ{IVtKC4-x_zJQOZAE4EE0J@#Ea!1+7l`{Qe=!; zf*-1NPAj4Rc?i{42`nDfIMyEw^CO0`OG2wVcHjV)lufGI8I3~!7c3s#W`4Es!F(9< z+2*8$nDWu>7^-N)wCQQE1&)0GL0UWaS-B2-oHUEc|Ui(3vxaEgbny z>fFsYmiTZVv^#61gqh$(#0>$86p%6y_S>A$uyMv{bxEuP zx3aU8-vy_+RWeZCX?_BL)Rpb{3U<}` z<{~WrrOaRL6sAs87#TgVn@_1Pdq1jVP~$kchjBUSn7kPj)9x^Hy5<@L;W=1u6Qwf6 zNI}j<4>D3nOm+_=1{q0+2%*Z(w+jLeHoXwfNrS|hsGLpd(m zZ^pO`{obK1FaBqWXWb6<#Iy{0hG3b{?x=;^Q!QgBK(Q=Bi>Z(1dDy6W8P&iMJw^b){{PPw1npm36PFrzSAK7naa zOl2k?k#C6q%?nml&$DGD|WJopznvx#qa z`Fa>v!?F(t-5?^a{j*nuql|@BlR2gr)-(Ez6UqmEM!$U~d7j_pOXTga8thHp1~xv>HkIxW^sq^1#MxeQ8w9WzmdT&Lfhz0# zI;MR|d)cFi)on^@iY);88=@W!%^;4~WH>!`>G=YTKOJ5i?ymwC;;3k3vlT^0{SbI0 zIY$EWwH7yzXQjI8`s!AdgTfCxFSGxyW5S=D*@S{z>x~}N+_-fyWoC--YZY`*5%W3S zJNS;sMUKjWc{-0uw1d6uoWR>}VzKj1UqbW=fZwVz5dZ_=N$sRaq{de~pSVRZ`Hc(T-l#bTP zm4Bp3*H6j$ALu>G?w5gws_NCq2A&o_J?gbdLq(g_ov*YOlr?E8e|hnD?7a@Dk9?*% z+EsB#-V8uKn#bf+nE%HsfC~aA9}6keFDx?M$B2XCPL7W%qz7#>tG*N^&<;Ne?jOru zS4wJ(2b@hC^;}gkal>l+;}uSP>Pt=CN@n4MXjh}fAMcETj5`v0+>$`=<9t0z2-98; zD#=$EilP(~x+b^?%%GC{Rb(EY9}E(BJL8`49Krs12+q_7k77&5{0v_*uQqh`@R_W) zH?g@zIO1)87H3Frl)4CWoT;>k+gq(nHid{_UV!9ygi=Zsi3ihfN+Ga5H%^Na@GeP; z2+3vJO;vMeRw@tvV+eOzs$KLc{y>H=3`Qc-h(XH5o?)j#@{@66BAN$70k238Rg3^-gIZv%b)mUWGM>5Uv{x#>`%O1C>QY-6a zqoxkJeVFejoRVXLMY)S*>DLHa)?QU(QElD(B>uFC6Nvmr(zf; zxP`WUy3pwuunYotZRNm5Km*YZ^LF#Oijh1w#%OO$Pr!XtD+PP_kF|S}=4+%10m}l< zuw{ErNw_~iV~DaP6rB3PeZK`JL=^|7xKtKOsTf~8%RoHolm@uv2BQ*)B5)kp5jQC)Zm&DoIcC9!SD@ z^|r@*)+QBMn;CaK%_?{ax$xV+^DV()!+i(hWw5)M0p#voh8&)bu`H&^HRvG6)?h>IBk9~&79p*%GOj9 zoXuI1+TLj=AcZsKx>DpE`;bc^y~TCnTkhjKXqArVE>2kOer^$TA}y7xI!IDqoOXYa zjmWDNx5Ft*=NW*YvLg<5IF-BVw|se*b2~wwq2f`#cRGChuA$dSaJdSdr{(tsv%iW3E-%myN zcoQFrO_Wk9QMULhs}tHRe@^QQbx!tmJW=|HLT-?}R_9X&cOG@p&~*p&5QnGk7`p`&;WN zvToZAXbh&Eaix@2EEz)~&1Z{$Znu8sa`0d}$zejHEk$K!v?|TO*wWUUExI)cm+qX! zBxH$cDF*R5%)`?dlL^=P(%C@}32vqM^7bo7sWl zTn$d+JuV*#>Q>o%XetZqd3;^L#Zyh`mvMA^;#C_-sO#9q6<5zIGH1A%YEqqzZjQb! zGQ=o$&*%?O;-YEIKx=YUIXOOIBoHIJo`SF#U(YBV02$ZndgVe|nnM&2r~#99U^tnt z|ND_-nXbpG~#z}mZOuAyx&iJDt z*b7z9QiNtG#l*M;xH6)FU=l-T!of!2SQ>*rozc;^AfV)9t{}u9teoGrNk-EAZ!Ke~ z$=N`fTx}^kbL<0qK1)|aAA8XXKIZr-fa-ol6~WL{W_vBGrsD)X$`4*Wzgc;{tetJJ zM}o8RjqofG`WdKt_hC}0!aDP(w|{X9r7#N>BI7SDJY(^ke6}Oht$qq1Sc&;)ZwQGv z5|wEb<{?0c$C4F8dStG6LHGcEkSZG_f({iTU;kN<=n;v(#37uJ@)qzS?WD58Q_xGO z)8fwa_C}5zEEsUM0(3xSLgQAz`7=?#gW@SpL(K17v@7D!qJ%G8VR|oFYVb*q$2=Q| zV5lSqgD9_u%7kkIPoJ#!HN}V5;F;d>r4D$&o_GPs(mc4Q-_dDW2pDLjknt~Pi(Nr? zHtCE2F)PU6gb5S4&E*B~v0Gdm@l-HFK0h0AkZnRz{9Yl-8Y>E>f02Cz1iiC2gI1V* z+_o7qIWXCLW(H6UEB?5m{TBhUiM9<;c{)t6s2s#&a$y6ITBpGydVuG^q31IbJ>ws# z*OgogzhJM7S))0U*06ze^*>S$uR3N<*|kKV)CGK!NxV<*5_?JQ2G`rpeL6ri*|L!z z!Lpebq1iX9BcT4i17)ky7DYS_H9mH6=$?a|FW)CkI{Ihd-q%jwsOa?kq<6BX86WDJ zdN?4FuAj;9S#uhQA12DGqbothnG&3GSf&LoxMhoEpI^l@n6mM__Sdvj9RsEA+z49a zsbtdq@cnwNQuT#X3!Vr2R@u`Le(^vO275;P*WhA~h-dlE*9eY{HXM4fJ|Br zZh*ycEbl@^u zN$H=1-Oe9yHHLM&5}r$=y}QZJZ03%C|I%8NH=nnu7TPYq3Vt0&VtUHJ-71i&t77+z z4CcS&i)cwz(<)f$XMse2{gL^u=rz^S*Z=j^mO(Dk5e`n9f|3SYpJ7;DHcp ztd8LJ64TTuOGLyJ!~r5wN87vK&tJT>P0K$fDzXCU(s&%(u+*kiz~~F^?c$KwhbDY? z3nbaA1Kux}yiRmHx^2m-3m)r}ycxYW{ESDAv z;6rIC_kWh8Ap7+=+r=a#A%qukvF$QE(f3~imLshKKmyIYioS^3R|>N&Kq6I`Mgv}q zyVd{j#YM~78H>bGiG;dl&5EtELTg{}HStCfR=oapVyH_91UGM*VJW=@ILL_!$S2dx zA8{Yr=_r!SSl#w6;&3|4;?Yn`gO>oSDx5eXad$5@fyvrl>cPLa0q-d;NWAfNo}frK zp4u%siU8suCM#B&wBL9N>J+1w>c+E;l@`uaQA zu3zursrCOOfgNTNX>{$xSKcTyY1b`vPV4&u9Ioo93HafPLWn`nO`(0&0{UHHw@#of zKpi!!-pcOG6Ph|GMJe1A{E1LI6Y--f!&DWL-@cx=`4gIAh*aAJX$ z#eqE_WP$1rLUnHFmk3exOLr1up56})I7eYt2N9{w0EtbQC8%D08dU376M%w;6LOVj zn*cGX#uODCYw}E1`f*^3yQbQSp`QONza|33F{m!|2|FyRVF=ioe)Sp}l)zB*6Ik2s z@+|??SB!);v$P~))NCy2+%M0S#Vkwy#bRcL5Gp_H!gWl&+CAmNmB3Ou54W@dTlS3n z8KisUsk~EoAkVdeD?CZz??tv1f#yJ~J&Ni#0wMCrA&17?ZODQV8c#zY8gj9N9rX>Y zN+3S4`MzH55JsQB-;v%>b>r|4NCNjjWq922x`f_y(mtMaZ6 zh^k%8Ia4O$7;pNs!YZ==t>|pclj4%eOIRBigMXkLbeH%)pJxJ-|+PvdE!dD?zU^zAFZGb2A-_EBZ0 zTu`M0K6SeWFmQof3&ZK`Bv~EYP_#Xva240R?yj9=7Q9ud_4B66!cacM(=~h$z*FKu zoeH66SROI7SuZnG9ze@}2P)F;-?CI_fOaDKI=;GDXUf=0G_nTR(W^Qj!O7vM;p_98 zqkR=5h{F#aZp(`!8Ysa-^YpuWbWx9i7`u(z8FjV_?I|8cp6Xz$>y`tDNjdLuHce5YGqMnucVq6<3T&|Vn zVdMEnnh3*OEv~_??cwOShcFyM9_$JISG;FXDR~s|05%o`p}?~R4&RStR?Gem+NJP=$x7Prp%stf<|&SoIwvTRh&5McLhQoyP^ccs;} zPyOI@)tMI0_^EN8c!OM%d4`RP{ruljxo8H6ha-*12#WlY0b$Y!4TA3idajRm2GG)7 z79{Z>I2;kd@4d);yStn|D|#Kn1|ljdjTrf8gIzyXN(jzg?GNzL5?G(uhdum=U2wmp z2+XE7A+x~H^y7n0#`IhJ<+gfSIeXdzo2z^Xp+Z1|3`>94=~=oi1MsqQ4j%xT@f(%W z0OSTF*cL{n_{(p2Xc<$(`%)2lMDV}gbYT|#QnAZZzE{lTJ0tx5{m9NrxCQbwW1TQx zA0o(|pkFUalld@sj>m!1SDPXiqW1~zd;w2vi5eITkF)yxr{|wFQ4rwKG+NtqzT>lx zLYBD*iLB_TF3@taHZ%%-W9fe%WN+P>PEpZ^S&>ZGRa!GyXKXu!Unk zRh`@nvTu?qgHZt=Yjw&P`p_+44rr7nfw| z*mri%Mvl-TtWfCMdY)n|)_G+c?WT~G2KNl!c`w46Z~oUFDemEy_X^SP2;qG19US+D z_zj*y!-+KbflDnAP3ovI^+zWh(3yybO0)xA3ta zlARu%R}405&>Z<4J75CvY89j_A{M`$r(vX$=dKRo>xoKX!m)-%7=7DplX)Wc1M4cb zh$e}j>3$0+dKTV{Y0SXY+A0;b#y`**!wmF!1~HQF-gn z?RsSt7!OYWx@&n%sqBep@TuhNbM-qFyQ;mx0T@zT?Z1&X#}^U>rksclK4@q8xE8Z( zU#WO_zRqtB%ZhRniV%u~LZTTb2?}+*0gjW}s*nseAycRC?1&E?zHhB&HSKR-jo+!; zIR)Im*TriO{idZFPUqnrw8-RDe8(!EzOR2AVj2;KpAeVgxr#(1Y%g2=K413AS>>KT z4_fX4Z-j7B`{)@nTez#AL^}eq9A#a9fe(L3D|p9Qr%Tqm_d_N+KM?mdrv0#s28puuF~O$F^#xjK4=OG zDI}*gg)MveF$-NQ4V!j`bWiXYEh{rZPV3CxV8wZBZRhU=uDqtaI6D?t%i+^kbC>j! zlLf$%o(kIab=z;2)aA!CBO-274X1QR>o0g7oEEHB-#G1*E39-8s2QZwk5I%UxuF`5 z*Dh6-0G*)zova&RT6pe4=MC3GhfJ|M@!KK8wgrVWS?-mzLa9bh5;nfZJ#$QL}Hm+O#;Y^><|7QbzzzIqs+`4JocTGv18n2L8Q zZ#N2V>2=ku4ieE(p*D4qgLP$+34@4FY28Nz8FSKW9*Mqv?zu)337=aHspR!1caG|! zL30`?6%gQm#?#Zs!-guDPYH0uVe+-!(Fb=V-1gQy;wEX!2?o_Xl7{-D6LqvS9SD+m zkXCU+HExoJ^r<06vNa@3o~n;Q(@9S4T1T3!zWTcixe}?CUt)6qkO;B}H^7AOTA8Q; zCT2r!7QH8yR7)xm8WmOrYJaMwcx}eay5?Z$sL4z_BD*EkSlh+-6QdKgdG@TjRPQyU zrRws?DEPg~a{HMtyM_N*SnLUJRPaP+C2Hw12sk2B{q$%rz<*36iO59lUw9H0JJY4Q zi(aGGo_iD+$sV|#WpPU~Ss?u_SoR-jm$kQv{oXQ<)k`y86Du}b*JtiE1iql2^6e7? z61^l(zcmafw9~b10-$&R3vh zmH`&aZ|Ck)vf~G>4Q3+%qWQiS8WR6{<&VtSe_jv9z8{sHNUb^7oEv=|cXY%s4OfV_ zd2GO*G(lLBZhaNnXWE9Gz}*8h%9r29Vy-%?;m31LjWeE+0s;s)!^_dl(^`y30J>+zaVpXM9(z z-9a6&#w?y6b5&}QTd#cROmw}T_s3&p|FXvW^^*FCevcJ6z=V90;I|gZ$GLdbC%>VV06Hkap^HppGK}L{LH^aG-@oTj%`W z`5j`5Bfe4&qY%|Y@(E4%#isNFRJNiJY|({>T{cb<6O3Kat~fITr|ILS-aBtK6u)@s zd)7Y;oX83!MNVC9Tc#H!*q#8TNH^tfUWJGEJ7~g{B^_1RKr;4`opwde9V)rqAD{Y= z%bnaE`f=;q08espg{jXPX*%T@Wh)S0eM~XY(@bH!u@4UKrE_GMlE(d#0q?0N3Xz7M zgDF5yp#RxbfZ(@DJCN#ryI{gR+*A<&h&zGqgR3HYjoVQ1YEIxc(+4V5Gj`7Fxj+mV ziVq%}g1T)BP6B+{kavKj7(hf-@@SUR%?IdBq9kk{hvn?oVs2c4#X9yp+r*;2iMg!m zdX=2-pLJF3HTHI>zr&}JD9~H@rHf|ba&qPv&`bJ@vep7mP$_r;$LFzx-LQv#!h--0 z5S;p|mA#9>1~q7?&e#P364h-eGChR<$Qv;yMK1ZRaLW3#Khk}JJI_gW3CAp<1H;=& zvqS-e2c;;3zftrG4-c{Bsm_v}H68}yXs9?cp6c!smVj8%);g~Al$DGhnzL=`7$Pnn zLH@4!a{IeS<(aSd-|3>s<-piyC`1X0Mw`o=Nr88cT7Yz4tP3?WD`rIz>JI#JT_)@K z9ev#@kV8uqt{p=Lr^4k7Z9e{Fm*>F$z9qlj76>O5oQo0x%qtDkZu{>T)F(ID6on8h z;}!w>hKPX?jd4T}<|)&EKl*0mMWAK%^fx+B20S+Xx@p8l#v?Eh=tPZ<*Lh<1ES^U= z#K<;O`j3~^ATlb!;haF{2WZLmtkAbtNB*2py&%f}!wkL-0{+a5EDdY)2{Hc\n", "\n", + "\"usecase\"" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ "This recipe includes the following steps:\n", "- Define a calendar (`lilio`)\n", "- Download/load input data (test data, accessible via `era5cli`)\n", diff --git a/workflow/pred_temperature_LSTM.ipynb b/workflow/pred_temperature_LSTM.ipynb index 70eb115..fb6432e 100644 --- a/workflow/pred_temperature_LSTM.ipynb +++ b/workflow/pred_temperature_LSTM.ipynb @@ -9,6 +9,14 @@ "This notebook serves as an example of a basic workflow of data driven forecasting using deep learning with `s2spy` & `lilio` packages.
\n", "We will predict temperature in US at seasonal time scales using ERA5 dataset with LSTM network.
\n", "\n", + "\"usecase\"" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ "This recipe includes the following steps:\n", "- Define a calendar (`lilio`)\n", "- Download/load input data (`era5cli`) (test data, accessible via `era5cli`)\n", @@ -29,7 +37,7 @@ "source": [ "The workflow is illustrated below:\n", "\n", - "![Transformer](../assets/dl.PNG)" + "\"Transformer\"" ] }, { @@ -438,9 +446,11 @@ "#### Build LSTM model\n", "Build a LSTM model with `nn.LSTM` module.\n", "\n", - "The architecture of the autoencoder used here is shown in the figure below. (source of image: https://colah.github.io/posts/2015-08-Understanding-LSTMs/)\n", + "The architecture of the autoencoder used here is shown in the figure below.\n", + "\n", + "\"LSTM\"\n", "\n", - "![lstm](../assets/lstm.png)" + "(source of image: https://colah.github.io/posts/2015-08-Understanding-LSTMs/)" ] }, { diff --git a/workflow/pred_temperature_autoencoder.ipynb b/workflow/pred_temperature_autoencoder.ipynb index cfe5ae2..a323019 100644 --- a/workflow/pred_temperature_autoencoder.ipynb +++ b/workflow/pred_temperature_autoencoder.ipynb @@ -9,6 +9,14 @@ "This notebook serves as an example of a basic workflow of data driven forecasting using deep learning with `s2spy` & `lilio` packages.
\n", "We will predict temperature in US at seasonal time scales using ERA5 dataset with multi-head attention autoencoder.
\n", "\n", + "\"usecase\"" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ "This recipe includes the following steps:\n", "- Define a calendar (`lilio`)\n", "- Download/load input data (test data, accessible via `era5cli`)\n", @@ -29,7 +37,7 @@ "source": [ "The workflow is illustrated below:\n", "\n", - "![Transformer](../assets/dl.PNG)" + "\"Transformer\"" ] }, { @@ -576,7 +584,7 @@ "\n", "The architecture of the autoencoder used here is shown in the figure below. This structure is very similar to the famous language model called BERT. For more details about the full transformer network structure, check the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805).\n", "\n", - "![architecture](../assets/bert.png)" + "\"BERT\"" ] }, { diff --git a/workflow/pred_temperature_ridge.ipynb b/workflow/pred_temperature_ridge.ipynb index ab13021..6dfd806 100644 --- a/workflow/pred_temperature_ridge.ipynb +++ b/workflow/pred_temperature_ridge.ipynb @@ -9,6 +9,14 @@ "This notebook serves as an example of a basic workflow of data driven forecasting using machine learning with `s2spy` & `lilio` packages.
\n", "We will predict temperature in US at seasonal time scales using ERA5 dataset with linear regression (Ridge).
\n", "\n", + "\"usecase\"" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ "This recipe includes the following steps:\n", "- Define a calendar (`lilio`)\n", "- Download/load input data (test data, accessible via `era5cli`)\n", @@ -26,7 +34,7 @@ "source": [ "The workflow is illustrated below:\n", "\n", - "![Ridge](../assets/regression.PNG)" + "\"Ridge\"" ] }, { diff --git a/workflow/pred_temperature_transformer.ipynb b/workflow/pred_temperature_transformer.ipynb index e61bebe..65e5ed0 100644 --- a/workflow/pred_temperature_transformer.ipynb +++ b/workflow/pred_temperature_transformer.ipynb @@ -9,6 +9,14 @@ "This notebook serves as an example of a basic workflow of data driven forecasting using deep learning with `s2spy` & `lilio` packages.
\n", "We will predict temperature in US at seasonal time scales using ERA5 dataset with multi-head attention transformer.
\n", "\n", + "\"usecase\"" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ "This recipe includes the following steps:\n", "- Define a calendar (`lilio`)\n", "- Download/load input data (test data, accessible via `era5cli`)\n", @@ -29,7 +37,7 @@ "source": [ "The workflow is illustrated below:\n", "\n", - "![Transformer](../assets/dl.PNG)" + "\"Transformer\"" ] }, { @@ -577,7 +585,7 @@ "\n", "The architecture of the transformer is illustrated in the figure below, which is from the paper [Attention Is All You Need](https://arxiv.org/abs/1706.03762).\n", "\n", - "![architecture](../assets/transformer.webp)" + "\"Transformer\"" ] }, { From 2ee53ca7902ee1d1342016c5ee36e90a2040d26f Mon Sep 17 00:00:00 2001 From: Yang Date: Fri, 30 Jun 2023 15:32:02 +0200 Subject: [PATCH 09/13] Update workflow/comp_pred_ridge_and_LSTM.ipynb Co-authored-by: Bart Schilperoort --- workflow/comp_pred_ridge_and_LSTM.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index 3d7d271..e4e88a0 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -160,7 +160,7 @@ "metadata": {}, "outputs": [], "source": [ - "# Convert Klevin to Celcius\n", + "# Convert Kelvin to Celcius\n", "precursor_field[\"sst\"] = precursor_field[\"sst\"] - 273.15\n", "target_field[\"t2m\"] = target_field[\"t2m\"] - 273.15" ] From 0f489e52264b2f05d1e353f0df494b86e9eec817 Mon Sep 17 00:00:00 2001 From: Yang Date: Fri, 30 Jun 2023 15:32:13 +0200 Subject: [PATCH 10/13] Update workflow/comp_pred_ridge_and_LSTM.ipynb Co-authored-by: Bart Schilperoort --- workflow/comp_pred_ridge_and_LSTM.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index e4e88a0..da1d113 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -73,7 +73,7 @@ "#### 1. Prepare data for data-driven forecasting\n", "\n", "In this section, we build a data pipeline to preprocess and resample data with `s2spy` & `lilio`.
\n", - "We will see how `lilio` can help us manage and aggregate data with a user-defiend `calendar`. Simple data preprocessing will be achieved using `s2spy`.
\n", + "We will see how `lilio` can help us manage and aggregate data with a user-defined `calendar`. Simple data preprocessing will be achieved using `s2spy`.
\n", "By following these steps, the raw input data will be ready for your data-driven forecasting, including a deep learning recipe and a regression-based workflow." ] }, From a2d02051b0e8819b5696ab34c40b1f99cd60511f Mon Sep 17 00:00:00 2001 From: Yang Date: Fri, 30 Jun 2023 15:32:20 +0200 Subject: [PATCH 11/13] Update workflow/comp_pred_ridge_and_LSTM.ipynb Co-authored-by: Bart Schilperoort --- workflow/comp_pred_ridge_and_LSTM.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index da1d113..40c04ca 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -332,7 +332,7 @@ "metadata": {}, "source": [ "##### Fit preprocessor with training samples and preprocess data\n", - "In this step, we remove trend and take anomalies for the precursor field. Note that here we use raw daily data for detrending and taking anomalies.
\n", + "In this step, we remove the trend and compute anomalies for the precursor field. Note that here we use raw daily data for detrending and computing anomalies.
\n", "\n", "In general, there are many \"flavors\" of preprocessing, like when to perform this operation, and in which order do we want to preprocess the data. To improve the transparency and reproducibility of our work, we think it is necessary to standardize these steps. To stick to the best practices, we suggest to preprocess your data in the following way." ] From 1ede7417f8dcae94ad92c0a7a8e1c2ff27559178 Mon Sep 17 00:00:00 2001 From: Yang Date: Fri, 30 Jun 2023 14:33:40 +0200 Subject: [PATCH 12/13] reformat code to fix ugly indent --- workflow/comp_pred_ridge_and_LSTM.ipynb | 7 +++++-- workflow/pred_temperature_LSTM.ipynb | 7 +++++-- workflow/pred_temperature_autoencoder.ipynb | 7 +++++-- workflow/pred_temperature_ridge.ipynb | 7 +++++-- workflow/pred_temperature_transformer.ipynb | 7 +++++-- 5 files changed, 25 insertions(+), 10 deletions(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index 40c04ca..24bab28 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -351,8 +351,11 @@ ")\n", "\n", "# fit preprocessor with training data\n", - "preprocessor.fit(precursor_field.sel(time=slice(str(start_year),\n", - " str(start_year + train_samples - 1))))" + "preprocessor.fit(\n", + " precursor_field.sel(\n", + " time=slice(str(start_year), str(start_year + train_samples - 1))\n", + " )\n", + ")" ] }, { diff --git a/workflow/pred_temperature_LSTM.ipynb b/workflow/pred_temperature_LSTM.ipynb index fb6432e..629d54b 100644 --- a/workflow/pred_temperature_LSTM.ipynb +++ b/workflow/pred_temperature_LSTM.ipynb @@ -337,8 +337,11 @@ ")\n", "\n", "# fit preprocessor with training data\n", - "preprocessor.fit(precursor_field.sel(time=slice(str(start_year),\n", - " str(start_year + train_samples - 1))))" + "preprocessor.fit(\n", + " precursor_field.sel(\n", + " time=slice(str(start_year), str(start_year + train_samples - 1))\n", + " )\n", + ")" ] }, { diff --git a/workflow/pred_temperature_autoencoder.ipynb b/workflow/pred_temperature_autoencoder.ipynb index a323019..ea7d84e 100644 --- a/workflow/pred_temperature_autoencoder.ipynb +++ b/workflow/pred_temperature_autoencoder.ipynb @@ -336,8 +336,11 @@ ")\n", "\n", "# fit preprocessor with training data\n", - "preprocessor.fit(precursor_field.sel(time=slice(str(start_year),\n", - " str(start_year + train_samples - 1))))" + "preprocessor.fit(\n", + " precursor_field.sel(\n", + " time=slice(str(start_year), str(start_year + train_samples - 1))\n", + " )\n", + ")" ] }, { diff --git a/workflow/pred_temperature_ridge.ipynb b/workflow/pred_temperature_ridge.ipynb index 6dfd806..ba14e46 100644 --- a/workflow/pred_temperature_ridge.ipynb +++ b/workflow/pred_temperature_ridge.ipynb @@ -397,8 +397,11 @@ ")\n", "\n", "# fit preprocessor with training data\n", - "preprocessor.fit(precursor_field.sel(time=slice(str(start_year),\n", - " str(start_year + train_samples - 1))))" + "preprocessor.fit(\n", + " precursor_field.sel(\n", + " time=slice(str(start_year), str(start_year + train_samples - 1))\n", + " )\n", + ")" ] }, { diff --git a/workflow/pred_temperature_transformer.ipynb b/workflow/pred_temperature_transformer.ipynb index 65e5ed0..601e9c5 100644 --- a/workflow/pred_temperature_transformer.ipynb +++ b/workflow/pred_temperature_transformer.ipynb @@ -336,8 +336,11 @@ ")\n", "\n", "# fit preprocessor with training data\n", - "preprocessor.fit(precursor_field.sel(time=slice(str(start_year),\n", - " str(start_year + train_samples - 1))))" + "preprocessor.fit(\n", + " precursor_field.sel(\n", + " time=slice(str(start_year), str(start_year + train_samples - 1))\n", + " )\n", + ")" ] }, { From 2ac289c8adb5c0377030d22fd4181151b4c12812 Mon Sep 17 00:00:00 2001 From: Yang Date: Fri, 30 Jun 2023 15:13:59 +0200 Subject: [PATCH 13/13] add mean of training data as baseline --- workflow/comp_pred_ridge_and_LSTM.ipynb | 2508 ++++++++++++--------- workflow/pred_temperature_LSTM.ipynb | 2738 +++++++++++------------ 2 files changed, 2772 insertions(+), 2474 deletions(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index 24bab28..afcdc2f 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -40,7 +40,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -61,8 +61,8 @@ "from torch.autograd import Variable\n", "\n", "# for reproducibility \n", - "np.random.seed(0)\n", - "torch.manual_seed(0)" + "np.random.seed(1)\n", + "torch.manual_seed(2)" ] }, { @@ -96,7 +96,7 @@ "# add target periods\n", "calendar.add_intervals(\"target\", length=\"30d\")\n", "# add precursor periods\n", - "periods_of_interest = 4\n", + "periods_of_interest = 8\n", "calendar.add_intervals(\"precursor\", \"1M\", gap=\"1M\", n=periods_of_interest)" ] }, @@ -117,6 +117,10 @@ " Interval(role='precursor', length='1M', gap='1M'),\n", " Interval(role='precursor', length='1M', gap='1M'),\n", " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", " Interval(role='precursor', length='1M', gap='1M')\n", " ]\n", ")" @@ -181,7 +185,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnm0lEQVR4nO3dd1RU19oG8OfQOwhSRFGsiL33joq9Rk0kV41dses1MVZsRK8txB6Nmti7BqNRUSyIGlGwBlsQC0VReof9/cHHiSNYBgZmkOe3FiuZU/Z+z9kyzDtnF0kIIUBERERERKRmWuoOgIiIiIiICGByQkREREREGoLJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEHXUHUFRkZmbixYsXMDU1hSRJ6g6HiIiIPmNCCMTFxcHe3h5aWvwumYoPJief6MWLF3BwcFB3GERERFSMPH36FGXKlFF3GESFhsnJJzI1NQWQ9SZhZmam5miIiIjocxYbGwsHBwf58wdRccHk5BNld+UyMzNjckJERESFgl3JqbhhJ0YiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCJyti4iIKJ+EEEhJSVFZefr6+krP0qSqGPJStyrrZwxZkpOT810GUVHE5ISIiCifUlJS0K9fP5WVt2/fPhgYGKglhrzUrcr6GUOWtLS0fJdBVBQxOSEiIlKR68/j8l1GvdL5W3Qv6GXeP9TWttbNV91A/u9Bfq8fyN89AFRzH/D0av7Ot6ub/xiIiiAmJ0RERCrUdKwntHX0lD4vIz0V/mtnqCSG1t9ugJau/icfn5mWgnNLRqmkbiBv90CV1w8ofw8A1d+H7SPrQl9XueG9KWmZ+HrjDZXFQFTUMDkhIiJSIW0dPWjrKfehWNW0dPWho/fpXZLSVVx/UbwHgOrvg76uFgx0tVVcKtHnjbN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBF01B0AERHR5+is50gkxbyCJGlB19AY9QZ9B0tHZwRs88Tz675IePUCnRbtQwnHqgVSf3pqMnwXD0N0aDC09QxgaGGNZuOXw6x0Bbz8OwCX132HjLQUZKSmoKJL/wKJ4X33IC78CS6vn4mUuGjoGpmgyaiFMLFxKJAYTszog6Q3Ef8fgwmajF0Cq0q1EPP8ES78bwySY19Dz9gMLaeugal9+QKJoeOyywiPSYGWJMHUQAdebtVRt5w5HoTHY/CmILyKT4W5oQ62Dq+DijZGBRIDUVGh1icnnp6eaNiwIUxNTWFjY4NevXohODhY4Zjk5GS4u7vDysoKJiYm6Nu3LyIiIuT9QUFB+Oqrr+Dg4ABDQ0M4Ozvjxx9/VCgjLCwMAwcORJUqVaClpYVJkyYVxuUREVEx1nzCMnT54SA6e+6HU+dBuLJhFgDAoVEHtJ+zDcYl7Qs8Bqcug9F381/ovf4iyjbtjIurJgAA/H6chNpfTkavtefRbcUJ3D20DmmJ8Sqv/3334Orm+ajY9gt0W+4N525Dcfn/txeEtjO3oPd6P/RadwHV+7rj/LKxAIBLP06GU5ch+OKXa6jZfyIuLHcvsBj2jq2PmwtaI3B+K0xxLY8hmwMBAKO23cLINmVx/4e2+LZLRQzZFFhgMRAVFWpNTs6dOwd3d3dcvnwZp06dQlpaGjp27IiEhAT5mMmTJ+P333/Hvn37cO7cObx48QJ9+vSR9wcEBMDGxgbbt2/HnTt3MHPmTMyYMQOrV6+Wj0lJSYG1tTVmzZqF2rVrF+o1EhFR8aRnbCb/f1piHAAJAGDj3ABGVnYFXr+OngEcGnWEJGXX2xDxEaFZOyUJKfGxWbElJ0BLRw9aOroqjyG3e5AcE4XXj+/AsUU3AFnJWmJUOOIinqq8fgDQNzH/N4aEWEiShKTol3j1IFB+YuTYogcSXj5H7It/CiQGC6N/721MUjokSIiMTcG1kBh83bQ0AKBvg1J4+joZjyIT3lcMUbGg1m5dJ06cUHi9detW2NjYICAgAK1atUJMTAw2b96MnTt3ol27dgCALVu2wNnZGZcvX0aTJk0wdOhQhTIqVKgAf39/HDx4EOPGjQMAODo6yk9Tfvnll0K4MiIiIsB/3feIvHsVAND6v2vVGsudw+tRtmkXAEDLqWtwet5AXN+2EMkxUWjivgShl/4okHrfvQeJr8NhWMIaWtpZH0EkSYKRVSkkRoUXSP0AcG7paIQHXQAAdFi4Fwkvn8PQ0lYhBmPrMkh4+bzAYhj08w2cvRcFAPhjciM8fZ2EUhb60NHWkmMoa2WAp6+TCywGoqJAo8acxMTEAAAsLS0BZD0VSUtLQ/v27eVjqlatirJly8Lf3x9NmjR5bznZZeRVSkoKUlJS5NexsbH5Ko+IiIqfpmMWAwAenz+CwN0r0Wb6OrXEEbRrOWJf/IPOP6wEANzcsxINvpmDiu36ITYsBH9M6wqzUuUBlFB53e/eg1r9xqm8jo9pPX09AODBqV24tnke6g2eWegx/DqiLgBg28Wn+HbfPSzo41ToMRAVBRozW1dmZiYmTZqE5s2bo0aNGgCA8PBw6OnpwcLCQuFYW1tbhIfn/g3LpUuXsGfPHowcOTJf8Xh6esLc3Fz+cXAomIF6RET0+avQqici7/6FlLjoQq/71r6fEOLnjY4L90HHwAjJMVF4cukYKrbrBwAwK+UIa6d6SIl/U6BxZN8DQ0tbJL15icyMdACAEAKJUWGF0tWtcoevEBZ0EcYl7ZH0OkIhhoSXz2BsXbrAYxjcwgFn/45CmRKGCItOQXpGphxDaFQyHCwNCjwGIk2mMcmJu7s7bt++jd27d+e5jNu3b6Nnz56YO3cuOnbsmK94ZsyYgZiYGPnn6dOC6QtLRESfn9SEWCS+iZRfP7vmAz0Tc+i9Nf6hMNw+sAaPfQ+gk+cheeyFnokFdPSN8CLwPAAgOSYKL4OvQ9fQVKV1v+8eGJhZwbK8M0IuegMAnl49BSNLW5jaqv5LwJT4GCRGhcmvn1w6Bn0zSxhYWMOqUi088tkLAAi5eBRGJe1hVgCzdUUnpuHFm3+7ah2+Hg4rEz3YmOmhXjkzbPfP6kp24FoYylgaoKKNscpjICpKNKJb17hx4+Dt7Y3z58+jTJky8nY7OzukpqYiOjpa4elJREQE7OwUv2G5e/cuXFxcMHLkSMyalf9ZP/T19aGvr5/vcoiIqPhJS4zHRa+pyEhNhqSlBX3TEmg9bQ0kScLVzR54ceM8kmOicHbJKOgaGqP7CtWP90h4+RxXN86CaSlHHJ/eHQCgpauPHl6n0XbmFvz18xxkZqRDZKSjWs8RiLh9WaX1f+geNBw6B5c3zMLdo5uga2iMxiMXqLRuOYaEGJxZ+A0yUpMASQsG5iXRYf5uSJKE5hNW4vxydwTtXgFdI1O0nLr64wXmQUxiGvqtDUBSaia0tABrU314T2oISZKwYXAtDNkciMXeD2FmqIMtQzlpD5FakxMhBMaPH49Dhw7B19cX5csrfmNRv3596OrqwsfHB3379gUABAcHIzQ0FE2bNpWPu3PnDtq1a4fBgwdj0aJFhXoNRERE7zK2tofrgl257ms0bG4hxVAaQ//MvatW6XptULqer/w6PTVZ5cnJh+6BmX15dPTYobAtIzUl12Pzw8S2LHr85JPrPnOHyui+6qTCtvRU1Q9GL1fSCFfntMx1n1MpE/jPaqGwLTktQ+UxEBUlak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2lQfD3759G+3atYOrqyumTJkil6GtrQ1ra2u5rsDAQABAfHw8Xr58icDAQOjp6aFatWqFe9FERERERJQrtSYn69ZlzVrSpk0bhe1btmzBkCFDAAArV66ElpYW+vbti5SUFLi6umLt2n+nY9y/fz9evnyJ7du3Y/v27fL2cuXKISQkRH5dt25d+f8DAgKwc+fOHMcQEREREZH6qL1b18cYGBhgzZo1WLNmTa77582bh3nz5qmkLiIiIiIiUh+Nma2LiIiIiIiKNyYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRtBRdwBERESfk4z01EI9LzeZaSlIV/J4VcrLtajy+gHl70H2OaqUkpZZKOcQfU6YnBAREamQ/9oZ6g4B55aMUmv9vAdZvt54Q90hEBU5TE6IiIhUpF5pU3WHgNrWumqtn/fg/zk0yt/5aWmqiYOoiJGEEELdQRQFsbGxMDc3R0xMDMzMzNQdDhERaRAhBFJSVNclSF9fH5IkqSWGvNStyvoZQ5bY2FjY2trycwcVO3xyQkRElE+SJMHAwKBYx6Du+j+3GFJTVTsGh6io4GxdRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGUCo5SU9Px6+//oqIiIiCioeIiIiIiIoppZITHR0djB49GsnJyQUVDxERERERFVNKd+tq1KgRAgMDCyAUIiIiIiIqznSUPWHs2LGYMmUKnj59ivr168PY2Fhhf61atVQWHBFpJiEEUlJSVFaevr4+JElSWwx5qZ8xqL7+vMZARESfD0kIIZQ5QUsr58MWSZIghIAkScjIyFBZcJokNjYW5ubmiImJgZmZmbrDIVKr5ORk9OvXT2Xl7du3DwYGBmqLIS/1MwbV15/XGIg+R/zcQcWV0k9O/vnnn4KIg4iKoOvP4/JdRr3Spvk6P+hlWr7Or22tm6/zgfzfh/zeA0AD7sPTq/k7HwAcGuW/DCIiKtKUTk7KlStXEHEQURHVdKwntHX0lD4vIz0V/mtnqCSG1t9ugJauvlLnZKal4NySUSqpH8jbfVDlPQDUfx+2j6wLfV3lZ6hPScvE1xtvqCQGIiIq2pROTrLdvXsXoaGhSE1NVdjeo0ePfAdFREWHto4etPWU+0Csalq6+tDRU64rULqKY+B9APR1tWCgq63CEomIqLhROjl5/PgxevfujVu3bsljTQDIAxg/1zEnRERERERUsJR+/j5x4kSUL18ekZGRMDIywp07d3D+/Hk0aNAAvr6+BRAiEREREREVB0o/OfH398eZM2dQsmRJaGlpQUtLCy1atICnpycmTJiAGzfYb5iIiIiIiJSn9JOTjIwMmJpmzSxTsmRJvHjxAkDWQPng4GDVRkdERERERMWG0k9OatSogaCgIJQvXx6NGzfG0qVLoaenh40bN6JChQoFESMRERERERUDSicns2bNQkJCAgBg/vz56NatG1q2bAkrKyvs2bNH5QESEREREVHxoHRy4urqKv9/pUqV8Pfff+P169coUaKEPGMXERERERGRspRfLev/PXz4EH/++SeSkpJgaWmpypiIiIiIiKgYUjo5iYqKgouLC6pUqYIuXbogLCwMADBs2DBMnTpV5QESEREREVHxoHS3rsmTJ0NXVxehoaFwdnaWtw8YMABTpkzB8uXLVRogEREREeUuIyMDaWlp6g6D6L10dXWhra39yccrnZycPHkSf/75J8qUKaOwvXLlynjy5ImyxRERERGRkoQQCA8PR3R0tLpDIfooCwsL2NnZfdL4dKWTk4SEBBgZGeXY/vr1a+jr6ytbHBEREREpKTsxsbGxgZGRESclIo0khEBiYiIiIyMBAKVKlfroOUonJy1btsSvv/6KBQsWAAAkSUJmZiaWLl2Ktm3bKlscERERESkhIyNDTkysrKzUHQ7RBxkaGgIAIiMjYWNj89EuXkonJ0uXLoWLiwuuXbuG1NRUTJ8+HXfu3MHr16/h5+eXt6iJiIiI6JNkjzHJrScLkSbK/realpb20eRE6dm6atSogfv376NFixbo2bMnEhIS0KdPH9y4cQMVK1bMW8REREREpBR25aKiQpl/q0o/OQEAc3NzzJw5My+nEhERERER5UrpJyeOjo6YP38+nj59WhDxEBERERFRMaX0k5NJkyZh69atmD9/Ptq2bYthw4ahd+/enKmLiIiISN2WF2JXr6mi8OpSs5CQEJQvXx43btxAnTp11B1Onjk6OmLSpEmYNGmSukN5L6WfnEyaNAmBgYG4evUqnJ2dMX78eJQqVQrjxo3D9evXCyJGIiIiIirCJEn64M+8efPUGtvhw4c/eIyDgwPCwsJQo0aNTy533rx5RTqRURelk5Ns9erVg5eXF168eIG5c+di06ZNaNiwIerUqYNffvkFQhSfbJqIiIiI3i8sLEz+WbVqFczMzBS2TZs2TanyUlNTCyjS3Glra8POzg46Onkarp0vhX2t6pbn5CQtLQ179+5Fjx49MHXqVDRo0ACbNm1C37598f3338PNzU2VcRIRERFREWVnZyf/mJubQ5Ik+XVCQgLc3Nxga2sLExMTNGzYEKdPn1Y439HREQsWLMCgQYNgZmaGkSNHAgB+/vlnODg4wMjICL1798aKFStgYWGhcO6RI0dQr149GBgYoEKFCvDw8EB6erpcLgD07t0bkiTJr98VEhICSZIQGBgIAPD19YUkSfDx8UGDBg1gZGSEZs2aITg4GACwdetWeHh4ICgoSH46tHXrVgBAdHQ0hg8fDmtra5iZmaFdu3YICgqS68p+4rJp0yaUL18eBgYG2LhxI+zt7ZGZmakQV8+ePTF06FAAwKNHj9CzZ88P3seiQOnk5Pr16wpduapXr47bt2/j4sWL+OabbzB79mycPn0ahw4dKoh4iYiIiOgzEh8fjy5dusDHxwc3btxAp06d0L17d4SGhioct2zZMtSuXRs3btzA7Nmz4efnh9GjR2PixIkIDAxEhw4dsGjRIoVzLly4gEGDBmHixIm4e/cuNmzYgK1bt8rH/fXXXwCALVu2ICwsTH79qWbOnInly5fj2rVr0NHRkROFAQMGYOrUqahevbr8dGjAgAEAgH79+iEyMhLHjx9HQEAA6tWrBxcXF7x+/Vou9+HDhzhw4AAOHjyIwMBA9OvXD1FRUTh79qx8zOvXr3HixAn5gcCn3kdNp/SzqYYNG6JDhw5Yt24devXqBV1d3RzHlC9fHl9++aVKAiQiIiKiz1ft2rVRu3Zt+fWCBQtw6NAhHD16FOPGjZO3t2vXDlOnTpVfz5w5E507d5a7hFWpUgWXLl2Ct7e3fIyHhwe+++47DB48GABQoUIFLFiwANOnT8fcuXNhbW0NALCwsICdnZ3SsS9atAitW7cGAHz33Xfo2rUrkpOTYWhoCBMTE+jo6CiUe/HiRVy9ehWRkZHyZFLLli3D4cOHsX//fvmJUGpqKn799Vc5PgDo3Lkzdu7cCRcXFwDA/v37UbJkSbRt21ap+6jplH5y8vjxY5w4cQL9+vXLNTEBAGNjY2zZsiXfwRERERHR5y0+Ph7Tpk2Ds7MzLCwsYGJignv37uX4xr9BgwYKr4ODg9GoUSOFbe++DgoKwvz582FiYiL/jBgxAmFhYUhMTMx37LVq1ZL/v1SpUgCAyMjI9x4fFBSE+Ph4WFlZKcT0zz//4NGjR/Jx5cqVU0hMAMDNzQ0HDhxASkoKAGDHjh348ssvoaWV9XH+U++jplP6yUm5cuUKIg4iIiIiKoamTZuGU6dOYdmyZahUqRIMDQ3xxRdf5BgIbmxsrHTZ8fHx8PDwQJ8+fXLsMzAwyHPM2d7+oj57FfR3x4W8G0+pUqXg6+ubY9/bY2Vyu9bu3btDCIFjx46hYcOGuHDhAlauXCnv/9T7qOkKf8oBIiIiIqL/5+fnhyFDhqB3794Asj7Ah4SEfPQ8JyenHGNE3n1dr149BAcHo1KlSu8tR1dXFxkZGcoH/hF6eno5yq1Xrx7Cw8Oho6Pz3sH372NgYIA+ffpgx44dePjwIZycnFCvXj15f17vo6ZhckJEREREalO5cmUcPHgQ3bt3hyRJmD179gefPmQbP348WrVqhRUrVqB79+44c+YMjh8/Lj/BAIA5c+agW7duKFu2LL744gtoaWkhKCgIt2/fxsKFCwFkzdjl4+OD5s2bQ19fHyVKlFDJdTk6OuKff/5BYGAgypQpA1NTU7Rv3x5NmzZFr169sHTpUlSpUgUvXrzAsWPH0Lt37xxd197l5uaGbt264c6dO/j6668V9uX1PmoaJidEREREn4siuGr7ihUrMHToUDRr1gwlS5bEt99+i9jY2I+e17x5c6xfvx4eHh6YNWsWXF1dMXnyZKxevVo+xtXVFd7e3pg/fz6WLFkCXV1dVK1aFcOHD5ePWb58OaZMmYKff/4ZpUuXVtnThr59++LgwYNo27YtoqOjsWXLFgwZMgR//PEHZs6ciW+++QYvX76EnZ0dWrVqBVtb24+W2a5dO1haWiI4OBgDBw5U2JfX+6hplEpO0tLSULVqVXh7e8PZ2bmgYiIiIiKiz9SQIUMwZMgQ+bWjoyPOnDmjcIy7u7vC6/clDCNGjMCIESMUXr/bhcvV1RWurq7vjad79+7o3r37B2N2dHRUWGC8TZs2ORYcr1OnjsI2fX197N+/P0dZpqam8PLygpeXV651zZs3D/Pmzct1n5aWFl68ePHeGPN6HzWJUsmJrq4ukpOTVVa5p6cnDh48iL///huGhoZo1qwZlixZAicnJ/mY5ORkTJ06Fbt370ZKSgpcXV2xdu1aObsMCgrCDz/8gIsXL+LVq1dwdHSU57x+m6+vL6ZMmYI7d+7AwcEBs2bNUvjFIKL8Oes5EkkxryBJWtA1NEa9Qd/B0tEZAds88fy6LxJevUCnRftQwrFqgdSfnpoM38XDEB0aDG09AxhaWKPZ+OUwK10BL4Ov48r6GUhLSoAkSWg0ahFsqjX6eKF58L77EBf+BJfXz0RKXDR0jUzQZNRCmNg4qLz+EzP6IOlNxP/Xb4ImY5fAqlItxDx/hAv/G4Pk2NfQMzZDy6lrUMKxYL5k6rjsMsJjUqAlSTA10IGXW3XULWeOB+HxGLwpCK/iU2FuqIOtw+ugemnTAomBiIqHZcuWoUOHDjA2Nsbx48exbds2rF27Vt1hUT4o3a3L3d0dS5YswaZNm6Cjk79eYefOnYO7uzsaNmyI9PR0fP/99+jYsSPu3r0rz1IwefJkHDt2DPv27YO5uTnGjRuHPn36wM/PDwAQEBAAGxsbbN++HQ4ODrh06RJGjhwJbW1teU7nf/75B127dsXo0aOxY8cO+Pj4YPjw4ShVqtQHM2ki+nTNJyyDnrEZAODpXz64smEWOnsegEOjDnDu9g1Ozx9c4DE4dRmMMg07QJIk3D2yERdXTUDnpb/DZ/5/0HLqGpSu1wYxzx7ixHe90HPdhQKJ4X334erm+ajY9gtUaN0LoVdO4vKGWWg/e5vK6287cwv0TcwBACF+3ji/bCx6r7+ISz9OhlOXIajccSD+uXAEF5a7o8dPZz5SWt7sHVsfFkZZM9gcCgjDkM2BCJrfGqO23cLINmUxpIUD9v/1AkM2BeKvuS0LJAYiKh6uXr2KpUuXIi4uDhUqVICXl5dCly0qepTOLv766y/4+Pjg5MmTqFmzZo6pzg4ePPjJZZ04cULh9datW2FjY4OAgAC0atUKMTEx2Lx5M3bu3Il27doByFrB09nZGZcvX0aTJk3klTizVahQAf7+/jh48KCcnKxfvx7ly5fH8uXLAQDOzs64ePEiVq5cyeSESEWyP5ADQFpiHICsAYk2zh8e3KcqOnoGcGjUUX5t49wQtw+sRkrsayTHvELpem0AAOZlKkHPxBzPAwrmg3lu9yE5JgqvH99B2+82AAAcGnVAwLbFiIt4qvL6sxMTAEhLiIUkSUiKfolXDwLh6pn1/uzYogcur5mO2OePYWRtr/IYshMTAIhJSocECZGxKbgWEoOT0xoDAPo2KIVx2+/gYUQCyljmfzpPIiqe9u7dq+4QSMWUTk4sLCzQt2/fgogFMTExAABLS0sAWU9F0tLS0L59e/mYqlWromzZsvD390eTJk3eW052GQDg7++vUAaQ1f9w0qRJ740lJSVFXuQGQJEcUERU2PzXfY/Iu1cBAK3/q97H6ncOr0fZpl1gYG4FI0tbPD53CBVa98bL4OuIefYQCZGqTwyyvXsfEl+Hw7CENbS0s95yJUmCkVUpJEaFF0j955aORnhQ1pOhDgv3IuHlcxha2irUb2xdBvEvnxVIcgIAg36+gbP3ogAAf0xuhKevk1DKQh862lpyDGWtDBAalcTkhIiIZEonJwW18ntmZiYmTZqE5s2bo0aNGgCA8PBw6OnpKSxKAwC2trYID8/9j/qlS5ewZ88eHDt2TN4WHh6eYwYEW1tbxMbGIikpCYaGhjnK8fT0hIeHRz6viqh4aTpmMQDg8fkjCNy9Em2mr1NLHEG7liP2xT/o/EPW4lQuc3fg2mYP3NyzEiXKVYVt9SaQtApussJ370OtfuMKrK7ctJ6+HgDw4NQuXNs8D/UGzyzU+gHg1xF1AQDbLj7Ft/vuYUEfp4+cQUREBGjl9cSXL1/i4sWLuHjxIl6+fJnvQNzd3XH79m3s3r07z2Xcvn0bPXv2xNy5c9GxY8ePn/ABM2bMQExMjPzz9GnBfctK9Lmp0KonIu/+hZS46EKv+9a+nxDi542OC/dBx8AIAGBVsSZcF+9Hr7Xn0frbjUiMCodFuYL/sJx9HwwtbZH05iUyM9IBAEIIJEaFwcjKrkDrr9zhK4QFXYRxSXskvY5QqD/h5TOYWJcp0PoBYHALB5z9OwplShgiLDoF6RmZcgyhUckoa5XzyyEiIiq+lE5OEhISMHToUJQqVQqtWrVCq1atYG9vj2HDhiExMTFPQYwbNw7e3t44e/YsypT594+lnZ0dUlNTER0drXB8REQE7OwU/6jfvXsXLi4uGDlyJGbNmqWwz87ODhERETnKMDMzy/WpCZA1/ZuZmZnCDxHlLjUhFolvIuXXz675QM/EHHpvjX8oDLcPrMFj3wPo5HlIYezF292ngv/YBh0DI9jVaqHy+t93HwzMrGBZ3hkhF70BAE+vnoKRpS1MbVU7W1dqfAwSo8Lk108uHYO+mSUMLKxhVakWHvlk9c0OuXgURiXtYVa6gkrrB4DoxDS8ePPvrI6Hr4fDykQPNmZ6qFfODNv9nwMADlwLQxlLA1SyNX5fUUREVAwp3a9hypQpOHfuHH7//Xc0b94cAHDx4kVMmDABU6dOxbp1n96NQwiB8ePH49ChQ/D19UX58uUV9tevXx+6urrw8fGRx7kEBwcjNDQUTZs2lY+7c+cO2rVrh8GDB2PRokU56mnatCn++OMPhW2nTp1SKIOI8i4tMR4XvaYiIzUZkpYW9E1LoPW0NZAkCVc3e+DFjfNIjonC2SWjoGtojO4r/vh4oUpKePkcVzfOgmkpRxyfnjVfvZauPnp4nUbw8W14dGYfIATMy1aBy5zfFFYQVpUP3YeGQ+fg8oZZuHt0E3QNjdF45AKV15+aGIvzS0YjIzUJkLRgYF4SHebvhiRJaD5hJc4vd0fQ7hXQNTJFy6mrP15gHsQkpqHf2gAkpWZCSwuwNtWH96SGkCQJGwbXwpDNgVjs/RBmhjrYMrR2gcRARERFl9LJyYEDB7B//360adNG3talSxcYGhqif//+SiUn7u7u2LlzJ44cOQJTU1N5HIm5uTkMDQ1hbm6OYcOGYcqUKbC0tISZmRnGjx+Ppk2byoPhb9++jXbt2sHV1RVTpkyRy9DW1oa1tTUAYPTo0Vi9ejWmT5+OoUOH4syZM9i7d6/CuBQiyjtja3u4LtiV675Gw+YWUgylMfTPN7nuq/v1t6j79bcK29JTVbdm078xvP8+mNmXR0ePHQrbMlJTcj02r0xsHNDjJ59c95k7VEb3VSdVWl9uypU0wtU5uU8P7FTKBP6zVP/EioioKGvTpg3q1KmDVatWqTuUPJs3bx4OHz6MwMDAfJeldHKSmJiYY3A5ANjY2CjdrSs7kXk70QGyBt1nL5C4cuVKaGlpoW/fvgqLMGbbv38/Xr58ie3bt2P79u3y9nLlysmrYJYvXx7Hjh3D5MmT8eOPP6JMmTLYtGkTpxEmIiKiz0rJeecLra5X81opdfyQIUOwbVvW+k66urooW7YsBg0ahO+//z7fa+cVZQcPHoSuru7HD/x/ISEhKF++PG7cuIE6deoUXGBqovS/hKZNm2Lu3Ln49ddfYWCQNf1jUlISPDw8lO4mJYT46DEGBgZYs2YN1qxZk+v+efPmYd68eR8tp02bNrhx44ZS8RERERGR6nTq1AlbtmxBSkoK/vjjD7i7u0NXVxczZszIcWxqair09PQKPUYhBDIyMlSeML3vet5e/qKwpaWlKZUYFQalB8T/+OOP8PPzQ5kyZeDi4gIXFxd5ZfYff/yxIGIkIiIios+Avr4+7OzsUK5cOYwZMwbt27fH0aNHAWQ9WenVqxcWLVoEe3t7ODllzar49OlT9O/fHxYWFrC0tETPnj3l3jHZfvnlF1SvXh36+vooVaqUvBB3SEgIJElS6G4UHR0NSZLg6+sLAPD19YUkSTh+/Djq168PfX19XLx4EUFBQWjbti1MTU1hZmaG+vXr49q1a3I5Bw4ckOt0dHSUF/vO5ujoiAULFmDQoEEwMzPDyJEjc70nbdq0UVh7z9HREYsXL8bQoUNhamqKsmXLYuPGjfL+7DHadevWhSRJCj2QNm3aBGdnZxgYGKBq1aoKvY2y78WePXvQunVrGBgYYN26dTA0NMTx48cVYjp06BBMTU3lXlHffvstqlSpAiMjI1SoUAGzZ89GWlparteTX0qnhDVq1MCDBw+wY8cO/P333wCAr776Cm5ubu+d+YqIiIiI6F2GhoaIioqSX/v4+MDMzAynTp0CkPXNvqurK5o2bYoLFy5AR0cHCxcuRKdOnXDz5k3o6elh3bp1mDJlCn744Qd07twZMTEx8PPzUzqW7777DsuWLUOFChVQokQJtGrVCnXr1sW6deugra2NwMBA+SlDQEAA+vfvj3nz5mHAgAG4dOkSxo4dCysrK3loAgAsW7YMc+bMwdy5yo2/XL58ORYsWIDvv/8e+/fvx5gxY9C6dWs4OTnh6tWraNSoEU6fPo3q1avLT2N27NiBOXPmYPXq1ahbty5u3LiBESNGwNjYGIMHD1a4zuXLl6Nu3bowMDDAhQsXsHPnTnTu3Fk+ZseOHejVqxeMjLKm5Dc1NcXWrVthb2+PW7duYcSIETA1NcX06dOVvs8fk6fnVUZGRhgxYoSqYyEiIiKiYkAIAR8fH/z5558YP368vN3Y2BibNm2SP3Bv374dmZmZ2LRpkzzL4pYtW2BhYQFfX1907NgRCxcuxNSpUzFx4kS5nIYNGyod0/z589GhQwf5dWhoKP773/+iatWqAIDKlSvL+1asWAEXFxfMnj0bAFClShXcvXsX//vf/xSSk3bt2mHq1KlKx9KlSxeMHTsWQNZTi5UrV+Ls2bNwcnKSJ3yysrJSWFpj7ty5WL58Ofr06QMg6wnL3bt3sWHDBoXkZNKkSfIxAODm5ob//Oc/SExMhJGREWJjY3Hs2DEcOnRIPubtZTocHR0xbdo07N69W3OSkwcPHuDs2bOIjIxEZmamwr45c+aoJDAiIiIi+rx4e3vDxMQEaWlpyMzMxMCBAxXGDtesWVNhXEZQUBAePnwIU1NThXKSk5Px6NEjREZG4sWLF3Bxccl3bA0aNFB4PWXKFAwfPhy//fYb2rdvj379+qFixYoAgHv37qFnz54Kxzdv3hyrVq1CRkYGtLW1cy3zU9WqVUv+f0mSYGdnh8jIyPcen5CQgEePHmHYsGEKDxDS09Nhbq645ti7MXXp0gW6uro4evQovvzySxw4cABmZmZo3769fMyePXvg5eWFR48eIT4+Hunp6QW2BqDSycnPP/+MMWPGoGTJkrCzs1NYK0CSJCYnRERERJSrtm3bYt26ddDT04O9vX2OQefGxooLs8bHx6N+/frYsUNxKnYAsLa2hpbWh4dPZ+9/exKm942VeLfuefPmYeDAgTh27BiOHz+OuXPnYvfu3ejdu/cH6/xQmZ/q3UHqkiTleCDwtvj4eABZn9MbN26ssC87UXpfTHp6evjiiy+wc+dOfPnll9i5cycGDBggt42/vz/c3Nzg4eEBV1dXmJubY/fu3TnG2KiK0snJwoULsWjRInz77bcfP5iIiIiI6P8ZGxujUqVKn3x8vXr1sGfPHtjY2Lz3m3pHR0f4+Pigbdu2OfZld4EKCwtD3bp1AUCptTiqVKmCKlWqYPLkyfjqq6+wZcsW9O7dG87OzjnGtfj5+aFKlSo5kgFVy36ylJGRIW+ztbWFvb09Hj9+DDc3N6XLdHNzQ4cOHXDnzh2cOXMGCxculPddunQJ5cqVw8yZM+VtT548yccVfJjSs3W9efMG/fr1K4hYiIiIiIhkbm5uKFmyJHr27IkLFy7gn3/+ga+vLyZMmIBnz54ByHrCsXz5cnh5eeHBgwe4fv06fvrpJwBZA+6bNGmCH374Affu3cO5c+cUxk+8T1JSEsaNGwdfX188efIEfn5++Ouvv+Ds7AwAmDp1Knx8fLBgwQLcv38f27Ztw+rVqzFt2rSCuxn/z8bGBoaGhjhx4gQiIiIQExMDAPDw8ICnpye8vLxw//593Lp1C1u2bMGKFSs+WmarVq1gZ2cHNzc3lC9fXuHpS+XKlREaGordu3fj0aNH8PLyUhiPompKJyf9+vXDyZMFv8owERERERVvRkZGOH/+PMqWLYs+ffrA2dkZw4YNQ3JysvwkZfDgwVi1ahXWrl2L6tWro1u3bnjw4IFcxi+//IL09HTUr18fkyZNUngq8D7a2tqIiorCoEGDUKVKFfTv3x+dO3eGh4cHgKwnOnv37sXu3btRo0YNzJkzB/Pnz1cYDF9QdHR04OXlhQ0bNsDe3l4e+zJ8+HBs2rQJW7ZsQc2aNdG6dWts3bpVnnr4QyRJwldffYWgoKAcT1569OiByZMnY9y4cahTpw4uXbokTwRQED6pW5eXl5f8/5UqVcLs2bNx+fJl1KxZM0efuAkTJqg2QiIiIiL6JMqu2l6Ytm7dmqf9dnZ28sry7zNq1CiMGjUq133Ozs64dOmSwra3x6C0adMmx8Lgenp62LVr1wfr7Nu3L/r27fve/e+uxfI+2eutfOi8d7uiDR8+HMOHD89x3MCBAzFw4MBc63F0dPzgAuhLlizBkiVLct23dOlSLF26VGHb22uzfOqi6J/ik5KTlStXKrw2MTHBuXPncO7cOYXtkiQxOSEiIiIiojz5pOTkn3/+Keg4iIiIiIiomFN6zAkREREREVFBUDo56du3b6790ZYuXcpZvIiIiIiIKM+UTk7Onz+PLl265NjeuXNnnD9/XiVBERERERFR8aN0chIfHy8v/vI2XV1dxMbGqiQoIiIiIvqwD828RKRJlPm3qnRyUrNmTezZsyfH9t27d6NatWrKFkdERERESshexiExMVHNkRB9mux/q+8uQZKbT5qt622zZ89Gnz598OjRI7Rr1w4A4OPjg127dmHfvn3KFkdEREREStDW1oaFhQUiIyMBZC1UKEmSmqMiykkIgcTERERGRsLCwgLa2tofPUfp5KR79+44fPgwFi9ejP3798PQ0BC1atXC6dOn0bp16zwFTkRERESfzs7ODgDkBIVIk1lYWMj/Zj9G6eQEALp27YquXbvm5VQiIiIiyidJklCqVCnY2NggLS1N3eEQvZeuru4nPTHJlqfkBABSU1MRGRmJzMxMhe1ly5bNa5FEREREpARtbW2lPvgRaTqlk5MHDx5g6NChuHTpksJ2IQQkSUJGRobKgiMiIiIiouJD6eRkyJAh0NHRgbe3N0qVKsUBWEREREREpBJKJyeBgYEICAhA1apVCyIeIiIiIiIqppRe56RatWp49epVQcRCRERERETFmNLJyZIlSzB9+nT4+voiKioKsbGxCj9ERERERER5oXS3rvbt2wMAXFxcFLZzQDwREREREeWH0snJ2bNnCyIOIiIiIiIq5pROTj60Cvzt27fzFQwRERERERVfeV6EMVtcXBx27dqFTZs2ISAggN26iIqZjPTUQj0vN5lpKUjPwzmqlJfrUeU9ANR/H1LSMj9+kArPIyKiz0+ek5Pz589j8+bNOHDgAOzt7dGnTx+sWbNGlbERURHgv3aGukPAuSWj1B0C7wOArzfeUGv9RERU9CmVnISHh2Pr1q3YvHkzYmNj0b9/f6SkpODw4cOoVq1aQcVIRBqqXmlTdYeA2ta66g6B9wEAHBqpt34iIvosSEII8SkHdu/eHefPn0fXrl3h5uaGTp06QVtbG7q6uggKCvrsk5PY2FiYm5sjJiYGZmZm6g6HSK2EEEhJUV13IH19fUiSpLYY8lI/Y1B9/XmNgehzxM8dVFx98pOT48ePY8KECRgzZgwqV65ckDERkYaTJAkGBgaMgTGovX4iIvq8fPIijBcvXkRcXBzq16+Pxo0bY/Xq1VwpnoiIiIiIVOaTk5MmTZrg559/RlhYGEaNGoXdu3fD3t4emZmZOHXqFOLi4goyTiIiIiIi+sx98piT3AQHB2Pz5s347bffEB0djQ4dOuDo0aOqjE9jsO8nERERFRZ+7qDi6pOfnOTGyckJS5cuxbNnz7Br1y5VxURERERERMVQvp6cFCf8BoOIiIgKCz93UHGVrycnREREREREqsLkhIiIiIiINAKTEyIiIiIi0ghMToiIiIiISCMwOSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgj6Kg7gKImOTkZenp6+SpDX18fkiQpfZ4QAikpKfmqWxPqL8oxqLL+vMZARERE9LlicqKkQYMGQVdXN19l7Nu3DwYGBkqfl5KSgn79+uWrbk2ovyjHoMr68xoDERER0eeKyYmSgsLioaWd99tWr7Rp/mN4mZbnc2tb5y+xAoDrz+Pydb667wGggvvw9Gr+zgcAh0b5L4OIiIjoM8LkJA+ajvWEto5yXbsy0lPhv3aGymJo/e0GaOnqf/LxmWkpOLdklMrqL4r3AFDtfdg+si70dZUftpWSlomvN95QSQxEREREnxMmJ3mgraMHbT3lPhSrmpauPnT0Pr07ULqK6y+K9wBQ7X3Q19WCga62CkskIiIiKt44WxcREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBB11Vu7p6YmDBw/i77//hqGhIZo1a4YlS5bAyclJPiY5ORlTp07F7t27kZKSAldXV6xduxa2trbyMRMmTICfnx9u374NZ2dnBAYG5qhr7969WLx4Me7fvw9ra2uMGzcO//3vf/MV/1nPkUiKeQVJ0oKuoTHqDfoOlo7OCNjmiefXfZHw6gU6LdqHEo5V81VPbjJSk+G7eBiiQ4OhrWcAQwtrNBu/HGalK+Dl3wG4vO47ZKSlICM1BZU7DkS1XqNUHgPw/nsQF/4El9fPREpcNHSNTNBk1EKY2DiovP4TM/og6U3E/9dvgiZjl8CqUi3EPH+EC/8bg+TY19AzNkPLqWtQwtFZ5fUDQMdllxEekwItSYKpgQ683KqjbjlzPAiPx+BNQXgVnwpzQx1sHV4H1UubFkgMRERERJ8DtSYn586dg7u7Oxo2bIj09HR8//336NixI+7evQtjY2MAwOTJk3Hs2DHs27cP5ubmGDduHPr06QM/Pz+FsoYOHYorV67g5s2bOeo5fvw43Nzc8NNPP6Fjx464d+8eRowYAUNDQ4wbNy7P8TefsAx6xmYAgKd/+eDKhlno7HkADo06wLnbNzg9f3Cey/4UTl0Go0zDDpAkCXePbMTFVRPQ5X/e8PtxEuoNmoGyTbsgJfYNDgxvBPt6bQokhvfdg6ub56Ni2y9QoXUvhF45icsbZqH97G0qr7/tzC3QNzEHAIT4eeP8srHovf4iLv04GU5dhqByx4H458IRXFjujh4/nVF5/QCwd2x9WBjpAgAOBYRhyOZABM1vjVHbbmFkm7IY0sIB+/96gSGbAvHX3JYFEgMRERHR50Ct3bpOnDiBIUOGoHr16qhduza2bt2K0NBQBAQEAABiYmKwefNmrFixAu3atUP9+vWxZcsWXLp0CZcvX5bL8fLygru7OypUqJBrPb/99ht69eqF0aNHo0KFCujatStmzJiBJUuWQAiR5/izP5QDQFpiHAAJAGDj3ABGVnZ5LvdTaOsZwKFRR0hSdp0NER8RmrVTkpASH5sVV3ICtHT1oG9aokDiyO0eJMdE4fXjO3Bs0Q0A4NCoAxKjwhEX8VTl9WcnJgCQlhALSZKQFP0Srx4EoqJLfwCAY4seSHj5HLHPH6u8fgByYgIAMUnpkCAhMjYF10Ji8HXT0gCAvg1K4enrZDyMSCiQGIiIiIg+B2p9cvKumJgYAIClpSUAICAgAGlpaWjfvr18TNWqVVG2bFn4+/ujSZMmn1RuSkoKjIyMFLYZGhri2bNnePLkCRwdHXM9JyUlRX4dGxuba9n+675H5N2rAIDW/137SfEUhDuH16Ns0y4AgJZT1+D0vIG4vm0hkmOi0GzCShiWsCmwut+9B4mvw2FYwhpa2ln/vCRJgpFVKSRGhRdI/eeWjkZ40AUAQIeFe5Hw8jkMLW0V6je2LoP4l89gZG1fIDEM+vkGzt6LAgD8MbkRnr5OQikLfehoa8kxlLUyQGhUEspYGhRIDERERERFncYMiM/MzMSkSZPQvHlz1KhRAwAQHh4OPT09WFhYKBxra2uL8PBP/6Dr6uqKgwcPwsfHB5mZmbh//z6WL18OAAgLC8v1HE9PT5ibm8s/Dg65j5doOmYxev50GjX7jUfg7pWfHJMqBe1ajtgX/6DBN3MAADf3rESDb+ZgwPbb6L3RH9e3LkB0aHCB1a/ue9B6+noM2HEH9YbMwrXN8wq9fgD4dURdPF3RHgv7OOHbfffUEgMRERFRUacxyYm7uztu376N3bt3q7zsESNGYNy4cejWrRv09PTQpEkTfPnllwAALa3cb8GMGTMQExMj/zx9+uEuSRVa9UTk3b+QEhet6vA/6Na+nxDi542OC/dBx8AIyTFReHLpGCq26wcAMCvlCGvnhoi891eBx5J9DwwtbZH05iUyM9IBAEIIJEaFFXhXt8odvkJY0EUYl7RH0usIhfoTXj6DiXWZAq0fAAa3cMDZv6NQpoQhwqJTkJ6RKccQGpWMslaGBR4DERERUVGlEcnJuHHj4O3tjbNnz6JMmX8/QNrZ2SE1NRXR0dEKx0dERMDO7tM/6EqShCVLliA+Ph5PnjxBeHg4GjVqBADvHaeir68PMzMzhZ+3pSbEIvFNpPz62TUf6JmYQ++tMRAF7faBNXjsewCdPA/JYy/0TCygo2+EF4HnAQDJMVF4+fc1lCin+hnD3ncPDMysYFneGSEXvQEAT6+egpGlLUxtVTtbV2p8DBKj/n3y9eTSMeibWcLAwhpWlWrhkc9eAEDIxaMwKmkPs9K5t3V+RCem4cWbZPn14evhsDLRg42ZHuqVM8N2/+cAgAPXwlDG0gCVbI1VHgMRERHR50KtY06EEBg/fjwOHToEX19flC9fXmF//fr1oaurCx8fH/Tt2xcAEBwcjNDQUDRt2lTp+rS1tVG6dNYA5V27dqFp06awtrbOU+xpifG46DUVGanJkLS0oG9aAq2nrYEkSbi62QMvbpxHckwUzi4ZBV1DY3T54VCe6nmfhFcvcHXjLJiWcsTx6d0BAFq6+ujhdRptZ27BXz/PQWZGOkRGOqr3HgPrqg1UWj/w4XvQcOgcXN4wC3ePboKuoTEaj1yg8vpTE2NxfsloZKQmAZIWDMxLosP83ZAkCc0nrMT55e4I2r0CukamaDl1tcrrB4CYxDT0WxuApNRMaGkB1qb68J7UEJIkYcPgWhiyORCLvR/CzFAHW4bWLpAYiIiIiD4Xak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2VRgM//DhQ8THxyM8PBxJSUnyOifVqlWDnp4eXr16hf3796NNmzZITk7Gli1bsG/fPpw7dy7PsRtb28N1wa5c9zUaNjfHtozUlFyOzDvjkvYY+uebXPeVrtcGpev5KmxLT03O9dh8xfCBe2BmXx4dPXYobFP1PTCxcUCPn3xy3WfuUBndV51UaX25KVfSCFfn5D49sFMpE/jPalHgMRARERF9LtSanKxbtw4A0KZNG4XtW7ZswZAhQwAAK1euhJaWFvr27auwCOPbhg8frpBo1K1bFwDwzz//yDNxbdu2DdOmTYMQAk2bNoWvr6/ctYuIiIiIiNRP7d26PsbAwABr1qzBmjVr3nuMr6/vB8soWbIk/P39lQ2PiIiIiIgKkUYMiCciIiIiImJyQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQddQdQFGWkpxbKOR+SmZaCdCWPV6WieA+yz1GVlLTMQj2PiIiI6HPH5CQP/NfOUHcIOLdklFrr5z0Avt54Q631ExEREX1umJwoqXYpE+jq6qo3Bmv11l+vtKla6wfUfw/g0Ei99RMRERF9hiQhhFB3EEVBbGwszM3NERERATMzs3yVpa+vD0mSlD5PCIGUlPx3S1J3/UU5BlXWn9cYiIjo85f9uSMmJibfnzuIihI+OVGSgYEBDAwM1FK3JElqq1sT6teEGNRdPxEREdHnjLN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUbgbF2fKHvG5djYWDVHQkRERJ+77M8bXPGBihsmJ58oLi4OAODg4KDmSIiIiKi4iIuLg7m5ubrDICo0XITxE2VmZuLFixcwNTXlonnvERsbCwcHBzx9+pQLRmk4tlXRwvYqWtheRYcmt5UQAnFxcbC3t4eWFnvhU/HBJyefSEtLC2XKlFF3GEWCmZmZxr3JU+7YVkUL26toYXsVHZraVnxiQsURU3EiIiIiItIITE6IiIiIiEgjMDkhldHX18fcuXOhr6+v7lDoI9hWRQvbq2hhexUdbCsizcMB8UREREREpBH45ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTUhoneCMi4nshEVFBYHJCHxUdHY2uXbvif//7HwAgMzNTzRHR+7x58wZPnjwBAGRkZKg5GvqYiIgIrFq1CgcPHsT9+/cB8AOvJouKisLYsWNx9OhRAGwrTfbq1StcunQJjx8/VncoRKQkJif0USdPnsTx48fxww8/IDIyEtra2kxQNNAPP/yAsmXLYubMmQAAbW1tNUdEHzJnzhxUrFgR3t7eGDduHAYPHoy7d+9CkiR+6NVQS5Yswfr167Ft2zbExsZCS0uLbaWBZsyYAWdnZ0yaNAk1atTAypUrERUVpe6wiOgTMTmhjzp37hzc3NxQr149TJgwQd3h0DtSUlIwadIkHDx4EC1btsSTJ09w6NAhAHzKpal+++03HDt2DEeOHMHp06fx22+/ITMzE/7+/gAASZLUHCHlJigoCB06dEB0dDS2bt2q7nDoHS9evEC/fv1w+vRp7N+/H/v378e0adOwadMmXLp0Sd3hEdEnYnJC75Weng4AsLCwQL169TBo0CAcO3YM58+fh5YW/+loAiEE9PX1UbFiRYwYMQJLliyBlZUVtm/fzm92NdiJEydgbW0NFxcXAJD/26hRI/kYtpv6vHvvMzIykJKSAgsLC8ycORMODg44cuQI7t27B0mS2IVSjd5uq+z28PLyQuvWrVG2bFnMnz8fCQkJiIiIyHE8EWkmfsIkAP++Yb/9R1ZHRwcA4Ofnh0qVKqFr165o37495syZAyEEfHx8kJqaqpZ4i7PExEQ8ffoUqamp8jfso0aNwogRI1CzZk107doVz58/5ze7Gib7KVZqaiqsra0RFxeHGzduICoqCn379sXTp08xd+5cLFmyBBkZGXx6oiapqakK72tCCGhra0NfXx/379+Hg4MDvvzyS6SlpeHIkSNITU1FZGSkGiMuvlJTUxX+ZtWsWRPjxo1D06ZNAWT9zgkhULp0afn3j79XRJqPyQlh+fLlGD58OADFcQqZmZlIT0+HoaEhypUrB0tLS4wdOxYBAQHQ1taGj48PUlJS1BV2seTh4YG6deuib9++cHFxQXBwMAAoPCHp168fnJyc8Pvvv+PBgweQJIndu9Rk48aN+PnnnwFktVFmZib09PTQp08fWFpa4ttvv4WNjQ2io6OxYcMGVKhQARs2bMDo0aMBsFteYZs3bx5atGiBnj17YuPGjXjz5o38YTY4OBhaWlpwdHREp06d0KRJE2zYsAEGBgbYv38/26qQLVy4EJ06dULPnj3x008/ISoqCjY2NmjVqhWArN8dLS0tREZG4vbt26hZs6aaIyaiTyao2Lpz547o3r27MDY2Fra2tmLfvn1CCCHS09MVjmvWrJkICQkRf/75p7CzsxMlSpQQVlZWIjk5WQghREZGRqHHXtxcunRJNGjQQNSoUUMcPnxY/Pbbb6JVq1aiRYsWCsdlZmYKIYQ4evSoaN68ufjuu+/kfdntlH0MFZzr16+LNm3aCEmShIuLi7hx44YQQvF3KyMjQ2zYsEF07dpVJCYmytu3bNkibG1tRWRkZGGHXWylpaWJ//znP6JSpUpi27Zt4quvvhLVq1cX3bp1k48JCwsTHTp0EEII8ccffwhra2thYmIiWrVqJVJSUoQQ/N0qDAEBAaJBgwaievXqYvPmzWLAgAGibt26YvLkybke//vvv4vKlSvLf6+ISPPxyUkxdunSJUiShF9++QWurq748ccfkZqaCm1tbflb+L///huvX7+Gi4sL+vbti3HjxmHv3r2wtbXFjBkz1HwFxYefnx9q1aoFPz8/9OzZE19//TU6d+6MEiVKyGOD3v7mtnv37mjcuDH8/Pxw5swZ7N27F+7u7gDYraGgZWRkwNvbG7a2tli3bh1iY2Nx6NAhZGZmyr9bQghoaWkhODgYNjY2MDQ0lM9/+vQpbG1t+U18IXr69Cn++usvrFixAoMGDcLOnTuxcuVK+Pj4YOXKlQCAgIAA3Lx5E82aNcOAAQMwZcoUTJs2DZmZmdi7d6+ar6B4iI+Px65du1C1alX4+flh6NCh2L17N7p27YqHDx8iOjo6xznXr19Hw4YNoa+vDyDrvfTgwYOFHDkRKYPJSTGUnXgMGDAA06ZNQ//+/dG7d2/ExcVhxYoVAP79oFu1alXY29ujbdu2uHHjBmbOnInmzZujb9++2LlzpzzomgpGdluNHTsW06dPh5mZGYCsyQpOnz6NSpUq4fLlywCyug29PTh34MCBSEpKQrdu3fD111/D2NhYPRdRzGhra6NPnz6YMGECRo0ahebNm8PX1xenT5+Wj8lOECMiIvD69Wt5JqH79+/D19cX7dq1g62trVriL47S0tIQHByM2rVry9s6dOiA2bNnw8PDA8+ePUPjxo1haWmJypUr4/r16/juu+/wzTffQEdHB0eOHEFSUhIT/wImhED58uUxZswYmJuby1/MmJubIzg4WH5/fNuff/4JFxcXPH/+HF26dEHr1q0RFxdX2KETkTLU+diGNMerV6/ElClTRI0aNURISIgQQoikpCQhhBCxsbE5uiuEhYWJ+Pj4Qo+ThDhy5IgwNTUVNWvWFC4uLsLe3l64ubmJ6Oho+Zhnz56JUaNGCUmSxNChQ8Xr16/VGHHxdv/+fdGkSRMxZswY8ebNGyGEEKmpqUIIIS5fviwaN24sLC0tRc+ePYWpqalwc3MTcXFxaoy4+Ll7966oU6eOWLp0qcL2mJgYUb58eTF16lQhhBBPnz7N0Y310qVLbK9C9G7XSCGEmDVrlujfv3+OY4ODg0WJEiVE586dhZ6enujZs6d49epVocVKRHnDr7wJQghYWVmhR48esLCwgKenJwDAwMAAAGBqaip/Iyj+/5t8Ozs7fhNfSMQ7U1+mp6djx44duHHjBk6cOIHjx49j586duH79unzMkSNHcO7cOVy+fBmbN29GiRIlCjtsQtYTyMqVK6Nv3764du0avL29AQC6uroAgMaNG2PTpk1YtWoVGjVqBF9fX2zfvh0mJibqDPuz8+7v0LvKli0LJycnXLlyBSEhIQCy2s7MzAxjx47Fvn37kJycjDJlyshPirPLbNq0KdurkIj/nzktW/bfpevXr6NevXryMdkeP36M6OhoxMbG4ty5czh8+DCsrKwKN2giUhqTk8/Us2fPsGrVKjx+/BiA4ht29qPwbNndgJo1a4Zu3brB19cXFy9eBAC5y1A2dltQvbCwMNy8eROvXr3KsS89PT3HPe/Tpw+6d+8ObW1t6OjooGLFirC0tMSNGzfkY8aOHYt79+4prJtBqvHo0SPMmzcPDx8+zLHv3d+t7O6Ro0ePRokSJeDt7S1/+L116xYAoEaNGvjPf/6D77//Xv6ARaoTExOD+Ph4+T3w7bE82e1lbGyMXr164cGDB/L4kewkxNzcHGZmZnj58qVCuXwvVL2QkBAMGjQo1zE8774XZmZmQpIkxMTE4MqVK/L0wZIk4cmTJwCA+vXr488//8TFixfRpEmTwrkIIso3JiefoaioKHTr1g3ffvstTp8+La+ZkJ2E6OjoQAghD/TMfq2rq4uuXbuievXqmDFjBrp06YJmzZrh3r176rycz9qkSZPg5OQENzc31KhRAwcOHJD7Qwsh5LaZPXv2e8vw9vZGhQoV0Ldv38IKu1gSQmDMmDGoXLkywsLCUKZMGXlf9gfe7PY6evSo/DojIwMmJiYYNmwYHj9+DC8vL3Tp0gUuLi45PvCS6gghMGnSJLRu3RqdOnXCoEGDEBcXBy0tLaSlpQH4t3127NiBL7/8Es2aNcOhQ4fkJ1wA8OrVK1hYWMDe3l5dl1IszJ07F87OzkhISICurq6cOGYnle/+3cpOHn18fGBhYYFWrVrh+fPn6N+/Pxo2bIiIiAhYW1ujQ4cO6rkgIsozJiefIUNDQ1hYWMDZ2Rn79++Xv6HNfhy+adMmlCpVCnv37sWLFy8A/PstoLW1NSIiIuDn5wdDQ0OEhITA2dlZPRfymfvll19w9uxZ/P7779i9ezd69OiB2bNnw8vLC0BWm2zatAmlS5fG3r175W8DAeDFixcIDQ3FvHnzMGnSJHTr1g2lS5fm6scFZNeuXShZsiSuXr2Kq1evyutbAJBn3gKy1jWxsbHB/v375ZmDsn/v2rZtixcvXmDVqlXQ1tZGQEAArK2t1XI9n7vLly+jbt26uHLlChYvXgxXV1dcu3YNI0aMAPBvt7qff/4Z9vb2+PXXX5GWloaJEyeiWrVq6N27N8aOHYvx48djyZIlGDBggMIshqRagYGB8PHxwZ49e3DgwAH07t1bXgQ4+29Tbn+3gKwZJevWrYvFixejcuXKiI6ORkBAACeUICrKCnWECxWK69evi65du4rHjx+LMmXKCA8PD3mw9MGDB0WdOnXEpk2bcqxnEhQUJCpXriwqVaokLl68qI7Qi5VevXqJnj17Kmz773//K2rVqiXOnTsngoODRdu2bXO01bNnz8QPP/wgKleuLGrWrCnOnDlTyJEXP66ursLR0VG8ePFCCCHErVu3xJ9//ikePXokr1GyYsUKYWBgIH755Zccv1s+Pj5CkiRRs2ZN4efnV+jxFyfp6eli+vTp4quvvlIYqL5nzx5Rvnx5ER4eLoQQ4tdffxUODg5i8+bNIi0tTaGMZcuWiZEjRwpXV1fh4+NTqPEXR+7u7qJz585CCCH8/PzExIkTxf/+9z9x5coVIYQQp0+fFrVq1cr171ajRo2EJEnC2dlZ/Pnnn4UeOxGpniQEvwoqqtLT0+Vvl4Csb3AlScI///yDoUOH4uzZs5g+fTpOnjyJHTt2oHLlytDT00NKSoo85/vbkpKScOrUKfTo0aMwL6NYyW6jpKQkfP3113B0dMTy5cvl/Tdv3sT3338vrzqdlpYmf8ubLSMjA7du3UJERARcXV0L+xKKpZs3b6J3794YOHAg7t27h4CAAJiYmCAqKgqtW7fGrl27IIRATEwMLCwscpwfGxuL7du3Y+zYsYUffDH0559/wtDQUF4tHAC2bduGpUuX4vLlyzA1NQUAxMXFyf8P/Pv7SQUne+V24N/xjiNGjEDFihVhYWGBhQsXol27drh79y7Cw8Px3XffYeLEiUhOTpafVmZLSEjA4sWLUa1aNbi5uRX6tRBRwWC3riJqzpw56N+/P8aPH4979+7J40oA4MqVK3If+KVLlyI1NRWDBw+GgYEBTpw4kWtiIoSAoaEhE5MC8Msvv+DUqVMAsrooZN/rkiVLwtfXV2EgfK1atdCxY0eEhobizJkzORITIKubUJ06dZiYFBBPT09MnjwZGzZsQGpqKoCsdunatSuWLl0KPT097Nu3Dzt27MDKlStx9OhRzJ8/H5IkwdzcPEd5b8/6RKp38OBBxMbGKmxzdXWVE5PsD8BRUVEoUaIETExM5O5ZbycmAAe5F7T58+dj2LBhWLBgAaKioqClpQVtbW0kJyfjyJEj8PPzw4YNG7B9+3bcuHEDAwYMwP79+3Hy5EkYGBjk6FZnbGyMRYsWMTEh+swwOSliXr58iRYtWuDw4cOoXbs2Tp48ia+++koepwBk/TFu1qwZAODw4cN4/vw5bt++jalTp6JTp065lss/yqrn5+eH+vXrY/jw4di9ezfCwsIA/PthacaMGQgKCsLx48cVzuvcuTPCw8O5UFghCw4ORvXq1bFr1y6EhYVhxowZcHV1hZ+fHwBg4cKFmDZtGhYtWoQGDRqgVq1aGDBgADw8PLBy5UqFLwjexkVKC4avry+qVq2KL774Art3737vcdltcv78ebRo0YLvdWrw9OlT1K9fH/v374exsTHWrl2LTp06ybNyTZw4EYGBgTh69CicnJzkNnJ3d0d8fLz83sm2Iyoe+FeziLl8+TJev36NY8eOYe7cubh58ybatm2Ln376SZ7+Nzg4GN7e3mjVqhWGDh0KDw8PNG7cGE+fPsX9+/fVfAXFQ3R0NPbs2YMGDRpg0aJF8PX1ha+vL4CsWWcyMzPh6OiIESNGYM6cOQrtUrlyZSQkJOD58+dqir54OnbsGMzNzXH9+nXs3r0bd+/exZs3b+Dl5YX79+/DzMwM3377LcqXL69wXunSpaGnp4c7d+6oKfLi5969e1i/fj3at2+PESNGYNGiRfIH2HdpaWkhKSkJN27ckGdukiSJsxAWojNnziAzMxMXLlzA6tWr8fDhQ9jb2+Onn37CzZs30bhxYwwYMAA6OjoKT5IrV66Mly9fvrdtiejzxOSkiImMjER8fLw8E4m+vj5Gjx6NGjVq4L///S8AwMnJCa9fv4aTkxOuXbuGSZMmwcPDA/v27cO5c+cU5vmngmFkZIRevXph9OjRmDFjBipVqoRdu3YhODgYwL/fAK5atQrp6emYO3eunFz+8ccfKF26NNq2bau2+Iub9PR03LlzBzY2NvLsWnZ2dpg5cyZCQ0OxdetWAICZmVmOc/39/dGkSRPUqlWrMEMu1iwtLdGhQwe4u7tj2bJlyMjIUBi79a4LFy5AS0sLzZo1w927d9G2bVvUr18f4eHhhRh18RUSEgJdXV154V5jY2NMnToV+vr6WLJkCQBg9uzZ0NHRwdq1axEYGAgAOHfuHMqUKYOuXbuqK3QiUgMmJ0VMamoqbG1tERQUJG9zcnLCN998g2fPnuH3339Hv379cPbsWWzcuBEVKlQAALRp0wbbtm3DoEGD2M2kEOjp6aFdu3aoW7cuAGDevHkICAjAiRMnkJqaCkmSkJaWBn19fWzfvh0xMTFwdXVFp06d0Lt3b7Rv3x5OTk5qvoriQ0dHBykpKUhKSkJmZqbc9a5fv36oX78+rly5orDIZWhoKEJCQjBu3DgcPnwYgwYNAvDxlchJNWxtbfHNN9/A2dkZpqamWLBgAVavXq3wvgj82x63bt2CnZ0d5syZg1q1asHe3h4RERGws7NTR/jFTnJyMnR0dBAZGSlva9WqFbp06YI7d+7g9OnTqFKlCjZv3ow7d+6gffv26NGjB7p06YLmzZujWrVqaoyeiAqdeiYJo/fJzMz84PYnT54IS0tLsWrVKpGamirvf/LkiejevbsYNWpUjjIyMjIKLuBi7H1t9a7s+z98+HDRuHFj4e/vn+OYqKgocfToUbFq1Spx69YtlcZJH5Y9NenZs2eFlpaWuHHjhhBCyNPL+vr6ikqVKom9e/cKIYS4f/++mDp1qrCzsxNNmzYVN2/eVEvcpPg72LhxY9GjR48c0wILIUTbtm2FJEmiZcuWIiAgoDBDLNay3/vu3bsnJEkShw4dUtgfGBgoGjduLDw9PeVtISEhYs+ePcLT05PvhUTFFKcS1iBxcXEwMTGRu/yIt6a1fHva4HHjxsHb2xuHDx9GnTp15PP79u0LPT09eVpTDh4sOJ/aVm+/DgsLQ/PmzTFgwADMmDEDZmZmePjwISpVqqSWayhOkpKSYGhomOu+7PZJTk5Gp06doKuri1OnTim0aaVKlTBo0CDMmTMHSUlJ8ox47dq1K8zLKDY+pb2yZbfThQsX0KZNGxw+fBjdu3dHRkYGXr9+DWtra+zcuRMmJiacjbAA5fY35+226t+/Px4+fIiTJ0+iZMmS8jFNmjRBo0aN4OXlxb9bRASA3bo0QlpaGkaPHo0uXbrgiy++wK+//goga1xCeno6AMgfnm7cuIEff/wRGRkZWL16tcKq4QDkNRb4Bl8wPrWt0tLS5FmedHR0kJGRgVKlSmHUqFH4/fffsWnTJnTo0AFDhw5FQkKC2q7nc5eWloYxY8agT58+GDRoEC5fvix39cmeJji7fWJiYuDh4YFz585h/fr18nFv3ryBsbExrKysAACGhoZo06YNE5MC8KntlZ6ejoiICAD/vte1bNkSX331FTw8PODj44OuXbvCy8sL6enpGDhwIBMTFUtLS8OyZctw6NAhAIp/c7K7Rero6CA1NRUPHz7EsmXL8Pfff2PlypWIiYkBkJW86Ovro0SJEjnKIKLii8mJmj1+/BgNGzbE33//jenTp8Pc3Bw//PADRo0aBQDyt05eXl6wsbHBzp07oa2tjVWrVuHWrVvo1q0bNm/ejEmTJuH8+fP44osv1Hk5nzVl2srKygrHjh1DUlISgH+nkx04cCCCg4Mxbdo0mJiY4ODBg/IgUVKt8PBwNG7cGDdv3kT37t1x8+ZNjB49GkuXLgWQNS4IyGovIyMjnDhxAq1bt8bcuXMxd+5cjBo1ChcuXMCCBQsQFxcHFxcXdV7OZ0+Z9jIxMcHx48dzjPFxd3fH9evX5Vm5pkyZovCUhVTj+PHjqF27NqZPn44DBw7gxYsXAP4d45M9qYSXlxdKlCiBgwcPomzZsvjxxx+xd+9eDBgwAEePHsX06dPx4MEDdOvWTW3XQkQaSB19yehfq1evFm3atBEJCQlCiKw+1OvWrROSJIkDBw6IjIwM8d1334kSJUqI7du3K4wfCQoKEm5ubsLV1VU0bdo017EMpDrKttW7Y1L27dsnJEkSDRs2FNevX1fHJRQr+/fvF9WrVxfPnj0TQggRHR0t5s2bJwwMDMTt27eFEEIMGDBA2Nvbi23btim0l5eXl2jZsqWoWbOmqF27trhy5YparqE4Uaa9fv31V4X2Sk9PF9u2bRO6urqicePG/P0qQPHx8WL48OFiwoQJwtPTUzRo0ECsW7dO4ZiUlBQxevRoYWNjI3777TeFv1u///676NKli2jatKlo0KCBuHz5cmFfAhFpOI45UbPJkyfj2rVruHDhgtzfdt26dXB3d0edOnVw+vRpZGRkQF9fX57GVLzTLzc2NjbXKU5JtfLSVm+7du0arl+/jpEjR6oh+uIjMzMTWlpaWL9+PRYsWKCwXkx4eDi+/vprpKWl4dy5c7hy5QqcnZ3l9so+N/v/nzx5kmNdE1Kt/LRXtsTERPz8888wNDTk71cBE0LA398fVlZWcHJywhdffIHU1FQsXLhQnk5bCIGHDx/C1tY2198tAIiIiJCnxCciehu7dRWiq1evAoDCOiOmpqYwMDDAH3/8ISccfn5+8PDwwN27d/H777/D2tpaoevPu/1ymZionqra6m0NGjTgB6cCsn//fpw+fRphYWHyByBtbW3Y2dnhwoUL8nF2dnaYMWMG/P39cfLkSTRu3BgmJiby/rc/PGlpaTExKSCqaq9sRkZGmDhxIn+/CsDbbQVk/f1p1qyZPNX5qFGj8OzZMxw6dEju1iVJEipXrqzwt+ndKeyZmBDR+zA5KQSHDx9G6dKl0blzZ4SEhEBLS0se3PnVV1/B1NQUAwcOxJdffglTU1M8ePAAw4YNQ+/evbF//34A//bhpYLFtipafvvtN9ja2uJ///sfBg4ciH79+uHAgQMAspLB5ORkXLp0SW5DAKhRowY6d+6M7du3A8j5oYkKDtur6MitrbIHv2dmZsqJSIcOHdC0aVOcPXsWZ86cAcD1fogof/guX8B27NiBxYsXo1WrVqhWrRp++OEHAFmDO4UQcHZ2xo8//oiVK1eiZMmS2L59O65cuQJ7e3skJyfD0dFRvRdQjLCtio709HT8+OOP8PT0xOLFi3HhwgUcPnwYFStWxObNm5GUlIS6deuiRYsWOHjwIC5duiSfa2trC11dXSaRhYjtVXR8qK1+/vlnpKSkQEtLC5IkyU+Wx48fj+TkZBw5cgQJCQkQQuD+/fsA/p25i4joUzE5KSDZb8iVKlWCi4sLlixZgh49esDX1xe+vr4Kxzg4OOCbb77B6tWr0bNnTwBZfa2fPn2KihUrqiX+4oRtVfQkJCTg5cuXGDx4ML755hvo6emhWbNmqFatGmJjY+Vv3j08PJCWloaNGzcqjGVISkqSpy+lgsf2Kjo+1lbZU6YDWU+xhBCoWrUqevfujWvXrmHBggVo2LAh3NzckJGRwaSSiJSnjlH4n7P79+/nmKUpe8Xi27dvix49eoguXbrI+949NiQkRDx79ky4ubmJunXriidPnhR80MUU26poebe9bty4Ia/unj0b0I4dO0SdOnVESkqKfNy+fftEy5YtRbly5cTy5cvFf/7zH2FjYyMuXLhQuBdQzLC9io68ttXb+//66y+hq6srJEkSI0eOzHEcEdGn4pMTFdm7dy/Kly+P7t27o0mTJvjll1/kfdnfHFWvXh29evVCSEgItmzZAkCxb25SUhI2bdqEWrVqITQ0FPv27UPZsmUL90KKAbZV0fJue23evBkAUKdOHWhrayvMAnTs2DHUqVMHenp68rfxX3zxBXbt2gVXV1dcuHABUVFROH/+PFq0aKG2a/qcsb2Kjry21btPT9avX49GjRqhbdu2ePjwITZs2CCvS0NEpDR1Z0efg5MnTwpHR0exZs0aceLECTFlyhShq6srNm7cKBITE4UQ/34j/+zZMzFs2DDRsGFDERcXJ4QQIjU1VS4rMDBQnDt3rvAvophgWxUtH2qvpKQkIUTWE63MzEyRlJQkatWqJX777bf3lpd9DhUMtlfRocq2CgoKEnv27CnM8InoM8bkJB+yH4N7eHiI+vXrK3xwHTt2rGjQoIE4ePBgjvO8vb1FgwYNxNy5c0VQUJDo1q2bCA0NLbS4iyO2VdGSl/Z6/vy5cHR0FPfv3xdCZHVVmTx5cuEFXYyxvYoOthURaTp268qH7LUu7t69i4oVK0JXVxdpaWkAgIULF8LAwABHjhxBeHg4gH8HVbdt2xaNGjXC/PnzUb9+faSlpcHGxkY9F1FMsK2KFmXbCwBOnz4NBwcHlCpVChMnTkS1atXw5MkTpKWlcWrTAsb2KjrYVkSk6ZicKOHUqVOYMGECVq1aJS/SBwAuLi44fvw4MjIy5Df6EiVKYNCgQfD390dwcDCArPEMCQkJ2LhxIzZs2IDWrVvj+vXrOHHiBPT19dV1WZ8ltlXRktf2+vvvvwFkjQfy9vbG7du34ejoCB8fH/j7++PAgQPQ1dXNsXAp5Q/bq+hgWxFRkaPOxzZFxYsXL0S3bt2EjY2NcHNzEzVr1hTm5ubiypUrQgghgoODRenSpcXs2bOFEEJhlhI7OzuxcuVK+fWdO3dE48aNxa+//lqo11BcsK2KFlW1V0JCgujWrZsoU6aM2L17d6FfR3HB9io62FZEVFQxOfmIhIQEMXjwYDFgwADx+PFjeXujRo3EkCFDhBBCxMbGioULFwpDQ0N5PEJ2v97WrVuL4cOHF37gxRDbqmhRdXtdu3atEKMvftheRQfbioiKMnbr+ggjIyPo6+tjyJAhKF++vDyFYpcuXXDv3j0IIWBqaoqBAweiXr166N+/P548eQJJkhAaGorIyEj06tVLvRdRTLCtihZVt1f9+vXVdCXFA9ur6GBbEVFRJgnB0Wwfk5aWBl1dXQCQ5313c3ODsbExNm7cKB/3/PlztGnTBunp6WjQoAEuXbqEqlWrYufOnbC1tVVX+MUK26poYXsVLWyvooNtRURFFZOTPGrRogVGjBiBwYMHIzMzE0DWYlQPHz5EQEAArly5gtq1a2Pw4MFqjpTYVkUL26toYXsVHWwrIioKmJzkwePHj9GsWTMcO3ZMftydmprKFXE1ENuqaGF7FS1sr6KDbUVERQXHnCghO4+7ePEiTExM5Dd4Dw8PTJw4EZGRkeoMj97Ctipa2F5FC9ur6GBbEVFRo6PuAIqS7Pncr169ir59++LUqVMYOXIkEhMT8dtvv3FxPg3Ctipa2F5FC9ur6GBbEVFRw25dSkpOTkbNmjXx6NEj6OnpwcPDA99++626w6JcsK2KFrZX0cL2KjrYVkRUlDA5yYMOHTqgcuXKWLFiBQwMDNQdDn0A26poYXsVLWyvooNtRURFBZOTPMjIyIC2tra6w6BPwLYqWtheRQvbq+hgWxFRUcHkhIiIiIiINAJn6yIiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISL6iCFDhkCSJEiSBF1dXdja2qJDhw745ZdfkJmZ+cnlbN26FRYWFgUXKBERURHH5ISI6BN06tQJYWFhCAkJwfHjx9G2bVtMnDgR3bp1Q3p6urrDIyIi+iwwOSEi+gT6+vqws7ND6dKlUa9ePXz//fc4cuQIjh8/jq1btwIAVqxYgZo1a8LY2BgODg4YO3Ys4uPjAQC+vr745ptvEBMTIz+FmTdvHgAgJSUF06ZNQ+nSpWFsbIzGjRvD19dXPRdKRESkRkxOiIjyqF27dqhduzYOHjwIANDS0oKXlxfu3LmDbdu24cyZM5g+fToAoFmzZli1ahXMzMwQFhaGsLAwTJs2DQAwbtw4+Pv7Y/fu3bh58yb69euHTp064cGDB2q7NiIiInWQhBBC3UEQEWmyIUOGIDo6GocPH86x78svv8TNmzdx9+7dHPv279+P0aNH49WrVwCyxpxMmjQJ0dHR8jGhoaGoUKECQkNDYW9vL29v3749GjVqhMWLF6v8eoiIiDSVjroDICIqyoQQkCQJAHD69Gl4enri77//RmxsLNLT05GcnIzExEQYGRnlev6tW7eQkZGBKlWqKGxPSUmBlZVVgcdPRESkSZicEBHlw71791C+fHmEhISgW7duGDNmDBYtWgRLS0tcvHgRw4YNQ2pq6nuTk/j4eGhrayMgIADa2toK+0xMTArjEoiIiDQGkxMiojw6c+YMbt26hcmTJyMgIACZmZlYvnw5tLSyhvPt3btX4Xg9PT1kZGQobKtbty4yMjIQGRmJli1bFlrsREREmojJCRHRJ0hJSUF4eDgyMjIQERGBEydOwNPTE926dcOgQYNw+/ZtpKWl4aeffkL37t3h5+eH9evXK5Th6OiI+Ph4+Pj4oHbt2jAyMkKVKlXg5uaGQYMGYfny5ahbty5evnwJHx8f1KpVC127dlXTFRMRERU+ztZFRPQJTpw4gVKlSsHR0RGdOnXC2bNn4eXlhSNHjkBbWxu1a9fGihUrsGTJEtSoUQM7duyAp6enQhnNmjXD6NGjMWDAAFhbW2Pp0qUAgC1btmDQoEGYOnUqnJyc0KtXL/z1118oW7asOi6ViIhIbThbFxERERERaQQ+OSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISIiIiIijcDkhIiIiIiINAKTEyIiIiIi0gj/B6eEVkmjq9zVAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxZ0lEQVR4nO3dd1xT1/sH8E+AsJcoiCiKAxW3OFHrVtyLqq20rrr3qtZaB2pdP3frrNZRt9bRarVVFAeuioqzWgdOhkqZQgjk/P7gy9UIKgGSXPTzfr18tcm9uc95DpeQJ/eccxVCCAEiIiIiIiIjMzF2A4iIiIiIiAAWJ0REREREJBMsToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGTBzNgNyC80Gg2ePn0KOzs7KBQKYzeHiIiIPmBCCMTHx8PNzQ0mJvwumT4eLE6y6enTp3B3dzd2M4iIiOgj8ujRIxQrVszYzSAyGBYn2WRnZwcg/U3C3t7eyK0hIiKiD1lcXBzc3d2lzx9EHwsWJ9mUMZTL3t6exQkREREZBIeS08eGgxiJiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgat1ERGRFiEEVCpVjl9vYWGR7RWGDBUrv8QxZCxD/Zw+tHx0iZWbOMnJyTl6HVF+x+KEiIi0qFQqdO3aNcev37lzJywtLWUVK7/EMWQsQ/2cPrR8dImVmzhqtTpHryPK71icEBFRli4+idf5Nd5Fc3bDuNBnun8Qq+qs1Pk1hsopJ/kA8s4J0D2vDy0fIGc54dF53V/jWl331xB9AFicEBHRW/kMmQ1TM/P37peWmoIzyyfmKlajCatgorR4734atQrH5w7McRxD5ZTdfID8kxOQvbw+tHyA3Oe0aUB1WCjfP9VXpdbgi9WXchyHKL9jcUJERG9lamYOU/PsfcDOLROlBczM3z9UJjWXcQyVU3bzAfJPTkD28vrQ8gFyn5OF0gSWStNcHoXow8fVuoiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLJgZuwGEBGRfB2fPxTJcdFQKEygtLKBd89v4OThhfiIBzi7chJU8TFQWtuiVt8puY51eHJ3JMc+/18sW9QdMhcFy1RB7JO7OPl/g5EcFw1zG3vUG7Eo17GOzR6AJCnWq7xCNszGk4tBSHz+FC0CNuc6zqGJXZD0X2SmnM4un4CHZw8iIfIROi4/AQd3z1zFedvP6fV8Wn2/E/ZuJXMVR2jScGxmb8Q+vgNTc0tYOTqj3vAFsC9aCs/+CcHZFd8gTa1CmioJUJgAzmVzHOttP6PXzz0zSxuYWVoDsMtxHEOdd+0WnUdUfApMFArYWZphqX9FVC/hgH8jEtBrTSieJ6TAwcoMq3pXzlUcovzOqFdOZs+ejVq1asHOzg4uLi7o1KkTbt26pbVPcnIyhg4dioIFC8LW1hZ+fn6IjIyUtoeGhuLzzz+Hu7s7rKys4OXlhSVLlmgdIzw8HD169EDZsmVhYmKCUaNGGSI9IqJ8z2fIHLSZsxutZ+9CudY9cW7VdwCA82uno3STT9FuwX54teuL82sCch2r0YTV6LwyGJ1WnERFv6E4MX8IAOD0ktEo16Y3Pv35Aip3G4ngxSNzHav+iPlZ5uVeuwWaT9kAm0JuuY4BAE0mrcsyJ49POqDtgoOwLeyeJ3He9nPK63wAwLPVl/Bb+zc6rzyF4j6tcWrxCABA8JJRqPrZaHRafgKt5v2G+PAwxMfH5zjO235Gr5975dv0RMzDW+850rsZ6rzbNLA6rsxohMvTG2KMb0n0XnsZADBww1UMaFwct+c0wYQ2pdF/3dVcxSHK74xanBw/fhxDhw7F2bNncfjwYajVarRs2RKJiYnSPqNHj8bvv/+OnTt34vjx43j69Cm6dOkibQ8JCYGLiws2bdqE69evY9KkSZg4cSJ+/PFHaR+VSgVnZ2d89913qFq1qkFzJCLKz8ytX30jrX4ZD0CB5NgXiL53HR4N2gFI/wCcFB2JVFVS7mLZOryKlRgHhUKBpJhneP7vZZRu1g0A4NGgAxKfP4U6OfFth8leLBv7V7H+lxcAuHjVhHVB11wd+3UWWeQEAK6V68PGuWiexcnq5wTkfT4KE1MUq9lMysPFqxYSIh/+b6MCqoQ4AEBq8ksoFAoolcocx8rqZ/TmuVesZjOkpSRrfW7QOY6BzjtH61d9EZuUCgUUiIpT4UJYLL7wST8X/GoWwZP/kpCoSs1xHKL8zqjDug4dOqT1eP369XBxcUFISAgaNmyI2NhYrF27Flu2bEHTpk0BAOvWrYOXlxfOnj2LunXrom/fvlrHKFWqFM6cOYPdu3dj2LBhAAAPDw/pasrPP/9sgMyIiD4cZ1Z8i6gb5wEAjb5ejpfREbAq4AwT0/Q/IQqFAtYFCyMtJTnXsY7PG4SI0JMAgBYzdyDx2RNYORXWimXjXBRpqtzHejMvfXkzJ30xVD6vu753JYr7tAEAfDJ2GY5M64GLG2YiOfYFHNw9YWlpmavjZ+fcMzW3RFJS7gpjQ513PX+6hGM3XwAA/hhdG4+ik1DE0QJmpiZSnGJOVkhK0cA8V5GI8i9ZzTmJjY0FADg5OQFIvyqiVqvRvHlzaZ/y5cujePHiOHPmDOrWrfvW42QcI6dUKhVUKpX0OC4uLlfHIyLKr3wGzwIA3DuxD5e3LUKVrsP0FqvR+JUAgH8Pb8WFtdPg3WuS3mK9mVfj8Sv0EufNnFrO3KmXOIbKJ0Po1gWIe3ofreekz8W4sn0RavaZgtJNu+K/h7fw29DGiHcvmKsYhjr3DHXebexfHQCw4dQjTNh5EzO6lNNLHKL8TDardWk0GowaNQr169dHpUqVAAAREREwNzeHo6Oj1r6FCxdGRERElsc5ffo0tm/fjgEDBuSqPbNnz4aDg4P0z909b8YFExHlV6UadkTUjb9h5VQYSf89gyYtfeiJEAIvX0TC1Dx335K/zrPF5wgPPQWbQm5Iio7UipX47AlMLfIuVkZeqviYPDtmVjJySo6L1mscQ+RzdecPCAvej5Yzd8LM0hrJsS/w4PQBlG7aFQBg51oC5rYOiI7Om1zfde6lpSTDysoqT+IY6rzr1cAdx/55gWIFrBAeo0JqmkaK8zg6CVbmsvl4RmRwsjn7hw4dimvXrmHbtm05Psa1a9fQsWNHTJ06FS1btsxVeyZOnIjY2Fjp36NHj3J1PCKi/EaTmoqk/55Jjx9fCIS5rQMs7QvCqaQXwk7tBwA8On8YVk4uMLPI+QdETaoaL1+8+tLpwekDsLB3gqWjMwqWqYK7genDocJO/QabQkWgtLTJcayUl/F4+V+U9Dgjr9fnHuSFlIRYvHwRLj3OyMnCrkCexnnbzymv88lwY+9K3Av6Fa1m75Hm1JjbOsLMwhpPL58AACTHvkBKQizs7e3fdai3etvP6M1z7/GFQJgqLWBjk7PzwVDnnTpNg6cxr4aE7b0YgYK25nCxN4d3CXtsOvMEAPDrhXAULWAJGwtZDWwhMihZnP3Dhg3D/v37ceLECRQrVkx63tXVFSkpKYiJidG6ehIZGQlXV+0Jfjdu3ECzZs0wYMAAfPfdd7luk4WFBSwsLHJ9HCKi/EqjSUXwD2ORpk6BwsQEFnYF0GjcMigUCtTqOwVnV32HG7+tgdLKBrX6TsW1PTkfRqRJS8Wx7/tAo1YBChNYOhRCi+nboFAoUH/EIpxYMBSh2xZCaW2HeiMX4/KmuTmOpX6ZgDMrJiItJTlTXufXBuDppRNIjn2BEwuGIzX5JVC0+fsPmoWUl3E4MXcQ0lKSMuUUvGQUHp0/jKToSPz5rR+UVjZwLJ6zIT7v+jm9ns+xuQOhtLSGfdHSOYoDAKmqZFxYGwC7Ih44OL49AMBEaYEOS4+gyaR1+PunKdCkpUKTmgI71xIoUCBnhdi7fkavn3tmltZwLJHzoVGGOu/UaQLdll+ESq2BiQngbGeB/aNqQaFQYFWvKui99jJm7b8DeyszrOpVBQH7buc4J6L8zqjFiRACw4cPx549exAUFISSJbXXX69RowaUSiUCAwPh5+cHALh16xYePnwIHx8fab/r16+jadOm6NWrF77//nuD5kBE9KEyM7dE43HLYGqe+Ysae7eSaPnafUDSUlSZ9tEploUVWszYDrMshoY5uHui/eK/pMepuZx4b1OoCHxnbM1yW+2vpkr/n5aiwqmlY3Mcx9bFHR1+CMxyW/2Ri7Uep6Yk49jM3jmK866f0+v5ALnPyczCEj1/D8/y51TUuzGKegcByF0+wLt/Rq+fe7nPxzDnnbW5KQ6Mrg1LpWmmbeWK2OLMdw2kx8nqtBzHIfoQGLU4GTp0KLZs2YJ9+/bBzs5Omkfi4OAAKysrODg44KuvvsKYMWPg5OQEe3t7DB8+HD4+PtJk+GvXrqFp06bw9fXFmDFjpGOYmprC2dlZinX58mUAQEJCAp49e4bLly/D3NwcFSpUMGzSRERERESUJaMWJytWpA8BaNy4sdbz69atQ+/evQEAixYtgomJCfz8/KBSqeDr64vly18tkbhr1y48e/YMmzZtwqZNm6TnS5QogbCwMOlx9erVpf8PCQnBli1bMu1DRERERETGY/RhXe9jaWmJZcuWYdmyZVlunzZtGqZNm5YnsYiIiIiIyHhks1oXERERERF93FicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWTAzdgOIiEi+0lJT8nS/d9GoVUjN5n65YaicsptPxr65Ibef04eWT8Z+uaFSa/J0P6IPFYsTIiJ6qzPLJxos1vG5Aw0Sx1A5GSof4MP7OX1o+QDAF6svGSQOUX7H4oSIiLLkXdTOYLGqOisNEsdQORkqH+DD+zl9aPkAANxr6/4atTrv20GUDyiEEMLYjcgP4uLi4ODggNjYWNjb2xu7OUREeiOEgEqV8yEsFhYWUCgUsoqVX+IYMpahfk4fWj66xMpNnLi4OBQuXJifO+ijwysnRESkRaFQwNLS8oOK9aHF+RBjfWj55DZOSkru59MQ5UdcrYuIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJgk7FSWpqKjZu3IjIyEh9tYeIiIiIiD5SOhUnZmZmGDRoEJKTk/XVHiIiIiIi+kjpPKyrdu3auHz5sh6aQkREREREHzMzXV8wZMgQjBkzBo8ePUKNGjVgY2Ojtb1KlSp51jiij50QAiqVKsevt7CwgEKh+GDiGDIWc9J/HEPGMmRORESUcwohhNDlBSYmmS+2KBQKCCGgUCiQlpaWZ42Tk7i4ODg4OCA2Nhb29vbGbg59JJKTk9G1a9ccv37nzp2wtLT8YOIYMhZz0n8cQ8YyZE5EeYGfO+hjpfOVk/v37+ujHUT0DhefxOv8Gu+idjq/JvSZWufXVHVW6vyanOQDMKcMcs4pJ/kAhssJj87r/hr32rq/hoiIckTn4qREiRL6aAcRvYfPkNkwNTN/735pqSk4s3xijuM0mrAKJkqL9+6nUatwfO7AHMfJbj4Ac8qK3HLKbT6A4XLaNKA6LJTvn3KpUmvwxepLOY5DRES607k4yXDjxg08fPgQKSkpWs936NAh140iosxMzcxhav7+D265ZaK0gJn5+4evpOYyjqHyAZhTbnyIOVkoTWCpNM3lUYiISB90Lk7u3buHzp074+rVq9JcEwDSRMEPdc4JERERERHpl85LCY8cORIlS5ZEVFQUrK2tcf36dZw4cQI1a9ZEUFCQHppIREREREQfA52vnJw5cwZHjx5FoUKFYGJiAhMTEzRo0ACzZ8/GiBEjcOkSx+cSEREREZHudL5ykpaWBju79NVYChUqhKdPnwJInyh/69atvG0dERERERF9NHS+clKpUiWEhoaiZMmSqFOnDubNmwdzc3OsXr0apUqV0kcbiYiIiIjoI6BzcfLdd98hMTERADB9+nS0a9cOn3zyCQoWLIjt27fneQOJiIiIiOjjoHNx4uvrK/1/mTJl8M8//yA6OhoFChSQVuwiIiIiIiLSlc5zTjLcuXMHf/75J5KSkuDk5JSXbSIiIiIioo+QzsXJixcv0KxZM5QtWxZt2rRBeHg4AOCrr77C2LFj87yBRERERET0cdB5WNfo0aOhVCrx8OFDeHl5Sc93794dY8aMwYIFC/K0gURERESUtbS0NKjVamM3g+itlEolTE1Ns72/zsXJX3/9hT///BPFihXTet7T0xMPHjzQ9XBEREREpCMhBCIiIhATE2PsphC9l6OjI1xdXbM1P13n4iQxMRHW1taZno+OjoaFhYWuhyMiIiIiHWUUJi4uLrC2tuaiRCRLQgi8fPkSUVFRAIAiRYq89zU6FyeffPIJNm7ciBkzZgAAFAoFNBoN5s2bhyZNmuh6OCIiIiLSQVpamlSYFCxY0NjNIXonKysrAEBUVBRcXFzeO8RL5+Jk3rx5aNasGS5cuICUlBSMHz8e169fR3R0NIKDg3PWaiIiIiLKlow5JlmNZCGSo4xzVa1Wv7c40Xm1rkqVKuH27dto0KABOnbsiMTERHTp0gWXLl1C6dKlc9ZiIiIiItIJh3JRfqHLuarzlRMAcHBwwKRJk3LyUiIiIiIioizpfOXEw8MD06dPx6NHj/TRHiIiIiIi+kjpfOVk1KhRWL9+PaZPn44mTZrgq6++QufOnblSFxEREZGxLTDgUK+xwnCxjCwsLAwlS5bEpUuXUK1aNWM3J8c8PDwwatQojBo1ythNeSudr5yMGjUKly9fxvnz5+Hl5YXhw4ejSJEiGDZsGC5evKiPNhIRERFRPqZQKN75b9q0aUZt2969e9+5j7u7O8LDw1GpUqVsH3fatGn5upAxFp2Lkwze3t5YunQpnj59iqlTp2LNmjWoVasWqlWrhp9//hlCfDzVNBERERG9XXh4uPRv8eLFsLe313pu3LhxOh0vJSVFTy3NmqmpKVxdXWFmlqPp2rli6FyNLcfFiVqtxo4dO9ChQweMHTsWNWvWxJo1a+Dn54dvv/0W/v7+edlOIiIiIsqnXF1dpX8ODg5QKBTS48TERPj7+6Nw4cKwtbVFrVq1cOTIEa3Xe3h4YMaMGejZsyfs7e0xYMAAAMBPP/0Ed3d3WFtbo3Pnzli4cCEcHR21Xrtv3z54e3vD0tISpUqVQkBAAFJTU6XjAkDnzp2hUCikx28KCwuDQqHA5cuXAQBBQUFQKBQIDAxEzZo1YW1tjXr16uHWrVsAgPXr1yMgIAChoaHS1aH169cDAGJiYtCvXz84OzvD3t4eTZs2RWhoqBQr44rLmjVrULJkSVhaWmL16tVwc3ODRqPRalfHjh3Rt29fAMDdu3fRsWPHd/ZjfqBzcXLx4kWtoVwVK1bEtWvXcOrUKfTp0weTJ0/GkSNHsGfPHn20l4iIiIg+IAkJCWjTpg0CAwNx6dIltGrVCu3bt8fDhw+19ps/fz6qVq2KS5cuYfLkyQgODsagQYMwcuRIXL58GS1atMD333+v9ZqTJ0+iZ8+eGDlyJG7cuIFVq1Zh/fr10n5///03AGDdunUIDw+XHmfXpEmTsGDBAly4cAFmZmZSodC9e3eMHTsWFStWlK4Ode/eHQDQtWtXREVF4eDBgwgJCYG3tzeaNWuG6Oho6bh37tzBr7/+it27d+Py5cvo2rUrXrx4gWPHjkn7REdH49ChQ9IFgez2o9zpfG2qVq1aaNGiBVasWIFOnTpBqVRm2qdkyZL47LPP8qSBRERERPThqlq1KqpWrSo9njFjBvbs2YPffvsNw4YNk55v2rQpxo4dKz2eNGkSWrduLQ0JK1u2LE6fPo39+/dL+wQEBOCbb75Br169AAClSpXCjBkzMH78eEydOhXOzs4AAEdHR7i6uurc9u+//x6NGjUCAHzzzTdo27YtkpOTYWVlBVtbW5iZmWkd99SpUzh//jyioqKkxaTmz5+PvXv3YteuXdIVoZSUFGzcuFFqHwC0bt0aW7ZsQbNmzQAAu3btQqFChdCkSROd+lHudL5ycu/ePRw6dAhdu3bNsjABABsbG6xbty7XjSMiIiKiD1tCQgLGjRsHLy8vODo6wtbWFjdv3sz0jX/NmjW1Ht+6dQu1a9fWeu7Nx6GhoZg+fTpsbW2lf/3790d4eDhevnyZ67ZXqVJF+v8iRYoAAKKiot66f2hoKBISElCwYEGtNt2/fx93796V9itRooRWYQIA/v7++PXXX6FSqQAAmzdvxmeffQYTk/SP89ntR7nT+cpJiRIl9NEOIiIiIvoIjRs3DocPH8b8+fNRpkwZWFlZ4dNPP800EdzGxkbnYyckJCAgIABdunTJtM3S0jLHbc7w+hf1GXdBf3NeyJvtKVKkCIKCgjJte32uTFa5tm/fHkIIHDhwALVq1cLJkyexaNEiaXt2+1HuDL/kABERERHR/wQHB6N3797o3LkzgPQP8GFhYe99Xbly5TLNEXnzsbe3N27duoUyZcq89ThKpRJpaWm6N/w9zM3NMx3X29sbERERMDMze+vk+7extLREly5dsHnzZty5cwflypWDt7e3tD2n/Sg3LE6IiIiIyGg8PT2xe/dutG/fHgqFApMnT37n1YcMw4cPR8OGDbFw4UK0b98eR48excGDB6UrGAAwZcoUtGvXDsWLF8enn34KExMThIaG4tq1a5g5cyaA9BW7AgMDUb9+fVhYWKBAgQJ5kpeHhwfu37+Py5cvo1ixYrCzs0Pz5s3h4+ODTp06Yd68eShbtiyePn2KAwcOoHPnzpmGrr3J398f7dq1w/Xr1/HFF19obctpP8oNixMiIiKiD0U+vGv7woUL0bdvX9SrVw+FChXChAkTEBcX997X1a9fHytXrkRAQAC+++47+Pr6YvTo0fjxxx+lfXx9fbF//35Mnz4dc+fOhVKpRPny5dGvXz9pnwULFmDMmDH46aefULRo0Ty72uDn54fdu3ejSZMmiImJwbp169C7d2/88ccfmDRpEvr06YNnz57B1dUVDRs2ROHChd97zKZNm8LJyQm3bt1Cjx49tLbltB/lRqfiRK1Wo3z58ti/fz+8vLz01SYiIiIi+kD17t0bvXv3lh57eHjg6NGjWvsMHTpU6/HbCob+/fujf//+Wo/fHMLl6+sLX1/ft7anffv2aN++/Tvb7OHhoXWD8caNG2e64Xi1atW0nrOwsMCuXbsyHcvOzg5Lly7F0qVLs4w1bdo0TJs2LcttJiYmePr06VvbmNN+lBOdihOlUonk5OQ8Cz579mzs3r0b//zzD6ysrFCvXj3MnTsX5cqVk/ZJTk7G2LFjsW3bNqhUKvj6+mL58uVSdRkaGoo5c+bg1KlTeP78OTw8PKQ1r18XFBSEMWPG4Pr163B3d8d3332n9YtBJHfH5w9Fclw0FAoTKK1s4N3zGzh5eCE+4gHOrpwEVXwMlNa2qNV3Sq7iHJ7cHcmxz/8XxxZ1h8xFwTJVEPvkLk7+32Akx0XD3MYe9UYsev/B3uPY7AFIkmK9yilkw2w8uRiExOdP0er7nbB3K6mXnM4un4CHZw8iIfIROi4/AQd3z3yRk9Ck4djM3oh9fAem5pawcnRGveELYF+0FJ7duohzKydCnZQIhUKBGn2n5iofQ513gOHOvXaLziMqPgUmCgXsLM2w1L8iqpdwwL8RCei1JhTPE1LgYGWGVb0r5zonItKv+fPno0WLFrCxscHBgwexYcMGLF++3NjNolzQeVjX0KFDMXfuXKxZswZmZrkbFXb8+HEMHToUtWrVQmpqKr799lu0bNkSN27ckFYpGD16NA4cOICdO3fCwcEBw4YNQ5cuXRAcHAwACAkJgYuLCzZt2gR3d3ecPn0aAwYMgKmpqbSm8/3799G2bVsMGjQImzdvRmBgIPr164ciRYq8s5ImkhOfIXNg5VgIAPDo70CcW/UdWs/+FefXTkfpJp+iVKNOeHjuL5xfEwCrAs7vOdrbNZqwGtZO6cV/WPB+nJg/BJ1XnsLpJaNRrk1veLbsgfsn9yF48UhYF9R9TfjX1R8xH+Y29plycq/dAl7t+uDI9F65On6Gt+Xk8UkHVO46AgfGts6TOIDhcvJs9SVK+LSBQqHAjX2rcWrxCLSe9zsCp3+JT8YuQ1Hvxoh9fAcHJ3REgZIVAGS99Pv7GOq8Awx37m0aWB2uDumr9OwJCUfvtZcROr0RBm64igGNi6N3A3fs+vsp+q+7CjdHi1zlRET6df78ecybNw/x8fEoVaoUli5dqjVki/IfnauLv//+G4GBgfjrr79QuXLlTEud7d69O9vHOnTokNbj9evXw8XFBSEhIWjYsCFiY2Oxdu1abNmyBU2bNgWQfgdPLy8vnD17FnXr1pXuxJmhVKlSOHPmDHbv3i0VJytXrkTJkiWxYMECAICXlxdOnTqFRYsWsTihfMPc2k76f/XLeAAKJMe+QPS962jyzSoAgHvtFghZPwtKa1sAdlkf6H1xbB1exUmMg0KhQFLMMzz/9zJ8Z6f/fns06IAzP34NpY0dAMccZgTpQzzwKicAcPF694RAneNkkRMAuFaun6dxAMPkpDAxRbGazaQ8XLxq4dqvP0IVF43k2Oco6t0YAOBQrAzMbR2QHPMcKFwsR7EMdd4Bhjv3HK1fFWqxSalQQIGoOBUuhMXir3F1AAB+NYtg2KZrcLAyhe6LlxKRoezYscPYTaA8pnNx4ujoCD8/P320BbGxsQAAJycnAOlXRdRqNZo3by7tU758eRQvXhxnzpxB3bp133qcjGMAwJkzZ7SOAaSPPxw1atRb26JSqaSb3ADIlxOK6MNzZsW3iLpxHgDQ6OvleBkdAasCzjAxTf9VVigUsC5YGGkpuRt+eXzeIESEngQAtJi5A4nPnsDKqbBWHBvnokhT5X6Y55s56cubOemToXLKcH3vShT3aQNLh4KwdiqMe8f3oFSjznh26yLiHt/N9bA4Q513gOHOvZ4/XcKxmy8AAH+Mro1H0Uko4mgBM1MTKU4xJyskpWhYnBARGZDOxYm+7vyu0WgwatQo1K9fH5UqVQIAREREwNzcXOumNABQuHBhREREZHmc06dPY/v27Thw4ID0XERERKYVEAoXLoy4uDgkJSXBysoq03Fmz56NgICAXGZFlLd8Bs8CANw7sQ+Xty1Cla7D9BKn0fiVAIB/D2/FhbXT4N1rkl7iAJlzajx+hV7ivJlTy5k79RIHMFxOABC6dQHint5H6znp8zCaTd2MC2sDcGX7IhQoUR4uFWojOfZ5rmIY6rwDDHfubexfHQCw4dQjTNh5EzO6lHvPK4iIyBBMcvrCZ8+e4dSpUzh16hSePXuW64YMHToU165dw7Zt23J8jGvXrqFjx46YOnUqWrZsmav2TJw4EbGxsdK/R48e5ep4RHmpVMOOiLrxN6ycCiPpv2fQpKUCAIQQePkiEqbmub/rLQB4tvgc4aGnYFPIDUnRkVpxEp89galF3sQBXuWkio/Js2NmJSOn5LhovcYB9J/T1Z0/ICx4P1rO3AkzS2sAQMHSleE7axc6LT+BRhNWIyk6Akor2zyJZ6jzDjDcudergTuO/fMCxQpYITxGhdQ0jRTncXQSrMxz/GeSiIhyQOd33cTERPTt2xdFihRBw4YN0bBhQ7i5ueGrr77Cy5cvc9SIYcOGYf/+/Th27BiKFXs1LtrV1RUpKSmIiYnR2j8yMhKurtqTIW/cuIFmzZphwIAB+O6777S2ubq6IjIyMtMx7O3ts7xqAqQv/2Zvb6/1j8hYNKmpSPrv1ZcAjy8EwtzWAZb2BeFU0gthp/YDAB6dPwwrJxeYWWR9Xr8/jhovX7y6Kvng9AFY2DvB0tEZBctUwd3A9OFQYad+g02hIlBa5nzAS8rLeLz8LypTTq/PO8gLb8vJwi5vbrL1OkPlBAA39q7EvaBf0Wr2Hli8dvzXc731xwaYWVrDwt4pq0O8l6HOu/RYhjn31GkaPI15NSRs78UIFLQ1h4u9ObxL2GPTmScAgF8vhKNoAUvYWPB2YEREhqTzu+6YMWNw/Phx/P7776hfP30y6alTpzBixAiMHTsWK1Zkf/iCEALDhw/Hnj17EBQUhJIltcdF16hRA0qlEoGBgdI8l1u3buHhw4fw8fGR9rt+/TqaNm2KXr164fvvv88Ux8fHB3/88YfWc4cPH9Y6BpGcaTSpCP5hLNLUKVCYmMDCrgAajVsGhUKBWn2n4Oyq73DjtzVQWtmgVt+puLYnZ8OINGmpOPZ9H2jUKkBhAkuHQmgxfRsUCgXqj1iEEwuGInTbQiit7VBv5GJc3jQ3xzmpXybgzIqJSEtJzpTT+bUBeHrpBJJjX+DY3IFQWlrDvmjpPM8peMkoPDp/GEnRkfjzWz8orWzgWDznw3sMlVOqKhkX1gbArogHDo5PX5vfRGmBDkuP4NbBDbh7dCcgBByKl0Xjb3/G+VU5GxplqPMOMNy5p04T6Lb8IlRqDUxMAGc7C+wfVQsKhQKrelVB77WXMWv/HdhbmWFVryoI2Hc7xzkREZHudC5Ofv31V+zatQuNGzeWnmvTpg2srKzQrVs3nYqToUOHYsuWLdi3bx/s7OykeSQODg6wsrKCg4MDvvrqK4wZMwZOTk6wt7fH8OHD4ePjI02Gv3btGpo2bQpfX1+MGTNGOoapqSmcndOXtRw0aBB+/PFHjB8/Hn379sXRo0exY8cOrXkpRHJmZm6JxuOWwdQ887Km9m4l0TJgs/Q4LUWVaZ9sx7GwQosZ22GWxfAcB3dPtF/8l/Q4NZeTn20KFYHvjK1Zbqv9lfa9OdJSVDi1dGyO4rwrp/ojF2s9Tk1JxrGZvXMUBzBkTpbo+Xt4ljlV/2ICqn8xQXqcm5+Toc47wHDnnrW5KQ6Mrg1LpWmmbeWK2OLMdw2kx8nqtBzHISLKrsaNG6NatWpYvHixsZuSY9OmTcPevXtx+fLlXB9L5+Lk5cuXmSaXA4CLi4vOw7oyCpnXCx0gfdJ9xg0SFy1aBBMTE/j5+WndhDHDrl278OzZM2zatAmbNm2Sni9RooR0F8ySJUviwIEDGD16NJYsWYJixYphzZo1XEaYiIiIPiiFpp0wWKzn0xrqtH/v3r2xYcMGAOk39i5evDh69uyJb7/9Ntf3zsvPdu/eDaUy+/eiCgsLQ8mSJXHp0iVUq1ZNfw0zEp3PBB8fH0ydOhUbN26EpWX6N1xJSUkICAjQeZiUEOK9+1haWmLZsmVYtmxZltunTZuGadOmvfc4jRs3xqVLl3RqHxERERHlnVatWmHdunVQqVT4448/MHToUCiVSkycODHTvikpKTA3Nzd4G4UQSEtLy/OC6W35vH77C0NTq9U6FUaGoPOE+CVLliA4OBjFihVDs2bN0KxZM+nO7EuWLNFHG4mIiIjoA2BhYQFXV1eUKFECgwcPRvPmzfHbb78BSL+y0qlTJ3z//fdwc3NDuXLpcwAfPXqEbt26wdHREU5OTujYsaM0OibDzz//jIoVK8LCwgJFihSRbsQdFhYGhUKhNdwoJiYGCoUCQUFBAICgoCAoFAocPHgQNWrUgIWFBU6dOoXQ0FA0adIEdnZ2sLe3R40aNXDhwgXpOL/++qsU08PDQ7rZdwYPDw/MmDEDPXv2hL29PQYMGJBlnzRu3Fjr3nseHh6YNWsW+vbtCzs7OxQvXhyrV6+WtmfM0a5evToUCoXWCKQ1a9bAy8sLlpaWKF++vNZoo4y+2L59Oxo1agRLS0usWLECVlZWOHjwoFab9uzZAzs7O2lU1IQJE1C2bFlYW1ujVKlSmDx5MtRqdZb55JbOJWGlSpXw77//YvPmzfjnn38AAJ9//jn8/f3fuvIVEREREdGbrKys8OLFC+lxYGAg7O3tcfjwYQDp3+z7+vrCx8cHJ0+ehJmZGWbOnIlWrVrhypUrMDc3x4oVKzBmzBjMmTMHrVu3RmxsLIKDg3VuyzfffIP58+ejVKlSKFCgABo2bIjq1atjxYoVMDU1xeXLl6WrDCEhIejWrRumTZuG7t274/Tp0xgyZAgKFiwoTU0AgPnz52PKlCmYOnXqW6JmbcGCBZgxYwa+/fZb7Nq1C4MHD0ajRo1Qrlw5nD9/HrVr18aRI0dQsWJF6WrM5s2bMWXKFPz444+oXr06Ll26hP79+8PGxga9evXSynPBggWoXr06LC0tcfLkSWzZsgWtW7eW9tm8eTM6deoEa+v0Zert7Oywfv16uLm54erVq+jfvz/s7Owwfvx4nfv5fXJ0vcra2hr9+/fP67YQERER0UdACIHAwED8+eefGD58uPS8jY0N1qxZI33g3rRpEzQaDdasWQOFQgEgfW6yo6MjgoKC0LJlS8ycORNjx47FyJEjpePUqlVL5zZNnz4dLVq0kB4/fPgQX3/9NcqXLw8A8PT0lLYtXLgQzZo1w+TJkwEAZcuWxY0bN/B///d/WsVJ06ZNMXas7ouftGnTBkOGDAGQftVi0aJFOHbsGMqVKyct+FSwYEGtW2tMnToVCxYsQJcuXQCkX2G5ceMGVq1apVWcjBo1StoHAPz9/fHll1/i5cuXsLa2RlxcHA4cOIA9e/ZI+7x+mw4PDw+MGzcO27Ztk09x8u+//+LYsWOIioqCRqPR2jZlypQ8aRgRERERfVj2798PW1tbqNVqaDQa9OjRQ2vucOXKlbXmZYSGhuLOnTuws7PTOk5ycjLu3r2LqKgoPH36FM2aNct122rWrKn1eMyYMejXrx9++eUXNG/eHF27dkXp0ulLwN+8eRMdO3bU2r9+/fpYvHgx0tLSYGpqmuUxs6tKlSrS/ysUCri6uiIqKuqt+ycmJuLu3bv46quvtC4gpKamwsFB+15bb7apTZs2UCqV+O233/DZZ5/h119/hb29PZo3by7ts337dixduhR3795FQkICUlNT9XYPQJ2Lk59++gmDBw9GoUKF4OrqKlWxQHrnsTghIiIioqw0adIEK1asgLm5Odzc3DJNOrex0b7BakJCAmrUqIHNmzfjTc7OzjAxeff06Yztry/C9La5Em/GnjZtGnr06IEDBw7g4MGDmDp1KrZt24bOnTu/M+a7jpldb05SVygUmS4IvC4hIQFA+uf0OnXqaG3LKJTe1iZzc3N8+umn2LJlCz777DNs2bIF3bt3l342Z86cgb+/PwICAuDr6wsHBwds27Yt0xybvKJzcTJz5kx8//33mDBhwvt3JiIiIiL6HxsbG5QpUybb+3t7e2P79u1wcXF56zf1Hh4eCAwMRJMmTTJtyxgCFR4ejurVqwOATvfiKFu2LMqWLYvRo0fj888/x7p169C5c2d4eXllmtcSHByMsmXLZioG8lrGlaW0tFf3YipcuDDc3Nxw7949+Pv763xMf39/tGjRAtevX8fRo0cxc+ZMadvp06dRokQJTJr06oa+Dx48yEUG76bzal3//fcfunbtqo+2EBERERFJ/P39UahQIXTs2BEnT57E/fv3ERQUhBEjRuDx48cA0q9wLFiwAEuXLsW///6Lixcv4ocffgCQPuG+bt26mDNnDm7evInjx49rzZ94m6SkJAwbNgxBQUF48OABgoOD8ffff8PLywsAMHbsWAQGBmLGjBm4ffs2NmzYgB9//BHjxo3TX2f8j4uLC6ysrHDo0CFERkYiNjYWABAQEIDZs2dj6dKluH37Nq5evYp169Zh4cKF7z1mw4YN4erqCn9/f5QsWVLr6ounpycePnyIbdu24e7du1i6dKnWfJS8pnNx0rVrV/z111/v35GIiIiIKBesra1x4sQJFC9eHF26dIGXlxe++uorJCcnS1dSevXqhcWLF2P58uWoWLEi2rVrh3///Vc6xs8//4zU1FTUqFEDo0aN0roq8DampqZ48eIFevbsibJly6Jbt25o3bo1AgICAKRf0dmxYwe2bduGSpUqYcqUKZg+fbrWZHh9MTMzw9KlS7Fq1Sq4ublJc1/69euHNWvWYN26dahcuTIaNWqE9evXS0sPv4tCocDnn3+O0NDQTFdeOnTogNGjR2PYsGGoVq0aTp8+LS0EoA/ZGta1dOlS6f/LlCmDyZMn4+zZs6hcuXKmMXEjRozI2xYSERERUbboetd2Q1q/fn2Otru6ukp3ln+bgQMHYuDAgVlu8/LywunTp7Wee30OSuPGjTPdGNzc3Bxbt259Z0w/Pz/4+fm9dfub92J5m4z7rbzrdW8ORevXrx/69euXab8ePXqgR48eWcbx8PB45w3Q586di7lz52a5bd68eZg3b57Wc6/fmyW7N0XPjmwVJ4sWLdJ6bGtri+PHj+P48eNazysUChYnRERERESUI9kqTu7fv6/vdhARERER0UdO5zknRERERERE+qBzceLn55fleLR58+ZxFS8iIiIiIsoxnYuTEydOoE2bNpmeb926NU6cOJEnjSIiIiIioo+PzsVJQkKCdPOX1ymVSsTFxeVJo4iIiIjo3d618hKRnOhyrupcnFSuXBnbt2/P9Py2bdtQoUIFXQ9HRERERDrIuI3Dy5cvjdwSouzJOFffvAVJVrK1WtfrJk+ejC5duuDu3bto2rQpACAwMBBbt27Fzp07dT0cEREREenA1NQUjo6OiIqKApB+o0KFQmHkVhFlJoTAy5cvERUVBUdHR5iamr73NToXJ+3bt8fevXsxa9Ys7Nq1C1ZWVqhSpQqOHDmCRo0a5ajhRERERJR9rq6uACAVKERy5ujoKJ2z76NzcQIAbdu2Rdu2bXPyUiIiIiLKJYVCgSJFisDFxQVqtdrYzSF6K6VSma0rJhlyVJwAQEpKCqKioqDRaLSeL168eE4PSUREREQ6MDU11emDH5Hc6Vyc/Pvvv+jbty9Onz6t9bwQAgqFAmlpaXnWOCIiIiIi+njoXJz07t0bZmZm2L9/P4oUKcIJWERERERElCd0Lk4uX76MkJAQlC9fXh/tISIiIiKij5TO9zmpUKECnj9/ro+2EBERERHRR0zn4mTu3LkYP348goKC8OLFC8TFxWn9IyIiIiIiygmdh3U1b94cANCsWTOt5zkhnoiIiIiIckPn4uTYsWP6aAcREREREX3kdC5O3nUX+GvXruWqMURERERE9PHK8U0YM8THx2Pr1q1Ys2YNQkJCOKyLSE/SUlPydL+30ahVSM3mfrmhSzuZU2Zyyym3+QCGy0ml1rx/Jx32IyKivJPj4uTEiRNYu3Ytfv31V7i5uaFLly5YtmxZXraNiF5zZvlEg8Q5PnegQeIYKh+AOeXGh5jTF6svGSQOERHpTqfiJCIiAuvXr8fatWsRFxeHbt26QaVSYe/evahQoYK+2kj00fMuameQOFWdlQaJY6h8AOaUGx9iTnCvbZg4RESUIwohhMjOju3bt8eJEyfQtm1b+Pv7o1WrVjA1NYVSqURoaOgHX5zExcXBwcEBsbGxsLe3N3Zz6CMhhIBKlfMhLBYWFlAoFB9MHEPGYk76j2PIWIbMiSgv8HMHfayyfeXk4MGDGDFiBAYPHgxPT099tomI/kehUMDS0pJxZByLOeWPWIbMiYiIci7bN2E8deoU4uPjUaNGDdSpUwc//vgj7xRPRERERER5JtvFSd26dfHTTz8hPDwcAwcOxLZt2+Dm5gaNRoPDhw8jPj5en+0kIiIiIqIPXLbnnGTl1q1bWLt2LX755RfExMSgRYsW+O233/KyfbLBsZ9ERERkKPzcQR+rbF85yUq5cuUwb948PH78GFu3bs2rNhERERER0UcoV1dOPib8BoOIiIgMhZ876GOVqysnREREREREeYXFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLJgZuwG5DfJyckwNzfX6TUWFhZQKBTZ2lcIAZVKlZOm6RQrt3EMGetDy+lDPB/kFoeIiIjyJxYnOurZsyeUSqVOr9m5cycsLS2zta9KpULXrl1z0jSdYuU2jiFjfWg5fYjng9ziEBERUf7E4kRHoeEJMDHNfrd5F7XLWZxnap1fU9VZt6IJAC4+idf5NUDO8mJOOcsHyFlOcv4Z4dF53V/jXlv31xAREVG+wuJER7X7TYOlXYH37peWmoIzyyfmKlajCatgorR4734atQrH5w7McRyfIbNhapa9oWq5zetjzSm3+QDZzym//Iw2DagOC+X7p72p1Bp8sfpSjuMQERFR/sHiREemZkqYmr//g1teMFFawMz8/UNYUnMZx9TMnDnlQnZyym0+gOFyMtTPyEJpAkulaS6PQkRERB8SrtZFRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkC2bGDD579mzs3r0b//zzD6ysrFCvXj3MnTsX5cqVk/ZJTk7G2LFjsW3bNqhUKvj6+mL58uUoXLiwtM+IESMQHByMa9euwcvLC5cvX84Ua8eOHZg1axZu374NZ2dnDBs2DF9//XWO2n1s9gAkxT6HQmECpZUNvHt+AycPL8RHPMDZlZOgio+BmaUNzCytAdjlKAYAHJ7cHclSHFvUHTIXBctUQeyTuzj5f4ORHBcNcxt71BuxKMcx3pdTyIbZeHIxCInPn6LV9zth71YyV3HeltPZ5RPw8OxBJEQ+QsflJ+Dg7pkvchKaNByb2Ruxj+/A1NwSVo7OqDd8AeyLlsKzf0JwdsU3SFOrkKZKAhQmgHPZHMc6Pn8okuOi33neKa1tUavvlBzHAAx73rWcfxYRsSqYKBSwszTDUv+KqF7CAf9GJKDXmlA8T0iBnaUZ7CxNc/GbRERERPmFUYuT48ePY+jQoahVqxZSU1Px7bffomXLlrhx4wZsbGwAAKNHj8aBAwewc+dOODg4YNiwYejSpQuCg4O1jtW3b1+cO3cOV65cyRTn4MGD8Pf3xw8//ICWLVvi5s2b6N+/P6ysrDBs2DCd211/xHyY29gDAB79HYhzq75D69m/4vza6Sjd5FOUatQJYcEHcGH990AZ1xz0TLpGE1bD2im9CAsL3o8T84eg88pTOL1kNMq16Q3Plj1w/+Q+BC8eCeuCOY/zrpzca7eAV7s+ODK9V66On+FtOXl80gGVu47AgbGt8yQOYLicPFt9iRI+baBQKHBj32qcWjwCbf5vP4KXjIJ3z4ko7tMGiS/CsbNnNcSXKpLjOD5D5sDKsVCmfF4/7x6e+wvn1wTAqoBzjuMY8rzbMaQGHK2VAIA9IeHovfYyQqc3wsANVzGgcXH0buCOLWcfY8jGa/gk9/UqERERyZxRh3UdOnQIvXv3RsWKFVG1alWsX78eDx8+REhICAAgNjYWa9euxcKFC9G0aVPUqFED69atw+nTp3H27FnpOEuXLsXQoUNRqlSpLOP88ssv6NSpEwYNGoRSpUqhbdu2mDhxIubOnQshhM7tzvjACwDql/EAFEiOfYHoe9fh0aAdAKBYzWZIS0lGYmKizseX4tg6vIqTGAeFQoGkmGd4/u9llG7WDQDg0aADEp8/hTo553GArHMCABevmrn+AKoVJ4ucAMC1cn3YOBfNsziAYXJSmJiiWM1mUh4uXrWQEPnwfxsVUCXEAQBSk19CoVBAqVTmOJa59atrB28779xrt0BSdCRSVUk5j2PA8y6jMAGA2KRUKKBAVJwKF8Ji8YVP+vnQ2dsVyWpNrn6XiIiIKH8w6pWTN8XGxgIAnJycAAAhISFQq9Vo3ry5tE/58uVRvHhxnDlzBnXr1s3WcVUqFaytrbWes7KywuPHj/HgwQN4eHhk+RqVSiU9jouL09p+ZsW3iLpxHgDQ6OvleBkdAasCzjAxTe9ShUIBU3NLJCXl/EMiAByfNwgRoScBAC1m7kDisyewciqsFcfGuSjSVMm5igNkzklf3sxJnwyVU4bre1eiuE8bAMAnY5fhyLQeuLhhJpJjX8DB3ROWlpa5On52zjvrgoWRlpK788GQ513Pny7h2M0XAIA/RtfGo+gkFHG0gJmpiRTLUmmS698lIiIikj/ZTIjXaDQYNWoU6tevj0qVKgEAIiIiYG5uDkdHR619CxcujIiIiGwf29fXF7t370ZgYCA0Gg1u376NBQsWAADCw8OzfM3s2bPh4OAg/XN3d9fa7jN4Fjr+cASVuw7H5W25H3v/No3Gr0T3zdfh3fs7XFg7TW9xAOaUW6FbFyDu6X3U7JM+5+PK9kWo2WcKum+6hg7LghD7+A7i4+NzFeND/Blt7F8djxY2x8wu5TBh5029xiIiIiJ5k01xMnToUFy7dg3btm3L82P3798fw4YNQ7t27WBubo66devis88+AwCYmGTdBRMnTkRsbKz079GjR1nuV6phR0Td+BtWToWR9N8zaNJSAQBCCKSlJMPKyipPcvBs8TnCQ0/BppAbkqIjteIkPnsCU4vcfSP/uoycVPExeXbMrGTklBwXrdc4gP5zurrzB4QF70fLmTthZmmN5NgXeHD6AEo37QoAsHMtAXNbB0RH502u7zrvXr6IhKl53pwPhjzvejVwx7F/XqBYASuEx6iQmqaRYiWrNXn2u0RERETyJYviZNiwYdi/fz+OHTuGYsWKSc+7uroiJSUFMTExWvtHRkbC1TX7cwYUCgXmzp2LhIQEPHjwABEREahduzYAvHWeioWFBezt7bX+AUDKy3i8/C9K2u/xhUCY2zrA0r4gnEp6IezUful5U6WFNLFfV5pUNV6+eHV16MHpA7Cwd4KlozMKlqmCu4Hpw6HCTv0Gm0JFoLTMWZx35fT63IO88LacLOwK5GkcwHA5AcCNvStxL+hXtJq9Bxb/O765rSPMLKzx9PIJAEBy7AukJMRK55GuNKmpSPrvmfT4befdo/OHYeXkAjOLnH2QN+R5F/NSjaf/vRoWtvdiBAramsPF3hzeJeyx6cwTAMCeixGwVJrk+HeJiIiI8g+jzjkRQmD48OHYs2cPgoKCULKk9pKuNWrUgFKpRGBgIPz8/AAAt27dwsOHD+Hj46NzPFNTUxQtmj7JduvWrfDx8YGzs26rGqUmJeLM8olIS0mGwsQEFnYF0GjcMigUCtTqOwVnV32HG7+tgZmlNRxLlHv/Ad9Ck5aKY9/3gUatAhQmsHQohBbTt0GhUKD+iEU4sWAoQrcthNLaDvVGLsblTXNzHEv9MgFnVmSd0/m1AXh66QSSY1/g2NyBUFpaw75o6TzPKXjJKDw6fxhJ0ZH481s/KK1s4Fg85/1nqJxSVcm4sDYAdkU8cHB8ewCAidICHZYeQZNJ6/D3T1OgSUuFJjUFdq4lUKBAzgoxjSYVwT+MRZo65Z3nndLKBrX6TsW1PStyFseA511sUiq+XH0JSSkamJgAznYW2D+qFhQKBVb1qoLeay9j1v47sLM0RVX3nBV1RERElL8YtTgZOnQotmzZgn379sHOzk6aR+Lg4AArKys4ODjgq6++wpgxY+Dk5AR7e3sMHz4cPj4+WpPh79y5g4SEBERERCApKUm6z0mFChVgbm6O58+fY9euXWjcuDGSk5Oxbt067Ny5E8ePH9e5zdYFXeE7Y2uW2+zdSqJlwGYAQFqKCqeWjtX5+BnMLKzQYsZ2mGUxPMfB3RPtF/8lPU7N5eRnm0JF3ppT7a+maj3OTV7vyqn+yMVaj1NTknFsZu8cxQEMmZMlev4enmVORb0bo6h3EIDc52NmbonG45bB1Nwi07bXzzsgPZ8cxzHgeVeioBXOT/kky23litjizHcNAADJ6jR0XRaSq1hERESUPxi1OFmxIv3b3caNG2s9v27dOvTu3RsAsGjRIpiYmMDPz0/rJoyv69evn1ahUb16dQDA/fv3pZW4NmzYgHHjxkEIAR8fHwQFBUlDu4iIiIiIyPiMPqzrfSwtLbFs2TIsW7bsrfsEBQW98xiFChXCmTNndG0eEREREREZkCwmxBMREREREbE4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREsmBm7AbkN2mpaqSlqLKxX0quY2nUKqRmc7/c0KWtuc3rY80pt/kA2W9nfvkZqdSaPN2PiIiI8j8WJzo6v2YaTEwN023H5w40SJwzyycaJA7AnHLDUDkZKp8vVl8ySBwiIiLKP1ic6KhqEVsolUr9x3HWfwwA8C5qZ5A4AHPKDUPlZKh84F7bMHGIiIgoX1EIIYSxG5EfxMXFwcHBAZGRkbC3t9fptRYWFlAoFNnaVwgBlSrnw2WyGyu3cQwZ60PL6UM8H+QWh4gov8v43BEbG6vz5w6i/IxXTnRkaWkJS0tLvR1foVDo9fiGjmPIWMyJcYiIiCh/42pdREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDVurIpY8XluLg4I7eEiIiIPnQZnzd4xwf62LA4yab4+HgAgLu7u5FbQkRERB+L+Ph4ODg4GLsZRAbDmzBmk0ajwdOnT2FnZ8ebwOkgLi4O7u7uePToEW8ilYfYr/rDvtUf9q1+sF/1x5h9K4RAfHw83NzcYGLCUfj08eCVk2wyMTFBsWLFjN2MfMve3p5/NPWA/ao/7Fv9Yd/qB/tVf4zVt7xiQh8jluJERERERCQLLE6IiIiIiEgWWJyQXllYWGDq1KmwsLAwdlM+KOxX/WHf6g/7Vj/Yr/rDviUyPE6IJyIiIiIiWeCVEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUK58uTJE6jVamM344PFxfSIKAPfD4joY8DihHIkPDwcnTt3Rt++fXHmzBljN+eDERMTg7Zt2+L//u//AAAajcbILfpw/Pfff3jw4AEAIC0tzcit+bBERkZi8eLF2L17N27fvg2AH6TzwosXLzBkyBD89ttvANineen58+c4ffo07t27Z+ymENEbWJyQzg4cOABvb28IITBz5kyULl0aAP9w5oW//voLBw8exJw5cxAVFQVTU1MWKHlgzpw5KF68OCZNmgQAMDU1NXKLPhxTpkxB6dKlsX//fgwbNgy9evXCjRs3oFAo+J6QS3PnzsXKlSuxYcMGxMXFwcTEhH2aByZOnAgvLy+MGjUKlSpVwqJFi/DixQtjN4uI/ofFCelsy5Yt6N27N/bu3YtatWrBxsYGAKBQKIzcsvzv+PHj8Pf3h7e3N0aMGGHs5uR7KpUKo0aNwu7du/HJJ5/gwYMH2LNnDwBelcoLv/zyCw4cOIB9+/bhyJEj+OWXX6DRaKSrqXxPyJ3Q0FC0aNECMTExWL9+vbGbk+89ffoUXbt2xZEjR7Br1y7s2rUL48aNw5o1a3D69GljN4+I/ofFCb3Tm9/S3b59G6GhoejTpw+uXLmCtm3bon379ujUqRN2795tpFbmf6mpqQAAR0dHeHt7o2fPnjhw4ABOnDgBExP+muaEEAIWFhYoXbo0+vfvj7lz56JgwYLYtGkTv4XOI4cOHYKzszOaNWsGANJ/a9euLe3DPn6/N/soLS0NKpUKjo6OmDRpEtzd3bFv3z7cvHkTCoWCwxJ18HrfZvTf0qVL0ahRIxQvXhzTp09HYmIiIiMjM+1PRMbBTz30ViqVCi9fvtR6zt7eHnfu3MGVK1fwzTffoFy5cvjiiy9gZWWFzz//HEePHjVSa/OPjD9+r3/AMDMzAwAEBwejTJkyaNu2LZo3b44pU6ZACIHAwECkpKQYpb35ycuXL/Ho0SOkpKRI39oPHDgQ/fv3R+XKldG2bVs8efKE30LnQsYVp5SUFDg7OyM+Ph6XLl3Cixcv4Ofnh0ePHmHq1KmYO3cu0tLSePXkPVJSUrR+t4UQMDU1hYWFBW7fvg13d3d89tlnUKvV2LdvH1JSUhAVFWXEFucfKSkpWu+zlStXxrBhw+Dj4wMg/VwWQqBo0aLSec3zlcj4WJxQlmbMmIFGjRqhffv2+PrrrxEeHi5ta9GihTR2f+bMmRg4cCC2bt2KZs2aISAgAAC/fXqbBQsWoF+/fgC05z1oNBqkpqbCysoKJUqUgJOTE4YMGYKQkBCYmpoiMDAQKpXKWM3OFwICAlC9enX4+fmhWbNmuHXrFgBoXSHp2rUrypUrh99//x3//vsvFAoFh3dlw+rVq/HTTz8BSO9PjUYDc3NzdOnSBU5OTpgwYQJcXFwQExODVatWoVSpUli1ahUGDRoEgEPo3mbatGlo0KABOnbsiNWrV+O///6TPhzfunULJiYm8PDwQKtWrVC3bl2sWrUKlpaW2LVrF/v0PWbOnIlWrVqhY8eO+OGHH/DixQu4uLigYcOGANLPSRMTE0RFReHatWuoXLmykVtMRBJB9JorV64IHx8fUbFiRbFlyxYxevRoUaNGDeHn5yeEECI1NVV88803wtLSUowZM0YIIURycrIQQoi///5bWFlZiUePHhmt/XJ1/fp10b59e2FjYyMKFy4sdu7cKYRI78/X1atXT4SFhYk///xTuLq6igIFCoiCBQtKfZyWlmbwtsvd6dOnRc2aNUWlSpXE3r17xS+//CIaNmwoGjRooLWfRqMRQgjx22+/ifr164tvvvlG2pbRrxn7ULqLFy+Kxo0bC4VCIZo1ayYuXbokhNA+b9PS0sSqVatE27ZtxcuXL6Xn161bJwoXLiyioqIM3WzZU6vV4ssvvxRlypQRGzZsEJ9//rmoWLGiaNeunbRPeHi4aNGihRBCiD/++EM4OzsLW1tb0bBhQ6FSqYQQPF+zEhISImrWrCkqVqwo1q5dK7p37y6qV68uRo8eneX+v//+u/D09JTeY4nI+HjlhCRqtRp79uxBkSJFcPz4cXz++edYuHAhhg0bhrCwMNy/fx+mpqbo2rUrKlSogF27dgEALCwsAADXr19HqVKluEpPFk6fPg2FQoGff/4Zvr6+WLJkCVJSUmBqair11T///IPo6Gg0a9YMfn5+GDZsGHbs2IHChQtj4sSJRs5AvoKDg1GlShUEBwejY8eO+OKLL9C6dWsUKFBAmsvz+rfM7du3R506dRAcHIyjR49ix44dGDp0KAAO6XhdWloa9u/fj8KFC2PFihWIi4vDnj17oNFopPNWCAETExPcunULLi4usLKykl7/6NEjFC5cmN/wZ+HRo0f4+++/sXDhQvTs2RNbtmzBokWLEBgYiEWLFgEAQkJCcOXKFdSrVw/du3fHmDFjMG7cOGg0GuzYscPIGchTQkICtm7divLlyyM4OBh9+/bFtm3b0LZtW9y5cwcxMTGZXnPx4kXUqlVL+jsWHBzM+ZNERsbihCRCCFSsWBFDhgxBwYIFpQ8V5ubmeP78OQoWLAgA8Pb2xvjx45GQkIAvvvgCQUFB+Pfff7Ft2zbUr18fRYsW5Ye8/8koPLp3745x48ahW7du6Ny5M+Lj47Fw4UIArz44ly9fHm5ubmjSpAkuXbqESZMmoX79+vDz88OWLVukSdyULqNvhwwZgvHjx8Pe3h5A+uICR44cQZkyZXD27FkA6UORXp9I3KNHDyQlJaFdu3b44osvpBXn6BVTU1N06dIFI0aMwMCBA1G/fn0EBQXhyJEj0j4Zv+eRkZGIjo6WVjy6ffs2goKC0LRpUxQuXNgo7ZcztVqNW7duoWrVqtJzLVq0wOTJkxEQEIDHjx+jTp06cHJygqenJy5evIhvvvkGffr0gZmZGfbt24ekpCS+z75BCIGSJUti8ODBcHBwkL6ccHBwwK1bt6T3iNf9+eefaNasGZ48eYI2bdqgUaNGiI+PN3TTieh1xrtoQ3L0+jCBjKEuy5cvFw0aNBApKSnScA61Wi0OHz4sypYtK7y8vETBggVFt27dRFxcnFHanZ88f/5cjBkzRlSqVEmEhYUJIYRISkoSQggRFxeXaahGeHi4SEhIMHg786N9+/YJOzs7UblyZdGsWTPh5uYm/P39RUxMjLTP48ePxcCBA4VCoRB9+/YV0dHRRmxx/nH79m1Rt25dMXjwYPHff/8JIYRISUkRQghx9uxZUadOHeHk5CQ6duwo7OzshL+/v4iPjzdii+Xrxo0bolq1amLevHlaz8fGxoqSJUuKsWPHCiGEePToUaahnKdPn2a/vsObQw6FEOK7774T3bp1y7TvrVu3RIECBUTr1q2Fubm56Nixo3j+/LnB2kpEWePXsCQRQmT5Tdzp06dRo0YNKJVKabuJiQmaN2+O8+fPY/fu3Thz5gy2b98OOzs7Qzc7XxFCoGDBgujQoQMcHR0xe/ZsAIClpSUAwM7OTupj8b8rA66urvxm/y3EG8MHU1NTsXnzZly6dAmHDh3CwYMHsWXLFly8eFHaZ9++fTh+/DjOnj2LtWvXokCBAoZudr6j0Wjg6ekJPz8/XLhwAfv37wcAKJVKAECdOnWwZs0aLF68GLVr10ZQUBA2bdoEW1tbYzbbaN48L99UvHhxlCtXDufOnUNYWBiA9D62t7fHkCFDsHPnTiQnJ6NYsWLS1dKMY/r4+Hy0/fo+4n8rnWXIeC+9ePEivL29pX0y3Lt3DzExMYiLi8Px48exd+9eaYQAERkPi5OPSGRkJMLCwpCQkABA+006NTVVqzDJWMkkLS0NJ06cQOPGjQGkFyX37t2TVuxxcHBA+fLl4enpadBc5OTx48dYvHgx7t27ByBzv74uY1hRvXr10K5dOwQFBeHUqVMAIA1BysAhG0B4eDiuXLmC58+fZ9r25jkLAF26dEH79u1hamoKMzMzlC5dGk5OTrh06ZK0z5AhQ3Dz5k2te3F8jO7evYtp06bhzp07mba9ed5mDD0cNGgQChQogP3790sfqq9evQoAqFSpEr788kt8++230gfBj1FsbCwSEhKk94HX59xk9KuNjQ06deqEf//9V5o/klGEODg4wN7eHs+ePdM6Lt8PgLCwMPTs2TPLOTdZ/Q1TKBSIjY3FuXPnpOWDFQoFHjx4AACoUaMG/vzzT5w6dQp169Y1TBJE9F4sTj4SI0aMQMWKFaW7jx89elRamlYIATMzMwghMHnyZACv/lAGBwdDo9FIY3K7deuGMmXKIDw8nPMfALx48QLt2rXDhAkTcOTIEem+DhlFSEa/ZkxyzXisVCrRtm1bVKxYERMnTkSbNm1Qr1493Lx505jpyMqoUaNQrlw5+Pv7o1KlSvj111+lseBZnbNZ2b9/P0qVKgU/Pz9DNVv2hBAYPHgwPD09ER4ejmLFiknbMj5IZ/Ttb7/9Jj1OS0uDra0tvvrqK9y7dw9Lly5FmzZt0KxZs0wfpD9GQgiMGjUKjRo1QqtWrdCzZ0/Ex8fDxMQEarUawKt+3Lx5Mz777DPUq1cPe/bska5EAcDz58/h6OgINzc3Y6UiS1OnToWXlxcSExOhVCqlQi+jCHzzvTbj71NgYCAcHR3RsGFD6W9YrVq1EBkZCWdnZ7Ro0cI4CRHRW/HT5QdOo9Fg8ODBuHTpEg4cOIDly5ejQYMG6NevH3755RcA6d8krVmzBkWLFsWOHTukb5UA4MaNGyhVqhSWLFkCT09PxMfH4/79+yhSpIixUpIVKysrODo6wsvLC7t27ZK+Rc4YWrBmzRoUKVIEO3bswNOnTwG8+gbU2dkZkZGRCA4OhpWVFcLCwuDl5WWcRGTm559/xrFjx/D7779j27Zt6NChAyZPnoylS5cCePc5+/TpUzx8+BDTpk3DqFGj0K5dOxQtWpQryAHYunUrChUqhPPnz+P8+fPSfTMASCtvAen3NXFxccGuXbukFY4yzukmTZrg6dOnWLx4MUxNTRESEgJnZ2ej5CMXZ8+eRfXq1XHu3DnMmjULvr6+uHDhAvr37w/g1fC3n376CW5ubti4cSPUajVGjhyJChUqoHPnzhgyZAiGDx+OuXPnonv37lor+X3sLl++jMDAQGzfvh2//vorOnfuLN24NuP9NKv3WiB9FcTq1atj1qxZ8PT0RExMDEJCQrhQA5GcGWx2CxmcRqMRYWFholKlSmLTpk1a24oXLy68vLzExYsXxfXr10XTpk3FmjVrMt13o127dkKhUIhKlSqJP//805DNzxcuXrwo2rZtK+7duyeKFSsmAgICpMnXu3fvFtWqVcuyX0NDQ4Wnp6coU6aMOHXqlDGaLmudOnUSHTt21Hru66+/FlWqVBHHjx8Xt27dEk2aNMnUt48fPxZz5swRnp6eonLlyuLo0aMGbrm8+fr6Cg8PD/H06VMhhBBXr14Vf/75p7h79650j5KFCxcKS0tL8fPPP2c6bwMDA4VCoRCVK1cWwcHBBm+/HKWmporx48eLzz//XGui+vbt20XJkiVFRESEEEKIjRs3Cnd3d7F27VqhVqu1jjF//nwxYMAA4evrKwIDAw3a/vxg6NChonXr1kIIIYKDg8XIkSPF//3f/4lz584JIYQ4cuSIqFKlSpbvtbVr1xYKhUJ4eXnxbxhRPqEQgl/NfEhSU1Olb5SA9PHgNWvWxLVr16R5ISkpKWjWrBkiIyPRpEkTrFq1CikpKTA3N890rLVr18LW1hb+/v4GzUNu3uxX8b/FA+7fv4++ffvi2LFjGD9+PP766y9s3rwZnp6eMDc3h0qlktbPf11SUhIOHz6MDh06GDINWcvo06SkJHzxxRfw8PDAggULpO1XrlzBt99+K90hW61WS99IZ0hLS8PVq1cRGRkJX19fQ6cge1euXEHnzp3Ro0cP3Lx5EyEhIbC1tcWLFy/QqFEjbN26FUIIxMbGwtHRMdPr4+LisGnTJgwZMsTwjZexP//8E1ZWVtLdxwFgw4YNmDdvHs6ePSstFBIfH6+1aIh4yyIkH7OM+Y7Aqzl6/fv3R+nSpeHo6IiZM2eiadOmuHHjBiIiIvDNN99g5MiRSE5Olq4CZkhMTMSsWbNQoUKFj/5vGFF+wuLkAzJlyhRcu3YNRYsWxZAhQ1CmTBkolUpUr14dJUqUwLx581C2bFmMHj0aV69ehYeHB/755x+sW7fuo57Q/j5v9mvZsmWlIS7btm3DihUrcPz4cQBAhQoVYG1tjYsXL+KPP/5Aq1atMh2PH0he+fnnn+Hu7i6N+87om4EDB+LChQv4888/UahQIWn/pUuXYtOmTZgzZw6aNm1qrGbnC7Nnz0ZUVBTKly+PPn36SF8+jBgxAqtWrYKfnx/GjBkDc3Nz3Lx5E3379sWECRMwZcqULM/R1z80fsx2796N5s2bZ3nPDCD9A7WpqSkWLlyI3bt34+TJkwA4oT07pk+fjvv376NUqVIYMmQInJycoFAo0KNHD9y5cwdlypTBZ599hvbt20OhUGDUqFEICQnB5MmT0bJlS763En0ojHPBhvJSVFSUqF+/vqhcubKYNm2aKFu2rKhatapYuHChEEKIc+fOiUKFCglPT09hY2MjPD09xcOHD8XVq1eFhYWFuHv3rpEzkKf39asQQmzatEl88803Qggh9uzZI+zt7YWFhYUYN26csZqdL5w6dUp4e3tL9xrJGGaUMdzl/v37wtTUVGzcuFHrdbdv3xbu7u5i7969Bm9zfvHPP/+IChUqiMqVK4vu3buLAgUKiMaNG0vDB2NjY8W3334r7t27p/W6//u//xOOjo6ZhsVQumPHjoly5coJhUIhVq1a9db9Mu6t0bFjRzFhwgQhhMh07yLS9vDhQ+Ht7S0qV64shg4dKlxdXUXNmjXFtm3bhBDp99FRKpXCxsZG/PPPP9Lrbt++LapVqybWr19vrKYTkR7wa7APwNmzZxEdHY0DBw5g6tSpuHLlCpo0aYIffvgBJ0+eRO3atXHmzBksW7YMv//+O27fvg13d3ekpaXB3t4esbGxxk5Blt7VrxnL/966dQv79+9Hw4YN0bdvXwQEBKBOnTp49OgRbt++beQM5CkmJgbbt29HzZo18f333yMoKAhBQUEA0lfc0Wg08PDwQP/+/TFlyhStfvT09ERiYiKePHlipNbL34EDB+Dg4ICLFy9i27ZtuHHjBv777z8sXboUt2/fhr29PSZMmICSJUtqva5o0aIwNzfH9evXjdRy+bp58yZWrlyJ5s2bo3///vj+++8RHh6e5b4mJiZISkrCpUuXpCuCCoWCK/G9w9GjR6HRaHDy5En8+OOPuHPnDtzc3PDDDz/gypUrqFOnDrp37w4zMzOtZcU9PT3x7Nmzt/4siCh/YnHyAYiKikJCQoK0+oiFhQUGDRqESpUqYfz48QCAMmXKoEWLFmjSpIn0uh07dsDb2xvVq1c3Srvl7l39+vXXXwMAypUrh+joaJQrVw4XLlzAqFGjEBAQgJ07d+L48eNa9zigdNbW1ujUqRMGDRqEiRMnokyZMti6dStu3boF4NXwl8WLFyM1NRVTp06VisE//vgDRYsW1TqP6ZXU1FRcv34dLi4u0tBDV1dXTJo0CQ8fPsT69esBIMshSWfOnEHdunVRpUoVQzY5X3ByckKLFi0wdOhQzJ8/H2lpaVrzod508uRJmJiYoF69erhx4waaNGmCGjVqICIiwoCtzj/CwsKgVCqlm83a2Nhg7NixsLCwwNy5cwEAkydPhpmZGZYvX47Lly8DAI4fP45ixYqhbdu2xmo6EekBi5MPQEpKCgoXLozQ0FDpuXLlyqFPnz54+vSpdMMqIQTCwsJw8eJFDB48GKtXr8YXX3whbSNt7+rXx48f4/fff0fXrl1x7NgxrF69GqVKlQIANG7cGBs2bEDPnj05Rj8L5ubmaNq0qVQUT5s2DSEhITh06BBSUlKgUCigVqthYWGBTZs2ITY2Fr6+vmjVqhU6d+6M5s2bo1y5ckbOQp7MzMygUqmQlJQEjUYjTSju2rUratSogXPnzmndkPLhw4cICwvDsGHDsHfvXvTs2RMA3w/eVLhwYfTp0wdeXl6ws7PDjBkz8OOPP2q9NwCv+u3q1atwdXXFlClTUKVKFbi5uSEyMhKurq7GaL7sJScnw8zMDFFRUdJzDRs2RJs2bXD9+nUcOXIEZcuWxdq1a3H9+nU0b94cHTp0QJs2bVC/fn1UqFDBiK0nojxn3FFllBsZ45gfPHggnJycxOLFi0VKSoq0/cGDB6JDhw5iwIAB0r4HDhwQLVu2FPXq1ROXL182Srvl4m3jwLPTr+3btxcDBw7MdIyM8eYfu+yOsc/or379+ok6deqIM2fOZNrnxYsX4rfffhOLFy8WV69ezdN2fkgy5oocO3ZMmJiYiEuXLgkhXs3jCQoKEmXKlBE7duwQQqSP1x87dqxwdXUVPj4+4sqVK0Zpd37y+nldp04d0aFDh0zLAgshRJMmTYRCoRCffPKJCAkJMWQT85WM3/+bN28KhUIh9uzZo7X98uXLok6dOmL27NnSc2FhYWL79u1i9uzZfD8g+kBxtS6Zi4iIgEajQYECBWBlZSWtBANoL287bNgw7N+/H3v37kW1atWk1/v5+cHc3Bxbt24FkL6E7dOnT1G6dGmD5yIn8fHxsLW1lYYQiddWedG1XwVXiNGS3b59/XF4eDjq16+P7t27Y+LEibC3t5dW56FXkpKSYGVlleW2jL5MTk5Gq1atoFQqcfjwYa3+L1OmDHr27IkpU6YgKSkJ586dg0aj+ehXPstOv2bI6M+TJ0+icePG2Lt3L9q3b4+0tDRER0fD2dkZW7Zsga2tLZcKf01W75Ov9223bt1w584d/PXXX1or9NWtWxe1a9fG0qVL+V5L9JHgmBOZUqvVGDhwIHx8fNC+fXu0bt0aKpUKpqamUKvVACB9ELl06RKWLFmCtLQ0/Pjjj1p3ywagdb8CKyurj7owUavVGDRoENq0aYNPP/0UGzduBJA+zyE1NRWA7v3KP5bpstu3arUawcHB0uO0tDQUKVIEAwcOxO+//441a9agRYsW6Nu3LxITE42Wj5yo1WoMHjwYXbp0Qc+ePXH27FlpCFFKSgqAV30ZGxuLgIAAHD9+HCtXrpT2+++//2BjY4OCBQsCSH8vaNy48UddmGS3X1NTUxEZGQng1e/7J598gs8//xwBAQEIDAxE27ZtsXTpUqSmpqJHjx4ffWGiVqsxf/587NmzB4D2+2TGcEMzMzOkpKTgzp07mD9/Pv755x8sWrRIWqQlNTUVFhYWKFCgQKZjENEHzDgXbOhdHj9+LOrWrSuaNGkiTp8+LTZs2CBKlSolhg8frrXfkiVLhJ2dnbRs7a5du0Tt2rVFpUqVxJo1a8TIkSNFoUKFxJEjR4yRhuzcvXtXVK1aVTRq1Ej89ttvok+fPsLLy0sMGDBAaz/2q+507duJEydKdyTPGCrz8OFDYWZmJhQKhejUqZN49uyZwfOQo/DwcFG9enVRr149sWzZMlG1alVRtWpVMWfOHK39lixZIszNzaVlVWfOnClcXFxEv379xIkTJ8To0aNFyZIlxc2bN42Rhuzo0q8WFhZi3bp1mYYrnj59WigUCqFQKISvr6+Ijo42ZAqy9ccffwgvLy+hUCiEv7+/ePLkiRAi83DPJUuWCGtrazF37lwhhBCrV68WZcqUEb6+vmLfvn1i9OjRokiRIuL8+fMGz4GIjIfFiQxt3bpVVK1aVYSHh0vP9ezZU3z33XfS47FjxwonJyexadMmrXkOoaGhwt/fX/j6+gofH58sx/B/rH788UfRuHFjkZiYKIRI/0O5YsUKoVAoxK+//irS0tLEN998IwoUKMB+1ZGuffvmh5SdO3cKhUIhatWqJS5evGiMFGRr165domLFiuLx48dCCCFiYmLEtGnThKWlpbh27ZoQQoju3bsLNzc3sWHDBq2+Xbp0qfjkk09E5cqVRdWqVcW5c+eMkoMc6dKvGzdu1OrX1NRUsWHDBqFUKkWdOnV4zr4mISFB9OvXT4wYMULMnj1b1KxZU6xYsUJrH5VKJQYNGiRcXFzEL7/8ovVe+/vvv4s2bdoIHx8fUbNmTXH27FlDp0BERsbiRIZWrFghrK2tpcdPnz4V1apVEwsXLhQnTpwQQqTfIDAuLk7a580Pe7GxsYZpbD4yatQo0aBBAyHEq/5avny5UCgUonr16uLFixciKipKq+/Yr9mTk7593d9///3OG9t9jDI+sK1YsUK4ublpbQsPDxfNmjUTDRs2FEKk36Tu9b59/cNeWlpaphsufsxy068ZEhMTxeLFi3nOZkGj0Yjg4GDpZol+fn6iffv2IjQ0VGuf27dvv/WcFUKIiIgIwzSYiGSHc06M7Pz58wCgdT8MHx8fODo6ok6dOvj0009RvHhxODo64sCBA2jbti0CAgLg6OgIOzs76TVvjsXN6j4GH5Os+tXOzg6Wlpb4448/pP4KDg5GQEAAbty4gd9//x3Ozs7SWvsA+zUredW3r6tZsyYGDBig/8bL3K5du3DkyBGEh4dLy1CbmprC1dUVJ0+elPZzdXXFxIkTcebMGfz111+oU6cObG1tpe2vL2FtYmKS6YaLH5u86tcM1tbWGDlyJM9ZaPctkP6eWa9ePWm574EDB+Lx48fYs2ePNJ9HoVDA09NT6/30zWXXM+4vRUQfIWNXRx+rPXv2CDc3N+Hk5CTu378vhBBaS1Lev39fHDp0SFSoUEFs3LhRen7Lli3C2tpaPHr0yNBNzhey6leVSiWEEOLGjRuic+fOwsHBQXTv3l3Y2tqK2rVriydPnojPPvtMtGvXzogtlz/2rf5s3LhRuLi4iNq1awtnZ2dRv359sWvXLiGEEBcvXhQVKlQQc+bMkfpbiPRvljt06CC+/PJLYzVb9tiv+pNV3+7evVsIkX4V5PWrzkOGDBGNGjWS5ulld6lxIvo48cqJEWzevBmzZs1Cw4YNUaFCBcyZMwcAtJar9PDwQHR0NExNTfHll19K31L7+PhArVbjypUrRmm7nL2tX83NzSGEgJeXF5YsWYJFixahUKFC2LRpE86dOwc3NzckJyfDw8PDuAnIGPtWP1JTU7FkyRLMnj0bs2bNwsmTJ7F3716ULl0aa9euRVJSEqpXr44GDRpg9+7dOH36tPTawoULQ6lUSkuL0yvsV/15V9/+9NNPUKlUMDExgUKhkP5uDR8+HMnJydi3bx8SExMhhMDt27cBvFq5i4goA4sTA8p4Ey5TpgyaNWuGuXPnokOHDggKCkJQUJDWPkD6uvAmJiaIjIyULnn/8ccf8Pb2Ru3atQ3efrnSpV/d3d3Rp08f/Pjjj+jYsSOA9HvJPHr06KNeYvlt2Lf6lZiYiGfPnqFXr17o06cPzM3NUa9ePVSoUAFxcXHScrYBAQFQq9VYvXo1njx5Ir0+KSlJWmaVXmG/6s/7+jZj2XAgfaiWEALly5dH586dceHCBcyYMQO1atWCv7+/1n27iIgkRr1u85G4fft2psvYGUO4rl27Jjp06CDatGkjbcuYGHj48GHRqFEjUalSJbFy5UrRp08f4eTkJBYtWmSwtsuZrv365r5hYWHi8ePHwt/fX1SvXl08ePBA/43OJ9i3+vNm3166dEm6u3vG7/7mzZtFtWrVtIYb7dy5U3zyySeiRIkSYsGCBeLLL78ULi4u4uTJk4ZNQKbYr/qT0759ffvff/8tlEqlUCgUYsCAAZn2IyLKwCsnerRjxw6ULFkS7du3R926dfHzzz9L2zK+LapYsSI6deqEsLAwrFu3DsCricbNmzfHrFmzULJkSezZswfR0dE4ffo0Ro0aZfBc5CSn/Sr+NxkTSP9mdM2aNahSpQoePnyInTt3onjx4oZNRIbYt/rzZt+uXbsWAFCtWjWYmppCo9FIV0gPHDiAatWqwdzcXPqW/9NPP8XWrVvh6+uLkydP4sWLFzhx4gQaNGhgtJzkgP2qPznt2zevnqxcuRK1a9dGkyZNcOfOHaxatQrm5uZGyYmI8gFjV0cfqr/++kt4eHiIZcuWiUOHDokxY8YIpVIpVq9eLd18LuOb6MePH4uvvvpK1KpVS8THxwshhEhOTpaOlZaWJmJiYgyfhAzltl9TUlKkY12+fFkcP37c8EnIFPtWf97Vt0lJSUKI9KtPGo1GJCUliSpVqohffvnlrcfLeM3Hjv2qP3nZt6GhoWL79u2GbD4R5WMsTvJYxqXvgIAAUaNGDa0PbEOGDBE1a9aUVjR53f79+0XNmjXF1KlTRWhoqGjXrp14+PChwdotd+xX/WHf6k9O+vbJkyfCw8ND3L59WwiRPqRm9OjRhmt0PsB+1R/2LREZG4d15bGMezzcuHEDpUuXhlKphFqtBgDMnDkTlpaW2LdvHyIiIgC8mkzcpEkT1K5dG9OnT0eNGjWgVqvh4uJinCRkiP2qP+xb/dG1bwHgyJEjcHd3R5EiRTBy5EhUqFABDx48gFqt1ho+9zFjv+oP+5aIjM7IxVG+99dff4nhw4eLRYsWiXPnzknPr169WtjZ2UmTBjO+fVq9erUoW7asCAoKkvZNSEgQixYtEqampqJx48biypUrhk1Chtiv+sO+1Z+c9u2xY8eEEOnfWnft2lUUKFBAFCxYUFSsWFH8/fffBs9Dbtiv+sO+JSK5YXGSQ0+fPhXt2rUTLi4uwt/fX1SuXFk4ODhIb+63bt0SRYsWFZMnTxZCCK2VSVxdXbVW3Lp+/bqoU6eO1s0WP1bsV/1h3+pPXvVtYmKiaNeunShWrJjYtm2bwfOQG/ar/rBviUiuWJzkQGJioujVq5fo3r27uHfvnvR87dq1Re/evYUQQsTFxYmZM2cKKysraRx+xljeRo0aiX79+hm+4TLHftUf9q3+5HXfXrhwwYCtly/2q/6wb4lIzjjnJAesra1hYWGB3r17o2TJktKyiW3atMHNmzchhICdnR169OgBb29vdOvWDQ8ePIBCocDDhw8RFRWFTp06GTcJGWK/6g/7Vn/yum9r1KhhpEzkhf2qP+xbIpIzhRCcrZYTarUaSqUSAKS13v39/WFjY4PVq1dL+z158gSNGzdGamoqatasidOnT6N8+fLYsmULChcubKzmyxb7VX/Yt/rDvtUP9qv+sG+JSK5YnOShBg0aoH///ujVq5d0I0UTExPcuXMHISEhOHfuHKpWrYpevXoZuaX5C/tVf9i3+sO+1Q/2q/6wb4lIDlic5JF79+6hXr16OHDggHSJOyUlhXfBzSX2q/6wb/WHfasf7Ff9Yd8SkVxwzkkuZdR2p06dgq2trfSmHhAQgJEjRyIqKsqYzcu32K/6w77VH/atfrBf9Yd9S0RyY2bsBuR3GTesOn/+PPz8/HD48GEMGDAAL1++xC+//MKb0uUQ+1V/2Lf6w77VD/ar/rBviUhuOKwrDyQnJ6Ny5cq4e/cuzM3NERAQgAkTJhi7Wfke+1V/2Lf6w77VD/ar/rBviUhOWJzkkRYtWsDT0xMLFy6EpaWlsZvzwWC/6g/7Vn/Yt/rBftUf9i0RyQWLkzySlpYGU1NTYzfjg8N+1R/2rf6wb/WD/ao/7FsikgsWJ0REREREJAtcrYuIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiOg9evfuDYVCAYVCAaVSicKFC6NFixb4+eefodFosn2c9evXw9HRUX8NJSIiyudYnBARZUOrVq0QHh6OsLAwHDx4EE2aNMHIkSPRrl07pKamGrt5REREHwQWJ0RE2WBhYQFXV1cULVoU3t7e+Pbbb7Fv3z4cPHgQ69evBwAsXLgQlStXho2NDdzd3TFkyBAkJCQAAIKCgtCnTx/ExsZKV2GmTZsGAFCpVBg3bhyKFi0KGxsb1KlTB0FBQcZJlIiIyIhYnBAR5VDTpk1RtWpV7N69GwBgYmKCpUuX4vr169iwYQOOHj2K8ePHAwDq1auHxYsXw97eHuHh4QgPD8e4ceMAAMOGDcOZM2ewbds2XLlyBV27dkWrVq3w77//Gi03IiIiY1AIIYSxG0FEJGe9e/dGTEwM9u7dm2nbZ599hitXruDGjRuZtu3atQuDBg3C8+fPAaTPORk1ahRiYmKkfR4+fIhSpUrh4cOHcHNzk55v3rw5ateujVmzZuV5PkRERHJlZuwGEBHlZ0IIKBQKAMCRI0cwe/Zs/PPPP4iLi0NqaiqSk5Px8uVLWFtbZ/n6q1evIi0tDWXLltV6XqVSoWDBgnpvPxERkZywOCEiyoWbN2+iZMmSCAsLQ7t27TB48GB8//33cHJywqlTp/DVV18hJSXlrcVJQkICTE1NERISAlNTU61ttra2hkiBiIhINlicEBHl0NGjR3H16lWMHj0aISEh0Gg0WLBgAUxM0qfz7dixQ2t/c3NzpKWlaT1XvXp1pKWlISoqCp988onB2k5ERCRHLE6IiLJBpVIhIiICaWlpiIyMxKFDhzB79my0a9cOPXv2xLVr16BWq/HDDz+gffv2CA4OxsqVK7WO4eHhgYSEBAQGBqJq1aqwtrZG2bJl4e/vj549e2LBggWoXr06nj17hsDAQFSpUgVt27Y1UsZERESGx9W6iIiy4dChQyhSpAg8PDzQqlUrHDt2DEuXLsW+fftgamqKqlWrYuHChZg7dy4qVaqEzZs3Y/bs2VrHqFevHgYNGoTu3bvD2dkZ8+bNAwCsW7cOPXv2xNixY1GuXDl06tQJf//9N4oXL26MVImIiIyGq3UREREREZEs8MoJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAv/D2VWOFOnzY8MAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -232,6 +236,10 @@ " \n", " \n", " i_interval\n", + " -8\n", + " -7\n", + " -6\n", + " -5\n", " -4\n", " -3\n", " -2\n", @@ -245,11 +253,19 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " 2021\n", + " [2020-04-01, 2020-05-01)\n", + " [2020-06-01, 2020-07-01)\n", + " [2020-08-01, 2020-09-01)\n", + " [2020-10-01, 2020-11-01)\n", " [2020-12-01, 2021-01-01)\n", " [2021-02-01, 2021-03-01)\n", " [2021-04-01, 2021-05-01)\n", @@ -258,6 +274,10 @@ " \n", " \n", " 2020\n", + " [2019-04-01, 2019-05-01)\n", + " [2019-06-01, 2019-07-01)\n", + " [2019-08-01, 2019-09-01)\n", + " [2019-10-01, 2019-11-01)\n", " [2019-12-01, 2020-01-01)\n", " [2020-02-01, 2020-03-01)\n", " [2020-04-01, 2020-05-01)\n", @@ -266,6 +286,10 @@ " \n", " \n", " 2019\n", + " [2018-04-01, 2018-05-01)\n", + " [2018-06-01, 2018-07-01)\n", + " [2018-08-01, 2018-09-01)\n", + " [2018-10-01, 2018-11-01)\n", " [2018-12-01, 2019-01-01)\n", " [2019-02-01, 2019-03-01)\n", " [2019-04-01, 2019-05-01)\n", @@ -277,6 +301,18 @@ "" ], "text/plain": [ + "i_interval -8 -7 \\\n", + "anchor_year \n", + "2021 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", + "2020 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", + "2019 [2018-04-01, 2018-05-01) [2018-06-01, 2018-07-01) \n", + "\n", + "i_interval -6 -5 \\\n", + "anchor_year \n", + "2021 [2020-08-01, 2020-09-01) [2020-10-01, 2020-11-01) \n", + "2020 [2019-08-01, 2019-09-01) [2019-10-01, 2019-11-01) \n", + "2019 [2018-08-01, 2018-09-01) [2018-10-01, 2018-11-01) \n", + "\n", "i_interval -4 -3 \\\n", "anchor_year \n", "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", @@ -579,7 +615,7 @@ "\n", "# define hyperparameters and the \n", "hyperparameters = dict(\n", - " epoch = 120,\n", + " epoch = 150,\n", " input_dim = lat_precursor*lon_precursor,\n", " hidden_dim = lat_precursor*lon_precursor*2,\n", " output_dim = 1,\n", @@ -702,1087 +738,1357 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 507.983582\n", - "Epoch : 0 [4/36(11%)]\tLoss: 485.545990\n", - "Epoch : 0 [8/36(22%)]\tLoss: 477.454285\n", - "Epoch : 0 [12/36(33%)]\tLoss: 432.951752\n", - "Epoch : 0 [16/36(44%)]\tLoss: 305.954041\n", - "Epoch : 0 [20/36(56%)]\tLoss: 181.917877\n", - "Epoch : 0 [24/36(67%)]\tLoss: 112.253494\n", - "Epoch : 0 [28/36(78%)]\tLoss: 57.063919\n", - "Epoch : 0 [32/36(89%)]\tLoss: 43.682007\n", - "Epoch : 1 [0/36(0%)]\tLoss: 13.681940\n", - "Epoch : 1 [4/36(11%)]\tLoss: 0.649184\n", - "Epoch : 1 [8/36(22%)]\tLoss: 4.794668\n", - "Epoch : 1 [12/36(33%)]\tLoss: 15.757802\n", - "Epoch : 1 [16/36(44%)]\tLoss: 20.147532\n", - "Epoch : 1 [20/36(56%)]\tLoss: 22.499285\n", - "Epoch : 1 [24/36(67%)]\tLoss: 25.619698\n", - "Epoch : 1 [28/36(78%)]\tLoss: 28.632963\n", - "Epoch : 1 [32/36(89%)]\tLoss: 20.574209\n", - "Epoch : 2 [0/36(0%)]\tLoss: 18.872978\n", - "Epoch : 2 [4/36(11%)]\tLoss: 14.648389\n", - "Epoch : 2 [8/36(22%)]\tLoss: 5.900297\n", - "Epoch : 2 [12/36(33%)]\tLoss: 3.351698\n", - "Epoch : 2 [16/36(44%)]\tLoss: 1.113437\n", - "Epoch : 2 [20/36(56%)]\tLoss: 2.335231\n", - "Epoch : 2 [24/36(67%)]\tLoss: 2.825702\n", - "Epoch : 2 [28/36(78%)]\tLoss: 3.798011\n", - "Epoch : 2 [32/36(89%)]\tLoss: 6.569637\n", - "Epoch : 3 [0/36(0%)]\tLoss: 3.737962\n", - "Epoch : 3 [4/36(11%)]\tLoss: 4.708276\n", - "Epoch : 3 [8/36(22%)]\tLoss: 6.664110\n", - "Epoch : 3 [12/36(33%)]\tLoss: 3.995237\n", - "Epoch : 3 [16/36(44%)]\tLoss: 5.634778\n", - "Epoch : 3 [20/36(56%)]\tLoss: 6.125483\n", - "Epoch : 3 [24/36(67%)]\tLoss: 2.957626\n", - "Epoch : 3 [28/36(78%)]\tLoss: 2.246599\n", - "Epoch : 3 [32/36(89%)]\tLoss: 1.954396\n", - "Epoch : 4 [0/36(0%)]\tLoss: 0.826026\n", - "Epoch : 4 [4/36(11%)]\tLoss: 2.171590\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.378437\n", - "Epoch : 4 [12/36(33%)]\tLoss: 2.751612\n", - "Epoch : 4 [16/36(44%)]\tLoss: 1.956753\n", - "Epoch : 4 [20/36(56%)]\tLoss: 2.154751\n", - "Epoch : 4 [24/36(67%)]\tLoss: 2.226980\n", - "Epoch : 4 [28/36(78%)]\tLoss: 2.994128\n", - "Epoch : 4 [32/36(89%)]\tLoss: 5.376053\n", - "Epoch : 5 [0/36(0%)]\tLoss: 1.641360\n", - "Epoch : 5 [4/36(11%)]\tLoss: 61.552425\n", - "Epoch : 5 [8/36(22%)]\tLoss: 0.517432\n", - "Epoch : 5 [12/36(33%)]\tLoss: 0.599537\n", - "Epoch : 5 [16/36(44%)]\tLoss: 0.872480\n", - "Epoch : 5 [20/36(56%)]\tLoss: 2.146992\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.557322\n", - "Epoch : 5 [28/36(78%)]\tLoss: 1.163762\n", - "Epoch : 5 [32/36(89%)]\tLoss: 1.936478\n", - "Epoch : 6 [0/36(0%)]\tLoss: 0.236009\n", - "Epoch : 6 [4/36(11%)]\tLoss: 0.449621\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.464321\n", - "Epoch : 6 [12/36(33%)]\tLoss: 0.386675\n", - "Epoch : 6 [16/36(44%)]\tLoss: 1.017627\n", - "Epoch : 6 [20/36(56%)]\tLoss: 2.735424\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.833501\n", - "Epoch : 6 [28/36(78%)]\tLoss: 1.378521\n", - "Epoch : 6 [32/36(89%)]\tLoss: 1.746123\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.407802\n", - "Epoch : 7 [4/36(11%)]\tLoss: 1.522333\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.567280\n", - "Epoch : 7 [12/36(33%)]\tLoss: 0.760593\n", - "Epoch : 7 [16/36(44%)]\tLoss: 0.810266\n", - "Epoch : 7 [20/36(56%)]\tLoss: 2.084057\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.535880\n", - "Epoch : 7 [28/36(78%)]\tLoss: 1.548715\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.704262\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.267778\n", - "Epoch : 8 [4/36(11%)]\tLoss: 0.470362\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.319555\n", - "Epoch : 8 [12/36(33%)]\tLoss: 0.386292\n", - "Epoch : 8 [16/36(44%)]\tLoss: 0.997348\n", - "Epoch : 8 [20/36(56%)]\tLoss: 1.680269\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.286102\n", - "Epoch : 8 [28/36(78%)]\tLoss: 1.456243\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.600214\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.376325\n", - "Epoch : 9 [4/36(11%)]\tLoss: 0.536471\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.184534\n", - "Epoch : 9 [12/36(33%)]\tLoss: 1.879885\n", - "Epoch : 9 [16/36(44%)]\tLoss: 0.726486\n", - "Epoch : 9 [20/36(56%)]\tLoss: 1.361504\n", - "Epoch : 9 [24/36(67%)]\tLoss: 0.992220\n", - "Epoch : 9 [28/36(78%)]\tLoss: 1.238194\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.704631\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.401274\n", - "Epoch : 10 [4/36(11%)]\tLoss: 0.591326\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.225017\n", - "Epoch : 10 [12/36(33%)]\tLoss: 0.553684\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.683837\n", - "Epoch : 10 [20/36(56%)]\tLoss: 41.919888\n", - "Epoch : 10 [24/36(67%)]\tLoss: 0.954259\n", - "Epoch : 10 [28/36(78%)]\tLoss: 1.348911\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.275428\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.692238\n", - "Epoch : 11 [4/36(11%)]\tLoss: 0.759567\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.491525\n", - "Epoch : 11 [12/36(33%)]\tLoss: 0.890592\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.883045\n", - "Epoch : 11 [20/36(56%)]\tLoss: 1.011938\n", - "Epoch : 11 [24/36(67%)]\tLoss: 1.097416\n", - "Epoch : 11 [28/36(78%)]\tLoss: 1.227733\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.541118\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.338693\n", - "Epoch : 12 [4/36(11%)]\tLoss: 0.303745\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.484650\n", - "Epoch : 12 [12/36(33%)]\tLoss: 0.439541\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.740936\n", - "Epoch : 12 [20/36(56%)]\tLoss: 2.187052\n", - "Epoch : 12 [24/36(67%)]\tLoss: 1.159384\n", - "Epoch : 12 [28/36(78%)]\tLoss: 1.456004\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.407920\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.316378\n", - "Epoch : 13 [4/36(11%)]\tLoss: 1.284834\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.311175\n", - "Epoch : 13 [12/36(33%)]\tLoss: 1.623467\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.881614\n", - "Epoch : 13 [20/36(56%)]\tLoss: 1.191420\n", - "Epoch : 13 [24/36(67%)]\tLoss: 0.891233\n", - "Epoch : 13 [28/36(78%)]\tLoss: 2.473056\n", - "Epoch : 13 [32/36(89%)]\tLoss: 2.165516\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.268527\n", - "Epoch : 14 [4/36(11%)]\tLoss: 0.460274\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.075448\n", - "Epoch : 14 [12/36(33%)]\tLoss: 0.581868\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.733167\n", - "Epoch : 14 [20/36(56%)]\tLoss: 0.966595\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.194532\n", - "Epoch : 14 [28/36(78%)]\tLoss: 1.389047\n", - "Epoch : 14 [32/36(89%)]\tLoss: 0.836293\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.342130\n", - "Epoch : 15 [4/36(11%)]\tLoss: 1.427072\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.163315\n", - "Epoch : 15 [12/36(33%)]\tLoss: 0.439176\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.720854\n", - "Epoch : 15 [20/36(56%)]\tLoss: 1.454335\n", - "Epoch : 15 [24/36(67%)]\tLoss: 1.065300\n", - "Epoch : 15 [28/36(78%)]\tLoss: 1.736128\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.193403\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.245131\n", - "Epoch : 16 [4/36(11%)]\tLoss: 0.417922\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.162268\n", - "Epoch : 16 [12/36(33%)]\tLoss: 0.682358\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.768364\n", - "Epoch : 16 [20/36(56%)]\tLoss: 1.130387\n", - "Epoch : 16 [24/36(67%)]\tLoss: 0.845534\n", - "Epoch : 16 [28/36(78%)]\tLoss: 1.194760\n", - "Epoch : 16 [32/36(89%)]\tLoss: 1.207175\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.330018\n", - "Epoch : 17 [4/36(11%)]\tLoss: 0.517002\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.101239\n", - "Epoch : 17 [12/36(33%)]\tLoss: 0.683044\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.624549\n", - "Epoch : 17 [20/36(56%)]\tLoss: 1.242234\n", - "Epoch : 17 [24/36(67%)]\tLoss: 1.108698\n", - "Epoch : 17 [28/36(78%)]\tLoss: 1.931416\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.270404\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.219970\n", - "Epoch : 18 [4/36(11%)]\tLoss: 0.424081\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.074651\n", - "Epoch : 18 [12/36(33%)]\tLoss: 0.574489\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.707835\n", - "Epoch : 18 [20/36(56%)]\tLoss: 1.049430\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.950562\n", - "Epoch : 18 [28/36(78%)]\tLoss: 1.290967\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.415727\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.317242\n", - "Epoch : 19 [4/36(11%)]\tLoss: 0.495935\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.230634\n", - "Epoch : 19 [12/36(33%)]\tLoss: 0.672741\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.699571\n", - "Epoch : 19 [20/36(56%)]\tLoss: 1.410765\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.431498\n", - "Epoch : 19 [28/36(78%)]\tLoss: 1.059802\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.268896\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.481073\n", - "Epoch : 20 [4/36(11%)]\tLoss: 0.614935\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.323890\n", - "Epoch : 20 [12/36(33%)]\tLoss: 0.737223\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.635708\n", - "Epoch : 20 [20/36(56%)]\tLoss: 1.322181\n", - "Epoch : 20 [24/36(67%)]\tLoss: 0.764492\n", - "Epoch : 20 [28/36(78%)]\tLoss: 1.316211\n", - "Epoch : 20 [32/36(89%)]\tLoss: 1.350003\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.257974\n", - "Epoch : 21 [4/36(11%)]\tLoss: 1.036465\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.162682\n", - "Epoch : 21 [12/36(33%)]\tLoss: 0.318855\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.666395\n", - "Epoch : 21 [20/36(56%)]\tLoss: 1.247852\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.617214\n", - "Epoch : 21 [28/36(78%)]\tLoss: 1.401607\n", - "Epoch : 21 [32/36(89%)]\tLoss: 0.537909\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.195451\n", - "Epoch : 22 [4/36(11%)]\tLoss: 0.689567\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.237167\n", - "Epoch : 22 [12/36(33%)]\tLoss: 1.119654\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.795430\n", - "Epoch : 22 [20/36(56%)]\tLoss: 0.663951\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.542521\n", - "Epoch : 22 [28/36(78%)]\tLoss: 1.752671\n", - "Epoch : 22 [32/36(89%)]\tLoss: 0.575506\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.240803\n", - "Epoch : 23 [4/36(11%)]\tLoss: 0.540746\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.056322\n", - "Epoch : 23 [12/36(33%)]\tLoss: 0.874979\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.756174\n", - "Epoch : 23 [20/36(56%)]\tLoss: 1.012967\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.872605\n", - "Epoch : 23 [28/36(78%)]\tLoss: 1.476786\n", - "Epoch : 23 [32/36(89%)]\tLoss: 0.872029\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.201539\n", - "Epoch : 24 [4/36(11%)]\tLoss: 0.490549\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.072448\n", - "Epoch : 24 [12/36(33%)]\tLoss: 0.694031\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.683765\n", - "Epoch : 24 [20/36(56%)]\tLoss: 0.814258\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.502935\n", - "Epoch : 24 [28/36(78%)]\tLoss: 1.313967\n", - "Epoch : 24 [32/36(89%)]\tLoss: 0.639446\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.109385\n", - "Epoch : 25 [4/36(11%)]\tLoss: 0.648739\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.131458\n", - "Epoch : 25 [12/36(33%)]\tLoss: 0.577728\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.778316\n", - "Epoch : 25 [20/36(56%)]\tLoss: 0.949162\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.551733\n", - "Epoch : 25 [28/36(78%)]\tLoss: 1.238571\n", - "Epoch : 25 [32/36(89%)]\tLoss: 0.594090\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.265101\n", - "Epoch : 26 [4/36(11%)]\tLoss: 0.560474\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.152485\n", - "Epoch : 26 [12/36(33%)]\tLoss: 0.203402\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.464279\n", - "Epoch : 26 [20/36(56%)]\tLoss: 0.700884\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.356159\n", - "Epoch : 26 [28/36(78%)]\tLoss: 1.396630\n", - "Epoch : 26 [32/36(89%)]\tLoss: 1.599944\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.185093\n", - "Epoch : 27 [4/36(11%)]\tLoss: 0.492970\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.341786\n", - "Epoch : 27 [12/36(33%)]\tLoss: 1.178146\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.771961\n", - "Epoch : 27 [20/36(56%)]\tLoss: 0.838922\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.458040\n", - "Epoch : 27 [28/36(78%)]\tLoss: 1.720198\n", - "Epoch : 27 [32/36(89%)]\tLoss: 1.835427\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.181525\n", - "Epoch : 28 [4/36(11%)]\tLoss: 0.597012\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.196241\n", - "Epoch : 28 [12/36(33%)]\tLoss: 0.280821\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.486992\n", - "Epoch : 28 [20/36(56%)]\tLoss: 0.514253\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.710886\n", - "Epoch : 28 [28/36(78%)]\tLoss: 0.873084\n", - "Epoch : 28 [32/36(89%)]\tLoss: 1.114879\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.231928\n", - "Epoch : 29 [4/36(11%)]\tLoss: 0.660394\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.217593\n", - "Epoch : 29 [12/36(33%)]\tLoss: 0.144636\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.611048\n", - "Epoch : 29 [20/36(56%)]\tLoss: 0.942559\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.374731\n", - "Epoch : 29 [28/36(78%)]\tLoss: 1.207942\n", - "Epoch : 29 [32/36(89%)]\tLoss: 0.422186\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.164200\n", - "Epoch : 30 [4/36(11%)]\tLoss: 0.526184\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.374550\n", - "Epoch : 30 [12/36(33%)]\tLoss: 1.219283\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.612514\n", - "Epoch : 30 [20/36(56%)]\tLoss: 0.852067\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.520570\n", - "Epoch : 30 [28/36(78%)]\tLoss: 1.699223\n", - "Epoch : 30 [32/36(89%)]\tLoss: 1.696208\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.292037\n", - "Epoch : 31 [4/36(11%)]\tLoss: 0.301410\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.173668\n", - "Epoch : 31 [12/36(33%)]\tLoss: 0.963079\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.774462\n", - "Epoch : 31 [20/36(56%)]\tLoss: 0.724868\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.495552\n", - "Epoch : 31 [28/36(78%)]\tLoss: 1.187096\n", - "Epoch : 31 [32/36(89%)]\tLoss: 0.627896\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.216579\n", - "Epoch : 32 [4/36(11%)]\tLoss: 0.350364\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.222970\n", - "Epoch : 32 [12/36(33%)]\tLoss: 0.271730\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.355948\n", - "Epoch : 32 [20/36(56%)]\tLoss: 0.803394\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.360208\n", - "Epoch : 32 [28/36(78%)]\tLoss: 0.574051\n", - "Epoch : 32 [32/36(89%)]\tLoss: 0.713544\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.418268\n", - "Epoch : 33 [4/36(11%)]\tLoss: 0.608432\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.335705\n", - "Epoch : 33 [12/36(33%)]\tLoss: 0.226859\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.244683\n", - "Epoch : 33 [20/36(56%)]\tLoss: 0.689198\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.498711\n", - "Epoch : 33 [28/36(78%)]\tLoss: 1.208200\n", - "Epoch : 33 [32/36(89%)]\tLoss: 0.478432\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.190441\n", - "Epoch : 34 [4/36(11%)]\tLoss: 0.513194\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.111395\n", - "Epoch : 34 [12/36(33%)]\tLoss: 0.419770\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.390268\n", - "Epoch : 34 [20/36(56%)]\tLoss: 0.613014\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.388546\n", - "Epoch : 34 [28/36(78%)]\tLoss: 1.165198\n", - "Epoch : 34 [32/36(89%)]\tLoss: 0.365966\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.129787\n", - "Epoch : 35 [4/36(11%)]\tLoss: 0.255420\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.459165\n", - "Epoch : 35 [12/36(33%)]\tLoss: 0.102898\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.278423\n", - "Epoch : 35 [20/36(56%)]\tLoss: 0.323771\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.370440\n", - "Epoch : 35 [28/36(78%)]\tLoss: 1.158634\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.271893\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.184716\n", - "Epoch : 36 [4/36(11%)]\tLoss: 0.241789\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.177044\n", - "Epoch : 36 [12/36(33%)]\tLoss: 0.435624\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.234682\n", - "Epoch : 36 [20/36(56%)]\tLoss: 0.425640\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.252957\n", - "Epoch : 36 [28/36(78%)]\tLoss: 0.323449\n", - "Epoch : 36 [32/36(89%)]\tLoss: 0.649497\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.386791\n", - "Epoch : 37 [4/36(11%)]\tLoss: 0.346557\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.159452\n", - "Epoch : 37 [12/36(33%)]\tLoss: 0.165276\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.250041\n", - "Epoch : 37 [20/36(56%)]\tLoss: 0.896734\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.354154\n", - "Epoch : 37 [28/36(78%)]\tLoss: 0.927789\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.261597\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.231714\n", - "Epoch : 38 [4/36(11%)]\tLoss: 0.349499\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.590888\n", - "Epoch : 38 [12/36(33%)]\tLoss: 0.392239\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.131214\n", - "Epoch : 38 [20/36(56%)]\tLoss: 0.606150\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.095998\n", - "Epoch : 38 [28/36(78%)]\tLoss: 0.966528\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.439646\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.211780\n", - "Epoch : 39 [4/36(11%)]\tLoss: 0.250679\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.356316\n", - "Epoch : 39 [12/36(33%)]\tLoss: 0.155289\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.507224\n", - "Epoch : 39 [20/36(56%)]\tLoss: 0.290364\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.397426\n", - "Epoch : 39 [28/36(78%)]\tLoss: 0.765451\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.383856\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.223476\n", - "Epoch : 40 [4/36(11%)]\tLoss: 0.278307\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.075358\n", - "Epoch : 40 [12/36(33%)]\tLoss: 0.493854\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.276442\n", - "Epoch : 40 [20/36(56%)]\tLoss: 0.916430\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.178844\n", - "Epoch : 40 [28/36(78%)]\tLoss: 0.819642\n", - "Epoch : 40 [32/36(89%)]\tLoss: 0.389709\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.186383\n", - "Epoch : 41 [4/36(11%)]\tLoss: 0.237005\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.493227\n", - "Epoch : 41 [12/36(33%)]\tLoss: 0.546487\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.214588\n", - "Epoch : 41 [20/36(56%)]\tLoss: 0.418337\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.285581\n", - "Epoch : 41 [28/36(78%)]\tLoss: 0.723503\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.210814\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.161292\n", - "Epoch : 42 [4/36(11%)]\tLoss: 0.416499\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.392076\n", - "Epoch : 42 [12/36(33%)]\tLoss: 0.399175\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.391687\n", - "Epoch : 42 [20/36(56%)]\tLoss: 0.357929\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.427770\n", - "Epoch : 42 [28/36(78%)]\tLoss: 0.677348\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.251413\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.268350\n", - "Epoch : 43 [4/36(11%)]\tLoss: 0.386606\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.378551\n", - "Epoch : 43 [12/36(33%)]\tLoss: 0.328673\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.009764\n", - "Epoch : 43 [20/36(56%)]\tLoss: 0.293181\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.209063\n", - "Epoch : 43 [28/36(78%)]\tLoss: 0.067298\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.081896\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.147998\n", - "Epoch : 44 [4/36(11%)]\tLoss: 0.342878\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.387698\n", - "Epoch : 44 [12/36(33%)]\tLoss: 0.255189\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.064371\n", - "Epoch : 44 [20/36(56%)]\tLoss: 0.345002\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.142080\n", - "Epoch : 44 [28/36(78%)]\tLoss: 0.461973\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.036998\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.151593\n", - "Epoch : 45 [4/36(11%)]\tLoss: 0.265187\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.515073\n", - "Epoch : 45 [12/36(33%)]\tLoss: 0.368483\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.212054\n", - "Epoch : 45 [20/36(56%)]\tLoss: 0.193509\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.328555\n", - "Epoch : 45 [28/36(78%)]\tLoss: 0.590888\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.083419\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.197201\n", - "Epoch : 46 [4/36(11%)]\tLoss: 0.463341\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.356213\n", - "Epoch : 46 [12/36(33%)]\tLoss: 0.287299\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.072780\n", - "Epoch : 46 [20/36(56%)]\tLoss: 0.504454\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.119488\n", - "Epoch : 46 [28/36(78%)]\tLoss: 0.840145\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.316261\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.531540\n", - "Epoch : 47 [4/36(11%)]\tLoss: 0.286747\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.319102\n", - "Epoch : 47 [12/36(33%)]\tLoss: 0.329314\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.249649\n", - "Epoch : 47 [20/36(56%)]\tLoss: 0.818986\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.110241\n", - "Epoch : 47 [28/36(78%)]\tLoss: 0.285651\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.051733\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.172740\n", - "Epoch : 48 [4/36(11%)]\tLoss: 0.361232\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.592481\n", - "Epoch : 48 [12/36(33%)]\tLoss: 0.608154\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.509293\n", - "Epoch : 48 [20/36(56%)]\tLoss: 0.094671\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.089356\n", - "Epoch : 48 [28/36(78%)]\tLoss: 0.369758\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.499705\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.730791\n", - "Epoch : 49 [4/36(11%)]\tLoss: 0.514196\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.390879\n", - "Epoch : 49 [12/36(33%)]\tLoss: 0.354510\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.790390\n", - "Epoch : 49 [20/36(56%)]\tLoss: 0.536330\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.283101\n", - "Epoch : 49 [28/36(78%)]\tLoss: 0.731982\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.077696\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.408365\n", - "Epoch : 50 [4/36(11%)]\tLoss: 0.332831\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.364565\n", - "Epoch : 50 [12/36(33%)]\tLoss: 0.231663\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.261591\n", - "Epoch : 50 [20/36(56%)]\tLoss: 0.381247\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.484968\n", - "Epoch : 50 [28/36(78%)]\tLoss: 0.976296\n", - "Epoch : 50 [32/36(89%)]\tLoss: 0.558600\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.291731\n", - "Epoch : 51 [4/36(11%)]\tLoss: 0.341915\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.309448\n", - "Epoch : 51 [12/36(33%)]\tLoss: 0.355963\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.722240\n", - "Epoch : 51 [20/36(56%)]\tLoss: 0.969864\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.332814\n", - "Epoch : 51 [28/36(78%)]\tLoss: 0.379431\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.263760\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.430804\n", - "Epoch : 52 [4/36(11%)]\tLoss: 0.299257\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.297648\n", - "Epoch : 52 [12/36(33%)]\tLoss: 0.050876\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.058078\n", - "Epoch : 52 [20/36(56%)]\tLoss: 0.313981\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.632113\n", - "Epoch : 52 [28/36(78%)]\tLoss: 0.338595\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.140811\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.251054\n", - "Epoch : 53 [4/36(11%)]\tLoss: 0.419119\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.287933\n", - "Epoch : 53 [12/36(33%)]\tLoss: 0.399620\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.420129\n", - "Epoch : 53 [20/36(56%)]\tLoss: 0.218050\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.074752\n", - "Epoch : 53 [28/36(78%)]\tLoss: 0.549127\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.568255\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.557974\n", - "Epoch : 54 [4/36(11%)]\tLoss: 0.629969\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.353461\n", - "Epoch : 54 [12/36(33%)]\tLoss: 0.195128\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.118042\n", - "Epoch : 54 [20/36(56%)]\tLoss: 0.423963\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.871856\n", - "Epoch : 54 [28/36(78%)]\tLoss: 1.147663\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.490736\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.079491\n", - "Epoch : 55 [4/36(11%)]\tLoss: 0.429729\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.370082\n", - "Epoch : 55 [12/36(33%)]\tLoss: 0.072012\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.383643\n", - "Epoch : 55 [20/36(56%)]\tLoss: 0.323159\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.216379\n", - "Epoch : 55 [28/36(78%)]\tLoss: 0.672188\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.123967\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.182371\n", - "Epoch : 56 [4/36(11%)]\tLoss: 0.153205\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.274874\n", - "Epoch : 56 [12/36(33%)]\tLoss: 0.082418\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.125994\n", - "Epoch : 56 [20/36(56%)]\tLoss: 0.247387\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.210949\n", - "Epoch : 56 [28/36(78%)]\tLoss: 0.029300\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.139851\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.155510\n", - "Epoch : 57 [4/36(11%)]\tLoss: 0.303457\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.212240\n", - "Epoch : 57 [12/36(33%)]\tLoss: 0.177613\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.059528\n", - "Epoch : 57 [20/36(56%)]\tLoss: 0.216950\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.225310\n", - "Epoch : 57 [28/36(78%)]\tLoss: 0.627856\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.143822\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.156430\n", - "Epoch : 58 [4/36(11%)]\tLoss: 0.174259\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.244065\n", - "Epoch : 58 [12/36(33%)]\tLoss: 0.169281\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.134861\n", - "Epoch : 58 [20/36(56%)]\tLoss: 0.109047\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.191867\n", - "Epoch : 58 [28/36(78%)]\tLoss: 0.071824\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.114122\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.089507\n", - "Epoch : 59 [4/36(11%)]\tLoss: 0.355131\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.240056\n", - "Epoch : 59 [12/36(33%)]\tLoss: 0.313155\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.125612\n", - "Epoch : 59 [20/36(56%)]\tLoss: 0.096158\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.522777\n", - "Epoch : 59 [28/36(78%)]\tLoss: 0.920282\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.187011\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.063962\n", - "Epoch : 60 [4/36(11%)]\tLoss: 0.357095\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.943313\n", - "Epoch : 60 [12/36(33%)]\tLoss: 0.344040\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.208868\n", - "Epoch : 60 [20/36(56%)]\tLoss: 0.124185\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.314008\n", - "Epoch : 60 [28/36(78%)]\tLoss: 0.447775\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.157903\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.263541\n", - "Epoch : 61 [4/36(11%)]\tLoss: 0.164451\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.114984\n", - "Epoch : 61 [12/36(33%)]\tLoss: 0.255978\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.197224\n", - "Epoch : 61 [20/36(56%)]\tLoss: 0.516358\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.406527\n", - "Epoch : 61 [28/36(78%)]\tLoss: 0.232901\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.165671\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.126990\n", - "Epoch : 62 [4/36(11%)]\tLoss: 0.194324\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.345807\n", - "Epoch : 62 [12/36(33%)]\tLoss: 0.442099\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.751966\n", - "Epoch : 62 [20/36(56%)]\tLoss: 0.048154\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.232280\n", - "Epoch : 62 [28/36(78%)]\tLoss: 0.358135\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.370076\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.280223\n", - "Epoch : 63 [4/36(11%)]\tLoss: 0.247358\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.203331\n", - "Epoch : 63 [12/36(33%)]\tLoss: 0.317181\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.284695\n", - "Epoch : 63 [20/36(56%)]\tLoss: 0.450282\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.444783\n", - "Epoch : 63 [28/36(78%)]\tLoss: 1.134185\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.460922\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.391640\n", - "Epoch : 64 [4/36(11%)]\tLoss: 0.299099\n", - "Epoch : 64 [8/36(22%)]\tLoss: 1.128513\n", - "Epoch : 64 [12/36(33%)]\tLoss: 0.880037\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.943555\n", - "Epoch : 64 [20/36(56%)]\tLoss: 0.770157\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.321436\n", - "Epoch : 64 [28/36(78%)]\tLoss: 1.537467\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.372177\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.692623\n", - "Epoch : 65 [4/36(11%)]\tLoss: 0.287054\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.302303\n", - "Epoch : 65 [12/36(33%)]\tLoss: 0.226319\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.465100\n", - "Epoch : 65 [20/36(56%)]\tLoss: 1.373231\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.280714\n", - "Epoch : 65 [28/36(78%)]\tLoss: 0.294630\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.210705\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.158582\n", - "Epoch : 66 [4/36(11%)]\tLoss: 0.547003\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.336253\n", - "Epoch : 66 [12/36(33%)]\tLoss: 0.358549\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.166964\n", - "Epoch : 66 [20/36(56%)]\tLoss: 0.445944\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.248931\n", - "Epoch : 66 [28/36(78%)]\tLoss: 0.340863\n", - "Epoch : 66 [32/36(89%)]\tLoss: 0.935423\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.422308\n", - "Epoch : 67 [4/36(11%)]\tLoss: 0.187136\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.083363\n", - "Epoch : 67 [12/36(33%)]\tLoss: 0.327817\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.219522\n", - "Epoch : 67 [20/36(56%)]\tLoss: 0.473091\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.305501\n", - "Epoch : 67 [28/36(78%)]\tLoss: 0.704275\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.393954\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.329316\n", - "Epoch : 68 [4/36(11%)]\tLoss: 0.245231\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.301314\n", - "Epoch : 68 [12/36(33%)]\tLoss: 0.069452\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.273918\n", - "Epoch : 68 [20/36(56%)]\tLoss: 0.247260\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.315153\n", - "Epoch : 68 [28/36(78%)]\tLoss: 1.094564\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.195727\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.058028\n", - "Epoch : 69 [4/36(11%)]\tLoss: 0.200231\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.071208\n", - "Epoch : 69 [12/36(33%)]\tLoss: 0.067877\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.182366\n", - "Epoch : 69 [20/36(56%)]\tLoss: 0.499522\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.110493\n", - "Epoch : 69 [28/36(78%)]\tLoss: 0.232243\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.158149\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.337688\n", - "Epoch : 70 [4/36(11%)]\tLoss: 0.295254\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.212412\n", - "Epoch : 70 [12/36(33%)]\tLoss: 0.221524\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.448573\n", - "Epoch : 70 [20/36(56%)]\tLoss: 0.512592\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.103223\n", - "Epoch : 70 [28/36(78%)]\tLoss: 0.231413\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.185129\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.072488\n", - "Epoch : 71 [4/36(11%)]\tLoss: 0.136687\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.198924\n", - "Epoch : 71 [12/36(33%)]\tLoss: 0.326606\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.220849\n", - "Epoch : 71 [20/36(56%)]\tLoss: 0.233199\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.096637\n", - "Epoch : 71 [28/36(78%)]\tLoss: 0.344165\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.177654\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.405474\n", - "Epoch : 72 [4/36(11%)]\tLoss: 0.026111\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.018074\n", - "Epoch : 72 [12/36(33%)]\tLoss: 0.193470\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.272226\n", - "Epoch : 72 [20/36(56%)]\tLoss: 0.034218\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.130840\n", - "Epoch : 72 [28/36(78%)]\tLoss: 0.404787\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.099369\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.263782\n", - "Epoch : 73 [4/36(11%)]\tLoss: 0.089344\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.131802\n", - "Epoch : 73 [12/36(33%)]\tLoss: 0.140482\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.044323\n", - "Epoch : 73 [20/36(56%)]\tLoss: 0.062840\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.236557\n", - "Epoch : 73 [28/36(78%)]\tLoss: 0.625946\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.102461\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.136104\n", - "Epoch : 74 [4/36(11%)]\tLoss: 0.030818\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.452775\n", - "Epoch : 74 [12/36(33%)]\tLoss: 0.431664\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.124537\n", - "Epoch : 74 [20/36(56%)]\tLoss: 0.066081\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.304384\n", - "Epoch : 74 [28/36(78%)]\tLoss: 0.555564\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.222739\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.192729\n", - "Epoch : 75 [4/36(11%)]\tLoss: 0.221225\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.028449\n", - "Epoch : 75 [12/36(33%)]\tLoss: 0.391292\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.280716\n", - "Epoch : 75 [20/36(56%)]\tLoss: 0.217536\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.085715\n", - "Epoch : 75 [28/36(78%)]\tLoss: 0.616802\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.038608\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.087333\n", - "Epoch : 76 [4/36(11%)]\tLoss: 0.688452\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.341086\n", - "Epoch : 76 [12/36(33%)]\tLoss: 0.508193\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.209841\n", - "Epoch : 76 [20/36(56%)]\tLoss: 0.173942\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.550671\n", - "Epoch : 76 [28/36(78%)]\tLoss: 1.010044\n", - "Epoch : 76 [32/36(89%)]\tLoss: 1.104467\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.202633\n", - "Epoch : 77 [4/36(11%)]\tLoss: 0.148597\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.814240\n", - "Epoch : 77 [12/36(33%)]\tLoss: 0.983156\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.574800\n", - "Epoch : 77 [20/36(56%)]\tLoss: 0.153096\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.160473\n", - "Epoch : 77 [28/36(78%)]\tLoss: 0.063832\n", - "Epoch : 77 [32/36(89%)]\tLoss: 1.022892\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.245566\n", - "Epoch : 78 [4/36(11%)]\tLoss: 0.204380\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.375374\n", - "Epoch : 78 [12/36(33%)]\tLoss: 0.218102\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.506519\n", - "Epoch : 78 [20/36(56%)]\tLoss: 0.488757\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.991918\n", - "Epoch : 78 [28/36(78%)]\tLoss: 0.660751\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.345542\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.047863\n", - "Epoch : 79 [4/36(11%)]\tLoss: 0.581503\n", - "Epoch : 79 [8/36(22%)]\tLoss: 1.510533\n", - "Epoch : 79 [12/36(33%)]\tLoss: 0.679880\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.174522\n", - "Epoch : 79 [20/36(56%)]\tLoss: 0.296182\n", - "Epoch : 79 [24/36(67%)]\tLoss: 1.183414\n", - "Epoch : 79 [28/36(78%)]\tLoss: 1.841594\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.934966\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.911867\n", - "Epoch : 80 [4/36(11%)]\tLoss: 0.231247\n", - "Epoch : 80 [8/36(22%)]\tLoss: 2.147608\n", - "Epoch : 80 [12/36(33%)]\tLoss: 1.957234\n", - "Epoch : 80 [16/36(44%)]\tLoss: 1.529552\n", - "Epoch : 80 [20/36(56%)]\tLoss: 1.037712\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.377026\n", - "Epoch : 80 [28/36(78%)]\tLoss: 1.236741\n", - "Epoch : 80 [32/36(89%)]\tLoss: 1.094321\n", - "Epoch : 81 [0/36(0%)]\tLoss: 1.026140\n", - "Epoch : 81 [4/36(11%)]\tLoss: 0.969630\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.103538\n", - "Epoch : 81 [12/36(33%)]\tLoss: 0.042448\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.732809\n", - "Epoch : 81 [20/36(56%)]\tLoss: 1.691564\n", - "Epoch : 81 [24/36(67%)]\tLoss: 1.040061\n", - "Epoch : 81 [28/36(78%)]\tLoss: 0.989351\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.165973\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.346685\n", - "Epoch : 82 [4/36(11%)]\tLoss: 1.751097\n", - "Epoch : 82 [8/36(22%)]\tLoss: 1.272441\n", - "Epoch : 82 [12/36(33%)]\tLoss: 0.788554\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.223780\n", - "Epoch : 82 [20/36(56%)]\tLoss: 0.536842\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.639188\n", - "Epoch : 82 [28/36(78%)]\tLoss: 1.333787\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.871423\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.393604\n", - "Epoch : 83 [4/36(11%)]\tLoss: 0.398699\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.672005\n", - "Epoch : 83 [12/36(33%)]\tLoss: 1.192709\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.644871\n", - "Epoch : 83 [20/36(56%)]\tLoss: 0.294046\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.079848\n", - "Epoch : 83 [28/36(78%)]\tLoss: 0.333227\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.870014\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.409277\n", - "Epoch : 84 [4/36(11%)]\tLoss: 0.236562\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.181612\n", - "Epoch : 84 [12/36(33%)]\tLoss: 0.154829\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.161943\n", - "Epoch : 84 [20/36(56%)]\tLoss: 0.278741\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.309019\n", - "Epoch : 84 [28/36(78%)]\tLoss: 0.960270\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.088923\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.002025\n", - "Epoch : 85 [4/36(11%)]\tLoss: 0.100541\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.313190\n", - "Epoch : 85 [12/36(33%)]\tLoss: 0.444372\n", - "Epoch : 85 [16/36(44%)]\tLoss: 1.041807\n", - "Epoch : 85 [20/36(56%)]\tLoss: 0.314518\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.251520\n", - "Epoch : 85 [28/36(78%)]\tLoss: 1.283191\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.462550\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.605820\n", - "Epoch : 86 [4/36(11%)]\tLoss: 0.381609\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.051112\n", - "Epoch : 86 [12/36(33%)]\tLoss: 0.485893\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.458341\n", - "Epoch : 86 [20/36(56%)]\tLoss: 1.162276\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.311185\n", - "Epoch : 86 [28/36(78%)]\tLoss: 0.410062\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.111831\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.563563\n", - "Epoch : 87 [4/36(11%)]\tLoss: 1.113748\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.610995\n", - "Epoch : 87 [12/36(33%)]\tLoss: 0.737425\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.136035\n", - "Epoch : 87 [20/36(56%)]\tLoss: 0.872532\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.490218\n", - "Epoch : 87 [28/36(78%)]\tLoss: 0.909789\n", - "Epoch : 87 [32/36(89%)]\tLoss: 1.196093\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.366298\n", - "Epoch : 88 [4/36(11%)]\tLoss: 0.652463\n", - "Epoch : 88 [8/36(22%)]\tLoss: 1.585038\n", - "Epoch : 88 [12/36(33%)]\tLoss: 1.406729\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.585281\n", - "Epoch : 88 [20/36(56%)]\tLoss: 0.259845\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.320392\n", - "Epoch : 88 [28/36(78%)]\tLoss: 0.520836\n", - "Epoch : 88 [32/36(89%)]\tLoss: 1.467909\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.555926\n", - "Epoch : 89 [4/36(11%)]\tLoss: 0.267365\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.120339\n", - "Epoch : 89 [12/36(33%)]\tLoss: 0.647127\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.317099\n", - "Epoch : 89 [20/36(56%)]\tLoss: 0.504493\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.378018\n", - "Epoch : 89 [28/36(78%)]\tLoss: 0.501669\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.495069\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.176632\n", - "Epoch : 90 [4/36(11%)]\tLoss: 0.263795\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.737361\n", - "Epoch : 90 [12/36(33%)]\tLoss: 0.341994\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.410565\n", - "Epoch : 90 [20/36(56%)]\tLoss: 0.622714\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.510921\n", - "Epoch : 90 [28/36(78%)]\tLoss: 1.440267\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.863993\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.422403\n", - "Epoch : 91 [4/36(11%)]\tLoss: 0.032475\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.597104\n", - "Epoch : 91 [12/36(33%)]\tLoss: 0.683082\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.946118\n", - "Epoch : 91 [20/36(56%)]\tLoss: 0.464650\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.116632\n", - "Epoch : 91 [28/36(78%)]\tLoss: 0.566201\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.478480\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.909044\n", - "Epoch : 92 [4/36(11%)]\tLoss: 0.540279\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.254518\n", - "Epoch : 92 [12/36(33%)]\tLoss: 0.200436\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.546569\n", - "Epoch : 92 [20/36(56%)]\tLoss: 1.720573\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.646944\n", - "Epoch : 92 [28/36(78%)]\tLoss: 0.554087\n", - "Epoch : 92 [32/36(89%)]\tLoss: 2.065887\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.171944\n", - "Epoch : 93 [4/36(11%)]\tLoss: 1.541846\n", - "Epoch : 93 [8/36(22%)]\tLoss: 2.194288\n", - "Epoch : 93 [12/36(33%)]\tLoss: 1.942341\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.313381\n", - "Epoch : 93 [20/36(56%)]\tLoss: 0.905164\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.937344\n", - "Epoch : 93 [28/36(78%)]\tLoss: 2.616563\n", - "Epoch : 93 [32/36(89%)]\tLoss: 1.593619\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.442287\n", - "Epoch : 94 [4/36(11%)]\tLoss: 0.400634\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.833420\n", - "Epoch : 94 [12/36(33%)]\tLoss: 1.516606\n", - "Epoch : 94 [16/36(44%)]\tLoss: 1.375820\n", - "Epoch : 94 [20/36(56%)]\tLoss: 0.631176\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.060612\n", - "Epoch : 94 [28/36(78%)]\tLoss: 0.889196\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.579371\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.511248\n", - "Epoch : 95 [4/36(11%)]\tLoss: 0.150397\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.110574\n", - "Epoch : 95 [12/36(33%)]\tLoss: 0.477892\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.243976\n", - "Epoch : 95 [20/36(56%)]\tLoss: 0.365813\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.597229\n", - "Epoch : 95 [28/36(78%)]\tLoss: 0.349245\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.220596\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.089355\n", - "Epoch : 96 [4/36(11%)]\tLoss: 0.212888\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.208956\n", - "Epoch : 96 [12/36(33%)]\tLoss: 0.537428\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.223924\n", - "Epoch : 96 [20/36(56%)]\tLoss: 0.256076\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.172926\n", - "Epoch : 96 [28/36(78%)]\tLoss: 0.812030\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.218781\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.115903\n", - "Epoch : 97 [4/36(11%)]\tLoss: 0.177059\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.125694\n", - "Epoch : 97 [12/36(33%)]\tLoss: 0.365648\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.212901\n", - "Epoch : 97 [20/36(56%)]\tLoss: 0.210495\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.145687\n", - "Epoch : 97 [28/36(78%)]\tLoss: 0.557763\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.138183\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.100495\n", - "Epoch : 98 [4/36(11%)]\tLoss: 0.192695\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.164880\n", - "Epoch : 98 [12/36(33%)]\tLoss: 0.053229\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.161466\n", - "Epoch : 98 [20/36(56%)]\tLoss: 0.315790\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.089623\n", - "Epoch : 98 [28/36(78%)]\tLoss: 0.747989\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.210732\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.105131\n", - "Epoch : 99 [4/36(11%)]\tLoss: 0.283214\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.086097\n", - "Epoch : 99 [12/36(33%)]\tLoss: 0.289705\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.129297\n", - "Epoch : 99 [20/36(56%)]\tLoss: 0.391019\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.062594\n", - "Epoch : 99 [28/36(78%)]\tLoss: 0.684636\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.127489\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.127472\n", - "Epoch : 100 [4/36(11%)]\tLoss: 0.202603\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.069482\n", - "Epoch : 100 [12/36(33%)]\tLoss: 0.111396\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.038661\n", - "Epoch : 100 [20/36(56%)]\tLoss: 0.163782\n", - "Epoch : 100 [24/36(67%)]\tLoss: 0.127606\n", - "Epoch : 100 [28/36(78%)]\tLoss: 0.323295\n", - "Epoch : 100 [32/36(89%)]\tLoss: 0.147426\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.094921\n", - "Epoch : 101 [4/36(11%)]\tLoss: 0.059642\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.131736\n", - "Epoch : 101 [12/36(33%)]\tLoss: 0.059232\n", - "Epoch : 101 [16/36(44%)]\tLoss: 0.057350\n", - "Epoch : 101 [20/36(56%)]\tLoss: 0.215281\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.030780\n", - "Epoch : 101 [28/36(78%)]\tLoss: 0.176347\n", - "Epoch : 101 [32/36(89%)]\tLoss: 0.131793\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.182563\n", - "Epoch : 102 [4/36(11%)]\tLoss: 0.124452\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.096170\n", - "Epoch : 102 [12/36(33%)]\tLoss: 0.034396\n", - "Epoch : 102 [16/36(44%)]\tLoss: 0.090513\n", - "Epoch : 102 [20/36(56%)]\tLoss: 0.095970\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.120022\n", - "Epoch : 102 [28/36(78%)]\tLoss: 0.518787\n", - "Epoch : 102 [32/36(89%)]\tLoss: 0.083936\n", - "Epoch : 103 [0/36(0%)]\tLoss: 0.175328\n", - "Epoch : 103 [4/36(11%)]\tLoss: 0.041257\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.072607\n", - "Epoch : 103 [12/36(33%)]\tLoss: 0.026839\n", - "Epoch : 103 [16/36(44%)]\tLoss: 0.040202\n", - "Epoch : 103 [20/36(56%)]\tLoss: 0.105807\n", - "Epoch : 103 [24/36(67%)]\tLoss: 0.157520\n", - "Epoch : 103 [28/36(78%)]\tLoss: 0.211899\n", - "Epoch : 103 [32/36(89%)]\tLoss: 0.122434\n", - "Epoch : 104 [0/36(0%)]\tLoss: 0.106286\n", - "Epoch : 104 [4/36(11%)]\tLoss: 0.111526\n", - "Epoch : 104 [8/36(22%)]\tLoss: 0.097372\n", - "Epoch : 104 [12/36(33%)]\tLoss: 0.077214\n", - "Epoch : 104 [16/36(44%)]\tLoss: 0.063729\n", - "Epoch : 104 [20/36(56%)]\tLoss: 0.288503\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.028669\n", - "Epoch : 104 [28/36(78%)]\tLoss: 0.395364\n", - "Epoch : 104 [32/36(89%)]\tLoss: 0.119164\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.133995\n", - "Epoch : 105 [4/36(11%)]\tLoss: 0.123143\n", - "Epoch : 105 [8/36(22%)]\tLoss: 0.009681\n", - "Epoch : 105 [12/36(33%)]\tLoss: 0.079229\n", - "Epoch : 105 [16/36(44%)]\tLoss: 0.152628\n", - "Epoch : 105 [20/36(56%)]\tLoss: 0.349083\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.076181\n", - "Epoch : 105 [28/36(78%)]\tLoss: 0.254845\n", - "Epoch : 105 [32/36(89%)]\tLoss: 0.119811\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.092566\n", - "Epoch : 106 [4/36(11%)]\tLoss: 0.265041\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.041758\n", - "Epoch : 106 [12/36(33%)]\tLoss: 0.063744\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.088676\n", - "Epoch : 106 [20/36(56%)]\tLoss: 0.179997\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.096968\n", - "Epoch : 106 [28/36(78%)]\tLoss: 0.256847\n", - "Epoch : 106 [32/36(89%)]\tLoss: 0.095598\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.114264\n", - "Epoch : 107 [4/36(11%)]\tLoss: 0.041452\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.049057\n", - "Epoch : 107 [12/36(33%)]\tLoss: 0.045733\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.053891\n", - "Epoch : 107 [20/36(56%)]\tLoss: 0.276433\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.165489\n", - "Epoch : 107 [28/36(78%)]\tLoss: 0.350291\n", - "Epoch : 107 [32/36(89%)]\tLoss: 0.321257\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.542668\n", - "Epoch : 108 [4/36(11%)]\tLoss: 0.060620\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.137485\n", - "Epoch : 108 [12/36(33%)]\tLoss: 0.008441\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.198874\n", - "Epoch : 108 [20/36(56%)]\tLoss: 0.160716\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.300373\n", - "Epoch : 108 [28/36(78%)]\tLoss: 0.511211\n", - "Epoch : 108 [32/36(89%)]\tLoss: 0.176301\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.178465\n", - "Epoch : 109 [4/36(11%)]\tLoss: 0.057652\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.143417\n", - "Epoch : 109 [12/36(33%)]\tLoss: 0.059465\n", - "Epoch : 109 [16/36(44%)]\tLoss: 0.195057\n", - "Epoch : 109 [20/36(56%)]\tLoss: 0.189335\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.141871\n", - "Epoch : 109 [28/36(78%)]\tLoss: 0.615230\n", - "Epoch : 109 [32/36(89%)]\tLoss: 0.215620\n", - "Epoch : 110 [0/36(0%)]\tLoss: 0.215612\n", - "Epoch : 110 [4/36(11%)]\tLoss: 0.053607\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.371824\n", - "Epoch : 110 [12/36(33%)]\tLoss: 0.180240\n", - "Epoch : 110 [16/36(44%)]\tLoss: 0.337481\n", - "Epoch : 110 [20/36(56%)]\tLoss: 0.179367\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.138704\n", - "Epoch : 110 [28/36(78%)]\tLoss: 0.488978\n", - "Epoch : 110 [32/36(89%)]\tLoss: 0.224748\n", - "Epoch : 111 [0/36(0%)]\tLoss: 0.094714\n", - "Epoch : 111 [4/36(11%)]\tLoss: 0.144241\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.202913\n", - "Epoch : 111 [12/36(33%)]\tLoss: 0.137015\n", - "Epoch : 111 [16/36(44%)]\tLoss: 0.059306\n", - "Epoch : 111 [20/36(56%)]\tLoss: 0.276600\n", - "Epoch : 111 [24/36(67%)]\tLoss: 0.045100\n", - "Epoch : 111 [28/36(78%)]\tLoss: 0.312854\n", - "Epoch : 111 [32/36(89%)]\tLoss: 0.032778\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.092271\n", - "Epoch : 112 [4/36(11%)]\tLoss: 0.163441\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.118656\n", - "Epoch : 112 [12/36(33%)]\tLoss: 0.274510\n", - "Epoch : 112 [16/36(44%)]\tLoss: 0.175687\n", - "Epoch : 112 [20/36(56%)]\tLoss: 0.432427\n", - "Epoch : 112 [24/36(67%)]\tLoss: 0.310808\n", - "Epoch : 112 [28/36(78%)]\tLoss: 0.493357\n", - "Epoch : 112 [32/36(89%)]\tLoss: 0.050198\n", - "Epoch : 113 [0/36(0%)]\tLoss: 0.072987\n", - "Epoch : 113 [4/36(11%)]\tLoss: 0.331352\n", - "Epoch : 113 [8/36(22%)]\tLoss: 0.387593\n", - "Epoch : 113 [12/36(33%)]\tLoss: 0.834939\n", - "Epoch : 113 [16/36(44%)]\tLoss: 0.199774\n", - "Epoch : 113 [20/36(56%)]\tLoss: 0.385507\n", - "Epoch : 113 [24/36(67%)]\tLoss: 0.484463\n", - "Epoch : 113 [28/36(78%)]\tLoss: 0.273400\n", - "Epoch : 113 [32/36(89%)]\tLoss: 0.718488\n", - "Epoch : 114 [0/36(0%)]\tLoss: 0.403973\n", - "Epoch : 114 [4/36(11%)]\tLoss: 0.068258\n", - "Epoch : 114 [8/36(22%)]\tLoss: 0.290743\n", - "Epoch : 114 [12/36(33%)]\tLoss: 0.477761\n", - "Epoch : 114 [16/36(44%)]\tLoss: 0.380654\n", - "Epoch : 114 [20/36(56%)]\tLoss: 0.091875\n", - "Epoch : 114 [24/36(67%)]\tLoss: 0.081151\n", - "Epoch : 114 [28/36(78%)]\tLoss: 0.274136\n", - "Epoch : 114 [32/36(89%)]\tLoss: 0.250242\n", - "Epoch : 115 [0/36(0%)]\tLoss: 0.507620\n", - "Epoch : 115 [4/36(11%)]\tLoss: 0.323539\n", - "Epoch : 115 [8/36(22%)]\tLoss: 0.177284\n", - "Epoch : 115 [12/36(33%)]\tLoss: 0.091285\n", - "Epoch : 115 [16/36(44%)]\tLoss: 0.163077\n", - "Epoch : 115 [20/36(56%)]\tLoss: 0.192332\n", - "Epoch : 115 [24/36(67%)]\tLoss: 0.923827\n", - "Epoch : 115 [28/36(78%)]\tLoss: 1.110100\n", - "Epoch : 115 [32/36(89%)]\tLoss: 0.126186\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.216951\n", - "Epoch : 116 [4/36(11%)]\tLoss: 0.475299\n", - "Epoch : 116 [8/36(22%)]\tLoss: 0.741449\n", - "Epoch : 116 [12/36(33%)]\tLoss: 0.492211\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.770206\n", - "Epoch : 116 [20/36(56%)]\tLoss: 0.228203\n", - "Epoch : 116 [24/36(67%)]\tLoss: 0.209725\n", - "Epoch : 116 [28/36(78%)]\tLoss: 0.849331\n", - "Epoch : 116 [32/36(89%)]\tLoss: 1.219790\n", - "Epoch : 117 [0/36(0%)]\tLoss: 1.739294\n", - "Epoch : 117 [4/36(11%)]\tLoss: 0.044670\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.373039\n", - "Epoch : 117 [12/36(33%)]\tLoss: 0.729918\n", - "Epoch : 117 [16/36(44%)]\tLoss: 1.452151\n", - "Epoch : 117 [20/36(56%)]\tLoss: 2.124308\n", - "Epoch : 117 [24/36(67%)]\tLoss: 0.173664\n", - "Epoch : 117 [28/36(78%)]\tLoss: 0.098715\n", - "Epoch : 117 [32/36(89%)]\tLoss: 1.049638\n", - "Epoch : 118 [0/36(0%)]\tLoss: 1.757223\n", - "Epoch : 118 [4/36(11%)]\tLoss: 2.485800\n", - "Epoch : 118 [8/36(22%)]\tLoss: 0.674959\n", - "Epoch : 118 [12/36(33%)]\tLoss: 0.267450\n", - "Epoch : 118 [16/36(44%)]\tLoss: 1.035533\n", - "Epoch : 118 [20/36(56%)]\tLoss: 2.995363\n", - "Epoch : 118 [24/36(67%)]\tLoss: 2.088578\n", - "Epoch : 118 [28/36(78%)]\tLoss: 1.321098\n", - "Epoch : 118 [32/36(89%)]\tLoss: 0.358190\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.249299\n", - "Epoch : 119 [4/36(11%)]\tLoss: 2.127769\n", - "Epoch : 119 [8/36(22%)]\tLoss: 3.364528\n", - "Epoch : 119 [12/36(33%)]\tLoss: 2.444489\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.460074\n", - "Epoch : 119 [20/36(56%)]\tLoss: 1.865427\n", - "Epoch : 119 [24/36(67%)]\tLoss: 2.367867\n", - "Epoch : 119 [28/36(78%)]\tLoss: 3.739734\n", - "Epoch : 119 [32/36(89%)]\tLoss: 1.450463\n", - "--- 0.10907597541809082 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 505.868927\n", + "Epoch : 0 [4/36(11%)]\tLoss: 452.809204\n", + "Epoch : 0 [8/36(22%)]\tLoss: 345.182434\n", + "Epoch : 0 [12/36(33%)]\tLoss: 244.612686\n", + "Epoch : 0 [16/36(44%)]\tLoss: 194.716461\n", + "Epoch : 0 [20/36(56%)]\tLoss: 144.448227\n", + "Epoch : 0 [24/36(67%)]\tLoss: 92.115929\n", + "Epoch : 0 [28/36(78%)]\tLoss: 186.740005\n", + "Epoch : 0 [32/36(89%)]\tLoss: 28.873085\n", + "Epoch : 1 [0/36(0%)]\tLoss: 7.791169\n", + "Epoch : 1 [4/36(11%)]\tLoss: 1.433643\n", + "Epoch : 1 [8/36(22%)]\tLoss: 0.459206\n", + "Epoch : 1 [12/36(33%)]\tLoss: 4.517264\n", + "Epoch : 1 [16/36(44%)]\tLoss: 8.117401\n", + "Epoch : 1 [20/36(56%)]\tLoss: 12.550220\n", + "Epoch : 1 [24/36(67%)]\tLoss: 19.369085\n", + "Epoch : 1 [28/36(78%)]\tLoss: 144.784576\n", + "Epoch : 1 [32/36(89%)]\tLoss: 26.871742\n", + "Epoch : 2 [0/36(0%)]\tLoss: 30.213608\n", + "Epoch : 2 [4/36(11%)]\tLoss: 28.394127\n", + "Epoch : 2 [8/36(22%)]\tLoss: 18.885115\n", + "Epoch : 2 [12/36(33%)]\tLoss: 16.847855\n", + "Epoch : 2 [16/36(44%)]\tLoss: 8.829281\n", + "Epoch : 2 [20/36(56%)]\tLoss: 5.078614\n", + "Epoch : 2 [24/36(67%)]\tLoss: 3.114647\n", + "Epoch : 2 [28/36(78%)]\tLoss: 2.412072\n", + "Epoch : 2 [32/36(89%)]\tLoss: 1.749253\n", + "Epoch : 3 [0/36(0%)]\tLoss: 0.249646\n", + "Epoch : 3 [4/36(11%)]\tLoss: 0.985059\n", + "Epoch : 3 [8/36(22%)]\tLoss: 2.914584\n", + "Epoch : 3 [12/36(33%)]\tLoss: 3.061846\n", + "Epoch : 3 [16/36(44%)]\tLoss: 6.956815\n", + "Epoch : 3 [20/36(56%)]\tLoss: 9.961458\n", + "Epoch : 3 [24/36(67%)]\tLoss: 8.052092\n", + "Epoch : 3 [28/36(78%)]\tLoss: 5.547617\n", + "Epoch : 3 [32/36(89%)]\tLoss: 5.837566\n", + "Epoch : 4 [0/36(0%)]\tLoss: 1.796307\n", + "Epoch : 4 [4/36(11%)]\tLoss: 1.487273\n", + "Epoch : 4 [8/36(22%)]\tLoss: 1.592918\n", + "Epoch : 4 [12/36(33%)]\tLoss: 0.505678\n", + "Epoch : 4 [16/36(44%)]\tLoss: 1.177660\n", + "Epoch : 4 [20/36(56%)]\tLoss: 1.934569\n", + "Epoch : 4 [24/36(67%)]\tLoss: 1.162263\n", + "Epoch : 4 [28/36(78%)]\tLoss: 1.891203\n", + "Epoch : 4 [32/36(89%)]\tLoss: 2.384902\n", + "Epoch : 5 [0/36(0%)]\tLoss: 2.416747\n", + "Epoch : 5 [4/36(11%)]\tLoss: 3.250417\n", + "Epoch : 5 [8/36(22%)]\tLoss: 1.535215\n", + "Epoch : 5 [12/36(33%)]\tLoss: 2.102344\n", + "Epoch : 5 [16/36(44%)]\tLoss: 1.213885\n", + "Epoch : 5 [20/36(56%)]\tLoss: 1.698686\n", + "Epoch : 5 [24/36(67%)]\tLoss: 1.289840\n", + "Epoch : 5 [28/36(78%)]\tLoss: 1.650280\n", + "Epoch : 5 [32/36(89%)]\tLoss: 1.773039\n", + "Epoch : 6 [0/36(0%)]\tLoss: 0.523278\n", + "Epoch : 6 [4/36(11%)]\tLoss: 0.844665\n", + "Epoch : 6 [8/36(22%)]\tLoss: 0.505700\n", + "Epoch : 6 [12/36(33%)]\tLoss: 0.361074\n", + "Epoch : 6 [16/36(44%)]\tLoss: 1.487744\n", + "Epoch : 6 [20/36(56%)]\tLoss: 3.001874\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.919618\n", + "Epoch : 6 [28/36(78%)]\tLoss: 1.523617\n", + "Epoch : 6 [32/36(89%)]\tLoss: 2.033085\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.230014\n", + "Epoch : 7 [4/36(11%)]\tLoss: 0.715810\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.483225\n", + "Epoch : 7 [12/36(33%)]\tLoss: 0.356363\n", + "Epoch : 7 [16/36(44%)]\tLoss: 0.918716\n", + "Epoch : 7 [20/36(56%)]\tLoss: 1.929919\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.174172\n", + "Epoch : 7 [28/36(78%)]\tLoss: 1.430676\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.769604\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.697093\n", + "Epoch : 8 [4/36(11%)]\tLoss: 1.082502\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.394569\n", + "Epoch : 8 [12/36(33%)]\tLoss: 0.468086\n", + "Epoch : 8 [16/36(44%)]\tLoss: 0.700455\n", + "Epoch : 8 [20/36(56%)]\tLoss: 1.946148\n", + "Epoch : 8 [24/36(67%)]\tLoss: 1.086986\n", + "Epoch : 8 [28/36(78%)]\tLoss: 1.324211\n", + "Epoch : 8 [32/36(89%)]\tLoss: 1.727469\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.425495\n", + "Epoch : 9 [4/36(11%)]\tLoss: 0.902846\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.346853\n", + "Epoch : 9 [12/36(33%)]\tLoss: 0.572478\n", + "Epoch : 9 [16/36(44%)]\tLoss: 0.836403\n", + "Epoch : 9 [20/36(56%)]\tLoss: 1.921503\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.088817\n", + "Epoch : 9 [28/36(78%)]\tLoss: 1.317592\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.723617\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.496810\n", + "Epoch : 10 [4/36(11%)]\tLoss: 0.982382\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.404747\n", + "Epoch : 10 [12/36(33%)]\tLoss: 0.400887\n", + "Epoch : 10 [16/36(44%)]\tLoss: 0.923654\n", + "Epoch : 10 [20/36(56%)]\tLoss: 2.071748\n", + "Epoch : 10 [24/36(67%)]\tLoss: 1.272049\n", + "Epoch : 10 [28/36(78%)]\tLoss: 1.324446\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.728342\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.289029\n", + "Epoch : 11 [4/36(11%)]\tLoss: 0.946272\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.405571\n", + "Epoch : 11 [12/36(33%)]\tLoss: 0.404457\n", + "Epoch : 11 [16/36(44%)]\tLoss: 0.908659\n", + "Epoch : 11 [20/36(56%)]\tLoss: 2.022605\n", + "Epoch : 11 [24/36(67%)]\tLoss: 1.239774\n", + "Epoch : 11 [28/36(78%)]\tLoss: 1.336871\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.723972\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.501567\n", + "Epoch : 12 [4/36(11%)]\tLoss: 0.994994\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.403743\n", + "Epoch : 12 [12/36(33%)]\tLoss: 0.408175\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.915480\n", + "Epoch : 12 [20/36(56%)]\tLoss: 2.054635\n", + "Epoch : 12 [24/36(67%)]\tLoss: 1.247475\n", + "Epoch : 12 [28/36(78%)]\tLoss: 1.327676\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.726546\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.460873\n", + "Epoch : 13 [4/36(11%)]\tLoss: 0.954353\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.406351\n", + "Epoch : 13 [12/36(33%)]\tLoss: 0.398019\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.857349\n", + "Epoch : 13 [20/36(56%)]\tLoss: 1.935332\n", + "Epoch : 13 [24/36(67%)]\tLoss: 1.157066\n", + "Epoch : 13 [28/36(78%)]\tLoss: 1.321208\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.693309\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.514711\n", + "Epoch : 14 [4/36(11%)]\tLoss: 1.021664\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.401726\n", + "Epoch : 14 [12/36(33%)]\tLoss: 0.434902\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.871525\n", + "Epoch : 14 [20/36(56%)]\tLoss: 2.085438\n", + "Epoch : 14 [24/36(67%)]\tLoss: 1.166548\n", + "Epoch : 14 [28/36(78%)]\tLoss: 1.319055\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.731804\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.419262\n", + "Epoch : 15 [4/36(11%)]\tLoss: 0.914709\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.401154\n", + "Epoch : 15 [12/36(33%)]\tLoss: 0.452206\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.791090\n", + "Epoch : 15 [20/36(56%)]\tLoss: 1.858875\n", + "Epoch : 15 [24/36(67%)]\tLoss: 1.051510\n", + "Epoch : 15 [28/36(78%)]\tLoss: 1.324856\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.724734\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.444260\n", + "Epoch : 16 [4/36(11%)]\tLoss: 0.947594\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.404545\n", + "Epoch : 16 [12/36(33%)]\tLoss: 0.410441\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.746452\n", + "Epoch : 16 [20/36(56%)]\tLoss: 1.754496\n", + "Epoch : 16 [24/36(67%)]\tLoss: 1.008835\n", + "Epoch : 16 [28/36(78%)]\tLoss: 1.331563\n", + "Epoch : 16 [32/36(89%)]\tLoss: 1.721272\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.442310\n", + "Epoch : 17 [4/36(11%)]\tLoss: 0.909099\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.372034\n", + "Epoch : 17 [12/36(33%)]\tLoss: 0.562995\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.773436\n", + "Epoch : 17 [20/36(56%)]\tLoss: 1.889671\n", + "Epoch : 17 [24/36(67%)]\tLoss: 1.137831\n", + "Epoch : 17 [28/36(78%)]\tLoss: 1.318743\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.508154\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.291329\n", + "Epoch : 18 [4/36(11%)]\tLoss: 0.788357\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.376943\n", + "Epoch : 18 [12/36(33%)]\tLoss: 0.493650\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.798847\n", + "Epoch : 18 [20/36(56%)]\tLoss: 1.850037\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.982550\n", + "Epoch : 18 [28/36(78%)]\tLoss: 1.331565\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.737868\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.351521\n", + "Epoch : 19 [4/36(11%)]\tLoss: 0.829106\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.299537\n", + "Epoch : 19 [12/36(33%)]\tLoss: 0.527907\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.645568\n", + "Epoch : 19 [20/36(56%)]\tLoss: 1.474883\n", + "Epoch : 19 [24/36(67%)]\tLoss: 0.836616\n", + "Epoch : 19 [28/36(78%)]\tLoss: 1.319750\n", + "Epoch : 19 [32/36(89%)]\tLoss: 1.736887\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.411557\n", + "Epoch : 20 [4/36(11%)]\tLoss: 0.903745\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.415566\n", + "Epoch : 20 [12/36(33%)]\tLoss: 0.373183\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.604230\n", + "Epoch : 20 [20/36(56%)]\tLoss: 2.122118\n", + "Epoch : 20 [24/36(67%)]\tLoss: 0.991165\n", + "Epoch : 20 [28/36(78%)]\tLoss: 1.328638\n", + "Epoch : 20 [32/36(89%)]\tLoss: 1.724847\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.499272\n", + "Epoch : 21 [4/36(11%)]\tLoss: 0.994358\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.404339\n", + "Epoch : 21 [12/36(33%)]\tLoss: 0.397249\n", + "Epoch : 21 [16/36(44%)]\tLoss: 1.111414\n", + "Epoch : 21 [20/36(56%)]\tLoss: 1.322230\n", + "Epoch : 21 [24/36(67%)]\tLoss: 0.753772\n", + "Epoch : 21 [28/36(78%)]\tLoss: 1.319483\n", + "Epoch : 21 [32/36(89%)]\tLoss: 1.747594\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.364894\n", + "Epoch : 22 [4/36(11%)]\tLoss: 0.799397\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.377647\n", + "Epoch : 22 [12/36(33%)]\tLoss: 0.505742\n", + "Epoch : 22 [16/36(44%)]\tLoss: 1.191379\n", + "Epoch : 22 [20/36(56%)]\tLoss: 1.385556\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.749409\n", + "Epoch : 22 [28/36(78%)]\tLoss: 1.322767\n", + "Epoch : 22 [32/36(89%)]\tLoss: 1.754161\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.374667\n", + "Epoch : 23 [4/36(11%)]\tLoss: 0.843083\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.403863\n", + "Epoch : 23 [12/36(33%)]\tLoss: 0.372814\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.691475\n", + "Epoch : 23 [20/36(56%)]\tLoss: 1.230959\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.690859\n", + "Epoch : 23 [28/36(78%)]\tLoss: 1.319582\n", + "Epoch : 23 [32/36(89%)]\tLoss: 1.744133\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.376114\n", + "Epoch : 24 [4/36(11%)]\tLoss: 0.820050\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.238674\n", + "Epoch : 24 [12/36(33%)]\tLoss: 0.348286\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.720515\n", + "Epoch : 24 [20/36(56%)]\tLoss: 1.298939\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.689298\n", + "Epoch : 24 [28/36(78%)]\tLoss: 1.332487\n", + "Epoch : 24 [32/36(89%)]\tLoss: 1.672423\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.331695\n", + "Epoch : 25 [4/36(11%)]\tLoss: 0.800276\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.453014\n", + "Epoch : 25 [12/36(33%)]\tLoss: 0.941776\n", + "Epoch : 25 [16/36(44%)]\tLoss: 0.660891\n", + "Epoch : 25 [20/36(56%)]\tLoss: 1.754490\n", + "Epoch : 25 [24/36(67%)]\tLoss: 1.167154\n", + "Epoch : 25 [28/36(78%)]\tLoss: 0.773134\n", + "Epoch : 25 [32/36(89%)]\tLoss: 1.473746\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.294903\n", + "Epoch : 26 [4/36(11%)]\tLoss: 0.925039\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.407648\n", + "Epoch : 26 [12/36(33%)]\tLoss: 0.393006\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.919096\n", + "Epoch : 26 [20/36(56%)]\tLoss: 2.053365\n", + "Epoch : 26 [24/36(67%)]\tLoss: 1.228329\n", + "Epoch : 26 [28/36(78%)]\tLoss: 0.735094\n", + "Epoch : 26 [32/36(89%)]\tLoss: 1.355983\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.551441\n", + "Epoch : 27 [4/36(11%)]\tLoss: 0.726935\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.381791\n", + "Epoch : 27 [12/36(33%)]\tLoss: 0.769962\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.580929\n", + "Epoch : 27 [20/36(56%)]\tLoss: 1.460432\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.705546\n", + "Epoch : 27 [28/36(78%)]\tLoss: 1.406020\n", + "Epoch : 27 [32/36(89%)]\tLoss: 1.862664\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.102308\n", + "Epoch : 28 [4/36(11%)]\tLoss: 0.857084\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.406836\n", + "Epoch : 28 [12/36(33%)]\tLoss: 0.443350\n", + "Epoch : 28 [16/36(44%)]\tLoss: 0.715727\n", + "Epoch : 28 [20/36(56%)]\tLoss: 0.965979\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.611315\n", + "Epoch : 28 [28/36(78%)]\tLoss: 1.344794\n", + "Epoch : 28 [32/36(89%)]\tLoss: 1.726779\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.406132\n", + "Epoch : 29 [4/36(11%)]\tLoss: 0.838300\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.466561\n", + "Epoch : 29 [12/36(33%)]\tLoss: 0.339639\n", + "Epoch : 29 [16/36(44%)]\tLoss: 0.659391\n", + "Epoch : 29 [20/36(56%)]\tLoss: 1.273315\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.486871\n", + "Epoch : 29 [28/36(78%)]\tLoss: 1.342458\n", + "Epoch : 29 [32/36(89%)]\tLoss: 1.792928\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.351461\n", + "Epoch : 30 [4/36(11%)]\tLoss: 0.850593\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.318539\n", + "Epoch : 30 [12/36(33%)]\tLoss: 0.372448\n", + "Epoch : 30 [16/36(44%)]\tLoss: 1.063122\n", + "Epoch : 30 [20/36(56%)]\tLoss: 1.984210\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.457488\n", + "Epoch : 30 [28/36(78%)]\tLoss: 1.319440\n", + "Epoch : 30 [32/36(89%)]\tLoss: 1.747633\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.374386\n", + "Epoch : 31 [4/36(11%)]\tLoss: 0.854999\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.308031\n", + "Epoch : 31 [12/36(33%)]\tLoss: 0.345826\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.294435\n", + "Epoch : 31 [20/36(56%)]\tLoss: 2.092935\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.426296\n", + "Epoch : 31 [28/36(78%)]\tLoss: 1.333133\n", + "Epoch : 31 [32/36(89%)]\tLoss: 1.784763\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.330256\n", + "Epoch : 32 [4/36(11%)]\tLoss: 0.832680\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.433625\n", + "Epoch : 32 [12/36(33%)]\tLoss: 0.362315\n", + "Epoch : 32 [16/36(44%)]\tLoss: 1.032565\n", + "Epoch : 32 [20/36(56%)]\tLoss: 0.699036\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.473904\n", + "Epoch : 32 [28/36(78%)]\tLoss: 1.320336\n", + "Epoch : 32 [32/36(89%)]\tLoss: 1.749421\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.609454\n", + "Epoch : 33 [4/36(11%)]\tLoss: 0.873893\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.416253\n", + "Epoch : 33 [12/36(33%)]\tLoss: 0.384187\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.445767\n", + "Epoch : 33 [20/36(56%)]\tLoss: 2.047354\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.597016\n", + "Epoch : 33 [28/36(78%)]\tLoss: 1.354282\n", + "Epoch : 33 [32/36(89%)]\tLoss: 1.727368\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.490947\n", + "Epoch : 34 [4/36(11%)]\tLoss: 1.028034\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.301150\n", + "Epoch : 34 [12/36(33%)]\tLoss: 0.361445\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.359778\n", + "Epoch : 34 [20/36(56%)]\tLoss: 0.780309\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.527170\n", + "Epoch : 34 [28/36(78%)]\tLoss: 1.387970\n", + "Epoch : 34 [32/36(89%)]\tLoss: 1.895122\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.255002\n", + "Epoch : 35 [4/36(11%)]\tLoss: 0.724450\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.282094\n", + "Epoch : 35 [12/36(33%)]\tLoss: 0.345860\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.551627\n", + "Epoch : 35 [20/36(56%)]\tLoss: 0.907181\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.427955\n", + "Epoch : 35 [28/36(78%)]\tLoss: 1.334642\n", + "Epoch : 35 [32/36(89%)]\tLoss: 1.800251\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.861659\n", + "Epoch : 36 [4/36(11%)]\tLoss: 0.740438\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.579319\n", + "Epoch : 36 [12/36(33%)]\tLoss: 0.355685\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.347218\n", + "Epoch : 36 [20/36(56%)]\tLoss: 0.934110\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.393477\n", + "Epoch : 36 [28/36(78%)]\tLoss: 1.323416\n", + "Epoch : 36 [32/36(89%)]\tLoss: 1.745268\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.274721\n", + "Epoch : 37 [4/36(11%)]\tLoss: 0.960473\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.373123\n", + "Epoch : 37 [12/36(33%)]\tLoss: 0.947425\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.161654\n", + "Epoch : 37 [20/36(56%)]\tLoss: 0.619886\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.380159\n", + "Epoch : 37 [28/36(78%)]\tLoss: 1.377837\n", + "Epoch : 37 [32/36(89%)]\tLoss: 1.933404\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.233311\n", + "Epoch : 38 [4/36(11%)]\tLoss: 0.600754\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.343902\n", + "Epoch : 38 [12/36(33%)]\tLoss: 0.736654\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.751583\n", + "Epoch : 38 [20/36(56%)]\tLoss: 0.684011\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.351800\n", + "Epoch : 38 [28/36(78%)]\tLoss: 1.391128\n", + "Epoch : 38 [32/36(89%)]\tLoss: 1.869545\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.280096\n", + "Epoch : 39 [4/36(11%)]\tLoss: 0.789606\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.314445\n", + "Epoch : 39 [12/36(33%)]\tLoss: 0.878178\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.588050\n", + "Epoch : 39 [20/36(56%)]\tLoss: 0.609332\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.347360\n", + "Epoch : 39 [28/36(78%)]\tLoss: 1.456646\n", + "Epoch : 39 [32/36(89%)]\tLoss: 2.049901\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.132291\n", + "Epoch : 40 [4/36(11%)]\tLoss: 0.693695\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.294127\n", + "Epoch : 40 [12/36(33%)]\tLoss: 0.794719\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.170253\n", + "Epoch : 40 [20/36(56%)]\tLoss: 0.822204\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.477801\n", + "Epoch : 40 [28/36(78%)]\tLoss: 1.321665\n", + "Epoch : 40 [32/36(89%)]\tLoss: 1.759653\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.339392\n", + "Epoch : 41 [4/36(11%)]\tLoss: 0.808571\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.285708\n", + "Epoch : 41 [12/36(33%)]\tLoss: 0.348385\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.335499\n", + "Epoch : 41 [20/36(56%)]\tLoss: 0.546088\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.370891\n", + "Epoch : 41 [28/36(78%)]\tLoss: 1.363673\n", + "Epoch : 41 [32/36(89%)]\tLoss: 1.854724\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.273581\n", + "Epoch : 42 [4/36(11%)]\tLoss: 0.719452\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.476761\n", + "Epoch : 42 [12/36(33%)]\tLoss: 0.343598\n", + "Epoch : 42 [16/36(44%)]\tLoss: 1.035865\n", + "Epoch : 42 [20/36(56%)]\tLoss: 0.429626\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.525539\n", + "Epoch : 42 [28/36(78%)]\tLoss: 1.320490\n", + "Epoch : 42 [32/36(89%)]\tLoss: 1.750692\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.345155\n", + "Epoch : 43 [4/36(11%)]\tLoss: 0.803219\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.479028\n", + "Epoch : 43 [12/36(33%)]\tLoss: 0.339847\n", + "Epoch : 43 [16/36(44%)]\tLoss: 1.121274\n", + "Epoch : 43 [20/36(56%)]\tLoss: 0.487049\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.388805\n", + "Epoch : 43 [28/36(78%)]\tLoss: 1.319610\n", + "Epoch : 43 [32/36(89%)]\tLoss: 1.747554\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.395405\n", + "Epoch : 44 [4/36(11%)]\tLoss: 0.885347\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.426154\n", + "Epoch : 44 [12/36(33%)]\tLoss: 0.357707\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.104895\n", + "Epoch : 44 [20/36(56%)]\tLoss: 0.379792\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.348632\n", + "Epoch : 44 [28/36(78%)]\tLoss: 1.348185\n", + "Epoch : 44 [32/36(89%)]\tLoss: 1.836718\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.280525\n", + "Epoch : 45 [4/36(11%)]\tLoss: 0.753140\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.431213\n", + "Epoch : 45 [12/36(33%)]\tLoss: 0.380724\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.114018\n", + "Epoch : 45 [20/36(56%)]\tLoss: 0.395712\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.336151\n", + "Epoch : 45 [28/36(78%)]\tLoss: 1.300567\n", + "Epoch : 45 [32/36(89%)]\tLoss: 1.749476\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.272692\n", + "Epoch : 46 [4/36(11%)]\tLoss: 0.675420\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.440002\n", + "Epoch : 46 [12/36(33%)]\tLoss: 0.362591\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.102963\n", + "Epoch : 46 [20/36(56%)]\tLoss: 0.277533\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.471455\n", + "Epoch : 46 [28/36(78%)]\tLoss: 1.344404\n", + "Epoch : 46 [32/36(89%)]\tLoss: 1.842715\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.265941\n", + "Epoch : 47 [4/36(11%)]\tLoss: 0.749575\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.496735\n", + "Epoch : 47 [12/36(33%)]\tLoss: 0.341810\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.101833\n", + "Epoch : 47 [20/36(56%)]\tLoss: 0.733381\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.515509\n", + "Epoch : 47 [28/36(78%)]\tLoss: 1.323838\n", + "Epoch : 47 [32/36(89%)]\tLoss: 1.793728\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.293635\n", + "Epoch : 48 [4/36(11%)]\tLoss: 0.763050\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.501461\n", + "Epoch : 48 [12/36(33%)]\tLoss: 0.339749\n", + "Epoch : 48 [16/36(44%)]\tLoss: 1.089632\n", + "Epoch : 48 [20/36(56%)]\tLoss: 0.411788\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.544856\n", + "Epoch : 48 [28/36(78%)]\tLoss: 1.321003\n", + "Epoch : 48 [32/36(89%)]\tLoss: 1.774300\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.312707\n", + "Epoch : 49 [4/36(11%)]\tLoss: 0.777943\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.494007\n", + "Epoch : 49 [12/36(33%)]\tLoss: 0.339702\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.124814\n", + "Epoch : 49 [20/36(56%)]\tLoss: 0.362475\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.582134\n", + "Epoch : 49 [28/36(78%)]\tLoss: 1.342342\n", + "Epoch : 49 [32/36(89%)]\tLoss: 1.824891\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.285838\n", + "Epoch : 50 [4/36(11%)]\tLoss: 0.776064\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.472203\n", + "Epoch : 50 [12/36(33%)]\tLoss: 0.346010\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.096625\n", + "Epoch : 50 [20/36(56%)]\tLoss: 0.340138\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.471772\n", + "Epoch : 50 [28/36(78%)]\tLoss: 1.338768\n", + "Epoch : 50 [32/36(89%)]\tLoss: 1.850932\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.250305\n", + "Epoch : 51 [4/36(11%)]\tLoss: 0.727430\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.534012\n", + "Epoch : 51 [12/36(33%)]\tLoss: 0.339628\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.260193\n", + "Epoch : 51 [20/36(56%)]\tLoss: 0.329007\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.505994\n", + "Epoch : 51 [28/36(78%)]\tLoss: 1.322017\n", + "Epoch : 51 [32/36(89%)]\tLoss: 1.783618\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.303167\n", + "Epoch : 52 [4/36(11%)]\tLoss: 0.768677\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.500960\n", + "Epoch : 52 [12/36(33%)]\tLoss: 0.339651\n", + "Epoch : 52 [16/36(44%)]\tLoss: 1.045214\n", + "Epoch : 52 [20/36(56%)]\tLoss: 0.501765\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.464626\n", + "Epoch : 52 [28/36(78%)]\tLoss: 1.321990\n", + "Epoch : 52 [32/36(89%)]\tLoss: 1.734326\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.416521\n", + "Epoch : 53 [4/36(11%)]\tLoss: 0.878101\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.442674\n", + "Epoch : 53 [12/36(33%)]\tLoss: 0.343617\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.102305\n", + "Epoch : 53 [20/36(56%)]\tLoss: 0.335679\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.394986\n", + "Epoch : 53 [28/36(78%)]\tLoss: 1.411011\n", + "Epoch : 53 [32/36(89%)]\tLoss: 1.968452\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.234290\n", + "Epoch : 54 [4/36(11%)]\tLoss: 0.715282\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.091444\n", + "Epoch : 54 [12/36(33%)]\tLoss: 0.339681\n", + "Epoch : 54 [16/36(44%)]\tLoss: 1.149960\n", + "Epoch : 54 [20/36(56%)]\tLoss: 0.441373\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.360616\n", + "Epoch : 54 [28/36(78%)]\tLoss: 1.476308\n", + "Epoch : 54 [32/36(89%)]\tLoss: 2.077668\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.228152\n", + "Epoch : 55 [4/36(11%)]\tLoss: 0.611676\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.521463\n", + "Epoch : 55 [12/36(33%)]\tLoss: 0.259324\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.212808\n", + "Epoch : 55 [20/36(56%)]\tLoss: 0.430828\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.321434\n", + "Epoch : 55 [28/36(78%)]\tLoss: 1.448545\n", + "Epoch : 55 [32/36(89%)]\tLoss: 1.936255\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.263300\n", + "Epoch : 56 [4/36(11%)]\tLoss: 0.752485\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.261454\n", + "Epoch : 56 [12/36(33%)]\tLoss: 0.230997\n", + "Epoch : 56 [16/36(44%)]\tLoss: 1.206819\n", + "Epoch : 56 [20/36(56%)]\tLoss: 0.326768\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.358422\n", + "Epoch : 56 [28/36(78%)]\tLoss: 1.494289\n", + "Epoch : 56 [32/36(89%)]\tLoss: 2.136947\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.233501\n", + "Epoch : 57 [4/36(11%)]\tLoss: 0.562453\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.061266\n", + "Epoch : 57 [12/36(33%)]\tLoss: 0.570469\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.479584\n", + "Epoch : 57 [20/36(56%)]\tLoss: 0.557943\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.734816\n", + "Epoch : 57 [28/36(78%)]\tLoss: 1.656065\n", + "Epoch : 57 [32/36(89%)]\tLoss: 2.192225\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.227400\n", + "Epoch : 58 [4/36(11%)]\tLoss: 0.733153\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.439279\n", + "Epoch : 58 [12/36(33%)]\tLoss: 0.417969\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.766179\n", + "Epoch : 58 [20/36(56%)]\tLoss: 0.445223\n", + "Epoch : 58 [24/36(67%)]\tLoss: 1.078274\n", + "Epoch : 58 [28/36(78%)]\tLoss: 1.392294\n", + "Epoch : 58 [32/36(89%)]\tLoss: 1.726504\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.331944\n", + "Epoch : 59 [4/36(11%)]\tLoss: 0.726690\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.666322\n", + "Epoch : 59 [12/36(33%)]\tLoss: 0.405058\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.247288\n", + "Epoch : 59 [20/36(56%)]\tLoss: 0.801042\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.379412\n", + "Epoch : 59 [28/36(78%)]\tLoss: 1.333986\n", + "Epoch : 59 [32/36(89%)]\tLoss: 1.759605\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.419672\n", + "Epoch : 60 [4/36(11%)]\tLoss: 0.949145\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.408957\n", + "Epoch : 60 [12/36(33%)]\tLoss: 0.381782\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.095300\n", + "Epoch : 60 [20/36(56%)]\tLoss: 0.542523\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.230977\n", + "Epoch : 60 [28/36(78%)]\tLoss: 1.338652\n", + "Epoch : 60 [32/36(89%)]\tLoss: 1.822799\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.286688\n", + "Epoch : 61 [4/36(11%)]\tLoss: 0.772019\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.481909\n", + "Epoch : 61 [12/36(33%)]\tLoss: 0.343274\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.093202\n", + "Epoch : 61 [20/36(56%)]\tLoss: 0.510063\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.432082\n", + "Epoch : 61 [28/36(78%)]\tLoss: 1.323312\n", + "Epoch : 61 [32/36(89%)]\tLoss: 1.788890\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.300590\n", + "Epoch : 62 [4/36(11%)]\tLoss: 0.761825\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.499046\n", + "Epoch : 62 [12/36(33%)]\tLoss: 0.339719\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.158962\n", + "Epoch : 62 [20/36(56%)]\tLoss: 0.525118\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.240851\n", + "Epoch : 62 [28/36(78%)]\tLoss: 1.320245\n", + "Epoch : 62 [32/36(89%)]\tLoss: 1.747907\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.399078\n", + "Epoch : 63 [4/36(11%)]\tLoss: 0.813433\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.457930\n", + "Epoch : 63 [12/36(33%)]\tLoss: 0.340610\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.022204\n", + "Epoch : 63 [20/36(56%)]\tLoss: 0.596082\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.186337\n", + "Epoch : 63 [28/36(78%)]\tLoss: 1.371887\n", + "Epoch : 63 [32/36(89%)]\tLoss: 1.846977\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.297797\n", + "Epoch : 64 [4/36(11%)]\tLoss: 0.776962\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.453006\n", + "Epoch : 64 [12/36(33%)]\tLoss: 0.349292\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.053277\n", + "Epoch : 64 [20/36(56%)]\tLoss: 0.478318\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.192861\n", + "Epoch : 64 [28/36(78%)]\tLoss: 1.350552\n", + "Epoch : 64 [32/36(89%)]\tLoss: 1.844639\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.277386\n", + "Epoch : 65 [4/36(11%)]\tLoss: 0.706085\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.500749\n", + "Epoch : 65 [12/36(33%)]\tLoss: 0.339769\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.030301\n", + "Epoch : 65 [20/36(56%)]\tLoss: 0.514067\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.190480\n", + "Epoch : 65 [28/36(78%)]\tLoss: 1.342904\n", + "Epoch : 65 [32/36(89%)]\tLoss: 1.814551\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.290288\n", + "Epoch : 66 [4/36(11%)]\tLoss: 0.763758\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.476402\n", + "Epoch : 66 [12/36(33%)]\tLoss: 0.340716\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.340393\n", + "Epoch : 66 [20/36(56%)]\tLoss: 0.490211\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.173064\n", + "Epoch : 66 [28/36(78%)]\tLoss: 1.363891\n", + "Epoch : 66 [32/36(89%)]\tLoss: 1.852997\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.284121\n", + "Epoch : 67 [4/36(11%)]\tLoss: 0.735974\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.477211\n", + "Epoch : 67 [12/36(33%)]\tLoss: 0.342463\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.083201\n", + "Epoch : 67 [20/36(56%)]\tLoss: 0.427549\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.215755\n", + "Epoch : 67 [28/36(78%)]\tLoss: 1.330377\n", + "Epoch : 67 [32/36(89%)]\tLoss: 1.801526\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.307043\n", + "Epoch : 68 [4/36(11%)]\tLoss: 0.733463\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.498010\n", + "Epoch : 68 [12/36(33%)]\tLoss: 0.339699\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.018530\n", + "Epoch : 68 [20/36(56%)]\tLoss: 0.486948\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.169463\n", + "Epoch : 68 [28/36(78%)]\tLoss: 1.362717\n", + "Epoch : 68 [32/36(89%)]\tLoss: 1.842225\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.295624\n", + "Epoch : 69 [4/36(11%)]\tLoss: 0.791121\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.449493\n", + "Epoch : 69 [12/36(33%)]\tLoss: 0.356063\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.056747\n", + "Epoch : 69 [20/36(56%)]\tLoss: 0.389450\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.217806\n", + "Epoch : 69 [28/36(78%)]\tLoss: 1.341950\n", + "Epoch : 69 [32/36(89%)]\tLoss: 1.846552\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.155576\n", + "Epoch : 70 [4/36(11%)]\tLoss: 0.687550\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.515612\n", + "Epoch : 70 [12/36(33%)]\tLoss: 0.339632\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.041704\n", + "Epoch : 70 [20/36(56%)]\tLoss: 0.436559\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.184901\n", + "Epoch : 70 [28/36(78%)]\tLoss: 1.352539\n", + "Epoch : 70 [32/36(89%)]\tLoss: 1.835621\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.291150\n", + "Epoch : 71 [4/36(11%)]\tLoss: 0.746810\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.487235\n", + "Epoch : 71 [12/36(33%)]\tLoss: 0.340164\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.040555\n", + "Epoch : 71 [20/36(56%)]\tLoss: 0.440026\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.175046\n", + "Epoch : 71 [28/36(78%)]\tLoss: 1.366766\n", + "Epoch : 71 [32/36(89%)]\tLoss: 1.857727\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.278999\n", + "Epoch : 72 [4/36(11%)]\tLoss: 0.735098\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.486831\n", + "Epoch : 72 [12/36(33%)]\tLoss: 0.340959\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.050514\n", + "Epoch : 72 [20/36(56%)]\tLoss: 0.421593\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.181140\n", + "Epoch : 72 [28/36(78%)]\tLoss: 1.361365\n", + "Epoch : 72 [32/36(89%)]\tLoss: 1.860167\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.096435\n", + "Epoch : 73 [4/36(11%)]\tLoss: 0.761748\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.459607\n", + "Epoch : 73 [12/36(33%)]\tLoss: 0.349717\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.088762\n", + "Epoch : 73 [20/36(56%)]\tLoss: 0.394844\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.187770\n", + "Epoch : 73 [28/36(78%)]\tLoss: 1.444084\n", + "Epoch : 73 [32/36(89%)]\tLoss: 1.884095\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.260504\n", + "Epoch : 74 [4/36(11%)]\tLoss: 0.682250\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.514732\n", + "Epoch : 74 [12/36(33%)]\tLoss: 0.339715\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.051906\n", + "Epoch : 74 [20/36(56%)]\tLoss: 0.411870\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.191557\n", + "Epoch : 74 [28/36(78%)]\tLoss: 1.353456\n", + "Epoch : 74 [32/36(89%)]\tLoss: 1.840459\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.286271\n", + "Epoch : 75 [4/36(11%)]\tLoss: 0.731543\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.496514\n", + "Epoch : 75 [12/36(33%)]\tLoss: 0.339752\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.043434\n", + "Epoch : 75 [20/36(56%)]\tLoss: 0.434196\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.172854\n", + "Epoch : 75 [28/36(78%)]\tLoss: 1.367064\n", + "Epoch : 75 [32/36(89%)]\tLoss: 1.861606\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.280985\n", + "Epoch : 76 [4/36(11%)]\tLoss: 0.737206\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.484154\n", + "Epoch : 76 [12/36(33%)]\tLoss: 0.341322\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.054471\n", + "Epoch : 76 [20/36(56%)]\tLoss: 0.415148\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.179682\n", + "Epoch : 76 [28/36(78%)]\tLoss: 1.365909\n", + "Epoch : 76 [32/36(89%)]\tLoss: 1.868003\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.273324\n", + "Epoch : 77 [4/36(11%)]\tLoss: 0.712269\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.495818\n", + "Epoch : 77 [12/36(33%)]\tLoss: 0.340381\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.229853\n", + "Epoch : 77 [20/36(56%)]\tLoss: 0.379780\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.237157\n", + "Epoch : 77 [28/36(78%)]\tLoss: 1.327940\n", + "Epoch : 77 [32/36(89%)]\tLoss: 1.795770\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.311732\n", + "Epoch : 78 [4/36(11%)]\tLoss: 0.744039\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.411218\n", + "Epoch : 78 [12/36(33%)]\tLoss: 0.343051\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.491373\n", + "Epoch : 78 [20/36(56%)]\tLoss: 0.542632\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.435091\n", + "Epoch : 78 [28/36(78%)]\tLoss: 1.536235\n", + "Epoch : 78 [32/36(89%)]\tLoss: 2.103830\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.131391\n", + "Epoch : 79 [4/36(11%)]\tLoss: 0.760100\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.279053\n", + "Epoch : 79 [12/36(33%)]\tLoss: 0.408707\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.169290\n", + "Epoch : 79 [20/36(56%)]\tLoss: 0.185491\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.275192\n", + "Epoch : 79 [28/36(78%)]\tLoss: 1.344708\n", + "Epoch : 79 [32/36(89%)]\tLoss: 1.914532\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.232785\n", + "Epoch : 80 [4/36(11%)]\tLoss: 0.696696\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.607709\n", + "Epoch : 80 [12/36(33%)]\tLoss: 0.341712\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.096961\n", + "Epoch : 80 [20/36(56%)]\tLoss: 0.206790\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.257552\n", + "Epoch : 80 [28/36(78%)]\tLoss: 1.325853\n", + "Epoch : 80 [32/36(89%)]\tLoss: 1.808537\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.287414\n", + "Epoch : 81 [4/36(11%)]\tLoss: 0.757018\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.517869\n", + "Epoch : 81 [12/36(33%)]\tLoss: 0.339620\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.095812\n", + "Epoch : 81 [20/36(56%)]\tLoss: 0.169370\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.202106\n", + "Epoch : 81 [28/36(78%)]\tLoss: 1.346745\n", + "Epoch : 81 [32/36(89%)]\tLoss: 1.838780\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.283566\n", + "Epoch : 82 [4/36(11%)]\tLoss: 0.773400\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.482525\n", + "Epoch : 82 [12/36(33%)]\tLoss: 0.344099\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.099332\n", + "Epoch : 82 [20/36(56%)]\tLoss: 0.203964\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.196728\n", + "Epoch : 82 [28/36(78%)]\tLoss: 1.369475\n", + "Epoch : 82 [32/36(89%)]\tLoss: 1.908694\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.247910\n", + "Epoch : 83 [4/36(11%)]\tLoss: 0.733551\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.509942\n", + "Epoch : 83 [12/36(33%)]\tLoss: 0.343572\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.105263\n", + "Epoch : 83 [20/36(56%)]\tLoss: 0.216924\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.233656\n", + "Epoch : 83 [28/36(78%)]\tLoss: 1.346812\n", + "Epoch : 83 [32/36(89%)]\tLoss: 1.878143\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.250888\n", + "Epoch : 84 [4/36(11%)]\tLoss: 0.726206\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.536519\n", + "Epoch : 84 [12/36(33%)]\tLoss: 0.339895\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.099461\n", + "Epoch : 84 [20/36(56%)]\tLoss: 0.207723\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.225708\n", + "Epoch : 84 [28/36(78%)]\tLoss: 1.345168\n", + "Epoch : 84 [32/36(89%)]\tLoss: 1.862167\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.260846\n", + "Epoch : 85 [4/36(11%)]\tLoss: 0.740270\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.518094\n", + "Epoch : 85 [12/36(33%)]\tLoss: 0.340486\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.099620\n", + "Epoch : 85 [20/36(56%)]\tLoss: 0.202651\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.213885\n", + "Epoch : 85 [28/36(78%)]\tLoss: 1.353786\n", + "Epoch : 85 [32/36(89%)]\tLoss: 1.878349\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.256532\n", + "Epoch : 86 [4/36(11%)]\tLoss: 0.739117\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.513680\n", + "Epoch : 86 [12/36(33%)]\tLoss: 0.341592\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.101862\n", + "Epoch : 86 [20/36(56%)]\tLoss: 0.204423\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.217721\n", + "Epoch : 86 [28/36(78%)]\tLoss: 1.351982\n", + "Epoch : 86 [32/36(89%)]\tLoss: 1.868376\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.162241\n", + "Epoch : 87 [4/36(11%)]\tLoss: 0.688119\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.596935\n", + "Epoch : 87 [12/36(33%)]\tLoss: 0.340751\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.117953\n", + "Epoch : 87 [20/36(56%)]\tLoss: 0.237344\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.334768\n", + "Epoch : 87 [28/36(78%)]\tLoss: 1.320325\n", + "Epoch : 87 [32/36(89%)]\tLoss: 1.803904\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.269173\n", + "Epoch : 88 [4/36(11%)]\tLoss: 0.764383\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.581742\n", + "Epoch : 88 [12/36(33%)]\tLoss: 0.344554\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.098826\n", + "Epoch : 88 [20/36(56%)]\tLoss: 0.392660\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.249078\n", + "Epoch : 88 [28/36(78%)]\tLoss: 1.319670\n", + "Epoch : 88 [32/36(89%)]\tLoss: 1.758652\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.365540\n", + "Epoch : 89 [4/36(11%)]\tLoss: 0.829773\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.475792\n", + "Epoch : 89 [12/36(33%)]\tLoss: 0.340042\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.099603\n", + "Epoch : 89 [20/36(56%)]\tLoss: 0.439212\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.207821\n", + "Epoch : 89 [28/36(78%)]\tLoss: 1.341189\n", + "Epoch : 89 [32/36(89%)]\tLoss: 1.803132\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.333087\n", + "Epoch : 90 [4/36(11%)]\tLoss: 0.835782\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.449225\n", + "Epoch : 90 [12/36(33%)]\tLoss: 0.349597\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.102136\n", + "Epoch : 90 [20/36(56%)]\tLoss: 0.381473\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.204768\n", + "Epoch : 90 [28/36(78%)]\tLoss: 1.349687\n", + "Epoch : 90 [32/36(89%)]\tLoss: 1.849835\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.279482\n", + "Epoch : 91 [4/36(11%)]\tLoss: 0.769997\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.485999\n", + "Epoch : 91 [12/36(33%)]\tLoss: 0.344110\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.114276\n", + "Epoch : 91 [20/36(56%)]\tLoss: 0.363005\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.243261\n", + "Epoch : 91 [28/36(78%)]\tLoss: 1.332608\n", + "Epoch : 91 [32/36(89%)]\tLoss: 1.819246\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.289535\n", + "Epoch : 92 [4/36(11%)]\tLoss: 0.762661\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.505216\n", + "Epoch : 92 [12/36(33%)]\tLoss: 0.340107\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.102342\n", + "Epoch : 92 [20/36(56%)]\tLoss: 0.349611\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.233417\n", + "Epoch : 92 [28/36(78%)]\tLoss: 1.331472\n", + "Epoch : 92 [32/36(89%)]\tLoss: 1.808716\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.304003\n", + "Epoch : 93 [4/36(11%)]\tLoss: 0.729718\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.521677\n", + "Epoch : 93 [12/36(33%)]\tLoss: 0.341758\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.105608\n", + "Epoch : 93 [20/36(56%)]\tLoss: 0.169243\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.163110\n", + "Epoch : 93 [28/36(78%)]\tLoss: 1.392903\n", + "Epoch : 93 [32/36(89%)]\tLoss: 1.904835\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.267198\n", + "Epoch : 94 [4/36(11%)]\tLoss: 0.781158\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.457405\n", + "Epoch : 94 [12/36(33%)]\tLoss: 0.358568\n", + "Epoch : 94 [16/36(44%)]\tLoss: 0.124686\n", + "Epoch : 94 [20/36(56%)]\tLoss: 0.227148\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.211126\n", + "Epoch : 94 [28/36(78%)]\tLoss: 1.386397\n", + "Epoch : 94 [32/36(89%)]\tLoss: 1.971749\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.233157\n", + "Epoch : 95 [4/36(11%)]\tLoss: 0.711671\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.535730\n", + "Epoch : 95 [12/36(33%)]\tLoss: 0.343544\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.122530\n", + "Epoch : 95 [20/36(56%)]\tLoss: 0.222827\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.364176\n", + "Epoch : 95 [28/36(78%)]\tLoss: 1.355385\n", + "Epoch : 95 [32/36(89%)]\tLoss: 1.935799\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.232947\n", + "Epoch : 96 [4/36(11%)]\tLoss: 0.664553\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.190651\n", + "Epoch : 96 [12/36(33%)]\tLoss: 0.347325\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.288300\n", + "Epoch : 96 [20/36(56%)]\tLoss: 0.703077\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.565004\n", + "Epoch : 96 [28/36(78%)]\tLoss: 1.268018\n", + "Epoch : 96 [32/36(89%)]\tLoss: 1.796919\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.445510\n", + "Epoch : 97 [4/36(11%)]\tLoss: 1.615897\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.414863\n", + "Epoch : 97 [12/36(33%)]\tLoss: 0.339707\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.335237\n", + "Epoch : 97 [20/36(56%)]\tLoss: 2.588415\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.494587\n", + "Epoch : 97 [28/36(78%)]\tLoss: 1.355083\n", + "Epoch : 97 [32/36(89%)]\tLoss: 1.759944\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.855938\n", + "Epoch : 98 [4/36(11%)]\tLoss: 1.202902\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.414261\n", + "Epoch : 98 [12/36(33%)]\tLoss: 0.339874\n", + "Epoch : 98 [16/36(44%)]\tLoss: 1.397464\n", + "Epoch : 98 [20/36(56%)]\tLoss: 2.685573\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.732715\n", + "Epoch : 98 [28/36(78%)]\tLoss: 1.385529\n", + "Epoch : 98 [32/36(89%)]\tLoss: 1.818341\n", + "Epoch : 99 [0/36(0%)]\tLoss: 1.078576\n", + "Epoch : 99 [4/36(11%)]\tLoss: 1.367623\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.405614\n", + "Epoch : 99 [12/36(33%)]\tLoss: 0.339986\n", + "Epoch : 99 [16/36(44%)]\tLoss: 1.487274\n", + "Epoch : 99 [20/36(56%)]\tLoss: 2.517620\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.521946\n", + "Epoch : 99 [28/36(78%)]\tLoss: 1.326511\n", + "Epoch : 99 [32/36(89%)]\tLoss: 1.740404\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.855810\n", + "Epoch : 100 [4/36(11%)]\tLoss: 1.298409\n", + "Epoch : 100 [8/36(22%)]\tLoss: 0.456272\n", + "Epoch : 100 [12/36(33%)]\tLoss: 0.502141\n", + "Epoch : 100 [16/36(44%)]\tLoss: 0.642042\n", + "Epoch : 100 [20/36(56%)]\tLoss: 1.250310\n", + "Epoch : 100 [24/36(67%)]\tLoss: 1.053737\n", + "Epoch : 100 [28/36(78%)]\tLoss: 1.552728\n", + "Epoch : 100 [32/36(89%)]\tLoss: 1.810406\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.601646\n", + "Epoch : 101 [4/36(11%)]\tLoss: 1.421792\n", + "Epoch : 101 [8/36(22%)]\tLoss: 0.488719\n", + "Epoch : 101 [12/36(33%)]\tLoss: 0.536362\n", + "Epoch : 101 [16/36(44%)]\tLoss: 0.935109\n", + "Epoch : 101 [20/36(56%)]\tLoss: 2.072074\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.462209\n", + "Epoch : 101 [28/36(78%)]\tLoss: 1.329150\n", + "Epoch : 101 [32/36(89%)]\tLoss: 1.778090\n", + "Epoch : 102 [0/36(0%)]\tLoss: 0.369899\n", + "Epoch : 102 [4/36(11%)]\tLoss: 0.861804\n", + "Epoch : 102 [8/36(22%)]\tLoss: 0.451668\n", + "Epoch : 102 [12/36(33%)]\tLoss: 0.344279\n", + "Epoch : 102 [16/36(44%)]\tLoss: 0.944787\n", + "Epoch : 102 [20/36(56%)]\tLoss: 1.943122\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.444941\n", + "Epoch : 102 [28/36(78%)]\tLoss: 1.382966\n", + "Epoch : 102 [32/36(89%)]\tLoss: 1.739462\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.628128\n", + "Epoch : 103 [4/36(11%)]\tLoss: 0.946007\n", + "Epoch : 103 [8/36(22%)]\tLoss: 0.494134\n", + "Epoch : 103 [12/36(33%)]\tLoss: 0.360619\n", + "Epoch : 103 [16/36(44%)]\tLoss: 1.452377\n", + "Epoch : 103 [20/36(56%)]\tLoss: 0.922644\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.430628\n", + "Epoch : 103 [28/36(78%)]\tLoss: 1.353728\n", + "Epoch : 103 [32/36(89%)]\tLoss: 1.764713\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.851432\n", + "Epoch : 104 [4/36(11%)]\tLoss: 1.177245\n", + "Epoch : 104 [8/36(22%)]\tLoss: 0.422009\n", + "Epoch : 104 [12/36(33%)]\tLoss: 0.342051\n", + "Epoch : 104 [16/36(44%)]\tLoss: 1.272308\n", + "Epoch : 104 [20/36(56%)]\tLoss: 0.996185\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.427671\n", + "Epoch : 104 [28/36(78%)]\tLoss: 1.303907\n", + "Epoch : 104 [32/36(89%)]\tLoss: 1.727776\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.818111\n", + "Epoch : 105 [4/36(11%)]\tLoss: 1.159888\n", + "Epoch : 105 [8/36(22%)]\tLoss: 0.288700\n", + "Epoch : 105 [12/36(33%)]\tLoss: 0.339398\n", + "Epoch : 105 [16/36(44%)]\tLoss: 0.280459\n", + "Epoch : 105 [20/36(56%)]\tLoss: 0.604270\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.536030\n", + "Epoch : 105 [28/36(78%)]\tLoss: 1.320953\n", + "Epoch : 105 [32/36(89%)]\tLoss: 1.824346\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.431491\n", + "Epoch : 106 [4/36(11%)]\tLoss: 1.026880\n", + "Epoch : 106 [8/36(22%)]\tLoss: 0.690378\n", + "Epoch : 106 [12/36(33%)]\tLoss: 0.408856\n", + "Epoch : 106 [16/36(44%)]\tLoss: 0.309510\n", + "Epoch : 106 [20/36(56%)]\tLoss: 1.183441\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.327204\n", + "Epoch : 106 [28/36(78%)]\tLoss: 1.504107\n", + "Epoch : 106 [32/36(89%)]\tLoss: 1.908097\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.369913\n", + "Epoch : 107 [4/36(11%)]\tLoss: 1.021298\n", + "Epoch : 107 [8/36(22%)]\tLoss: 0.836862\n", + "Epoch : 107 [12/36(33%)]\tLoss: 0.360729\n", + "Epoch : 107 [16/36(44%)]\tLoss: 0.728261\n", + "Epoch : 107 [20/36(56%)]\tLoss: 0.648691\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.371643\n", + "Epoch : 107 [28/36(78%)]\tLoss: 1.893952\n", + "Epoch : 107 [32/36(89%)]\tLoss: 2.333931\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.245825\n", + "Epoch : 108 [4/36(11%)]\tLoss: 0.851973\n", + "Epoch : 108 [8/36(22%)]\tLoss: 0.466234\n", + "Epoch : 108 [12/36(33%)]\tLoss: 0.496789\n", + "Epoch : 108 [16/36(44%)]\tLoss: 0.135288\n", + "Epoch : 108 [20/36(56%)]\tLoss: 0.491185\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.486259\n", + "Epoch : 108 [28/36(78%)]\tLoss: 1.355052\n", + "Epoch : 108 [32/36(89%)]\tLoss: 1.949944\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.232006\n", + "Epoch : 109 [4/36(11%)]\tLoss: 0.834402\n", + "Epoch : 109 [8/36(22%)]\tLoss: 0.590736\n", + "Epoch : 109 [12/36(33%)]\tLoss: 0.339676\n", + "Epoch : 109 [16/36(44%)]\tLoss: 0.105910\n", + "Epoch : 109 [20/36(56%)]\tLoss: 0.532389\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.542910\n", + "Epoch : 109 [28/36(78%)]\tLoss: 1.321758\n", + "Epoch : 109 [32/36(89%)]\tLoss: 1.828723\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.262562\n", + "Epoch : 110 [4/36(11%)]\tLoss: 0.722256\n", + "Epoch : 110 [8/36(22%)]\tLoss: 0.582159\n", + "Epoch : 110 [12/36(33%)]\tLoss: 0.342450\n", + "Epoch : 110 [16/36(44%)]\tLoss: 0.122106\n", + "Epoch : 110 [20/36(56%)]\tLoss: 0.719857\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.391320\n", + "Epoch : 110 [28/36(78%)]\tLoss: 1.323597\n", + "Epoch : 110 [32/36(89%)]\tLoss: 1.730762\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.445018\n", + "Epoch : 111 [4/36(11%)]\tLoss: 0.865001\n", + "Epoch : 111 [8/36(22%)]\tLoss: 0.474730\n", + "Epoch : 111 [12/36(33%)]\tLoss: 0.345506\n", + "Epoch : 111 [16/36(44%)]\tLoss: 0.156313\n", + "Epoch : 111 [20/36(56%)]\tLoss: 1.238474\n", + "Epoch : 111 [24/36(67%)]\tLoss: 1.242364\n", + "Epoch : 111 [28/36(78%)]\tLoss: 1.621951\n", + "Epoch : 111 [32/36(89%)]\tLoss: 2.295954\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.234959\n", + "Epoch : 112 [4/36(11%)]\tLoss: 0.714026\n", + "Epoch : 112 [8/36(22%)]\tLoss: 0.455711\n", + "Epoch : 112 [12/36(33%)]\tLoss: 0.419262\n", + "Epoch : 112 [16/36(44%)]\tLoss: 107.679787\n", + "Epoch : 112 [20/36(56%)]\tLoss: 1.695190\n", + "Epoch : 112 [24/36(67%)]\tLoss: 1.159147\n", + "Epoch : 112 [28/36(78%)]\tLoss: 1.738487\n", + "Epoch : 112 [32/36(89%)]\tLoss: 1.783019\n", + "Epoch : 113 [0/36(0%)]\tLoss: 1.037259\n", + "Epoch : 113 [4/36(11%)]\tLoss: 42.077614\n", + "Epoch : 113 [8/36(22%)]\tLoss: 9.878567\n", + "Epoch : 113 [12/36(33%)]\tLoss: 0.993058\n", + "Epoch : 113 [16/36(44%)]\tLoss: 3.474497\n", + "Epoch : 113 [20/36(56%)]\tLoss: 52.891251\n", + "Epoch : 113 [24/36(67%)]\tLoss: 7.039252\n", + "Epoch : 113 [28/36(78%)]\tLoss: 10.559747\n", + "Epoch : 113 [32/36(89%)]\tLoss: 7.512505\n", + "Epoch : 114 [0/36(0%)]\tLoss: 3.346862\n", + "Epoch : 114 [4/36(11%)]\tLoss: 1.051875\n", + "Epoch : 114 [8/36(22%)]\tLoss: 3.843843\n", + "Epoch : 114 [12/36(33%)]\tLoss: 3.514356\n", + "Epoch : 114 [16/36(44%)]\tLoss: 11.783563\n", + "Epoch : 114 [20/36(56%)]\tLoss: 10.607683\n", + "Epoch : 114 [24/36(67%)]\tLoss: 45.566887\n", + "Epoch : 114 [28/36(78%)]\tLoss: 5.277311\n", + "Epoch : 114 [32/36(89%)]\tLoss: 6.987385\n", + "Epoch : 115 [0/36(0%)]\tLoss: 11.867386\n", + "Epoch : 115 [4/36(11%)]\tLoss: 7.382057\n", + "Epoch : 115 [8/36(22%)]\tLoss: 1.756971\n", + "Epoch : 115 [12/36(33%)]\tLoss: 4.031797\n", + "Epoch : 115 [16/36(44%)]\tLoss: 1.568375\n", + "Epoch : 115 [20/36(56%)]\tLoss: 11.004314\n", + "Epoch : 115 [24/36(67%)]\tLoss: 1.341885\n", + "Epoch : 115 [28/36(78%)]\tLoss: 3.746224\n", + "Epoch : 115 [32/36(89%)]\tLoss: 3.196247\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.333178\n", + "Epoch : 116 [4/36(11%)]\tLoss: 2.676649\n", + "Epoch : 116 [8/36(22%)]\tLoss: 2.612855\n", + "Epoch : 116 [12/36(33%)]\tLoss: 5.082934\n", + "Epoch : 116 [16/36(44%)]\tLoss: 0.958132\n", + "Epoch : 116 [20/36(56%)]\tLoss: 1.860196\n", + "Epoch : 116 [24/36(67%)]\tLoss: 1.096822\n", + "Epoch : 116 [28/36(78%)]\tLoss: 2.553409\n", + "Epoch : 116 [32/36(89%)]\tLoss: 3.385683\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.121930\n", + "Epoch : 117 [4/36(11%)]\tLoss: 0.688391\n", + "Epoch : 117 [8/36(22%)]\tLoss: 0.265732\n", + "Epoch : 117 [12/36(33%)]\tLoss: 0.292842\n", + "Epoch : 117 [16/36(44%)]\tLoss: 0.677380\n", + "Epoch : 117 [20/36(56%)]\tLoss: 1.300677\n", + "Epoch : 117 [24/36(67%)]\tLoss: 2.066779\n", + "Epoch : 117 [28/36(78%)]\tLoss: 1.045409\n", + "Epoch : 117 [32/36(89%)]\tLoss: 2.254893\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.230135\n", + "Epoch : 118 [4/36(11%)]\tLoss: 1.128905\n", + "Epoch : 118 [8/36(22%)]\tLoss: 1.027342\n", + "Epoch : 118 [12/36(33%)]\tLoss: 0.349222\n", + "Epoch : 118 [16/36(44%)]\tLoss: 0.750840\n", + "Epoch : 118 [20/36(56%)]\tLoss: 0.747957\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.228183\n", + "Epoch : 118 [28/36(78%)]\tLoss: 1.416448\n", + "Epoch : 118 [32/36(89%)]\tLoss: 1.600921\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.320268\n", + "Epoch : 119 [4/36(11%)]\tLoss: 1.503850\n", + "Epoch : 119 [8/36(22%)]\tLoss: 0.073279\n", + "Epoch : 119 [12/36(33%)]\tLoss: 0.653241\n", + "Epoch : 119 [16/36(44%)]\tLoss: 0.449346\n", + "Epoch : 119 [20/36(56%)]\tLoss: 1.431417\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.320783\n", + "Epoch : 119 [28/36(78%)]\tLoss: 1.239929\n", + "Epoch : 119 [32/36(89%)]\tLoss: 2.468767\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.496580\n", + "Epoch : 120 [4/36(11%)]\tLoss: 1.329498\n", + "Epoch : 120 [8/36(22%)]\tLoss: 0.212545\n", + "Epoch : 120 [12/36(33%)]\tLoss: 0.401947\n", + "Epoch : 120 [16/36(44%)]\tLoss: 0.795469\n", + "Epoch : 120 [20/36(56%)]\tLoss: 0.227294\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.146377\n", + "Epoch : 120 [28/36(78%)]\tLoss: 0.797868\n", + "Epoch : 120 [32/36(89%)]\tLoss: 1.508107\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.373707\n", + "Epoch : 121 [4/36(11%)]\tLoss: 0.625583\n", + "Epoch : 121 [8/36(22%)]\tLoss: 0.294734\n", + "Epoch : 121 [12/36(33%)]\tLoss: 0.296944\n", + "Epoch : 121 [16/36(44%)]\tLoss: 0.512068\n", + "Epoch : 121 [20/36(56%)]\tLoss: 0.184261\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.518800\n", + "Epoch : 121 [28/36(78%)]\tLoss: 0.292019\n", + "Epoch : 121 [32/36(89%)]\tLoss: 0.913085\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.105474\n", + "Epoch : 122 [4/36(11%)]\tLoss: 0.362970\n", + "Epoch : 122 [8/36(22%)]\tLoss: 0.385958\n", + "Epoch : 122 [12/36(33%)]\tLoss: 0.842102\n", + "Epoch : 122 [16/36(44%)]\tLoss: 0.433981\n", + "Epoch : 122 [20/36(56%)]\tLoss: 0.255932\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.491283\n", + "Epoch : 122 [28/36(78%)]\tLoss: 0.458304\n", + "Epoch : 122 [32/36(89%)]\tLoss: 1.574129\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.641714\n", + "Epoch : 123 [4/36(11%)]\tLoss: 0.588053\n", + "Epoch : 123 [8/36(22%)]\tLoss: 0.408781\n", + "Epoch : 123 [12/36(33%)]\tLoss: 0.508579\n", + "Epoch : 123 [16/36(44%)]\tLoss: 0.354621\n", + "Epoch : 123 [20/36(56%)]\tLoss: 0.133906\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.281638\n", + "Epoch : 123 [28/36(78%)]\tLoss: 0.784268\n", + "Epoch : 123 [32/36(89%)]\tLoss: 1.092653\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.303241\n", + "Epoch : 124 [4/36(11%)]\tLoss: 0.659352\n", + "Epoch : 124 [8/36(22%)]\tLoss: 0.196398\n", + "Epoch : 124 [12/36(33%)]\tLoss: 0.404929\n", + "Epoch : 124 [16/36(44%)]\tLoss: 0.096755\n", + "Epoch : 124 [20/36(56%)]\tLoss: 0.178530\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.252993\n", + "Epoch : 124 [28/36(78%)]\tLoss: 0.560531\n", + "Epoch : 124 [32/36(89%)]\tLoss: 1.331570\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.450643\n", + "Epoch : 125 [4/36(11%)]\tLoss: 0.471208\n", + "Epoch : 125 [8/36(22%)]\tLoss: 0.241225\n", + "Epoch : 125 [12/36(33%)]\tLoss: 0.348469\n", + "Epoch : 125 [16/36(44%)]\tLoss: 0.667367\n", + "Epoch : 125 [20/36(56%)]\tLoss: 1.141148\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.134643\n", + "Epoch : 125 [28/36(78%)]\tLoss: 0.597573\n", + "Epoch : 125 [32/36(89%)]\tLoss: 1.033038\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.261483\n", + "Epoch : 126 [4/36(11%)]\tLoss: 0.501263\n", + "Epoch : 126 [8/36(22%)]\tLoss: 0.147147\n", + "Epoch : 126 [12/36(33%)]\tLoss: 0.315711\n", + "Epoch : 126 [16/36(44%)]\tLoss: 0.168286\n", + "Epoch : 126 [20/36(56%)]\tLoss: 0.233669\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.235317\n", + "Epoch : 126 [28/36(78%)]\tLoss: 0.458585\n", + "Epoch : 126 [32/36(89%)]\tLoss: 0.917091\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.204877\n", + "Epoch : 127 [4/36(11%)]\tLoss: 0.378307\n", + "Epoch : 127 [8/36(22%)]\tLoss: 0.133581\n", + "Epoch : 127 [12/36(33%)]\tLoss: 0.269956\n", + "Epoch : 127 [16/36(44%)]\tLoss: 0.165193\n", + "Epoch : 127 [20/36(56%)]\tLoss: 0.347857\n", + "Epoch : 127 [24/36(67%)]\tLoss: 0.240298\n", + "Epoch : 127 [28/36(78%)]\tLoss: 0.397952\n", + "Epoch : 127 [32/36(89%)]\tLoss: 1.013468\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.218075\n", + "Epoch : 128 [4/36(11%)]\tLoss: 0.427327\n", + "Epoch : 128 [8/36(22%)]\tLoss: 0.106589\n", + "Epoch : 128 [12/36(33%)]\tLoss: 0.262903\n", + "Epoch : 128 [16/36(44%)]\tLoss: 0.182383\n", + "Epoch : 128 [20/36(56%)]\tLoss: 0.373225\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.129266\n", + "Epoch : 128 [28/36(78%)]\tLoss: 0.372429\n", + "Epoch : 128 [32/36(89%)]\tLoss: 1.197997\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.095596\n", + "Epoch : 129 [4/36(11%)]\tLoss: 0.427785\n", + "Epoch : 129 [8/36(22%)]\tLoss: 0.422760\n", + "Epoch : 129 [12/36(33%)]\tLoss: 0.269683\n", + "Epoch : 129 [16/36(44%)]\tLoss: 0.064525\n", + "Epoch : 129 [20/36(56%)]\tLoss: 0.435171\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.099316\n", + "Epoch : 129 [28/36(78%)]\tLoss: 0.485027\n", + "Epoch : 129 [32/36(89%)]\tLoss: 0.494174\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.398091\n", + "Epoch : 130 [4/36(11%)]\tLoss: 0.261668\n", + "Epoch : 130 [8/36(22%)]\tLoss: 0.366371\n", + "Epoch : 130 [12/36(33%)]\tLoss: 0.349054\n", + "Epoch : 130 [16/36(44%)]\tLoss: 0.102390\n", + "Epoch : 130 [20/36(56%)]\tLoss: 0.064781\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.689252\n", + "Epoch : 130 [28/36(78%)]\tLoss: 0.579529\n", + "Epoch : 130 [32/36(89%)]\tLoss: 0.986484\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.421221\n", + "Epoch : 131 [4/36(11%)]\tLoss: 0.277819\n", + "Epoch : 131 [8/36(22%)]\tLoss: 0.076739\n", + "Epoch : 131 [12/36(33%)]\tLoss: 0.444298\n", + "Epoch : 131 [16/36(44%)]\tLoss: 0.259264\n", + "Epoch : 131 [20/36(56%)]\tLoss: 0.093930\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.312389\n", + "Epoch : 131 [28/36(78%)]\tLoss: 0.802015\n", + "Epoch : 131 [32/36(89%)]\tLoss: 1.190497\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.107920\n", + "Epoch : 132 [4/36(11%)]\tLoss: 0.727148\n", + "Epoch : 132 [8/36(22%)]\tLoss: 0.384293\n", + "Epoch : 132 [12/36(33%)]\tLoss: 0.240719\n", + "Epoch : 132 [16/36(44%)]\tLoss: 0.414718\n", + "Epoch : 132 [20/36(56%)]\tLoss: 0.154325\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.444278\n", + "Epoch : 132 [28/36(78%)]\tLoss: 0.450049\n", + "Epoch : 132 [32/36(89%)]\tLoss: 0.222543\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.331570\n", + "Epoch : 133 [4/36(11%)]\tLoss: 0.219660\n", + "Epoch : 133 [8/36(22%)]\tLoss: 1.179513\n", + "Epoch : 133 [12/36(33%)]\tLoss: 0.507278\n", + "Epoch : 133 [16/36(44%)]\tLoss: 0.332183\n", + "Epoch : 133 [20/36(56%)]\tLoss: 0.615503\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.685250\n", + "Epoch : 133 [28/36(78%)]\tLoss: 0.814147\n", + "Epoch : 133 [32/36(89%)]\tLoss: 0.681970\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.233180\n", + "Epoch : 134 [4/36(11%)]\tLoss: 0.201039\n", + "Epoch : 134 [8/36(22%)]\tLoss: 1.218483\n", + "Epoch : 134 [12/36(33%)]\tLoss: 0.683112\n", + "Epoch : 134 [16/36(44%)]\tLoss: 0.496025\n", + "Epoch : 134 [20/36(56%)]\tLoss: 0.166943\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.246609\n", + "Epoch : 134 [28/36(78%)]\tLoss: 0.649869\n", + "Epoch : 134 [32/36(89%)]\tLoss: 0.882147\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.950412\n", + "Epoch : 135 [4/36(11%)]\tLoss: 0.720058\n", + "Epoch : 135 [8/36(22%)]\tLoss: 0.293573\n", + "Epoch : 135 [12/36(33%)]\tLoss: 0.407930\n", + "Epoch : 135 [16/36(44%)]\tLoss: 0.310307\n", + "Epoch : 135 [20/36(56%)]\tLoss: 0.480428\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.100876\n", + "Epoch : 135 [28/36(78%)]\tLoss: 0.689427\n", + "Epoch : 135 [32/36(89%)]\tLoss: 0.472137\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.400257\n", + "Epoch : 136 [4/36(11%)]\tLoss: 0.872630\n", + "Epoch : 136 [8/36(22%)]\tLoss: 0.431947\n", + "Epoch : 136 [12/36(33%)]\tLoss: 0.868511\n", + "Epoch : 136 [16/36(44%)]\tLoss: 0.106388\n", + "Epoch : 136 [20/36(56%)]\tLoss: 0.196197\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.411208\n", + "Epoch : 136 [28/36(78%)]\tLoss: 2.043366\n", + "Epoch : 136 [32/36(89%)]\tLoss: 1.193917\n", + "Epoch : 137 [0/36(0%)]\tLoss: 0.358517\n", + "Epoch : 137 [4/36(11%)]\tLoss: 0.533059\n", + "Epoch : 137 [8/36(22%)]\tLoss: 0.251978\n", + "Epoch : 137 [12/36(33%)]\tLoss: 1.076772\n", + "Epoch : 137 [16/36(44%)]\tLoss: 1.465810\n", + "Epoch : 137 [20/36(56%)]\tLoss: 0.164098\n", + "Epoch : 137 [24/36(67%)]\tLoss: 0.195267\n", + "Epoch : 137 [28/36(78%)]\tLoss: 0.999646\n", + "Epoch : 137 [32/36(89%)]\tLoss: 1.600786\n", + "Epoch : 138 [0/36(0%)]\tLoss: 1.040351\n", + "Epoch : 138 [4/36(11%)]\tLoss: 0.316218\n", + "Epoch : 138 [8/36(22%)]\tLoss: 0.072007\n", + "Epoch : 138 [12/36(33%)]\tLoss: 0.320886\n", + "Epoch : 138 [16/36(44%)]\tLoss: 0.418012\n", + "Epoch : 138 [20/36(56%)]\tLoss: 0.440652\n", + "Epoch : 138 [24/36(67%)]\tLoss: 0.422802\n", + "Epoch : 138 [28/36(78%)]\tLoss: 0.769675\n", + "Epoch : 138 [32/36(89%)]\tLoss: 0.215521\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.115633\n", + "Epoch : 139 [4/36(11%)]\tLoss: 0.216503\n", + "Epoch : 139 [8/36(22%)]\tLoss: 1.387242\n", + "Epoch : 139 [12/36(33%)]\tLoss: 0.782575\n", + "Epoch : 139 [16/36(44%)]\tLoss: 1.566309\n", + "Epoch : 139 [20/36(56%)]\tLoss: 0.169618\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.321079\n", + "Epoch : 139 [28/36(78%)]\tLoss: 1.892269\n", + "Epoch : 139 [32/36(89%)]\tLoss: 1.578717\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.972915\n", + "Epoch : 140 [4/36(11%)]\tLoss: 0.357358\n", + "Epoch : 140 [8/36(22%)]\tLoss: 0.241630\n", + "Epoch : 140 [12/36(33%)]\tLoss: 1.979794\n", + "Epoch : 140 [16/36(44%)]\tLoss: 1.005613\n", + "Epoch : 140 [20/36(56%)]\tLoss: 2.075208\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.361093\n", + "Epoch : 140 [28/36(78%)]\tLoss: 0.700552\n", + "Epoch : 140 [32/36(89%)]\tLoss: 0.790920\n", + "Epoch : 141 [0/36(0%)]\tLoss: 1.033034\n", + "Epoch : 141 [4/36(11%)]\tLoss: 1.490320\n", + "Epoch : 141 [8/36(22%)]\tLoss: 1.694446\n", + "Epoch : 141 [12/36(33%)]\tLoss: 0.284531\n", + "Epoch : 141 [16/36(44%)]\tLoss: 0.684254\n", + "Epoch : 141 [20/36(56%)]\tLoss: 0.924268\n", + "Epoch : 141 [24/36(67%)]\tLoss: 0.852715\n", + "Epoch : 141 [28/36(78%)]\tLoss: 2.647202\n", + "Epoch : 141 [32/36(89%)]\tLoss: 2.387078\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.515756\n", + "Epoch : 142 [4/36(11%)]\tLoss: 0.645689\n", + "Epoch : 142 [8/36(22%)]\tLoss: 2.698315\n", + "Epoch : 142 [12/36(33%)]\tLoss: 2.020222\n", + "Epoch : 142 [16/36(44%)]\tLoss: 2.305176\n", + "Epoch : 142 [20/36(56%)]\tLoss: 0.251027\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.100128\n", + "Epoch : 142 [28/36(78%)]\tLoss: 1.517791\n", + "Epoch : 142 [32/36(89%)]\tLoss: 2.365940\n", + "Epoch : 143 [0/36(0%)]\tLoss: 0.627280\n", + "Epoch : 143 [4/36(11%)]\tLoss: 0.945482\n", + "Epoch : 143 [8/36(22%)]\tLoss: 0.548452\n", + "Epoch : 143 [12/36(33%)]\tLoss: 0.475816\n", + "Epoch : 143 [16/36(44%)]\tLoss: 0.632295\n", + "Epoch : 143 [20/36(56%)]\tLoss: 0.802314\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.869394\n", + "Epoch : 143 [28/36(78%)]\tLoss: 1.126444\n", + "Epoch : 143 [32/36(89%)]\tLoss: 0.794685\n", + "Epoch : 144 [0/36(0%)]\tLoss: 0.244318\n", + "Epoch : 144 [4/36(11%)]\tLoss: 0.433870\n", + "Epoch : 144 [8/36(22%)]\tLoss: 0.847268\n", + "Epoch : 144 [12/36(33%)]\tLoss: 0.564828\n", + "Epoch : 144 [16/36(44%)]\tLoss: 0.316582\n", + "Epoch : 144 [20/36(56%)]\tLoss: 0.440226\n", + "Epoch : 144 [24/36(67%)]\tLoss: 0.164335\n", + "Epoch : 144 [28/36(78%)]\tLoss: 0.768544\n", + "Epoch : 144 [32/36(89%)]\tLoss: 1.127977\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.730341\n", + "Epoch : 145 [4/36(11%)]\tLoss: 0.662882\n", + "Epoch : 145 [8/36(22%)]\tLoss: 0.428531\n", + "Epoch : 145 [12/36(33%)]\tLoss: 0.767850\n", + "Epoch : 145 [16/36(44%)]\tLoss: 0.671206\n", + "Epoch : 145 [20/36(56%)]\tLoss: 1.436890\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.333507\n", + "Epoch : 145 [28/36(78%)]\tLoss: 1.077127\n", + "Epoch : 145 [32/36(89%)]\tLoss: 0.513798\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.488236\n", + "Epoch : 146 [4/36(11%)]\tLoss: 1.707183\n", + "Epoch : 146 [8/36(22%)]\tLoss: 1.131946\n", + "Epoch : 146 [12/36(33%)]\tLoss: 0.337823\n", + "Epoch : 146 [16/36(44%)]\tLoss: 0.644723\n", + "Epoch : 146 [20/36(56%)]\tLoss: 0.432891\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.394648\n", + "Epoch : 146 [28/36(78%)]\tLoss: 1.821868\n", + "Epoch : 146 [32/36(89%)]\tLoss: 1.246490\n", + "Epoch : 147 [0/36(0%)]\tLoss: 0.463571\n", + "Epoch : 147 [4/36(11%)]\tLoss: 0.483670\n", + "Epoch : 147 [8/36(22%)]\tLoss: 0.736627\n", + "Epoch : 147 [12/36(33%)]\tLoss: 0.479373\n", + "Epoch : 147 [16/36(44%)]\tLoss: 0.696391\n", + "Epoch : 147 [20/36(56%)]\tLoss: 0.193805\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.501059\n", + "Epoch : 147 [28/36(78%)]\tLoss: 0.925222\n", + "Epoch : 147 [32/36(89%)]\tLoss: 1.307393\n", + "Epoch : 148 [0/36(0%)]\tLoss: 0.854597\n", + "Epoch : 148 [4/36(11%)]\tLoss: 0.545664\n", + "Epoch : 148 [8/36(22%)]\tLoss: 0.529505\n", + "Epoch : 148 [12/36(33%)]\tLoss: 0.441990\n", + "Epoch : 148 [16/36(44%)]\tLoss: 0.178986\n", + "Epoch : 148 [20/36(56%)]\tLoss: 0.571213\n", + "Epoch : 148 [24/36(67%)]\tLoss: 1.163178\n", + "Epoch : 148 [28/36(78%)]\tLoss: 0.965102\n", + "Epoch : 148 [32/36(89%)]\tLoss: 0.520753\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.142795\n", + "Epoch : 149 [4/36(11%)]\tLoss: 0.744774\n", + "Epoch : 149 [8/36(22%)]\tLoss: 0.818580\n", + "Epoch : 149 [12/36(33%)]\tLoss: 0.774485\n", + "Epoch : 149 [16/36(44%)]\tLoss: 0.585282\n", + "Epoch : 149 [20/36(56%)]\tLoss: 1.528380\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.171141\n", + "Epoch : 149 [28/36(78%)]\tLoss: 1.406376\n", + "Epoch : 149 [32/36(89%)]\tLoss: 1.642578\n", + "--- 0.24148858785629274 minutes ---\n" ] } ], @@ -1851,7 +2157,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADLy0lEQVR4nOzdd3iTVRsG8DsddNAFBdoCpey9h1j2XsoWXCgIigNRQD8VUUBEUVBRFEERwYUiU0EFAQHZIIhMkVE2LbMtpXTQvt8fpydvkiZpkiZ50/T+XVevpEmanLZpk/t9nnOOTlEUBURERERERETkVj5aD4CIiIiIiIioOGIgJyIiIiIiItIAAzkRERERERGRBhjIiYiIiIiIiDTAQE5ERERERESkAQZyIiIiIiIiIg0wkBMRERERERFpgIGciIiIiIiISAMM5EREREREREQaYCAnIiIiIiqCOnTogA4dOth82/r167t2QHkqV66MYcOGueWxiIo6BnKiYmThwoXQ6XTQ6XTYunVrvusVRUFsbCx0Oh3uvfde/eVpaWmYNGkS6tevj5IlSyIyMhKNGzfG888/j4sXL+pvN3nyZP39m/tITEx0y/dJRERkK/na+Ndff2k9lEK7ePEiJk+ejP3792s9FKepXLkydDodunTpYvb6efPm6d9nmP4Ot27dip49e6JChQoIDAxEpUqV0Lt3byxatMjodtbeuzz11FMu+96IAMBP6wEQkfsFBgZi0aJFaNOmjdHlmzdvxvnz5xEQEKC/LDs7G+3atcO///6LoUOHYvTo0UhLS8Phw4exaNEi9O/fH+XLlze6nzlz5iAkJCTf40ZERLjk+yEiIiqOfv/9d6PPL168iDfeeAOVK1dG48aNtRkUgGPHjsHHx3l1v8DAQGzcuBGJiYmIjo42uu67775DYGAgMjIyjC5fsmQJ7r//fn0BoVSpUkhISMCff/6JefPm4aGHHjK6fdeuXfHoo4/me+yaNWs67fsgMoeBnKgY6tWrF5YsWYJZs2bBz0/9N7Bo0SI0a9YMV69e1V+2cuVK/P333/juu+/yvXhlZGQgKysr3/3fd999KFOmjOu+ASIiomIsPT0dwcHBKFGihNZDMcvwwL4ztG7dGnv27MHixYvx/PPP6y8/f/48tmzZgv79+2PZsmVGXzN58mTUrVsXO3fuzPdzunz5cr7HqFmzJoYMGeLUcRPZgi3rRMXQgw8+iGvXrmHdunX6y7KysrB06dJ8ofvkyZMAxIuhqcDAQISFhbl2sERERB7g77//Rs+ePREWFoaQkBB07twZO3fuzHe7AwcOoH379ggKCkLFihUxdepULFiwADqdDqdPn9bf7qeffsI999yD8uXLIyAgANWqVcObb76JnJwco/uTc7/37t2Ldu3aITg4GK+++qr+OjmHfNOmTWjRogUA4LHHHtO3XC9cuNDo/o4cOYKOHTsiODgYFSpUwPTp042u37RpE3Q6HX788Ue88cYbqFChAkJDQ3HfffchJSUFmZmZGDNmDMqVK4eQkBA89thjyMzMNLoPc3PIk5OTMXbsWFSuXBkBAQGoWLEiHn30UaMigCWBgYEYMGBAvlbz77//HqVKlUL37t3zfc3JkyfRokULswctypUrV+BjErkLK+RExVDlypURHx+P77//Hj179gQA/Pbbb0hJScEDDzyAWbNm6W8bFxcHAPj666/x2muvQafTFXj/169fz3eZn58fW9aJiKhIOnz4MNq2bYuwsDC89NJL8Pf3x2effYYOHTpg8+bNaNmyJQDgwoUL6NixI3Q6HcaPH4+SJUviiy++MFsxXrhwIUJCQjBu3DiEhITgjz/+wMSJE5GamooZM2YY3fbatWvo2bMnHnjgAQwZMgRRUVH57q9OnTqYMmUKJk6ciJEjR6Jt27YAgFatWulvc+PGDfTo0QMDBgzA4MGDsXTpUrz88sto0KCB/v2ANG3aNAQFBeGVV17BiRMn8PHHH8Pf3x8+Pj64ceMGJk+ejJ07d2LhwoWoUqUKJk6caPHnl5aWhrZt2+Lo0aMYPnw4mjZtiqtXr+Lnn3/G+fPnbeqqe+ihh9CtWzecPHkS1apVAyA6++677z74+/vnu31cXBw2bNiA8+fPo2LFigXef0ZGhtmDA2FhYR7biUBeQiGiYmPBggUKAGXPnj3KJ598ooSGhirp6emKoijKoEGDlI4dOyqKoihxcXHKPffcoyiKoqSnpyu1atVSAChxcXHKsGHDlPnz5ytJSUn57n/SpEkKALMftWrVct83SkREZCPD10ZL+vXrp5QoUUI5efKk/rKLFy8qoaGhSrt27fSXjR49WtHpdMrff/+tv+zatWtK6dKlFQBKQkKC/nL5+mvoySefVIKDg5WMjAz9Ze3bt1cAKHPnzs13+/bt2yvt27fXf75nzx4FgLJgwQKztwWgfP311/rLMjMzlejoaGXgwIH6yzZu3KgAUOrXr69kZWXpL3/wwQcVnU6n9OzZ0+h+4+Pjlbi4OKPL4uLilKFDh+o/nzhxogJAWb58eb5x5ebm5rvM9L7uuece5c6dO0p0dLTy5ptvKoqiKEeOHFEAKJs3bzb7O5w/f74CQClRooTSsWNH5fXXX1e2bNmi5OTk5HsMS+9dACjff/+91fERFRZb1omKqcGDB+P27dtYvXo1bt68idWrV+drVweAoKAg7Nq1C//73/8AiCP6I0aMQExMDEaPHp2vTQ0Ali1bhnXr1hl9LFiwwOXfExERkbPl5OTg999/R79+/VC1alX95TExMXjooYewdetWpKamAgDWrFmD+Ph4owXVSpcujYcffjjf/QYFBenP37x5E1evXkXbtm2Rnp6Of//91+i2AQEBeOyxxwr9vYSEhBjNky5RogTuuusunDp1Kt9tH330UaPKc8uWLaEoCoYPH250u5YtW+LcuXO4c+eOxcddtmwZGjVqhP79++e7zpbOOwDw9fXF4MGD8f333wMQi7nFxsbqOwFMDR8+HGvWrEGHDh2wdetWvPnmm2jbti1q1KiB7du357t937598713WbduHTp27GjT+IgcxZZ1omKqbNmy6NKlCxYtWoT09HTk5OTgvvvuM3vb8PBwTJ8+HdOnT8eZM2ewYcMGvPfee/jkk08QHh6OqVOnGt2+Xbt2XNSNiIi8wpUrV5Ceno5atWrlu65OnTrIzc3FuXPnUK9ePZw5cwbx8fH5ble9evV8lx0+fBivvfYa/vjjD32gl1JSUow+r1ChglPapitWrJgvAJcqVQoHDhzId9tKlSoZfR4eHg4AiI2NzXd5bm4uUlJSEBkZafZxT548iYEDBxZm6ABE2/qsWbPwzz//YNGiRXjggQesBvru3buje/fuSE9Px969e7F48WLMnTsX9957L/7991+jueQVK1a0uLUakSuxQk5UjD300EP47bffMHfuXPTs2dOmOd5xcXEYPnw4tm3bhoiICHz33XeuHygREZEXSU5ORvv27fHPP/9gypQpWLVqFdatW4d3330XAJCbm2t0e8NqemH4+vqavVxRFJtva899OFvLli1RrVo1jBkzBgkJCWY7+8wJDg5G27Zt8cknn+C1117DjRs38Ntvv7l4tES2YYWcqBjr378/nnzySezcuROLFy+262tLlSqFatWq4dChQy4aHRERkfbKli2L4OBgHDt2LN91//77L3x8fPRV47i4OJw4cSLf7Uwv27RpE65du4bly5ejXbt2+ssTEhIKNVZb27/dzZnvFx588EFMnToVderUcWiv9ebNmwMALl265JTxEBUWK+RExVhISAjmzJmDyZMno3fv3mZv888//5hddfTMmTM4cuSI2RY+IiIib+Hr64tu3brhp59+Mtq2LCkpCYsWLUKbNm30W4B2794dO3bswP79+/W3u379er5uMlllNqwqZ2Vl4dNPPy3UWEuWLAlAVOA9ycCBA/HPP/9gxYoV+a6zt7L++OOPY9KkSXj//fet3m7Dhg1mL//1118BgO9fyGOwQk5UzA0dOtTq9evWrcOkSZPQp08f3H333QgJCcGpU6fw5ZdfIjMzE5MnT873NUuXLkVISEi+y7t27Wp2qxYiIiKtffnll1izZk2+y59//nlMnToV69atQ5s2bfDMM8/Az88Pn332GTIzM4328X7ppZfw7bffomvXrhg9erR+27NKlSrh+vXr+gp2q1atUKpUKQwdOhTPPfccdDodvvnmm0K3fVerVg0RERGYO3cuQkNDUbJkSbRs2RJVqlQp1P0W1v/+9z8sXboUgwYNwvDhw9GsWTNcv34dP//8M+bOnYtGjRrZfF9xcXFm33uY6tu3L6pUqYLevXujWrVquHXrFtavX49Vq1ahRYsW+QoR//33H7799tt89xMVFYWuXbvaPD4iezGQE5FVAwcOxM2bN/H777/jjz/+wPXr11GqVCncddddeOGFF8yuPvr000+bva+NGzcykBMRkUeaM2eO2cuHDRuGevXqYcuWLRg/fjymTZuG3NxctGzZEt9++61+D3JALHi2ceNGPPfcc3j77bdRtmxZjBo1CiVLlsRzzz2HwMBAAEBkZCRWr16NF154Aa+99hpKlSqFIUOGoHPnzujevbvD34O/vz+++uorjB8/Hk899RTu3LmDBQsWaB7IQ0JCsGXLFkyaNAkrVqzAV199hXLlyqFz58427RHuiC+++AI//fQTfvzxR1y8eBGKoqBq1aqYMGECXn75Zfj5Gccguaq6qfbt2zOQk0vpFHeswEBEREREVEyNGTMGn332GdLS0iwuikZExRPnkBMREREROcnt27eNPr927Rq++eYbtGnThmGciPJhyzoRERERkZPEx8ejQ4cOqFOnDpKSkjB//nykpqbi9ddf13poROSBGMiJiIiIiJykV69eWLp0KT7//HPodDo0bdoU8+fPN9rejIhI4hxyIiIiIiIiIg1wDjkRERERERGRBhjIiYiIiIiIiDTg9XPIc3NzcfHiRYSGhkKn02k9HCIiIiiKgps3b6J8+fLw8eGx8cLiaz0REXkaW1/rvT6QX7x4EbGxsVoPg4iIKJ9z586hYsWKWg+jyONrPREReaqCXuu9PpCHhoYCED+IsLAwjUdDREQEpKamIjY2Vv8aRYXD13oiIvI0tr7We30gl61rYWFhfJEmIiKPwvZq5+BrPREReaqCXus5cY2IiIiIiIhIAwzkRERERERERBpgICciIiIiIiLSgNfPIScispWiKLhz5w5ycnK0HgoVcb6+vvDz8+MccSIiD8PXenIWZ73WM5ATEQHIysrCpUuXkJ6ervVQyEsEBwcjJiYGJUqU0HooREQEvtaT8znjtZ6BnIiKvdzcXCQkJMDX1xfly5dHiRIlWNkkhymKgqysLFy5cgUJCQmoUaMGfHw4Q4yISEt8rSdncuZrPQM5ERV7WVlZyM3NRWxsLIKDg7UeDnmBoKAg+Pv748yZM8jKykJgYKDWQyIiKtb4Wk/O5qzXeh6yJyLKwyomOROfT0REnof/m8mZnPF84jOSiIiIiIiISAMM5EREREREREQaYCAnIiK9ypUr48MPP7T59ps2bYJOp0NycrLLxgQACxcuREREhEsfg4iIqLjg673nYCAnIiqCdDqd1Y/Jkyc7dL979uzByJEjbb59q1atcOnSJYSHhzv0eERERGQZX++9H1dZJyIqgi5duqQ/v3jxYkycOBHHjh3TXxYSEqI/rygKcnJy4OdX8L/8smXL2jWOEiVKIDo62q6vISIiItvw9d77sUJuh3btgAYNgIQErUdCRK6kKMCtW9p8KIptY4yOjtZ/hIeHQ6fT6T//999/ERoait9++w3NmjVDQEAAtm7dipMnT6Jv376IiopCSEgIWrRogfXr1xvdr2kLm06nwxdffIH+/fsjODgYNWrUwM8//6y/3rSFTbaarV27FnXq1EFISAh69Ohh9Ibizp07eO655xAREYHIyEi8/PLLGDp0KPr162fX72nOnDmoVq0aSpQogVq1auGbb74x+B0qmDx5MipVqoSAgACUL18ezz33nP76Tz/9FDVq1EBgYCCioqJw33332fXY5L1efhmoXx9YtEjrkRCRq2n1em/raz3A13vA+1/vGcjtcOQIcOgQkJGh9UiIyJXS04GQEG0+0tOd93288soreOedd3D06FE0bNgQaWlp6NWrFzZs2IC///4bPXr0QO/evXH27Fmr9/PGG29g8ODBOHDgAHr16oWHH34Y169ft/LzS8d7772Hb775Bn/++SfOnj2LF198UX/9u+++i++++w4LFizAtm3bkJqaipUrV9r1va1YsQLPP/88XnjhBRw6dAhPPvkkHnvsMWzcuBEAsGzZMsycOROfffYZjh8/jpUrV6JBgwYAgL/++gvPPfccpkyZgmPHjmHNmjVo166dXY9P3uv8eeDwYSApSeuREJGrafV678zXeoCv90X+9V7xcikpKQoAJSUlpdD3VbasogCKcvCgEwZGRB7j9u3bypEjR5Tbt28riqIoaWnib12Lj7Q0+8e/YMECJTw8XP/5xo0bFQDKypUrC/zaevXqKR9//LH+87i4OGXmzJn6zwEor732mv7ztLQ0BYDy22+/GT3WjRs39GMBoJw4cUL/NbNnz1aioqL0n0dFRSkzZszQf37nzh2lUqVKSt++fW3+Hlu1aqU88cQTRrcZNGiQ0qtXL0VRFOX9999XatasqWRlZeW7r2XLlilhYWFKamqqxcdzBtPnlSFnvjaRc3+ew4aJv8V33nHCwIjIY5j7n6zV670jr/WKwtd7yZNe753xWs8KuR18fcVpbq624yAi1woOBtLStPkIDnbe99G8eXOjz9PS0vDiiy+iTp06iIiIQEhICI4ePVrgEfOGDRvqz5csWRJhYWG4fPmyxdsHBwejWrVq+s9jYmL0t09JSUFSUhLuuusu/fW+vr5o1qyZXd/b0aNH0bp1a6PLWrdujaNHjwIABg0ahNu3b6Nq1ap44oknsGLFCty5cwcA0LVrV8TFxaFq1ap45JFH8N133yHd2eUKKrICAsRpZqa24yAi19Pq9d6Zr/UAX++L+us9A7kdfPJ+Wjk52o6DiFxLpwNKltTmQ6dz3vdRsmRJo89ffPFFrFixAm+//Ta2bNmC/fv3o0GDBsjKyrJ6P/7+/iY/Hx1yrRyZNHd7xZ4Jc04QGxuLY8eO4dNPP0VQUBCeeeYZtGvXDtnZ2QgNDcW+ffvw/fffIyYmBhMnTkSjRo1cvpULFQ0lSojTAv4siMgLaPV678zXeoCv90X99Z6B3A6skBNRUbZt2zYMGzYM/fv3R4MGDRAdHY3Tp0+7dQzh4eGIiorCnj179Jfl5ORg3759dt1PnTp1sG3bNqPLtm3bhrp16+o/DwoKQu/evTFr1ixs2rQJO3bswMGDBwEAfn5+6NKlC6ZPn44DBw7g9OnT+OOPPwrxnZG3YIWciIo6vt4Xrdd7bntmB1bIiagoq1GjBpYvX47evXtDp9Ph9ddft3rk21VGjx6NadOmoXr16qhduzY+/vhj3LhxAzo7Sgb/+9//MHjwYDRp0gRdunTBqlWrsHz5cv0qsgsXLkROTg5atmyJ4OBgfPvttwgKCkJcXBxWr16NU6dOoV27dihVqhR+/fVX5ObmolatWq76lqkIYSAnoqKOr/dF6/WegdwOrJATUVH2wQcfYPjw4WjVqhXKlCmDl19+GampqW4fx8svv4zExEQ8+uij8PX1xciRI9G9e3f4yn+yNujXrx8++ugjvPfee3j++edRpUoVLFiwAB06dAAARERE4J133sG4ceOQk5ODBg0aYNWqVYiMjERERASWL1+OyZMnIyMjAzVq1MD333+PevXqueg7pqKELetEVNTx9b5ovd7rFHc3+rtZamoqwsPDkZKSgrCwsELdV40awIkTwNatgMnaAkRUhGVkZCAhIQFVqlRBYGCg1sMpdnJzc1GnTh0MHjwYb775ptbDcRprzytnvjaRc3+e774LvPIKMGwYsGCBc8ZHRNrja732vPH13hmv9ZrOIa9cuTJ0Ol2+j1GjRgEQ3+CoUaMQGRmJkJAQDBw4EEkabgzKCjkRUeGdOXMG8+bNw3///YeDBw/i6aefRkJCAh566CGth0bECjkRkZPw9d42mgbyPXv24NKlS/qPdevWARDL1wPA2LFjsWrVKixZsgSbN2/GxYsXMWDAAM3GyznkRESF5+Pjg4ULF6JFixZo3bo1Dh48iPXr16NOnTpaD408wDvvvAOdTocxY8Zo8vicQ05E5Bx8vbeNpnPIy5Yta/T5O++8g2rVqqF9+/ZISUnB/PnzsWjRInTq1AkAsGDBAtSpUwc7d+7E3Xff7fbxskJORFR4sbGx+VZMJQLEgfrPPvvMaC9cd2OFnIjIOfh6bxuP2fYsKysL3377LYYPHw6dToe9e/ciOzsbXbp00d+mdu3aqFSpEnbs2GHxfjIzM5Gammr04SyskBMREblGWloaHn74YcybNw+lSpXSbByskBMRkTt5TCBfuXIlkpOTMWzYMABAYmIiSpQogYiICKPbRUVFITEx0eL9TJs2DeHh4fqP2NhYp42RFXIiIiLXGDVqFO655x6jA/GWuPLgOwM5ERG5k8cE8vnz56Nnz54oX758oe5n/PjxSElJ0X+cO3fOSSNkhZyIiMgVfvjhB+zbtw/Tpk2z6fauPPjOlnUiInInjwjkZ86cwfr16/H444/rL4uOjkZWVhaSk5ONbpuUlITo6GiL9xUQEICwsDCjD2dhhZyIiMi5zp07h+effx7fffedzVsRufLgOyvkRETkTh4RyBcsWIBy5crhnnvu0V/WrFkz+Pv7Y8OGDfrLjh07hrNnzyI+Pl6LYbJCTkRE5GR79+7F5cuX0bRpU/j5+cHPzw+bN2/GrFmz4OfnhxwzL7quPPjOCjkREbmTpqusA2KD+AULFmDo0KHw81OHEx4ejhEjRmDcuHEoXbo0wsLCMHr0aMTHx2uywjrACjkREZGzde7cGQcPHjS67LHHHkPt2rXx8ssvw1e++LoJK+REROROmlfI169fj7Nnz2L48OH5rps5cybuvfdeDBw4EO3atUN0dDSWL1+uwSgFVsiJyNt06NDBaL/nypUr48MPP7T6NTqdDitXriz0YzvrfqyZPHkyGjdu7NLHoMIJDQ1F/fr1jT5KliyJyMhI1K9f3+3jYSAnIm/E13vPpXkg79atGxRFQc2aNfNdFxgYiNmzZ+P69eu4desWli9fbnX+uKuxQk5EnqJ3797o0aOH2eu2bNkCnU6HAwcO2H2/e/bswciRIws7PCOWXiQvXbqEnj17OvWxiAqLLetE5En4eu/9NG9ZL0pYISciTzFixAgMHDgQ58+fR8WKFY2uW7BgAZo3b46GDRvafb9ly5Z11hALpOUBVvJsmzZt0uyxWSEnIk/C13vvp3mFvChhhZyomFAU4NYtbT4UxaYh3nvvvShbtiwWLlxodHlaWhqWLFmCESNG4Nq1a3jwwQdRoUIFBAcHo0GDBvj++++t3q9pC9vx48fRrl07BAYGom7duli3bl2+r3n55ZdRs2ZNBAcHo2rVqnj99deRnZ0NAFi4cCHeeOMN/PPPP9DpdNDpdPoxm7awHTx4EJ06dUJQUBAiIyMxcuRIpKWl6a8fNmwY+vXrh/feew8xMTGIjIzEqFGj9I9li9zcXEyZMgUVK1ZEQEAAGjdujDVr1uivz8rKwrPPPouYmBgEBgYiLi5OvxWXoiiYPHkyKlWqhICAAJQvXx7PPfeczY9NRQMr5ETFiFav9za+1gN8vS8Or/eskNuBFXKiYiI9HQgJ0eax09KAkiULvJmfnx8effRRLFy4EBMmTIBOpwMALFmyBDk5OXjwwQeRlpaGZs2a4eWXX0ZYWBh++eUXPPLII6hWrRruuuuuAh8jNzcXAwYMQFRUFHbt2oWUlBSj+WdSaGgoFi5ciPLly+PgwYN44oknEBoaipdeegn3338/Dh06hDVr1mD9+vUAxKKdpm7duoXu3bsjPj4ee/bsweXLl/H444/j2WefNXoTsnHjRsTExGDjxo04ceIE7r//fjRu3BhPPPFEgd8PAHz00Ud4//338dlnn6FJkyb48ssv0adPHxw+fBg1atTArFmz8PPPP+PHH39EpUqVcO7cOf2WWsuWLcPMmTPxww8/oF69ekhMTMQ///xj0+NS0cEKOVExotXrvY2v9QBf74vF673i5VJSUhQASkpKSqHvq1cvRQEUZcGCwo+LiDzH7du3lSNHjii3b98WF6SliT92LT7S0mwe99GjRxUAysaNG/WXtW3bVhkyZIjFr7nnnnuUF154Qf95+/btleeff17/eVxcnDJz5kxFURRl7dq1ip+fn3LhwgX99b/99psCQFmxYoXFx5gxY4bSrFkz/eeTJk1SGjVqlO92hvfz+eefK6VKlVLSDL7/X375RfHx8VESExMVRVGUoUOHKnFxccqdO3f0txk0aJBy//33WxyL6WOXL19eeeutt4xu06JFC+WZZ55RFEVRRo8erXTq1EnJzc3Nd1/vv/++UrNmTSUrK8vi4xnK97wy4MzXJnLuz/PyZfXPMSfHCYMjIo9g9n+yVq/3drzWKwpf7xXFc1/vnfFaz5Z1O7BCTlRMBAeLo9dafAQH2zzM2rVro1WrVvjyyy8BACdOnMCWLVswYsQIAEBOTg7efPNNNGjQAKVLl0ZISAjWrl2Ls2fP2nT/R48eRWxsLMqXL6+/LD4+Pt/tFi9ejNatWyM6OhohISF47bXXbH4Mw8dq1KgRShpUDFq3bo3c3FwcO3ZMf1m9evWMtsGKiYnB5cuXbXqM1NRUXLx4Ea1btza6vHXr1jh69CgA0Sa3f/9+1KpVC8899xx+//13/e0GDRqE27dvo2rVqnjiiSewYsUK3Llzx67vkzyfrJADbFsn8npavd7b8VoP8PUe8O7XewZyO3AOOVExodOJVjItPvJa0Ww1YsQILFu2DDdv3sSCBQtQrVo1tG/fHgAwY8YMfPTRR3j55ZexceNG7N+/H927d0eWE1PGjh078PDDD6NXr15YvXo1/v77b0yYMMGpj2HI39/f6HOdTodcJ/5Tbtq0KRISEvDmm2/i9u3bGDx4MO677z4AQGxsLI4dO4ZPP/0UQUFBeOaZZ9CuXTu75rSR5zMM5GxbJ/JyWr3e2/laD/D13ptf7xnI7cAKORF5msGDB8PHxweLFi3C119/jeHDh+vnl23btg19+/bFkCFD0KhRI1StWhX//fefzfddp04dnDt3DpcuXdJftnPnTqPbbN++HXFxcZgwYQKaN2+OGjVq4MyZM0a3KVGiBHIK+MdZp04d/PPPP7h165b+sm3btsHHxwe1atWyeczWhIWFoXz58ti2bZvR5du2bUPdunWNbnf//fdj3rx5WLx4MZYtW4br168DAIKCgtC7d2/MmjULmzZtwo4dO3Dw4EGnjI88g+F7QFbIichT8PXedkXt9Z6LutmBFXIi8jQhISG4//77MX78eKSmpmLYsGH662rUqIGlS5di+/btKFWqFD744AMkJSUZvRhZ06VLF9SsWRNDhw7FjBkzkJqaigkTJhjdpkaNGjh79ix++OEHtGjRAr/88gtWrFhhdJvKlSsjISEB+/fvR8WKFREaGooAwzIkgIcffhiTJk3C0KFDMXnyZFy5cgWjR4/GI488gqioKMd+OGb873//w6RJk1CtWjU0btwYCxYswP79+/Hdd98BAD744APExMSgSZMm8PHxwZIlSxAdHY2IiAgsXLgQOTk5aNmyJYKDg/Htt98iKCgIcXFxThsfac/HR4Ty7GxWyInIc/D13j5F6fWeFXI7sEJORJ5oxIgRuHHjBrp37240/+u1115D06ZN0b17d3To0AHR0dHo16+fzffr4+ODFStW4Pbt27jrrrvw+OOP46233jK6TZ8+fTB27Fg8++yzaNy4MbZv347XX3/d6DYDBw5Ejx490LFjR5QtW9bsVizBwcFYu3Ytrl+/jhYtWuC+++5D586d8cknn9j3wyjAc889h3HjxuGFF15AgwYNsGbNGvz888+oUaMGALGC7PTp09G8eXO0aNECp0+fxq+//gofHx9ERERg3rx5aN26NRo2bIj169dj1apViIyMdOoYSXvc+oyIPBFf721XlF7vdYpix0Z4RVBqairCw8ORkpKCsLCwQt3XQw8B338PfPgh8PzzzhkfEWkvIyMDCQkJqFKlCgIDA7UeDnkJa88rZ742kfN/npGRwPXrwJEjQJ06ThggEWmOr/XkCs54rWeF3A6skBMREXk/VsiJiMhdGMjtwDnkRERE3k9OeeQcciIicjUGcjuwQk5EROT9GMiJiMhdGMjtwAo5ERGR92PLOhERuQsDuR1YISfybl6+xiW5GZ9PRRcr5ETei/+byZmc8XxiILcDK+RE3snf3x8AkJ6ervFIyJvI55N8flHRwQo5kffhaz25gjNe6/2cNZjigBVyIu/k6+uLiIgIXL58GYDYI1On02k8KiqqFEVBeno6Ll++jIiICPjKo7lUZLBCTuR9+FpPzuTM13oGcjuwQk7kvaKjowFA/0JNVFgRERH65xUVLQzkRN6Jr/XkbM54rWcgtwMr5ETeS6fTISYmBuXKlUN2drbWw6Eizt/fn5XxIowt60Teia/15EzOeq1nILcDK+RE3s/X15dBiqiYY4WcyLvxtZ48CRd1swMr5ERERN6PFXIiInIXBnI7sEJORETk/VghJyIid2EgtwMr5ERERN6PFXIiInIXBnI7sEJORETk/VghJyIid2EgtwMr5ERERN6PgZyIiNyFgdwOrJATERF5P7asExGRuzCQ24EVciIiIu/HCjkREbkLA7kdWCEnIiLyfqyQExGRuzCQ24EVciIiIu/HCjkREbkLA7kdWCEnIiLyfrJCzkBORESuxkBuB1bIiYiIvJ+skLNlnYiIXI2B3A6skBMREXk/tqwTEZG7MJDbgRVyIiIi78dF3YiIyF0YyO3ACjkREZH3Y4WciIjchYHcDqyQExEROd+cOXPQsGFDhIWFISwsDPHx8fjtt980Gw8r5ERE5C4M5HaQFXIGciIiIuepWLEi3nnnHezduxd//fUXOnXqhL59++Lw4cOajIcVciIichc/rQdQlMgKOVvWiYiInKd3795Gn7/11luYM2cOdu7ciXr16rl9PNz2jIiI3EXzCvmFCxcwZMgQREZGIigoCA0aNMBff/2lv15RFEycOBExMTEICgpCly5dcPz4cU3Gygo5ERGRa+Xk5OCHH37ArVu3EB8fb/Y2mZmZSE1NNfpwJm57RkRE7qJpIL9x4wZat24Nf39//Pbbbzhy5Ajef/99lCpVSn+b6dOnY9asWZg7dy527dqFkiVLonv37sjIyHD7eFkhJyIico2DBw8iJCQEAQEBeOqpp7BixQrUrVvX7G2nTZuG8PBw/UdsbKxTx8KWdSIichdNW9bfffddxMbGYsGCBfrLqlSpoj+vKAo+/PBDvPbaa+jbty8A4Ouvv0ZUVBRWrlyJBx54wK3jZYWciIjINWrVqoX9+/cjJSUFS5cuxdChQ7F582azoXz8+PEYN26c/vPU1FSnhnIu6kZERO6iaYX8559/RvPmzTFo0CCUK1cOTZo0wbx58/TXJyQkIDExEV26dNFfFh4ejpYtW2LHjh1m79OVbWyskBMREblGiRIlUL16dTRr1gzTpk1Do0aN8NFHH5m9bUBAgH5FdvnhTKyQExGRu2gayE+dOoU5c+agRo0aWLt2LZ5++mk899xz+OqrrwAAiYmJAICoqCijr4uKitJfZ8qVbWyskBMREblHbm4uMjVKxKyQExGRu2jasp6bm4vmzZvj7bffBgA0adIEhw4dwty5czF06FCH7tOVbWyskBMRETnf+PHj0bNnT1SqVAk3b97EokWLsGnTJqxdu1aT8cgK+Z074jXfR/MlcImIyFtpGshjYmLyzQ2rU6cOli1bBgCIjo4GACQlJSEmJkZ/m6SkJDRu3NjsfQYEBCBAvpI6GSvkREREznf58mU8+uijuHTpEsLDw9GwYUOsXbsWXbt21WQ8hm8jMjOBoCBNhkFERMWApoG8devWOHbsmNFl//33H+Li4gCIBd6io6OxYcMGfQBPTU3Frl278PTTT7t7uKyQExERucD8+fO1HoIR2bIOiLZ1BnIiInIVTQP52LFj0apVK7z99tsYPHgwdu/ejc8//xyff/45AECn02HMmDGYOnUqatSogSpVquD1119H+fLl0a9fP7ePlxVyIiIi72cYyLmwGxERuZKmgbxFixZYsWIFxo8fjylTpqBKlSr48MMP8fDDD+tv89JLL+HWrVsYOXIkkpOT0aZNG6xZswaBgYFuHy8r5ERERN5PpwP8/YHsbC7sRkRErqVpIAeAe++9F/fee6/F63U6HaZMmYIpU6a4cVTmsUJORERUPAQEiEDOCjkREbkS1w21AyvkRERExYNsW2cgJyIiV2IgtwMr5ERERMWDXGmdLetERORKDOR2kIGcFXIiIiLvJgM5K+RERORKDOR2kC3rrJATERF5N9myzgo5ERG5EgO5HVghJyIiKh5YISciIndgILcDK+RERETFAyvkRETkDgzkdmCFnIiIqHhghZyIiNyBgdwOrJATEREVD9z2jIiI3IGB3A6skBMRERUP3PaMiIjcgYHcDqyQExERFQ9sWSciIndgILcDK+RERETFAxd1IyIid2AgtwMr5ERERMUDK+REROQODOR2YIWciIioeGCFnIiI3IGB3A6skBMRERUPrJATEZE7MJDbgRVyIiKi4oHbnhERkTswkNuBFXIiIqLigdueERGROzCQ24EVciIiouKBLetEROQODOR2YIWciIioeOCibkRE5A4M5HZghZyIiKh4YIWciIjcgYHcDrJCrijig4iIiLwTF3UjIiJ3YCC3g6yQA6ySExEReTMu6kZERO7AQG4HH4OfFueRExEReS+2rBMRkTswkNuBFXIiIqLigYu6ERGROzCQ24EVciIiouKBFXIiInIHBnI7sEJORERUPLBCTkRE7sBAbgdWyImIiIoHVsiJiMgdGMjtwAo5ERFR8cBtz4iIyB0YyO3ACjkREVHxwG3PiIjIHRjI7aDTiQ+AFXIiIiJvxpZ1IiJyBwZyO8kqOSvkRERE3ouLuhERkTswkNtJziNnhZyIiMg5pk2bhhYtWiA0NBTlypVDv379cOzYMU3HxAo5ERG5AwO5nVghJyIicq7Nmzdj1KhR2LlzJ9atW4fs7Gx069YNt27d0mxMXNSNiIjcwU/rARQ1rJATERE515o1a4w+X7hwIcqVK4e9e/eiXbt2moyJi7oREZE7MJDbiRVyIiIi10pJSQEAlC5d2uz1mZmZyDQoXaempjp9DLJCnpMjPgy3PiUiInIWtqzbiRVyIiIi18nNzcWYMWPQunVr1K9f3+xtpk2bhvDwcP1HbGys08chK+QAq+REROQ6DOR2YoWciIjIdUaNGoVDhw7hhx9+sHib8ePHIyUlRf9x7tw5p4/DMJBzHjkREbkKW9btxAo5ERGRazz77LNYvXo1/vzzT1SsWNHi7QICAhBgmJhdwN9fPc8KORERuQor5HZihZyIiMi5FEXBs88+ixUrVuCPP/5AlSpVtB4SdDqutE5ERK6naSCfPHkydDqd0Uft2rX112dkZGDUqFGIjIxESEgIBg4ciKSkJA1HzAo5ERGRs40aNQrffvstFi1ahNDQUCQmJiIxMRG3b9/WdFwM5ERE5GqaV8jr1auHS5cu6T+2bt2qv27s2LFYtWoVlixZgs2bN+PixYsYMGCAhqNlhZyIiMjZ5syZg5SUFHTo0AExMTH6j8WLF2s6Lm59RkRErqb5HHI/Pz9ER0fnuzwlJQXz58/HokWL0KlTJwDAggULUKdOHezcuRN333232ftz9VYorJATERE5l6IoWg/BLBnIWSEnIiJX0bxCfvz4cZQvXx5Vq1bFww8/jLNnzwIA9u7di+zsbHTp0kV/29q1a6NSpUrYsWOHxftz9VYorJATEREVD7JlnRVyIiJyFU0DecuWLbFw4UKsWbMGc+bMQUJCAtq2bYubN28iMTERJUqUQEREhNHXREVFITEx0eJ9unorFFbIiYiIigdWyImIyNU0bVnv2bOn/nzDhg3RsmVLxMXF4ccff0RQUJBD9+nqrVBYISciIioeWCEnIiJX07xl3VBERARq1qyJEydOIDo6GllZWUhOTja6TVJSktk55+7CCjkREVHxwAo5ERG5mkcF8rS0NJw8eRIxMTFo1qwZ/P39sWHDBv31x44dw9mzZxEfH6/ZGFkhJyIiKh647RkREbmapi3rL774Inr37o24uDhcvHgRkyZNgq+vLx588EGEh4djxIgRGDduHEqXLo2wsDCMHj0a8fHxFldYdwdWyImIiIoHbntGRESupmkgP3/+PB588EFcu3YNZcuWRZs2bbBz506ULVsWADBz5kz4+Phg4MCByMzMRPfu3fHpp59qOWRWyImIiIoJtqwTEZGraRrIf/jhB6vXBwYGYvbs2Zg9e7abRlQwVsiJiIiKBy7qRkREruZRc8iLAlbIiYiIigdWyImIyNUYyO0kK+QM5ERERN6Ni7oREZGrMZDbSVbI2bJORETk3bioGxERuRoDuZ1YISciIioeWCEnIiJXYyC3EyvkRERExQMr5ERE5GoM5HZihZyIiLzRvn37cPDgQf3nP/30E/r164dXX30VWcU0kXJRNyIicjUGcjuxQk5ERN7oySefxH///QcAOHXqFB544AEEBwdjyZIleOmllzQenTa47RkREbkaA7mdWCEnIiJv9N9//6Fx48YAgCVLlqBdu3ZYtGgRFi5ciGXLlmk7OI2wQk5ERK7GQG4nVsiJiMgbKYqC3LwXt/Xr16NXr14AgNjYWFy9elXLoWmGi7oREZGrMZDbiRVyIiLyRs2bN8fUqVPxzTffYPPmzbjnnnsAAAkJCYiKitJ4dNpghZyIiFyNgdxOrJATEZE3+vDDD7Fv3z48++yzmDBhAqpXrw4AWLp0KVq1aqXx6LQRHi5Ok5M1HQYREXkxP60HUNSwQk5ERN6oYcOGRqusSzNmzICvfPErZsqUEafXrmk7DiIi8l6skNuJFXIiIvJG586dw/nz5/Wf7969G2PGjMHXX38Nf39/DUemHRnIi+kUeiIicgMGcjuxQk5ERN7ooYcewsaNGwEAiYmJ6Nq1K3bv3o0JEyZgypQpGo9OGwzkRETkagzkdmKFnIiIvNGhQ4dw1113AQB+/PFH1K9fH9u3b8d3332HhQsXajs4jchAnpYGZGRoOxYiIvJODOR2YoWciIi8UXZ2NgLylhVfv349+vTpAwCoXbs2Ll26pOXQNBMerr7ucx45ERG5AgO5nVghJyIib1SvXj3MnTsXW7Zswbp169CjRw8AwMWLFxEZGanx6LSh0wHyW2fbOhERuQIDuZ1YISciIm/07rvv4rPPPkOHDh3w4IMPolGjRgCAn3/+Wd/KXhxxpXUiInIlbntmJ1bIiYjIG3Xo0AFXr15FamoqSpUqpb985MiRCA4O1nBk2uLCbkRE5EoM5HZihZyIiLyVr68v7ty5g61btwIAatWqhcqVK2s7KI0xkBMRkSuxZd1OrJATEZE3unXrFoYPH46YmBi0a9cO7dq1Q/ny5TFixAikp6drPTzNMJATEZErMZDbiRVyIiLyRuPGjcPmzZuxatUqJCcnIzk5GT/99BM2b96MF154QevhaYaBnIiIXIkt63ZihZyIiLzRsmXLsHTpUnTo0EF/Wa9evRAUFITBgwdjzpw52g1OQ1xlnYiIXIkVcjuxQk5ERN4oPT0dUVFR+S4vV65c8W1Zz8pC678/QQwucpV1IiJyCQZyO7FCTkRE3ig+Ph6TJk1CRkaG/rLbt2/jjTfeQHx8vIYj09Ds2Wj57WgsxDBWyImIyCUYyO3ECjkREXmjjz76CNu2bUPFihXRuXNndO7cGbGxsdi+fTs++ugjlz72n3/+id69e6N8+fLQ6XRYuXKlSx/PZr/9BgDohnUISkzQeDBEROSNGMjtJAM5K+RERORN6tevj+PHj2PatGlo3LgxGjdujHfeeQfHjx9HvXr1XPrYt27dQqNGjTB79myXPo5dMjKALVv0n95zeYGGgyEiIm/FRd3sJFvWWSEnIiJvExwcjCeeeMLtj9uzZ0/07NnT7Y9r1bZtIpTnGXJnAdJvTkJwqK+GgyIiIm/DQG4nVsiJiMhb/Pzzzzbftk+fPi4ciX0yMzORmZmp/zw1NdX5D7JuHQBAuf9+XF+8DrE4jysrfkfwox524ICIiIo0BnI7sUJORETeol+/fjbdTqfTIceDXvimTZuGN954w7UPsn49AEB3771YsSoKj6fPgv/X8wEGciIiciLOIbcTK+REROQtcnNzbfrwpDAOAOPHj0dKSor+49y5c859gGvXgH37xPnOnfFb+REAgLBNPwGXLzv3sYiIqFhjILcTK+RERETaCggIQFhYmNGHU23YACgKUL8+EBOD6xUbYjdawCfnDvDNN859LCIiKtYYyO3ECjkREZGXy2tXR5cuAIAyZYD5EFVyfPutRoMiIiJvxDnkdmKFnIiIyLnS0tJw4sQJ/ecJCQnYv38/SpcujUqVKrl3MIqiX9ANXbsCEIH8D3QQl5065d7xEBGRV2MgtxMr5ERERM71119/oWPHjvrPx40bBwAYOnQoFi5c6N7BnDoFnD4N+PsD7doBEIH8GiLF9ampQHa2uJ6IiKiQGMjtxAo5ERGRc3Xo0AGKomg9DEFWx+PjgZAQAEBkJHADpZALHXygANevA1FRGg6SiIi8BeeQ24kVciIi8ka//vor1q5dm+/ytWvX4rffftNgRBqRgTxv/jggKuS58EWaX4S44No194+LiIi8kscE8nfeeQc6nQ5jxozRX5aRkYFRo0YhMjISISEhGDhwIJKSkrQbJFghJyIi7/TKK6+Y3d5MURS88sorGoxII/36AQMGAD3V/cbLlBGnyT55bevXr7t/XERE5JU8IpDv2bMHn332GRo2bGh0+dixY7Fq1SosWbIEmzdvxsWLFzFgwACNRimwQk5ERN7o+PHjqFu3br7La9eubbTgmtd75BFg2TKgeXP9RTKQX5XzyFkhJyIiJ9E8kKelpeHhhx/GvHnzUKpUKf3lKSkpmD9/Pj744AN06tQJzZo1w4IFC7B9+3bs3LlTs/GyQk5ERN4oPDwcp8ysIH7ixAmULFlSgxF5DhnIk+4wkBMRkXNpHshHjRqFe+65B10M5moBwN69e5GdnW10ee3atVGpUiXs2LHD4v1lZmYiNTXV6MOZWCEnIiJv1LdvX4wZMwYnT57UX3bixAm88MIL6NOnj4Yj056+Qp5bWpxhICciIifRNJD/8MMP2LdvH6ZNm5bvusTERJQoUQIRERFGl0dFRSExMdHifU6bNg3h4eH6j9jYWKeOmRVyIiLyRtOnT0fJkiVRu3ZtVKlSBVWqVEGdOnUQGRmJ9957T+vhaapkSaBECYOtzwoI5HfuuGFQRETkFTTb9uzcuXN4/vnnsW7dOgQGBjrtfsePH6/fvxQAUlNTnRrKWSEnIiJvFB4eju3bt2PdunX4559/EBQUhIYNG6Jd3l7cxZlOl7cX+cWCA/kvvwD33QfMmwcMGeKmARIRUZGlWSDfu3cvLl++jKZNm+ovy8nJwZ9//olPPvkEa9euRVZWFpKTk42q5ElJSYiOjrZ4vwEBAQgICHDZuFkhJyIib6XT6dCtWzd069ZN66F4HFsD+aZNQEYGsGULAzkRERVMs0DeuXNnHDx40Oiyxx57DLVr18bLL7+M2NhY+Pv7Y8OGDRg4cCAA4NixYzh79izi4+O1GDIAVsiJiMh7zJo1CyNHjkRgYCBmzZpl9bbPPfecm0blmcqUMWhZt7LtWXKyOE1Pd/2YiIio6NMskIeGhqJ+/fpGl5UsWRKRkZH6y0eMGIFx48ahdOnSCAsLw+jRoxEfH4+7775biyEDYIWciIi8x8yZM/Hwww8jMDAQM2fOtHg7nU7HQF7GtjnkKSni9PZtNwyKiIiKPM0CuS1mzpwJHx8fDBw4EJmZmejevTs+/fRTTcfECjkREXmLhIQEs+cpvzJlgP9sCOSskBMRkT08KpBv2rTJ6PPAwEDMnj0bs2fP1mZAZrBCTkREVPxERgLXYbDtmaKI1d5MMJATEZE9HArk586dg06nQ8WKFQEAu3fvxqJFi1C3bl2MHDnSqQP0NKyQExGRN1IUBUuXLsXGjRtx+fJl5Jq80C1fvlyjkXkGo5b1rCzg1i0gJCTf7diyTkRE9nBoH/KHHnoIGzduBCD2C+/atSt2796NCRMmYMqUKU4doKdhhZyIiLzRmDFj8MgjjyAhIQEhISEIDw83+ijuypQBbqEksnQlxAUW2tZZISciIns4VCE/dOgQ7rrrLgDAjz/+iPr162Pbtm34/fff8dRTT2HixIlOHaQnYYWciIi80TfffIPly5ejV69eWg/FI5UpAwA6JPtGotydSyKQx8Xlu50M5KyQExGRLRyqkGdnZ+v3+l6/fj369OkDAKhduzYuXbrkvNF5IFbIiYjIG4WHh6Nq1apaD8NjlSsnTq8qlrc+y8gQ3ewAK+RERGQbhwJ5vXr1MHfuXGzZsgXr1q1Djx49AAAXL15EZGSkUwfoaVghJyIibzR58mS88cYbuM3SrlnVq4vTyzmWV1qX1XGAFXIiIrKNQy3r7777Lvr3748ZM2Zg6NChaNSoEQDg559/1reyeytWyImIyBsNHjwY33//PcqVK4fKlSvD39/f6Pp9+/ZpNDLPEBIiOtSvnbEtkLNCTkREtnAokHfo0AFXr15FamoqSpUqpb985MiRCA4OdtrgPBEr5ERE5I2GDh2KvXv3YsiQIYiKioLOzJZexV3dutYDuVxhHRCt6zk56vsGIiIicxwK5Ldv34aiKPowfubMGaxYsQJ16tRB9+7dnTpAT8MKOREReaNffvkFa9euRZs2bbQeiseqWxe4/pvBXuQmDCvkgGhbN7MzGhERkZ5Dc8j79u2Lr7/+GgCQnJyMli1b4v3330e/fv0wZ84cpw7Q07BCTkRE3ig2NhZhYWFaD8Oj1a1rsBe5DYGcbetERFQQhwL5vn370LZtWwDA0qVLERUVhTNnzuDrr7/GrFmznDpAT8MKOREReaP3338fL730Ek6fPq31UDxWnTrWA7lhyzrAhd2IiKhgDrWsp6enIzQ0FADw+++/Y8CAAfDx8cHdd9+NM2fOOHWAnoYVciIi8kZDhgxBeno6qlWrhuDg4HyLul03s81XcWMYyO9cvpbvTRQr5EREZC+HAnn16tWxcuVK9O/fH2vXrsXYsWMBAJcvX/b6djdWyImIyBt9+OGHWg/B40VEALrISOAakJ103WWBPCMDCAx07GuJiKhocSiQT5w4EQ899BDGjh2LTp06IT4+HoColjdp0sSpA/Q0rJATEZE3Gjp0qNZDKBIia0YCOwCf665pWT9wAGjZEnjhBWDqVAcHSURERYZDgfy+++5DmzZtcOnSJf0e5ADQuXNn9O/f32mD80SskBMRkbfKzc3FiRMncPnyZeSaHHlu166dRqPyLNH1RCD3T0/Ot6+ZMyrke/aICvmWLYUaJhERFREOBXIAiI6ORnR0NM6fPw8AqFixIu666y6nDcxTsUJORETeaOfOnXjooYdw5swZKIpidJ1Op0MOj0QDAOKaiG3PfKAAN24AZcror3NGhfzWLXHK+edERMWDQ6us5+bmYsqUKQgPD0dcXBzi4uIQERGBN998M98RdW/DCjkREXmjp556Cs2bN8ehQ4dw/fp13LhxQ//BBd1UdRr4IQV56+WYrLTujAq5DOTylIiIvJtDFfIJEyZg/vz5eOedd9C6dWsAwNatWzF58mRkZGTgrbfecuogPQkr5ERE5I2OHz+OpUuXonr16loPxaPJvcjDkYrb568hqJZ6nQzkgYGi7bwwFXIGciKi4sGhQP7VV1/hiy++QJ8+ffSXNWzYEBUqVMAzzzzj1YGcFXIiIvJGLVu2xIkTJxjICxAZCZz1iwTuJODCgWuo3lm9Trasly8PnDrFCjkRERXMoUB+/fp11K5dO9/ltWvX9vq2NlkhZyAnIqKi7sCBA/rzo0ePxgsvvIDExEQ0aNAg3z7kDRs2dPfwPFZ2aCRwA0g6eh2Ghy9khTwmxvFAnpYmThnIiYiKB4cCeaNGjfDJJ59g1qxZRpd/8sknXv+CLSvkbFknIqKirnHjxtDpdEaLuA0fPlx/Xl7HRd1MlBGBPPmkOof8zh01TMfEiNPCtKxnZORbxJ2IiLyQQ4F8+vTpuOeee7B+/Xr9HuQ7duzAuXPn8Ouvvzp1gJ6GFXIiIvIWCQkJWg+hSAooHwkcB9LPqYE8NVW9XgbywrSsy68PDXVwkEREVCQ4tMp6+/bt8d9//6F///5ITk5GcnIyBgwYgMOHD+Obb75x9hg9CivkRETkLeROKXFxcThz5gwqVKhgdFlcXBwqVKiAM2fOaD1UjxJaORIAcCdJDeSyXb1kSSAsbxH2wlTITc8TEZF3ciiQA0D58uXx1ltvYdmyZVi2bBmmTp2KGzduYP78+c4cn8dhhZyIiLxRx44dza4Dk5KSgo4dO7plDLNnz0blypURGBiIli1bYvfu3W55XHuVqSH2IvdPvaYP3TKQh4cDwcHivDMq5ERE5N0cDuTFFSvkRETkjeRccVPXrl1DyZIlXf74ixcvxrhx4zBp0iTs27cPjRo1Qvfu3XH58mWXP7a9ZIW8NK7h5ElxmVxhPSICCAoS5wsbyFkhJyLyfg7NIS/OZIVcUcSHmfcuRERERcaAAQMAiAXchg0bhoCAAP11OTk5OHDgAFq1auXycXzwwQd44okn8NhjjwEA5s6di19++QVffvklXnnlFZc/vj10ZUQgj8Q1JCQA9eurFfKICLVC7kjLulwYDmAgJyIqDhjI7eRj0FOQm8vVT4mIqGgLDw8HICrkoaGhCJLlXQAlSpTA3XffjSeeeMKlY8jKysLevXsxfvx4/WU+Pj7o0qULduzYke/2mZmZyMzM1H+eariimjtEygr5dWzOWxfPsGWdFXIiIrKVXYFcHkW3JFm+GnkxwwDO7UiIiKioW7BgAQCgcuXKePHFF93Snm7q6tWryMnJQVRUlNHlUVFR+Pfff/Pdftq0aXjjjTfcNbz8ItUK+alT4iLDlvXCVMgZyImIihe7Ark8im7t+kcffbRQA/J0phVyIiIibzBp0iSth2Cz8ePHY9y4cfrPU1NTERsb674B5AXyYNzG+eO3AQSZbVm3t0KuKMZfw0BOROT97Ark8ih6cWZaISciIiqqmjZtig0bNqBUqVJo0qSJ2UXdpH379rlsHGXKlIGvry+SkpKMLk9KSkJ0dHS+2wcEBBjNdXe70FDk+vrBJ+cOkk9eA1DRbMu6vRXy27dFKJcYyImIvB/nkNuJFXIiIvIWffv21Qfbfv36aTaOEiVKoFmzZtiwYYN+HLm5udiwYQOeffZZzcZlkU4HJTQMSL6OG2dSoSjmW9btrZAbLujmyNcTEVHRw0BuJ1bIiYjIW8g29ZycHHTs2BENGzZERESEJmMZN24chg4diubNm+Ouu+7Chx9+iFu3bulXXfc0PmGhQPJ1+Gak4fJl41XWHV3UzbQizgo5EZH3YyC3EyvkRETkbXx9fdGtWzccPXpUs0B+//3348qVK5g4cSISExPRuHFjrFmzJt9Cb55CFxYKAAjFTZw6ZbzKuqOLujGQE7lBZqb4CAvTeiREAACfgm9ChlghJyIib1S/fn2ckkuGa+TZZ5/FmTNnkJmZiV27dqFly5aajseqUDWQJyQ4p2WdgZzIxRQFaNECqFMHuH5d69EQAWAgt5vhejeskBMRkbeYOnUqXnzxRaxevRqXLl1Camqq0QeZCDVfITdsWc/JAbKzbb9LBnIiF0tOBg4eBC5eBL76SuvREAFgy7pDfH3Fiywr5ERE5C169eoFAOjTp4/RauuKokCn0yGHL3rGLARyw5Z1QFTJC9g1Vo+BnMjFLlxQz8+dC4wZY1xtI9IAA7kDfHxEGGeFnIiIvMXGjRu1HkLREhICQATyI6eMW9ZLlBDv8RVFzCO3NZCbrrLOQE7kZIaB/L//gD/+ADp31m48RGAgd4ivr2hBY7GAiIi8Rfv27bUeQtFiUCE/cEA9SB8eLsJ4cLAI1PbMI2eFnMjFDAM5AHz6KQM5aU7TOeRz5sxBw4YNERYWhrCwMMTHx+O3337TX5+RkYFRo0YhMjISISEhGDhwIJKSkjQcsSBXWmeFnIiIvE16ejr+/fdfHDhwwOiDTBgE8hs3xEX+/ur8cUcWdpMBPG9reO5DTuRsMpDLBSN/+il/SCdyM00DecWKFfHOO+9g7969+Ouvv9CpUyf07dsXhw8fBgCMHTsWq1atwpIlS7B582ZcvHgRAwYM0HLIANSV1lkhJyIib3HlyhXce++9CA0NRb169dCkSROjDzKRF8hL+d7UXxQRoU5HlcHcnq3PZCAvV874cyJykosXxWnXrkDbtuLN/BdfaDsmKvY0DeS9e/dGr169UKNGDdSsWRNvvfUWQkJCsHPnTqSkpGD+/Pn44IMP0KlTJzRr1gwLFizA9u3bsXPnTi2HzQo5ERF5nTFjxiA5ORm7du1CUFAQ1qxZg6+++go1atTAzz//rPXwPE9eII8KVgO54VzxwlTIy5Y1/pzIY2RnAytXFt0tw2Q1vEIF4Omnxfl584A7d7QbExV7HrPtWU5ODn744QfcunUL8fHx2Lt3L7Kzs9GlSxf9bWrXro1KlSphx44dFu8nMzPT5Vu1sEJORETe5o8//sAHH3yA5s2bw8fHB3FxcRgyZAimT5+OadOmaT08z5MXyMsEqiuxRUSoV7NCTl7pu++A/v2BV17ReiSOMQzkAwaIP7YLFwBvWdTy8mXo59BQkaF5ID948CBCQkIQEBCAp556CitWrEDdunWRmJiIEiVKIMLw1Q1AVFQUEhMTLd7ftGnTEB4erv+IjY11+phZISciIm9z69YtlMtLgqVKlcKVK1cAAA0aNMC+ffu0HJpnki3rfsYt65IjFXK5ynpUlDhlICePI9eT+PtvbcfhKMNAHhAA3H23+PzUKe3G5CzJyUD9+mJ+PENKkaJ5IK9Vqxb279+PXbt24emnn8bQoUNx5MgRh+9v/PjxSElJ0X+cO3fOiaMVWCEnIiJvU6tWLRw7dgwA0KhRI3z22We4cOEC5s6di5iYGI1H54Hkom4657esG1bIFaUwgyRyMhlc//uv6D05s7NFBRkQgRwAoqPFqZViX5GxZg1w5Qpw/Dhw5ozWo9GGogD//lvkQprmgbxEiRKoXr06mjVrhmnTpqFRo0b46KOPEB0djaysLCQnJxvdPikpCdHyj8eMgIAA/art8sPZWCEnIiJv8/zzz+PSpUsAgEmTJuG3335DpUqVMGvWLLz99tsaj84D5QXy4BzzFXJntKzn5ABZWYUYI5GzyUCemqqG24JkZwNbtmg/T/vSJRHY/P3VhRq8KZD/8ot6/tAh7cahpdmzgTp1gHff1XokdtE8kJvKzc1FZmYmmjVrBn9/f2zYsEF/3bFjx3D27FnEx8drOEJWyImIyPsMGTIEw4YNAwA0a9YMZ86cwZ49e3Du3Dncf//92g7OE+UF8oAs57Wsmy7qZngZUT5JScAzzwAnT7rn8RTFuLX7v/9s+7p584B27YDRo50zhk2bRBXUXnKF9ZgYtbomu3+KeiDPyQEMto5G3o5VxUpODvDee+L8t99qOxY7aRrIx48fjz///BOnT5/GwYMHMX78eGzatAkPP/wwwsPDMWLECIwbNw4bN27E3r178dhjjyE+Ph53y/keGmGFnIiIvF1wcDCaNm2KMmXKaD0UzxQSAgDwTTffsl6YCnlEhCjiAdyLnKyYOROYMwd48UX3PN7Vq8ZHiGwN5DIcfv45cPSo449/7JjYrqxjRzFPWgZsWxnOH5e8pUK+axdw7Zr6eXEM5L/+qrbqHz3qvgNVTuCn5YNfvnwZjz76KC5duoTw8HA0bNgQa9euRdeuXQEAM2fOhI+PDwYOHIjMzEx0794dn376qZZDBsAKOREReZ9x48aZvVyn0yEwMBDVq1dH3759Ubp0aTePzEPlVch1mZkoXzYbF6/4O21Rt5AQoGRJsUYTK+Rk0f794vT338WRH3kUyFaKAvzwA9CmDWDLIsimC5/ZGsjzFohEbi7w6qvAihX2jTM3F5g0SbQhZ2eLy1JTgf/9T6z6bitXBPKcHOD8eSAuzrGvdxbZrh4ZKYJ5cWxZN82Iq1cDzz+vzVjspGmFfP78+Th9+jQyMzNx+fJlrF+/Xh/GASAwMBCzZ8/G9evXcevWLSxfvtzq/HF3YYWciIi8zd9//4358+fj888/x+bNm7F582bMmzcP8+fPx4YNGzBu3DhUr169UAuvepW8QA4A9eNElbxUKfVqGcgdqZCXLKl+PQN5EeWOqs3Bg+I0PR1Yv97+r//pJ+Chh4C8qSoFMg3kx4/b9nUykANiD/Pt2237OmnRImDqVBHGe/UCliwBdDpx+aZNtt+PDOTly6uXGQZyRxape/ddoHJlYPFi+7/WmWQgf/ZZcXr0aPGqHJ48KRa10+mAUaPEZatXazsmO3jcHPKigBVyIiLyNn379kWXLl1w8eJF7N27F3v37sX58+fRtWtXPPjgg7hw4QLatWuHsWPHaj1Uz+DvL7ZNAvDyMzcxaJDICpIsVhpVyPfsAf76y+JdGgbykiWNL6MiZP9+oHRpUQ12latXjVu2f/rJ/vvYs0ecbt4MpKQUfHsZyGWItbdCXquWOH35ZfvC78qV4nTsWBGy7rsPeOopcdmoUWrVvCDmKuRyj8GMDFF1t9fy5eLUnkq9IWesCn7+PPDPPyKMPv20+OeTmVmkWrYLbc4ccdqjh1oV37zZsd+pBhjIHcAKOREReZsZM2bgzTffNNqdJDw8HJMnT8b06dMRHByMiRMnYu/evRqO0sPkVck73ZWGH38UGUzK17KekSHmvnbsKM6bwUDuJaZPF0HAcNVrSxxdRl9Wx+Wb0lWr7H9jKucZ5+QAf/xR8O0TEsRp9+7i9MQJ24KkDOQffAAEBgJbt9pevczOBtatE+cfeECETkBUzMuUAY4cAWbNsu2+zAXyoCB18Ye8XSZsduuWOm1g0ybbDwwY+vFHsSr466/b/7XSr7+K07vvFgcY6tQRnxeXeeS3bwNffinOP/MMUKMGULOm8XPHwzGQO4AVciIi8jYpKSm4bGYboytXriA1r8oQERGBLO7DpZJt6zdv5rsq36JuiYniDXxamtn5qrm5ani3KZAvWyYWtrK1bZjcIykJWLpUnC9o0bFPPxUBtUwZoFUrYMQI2xc9k4G8Rw8RKC9fFgt72cNw+snatQXfXlbIO3YUHSKZmcC5c9a/JjdXXWyscWNgzBhxfsYM28a4fbs4uFG2LNC8uXp56dLq1laTJwM3bhR8X/L3YRjIAcfnkf/1lxoGbt60/+cPAHI3qS++cHxbOHng5557xGm9euK0KARyRQG++gp44w3HK52LF4vff1wc0LOnuOzee8XpqlXOGaeLMZA7QAZyVsiJiMhb9O3bF8OHD8eKFStw/vx5nD9/HitWrMCIESPQr18/AMDu3btRs2ZNbQfqSawE8nwVcsODHUlJ+W5vONfcpkD+4YfA7t1q+LOVI/NkyXZffKFWSq9eFaHVkpUrxe/j2jVgxw5R5bO1UnrggDht1kydK2FP23pGhnFL85o1BT83ZCCvXl18AAW3rd+4oYbWMmWARx8V5//+27Y30rL626OH2g0gDRsGVKkiDnIV1LmjKOYr5IDjgXzHDuPPHanGygMwV64AGzfa//UZGer6ATKQ168vTj19Ybfz58XvddgwcVDFke8fAL7/Xpw++aQa0mQg//XXIlFBZSB3gPx/UAR+v0RERDb57LPP0LlzZzzwwAOIi4tDXFwcHnjgAXTu3Blz584FANSuXRtffPGFxiP1IDYEcn3QNlzYyswbf7nCuvxaGcjNrtKekwPs2yfOyzZiW0yYIKqphdl6ypucP+/cKuKdO8BnnxlfZi3kyUD8xReiQgjYvr+2DOQNGgB9+ojz9gTyf/8VgTgsDChRQmwXZS1cZ2er1fCqVUVLMFBwIL96VZyGh4vHqV5dnKalqVtUWSMDueECDZKPD9CwoThf0HM6NVU9umUayB3di1wuTicDsL2BXFGMuxR++MG+rweALVvEP4kKFYBGjcRlRaFCvnix+Ln9/rt6mewWsJf8Pjt2VC9r00Y8565cUddK8GAM5A5ghZyIiLxNSEgI5s2bh2vXruHvv//G33//jWvXruHzzz9Hybx02LhxYzRu3FjbgXoSG1rW9YHaMJCbqZDLrBAcLHKG1Qr5sWPqHZuufG3N6tVirFqvCO0J7twBWrcWgdZZqzH/8osIrWXKqCt5W2pbz8oCTp8W53v2BB5+WJw/ebLgN5g5OWoIadhQfL2/vwjZti60JoNgo0YivADW29bPnhXjCgwUFWVbA7l83pctK079/dU5zgVVcM+eFbfx8QG6dTN/G3lfBR3IkNXxiAj1aJnkSIVcUdQK+WuvidPdu21bHE+6cgW4fl39fNky6x0V5siDAh07qvPr5QGCY8ccm9fuaidOiNX9U1KAu+4SBwoBxwL5zZvq71YuGgiI51mPHuJ8EVhtnYHcAayQExGRtwoJCUHp0qVRunRphISEaD0cz2ZPy3oBFXLDBd0Mv95sIDdcqd2elZTlG1d7torSQk6OfRu4O+KPP0TgUxTgwQed0947e7Y4HTFCbIUFWA7kZ86IgBsUJCq0cXGAn59oQZa/J0tOnRI/n8BAUXEODwc6dBDX2Voll4G+bl01uKxZY/0xAVEd1+nUQF7QGgamgRywvaX6t9/E6d13G6+YaKh2bXFqayA3rY4DjgXyEydE9T8gAOjXTywklpNj39+WPChSubIYV0qKbXP5Dcl56y1bqpdVqgSEhIgw7olrTHz1lXjud+wIbNsmWs0B8X/NngMagDjoAIjF7Az3nQSM29ZtdOeOxTU3XYqB3AGskBMRkbfJzc3FlClTEB4erm9Zj4iIwJtvvolcvuCZZ8+iboZzyG0I5FYr5IaB/OxZ26pgmZnq4lo7d2rzrtNWo0cDkZGunQO7aJE49fcX7dO9exv/jgARuqZNA9q3B2bOtHxfWVlii6V160RYffLJgivk8kBK9eria/z8xHxooOAQJdvV69dX35T27StObV3ESgbyevXUVdM3bbL8vJCBXI6xRg1xamuFvEwZ9TJbA7m1dnVJq0Auq+PNmolQ3rWr+NyetnUZyOvXBwYPFuftaVtXFFGVB0SlWdLpPLdtPTdXBHJA/J34+QGxseL5lJsr/o7sIX/v8nlgqHNncbp/v81Bf+tWcXyrf3/7hlFYDOQOYIWciIi8zYQJE/DJJ5/gnXfe0besv/322/j444/xemG25PFmsoPAMJCnpwOLFyM0N0X/KQCbW9ZtCuSGC1jl5opQXhDDLZ0yMx1bEbqwcnNF6LNW/c7JEXs6Z2SILaFc4fZtdf/opUtFKD59WgS/Z58FBg0Srdw1aoi9xP/8E3jllfyBbcUKEaZKllQr1L16idBaUCA/cUKcVqumXiZDrrzOEsP541KXLuJ0zx7bDtDIMFi3rrifmBjxc9m61fzt5VoFVauKU1khP33aepu1oxXyzEx1sTJbAvnFi9ZDl/w9yN+LIUcCuWwVb9VKnDoSyOW89zp1xJZugOhwsHWvw1OnxEG2EiXU+eOSDOTOOKiVmyv+JgcMAKZMKXhlfWs2bhRfHx6uHkQC1PBsb9u6tUAeEyP+thVF/X0VYOdOcXzNz8++YRQWA7kDWCEnIiJv89VXX+GLL77A008/jYYNG6Jhw4Z45plnMG/ePCxcuFDr4XkmcxXyOXOABx5A7CKxJZOti7rJ9+Ay41sM5HfuiBWqDW9kOI9cUYBPPhGLPRkybYPWom194ULRpjpxouXb/POPWIALUAOZs/36q/idVaok2lpXrRIBYe9e0Xa+dKkIvb6+ImjVri3epectbghA/D4feURUIO/cEYujtW0LvPWWuN7WQC5XKzc8X1CFXG55Jhc0A0SYDwsTBzIKqooarrBer56oqMoquaW2dcOWdUCE2JAQ8WbY2joG1gL50aOWDx78+ac4cBMTI7ZLsyQ8XF2UTbYvm2NLhdyefchlhTw+Xpx27CieL//9Z9sBMsD4oEiLFuJATnq6bfvXA+pBtSZNRJXekDMq5IoixtKkCTBkiDgANWmSmF7Ro4f6f8jQ7t1iSztLIUlWxx98UEy5kDp1Eqd//GHfGK0FckD8TQLi+WQD01+ruzCQO4AVciIi8jbXr19HbTNvamrXro3rhgsPkcpcIM8LU0FnxBtFWyvkcpX1AivkR4+KlB8aKlqpAeNAtHOnaPl+7DHjrzMNhloEcrmtkbXHNmxZ3b1bDefOJNvVH3hAvKmrXVvMV37qKVERnzULWLJEBLTff1dXQJ8zR60Gv/uu+OU0ayYCWHKyeNMvK5UykFuaD27Ysi7ZWyE3DOQ+Puo+3QWtKi1XWC9dWsy9BdRAbmkOs2kgN5xHbq1t3Vwgt2WOs+xg6NlTXazMElva1m0J5Feu2LYXeGqqelBEJrfwcLVt3NYquWGFXKdTq+RyG6+CmGtXl5yx9dnUqeKA1YED4vv73//EgQdFEc+Te+8VB6qk7GzR6/3SS+anTty8KRauA4ChQ42vkyukHzpk9v+jRfJ3brigmyEZyE0PUJqhKOLfJyCWLXAnBnIHsEJORETeplGjRvjkk0/yXf7JJ5+gkWk7JAkykBvuWZb3ZtL/qgjAt2/nbe9srUKekwOfhJMAlIIDuZw/3rSpGuYMF3aTYSwhwbj6KAO5DHFazCPfv1+cHjpkuTJqGMhzcmyubNksJUWtQD70kHp5fLwI3G+9JQ5o3HefGiL79wcqVhRzzH/4QQR1uYDbm2+KObCmodGRlnVbKuRpaerv27BlHRBVVqDgQG5YmZXjlgd3Dh82DlmS6RxywLZALrc9MwzkPj7WA+OVK2ol1fB3ZElhA3mZMuLNvaIY/51asmuXuG3lymp1HlDb1m3p7LhxQ63Iy5Xi+/UTp5amDZgbB2C8oJskK+QnTti/cjsgvj/ZETJqlPj9T58uKtjHj4uDGBcvqgdOAHFePt/NTYlZulQcoaxVK/+Yy5RROyFsrZLn5Kh/KwVVyPfsKfD/XUKC+BP39xf/Xt2JgdwBrJATEZG3mT59Or788kvUrVsXI0aMwIgRI1C3bl0sXLgQM2bM0Hp4nslchTwvbPsliQCgKHnvhw0XDLt1yzjEf/QRHnitOh7F1/kCeb7p1nL+ePPmapgzrJDLNtLcXLHPtiQDSadOoiqakaFW2NwhI0OtCGZmmm8vzs1VK1nyzbmz29ZXrBCPX7eucYXZGn9/MbccAD78EHjnHfH93H23ukK5KWuBPCdH/Z2Zq5Bb2/pMtiBHRxuHXMD2QG64oJsUFSXanhUlf1U/OVkESMD+QG6uQg5YD+SffCKOZDVtqrYyWyPDmLW9yK0Fcl9foFw5cd6WeeSyr1nOH5fkQQ15vTVyrBUriqkGgPr7uHpVPZBhSVaW+rduLpCXLy+2eMvJcaxKfvSoeO4GBgLvvWe8yn316sDTT4vzH32kXv7xx+p5w4UnJTn1adgw810P9ratnz4tfg6BgaLrwpxq1cTfSlZWgf/vZHW8SRPjbnp3YCB3ACvkRETkbdq3b4///vsP/fv3R3JyMpKTkzFgwAAcO3YMbWWVgYxZCeS6xEvwgThyn341XU3W8k2EYVtmXgv3/Vhc8LZn8o1us2Zq+7C5QA6o+1wDajCsUEENDu5sWz90yLiS8c8/+W9z+LDYl7lkSdEeCzi2N7E1sl39wQcLboU29MQTYun8/ftFYAREddzSfcjgl5KS/5d44YIICP7+orou2bL1mbl2dUkG8oMHDRYvMMNcIPfxUcdiumiXXNCtXDl1kQPAtpXW7Q3kt26pP9+XX7btd1TQXuR37qh/b+YCOWDfwm5ygTDTicYtWojxnjlT8P0YtqtLJUuK5wBQ8KrxBw6IA0ulSxt3WUg6nfp3vnSp9fsy5/ffxWm7dubT6ZNPiufvzp0i6O7bJ7Ywk/76K681KM+pU6LbRacT89HNsXdhN/kzqllT/b9qSqezuW1dq/njAAO5Q1ghJyIib1S+fHm89dZbWLZsGZYtW4apU6ciNzcXI0eO1Hponsk0kCuK/o2/LicHFfxEVTzrQl4oKVFCreQYvmHPa0Fuiy0IDRSt3CKYKxh4dibw9dfidtnZatt38+ZqID95Ui3FGy7iZC6Qly+vrghemECeng68/37BwUGS47b0OaC2q7dqBXTrJs4fOmTf6tfWXL6svtl/8EH7vrZ0aeDRR8X53FwRVGSAMCc0VG1zMF0sTLarV6liHCQMtz6zNI/cWiCPjRWhOSfH+Od7/brx54Yt66ZfD+RflMx0/rgk5+1aeg4YtoAbbnsGqIFczsWWvvhCjLdaNWDgQPP3a0pWyE+cMD8VIilJ/M78/NRKuCl7Ark8mCQPgEihoepBjoJ2MbD0O7Cl2m94/3fdZfmghQy+331nvYqYlJR/60Y5D1624ZuKilLnvH/8sVodHzhQ/J+7ccP4/89PP4nTTp1EV4A5bduK31FCgnoQyJqCFnST2rUTpwUEcq3mjwMM5A5hhZyIiIqLa9euYf78+VoPwzOZBvKbN40qk1UCRAjWB/KyZdU3/rJiZ7BKdSjSUCtNtKSXLAm0wB68nDROLIC0cKF4E5+ZKRZYqlZNDW+pqSLEHDpkvCiV4RtiWXE1DOQ7djg2vxQAxowBXnxRVDFtIQOhDGbWAnn79o7NKS3Ihg3i592okfmqYkGee049P2WK9eqtTme5bd3cCutSQfPIZWowt66DTpe/bV1RxB7rTZqI+fGmK6wbkgeLLFXITQO5nIN++bL5IJuWpj6/LFXIT55Uu0eys4EPPhDnX3zRctXTVIUK4g/mzh3zK77Lv4OYGLWqZsrWQH7zpnobcwuJyfbxggK5DNymgVxWzG0N5Oba1aV77xX/K86ds7y/d0KCeM61aaNWGjMz1YN18sCYOc8/L04XL1YXonvhBfVgkWHbupx60rOn5fsLDVUXqGvfHpgwwfoBP1sDuayQb9+u/n/86y/g00/1Vfzbt9V/SayQFxGskBMREVG+QG6yOnBlfxGCcy7lzR8vVy7/G//ERKPFhmpdEiuRlywJDIDBgklPPCEq0oBoV/fxES3UMvSdOpV/GyJLLeu1a4uxODqP/I8/gHnzxPmCVgSX5Lvdhx8Wp//8Y9zSqijqAm6y1VburW1v2/qSJSLYmP485Crv1irb1tStCyxYIN7IyzFaYymQm1thXbK20vqFCyJI6HSWK5cy0MhAvnu32mL92mvA44+LgxKlSqkrrEsFVcgN548D4kkqx2tuCoKsjgcFqd0CUlSUCOmKoobPH34Qj12uXP5VuK3x8bFerZfff7Nmlu/D1kAufy9lyog52qZkedXWCrlhy7rh5wUFcmsrrEuBgcCgQeL8N9+Yv83s2eLAyYEDwMqV4rIdO8RBkqio/AsHGmrWTHSzZGeLEN+smfj+5c9ZBvKsLPWAgPybtuSFF8Sc+nPngLffFj+P1183f1tbA3n9+uLAxM2b4nm6e7f4+x01Sv+/Ze9ekdWrRt1CpWwrazi4CAO5A1ghJyIionyB3OTNfCXfvECeaFAhlyFI3tZwhXQAVc/kBfJgBQORt0VQjRri3aJ8U20YLAznkcsAKoOVDOQ3b6qLyMXEGM8vLaj6fPu28fd165Y4OCCdPWscrM3JzVUD25AhIkBduWLcyn3smKi0BgaqVV4ZnNevL/gxpLQ08Ub733/FAmyGZCCXWyw5YtgwdUGrghRUITdXpbdWIf/5Z3F69935w7RkWiGX87FlmP7uO3Eq9x83JCvkpoFcjte0Qg6olXprgdy0Oi4ZziO/dEkcMABE5TUoyPzXWGItyMpW5TZtLH+9rYFc/l7kgQhTsmK9e7flyt2tW2KeOWC5Qm6tMnzjhrooorVADgCPPCJO5QrnhtLTAcPupxkzxN+ZnD/epUvBc/gNu0ZGjxa3l9vvyUC+a5f4nsuWtR7wAWDAAPE7WLwYuOcecdnUqWrLuyFbA7mvL9C6tTi/cKHoHJA/i7wDhXL++GNVN0NXo7r1zgMXYCB3ACvkREREzvHWW2+hVatWCA4ORoS5ipMnk4FcVohMKuQVdXkrrV+x0rKeV328GigWm6qQsBXIzETYucOogRPIQAByt25X31AC6htewHwgl9snyVZj2a4eFqYuyiUrrOb2CzbUv78I8X36iDfYr78uHksujpWWJlbhtubkSXG7wEDRhi7fQBu2rcsK2t13i9W+AdFq6u8vAqLJgQuLZs1Sg+Dq1WqL6rlzIlj6+qpzSl3NkZZ1axVyWcGUv19zZCA/dkyExx9/FJ//+CMwbZp6O9N2dcDyom5y0Ta5qroha4Hc3JZnhmQg37FDhK+zZ8XPZNQo87e3xtLWZ7m56jZi1hanlH+XpvP9TRUUyOvWFX9jaWmWq9xyjOXKAZGRxtfJQH7mjJktFvLIgy3VquWfm2+qTRuxUNzNm/n/1hctEn+7FSuKv7ldu8TPSs4ft9auLg0YIA4KNG4M3H+/uEz+f9q7VwR82a7eubPlKQOGgoKAwYPF3++4ceKyoUONpyMYrkRv7nlpSv7uP/lE/H+Q48hbc0POBGkbkbdGg6Xfr4swkDuAFXIiIvIWAwYMsPoxduxYlz5+VlYWBg0ahKdtrTp6EsM2XMO5pXliFBHEfK6aCeQmFfIdpe/BZZSFX9ZtYPduhKwT7eq/oxvSg8uIMFarlnhMw0ApA/nx42oo6t9fnMrVvA3b1aW+fcWb0r171WqdqSNHgLVrxflVq0TYmzlTfD5vnhq0TCuqpmTwbtBALNok54YbhjjD+eNSyZLqhE5btj9LThZVPkBU6q5fV1d+ltXxZs3UbaZczVwgVxTrLevyshMnjN9opqSo30PfvpYfs0wZsT82ICr5WVkiMDVvDrzyipj2EB2ttjIbMlchz8hQPzcXfMz9LiVbK+SffSYOJpUrB6xZI9qL7WUpkB85IirKwcFiHr0lcj/xwlbIfX3VgyKW2tYttasD4vcXGSmeJ+a2BgTUv4WCquOA+BuXi7sZtq0rimhXB0RHgpwiMGGCurViQe3lgDhgtmuX+P3J1djr1RMBPyVFPNfleG25P1PvvCP+B6SkiOesnN4jfzaxsfmnQ5hjeDAmLk7tnjlyBIqiVsjrZOU9j23dEtFJGMgdwAo5ERF5i/DwcKsfcXFxeFSuLu0Cb7zxBsaOHYsGBbUyeiI/P7W19uZNteqdV4WOzhWVaZ9rBnPIZauxvG1eODvtWw2b0EFctnEjSqwWgXw5BohCWZkyItieOaOGekBte/79d1FRCw4Wbz4DA9W9yA1XWJfKlVPfpC43mKtuSO4b3L69aH2Vb4AeeUQszmSpxdmUrNzL8CarqjKo5+Soi0iZzs3u3t36GA29/74I5XXrqnPVZaurDLO27GvtLOYCeVKSaN/18VGDs6HKldWtzwy/bs0a0YlRq5b5xcQMyUAo597LPdQBUXG8dMn8PHpZIU9JEQsFAuoK/mFh5oO1/F3++6/RWggAbA/kgHjerl7t2GJ7gHGrt+H0BtmuHh8vwqMlzmpZB9R2Z1l2NWVpQTfJWvv9wYNqmBwwwOpQ9WTb+po1YloIIObV798v/k8MHy7mbut04uelKOJ3Y/j/wh7+/sYLMsoDE44Ecn9/0b4eGSm2Vnv2WfF/zdZ2dal5c9EJUKaM+DnI5/+RIzh3VsGlS+LPrszFvAq5uUUTXcjPrY/mJVghJyIib7FgwQKth2C3zMxMZBqsDp4qw4MWQkPFPOu0NPXNfJMmwJYtKJctArn/DSsV8rw2zJNKNRxBKAZjCfD119CdPIk78MUq9MYkuY11YGD+PYFlhVy2pTdsKN5ZxsWJKtLp08YrrBsaMEBUppcvB0w7IQznrI8ZI9qkX39dtLTK7Y5iY0U1zbTF2ZQM3rJCKd+sy8u//lqExFKl8u85dP/9omq3YYP4mcmfX2amaHO+dk1U93r2VIPKm2+K02+/FYH8/ffVufKFmT9uL9mRYLinuGxFr1RJbA9lys9PhPITJ0T4k1tEyXZ1a9VxqUULsbAdIJ5z5qrh5oSGioXKkpPF77RePTWA1qxpfj5xhQpiS7jr10X7r+H6Bpa2PJMaNBAHtLKyREu96TZi9qheXRzkSEkRzxNZ8ZaB3Fq7OqA+r27eFAdMLFVd7QnkjlTI5eVbt+YP5NnZYg2D7GwxhcTWbeFq1RI/2z17xPP/nXdEuzoAPPSQ+P2VLi2eW/J5ZmnRQFs1by6+/w8+EAfcqldX91i3V2ys+Fvu1UvMec/JEf8rANsDeUCA+Lnn5ooOjOxsEfbT0vDPqrMA4tCiQQZ8DuRV3lkh93yskBMREWln2rRpRlX8WFnZ04Lhwm6y6t20KQAgMlNUOP1TzCzqlpRk1L78X041/IG86m3eZdv8O+A6InFLBnJzTBfakqFXVl9Pnzbfsg6ore3btuWvDK5ZIy4rW1ZdXKlGDeCxx9SuAFsr5DJ4m1bIjx8XoU2uojxhQv7FvKpVE9XN3FyxCrf0/fcipO/fLw4m1K4tDoo0bSq+r27dxJvwU6dE5fXsWfEG3HAuvqsZVshl1dba/HHJdB55Vhbw66/ivLX545JhsH388fwHcawxnUdubf44IEK6pXnkBVXIQ0NFZ8T27epzzFEBAerfgmHbupw/bm1BN0B0tQQHi/Mma0HopaSo35MtgfzQofz7ewO2V8hN2++nTxdV4lKlgLlzC15wzfRrS5cWobRPH/VvyXC+/v/+p553RiAH1NZyR6rjhnr0AL76SlRFFy4Ua0UAtgdyQDzf5HQIf3/9czrxD3GApE+NoyLclS7teHeAgxjIHcAKORERkWWvvPIKdDqd1Y9/ra0iXIDx48cjJSVF/3GuoAqtKxkGchlq8wJ5aPYNBOI2AlPNBPKMDFE5zXuDfzSzKv5DTWSXjdHf9bpQ0ZJqNZBHRalBwuCxzQZy0zeZsbEivClK/lWMZefEkCGWW31tCeRJSaL6rdOpKyxHRYkKpqKIFdsvXBD3ZWkxL9l+/u234lRRgPfeE+cHDFCDPiD22tbpRMCSIeDFF8Vpy5a2zTd1FlmlTU83bgEHrAdy05XWN28WXx8VZdvqz82aieeEvz/w1FP2jdn0d2pLRdjRQA6IedC2zIW2hQy4q1eL0zNnxIEFP7/8nRemdLqC29blzyIqSv27NycmRvwcFcV4L25AdHbIAy3WKuSAcYX84EHgjTfE+Vmz1OeWrTp0EM+9V15RD9C0aqX+v5CfP/mkCL+FndphusVcYQM5IFrvly0TnSWyKmpPIDeV93zxOSoWdmsZnNeu3rChfQc7nICB3AGskBMREVn2wgsv4OjRo1Y/qprbQslGAQEBCAsLM/rQjLlAXrOmPiRXwAUEpRnMIQ8OVhcVk/sjlymDpNthAHTIjFdbqrdG9gNQQCDX6Yyr5OYq5JZa1gG17dVwjvbVq+qKzMOGWX5sWwK5rI7XqKGu8A6oIU4eCHjrLcuV3MGDRTVk715RNVy7VrRHh4YCX34pqoZ//SWqrT16qF8n27tllded7eqA+F3LnQPkQRFrW55JMvwePy6C+OLF4vPevW1bpTo0VLTob96s/o5sZW+FHLC8sJstgdyZ5MGHjz8WP2fZrt60qW0HYmwN5LaswG2pbf34cbVt2lKoloH8v//E1BFFAZ55Rm1VlweoIJonJk0qeNtzAOK5OG2aGMMHH6ht64bmzgV++03d6cBRdeqo3S46nfP+9vr2FeMrWVL8vyhMa3neTgMRF0Ugr5ZmEMjdjHPIHcAKORERkWVly5ZFWXe9CdeaDOSpqWqra3S0aA8/fhzVcQIlsvIStfyZREWJ2+cFcqVqVdzeLa7K7dIN+HkR0Lo10rNEgLYayAERyA8dEpVAuVCWLS3rgGjvfuUVEeBu3BDtsN99J978N21q/c2ppUB+5YoIyL6+auA2XeG6cWPRFi/PP/SQ5ccpW1YE7V9+EWOTSyI//rjagmpakQNEgNXp1HZxdy7oJpUvL+ZkX7woQooMdbZUyFeuNF5x3JZ2dcnRfZRNf6cykNtaIVcUtbpY0LZnztazp1gEcO1a4KWX1MctaP645MxAfvfdYh6/6cJuhvPHLVVhY2PFwZz0dDHl4sIF0XofEAB8+qnR1/38MzBlipi9IbvzC1SxYv41I5zNz0/8zW/fLv42S5d23n136iQOzKWlFbztmzV5gTw2VfxOyiVqF8hZIXcAK+RERETOcfbsWezfvx9nz55FTk4O9u/fj/379yMtLU3rodlGBvLz50W5ChCBOy/8NkJe1dDfX62Myzf+eYH8TpxaLfUbNkRsA/X11/pOdJsCOSBaMGVlSwbyhATLLeuAqHzWry8qcR9+KN7wy/mZjz1m/XFleLtwQd3vGxDVsF69RDiaM0dcZrpqsWGb+YwZBVd+ZVXw009F+vD1Fds1WRMdrQbTgICC25ZdwXAe+cGDospvOO/anBYtjFuiS5YUq0I7o+23IPJ3eu6ccdeHtRBap44IYHIxOMndFXJALODn6wusWKF2FtgbyHftMl6pXbLlYIpkWCE3vK+C5o8D4m9BrqR/9Cgwdao4//jj+Q6qyXxvbtt6zckdE+691/n3XbFi4drVAf3voA6OIDBAQcCxvP/Vbl5hHWCF3CGskBMRETnHxIkT8dVXX+k/b5JXSd24cSM6dOig0ajsIIOTfLMeHi5aNfOCWGPsF5eXK6dWtuQ88rztwDIriECu0wFBIb7AyJEA1C7bAgO5nAdquD+5DOTnz6uXGW6XZmjAAFFhnzJFvSwoCHjwQeuPGxUlDjRkZ4vAWamS6BI4LFpA0aiRuiKyQZstABEwq1QRYcmWoNm3r2h5v35dfD54sG2rNvfrJ6qUbdrYt7iZsxgG8p9/FucHDRLfuyVlyoiDHMnJ4rzpQneuJFvWz55Vn9Nly6qt9+YEBIhQfvCgqJJXqiTmSssFzdwZyOvVE/OgP/1ULMIG2L6QX/fu4uu+/lo8t99917iKLVOvLRXypk3FQYrERHGQQh7okIHc0vxxqU4d8f/hyy9F94q/v6j6m5ANDElJYlkKLZ7iFk2YIA682dPZ4U41aiDXzx+hd9LQr/xu6BKuiIMh1g6WuAgr5A5ghZyIiMg5Fi5cCEVR8n0UiTAOqIFcvlmXYTuvkqUP5IahRAbjvKpyerSocAcHG7//l4E8PT3/w164ILJDdjZEu/fGjWJ+qBQVZfzuvFw589tsAaISHh0tPnr2BF59VdxfZKSVbxziDZHclku2OO/bJ05r1RLzxw8eBP78M/9c5jJlRDuuwcEYq4KD1VXhAbFvsi2ee04shvXxx7bd3tlkIF+7Fli6VPyC5ary1oSGinDszjAOqL+n8+fVFbKtzR+XTBd2k9VxPz/jtnt3eOMN9THr1LG9rblPH7U7ZMYMsd2fYXXbnpb1oCD1Z2LYtl7QlmeSvF4exBk61Ox6AHJIQMGbHbhdyZLiwJml/zta8/fHjbLiuf2gLm/V+Ro1jBfJdBMGcgewQk5EREQA8lfIZdjOC+Q1IUpYuZFl8dJLeVtkm1Sqb5YTFXLTdaesVcifeUYsSv711xBvTDp0MF40TaczriBb28ancmVRwb10SWyv9dZbts9BNp1zLAO5uTndhTVypDgI0KuX7fcfFARMnFhwAHIV+XPfuFGcDhqkzvP3RBUqiOdOZqa66KA9gVwu4me4B7mbV6xGmTLiOQzYX50dPVpMGQFEOH/1VXH+xg2x5z1gW8s6oE6RkIH8zh21pF1QFdbw+errK9Z5MKEo6t0BYrkIss/ZEPF7aJ+UN71Bg/njAAO5Q1ghJyIiIgBqCJZv1k0q5L4QR+//OFQWM2aIbHhZF2V0F8mR9gXyzExg/Xpx/tAhK2OTbetAwfvqOhqaTAP53r3i1HA7JWdp00Yc+FiyxPn37SqGc35trY5ryd9fXf17wwZxaktF2HSldS3mjxsaNUpU+OVWYfYYORKYP1+cf/99sX2aPOAWE2N84Msa05XWExLEH29QUMHTLQznRz/0kNlV+a9eFbMapDNnbBsWqQ5DLOwWfuuSuICBvOhghZyIiIgA5N+PWFa/TQLwwaRy+vO7zxpUyAMCcCNQBCBbA/mOHWobu9zW2izDQG5uhXVnMFwEDHBthRwQC9hp0FLqMMPngadXxyU5j1zOd7anQn7ypOi20DqQA2Lc/v4OfemF7sOxLaizmBPy1lv2tatLskK+d69Y8FH+PGvXLngRwxo1RNu9ry8wfrzZmxi2qwMM5I7YnVbP+AIG8qKDFXIiIiICkD+Qm1TIpdsly2LIEHF+/UGDCnnVqkhLF28sTAtvlgL577+r520O5AVVyB1lWCG/dk1NBYarqBdn8udTFKrjkulcZVtCaNmyYnV4RQGGDFG3ACyi2x/+9BPw0u286vqCBcC6deK8PYG8enWx3VdmJnDggO0LugFi3vWGDWL9BQu3N2xXB9iybq87d4BNl02mDmiwwjrAQO4QWSFnICciIirmLFXIZdtvnideLYsXXxTnf9lrUCGvVk0fuE0r5Ja2PTMM5KdOmd+hCYD7A7msjlerZn1V7uKkfHl15e6iUB0H1Aq5ZOuc6W++EU/ijRuB6dPFZUU0kO/dC2xHa/yOriK5ycUH7QnkOp3atr5zp+0LuknNmgGtWlm8WgZyufYiK+T2OXsWOJpTA1nI66IICzO7cJ47MJA7QFbI2bJORERUzFkK5CVKGIWRsnXLomFDkc/OZqrt66ha1WIgN1chv3pVzb06ndjq6NIlC2NzZ8u6YSB3Vbt6UfX009C3RxQFhqGkYkXbpwjUqgXMnSvOywq5rSucexj5VJ6MycZX2BPIAeOF3WzZg9wOsmVd7hrIQG6f48eBO/DHmYC8KRkNG7p/AcI8DOQOYIWciIiIAFhuWQeMQ3C5ctDpgB49gCwE4FZAKXG5lQq5uW3PNmwQFfEGDdS8bbFt3R0VcllNTU4GNm0S512xoBu5j2GF3Jb544aGDAGGD1c/L4IV8sxMdbHEHWiFC/W7qVfaG8gNK+T2tKzbQFbIu3YVpxcu5G2DSDaRBzQuR+YdINFo/jjAQO4QVsiJiIgIgOUKOWAcyPOCSc+e4tMLyLuuRg27KuSyXb1rV7G+GWAlkEdFqfuRV6lS8PfiiNBQtT39jz/EKSvkRZthhdzeQA6IPd9le76TqsHudOiQ6FKXVjaaLM6UKGF2tXOr7rpLnJ48CaSliX3ZbZ0CYEVurhoo27QBAgLEZefPF/qui40TJ8TpgbajgObNxer6GmEgdwAr5ERERAQgfyAvZ9CObiaQd+ki3kc8lzkDKSPGAV262BzIFUVdW6pbNzUbnDplYWw6HbBli1iW3ZVzumWAy8oSp02auO6xyPUMK+T2VoQB0eK+bRuweTPQvr3zxuUmsl1dWpMSD/zwA7Bsmf0r/JcqJVr5pRo1HF753dDFi8Dt2+J/SdWq6p8g29ZtJw9o+HRsD+zZo9mCboDGgXzatGlo0aIFQkNDUa5cOfTr1w/Hjh0zuk1GRgZGjRqFyMhIhISEYODAgUiS81I0wgo5ERERATAO5KVLiyqaJNvE/f3FFkYQuTg+HliLHljU7H1k5vrjr7/EzQoK5MeOid3FAgKAtm3VQG51pfUaNVy/4rlhRbVyZXWVKSqaypYVTzLAsQo5IBbIatdOszm5hSEDuew2P3wYwP33A/fe69gdynnkgNPb1atWFf9e5OwUrrRuO1khd+SYk7NpGsg3b96MUaNGYefOnVi3bh2ys7PRrVs33DLozRo7dixWrVqFJUuWYPPmzbh48SIGDBig4ahZISciIqI8hinacP44oFbIy5Y1CiaybX3xYtF6vn69eG8hLze9a/m2SLart20rCnU2BXJ3MAzknD9e9Pn4AK1biydZixZaj8btZCB/5BFxevp0/p0O7CKTPeC0Fn4ZyOXxkrg4ccoKuW3u3FE7i5wwg6DQ/LR88DVr1hh9vnDhQpQrVw579+5Fu3btkJKSgvnz52PRokXo1KkTAGDBggWoU6cOdu7cibsNjzi5ESvkREREBEC8KShZUrxjN5w/DqiTvE22kerZE5gwQXT0AqKY+OOPYi6oIdkde/GieMMtF3eTizjJuzdsWc/KAkaNElNXn3iikN+brRjIvc+aNWLOc6lSWo/ErbKzgX/+Eee7dxeLxF+9KrpTHH5qu6BCLtutZXWXgdw+Z8+KUB4QIDYS0JpHzSFPSUkBAJQuXRoAsHfvXmRnZ6OLXM8fQO3atVGpUiXs2LHD7H1kZmYiNTXV6MPZWCEnIiIiPdm2bloh79AB+PBDYPZso4sbN1aze9WqYop39+7577ZqVbWgdvasCAY6HdCrl7hMVsivXAFu3hTnf/kF+OILYMwYsSWaWxgGci7o5h38/YtdGAfEQuiZmeIgmeHfn9xC3CENGgAhIeK8k/aiN62Qs2XdPvKARrVqaqFVSx4wBCE3NxdjxoxB69atUT/vyZqYmIgSJUogwmQhkqioKCQmJpq9n2nTpiE8PFz/EWtyVNoZWCEnIiIiPRnITSvkPj7A88/nC6k6HfDZZ6KSvWuX5S7WEiWAgwdFhXz7duD770V7u3xPHxambvMs29blom/p6eouZC5n+F6LFXIqwmS7etOm4s9X/m0ePlyIO/XzA777DvjoI6dtrcWW9cIx7TDQmqYt64ZGjRqFQ4cOYevWrYW6n/Hjx2PcuHH6z1NTU50eylkhJyIiIj1LgdyKPn3ER0F8fICYGPERH5//+mrVROX85ElReZeBHBDV8h49bB6S4+rXF0cHqlc3XmWeqIgxDOSAkyrkgG1/7DYynP9s2rJ+7pzIJzKrkHlyQTdPmD8OeEiF/Nlnn8Xq1auxceNGVDRo5I+OjkZWVhaSk5ONbp+UlIRoCy96AQEBCAsLM/pwNlbIiYiISC9vBXV7ArmzGG59dvq0+kYTAH79VWyVJi1aBPTuDVhoMnRcRASQkCC2urLi33/FdNq1a538+EROYhrI69UTp4aBfPduYO5c478tdzp9WoTywEB1/nP58qIQn50NXLqkzbiKEk+rkGsayBVFwbPPPosVK1bgjz/+QJUqVYyub9asGfz9/bFhwwb9ZceOHcPZs2cRb+4wsZuwQk5ERER6Y8YA/fo5vi1SIciF3U6eFO3sgNhOt0QJEdLlbrI3bwLPPAOsXg28+ab1+zx9WlTa7FK6tEgIVnz6qWjRN5lSn8+77wK1awPnz9s5BqJCyMkB9u8X500r5KdOiX2/k5NF18nTTwOFbOp1mGxXr15dLRL6+anhnG3rBZP/FxnIIdrUv/32WyxatAihoaFITExEYmIibt++DQAIDw/HiBEjMG7cOGzcuBF79+7FY489hvj4eM1WWAdYISciIiIDffoAK1Zosv+24dZnMpD37SvWkwNE2zogFnrLWzsX8+dbrqKdOyfWoGrSRF0ozllkAf3oUeu3++IL8YZ5yRLnPj6RNf/9JzZLCA5W52ZHRYm17XJzxXNyxgzgxg1x3cGD2oxTVndNt4jnPHLb3LyprrnRoIG2Y5E0DeRz5sxBSkoKOnTogJiYGP3H4sWL9beZOXMm7r33XgwcOBDt2rVDdHQ0li9fruGoWSEnIiIizyAD+fHjgGwo7NoVuOcecf6XX0Qb68yZ4vOSJcUq0h98YP7+Jk0Su11duyb2SXeWtDR1O6lTpyyvAJ+Roc6P3b7deY9PVBDZrt64sfpeX6dTq+R//CE2TZAKOrBkK3tb3y21W3OlddscOiROY2KAsmW1HYukecu6uY9hw4bpbxMYGIjZs2fj+vXruHXrFpYvX25x/ri7sEJOREREnkAG8jNnxOJuISFAy5bq1mhbtoiK87lzotr31Vfi8jlzgOvXje/r8GH1ekBU0p1l1y61kJGbq4YKUydOqO+vtm/Xbp4uFT8HDojTxo2NL5fzyF9/Xexe4O8vPv/338I/5nffib/Lb7+1/WvkASv5ty+xQm4b+Xtu1EjbcRjyiEXdihpWyImIiMgTREcbT93u0EEEhurVRUvrnTuA3Hxm9GhgwADxRvTWLWDWLOP7evVVEYY7dBDvdXbudMLq0nlM13uzVF00DDkXLzowl53IQQkJ4tS08iwr5Onp4nTyZHFa2EC+YgXw6KPAlSuAPc2/MpDL9SMkBnLbyE4dJ+1A5xQM5A5ghZyIiIg8gY+P8Rvzrl3V87JtPSNDzIt96inRgjthgrh81ix1nvjWrcDPP4sgPneuuj6dtSq5Pe+DZCAPCBCntgRyANixw/bHICoM2eotW78lGcgBoFs38XcEiEUHHV1n4fffgQceUP+GbD3wlJurHjgwrZCzZd02skLOQF7EsUJOREREnsLwjXmXLup5GcgBYMQIdc25AQOAWrXE4lS1awNDhgDPPiuuGz5cXDdihPj866+BrCxxPjcX2LxZBPoWLUQlXlYLrcnJUYP1ffeJ04ICeYkS4pTzyIuOBQuAadO0HoXjLAXy+vXV82+/LTYUKFdOfC5XPLfHrl1iU4asLKBZM3HZ2bO2fe2FC+LrDFdVlwwr5JzqYZ6isGXda7BCTkRERJ5CBvLy5YE6ddTL27ZVW9rHjlUv9/UV1fGSJUVb+HffiTbOoCCxqBsA9OwpvvbqVWDVKtEm2769aGd/+23gr7/E+6CPP1YDuyWHDolKYmgoMGiQuKygQN6/vzhlhbxoyM4WleNXXxXrABQ16emidRzIH8hjYoAvvwS++UYN0LVri1NHFnabOlVsoda9u+hKAYDLl8ViiwWR7epxcSKUG6pQQZxmZKg7KpCx06fF/yJ/f3Hg0VMwkDuAFXIiIiLyFHIn2IEDRUu6VKKECLR//w1UqWL8Nd26iRCwYYNYrKp7d7HQm3xT7+cHDB0qzk+YIKpJW7eKReMefhhYuFAsRnX9urrdmiWyXf3uu9Vq47Fj+d9H5eaqgXz4cHH6998ivJBnO3dOPTDjrNXH3UnOuw4PByIi8l//2GOik0SSgdyReeTya155RYR9uQbE+fMFf62l+eOAuJ+wMHE+Kcn+cRUHsjpet666OJ8nYCB3ACvkRERE5CkGDxat3dOn57+ucmU1PJgKDgY6dQKmTAHWrFEDuCRD8bFjYtuytm3FG9pvvxW3ldXugrZHk4G8dWsxnoAAUQ00net64YJYbM7PD+jYUYSVO3dENZ48m5zXDIjnS1FjqV3dEkcDeXa28eJxOh1QqZL43Ja2dWuBHBBdLQCQmGjfuIoLT2xXBxjIHcIKOREREXkKnQ6Ijzdebd0ZatYE7r9fBOh33wU2bjSutN9/vzhdscLyvuKAcSD39RX3C+SvpMpwU726qF61aiU+5zxyzyeDIlA8ArmcGmJvID9zRuSHoCBxwAkAYmPFqS0Lu1na8kyKihKnrJCb54krrAMM5A5hhZyIiIiKg+++E3MuX3pJLUhIrVqJhaVu3hQVdnPOnxchxMdH7I8OqGHGUiCX1UcG8qLDMJA7Y39ud3O0Qv7ff6KLw1bHj4vT6tXVPOFIILdUIWcgt44Vci/CCjkREREVB76+luda+viIdnnActu6rI43aiQWdQNsD+Tx8eJ0xw6uGu3pvKVCLlcqL0ilSqLKbdiCbgvDQG54X4BtLesnT4pTtqzb79YtdcFBVsi9ACvkRERERGIvZUCsFn3rlnr5+fPA55+LVndAtKtLtgbypk3FwnRXrqhBhDyTYSC/ckUs9leU2Fsh9/FRV+m2pyNABsIaNdTLbK2Q37yprgTPCrn9Dh0SB/aiotRt6zwFA7kDWCEnIiIiApo3F+EgPR1YtkxsDRUfL0LGk0+KVdIB4z3RDQO5YeVbBnR5fUCAuH+A2595OhnI5Sr/Ra1Kbm8gBxxb2E1WyB0J5LISHxkpVoM3hxVyyzy1XR1gIHcIK+REREREIoDJxd2GDgUefRTYuVNcfvfdwJtvijfCPXqoX1OzpngvlZKiBoeUFODSJXHecH9gw7Z18kwpKWpF/K67xGlRCuTp6WILQMD1gVxWyG1pWb9+Xa2IAwXPHwdYIbfGUxd0AxjIHcIKOREREZHw4INqZTQ2Fpg6Fbh4UYTo114DGjQwvn1goLpau6yKywAXE2Nc/WvRQpzu3eu68VPhyMpt2bJAs2bifFFa2E3uQR4WZn4PcktkILd133XTLc8kWSFPTRUfgFgorkULoH59IDlZXMZAXjiyQs5A7iVYISciInKO06dPY8SIEahSpQqCgoJQrVo1TJo0CVlZWVoPjWzUoIFYZf2XX0RomDBBbZ21xHQeuen8cUm2rP/zD8CnhGcyDIqyu6EoVcgN29XlgSVbGG59Zsuig+a2PAOAkBD1QIBsWz9yRPxcL18W6zMAtgVy+XeXlMSFEA0pClvWvQ4r5ERERM7x77//Ijc3F5999hkOHz6MmTNnYu7cuXj11Ve1HhrZoVs3oFcvwM/PttvbGsirVhVhJTMTOHzYKUMlJzMMivL3V5QCuayQ29OuDogqt04H3Lhh3FpuibktzyRZJZdt63v2qNctXSpO5cKGlvYgB9TFyrKy1Mo6iYMuKSlixwjT/zGegIHcAayQExEROUePHj2wYMECdOvWDVWrVkWfPn3w4osvYvny5VoPjVxIBvItW8SbZUuBXKdTq+R//eW24ZEdzFXIT5ywb39uLTmyoBsgKt3ya2xp0Te3oJsk55HLCvnu3ep1a9eKMGlLhTwwUK22c2E3lfzf0bCh2LnB0zCQO4AVciIiItdJSUlB6dKlLV6fmZmJ1NRUow8qWpo2FacHDoiA8csv4nMZ1A0xkNvm8mUxT9nd5LzoKlVEpdeR/bm15GggB+ybR25uQTfJdKV1WSHX6US1+6ef1HFaC+QA55GbI9egkGsceBoGcgewQk5EROQaJ06cwMcff4wnn3zS4m2mTZuG8PBw/UesfDdLRUajRmJubJcuYn6nnB9uTyDfts24tbc4O34cqFBB3RfenQwrtz4+YhV9wLPa1rOzLRfSChPI5fcqw7Y11irkhi3rt2+r852HDhWnH34o/kb8/ICKFa0/DgN5fjKQy/8lnoaB3AGskBMREVn3yiuvQKfTWf3416TP88KFC+jRowcGDRqEJ554wuJ9jx8/HikpKfqPcwVt4EseqXdvYN06EWYmTgTmzDEfNuSb6IMHgYwMcf70aaBDB6BNG9vCkLfbuFG0iG/b5t7HzcnJX7mVbeuestL6lSsipN57r/liWmECudwtwJZuAGsVcsOW9f37xc81OhoYN05c/vff6hhlDrGEe5EbUxTPr5DbuPQGGWKFnIiIyLoXXngBw4YNs3qbqga9lxcvXkTHjh3RqlUrfP7551a/LiAgAAEBAc4YJnmAatWAN96wfH2lSkCZMsDVqyKUt2gBfPONOkd53Dh1JeriSlZUk5JEhTUoyD2Pe/Fi/sqtp620vm+fWHhtzRrgu++ARx5Rr7t9W60kuzKQW9ryTDJsWZfzx+W2Z7VqqT9Lawu6SayQG0tIEL//EiXEz9MTsULuAFbIiYiIrCtbtixq165t9aNE3uo6Fy5cQIcOHdCsWTMsWLAAPqZLEFOxZrqwm6IAX32lXr9qFfDbb9qMzVkyMoD331fbv+0lAzmgrhruDnK8hpVbOa/aUyrkhsH05ZeBmzfVzx3dg1ySxxQLCuSGW56VL5//enOB/K67xHN/0KD8j2eNDOSskAuyOt6ggWcu6AYwkDuEFXIiIiLnkGG8UqVKeO+993DlyhUkJiYike8myYBhIN+2TWwBFRICPPWUuPz554v2PuWffQa8+CLQubOo5tnDcI9lQG3BdgcZyGWlGPC8CrlhIL90CXj7bfVzR/cgl2RV/cYN69uMGW55Zu5xKlQQl2dmilXVAVEhB+wP5IZ7kZO69oSnzh8HGMgdwgo5ERGRc6xbtw4nTpzAhg0bULFiRcTExOg/iCQZTv76S62O33cf8O67oiJ4/Djw0Ufaja+wNmwQp6dPA8OHi5Btq3PnxLZYkjsDuawMGwZFudDZlSvA9evuG4slMpjKduUPPlDncxdm/jggDgqVLSvOm1bJv/1WDdfWFnQDgIAAtbJ97Zo4lc/5Bg3UrgNzix6aYsu6MU+fPw4wkDuEFXIiIiLnGDZsGBRFMftBJMnq1uHDwOLF4vzQoaLV+N13xedTpoitv4qanBzgzz/FeZ0OWLkSmDXL9q83rI4D2lTIDQN5aKio+AKeUSWXwfSRR4Du3UUnxciRIqjJ8cfFOX7/5uaRHzsmHq9HD9H5INv3zS3oJhluFlGtGiB3ftTpxHP+ww+Bnj0LHg8XdVMVhQXdAAZyh7BCTkREROQ+5csDMTHivdfNm6Ki2a6duO6RR4AmTYC0NODHHzUdpkP27xcV7rAwYOZMcdn//icWITOsfFsiA7lshdY6kAOiqguo+8trSQbyqCgRav38xKr0zZsDM2aI6xytkAPm55Hv26eef/99YO5ccd5ShRwwDuR33WV8XcOGYlqGLctryAr55cssHp46JaYSePKCbgADuUNYISciIiJyL8M5oI8+qr4f8/ERnwNq9bwo2bRJnLZrBzz3HDBggFiVu2dPsdBYWBjQt6+6qrwpGchbthSnnhDI5a6Fs2cDqanuG485hoG8dm3RRt6/v2g3l+QBBEfICrnhgnwHD4rTpk3F48iGH2sVcrn1GZA/kNujXDlxmp1t/3oE3kZWxxs29NwF3QAGcoewQk5ERETkXqaB3NB994nTrVuB8+fdNyZn2LhRnHboIKrc8+cDffoApUqJy2/eFNu6/fOP+a+XgbxPH3HqrkB+65Yadg0XdQOAfv3E4m7JyUABuxi6nGEgB4BOnYDly8U2euvWifNdujh+/+Za1mUgf+wxsWp6vXqilbxpU8v3Y1ghl/PHHREQoD53ivs88qLQrg4wkDtEBnJWyImIiIjcQ4ambt3y78dcsSLQpo04v3Sp5fvYtg2YNAm45x4RkOrV03bhsTt3gC1bxPmOHcVpRATw009iXGlpQKtW4vLDh/N/fUaGOk9bBnK5F7mrnTwpTsPD1QAo+fiILcYAsYhaZqbrx2NOTo5YXA5QA7kUECCeU/37O7bCumQtkDdoIBZiO3hQbH0WFmb5fmQg9/UVUzAKg1ufCUVhhXWAgdwhskWKFXIiIiIi92jVSszNtdSWPniwOLV0/YkToi18yhTg119FcD1yBHjnnfy3ddficPv3i5buiAigUaP815csCTRuLM6bC+RHjogCUWQkULeuGvjcsRf5tm3i1FLV9+GHxYGSS5eAb75x/XjMuXZNLaDJ1dCdTbbrnz4tWtNTU9Wfv2yF1+kKbplu0kTcrk0bIDi4cGMqTluf7doFvPQSkJ5ufLmiqHP5WSH3QrJCrij2bUtBRERERI5r0kSEV3Puu08Emp07zQfSn34S4ax2beDjj9Vt0j7+2LjN/Z13RIVR7nHuSobzx+X7S1P16onTI0fyXyfb1Rs2FN+7XJzMHW3rf/whTmVl31SJEsALL4jz06drU8iSgTQyEvD3d81jxMaKYl1GhqhIHzokLi9fXl0p3RbVq4vV2H/6qfBjKk5bn40fLxbnW7LE+HLDBd3k35CnYiB3gOEKh2xbJyIiItJeTAzQvr04b/rmHABWrxanTz8NPPssMHq0qEZmZABvvCGu27ABePVVcf6zz4CFC/PfjzOLMYbzxy2RYcJchdywNRpwXyDPzVUPJlgK5ADw+OMilB4/bn0qgauYzh93BX9/td381Kn8vxN71KwppgAUVnFqWZd7vJv+fezfL04bNPDsBd0ABnKHGB7BZCAnIiIi8gyW2taTk8WCb4CYPw6IirLcw/zLL0XF96GHROCWq2E/84xa8dyyRbSPt2rlnGqv4fxxa4G8bl1xmpAgFlIzZFghB9wXyA8fFouiBQdbXxE8JESsHA8AEya4fy65OwI5YDyPvDCB3FmKS8t6ZiZw4YI4L/d6l2RHiSdvdyYxkDvAsELOeeREREREnmHgQPE+7a+/jLeh+v13EYBr1zZeEK5VK7EYWm6uWCzu8mURuvfvF5/fvg0MGiSCebt2YqXznTuNF/By1N9/ixXUS5UyP39cKltWnf9sGjq0CuSyst+mTcHVxxdeEN0LJ08Cs2a5dlym3BXIDfci94RAXlwq5GfOqB0rlgK5PKDlyRjIHcAKOREREZHnKVdObaGeN0+9/JdfxKmsjht6+20R4nNyxKJoS5aIxdS+/RaoUEG80Z8zR9w2IECcGoZ9R8lQ266dcbHHHHNt60lJ4gCCTqde7+5Abq1dXQoJAaZNE+fffNO9VVt3V8gL27LuLMVlDrnh3+GpU8YdGAzkXo4VciIiIiLP9Oyz4vSjj4CLF8V7tV9/FZfde2/+29erB4waJeYCL1yotquXLQv88IMI59WqiZb2bt3EdXLLL0clJYntwADb9sA2F8hldbxGDXVVbncE8pwcYPNmcd6WQA4Ajzwi9ta+eVO0rruLuwP5tm3AjRuieFenjmsf05ri0rJu2KmSkyN2UgBEN4zcDpCB3EuxQk5ERETkmfr2BeLjRbv5lCnAnj1ivnN4ONC6tfmv+egjEaT69ze+vE0bsW3Xf/+J8Clbk22tkOfmilWgX3tNLB4nLxs6VISlBg2AESMKvh8ZKgwDudzSSbarA2ogd+Ve5P/8I35WoaG2byfl46Ouav/ll8Du3a4Zmyl3B3K5wFiNGkBgoGsf0xrDCrk3ZxXTv0PZtp6QIKrlQUFAXJz7x2UvBnIHsEJORERE5JkMF2v74gu1Et29u+Wtr3Q6UQk3JzRUfe8n55/bWiH/6Sexjdpbb4mDAadPi/GsXSvCwg8/iNOCmNv6TG6P1a6dellEhOv3Ipft6m3bAn5+tn9dfLy6aF7LliLE3nefa1dfd/cccknLdnVATN0ARE65fl3bsbiSrJDLv08ZyOXfSe3alrcT9CSaBvI///wTvXv3Rvny5aHT6bBy5Uqj6xVFwcSJExETE4OgoCB06dIFx+WhJw2xQk5ERETkudq2BXr3FoFEboFmbv64veypkCuKmJ8OiMC/bx/QtKmomAPAhx/a3k4rA7lcaf3cOWDHDnG/Aweqt3PHXuT2zB83NWMGcPfd4vzp08CyZSKkp6c7bXhG3BXIo6KMD6xoHchLlFD3QD93TtuxuJL8O2zZUpyaBvKi0K4OaBzIb926hUaNGmH27Nlmr58+fTpmzZqFuXPnYteuXShZsiS6d++ODNnzoxGdTj3PCjkRERGR55GLtQHivVvPnoW/T8MKeUH7ka9fL1Z7Dw4Wpy1aiFbvO3dEiH7iCdsft0wZtep59KhaVW7dGihf3vi2hQ3kf/0lVp7v0gVISzO+7s4d4M8/xXlHAnn58uJAwo0bYs/34GAgO1vdusqZcnPFoneA6wO54YEQQPtADojdAgDg1Ve9t4AoK+S9eonTo0fFKQO5HXr27ImpU6eiv+mEHYjq+IcffojXXnsNffv2RcOGDfH111/j4sWL+SrpWpBVcm99ghMREREVZfXri7nagNgrW24dVhiVK4vwlZYm5qVbI6vjI0eKyviWLcBLL4k27XnzjAs8tjBc2E1W/eW+66ZjBOwP5MeOibG1aAGsWiUCs2yLl/btEwuzRUSogc8RERFAp05AbKz4/Px5x+/LEnnwA1APZriSnEcOeEYgnzVLzGNfswb45BOtR+N8N24AycnivDzY9u+/4kCZXGuBgbyQEhISkJiYiC4GS0+Gh4ejZcuW2LFjh8Wvy8zMRGpqqtGHK8gjrqyQExEREXmmGTPECupyQbHCCgwUW6EB1ueRb98ObNok5qy/8IK4LCBAzG1fskTsPW4vGS7WrjXfri45EshTUsQCbcuWifuVnQCrVxvfbs0acdq+vXPm5roykMt29YgIdbs6V5KBvGRJ43CulXr1gPfeE+dfekndjs1byOp4uXJiYUM/PzGd4+xZtVLOQF5IiXk72UeZ9JhERUXprzNn2rRpCA8P13/Eyr90J2OFnIiIiMizRUaK6qCcY+oMMqxam0cuq+NDhwIVKzrncWWFfPFicdqmTf52dcCxQH7ypAgz4eFiO7WvvxaXr1kjWsoBUXn84Qdx3kxzq0Pkz8YV85zdNX9ckusL1K9f8L7y7vLMM2LthMxMMVffVSvva0H+/VWtKg58yb/LtWvFjgYBAfkX2/NUHvJ0cZ7x48cjJSVF/3HORSsZsEJOREREVPzIN/mWKuQHDwK//CLeK770kvMeVwZyWQwaNMj87RwJ5JcuidOqVUWgbNlSzFtPThbVfgA4dEhUHkuUAPr1s2/slshA7soKubsCeZ8+4nf05JPueTxb6HRim7ly5cTv74svtB6R88gKuexGkPu+L1smTmvVsm8XAC15bCCPztvRPslkR/ukpCT9deYEBAQgLCzM6MMVWCEnIiIiKn4K2vpMVpf79RP7UTuLDOSA5XZ1QN132Z69yC9eFKey4u7rqy6UtWqVOJWV+Z49RSXdGbwpkFevLkLvY4+55/FsVa6cOm3i99+1HYszGVbIAbHFGQD88Yc4LSrt6oAHB/IqVaogOjoaGzZs0F+WmpqKXbt2IT4+XsORCayQExERERU/1rY+UxTgxx/F+Ycecu7jRkaqi5NZalcHxPz0kBBx/uxZ2+5bVshjYtTL7r1XnK5ebdyufv/99o3bGkuB/M4dsVJ2QSvZW+OuFdaLgk6dxOmff6oL3RV1phVyGcjl98dAbqO0tDTs378f+/fvByAWctu/fz/Onj0LnU6HMWPGYOrUqfj5559x8OBBPProoyhfvjz6OatPphBYISciIiIqfqxVyHftEiE4JEStMDtT06bi1Foo1unUKrm9gdww5HfvLlp+jx0T1fGTJ8Ve27172z9uSywF8vffFx0B33zj+H27u0LuyZo0EV0NqanA339rPRrnkIHctEIuMZDb6K+//kKTJk3QpEkTAMC4cePQpEkTTJw4EQDw0ksvYfTo0Rg5ciRatGiBtLQ0rFmzBoGBgVoOGwAr5ERERETFkQwAFy/mbwmXbd19+ojw6mwffQR8/HHB85QrVRKnZ87Ydr+yZd2wQh4WJlZTB4DnnxenvXur1XdnkIH8yhWxEJck245lu7wjGMhVvr5Au3bi/KZNmg7FKXJz1TUSGMgLqUOHDlAUJd/HwoULAQA6nQ5TpkxBYmIiMjIysH79etSsWVPLIevJCjkDOREREVHxERkpwiqgVukAERLk/uDObOs2VLMm8OyzBS9W5WiF3DCQA2rbumz/dvb3Vbq02EoOUA8KAKIqDwC7dzt+3wzkxjp2FKcbN2o7Dme4eBHIyhJ/B/KgTni4+vz18xNz+osKj51D7ulkhZwt60RERETFh+E+3YbzyLdtAy5cEMGge3dtxibJCrmtgdx0UTfJsD09NFQs6OZMOl3+vchv31bHffYsYGW3YyPZ2cbfLwO5MRnIt2xRt7IrquTfXVycWiQF1Cp5zZpiK7SigoHcQayQExERERVP5rY+k+3q/fqJPZC1JCvktrSs5+aq4dW0Ql6tmhpy+vZ1TRu+6Tzy48eNF3OztUr+yivi+16wQHw9A7mxhg1FR0JaGrB3r9ajKRzTBd0k+VwtSu3qAAO5w1ghJyIiIiqeTCvkOTnA0qXivKva1e1hT4X86lWxMrVOZz68/u9/ooo9dqxzxyjJQH7unDiV7eqSrYF85UpxOnasuI/MTPE5A7ng46OuCVDU29ZNtzyTBg8Wz9WHH3b/mAqDgdxBrJATERERFU+mFfI//xQV2VKlgC5dtBuXJCvk584VXDyS7eply5pv8x0+XAR7ucK7s5lWyP/9V5zKLoNduwq+j0uX1JCWkgIMGSLOh4a6pqpfVBWleeTp6cC0acCJE/mvs1Qh79BBPFc9YEMuuzCQO4gVciIiIqLiybBCfv26ugr5gAGeMXc1JkYUj7KzjedgK4pY0dyQuS3P3Mk0kMsKuQxVe/YU/H572zZxGhMjFvSSLdmsjhuTgXzbNrEomqGkJLGIX6tWaneBlt55B3j1VWDChPzXWaqQF1UM5A5ihZyIiIioeJJB4NQpoEcP4OBBIDrafHjQguHq04bzyOfOBcqVA378Ub3M3JZn7mQpkA8YIKrbKSnAf/9Zv4+tW9WvefFF9XIGcmP16olOiPR046kAu3cDzZoBv/wC7NgB/POP+8b066/A22+LaRNSbi7w9dfi/JEj+b/GUoW8qGIgdxAr5ERERETFU6VKIvRmZooKbmQksH69ZwUEc/PI5TzrX35RL7O05Zm7GAZyRVEDeb16IiQCBc8jlxXy1q2BiRPVLa8YyI3pdKKtGwBefx2YPFn8vNq1EzsESAUdAHEWRQEee0wcyFq0SL18yxb1QNLJk8Z569Yt9SCS7FQp6hjIHcQKOREREVHx5OenztMOCwN+/3979x0fZZXvD/wzJTPpnSQkpNA7CImEABaKUvSq2FaNAuqqKHixg3ItrMviXu9PXctiuZa9uyiKS1OXZmiiEFroISAgIDEhENLbJHN+f3z3mcmEAJOQySQzn/frNa+ZPM8zM+eceSZnvqc9qyWAbEsarrSuFJCVJY/r9zq6e8i6dtmz/HyZ815aKh1f3boBqamy72LzyMvK7PkaPlx61f/+d2DgQOC++1yb9vZIuyTf+vXAnDnAq69Kw9LNN9sXJDx8uHXSkptrv8b9a6/ZA2+tdxyQy+Bp5yhgbyyIjJRV4z2B0d0JaK/YQ05ERETkve69F/jsM+nZc9WCZ5ejYQ95bq59/viBA/IbVq93/5D1yEjAZJI5zdpiY0lJsqjbkCHy98V6yLdulQ6y+Hh7nocOBXbtcmWq269Jk+RzP3pUzoczZ2T19WnTgP/3/+Tyfa3VQ17/M8rOBpYvB66/Hli0SLYZjTKU/eefgbg42aaNoOjZs3XS2BoYkDcTe8iJiIhaxk033YRdu3bh9OnTCAsLw5gxY/DnP/8Zse7qsiNywiuvyK2tathDXj/4qaiQQD0pyf095DqdDFs/ehTIyJBtWrClBeS7dwNVVYCv7/nP1+aPDx/u+rR6Ah8fGSbemB495L61esi1c1ILvOfNk3OztFTOzR49ZPTJzz/bL9mmBeRaWj0Bh6w3E3vIiYiIWsbIkSPx1VdfIScnB//85z9x5MgR3H777e5OFlG71rCHXBvWrdm/X+7dPYccsM8jbxiQJybKInQWy4V7vLX54yNGuDSJXqF7d7k/dEimOLiatnjck09KY8vWrcCsWbLtvvvsQXf9S595Yg85A/JmYg85ERFRy3jyyScxdOhQJCYmYtiwYZg1axa2bNkCi8Xi7qQRtVsNe8gbBuQHDkjQ5e4ecsAekGvD53v1knudzt5L3tg88ro6WRUcYA95S+jaVcq8tNQ+t9uVtEaW664Dfv97eXzypNxPmmRfnI8BOTWKPeREREQtr7CwEAsWLMCwYcPgc4ELOldXV6OkpMThRkSOtB7y4mK5aQG5NvT3wAHg7FnpfQbcuyK5FpBr6gdb2sJuGzee/7y9eyV4DAoC+vd3Xfq8hdlsb8hx9Tzy0lJ7oD1wIPD00/YOz2HDJBhvGJArZU8XA3JiDzkREVELmjlzJgICAhAREYETJ05g2bJlFzx23rx5CAkJsd3itWWaicgmIEAuxwZI4Kpduzk9Xe7377f3SGsLq7nLxQLyCRPkfsmS86+Prc0fT0uz/zany9Na88j37pUAOzZWpiUkJQEPPij7HntM7usH5NpojrIy+aw95ZJnAAPyZmMPORER0YXNmjULOp3uoreDBw/ajn/22WeRlZWF1atXw2AwYNKkSVAXmMT4/PPPo7i42HY7qY1xJCIHWi/58uX2v7W51gcO2ANyd6+fWD8gDwoCYmLsfw8eDNx5pwRkzzzjOLe5/vXHqWXUn0fuSlrjyhVX2Le9+64E6lqjUVKSxFxlZXJZPG24eufO7m1AamlcZb2Z2ENORER0YU8//TSmTJly0WO6dOliexwZGYnIyEj06NEDvXv3Rnx8PLZs2YK0tLTznmc2m2E2m1s6yUQeJzFRhqprA04GDZJeRx8foLzcPi/bnQu6AfZrkQPSO67TOe6fNw9YuhT4/ntg1Spg3Dhgyxbgu+9kPwPyltNaPeTa/PGBA+3bfHyAfv3sf5vN0oj0yy/SS+6J88cBBuTNxh5yIiKiC+vQoQM6dOjQrOda/125VldXt2SSiLyO1kOu9XYOGiRBT48eMmT9++9le1vqIW8s2OrSBXj8cblO9jPPSMfYxInSqDB8uH1ePF2+1uoh1wLy+j3kjenWzfMDcg5Zbyb2kBMREV2+zMxMvPvuu9i1axeOHz+OtWvX4u6770bXrl0b7R0nIudpC3RpBg2S+z595H7LFrl3dw95VJRcixq4cLA1ezYQFiYNCddfL8H4mDHAypX259Llq3+pMVd1PNbWAnv2yGNnAnItPZ54DXKAAXmzsYeciIjo8vn7+2Px4sUYPXo0evbsiQcffBADBgzAhg0bOCyd6DJpPeQaLfjp21fua2vl3t095Ho9EBcnjy8UkIeFAS+9ZP/75puBb74BAgNdnz5vkpgoDRxVVcCvv7rmPQ4fltcPCLj04myNBeSe1kPO9qRmYg85ERHR5evfvz/Wrl3r7mQQeaT6PeTh4fa52loPucbdPeQA8NBDwNdfS6/3hTz2GJCdLavHz5kjw++pZRmNEiTn5Miw9YaNOi1BW9Ctf/9Lr46vBeT798vQdcDzAnL2kDeT1kOuXbuRiIiIiKgtqR9MDRpkXyxN6yHXtIWAfPZsWYAuPPzCx5hMwAcfAH/6E4NxV9LmkbtqYTdn548D9oB83z4ZmdxwFX5PwIC8mbThFdoJRURERETUlkRFyUrVgH3+OCBBTv151+4esk5tizZH21ULuzUlIK93MQ4Aja/C394xIG+mUaPknqPsiIiIiKgt0unsveT1A3KTyd4LCnhejyNdnrbUQ+7nd+lV+Ns7BuTNdM01Mmz94EHg1Cl3p4aIiIiI6HxPPy3zsm+4wXG7Nmw9IsLei04EuLaH/NgxID9fGovqX3P8Yuo3HjEgJ5vQUGDwYHm8bp1bk0JERERE1KhHHgHWrAFCQhy3awu7tYX549S2aAHwsWMtv17WJ5/I/ahRssq6M7R55AADcqqvqAhTO6+CAbUctk5ERERE7Upqqtz36uXedFDbExcnQ8Vra+0rm2tyc2WKw9SpTX9diwX4+GN5/Mgjzj+vfkDuadcgBxiQN09BATB0KB5cNA5rcB12r86HUu5OFBERERGRc8aPB1asAP76V3enhNoavd4eBDcctv7ddzLk/O9/t1/HXqMUcPQosH697H/vPaCkxPG5v/0miw3efLPz6akfkNcfvu4pGJA3VWkpMGGC7cr0I7Eey04lI3fxFjcnjIiIiIjIOTodMG4c0KGDu1NCbZG2xkBWluP2zEy5r6gADhxw3PfQQ3IlqpEjgUmTgOnTgTvuAOrqZP+HH8r9/ffLwoLOGjhQztc+fZwf5t6eMCBviupq4JZbgO3bZQWMpUtx3K8XOuEUYn53NbB8ubtTSEREREREdFmGDZP7H3903L51a+OPa2uBL7+Ux127yhxxf39g9WrgD3+Qoe8rV8r+3/++aWnp2hXYuBH49tumPa+9YEDurLo64J575DpngYFyRt18MxbM2Ip/4lYY6izAzJng2HUiIiIiImrPhg+X+59+svdwl5UB+/fbj6kfkGdlyf7QUBnmnpEBfPCB7Hv1VeDBByVMGjPGcQi6s0aMADp3blZW2jwG5M46dQrYvFnGVyxbBqSkAABGjA/C/fgUZbpAuQbaRVZ4KygAfvihtRJMRERERETUdAMGyPDwkhJ7EL59O2C12o+pH5Bv3Cj3V10lc9AB4N57ZfE3pewh0sMPuz7t7Q0DcmclJEgT0ZIlMgbj31JTgVq/YHymJsuGd99t9OlKydTzq6+WBQ2IiIiIiIjaIqMRSEuTx9qwdS0AHzpU7vftA8rL5bEWkF99tePrvPWWrR+zyYu5eQsG5E2RlCRRdT1mswyheA/TZMPy5cDx4+c9dcUKaVUCgPnzXZxOIiIiIiKiy6ANW9+0Se61Bd1uvRWIjZWh7Dt3Sq+5Ngq4YUBuNgP//Cdw003AX/7StMXcvAUD8hYwbhxwEL2xVjdazsj333fYrxQwd6797xUrZAR8UykFFBVdXlqJiIiIiIguRQvItR5yLSAfMkRugPSa79sHnDsnQ9wHDz7/dRISZMbvXXe5Ps3tEQPyFvDYY8DEicDbajoAoPKdj4CqKtv+jRtltLvZLPMxrFbgs8+a/j4vvACEhwMLFrRQwomIiIiIiBoxdKjMBz9+XALvU6fk7+RkmbYLyHZtuPrw4TLUnZqGAXkL8PUFFi0C4qfeiONIgF/5WfzjxoWorJT9Wu/4Aw8ATz8tjz/+2HFRhEvZuRP47/+WXvIZM4CzZ1s2D0RERERERJqgILkGOAC8+abc9+snF5yq30N+ofnj5BwG5C3EYADe/qsRR8c+BgAYmvFHjOpfgPffB9askf3PPgvcfjsQHAwcOwasX+/ca9fVyQqFWgB/9iwwa5Zr8kHUbFarXO+ivdq5UyZF3XYb8Nprcr2O9pyfhprSAkhEREQE+7D1RYvkXusZT04GdDq5vviqVbKNAXnztItBBe+99x5ef/115OXlYeDAgXjnnXcwRGuWaUN0OmDk5w+hsue76HbmCN49Mg6jHl0LIATp6fZr591zj0wz/9///feC7YWFwNKlclG+q66SF6rngw+AbduAkBB5zh13yP0DD9hXP7QpLZWVF2pr5UJ/fn7OJT4nRyaoDxjg/HNamtVqv07ChRQXy31IiOvSUVgIHD4swxHCw4GwMMDfX9KnlNzX1gIWizzu0OH8FSpqaoCKCmlNsVol3T//LK977pzMcejfv/H3r60FNmyQy+jp9dKaExgIXHedvNfFWCzAunXA4sXyXv36ydKWKSlAz56XLl9Ars+3dCmwYwfQq5c0gQ4adOHzoqIC+L//A954Q97z2muBadNkGU0fnwu/z7lzMnxkwwZZGSQxEejSRZ4/cOB53wMHhYWSvu3bgexsOe/Ly2WqSEQE0KmT3AYPBq655uIriFRUAC+/LOnXgtbFi+U+NFT2TZt28bzUV10tk6zWr5c8JifLmK+uXS+ep/qqqqRBIDtb/i/06SPPNxicez4AnDgh/wt++kkmf+3ZA/TtC9x3n/wTiotz/rUupK5O8ltbK2PUTCZJo7P5rM9qBXJzgaNH5ftSUSG3qCjgyivlviksFmmyz8yU71J2trzuoEHyayI1VR77+zudvIMHgehoOcWIiIi8wfDhchEp7VrkWggWEiI/E7Oz5dJoZrNU19R0OqWUcnciLubLL7/EpEmT8P777yM1NRVvvfUWFi1ahJycHEQ58QOtpKQEISEhKC4uRnBwcCukGMDBg7BedTX0ZwqwAVfjHt1C7Ji9GDHffAQcOYLCtBtw75pJyPJJxd6H30H4396EvqwEAKCGDYPuhRckel+5EtXLVuLIplwcsPZC4vi+uPL2RCx+NxdFWUfRJ/AkhozwgT44SFZROHAAavt26P79jVFBQdDdeqsEOLt3yw/z7GwJUiZOBG64QX6szp9vX63BYJAg7oorJA1JSRLYGAzyi7SuTgK2U6fkx3NVlQQqJpPsO3dOgqXaWgmEbrxRggkAyM8HDh2yXx9BKWlW+/FHCRxycyVtI0bIt91qldcqKJALIO7cKT/WAVkdYuBACTDi4yW46NBBGhUKCmQYgdUqQYLRKO9ZUACcOSPbteAvPFyCyOxsuR061PT5ADod0LGjlFNlJfDbb/I+lzJ2LPDUU1LG585J+latAr76Cjh9+vzjDQZg5EjpwY2JsTcO5OUBR47IbePGC6/8FxoqgaF2rYrcXEmrxSLnT2CgTBLauPH83lSjUZo977hDzh29XpbT3LAB+PzzxvPbsSNw/fX24Cc+XoIfkwn46CPgpZcuXNZxccD48RL5lJZKT3VBgaQ5N1ceOyskRM71a6+V1wsLk+3Z2XJe/etfch4CwO9+J40X27bJ9+XXX2V7z54SmHfqhDqTH0osfghJCIE+PFTmrOzYIQH02rVyPtdbQ8ImPFyC8+RkOc9795Zz0N9fPoP9+6WBYdUqWflR+55ofH3lsxs1Ss6DoCApv8JCOX+Ki+V29CjUDz9Ad/LkhctEp5MGIe07Hh0tn4vJZD+ntHIOCZHzLSpKzsv9+4EDB+QYrXauz2CQ4zt1koaWsjLg5Ekpy4AA+W4PHSqf8eHDEuUePCjnb2PlpomPB3r0kDQajVLzBwXJkKPgYHltPz/5f7Rpk1xfUmvAuxCDQf6HJCfLc7VzLSICRb2GYrtxKLYc6YCSDVkIOLgD/Wp2wO+Z6Zjw+siLv64T3FI3eTCWJxGRa/z6q1TBmj177H1KU6YAf/ubPL7mGudH/3oLZ+umNh+Qp6am4sorr8S7/76+t9VqRXx8PB5//HHMcmLcttsq6awsCQBKSpw6/BC6IwEn4Ivqy37rI+gCI2qRiBNOP6dWZ0SpTzjCahoJBC9TWUgsfGrKYa68xI/jNqQmKg7KYISx9BwMZY1/hurfvZW6xoKShsf6+QFdu6GuSzcoSx2Mq76F7iJDiOvCIlCRfBVq6/Sos1jh89txhBzJcirt1g5RqLz+FpT3uRLWvftg3rsdQYd3wlhT6dTzAUiAcu21wOHDUJmZ0OXn2/Oi00HX4N+GNakzqh59EhXDroPhywUI/OIj+JzNx6VUdumDsw/OlPMj7zjMh/fBvHkd9JUVl3yu6tYNupQUaZjRRjGYzdI48Ouv0rjw/feNN240TEdkJ2Q/Ph/FV90IvV7iVZ21DoFffYKef58N/7ImNAAAKPWPQm7PkTB0jEbUiW0IPLQT+prGv9vVER1hLCmEweK4v9A/DkcihyLOcgxRZ7Ob9vkBqIUBWRiETRiBg2HDYB4yEOPM6zAk5++IzPmxSa/VagwGaSAID5cA29dXPseDB6UBqolqI6JQnjoa6NcXpgG9YQwNhGXzdqjMTJiyMp06RxvaNOYVjFjzcpOf1xADyJbF8iQicp3ERBl4Fxgo/T7agL2//lUGEQLAiy8Cf/iD25LYJnlEQF5TUwN/f398/fXXuOWWW2zbJ0+ejKKiIixbtuy851RXV6O62v7DtqSkBPHx8e6ppH/4QXpBKyulF+aRR6RnbNEiVH36OXxLCrAfffAn0xys8LsVvsX5eAJv4lHMhw8sWI9rsRLjcMzYA+9OP4j4kv0SaMTFYce5znh7aQL0sCIIpQhGCU4iHuswEgW+CVB1VqRYfkI6FqAf9mE3BuInDEM2euMabMAtWIqr8ANyEYsP8TD+F79HHmIQh1NIwXb0x14k4jgScRyxyIUOClboYYUeZxGBU4hDLmJRAX/4wAIfWKCgQyHCcQ5h8EUVxmIVRiPD1shQBz1+QRLOIcxWRIUIx48Yjk0YgeNIRCoyMQKbMAhZqIA/ChGOQoTjMLpjJwYjC4NghR4DsAcDsRs9kYM4nEIcTiESZ1CEUBSgA84gEnUwwIha+MCCCvijAB1QABny3RnH0BnHEIGzOIKuyEZvZKM3ctATh9EdFQiwpdGAWphRDSv0UNDBCj1qYYSCHoBCBxQgASfQCb+iAv74DR2Rh46oMgXDYjWg1qqHVekc4onOOIoZ+Asm4f+gh9VWbnswAAtxFzIwGrVwHCLdBUdwBxbheqyGL6qgoIOCDgXogKPogiPoij0YgM1IgxWOQ5uNsGAA9iANm5GC7aiBCacNsSjy6wiL3gyTpRwmSznK4Y+1fjfitH8SjEZpTyotVeiKI5iIJbgDizAE2wAA+9AXG3E1VuN6fIsbUVdvBowPajAG32MotiAVmUjBdkSg0Lb/LMLxEv6AD/CIw/MAwIwqXIv1GI0MGFGLMgTB4huIYn04jtXE4ZfaOJxAAooRCl9ficENBvvofqXst7qaOgysysSEmqXog/0IRRFCUQQfWHAIPbAffbEX/bEMN6MMQY1+jYNRjOcxD2OxCv6ogB8q4Y8KhKAYPqgFAJxDKNZhJNZiFNZiFLLRG4B92LYPajAAezAYO5GMHRiELHTHYYShyHZMEUKwA8n4CcOwDDdjB5Jtr6GDFT1wCNdiPUZhLa7CD9BBoRDhOIsInEMYihGCYoQgDzH4CcOwzz8VUZ0DkJMjA1bqS8Bx9MV+JOEXJOEXROKM7Xts0Cuc1sXgN10sCtABQaoE0SoP0SoPxfow/Gzui2P+fXHGPwFWHzNqDWYogxGorYWu1gKjpRIdVS46qZOIseaiXB+EU/pOyNV1QkjtWVxRnYmB1ZmIqDuNX3x64KipF46aeuGYsTtO6hJQbfVBTY2MhK+uls8xVF+CwdiJOPUr9NZa6OpqYVLVCDeWINxYglB9CUx1FTDVVsCnrgoHrT2wBBORidTzvgt2CrHIRQq2YxCyoINCKYJQhkAk4jiGYguG6rbCT1WgOKo71OBkBI1KgWHsdTK15zIxgGxZLE8iIte55x7giy+kr2bdOvv2HTtkYCEga2aNGeOW5LVZHhGQ5+bmIi4uDj/99BPS6k2Wfu6557BhwwZkahfDq+eVV17BnDlzztvutkr6559l2OTgwY7zKi0WWH85AX2XJFszk8Uio7pzj1tQXWmFT6AZPj4y6rNjx/Nfes8eeWkt+AgNlVGi4eHyWtnZMsr7xAkZqRsVJR2JpaXSiXjutyrAZEJQiB6BgfKa5eUyYrOy0j4iGpDOR39/6bCqrpZArbhYRqxqo8L1eth6F7X1varOliPqxHaUmiJQENINtUZfew+kTkaJRkdL2vz8ZCT88eNyX1trn7YdGSmj1BMT5b1On5ayOn3aPkpem7/i5yfpVAoOP+wrK2VEbFWV4xRwX1/7c7QWP51O8lZTYz9Oy6e2r65OXqd+fsrL5TnO0AJIrbzq6mSb0SjbTSZpiQwMlLRp72ex2F9DKXnPkhKZbqsxGuU5YWFyCwyUMsrPl/K6HNHIgwU+KETjE2n9/ORcCQiQUckJCXJeVlfU4czJSpz7tRy/loehrMaEmhopr9pax7xp554Tgw+azWCQ71ZMjHwGFoucJ9o5B8iI6K5dZWR5ly7yuGtXOWd/OaZweHcFTuwvRVVQB/gHGeDnJ5/FiRP281g7V0tLpUxCQ2WEtU4HBFkKEVd1RDZ27Yq4eD0iIuQ8NpkkPUePyr+RkyelXMPC5PC6Ovv31d9fRp937gx07y7/brp3lzxWVMhI+M2b5X9CTo50OGv/OzyVTiej7fV6+UzqN0r4+clnq30/wsLkf2xcnJyrPXrID4xA31r5EAICLvxGzcQAsmWxPImIXGfFCmDCBODDD4GHHrJvr6mRpW4sFvmt4oLqsl3z2oC8TfWQk1eqqpLhPDU19kYKvd4+RdfHR27OrK/WFBaLBB3auloXO056vuWmNUqYzZKm6mrJg8UigaMWQPr42NuUtLW8tADWbHZNvqqqJHAsKpLgUWsYMhrt6dTSoDWSaI0jOp2kx2y296JrxxgMsuRAU9ZIu1zOrFnY2pSS8tAaI7RbffXL02KRhq3KSjlOaySq32CllbPWwFK/kalh/rWGF6UcRzmYTPZzUmsAq62V47TzDJDPX0uPySSBtp+ffVq59n5K2RvjgoLaxjVSGUC2LJYnEZFraR1HDddtLSiQerapa696A2frpjbws+TCIiMjYTAYkF9v/ioA5OfnIyYmptHnmM1mmM3m1kgeUaN8faXXtbXVD1QudVxExOWtFG0w2INjV/L1lVt0tGvfpzW0tWAckEpVC6TddXGF1qCNxvHkPBIREbnShToxLnUBILq0NvgT0c5kMiE5ORkZGRm2bVarFRkZGQ495kRERERERETtTZvuIQeAp556CpMnT0ZKSgqGDBmCt956C+Xl5bj//vvdnTQiIiIiIiKiZmvzAfnvfvc7FBQU4KWXXkJeXh6uuOIKrFy5EtGeMIaViIiIiIiIvFabD8gBYPr06Zg+fbq7k0FERERERETUYtr0HHIiIiIiIiIiT8WAnIiIiIiIiMgNGJATERERERERuQEDciIiIiIiIiI3YEBORERERERE5AYMyImIiIiIiIjcgAE5ERERtQnV1dW44ooroNPpsGvXLncnh4iIyOUYkBMREVGb8NxzzyE2NtbdySAiImo1DMiJiIjI7VasWIHVq1fjf/7nf9ydFCIiolZjdHcCiIiIyLvl5+fjoYcewtKlS+Hv73/J46urq1FdXW37u6SkxJXJIyIichmPD8iVUgBYWRMRUduh1UlaHeXNlFKYMmUKpk6dipSUFPzyyy+XfM68efMwZ86c87azriciorbC2bre4wPy0tJSAEB8fLybU0JEROSotLQUISEh7k6GS8yaNQt//vOfL3pMdnY2Vq9ejdLSUjz//PNOv/bzzz+Pp556yvb3qVOn0KdPH9b1RETU5lyqrtcpD2+et1qtyM3NRVBQEHQ63WW9VklJCeLj43Hy5EkEBwe3UArbF28vA2/PP8Ay8Pb8AywD4PLLQCmF0tJSxMbGQq/3zOVcCgoKcPbs2Yse06VLF9x555345ptvHOrouro6GAwGpKen429/+9sl34t1fctiGbAMvD3/AMvA2/MPtF5d7/E95Hq9Hp06dWrR1wwODvbaE1Pj7WXg7fkHWAbenn+AZQBcXhl4as+4pkOHDujQocMlj3v77bfxxz/+0fZ3bm4uxo4diy+//BKpqalOvRfretdgGbAMvD3/AMvA2/MPuL6u9/iAnIiIiNquhIQEh78DAwMBAF27dm3xIJuIiKit8cxxckRERERERERtHHvIm8BsNuPll1+G2Wx2d1LcxtvLwNvzD7AMvD3/AMsAYBm4UlJSkltXn+dnyzIAWAbenn+AZeDt+Qdarww8flE3IiIiIiIioraIQ9aJiIiIiIiI3IABOREREREREZEbMCAnIiIiIiIicgMG5ERERERERERuwIC8Cd577z0kJSXB19cXqamp2Lp1q7uT5BLz5s3DlVdeiaCgIERFReGWW25BTk6OwzFVVVWYNm0aIiIiEBgYiNtuuw35+fluSrFrvfbaa9DpdHjiiSds27wh/6dOncK9996LiIgI+Pn5oX///ti+fbttv1IKL730Ejp27Ag/Pz+MGTMGhw8fdmOKW1ZdXR1efPFFdO7cGX5+fujatSteffVVh9WfPakMNm7ciP/4j/9AbGwsdDodli5d6rDfmbwWFhYiPT0dwcHBCA0NxYMPPoiysrJWzMXluVgZWCwWzJw5E/3790dAQABiY2MxadIk5ObmOrxGey8DYl1fnzfUdfV5Y33Put676nqA9X2brOsVOWXhwoXKZDKpTz75RO3fv1899NBDKjQ0VOXn57s7aS1u7Nix6tNPP1X79u1Tu3btUhMmTFAJCQmqrKzMdszUqVNVfHy8ysjIUNu3b1dDhw5Vw4YNc2OqXWPr1q0qKSlJDRgwQM2YMcO23dPzX1hYqBITE9WUKVNUZmamOnr0qFq1apX6+eefbce89tprKiQkRC1dulTt3r1b3XTTTapz586qsrLSjSlvOXPnzlURERHq22+/VceOHVOLFi1SgYGB6i9/+YvtGE8qg3/9619q9uzZavHixQqAWrJkicN+Z/I6btw4NXDgQLVlyxb1ww8/qG7duqm77767lXPSfBcrg6KiIjVmzBj15ZdfqoMHD6rNmzerIUOGqOTkZIfXaO9l4O1Y13tnXa+Ud9b3rOu9r65XivV9W6zrGZA7aciQIWratGm2v+vq6lRsbKyaN2+eG1PVOk6fPq0AqA0bNiil5GT18fFRixYtsh2TnZ2tAKjNmze7K5ktrrS0VHXv3l2tWbNGXXPNNbYK2hvyP3PmTDVixIgL7rdarSomJka9/vrrtm1FRUXKbDarL774ojWS6HI33HCDeuCBBxy23XrrrSo9PV0p5dll0LCCciavBw4cUADUtm3bbMesWLFC6XQ6derUqVZLe0tp7EdKQ1u3blUA1PHjx5VSnlcG3oh1vffV9Up5b33Put6763qlWN+3lbqeQ9adUFNTgx07dmDMmDG2bXq9HmPGjMHmzZvdmLLWUVxcDAAIDw8HAOzYsQMWi8WhPHr16oWEhASPKo9p06bhhhtucMgn4B35X758OVJSUnDHHXcgKioKgwYNwkcffWTbf+zYMeTl5TmUQUhICFJTUz2mDIYNG4aMjAwcOnQIALB7925s2rQJ48ePB+AdZaBxJq+bN29GaGgoUlJSbMeMGTMGer0emZmZrZ7m1lBcXAydTofQ0FAA3lkGnoR1vXfW9YD31ves61nXN8T6/nytUdcbWyKhnu7MmTOoq6tDdHS0w/bo6GgcPHjQTalqHVarFU888QSGDx+Ofv36AQDy8vJgMplsJ6YmOjoaeXl5bkhly1u4cCF27tyJbdu2nbfPG/J/9OhRzJ8/H0899RReeOEFbNu2Df/5n/8Jk8mEyZMn2/LZ2HfCU8pg1qxZKCkpQa9evWAwGFBXV4e5c+ciPT0dALyiDDTO5DUvLw9RUVEO+41GI8LDwz2uPACZVzpz5kzcfffdCA4OBuB9ZeBpWNd7X10PeHd9z7qedX1DrO8dtVZdz4CcLmratGnYt28fNm3a5O6ktJqTJ09ixowZWLNmDXx9fd2dHLewWq1ISUnBn/70JwDAoEGDsG/fPrz//vuYPHmym1PXOr766issWLAAn3/+Ofr27Ytdu3bhiSeeQGxsrNeUATXOYrHgzjvvhFIK8+fPd3dyiC6bN9b1AOt71vWs6+nCWrOu55B1J0RGRsJgMJy3qmZ+fj5iYmLclCrXmz59Or799lusW7cOnTp1sm2PiYlBTU0NioqKHI73lPLYsWMHTp8+jcGDB8NoNMJoNGLDhg14++23YTQaER0d7dH5B4COHTuiT58+Dtt69+6NEydOAIAtn578nXj22Wcxa9Ys3HXXXejfvz/uu+8+PPnkk5g3bx4A7ygDjTN5jYmJwenTpx3219bWorCw0KPKQ6ugjx8/jjVr1thazAHvKQNPxbreu+p6gPU963rW9Q2xvhetXdczIHeCyWRCcnIyMjIybNusVisyMjKQlpbmxpS5hlIK06dPx5IlS7B27Vp07tzZYX9ycjJ8fHwcyiMnJwcnTpzwiPIYPXo09u7di127dtluKSkpSE9Ptz325PwDwPDhw8+7/M2hQ4eQmJgIAOjcuTNiYmIcyqCkpASZmZkeUwYVFRXQ6x3/RRoMBlitVgDeUQYaZ/KalpaGoqIi7Nixw3bM2rVrYbVakZqa2uppdgWtgj58+DC+//57REREOOz3hjLwZKzrvauuB1jfs65nXd8Q63s31fXNWgrOCy1cuFCZzWb12WefqQMHDqiHH35YhYaGqry8PHcnrcU9+uijKiQkRK1fv1799ttvtltFRYXtmKlTp6qEhAS1du1atX37dpWWlqbS0tLcmGrXqr/qqlKen/+tW7cqo9Go5s6dqw4fPqwWLFig/P391T/+8Q/bMa+99poKDQ1Vy5YtU3v27FE333xzu74MSEOTJ09WcXFxtkuhLF68WEVGRqrnnnvOdownlUFpaanKyspSWVlZCoB64403VFZWlm1VUWfyOm7cODVo0CCVmZmpNm3apLp3795uLoOi1MXLoKamRt10002qU6dOateuXQ7/G6urq22v0d7LwNuxrvfuul4p76rvWdd7X12vFOv7tljXMyBvgnfeeUclJCQok8mkhgwZorZs2eLuJLkEgEZvn376qe2YyspK9dhjj6mwsDDl7++vJk6cqH777Tf3JdrFGlbQ3pD/b775RvXr10+ZzWbVq1cv9eGHHzrst1qt6sUXX1TR0dHKbDar0aNHq5ycHDeltuWVlJSoGTNmqISEBOXr66u6dOmiZs+e7fAP2ZPKYN26dY1+7ydPnqyUci6vZ8+eVXfffbcKDAxUwcHB6v7771elpaVuyE3zXKwMjh07dsH/jevWrbO9RnsvA2Jd7811vVLeV9+zrveuul4p1vdtsa7XKaVU8/rWiYiIiIiIiKi5OIeciIiIiIiIyA0YkBMRERERERG5AQNyIiIiIiIiIjdgQE5ERERERETkBgzIiYiIiIiIiNyAATkRERERERGRGzAgJyIiIiIiInIDBuREREREREREbsCAnIhcSqfTYenSpe5OBhEREbkQ63ui5mFATuTBpkyZAp1Od95t3Lhx7k4aERERtRDW90Ttl9HdCSAi1xo3bhw+/fRTh21ms9lNqSEiIiJXYH1P1D6xh5zIw5nNZsTExDjcwsLCAMjwsvnz52P8+PHw8/NDly5d8PXXXzs8f+/evRg1ahT8/PwQERGBhx9+GGVlZQ7HfPLJJ+jbty/MZjM6duyI6dOnO+w/c+YMJk6cCH9/f3Tv3h3Lly93baaJiIi8DOt7ovaJATmRl3vxxRdx2223Yffu3UhPT8ddd92F7OxsAEB5eTnGjh2LsLAwbNu2DYsWLcL333/vUAHPnz8f06ZNw8MPP4y9e/di+fLl6Natm8N7zJkzB3feeSf27NmDCRMmID09HYWFha2aTyIiIm/G+p6ojVJE5LEmT56sDAaDCggIcLjNnTtXKaUUADV16lSH56SmpqpHH31UKaXUhx9+qMLCwlRZWZlt/3fffaf0er3Ky8tTSikVGxurZs+efcE0AFD/9V//Zfu7rKxMAVArVqxosXwSERF5M9b3RO0X55ATebiRI0di/vz5DtvCw8Ntj9PS0hz2paWlYdeuXQCA7OxsDBw4EAEBAbb9w4cPh9VqRU5ODnQ6HXJzczF69OiLpmHAgAG2xwEBAQgODsbp06ebmyUiIiJqgPU9UfvEgJzIwwUEBJw3pKyl+Pn5OXWcj4+Pw986nQ5Wq9UVSSIiIvJKrO+J2ifOISfyclu2bDnv7969ewMAevfujd27d6O8vNy2/8cff4Rer0fPnj0RFBSEpKQkZGRktGqaiYiIqGlY3xO1TewhJ/Jw1dXVyMvLc9hmNBoRGRkJAFi0aBFSUlIwYsQILFiwAFu3bsXHH38MAEhPT8fLL7+MyZMn45VXXkFBQQEef/xx3HfffYiOjgYAvPLKK5g6dSqioqIwfvx4lJaW4scff8Tjjz/euhklIiLyYqzvidonBuREHm7lypXo2LGjw7aePXvi4MGDAGRF1IULF+Kxxx5Dx44d8cUXX6BPnz4AAH9/f6xatQozZszAlVdeCX9/f9x222144403bK81efJkVFVV4c0338QzzzyDyMhI3H777a2XQSIiImJ9T9RO6ZRSyt2JICL30Ol0WLJkCW655RZ3J4WIiIhchPU9UdvFOeREREREREREbsCAnIiIiIiIiMgNOGSdiIiIiIiIyA3YQ05ERERERETkBgzIiYiIiIiIiNyAATkRERERERGRGzAgJyIiIiIiInIDBuREREREREREbsCAnIiIiIiIiMgNGJATERERERERuQEDciIiIiIiIiI3+P954mDIjVruKgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBqElEQVR4nOzdd3hTZRsG8Dvde1Chg1GG7C3LiiwFEZWtKKIiojgqCDgRBUT8QFyIVEBFEAVFQBBRQEBARUBkyd6yyoa2dK/z/fH05CRt2iZtdu/fdfU6ycnpyZtSmtzneYdOURQFRERERERERGRXHo5uABEREREREVFFxEBORERERERE5AAM5EREREREREQOwEBORERERERE5AAM5EREREREREQOwEBORERERERE5AAM5EREREREREQOwEBORERERERE5AAM5EREREREREQOwEBOREREROSCOnfujM6dO5t9bJMmTWzboAI1a9bE448/bpfnInJ1DOREFci8efOg0+mg0+nw559/FnlcURRUr14dOp0O9913n35/amoqxo8fjyZNmiAwMBARERFo0aIFXnjhBSQmJuqPmzBhgv78pr4uXLhgl9dJRERkLvW98Z9//nF0U8otMTEREyZMwO7dux3dFKupWbMmdDodunbtavLxzz//XP85o/C/4Z9//okePXqgatWq8PPzQ40aNdCzZ08sXLjQ6LiSPrs888wzNnttRADg5egGEJH9+fn5YeHChbj99tuN9m/atAlnz56Fr6+vfl9OTg46duyIQ4cOYfDgwRg+fDhSU1Oxf/9+LFy4EH379kVMTIzReWbOnImgoKAizxsWFmaT10NERFQR/frrr0b3ExMT8dZbb6FmzZpo0aKFYxoF4PDhw/DwsF7dz8/PDxs2bMCFCxcQFRVl9NiCBQvg5+eHzMxMo/2LFy/Ggw8+qC8ghIeH4+TJk/j999/x+eef4+GHHzY6vlu3bnjssceKPHe9evWs9jqITGEgJ6qA7rnnHixevBjTp0+Hl5f2Z2DhwoVo1aoVrly5ot+3fPly7Nq1CwsWLCjy5pWZmYns7Owi57///vtx00032e4FEBERVWDp6ekICAiAj4+Po5tikuGFfWto3749tm/fjkWLFuGFF17Q7z979iz++OMP9O3bF0uXLjX6ngkTJqBRo0bYunVrkZ/TpUuXijxHvXr18Mgjj1i13UTmYJd1ogpo4MCBuHr1KtauXavfl52djSVLlhQJ3cePHwcgb4aF+fn5ISQkxLaNJSIicgK7du1Cjx49EBISgqCgINx5553YunVrkeP+/fdfdOrUCf7+/qhWrRomTZqEuXPnQqfT4b///tMf9+OPP+Lee+9FTEwMfH19UadOHbz99tvIy8szOp869nvHjh3o2LEjAgIC8Prrr+sfU8eQb9y4EW3atAEADBkyRN/let68eUbnO3DgALp06YKAgABUrVoVU6dONXp848aN0Ol0+P777/HWW2+hatWqCA4Oxv3334/k5GRkZWVh5MiRqFKlCoKCgjBkyBBkZWUZncPUGPKkpCSMGjUKNWvWhK+vL6pVq4bHHnvMqAhQHD8/P/Tr169IV/Nvv/0W4eHh6N69e5HvOX78ONq0aWPyokWVKlVKfU4ie2GFnKgCqlmzJuLi4vDtt9+iR48eAIBVq1YhOTkZDz30EKZPn64/NjY2FgAwf/58vPHGG9DpdKWe/9q1a0X2eXl5scs6ERG5pP3796NDhw4ICQnBK6+8Am9vb8yePRudO3fGpk2b0K5dOwDAuXPn0KVLF+h0OowZMwaBgYH44osvTFaM582bh6CgIIwePRpBQUH47bffMG7cOKSkpOC9994zOvbq1avo0aMHHnroITzyyCOIjIwscr6GDRti4sSJGDduHIYNG4YOHToAAG677Tb9MdevX8fdd9+Nfv36YcCAAViyZAleffVVNG3aVP95QDV58mT4+/vjtddew7Fjx/DJJ5/A29sbHh4euH79OiZMmICtW7di3rx5qFWrFsaNG1fszy81NRUdOnTAwYMH8cQTT+CWW27BlStXsGLFCpw9e9asXnUPP/ww7rrrLhw/fhx16tQBID377r//fnh7exc5PjY2FuvXr8fZs2dRrVq1Us+fmZlp8uJASEiI0/ZEIDehEFGFMXfuXAWAsn37dmXGjBlKcHCwkp6eriiKojzwwANKly5dFEVRlNjYWOXee+9VFEVR0tPTlfr16ysAlNjYWOXxxx9X5syZo1y8eLHI+cePH68AMPlVv359+71QIiIiMxm+NxanT58+io+Pj3L8+HH9vsTERCU4OFjp2LGjft/w4cMVnU6n7Nq1S7/v6tWrSqVKlRQAysmTJ/X71fdfQ08//bQSEBCgZGZm6vd16tRJAaDMmjWryPGdOnVSOnXqpL+/fft2BYAyd+5ck8cCUObPn6/fl5WVpURFRSn9+/fX79uwYYMCQGnSpImSnZ2t3z9w4EBFp9MpPXr0MDpvXFycEhsba7QvNjZWGTx4sP7+uHHjFADKDz/8UKRd+fn5RfYVPte9996r5ObmKlFRUcrbb7+tKIqiHDhwQAGgbNq0yeS/4Zw5cxQAio+Pj9KlSxflzTffVP744w8lLy+vyHMU99kFgPLtt9+W2D6i8mKXdaIKasCAAcjIyMDKlStx48YNrFy5skh3dQDw9/fHtm3b8PLLLwOQK/pDhw5FdHQ0hg8fXqSbGgAsXboUa9euNfqaO3euzV8TERGRteXl5eHXX39Fnz59ULt2bf3+6OhoPPzww/jzzz+RkpICAFi9ejXi4uKMJlSrVKkSBg0aVOS8/v7++ts3btzAlStX0KFDB6Snp+PQoUNGx/r6+mLIkCHlfi1BQUFG46R9fHzQtm1bnDhxosixjz32mFHluV27dlAUBU888YTRce3atcOZM2eQm5tb7PMuXboUzZs3R9++fYs8Zk7POwDw9PTEgAED8O233wKQydyqV6+u7wlQ2BNPPIHVq1ejc+fO+PPPP/H222+jQ4cOqFu3Lv76668ix/fu3bvIZ5e1a9eiS5cuZrWPqKzYZZ2ogqpcuTK6du2KhQsXIj09HXl5ebj//vtNHhsaGoqpU6di6tSpOHXqFNavX4/3338fM2bMQGhoKCZNmmR0fMeOHTmpGxERuYXLly8jPT0d9evXL/JYw4YNkZ+fjzNnzqBx48Y4deoU4uLiihx38803F9m3f/9+vPHGG/jtt9/0gV6VnJxsdL9q1apW6TZdrVq1IgE4PDwc//77b5Fja9SoYXQ/NDQUAFC9evUi+/Pz85GcnIyIiAiTz3v8+HH079+/PE0HIN3Wp0+fjj179mDhwoV46KGHSgz03bt3R/fu3ZGeno4dO3Zg0aJFmDVrFu677z4cOnTIaCx5tWrVil1ajciWWCEnqsAefvhhrFq1CrNmzUKPHj3MGuMdGxuLJ554Aps3b0ZYWBgWLFhg+4YSERG5kaSkJHTq1Al79uzBxIkT8dNPP2Ht2rV49913AQD5+flGxxtW08vD09PT5H5FUcw+1pJzWFu7du1Qp04djBw5EidPnjTZs8+UgIAAdOjQATNmzMAbb7yB69evY9WqVTZuLZF5WCEnqsD69u2Lp59+Glu3bsWiRYss+t7w8HDUqVMH+/bts1HriIiIHK9y5coICAjA4cOHizx26NAheHh46KvGsbGxOHbsWJHjCu/buHEjrl69ih9++AEdO3bU7z958mS52mpu9297s+bnhYEDB2LSpElo2LBhmdZab926NQDg/PnzVmkPUXmxQk5UgQUFBWHmzJmYMGECevbsafKYPXv2mJx19NSpUzhw4IDJLnxERETuwtPTE3fddRd+/PFHo2XLLl68iIULF+L222/XLwHavXt3bNmyBbt379Yfd+3atSK9ydQqs2FVOTs7G59++mm52hoYGAhAKvDOpH///tizZw+WLVtW5DFLK+tPPvkkxo8fjw8++KDE49avX29y/y+//AIA/PxCToMVcqIKbvDgwSU+vnbtWowfPx69evXCrbfeiqCgIJw4cQJffvklsrKyMGHChCLfs2TJEgQFBRXZ361bN5NLtRARETnal19+idWrVxfZ/8ILL2DSpElYu3Ytbr/9djz33HPw8vLC7NmzkZWVZbSO9yuvvIJvvvkG3bp1w/Dhw/XLntWoUQPXrl3TV7Bvu+02hIeHY/DgwRgxYgR0Oh2+/vrrcnf7rlOnDsLCwjBr1iwEBwcjMDAQ7dq1Q61atcp13vJ6+eWXsWTJEjzwwAN44okn0KpVK1y7dg0rVqzArFmz0Lx5c7PPFRsba/KzR2G9e/dGrVq10LNnT9SpUwdpaWlYt24dfvrpJ7Rp06ZIIeLIkSP45ptvipwnMjIS3bp1M7t9RJZiICeiEvXv3x83btzAr7/+it9++w3Xrl1DeHg42rZtixdffNHk7KPPPvusyXNt2LCBgZyIiJzSzJkzTe5//PHH0bhxY/zxxx8YM2YMJk+ejPz8fLRr1w7ffPONfg1yQCY827BhA0aMGIH//e9/qFy5MuLj4xEYGIgRI0bAz88PABAREYGVK1fixRdfxBtvvIHw8HA88sgjuPPOO9G9e/cyvwZvb2989dVXGDNmDJ555hnk5uZi7ty5Dg/kQUFB+OOPPzB+/HgsW7YMX331FapUqYI777zTrDXCy+KLL77Ajz/+iO+//x6JiYlQFAW1a9fG2LFj8eqrr8LLyzgGqbOqF9apUycGcrIpnWKPGRiIiIiIiCqokSNHYvbs2UhNTS12UjQiqpg4hpyIiIiIyEoyMjKM7l+9ehVff/01br/9doZxIiqCXdaJiIiIiKwkLi4OnTt3RsOGDXHx4kXMmTMHKSkpePPNNx3dNCJyQgzkRERERERWcs8992DJkiX47LPPoNPpcMstt2DOnDlGy5sREak4hpyIiIiIiIjIATiGnIiIiIiIiMgBGMiJiIiIiIiIHMDtx5Dn5+cjMTERwcHB0Ol0jm4OERERFEXBjRs3EBMTAw8PXhsvL77XExGRszH3vd7tA3liYiKqV6/u6GYQEREVcebMGVSrVs3RzXB5fK8nIiJnVdp7vdsH8uDgYADygwgJCXFwa4iIiICUlBRUr15d/x5F5cP3eiIicjbmvte7fSBXu66FhITwTZqIiJwKu1dbB9/riYjIWZX2Xs+Ba0REROSSEhIS0KhRI7Rp08bRTSEiIioTBnIiIiJySfHx8Thw4AC2b9/u6KYQERGVCQM5ERERERERkQO4/RhyIiJzKYqC3Nxc5OXlObop5OI8PT3h5eXFMeJERE6G7/VkLdZ6r2cgJyICkJ2djfPnzyM9Pd3RTSE3ERAQgOjoaPj4+Di6KUREBL7Xk/VZ472egZyIKrz8/HycPHkSnp6eiImJgY+PDyubVGaKoiA7OxuXL1/GyZMnUbduXXh4cIQYEZEj8b2erMma7/UM5ERU4WVnZyM/Px/Vq1dHQECAo5tDbsDf3x/e3t44deoUsrOz4efn5+gmERFVaHyvJ2uz1ns9L9kTERVgFZOsib9Ptsdlz4jIUvzbTNZkjd8n/kYSERGRS+KyZ0RE5OoYyImIiIiIiIgcgIGciIj0atasiWnTppl9/MaNG6HT6ZCUlGSzNgHAvHnzEBYWZtPnICIiqij4fu88GMiJiFyQTqcr8WvChAllOu/27dsxbNgws4+/7bbbcP78eYSGhpbp+YiIiKh4fL93f5xlnYjIBZ0/f15/e9GiRRg3bhwOHz6s3xcUFKS/rSgK8vLy4OVV+p/8ypUrW9QOHx8fREVFWfQ9REREZB6+37s/Vsgt0KED0LQpcPKko1tCRLakKEBammO+FMW8NkZFRem/QkNDodPp9PcPHTqE4OBgrFq1Cq1atYKvry/+/PNPHD9+HL1790ZkZCSCgoLQpk0brFu3zui8hbuw6XQ6fPHFF+jbty8CAgJQt25drFixQv944S5salezNWvWoGHDhggKCsLdd99t9IEiNzcXI0aMQFhYGCIiIvDqq69i8ODB6NOnj0X/TjNnzkSdOnXg4+OD+vXr4+uvvzb4N1QwYcIE1KhRA76+voiJicGIESP0j3/66aeoW7cu/Pz8EBkZifvvv9+i5yb39eqr8l6/cKGjW0JEtuao93tz3+sBvt8D7v9+z0BugQMHgH37gMxMR7eEiGwpPR0ICnLMV3q69V7Ha6+9hilTpuDgwYNo1qwZUlNTcc8992D9+vXYtWsX7r77bvTs2ROnT58u8TxvvfUWBgwYgH///Rf33HMPBg0ahGvXrpXw80vH+++/j6+//hq///47Tp8+jZdeekn/+LvvvosFCxZg7ty52Lx5M1JSUrB8+XKLXtuyZcvwwgsv4MUXX8S+ffvw9NNPY8iQIdiwYQMAYOnSpfjoo48we/ZsHD16FMuXL0fTpk0BAP/88w9GjBiBiRMn4vDhw1i9ejU6duxo0fOT+zpzRt7rL11ydEuIyNYc9X5vzfd6gO/3Lv9+r7i55ORkBYCSnJxc7nPddJOiAIqyb58VGkZETiMjI0M5cOCAkpGRoSiKoqSmyv91R3ylplre/rlz5yqhoaH6+xs2bFAAKMuXLy/1exs3bqx88skn+vuxsbHKRx99pL8PQHnjjTf091NTUxUAyqpVq4ye6/r16/q2AFCOHTum/56EhAQlMjJSfz8yMlJ577339Pdzc3OVGjVqKL179zb7Nd52223KU089ZXTMAw88oNxzzz2KoijKBx98oNSrV0/Jzs4ucq6lS5cqISEhSkpKSrHPZw2Ff68MWfO9qSKbMWOG0rBhQ6VevXpW+3kOHiz/F999t/ztIyLnYepvsqPe78vyXq8ofL9XOdP7vTXe6x1eIT937hweeeQRREREwN/fH02bNsU///yjf1xRFIwbNw7R0dHw9/dH165dcfToUYe0VV33PS/PIU9PRHYSEACkpjrmKyDAeq+jdevWRvdTU1Px0ksvoWHDhggLC0NQUBAOHjxY6hXzZs2a6W8HBgYiJCQEl0ooHwYEBKBOnTr6+9HR0frjk5OTcfHiRbRt21b/uKenJ1q1amXRazt48CDat29vtK99+/Y4ePAgAOCBBx5ARkYGateujaeeegrLli1Dbm4uAKBbt26IjY1F7dq18eijj2LBggVIt3a5guzCFuuQe3vLNifHaqckIiflqPd7a77XA3y/d/X3e4cG8uvXr6N9+/bw9vbGqlWrcODAAXzwwQcIDw/XHzN16lRMnz4ds2bNwrZt2xAYGIju3bsj0wH9xj09ZZufb/enJiI70umAwEDHfOl01nsdgYGBRvdfeuklLFu2DP/73//wxx9/YPfu3WjatCmys7NLPI+3mlD0Px8d8kv4Q2jqeMWSAXNWUL16dRw+fBiffvop/P398dxzz6Fjx47IyclBcHAwdu7ciW+//RbR0dEYN24cmjdvbvOlXMg1+PjItpT/FkTkBhz1fm/N93qA7/eu/n7v0ED+7rvvonr16pg7dy7atm2LWrVq4a677tJfaVEUBdOmTcMbb7yB3r17o1mzZpg/fz4SExMtHn9gDWqFnIGciFzR5s2b8fjjj6Nv375o2rQpoqKi8N9//9m1DaGhoYiMjDSqaObl5WHnzp0Wnadhw4bYvHmz0b7NmzejUaNG+vv+/v7o2bMnpk+fjo0bN2LLli3Yu3cvAMDLywtdu3bF1KlT8e+//+K///7Db7/9Vo5XRu5CDeSskBORq+L7vWu93zt02bMVK1age/fueOCBB7Bp0yZUrVoVzz33HJ566ikAwMmTJ3HhwgV07dpV/z2hoaFo164dtmzZgoceeqjIObOyspCVlaW/n5KSYrX2MpATkSurW7cufvjhB/Ts2RM6nQ5vvvlmiVe+bWX48OGYPHkybr75ZjRo0ACffPIJrl+/Dp0FJYOXX34ZAwYMQMuWLdG1a1f89NNP+OGHH/SzyM6bNw95eXlo164dAgIC8M0338Df3x+xsbFYuXIlTpw4gY4dOyI8PBy//PIL8vPzUb9+fVu9ZHIhasGHFXIiclV8v3et93uHVshPnDiBmTNnom7dulizZg2effZZjBgxAl999RUA4MKFCwCAyMhIo++LjIzUP1bY5MmTERoaqv+qXr261drLQE5EruzDDz9EeHg4brvtNvTs2RPdu3fHLbfcYvd2vPrqqxg4cCAee+wxxMXFISgoCN27d4efn5/Z5+jTpw8+/vhjvP/++2jcuDFmz56NuXPnonPnzgCAsLAwfP7552jfvj2aNWuGdevW4aeffkJERATCwsLwww8/4I477kDDhg0xa9YsfPvtt2jcuLGNXjG5ElbIicjV8f3etd7vdYq9O/ob8PHxQevWrfHXX3/p940YMQLbt2/Hli1b8Ndff6F9+/ZITExEdHS0/pgBAwZAp9Nh0aJFRc5pqkJevXp1JCcnIyQkpFztrV1b1iDfsgW49dZynYqInEhmZiZOnjyJWrVqWfQmQdaRn5+Phg0bYsCAAXj77bcd3RyrKen3KiUlBaGhoVZ5byLr/jzfeguYMAF45hlg5kzrtI+IHI/v9Y7nju/31nivd2iX9ejoaKP+/4CME1i6dCkAICoqCgBw8eJFo0B+8eJFtGjRwuQ5fX194evra5P2skJORFR+p06dwq+//opOnTohKysLM2bMwMmTJ/Hwww87umlErJATEVkJ3+/N49Au6+3bt8fhw4eN9h05cgSxsbEAgFq1aiEqKgrr16/XP56SkoJt27YhLi7Orm0FGMiJiKzBw8MD8+bNQ5s2bdC+fXvs3bsX69atQ8OGDR3dNCKOIScishK+35vHoRXyUaNG4bbbbsP//vc/DBgwAH///Tc+++wzfPbZZwBk6vyRI0di0qRJqFu3LmrVqoU333wTMTEx6NOnj93by0BORFR+1atXLzJjKpGzYIWciMg6+H5vHocG8jZt2mDZsmUYM2YMJk6ciFq1amHatGkYNGiQ/phXXnkFaWlpGDZsGJKSknD77bdj9erVDhn7wUBORETkPBISEpCQkIC8vDyrnZMVciIisieHBnIAuO+++3DfffcV+7hOp8PEiRMxceJEO7bKNDWQW/F9n4iIiMooPj4e8fHx+olzrEGtkDOQExGRPTh0DLmr8fSULSvkRERE7kmtkLPLOhER2QMDuQXYZZ2IiMi9sUJORET2xEBuAQZyIiIi98YKORER2RMDuQUYyImIiNwbK+RERGRPDOQWYCAnInfTuXNnjBw5Un+/Zs2amDZtWonfo9PpsHz58nI/t7XOU5IJEyagRYsWNn0Oci+skBORO+L7vfNiILcAAzkROYuePXvi7rvvNvnYH3/8AZ1Oh3///dfi827fvh3Dhg0rb/OMFPcmef78efTo0cOqz0VUXqyQE5Ez4fu9+2MgtwADORE5i6FDh2Lt2rU4e/Zskcfmzp2L1q1bo1mzZhaft3LlyggICLBGE0sVFRUFX19fuzwXkblYISciZ8L3e/fHQG4BBnKiCkJRgLQ0x3wpillNvO+++1C5cmXMmzfPaH9qaioWL16MoUOH4urVqxg4cCCqVq2KgIAANG3aFN9++22J5y3che3o0aPo2LEj/Pz80KhRI6xdu7bI97z66quoV68eAgICULt2bbz55pvIKUgz8+bNw1tvvYU9e/ZAp9NBp9Pp21y4C9vevXtxxx13wN/fHxERERg2bBhSU1P1jz/++OPo06cP3n//fURHRyMiIgLx8fH65zJHfn4+Jk6ciGrVqsHX1xctWrTA6tWr9Y9nZ2fj+eefR3R0NPz8/BAbG4vJkycDABRFwYQJE1CjRg34+voiJiYGI0aMMPu5yTWwQk5UgTjq/d7M93qA7/cV4f3ey2ZndkMM5EQVRHo6EBTkmOdOTQUCA0s9zMvLC4899hjmzZuHsWPHQqfTAQAWL16MvLw8DBw4EKmpqWjVqhVeffVVhISE4Oeff8ajjz6KOnXqoG3btqU+R35+Pvr164fIyEhs27YNycnJRuPPVMHBwZg3bx5iYmKwd+9ePPXUUwgODsYrr7yCBx98EPv27cPq1auxbt06AEBoaGiRc6SlpaF79+6Ii4vD9u3bcenSJTz55JN4/vnnjT6EbNiwAdHR0diwYQOOHTuGBx98EC1atMBTTz1V6usBgI8//hgffPABZs+ejZYtW+LLL79Er169sH//ftStWxfTp0/HihUr8P3336NGjRo4c+YMzpw5AwBYunQpPvroI3z33Xdo3LgxLly4gD179pj1vOQ61EDOCjlRBeCo93sz3+sBvt9XiPd7xc0lJycrAJTk5ORyn6tzZ0UBFOXbb63QMCJyGhkZGcqBAweUjIwM2ZGaKv/ZHfGVmmp2uw8ePKgAUDZs2KDf16FDB+WRRx4p9nvuvfde5cUXX9Tf79Spk/LCCy/o78fGxiofffSRoiiKsmbNGsXLy0s5d+6c/vFVq1YpAJRly5YV+xzvvfee0qpVK/398ePHK82bNy9ynOF5PvvsMyU8PFxJNXj9P//8s+Lh4aFcuHBBURRFGTx4sBIbG6vk5ubqj3nggQeUBx98sNi2FH7umJgY5Z133jE6pk2bNspzzz2nKIqiDB8+XLnjjjuU/Pz8Iuf64IMPlHr16inZ2dnFPp+hIr9XBqz53lSRzZgxQ2nYsKFSr149q/089+6V/4qVK1uhgUTkNEz+TXbU+70F7/WKwvd7RXHe93trvNezy7oFPD1lywo5kZsLCJCr1474smA8V4MGDXDbbbfhyy+/BAAcO3YMf/zxB4YOHQoAyMvLw9tvv42mTZuiUqVKCAoKwpo1a3D69Gmzzn/w4EFUr14dMTEx+n1xcXFFjlu0aBHat2+PqKgoBAUF4Y033jD7OQyfq3nz5gg0qBi0b98e+fn5OHz4sH5f48aN4an+MQYQHR2NS5cumfUcKSkpSExMRPv27Y32t2/fHgcPHgQg3eR2796N+vXrY8SIEfj111/1xz3wwAPIyMhA7dq18dRTT2HZsmXIzc216HWSdcXHx+PAgQPYvn271c7JCjlRBeKo93sLx27z/d693+8ZyC3ALutEFYROJ13JHPFV0BXNXEOHDsXSpUtx48YNzJ07F3Xq1EGnTp0AAO+99x4+/vhjvPrqq9iwYQN2796N7t27I9uKg2O3bNmCQYMG4Z577sHKlSuxa9cujB071qrPYchbnXGrgE6nQ74V/yjfcsstOHnyJN5++21kZGRgwIABuP/++wEA1atXx+HDh/Hpp5/C398fzz33HDp27GjRmDZyfuqvGMeQE1UAjnq/t/C9HuD7vTu/3zOQW4CBnIiczYABA+Dh4YGFCxdi/vz5eOKJJ/TjyzZv3ozevXvjkUceQfPmzVG7dm0cOXLE7HM3bNgQZ86cwfnz5/X7tm7danTMX3/9hdjYWIwdOxatW7dG3bp1cerUKaNjfHx8kJeXV+pz7dmzB2lpafp9mzdvhoeHB+rXr292m0sSEhKCmJgYbN682Wj/5s2b0ahRI6PjHnzwQXz++edYtGgRli5dimvXrgEA/P390bNnT0yfPh0bN27Eli1bsHfvXqu0j5wDK+RE5Iz4fm8+V3u/56RuFmAgJyJnExQUhAcffBBjxoxBSkoKHn/8cf1jdevWxZIlS/DXX38hPDwcH374IS5evGj0ZlSSrl27ol69ehg8eDDee+89pKSkYOzYsUbH1K1bF6dPn8Z3332HNm3a4Oeff8ayZcuMjqlZsyZOnjyJ3bt3o1q1aggODi6y/MmgQYMwfvx4DB48GBMmTMDly5cxfPhwPProo4iMjCzbD8eEl19+GePHj0edOnXQokULzJ07F7t378aCBQsAAB9++CGio6PRsmVLeHh4YPHixYiKikJYWBjmzZuHvLw8tGvXDgEBAfjmm2/g7++P2NhYq7WPHM9w2TNFKVMhi4jI6vh+bxlXer9nhdwCDORE5IyGDh2K69evo3v37kbjv9544w3ccsst6N69Ozp37oyoqCj06dPH7PN6eHhg2bJlyMjIQNu2bfHkk0/inXfeMTqmV69eGDVqFJ5//nm0aNECf/31F958802jY/r374+7774bXbp0QeXKlU0uxRIQEIA1a9bg2rVraNOmDe6//37ceeedmDFjhmU/jFKMGDECo0ePxosvvoimTZti9erVWLFiBerWrQtAZpCdOnUqWrdujTZt2uC///7DL7/8Ag8PD4SFheHzzz9H+/bt0axZM6xbtw4//fQTIiIirNpGciy1Qg4AnCKAiJwJ3+/N50rv9zpFsWAhPBeUkpKC0NBQJCcnIyQkpFzn6tUL+Okn4PPPgSeftFIDicjhMjMzcfLkSdSqVQt+fn6Obg65iZJ+r6z53kTW/XmmpWmrIFmwMhEROTm+15MtWOO9nhVyC7BCTkRE5N4MK+Sc2I2IiGyNgdwCDORERETuzctgdh1O7EZERLbGQG4BBnIiIiL3ptNx6TMiIrIfBnILqIG8lNn8iYiIyIUZzrRORERkSwzkFvD0lC0r5ETuyc3nuCQ74++T61LHkbNCTuR++LeZrMkav08M5BZgl3Ui9+RdUA5LT093cEvInai/T+rvF7kOVsiJ3A/f68kWrPFe71X6IaRiICdyT56enggLC8OlS5cAyBqZOp3Owa0iV6UoCtLT03Hp0iWEhYXBU+1eRS6DFXIi98P3erIma77XM5BbgIGcyH1FRUUBgP6Nmqi8wsLC9L9X5FpYISdyT3yvJ2uzxns9A7kFGMiJ3JdOp0N0dDSqVKmCHH4Kp3Ly9vZmZdwOEhISkJCQgDwrz7bKCjmRe+J7PVmTtd7rGcgtwEBO5P48PT0ZpIhcRHx8POLj45GSkoLQ0FCrnVcN5Py8TuSe+F5PzoSTulmAgZyIiMj9cR1yIiKyFwZyCzCQExERuT9WyImIyF4YyC3AQE5EROT+WCEnIiJ7YSC3gBrIrTx3DBERETkRVsiJiMheGMgtoM79wAo5ERGR+2KFnIiI7IWB3ALssk5EROT+uOwZERHZCwO5BRjIiYiI3J9aIWeXdSIisjUGcgswkBMREbk/VsiJiMheGMgtwEBORETk/lghJyIie2EgtwADORERkftjhZyIiOyFgdwCDORERETujxVyIiKyFwZyCzCQExERuT9WyImIyF4YyC3AQE5EROT+WCEnIiJ7YSC3gKenbBnIiYiI3Bcr5EREZC8M5BZQK+R5eY5tBxEREdkOK+RERGQvDOQWYJd1IiIi98cKORER2QsDuQUYyImIiNyfGshZISciIltjILcAAzkREZH7U7uss0JORES2xkBuAQZyIiIi98cKORER2QsDuQUYyImIiNwfK+RERGQvDg3kEyZMgE6nM/pq0KCB/vHMzEzEx8cjIiICQUFB6N+/Py5evOiw9jKQExEROY+EhAQ0atQIbdq0sep5OakbERHZi8Mr5I0bN8b58+f1X3/++af+sVGjRuGnn37C4sWLsWnTJiQmJqJfv34OaysDORERkfOIj4/HgQMHsH37dquel8ueERGRvXg5vAFeXoiKiiqyPzk5GXPmzMHChQtxxx13AADmzp2Lhg0bYuvWrbj11lvt3VQGciIiogqAFXIiIrIXh1fIjx49ipiYGNSuXRuDBg3C6dOnAQA7duxATk4Ounbtqj+2QYMGqFGjBrZs2VLs+bKyspCSkmL0ZS2enrJlICciInJfrJATEZG9ODSQt2vXDvPmzcPq1asxc+ZMnDx5Eh06dMCNGzdw4cIF+Pj4ICwszOh7IiMjceHChWLPOXnyZISGhuq/qlevbrX2qhXyvDyrnZKIiIicDCvkRERkLw7tst6jRw/97WbNmqFdu3aIjY3F999/D39//zKdc8yYMRg9erT+fkpKitVCObusExERuT9WyImIyF4c3mXdUFhYGOrVq4djx44hKioK2dnZSEpKMjrm4sWLJsecq3x9fRESEmL0ZS0M5ERERO6PFXIiIrIXpwrkqampOH78OKKjo9GqVSt4e3tj/fr1+scPHz6M06dPIy4uziHtYyAnIiJyf6yQExGRvTi0y/pLL72Enj17IjY2FomJiRg/fjw8PT0xcOBAhIaGYujQoRg9ejQqVaqEkJAQDB8+HHFxcQ6ZYR1gICciIqoIWCEnIiJ7cWggP3v2LAYOHIirV6+icuXKuP3227F161ZUrlwZAPDRRx/Bw8MD/fv3R1ZWFrp3745PP/3UYe1lICciInJ/rJATEZG9ODSQf/fddyU+7ufnh4SEBCQkJNipRSVjICciInJ/rJATEZG9ONUYcmfHQE5EROT+WCEnIiJ7YSC3AAM5ERGR+2OFnIiI7IWB3AKenrJlICciInJfaiDPyQEUxbFtISIi98ZAbgG1Qp6X59h2EBERke2oXdYVhe/5RERkWwzkFmCXdSIiIvenVsgBjiMnIiLbYiC3AAM5ERGR+1Mr5ADHkRMRkW0xkFuAgZyIiMj9MZATEZG9MJBbgIGciIjI/Xl4aBO5sss6ERHZEgO5BRjIiYiIKgYufUZERPbAQG4BBnIiIqKKQe22zgo5ERHZEgO5BRjIiYiIKgZWyImIyB4YyC3AQE5ERFQxsEJORET2wEBuAXWCFwZyIiIi98YKORER2QMDuQXUCnlenmPbQURERLbFCjkREdkDA7kF2GWdiIioYmCFnIiI7IGB3AIM5ERERBUDK+RERGQPDOQWYCAnIiKqGFghJyIie2AgtwADORERUcXACjkREdkDA7kFGMiJiIgqBlbIiYjIHhjILcBATkREVDGogZwVciIisiUGcgswkBMREdlG3759ER4ejvvvv9/RTQGgdVlnhZyIiGyJgdwCDORERES28cILL2D+/PmOboYeu6wTEZE9MJBbwNNTtgzkRERE1tW5c2cEBwc7uhl6nNSNiIjsgYHcAmqFPC/Pse0gIiJyJr///jt69uyJmJgY6HQ6LF++vMgxCQkJqFmzJvz8/NCuXTv8/fff9m+oBVghJyIie2AgtwC7rBMRERWVlpaG5s2bIyEhweTjixYtwujRozF+/Hjs3LkTzZs3R/fu3XHp0qUyPV9WVhZSUlKMvqyNFXIiIrIHBnILMJATEREV1aNHD0yaNAl9+/Y1+fiHH36Ip556CkOGDEGjRo0wa9YsBAQE4MsvvyzT802ePBmhoaH6r+rVq5en+SaxQk5ERPbAQG4BBnIiIiLLZGdnY8eOHejatat+n4eHB7p27YotW7aU6ZxjxoxBcnKy/uvMmTPWaq4eK+RERGQPXo5ugCthICciIrLMlStXkJeXh8jISKP9kZGROHTokP5+165dsWfPHqSlpaFatWpYvHgx4uLiTJ7T19cXvr6+Nm03K+RERGQPDOQWYCAnIiKyjXXr1jm6CUZYISciIntgl3ULMJATERFZ5qabboKnpycuXrxotP/ixYuIiopyUKtKxwo5ERHZAwO5BRjIiYiILOPj44NWrVph/fr1+n35+flYv359sV3SnQEr5EREZA/ssm4BBnIiIqKiUlNTcezYMf39kydPYvfu3ahUqRJq1KiB0aNHY/DgwWjdujXatm2LadOmIS0tDUOGDCnX8yYkJCAhIQF5eXnlfQlFsEJORET2wEBuAU9P2TKQExERaf755x906dJFf3/06NEAgMGDB2PevHl48MEHcfnyZYwbNw4XLlxAixYtsHr16iITvVkqPj4e8fHxSElJQWhoaLnOVRgr5EREZA8M5BbwMOjgn59vfJ+IiKii6ty5MxRFKfGY559/Hs8//7ydWlR+rJATEZE9MFJaoHAgJyIiIvfECjkREdkDA7kFGMiJiIgqBlbIiYjIHhjILcBATkREVDGogZwVciIisiUGcgswkBMRETmPhIQENGrUCG3atLH6udUu66yQExGRLTGQW4CBnIiIyHnEx8fjwIED2L59u9XPzS7rRERkDwzkFmAgJyIiqhg4qRsREdkDA7kFGMiJiIgqBlbIiYjIHhjILeDpqd1mICciInJfrJATEZE9MJBbgBVyIiKiioEVciIisgcGcgvodNrtvDzHtYOIiIhsixVyIiKyBwZyC6lVclbIiYiIHMuWy56xQk5ERPbAQG4hBnIiIiLnYMtlz1ghJyIie2AgtxADORERkftjhZyIiOzBaQL5lClToNPpMHLkSP2+zMxMxMfHIyIiAkFBQejfvz8uXrzouEaCgZyIiKgiYIWciIjswSkC+fbt2zF79mw0a9bMaP+oUaPw008/YfHixdi0aRMSExPRr18/B7VSMJATERG5P1bIiYjIHhweyFNTUzFo0CB8/vnnCA8P1+9PTk7GnDlz8OGHH+KOO+5Aq1atMHfuXPz111/YunWrw9rLQE5EROT+1ECenw/k5jq2LURE5L4cHsjj4+Nx7733omvXrkb7d+zYgZycHKP9DRo0QI0aNbBly5Ziz5eVlYWUlBSjL2tiICciInJ/oaHa7aQkhzWDiIjcnEMD+XfffYedO3di8uTJRR67cOECfHx8EBYWZrQ/MjISFy5cKPackydPRmhoqP6revXqVm2zp6dsGciJiMiZ7dy5E3v37tXf//HHH9GnTx+8/vrryGY/7FJ5eWmh/OpVx7aFiIjcl8MC+ZkzZ/DCCy9gwYIF8PPzs9p5x4wZg+TkZP3XmTNnrHZugBVyIiJyDU8//TSOHDkCADhx4gQeeughBAQEYPHixXjllVcc3DrrsOU65ABQqZJsGciJiMhWHBbId+zYgUuXLuGWW26Bl5cXvLy8sGnTJkyfPh1eXl6IjIxEdnY2kgr1E7t48SKioqKKPa+vry9CQkKMvqxJDeR5eVY9LRERkVUdOXIELVq0AAAsXrwYHTt2xMKFCzFv3jwsXbrUsY2zEluuQw4AERGyZSAnIiJb8XLUE995551GXekAYMiQIWjQoAFeffVVVK9eHd7e3li/fj369+8PADh8+DBOnz6NuLg4RzQZACvkRETkGhRFQX7Bm9W6detw3333AQCqV6+OK1euOLJpLkMN5NeuObYdRETkvhwWyIODg9GkSROjfYGBgYiIiNDvHzp0KEaPHo1KlSohJCQEw4cPR1xcHG699VZHNBkAAzkREbmG1q1bY9KkSejatSs2bdqEmTNnAgBOnjyJyMhIB7fONbBCTkREtuawQG6Ojz76CB4eHujfvz+ysrLQvXt3fPrppw5tEwM5ERG5gmnTpmHQoEFYvnw5xo4di5tvvhkAsGTJEtx2220Obp1r4BhyIiKyNacK5Bs3bjS67+fnh4SEBCQkJDimQSYwkBMRkSto1qxZkaFhAPDee+/BU10yhErECjkREdmaw9chdzUM5ERE5ArOnDmDs2fP6u///fffGDlyJObPnw9vb28Htsx1MJATEZGtMZBbiIGciIhcwcMPP4wNGzYAAC5cuIBu3brh77//xtixYzFx4kQHt841cFI3IiKyNQZyCzGQExGRK9i3bx/atm0LAPj+++/RpEkT/PXXX1iwYAHmzZvn2Ma5CI4hJyIiW2Mgt5A67I6BnIiInFlOTg58fX0ByLJnvXr1AgA0aNAA58+fd2TTXIOioNWnQzENLzCQExGRzTCQW4gVciIicgWNGzfGrFmz8Mcff2Dt2rW4++67AQCJiYmIUPtiu7iEhAQ0atQIbdq0sf7J9+9H5Z++xAuYjuQrOdY/PxERERjILaYG8rw8x7aDiIioJO+++y5mz56Nzp07Y+DAgWjevDkAYMWKFfqu7K4uPj4eBw4cwPbt261/8r/+0t/MzcxBRob1n4KIiMiplj1zBayQExGRK+jcuTOuXLmClJQUhIeH6/cPGzYMAQEBDmyZizAI5D7IxrVrAaha1YHtISIit8RAbiEGciIichWenp7Izc3Fn3/+CQCoX78+atas6dhGuYpCgfzqVTCQExGR1bHLuoUYyImIyBWkpaXhiSeeQHR0NDp27IiOHTsiJiYGQ4cORXp6uqOb59wuXwaOHtXfVQM5ERGRtTGQW4iBnIiIXMHo0aOxadMm/PTTT0hKSkJSUhJ+/PFHbNq0CS+++KKjm+fctmwxuuuNHK5FTkRENsEu6xZiICciIlewdOlSLFmyBJ07d9bvu+eee+Dv748BAwZg5syZjmucszPorg6wQk5ERLbDCrmFGMiJiMgVpKenIzIyssj+KlWqsMt6aRjIiYjIThjILcRATkREriAuLg7jx49HZmamfl9GRgbeeustxMXFObBlTi47G1CXUfP0BMBATkREtsMu6xYqeG9mICciIqf28ccfo3v37qhWrZp+DfI9e/bAz88Pa9ascXDrnNiuXUBmJhARAQQHA//9xzHkRERkMwzkFmKFnIiIXEGTJk1w9OhRLFiwAIcOHQIADBw4EIMGDYK/v7+DW+fE1O7qt90GHDkCgBVyIiKyHQZyC6mBPC/Pse0gIiIqTUBAAJ566ilHN8NmEhISkJCQgDxrvikbBvL//gPAQE5ERLbDQG4hVsiJiMhZrVixwuxje/XqZcOW2Ed8fDzi4+ORkpKC0NBQ65y0Vy/Axwe44w5gyRIAEsjPMZATEZENMJBbiIGciIicVZ8+fcw6TqfTWbeq7E4efVS+AMDbG4AEco4hJyJ7UhRgzhygQQPg9tsd3RqyJQZyCzGQExGRs8rnm5N1+fgAgH5SN0UBdDoHt4mIKoTffgOeegqoVQs4ccLRrSFb4rJnFmIgJyIiqiAKArkPspGbC6SkOLg9RFRhLF0q2//+A7KyHNoUsjEGcgsxkBMREVUQBYE8yDsbADixGxHZRX4+8OOPcltRgNOnHdsesi0GcgsxkBMREVUQBYE8LFACOceRE5E9bN8OJCZq90+edFxbyPYYyC3EQE5ERFRBFEzqFhaQA4AVciKyj+XLje8XrMBIboqB3EKenrJlICciInJzBRXyUH92WSci+1m2TLbR0bJlhdy9MZBbiBVyIiJyBb/88gvWrFlTZP+aNWuwatUqB7TIBTGQE5GdHToEHD4sf36eekr2sULu3hjILaQGci7fSkREzuy1114zuda4oih47bXXHNAiF1QQyIN9OYaciOxDrY7feSfQrJncZoXcvTGQW4gVciIicgVHjx5Fo0aNiuxv0KABjh075oAWuaCCMeRBvhxDTkT2sXatbHv1kjXIAVbI3R0DuYUYyImIyBWEhobixIkTRfYfO3YMgYGBDmiRCyqokAcULHuWnOzIxhBRRaD+nYmNBWrWlNsXLwLp6Q5rEtkYA7mFGMiJiMgV9O7dGyNHjsTx48f1+44dO4YXX3wRvXr1cmDLXEhBIPf3kECemurIxhBRRZAjHXLg7Q2EhwMhIXL/1CnHtYlsi4HcQgzkRETkCqZOnYrAwEA0aNAAtWrVQq1atdCwYUNERETg/fffd3TzXENBIPcrCOQ3bjiyMURUERgGcp1Oq5JzHLn78nJ0A1wNAzkREbmC0NBQ/PXXX1i7di327NkDf39/NGvWDB07dnR006wmISEBCQkJJievs4qCMeS+HvIJmYGciGzNMJADMo783385jtydMZBbiIGciIhchU6nw1133YW77rrL0U2xifj4eMTHxyMlJQWhoaHWf4KCCrmPjhVyIrKPwoGcFXL3x0BuIU9P2TKQExGRs5k+fTqGDRsGPz8/TJ8+vcRjR4wYYadWubCCQO4LBnIiso/cXNkaVsgBVsjdGQO5hVghJyIiZ/XRRx9h0KBB8PPzw0cffVTscTqdjoHcHAWB3FthICci+1Ar5F4FKY0VcvfHQG4hBnIiInJWJw0+sZ3kp7fyMxHIFUUmWiIisgVTY8gBVsjdGWdZt5AayG01fwwRERE5iYJPxF6KfELOzQWyshzZICJyd8WNIb96lb103FWZKuRnzpyBTqdDtWrVAAB///03Fi5ciEaNGmHYsGFWbaCzYYWciIhcgaIoWLJkCTZs2IBLly4hv9Ab1w8//OCglrmQggq5Z362fteNG4Cfn6MaRETurnAgDwkBKlUCrl2TKnnTpg5rGtlImSrkDz/8MDZs2AAAuHDhArp164a///4bY8eOxcSJE63aQGfDQE5ERK5g5MiRePTRR3Hy5EkEBQUhNDTU6IvMUBDIPXKy4e8vu1JTHdgeInJ7hQM5oFXJ2W3dPZWpQr5v3z60bdsWAPD999+jSZMm2Lx5M3799Vc888wzGDdunFUb6UwYyImIyBV8/fXX+OGHH3DPPfc4uimuqyCQIzsbwcFARga7jBKR7eTlyTwVgHEgr1UL2LmTgdxdlalCnpOTA19fXwDAunXr0KtXLwBAgwYNcP78eeu1zgkxkBMRkSsIDQ1F7dq1Hd0M16Z+Is7JQXCw3GQgJyJbUZc8A4wDeVSUbC9ftm97yD7KFMgbN26MWbNm4Y8//sDatWtx9913AwASExMRERFh1QY6GwZyIiJyBRMmTMBbb72FjIwMRzfFdRWqkAMM5ERkO2p3dcA4kFeqJNtr1+zbHrKPMnVZf/fdd9G3b1+89957GDx4MJo3bw4AWLFihb4ru7tiICciIlcwYMAAfPvtt6hSpQpq1qwJb8NPdwB27tzpoJa5EMNAXvCBmIGciGzFMJB7GaQ0NZBfvWrf9pB9lCmQd+7cGVeuXEFKSgrCw8P1+4cNG4aAgACrNc4ZeXrKloGciIic2eDBg7Fjxw488sgjiIyMhI6LZ1vOIJAHBclNBnIispXSAjkr5O6pTIE8IyMDiqLow/ipU6ewbNkyNGzYEN27d7dqA50NK+REROQKfv75Z6xZswa33367o5viutRAzjHkRGQHaiD38gIMr6EykLu3Mo0h7927N+bPnw8ASEpKQrt27fDBBx+gT58+mDlzplUb6GwYyImIyBVUr14dISEhjm6Ga1O7+XMMORHZgaklzwAGcndXpkC+c+dOdOjQAQCwZMkSREZG4tSpU5g/fz6mT59u1QY6GzWQ5+U5th1EREQl+eCDD/DKK6/gP66TU3ac1I2I7EidZZ2BvGIpUyBPT09HcME706+//op+/frBw8MDt956K06dOmX2eWbOnIlmzZohJCQEISEhiIuLw6pVq/SPZ2ZmIj4+HhEREQgKCkL//v1x8eLFsjTZalghJyIiV/DII49gw4YNqFOnDoKDg1GpUiWjLzKDiUCemuq45hCReyutQp6UxKKgOyrTGPKbb74Zy5cvR9++fbFmzRqMGjUKAHDp0iWLusdVq1YNU6ZMQd26daEoCr766iv07t0bu3btQuPGjTFq1Cj8/PPPWLx4MUJDQ/H888+jX79+2Lx5c1mabRUM5ERE5AqmTZvm6Ca4PlbIiciOigvkBnNoIykJcPNVpiucMgXycePG4eGHH8aoUaNwxx13IC4uDoBUy1u2bGn2eXr27Gl0/5133sHMmTOxdetWVKtWDXPmzMHChQtxxx13AADmzp2Lhg0bYuvWrbj11lvL0vRyYyAnIiJXMHjwYEc3wfWpn4rz8xESmAfAk4GciGzGcFI3Q97eQEgIkJIi3dYZyN1LmQL5/fffj9tvvx3nz5/Xr0EOAHfeeSf69u1bpobk5eVh8eLFSEtLQ1xcHHbs2IGcnBx07dpVf0yDBg1Qo0YNbNmypdhAnpWVhaysLP39lJSUMrWnOAzkRETkKvLz83Hs2DFcunQJ+YXeuDp27OigVrkQtUIOIMQ/BwzkRGRLxVXIAem2rgZyci9lCuQAEBUVhaioKJw9exaAdD9v27atxefZu3cv4uLikJmZiaCgICxbtgyNGjXC7t274ePjg7CwMKPjIyMjceHChWLPN3nyZLz11lsWt8NcDOREROQKtm7diocffhinTp2CoihGj+l0OuRxIGLpDAJ5qH82AD8GciKymdIC+X//MZC7ozJN6pafn4+JEyciNDQUsbGxiI2NRVhYGN5+++0iV+BLU79+fezevRvbtm3Ds88+i8GDB+PAgQNlaRYAYMyYMUhOTtZ/nTlzpsznMoWBnIiIXMEzzzyD1q1bY9++fbh27RquX7+u/7rGT3TmMfhUHOKXDYBjyInIdkoL5ABw9ar92kP2UaYK+dixYzFnzhxMmTIF7du3BwD8+eefmDBhAjIzM/HOO++YfS4fHx/cfPPNAIBWrVph+/bt+Pjjj/Hggw8iOzsbSUlJRlXyixcvIioqqtjz+fr6wtfXtywvyyyenrJlICciImd29OhRLFmyRP8e644SEhKQkJBgu2q/p6d85eUhyFc+KTOQE5GtFLfsGcClz9xZmSrkX331Fb744gs8++yzaNasGZo1a4bnnnsOn3/+OebNm1euBuXn5yMrKwutWrWCt7c31q9fr3/s8OHDOH36tH4SOUdghZyIiFxBu3btcOzYMUc3w6bi4+Nx4MABbN++3XZPUvDJOMiHFXIisi1zKuQM5O6nTBXya9euoUGDBkX2N2jQwKJucGPGjEGPHj1Qo0YN3LhxAwsXLsTGjRuxZs0ahIaGYujQoRg9ejQqVaqEkJAQDB8+HHFxcQ6bYR1gICciIuf177//6m8PHz4cL774Ii5cuICmTZvCu9AnvGbNmtm7ea7JxwfIzDQK5IoC6HQObhcRuR0G8oqpTIG8efPmmDFjBqZPn260f8aMGRa9wV+6dAmPPfYYzp8/j9DQUDRr1gxr1qxBt27dAAAfffQRPDw80L9/f2RlZaF79+749NNPy9Jkq2EgJyIiZ9WiRQvodDqjSdyeeOIJ/W31MU7qZoGCid3UQJ6fD2RmAv7+jmwUEbmj4pY9AxjI3VmZAvnUqVNx7733Yt26dfru41u2bMGZM2fwyy+/mH2eOXPmlPi4n5+ffnyYs1ADOT/HEBGRszl58qSjm+B+CgJ5gHeOfteNGwzkRGR9OTmAF3IQlXcJQFWjxxjI3VeZxpB36tQJR44cQd++fZGUlISkpCT069cP+/fvx9dff23tNjoVVsiJiMhZqSufxMbG4tSpU6hatarRvtjYWFStWhWnTp1ydFNdR0HfUY/cbAQGyi6OIyciW8jJAeZiCL7dXB3Yv9/oMQZy91XmdchjYmKKzKa+Z88ezJkzB5999lm5G+asGMiJiMgVdOnSBefPn0eVKlWM9icnJ6NLly7ssm4udS3y7GwEBwNpaQzkRGQbOTlAC+yFBxTg8GGgcWP9YxERsmUgdz9lqpBXZAzkRETkCtSx4oVdvXoVgWqpl0pXKJADDOREZBu5uUAQUuVOZqbRY6yQu68yV8grKgZyIiJyZv369QMgE7g9/vjj8PX11T+Wl5eHf//9F7fddpujmud6CgXyp/AZqk/9F7j9E061TkRWlZMDBCJN7hQTyK9flxziwbKq22AgtxADORERObPQ0FAAUiEPDg6Gv8HsYz4+Prj11lvx1FNPOap5rkcN5Dk5CAoC3sFYVF55BTj4HNCokWPbRkRuJSen+Ap5eLhs8/OBlBQgLMy+bSPbsSiQq1fdi5OUlFSetrgET0/ZMpATEZEzmjt3LgCgZs2aeOmll9g9vbzUBYELKuQhSJH7GRmOaxMRuaWcrHwEIF3uFArkvr5AYKDMY3H1KgO5O7EokKtX3Ut6/LHHHitXg5wdK+REROQKxo8f7+gmuAeDLuthgTnwhaxHjqwsx7WJiNxTRoZM6AYUCeSAdFtPS5Nx5HXq2LltZDMWBXL1qntFxkBORETO6pZbbsH69esRHh6Oli1bmpzUTbVz5047tsyFGQTyCL80bT8DORFZmS7d4G9MMYH8zBlO7OZuOIbcQgzkRETkrHr37q2fxK1Pnz6ObYy7MBhDHuGbqu1nICciK9OlGfyNKSaQAwzk7oaB3EJqIOfyrURE5GzUbup5eXno0qULmjVrhjAONCwfgzHk4T6skBOR7XhmMJBXRJww30KskBMRkbPz9PTEXXfdhevXrzu6Ka7PcAy5NyvkRGQ7Hhmld1kHGMjdDQO5hRjIiYjIFTRp0gQnTpxwdDNcn0EgD/U0+LCcne2Y9hCR2/LKLLlCHhEhWwZy98JAbiEGciIicgWTJk3CSy+9hJUrV+L8+fNISUkx+iIzGYwhD/FghZyIbMcjkxXyiohjyC3EQE5ERK7gnnvuAQD06tXLaLZ1RVGg0+mQx8lQzGO4DrkHx5ATke2UViFnIHdPDOQWYiAnIiJXsGHDBkc3wT0YdFkPVFghJyLb8WKFvEJiILeQp6dsGciJiMiZderUydFNcA8GgTzAkxVyIrId7yxWyCsiBnILsUJORESuJD09HadPn0Z2oUnImjVr5qAWuRiDQO7PdciJyIZ8ss0L5Fev2qlBZBcM5BZiICciIldw+fJlDBkyBKtWrTL5OMeQm8lgUjc/L61CrmRlQ1fMtxARlYV3tvld1hUF0PGPkFvgLOsWYiAnIiJXMHLkSCQlJWHbtm3w9/fH6tWr8dVXX6Fu3bpYsWKFo5vnOgwmdfPN0apXuWmskBORdfnkmFchz8sDbtywU6PI5lght5AayFlYICIiZ/bbb7/hxx9/ROvWreHh4YHY2Fh069YNISEhmDx5Mu69915HN9E1GHRZ9zYYQ56dmgVvBzWJiNyTT07JFXI/P7lGmJMDJCcDISF2bBzZDCvkFmKFnIiIXEFaWhqqVKkCAAgPD8fly5cBAE2bNsXOnTsd2TTXYhDIdWkGFfJUVsiJyLp8S6mQ63RAWJjcTkqyS5PIDhjILcRATkRErqB+/fo4fPgwAKB58+aYPXs2zp07h1mzZiE6OtrBrXMhBmPIkaZVr3LTGciJyLp8c0uukANaIE9Otn17yD7YZd1CDOREROQKXnjhBZw/fx4AMH78eNx9991YsGABfHx8MG/ePMc2zpUYjCE3/ICcz0BORFbml1tyhRwAQkNlywq5+2AgtxADORERuYJHHnlEf7tVq1Y4deoUDh06hBo1auCmm25yYMtcjEGXdcMKeX4mAzkRWZd/nkEgz8mRSas8PY2OYYXc/TCQW0j9P8FATkREriQgIAC33HKLo5vhegwDear2YVnJzC7mG4iIysYvL814R1YWEBBgtItjyN0PA7mFWCEnIiJXMHr0aJP7dTod/Pz8cPPNN6N3796opK6j42ArV67Eiy++iPz8fLz66qt48sknHd0kUcwYcoUVciKyMqMKOSDd1gsFcnZZdz8M5BZiICciIlewa9cu7Ny5E3l5eahfvz4A4MiRI/D09ESDBg3w6aef4sUXX8Sff/6JRo0aObStubm5GD16NDZs2IDQ0FC0atUKffv2RUREhEPbBaDYCjmyGMiJyLr88wtVyE2MI2eXdffDWdYtxEBORESuoHfv3ujatSsSExOxY8cO7NixA2fPnkW3bt0wcOBAnDt3Dh07dsSoUaMc3VT8/fffaNy4MapWrYqgoCD06NEDv/76q6ObJQwndTMM5NkM5ERkRYqCQMVEhbwQdll3PwzkFmIgJyIiV/Dee+/h7bffRkhIiH5faGgoJkyYgKlTpyIgIADjxo3Djh07yv1cv//+O3r27ImYmBjodDosX768yDEJCQmoWbMm/Pz80K5dO/z999/6xxITE1G1alX9/apVq+LcuXPlbpdVqBXyjAyjD8c6BnIisqbMTHhAAQDk+/jq9xXGLuvuh4HcQmogz8tzbDuIiIhKkpycjEuXLhXZf/nyZaSkpAAAwsLCkJ1d/snJ0tLS0Lx5cyQkJJh8fNGiRRg9ejTGjx+PnTt3onnz5ujevbvJ9jkdNZAX+vTrkcNATkRWZNADJy+0YG6PjIwih7HLuvthILcQK+REROQKevfujSeeeALLli3D2bNncfbsWSxbtgxDhw5Fnz59AEhX8Xr16pX7uXr06IFJkyahb9++Jh//8MMP8dRTT2HIkCFo1KgRZs2ahYCAAHz55ZcAgJiYGKOK+Llz5xATE1Ps82VlZSElJcXoy2bUQH79utFuj1zOsk5EVlQQyNPhDyUgUPaxy3qFwEBuIQZyIiJyBbNnz8add96Jhx56CLGxsYiNjcVDDz2EO++8E7NmzQIANGjQAF988YVN25GdnY0dO3aga9eu+n0eHh7o2rUrtmzZAgBo27Yt9u3bh3PnziE1NRWrVq1C9+7diz3n5MmTERoaqv+qXr267V6AOoa8UNc4z1xWyInIigpWcUhFEODnJ/vYZb1C4CzrFmIgJyIiVxAUFITPP/8cH330EU6cOAEAqF27NoKCgvTHtGjRwubtuHLlCvLy8hAZGWm0PzIyEocOHQIAeHl54YMPPkCXLl2Qn5+PV155pcQZ1seMGWO0rFtKSortQrlaIS+EgZyIrKqgQp6KIISVEMjZZd39MJBbiIGciIhcSVBQkH6tccMw7mx69eqFXr16mXWsr68vfH19bdyiAoUCeb7OAx5KPrzyGMiJyHqU1DToAKQhsMQKObusux92WbeQp6dsGciJiMiZ5efnY+LEiQgNDdV3WQ8LC8Pbb7+NfDu+id10003w9PTExYsXjfZfvHgRUVFRdmtHmRUK5NlBcnHDO5+BnIisJz9Fq5DrzOiynpVl8mFyQQzkFmKFnIiIXMHYsWMxY8YMTJkyBbt27cKuXbvwv//9D5988gnefPNNu7XDx8cHrVq1wvr16/X78vPzsX79esTFxdmtHWVWKJDnhhQEciWHHwaIyGryUmQMeRoCofMvPpAHBwM6ndxmt3X3wC7rFmIgJyIiV/DVV1/hiy++MOoG3qxZM1StWhXPPfcc3nnnHas9V2pqKo4dO6a/f/LkSezevRuVKlVCjRo1MHr0aAwePBitW7dG27ZtMW3aNKSlpWHIkCFWa4PNqJO6FcgLrQSoE8Ln5AD26jpPRG4tL9mgQu5f8HfHRCD38JAqeVKSfBWanqPiunBBfhjq1QoXwgq5hRjIiYjIFVy7dg0NGjQosr9Bgwa4du2aVZ/rn3/+QcuWLdGyZUsAwOjRo9GyZUuMGzcOAPDggw/i/fffx7hx49CiRQvs3r0bq1evLjLRm6USEhLQqFEjtGnTptyvoViFKuRKeCXtTha7rRORdSg3JJCnIRC6gOIr5ABnWi9i/XogOhoYO9bRLSkTBnILMZATEZEraN68OWbMmFFk/4wZM9C8eXOrPlfnzp2hKEqRr3nz5umPef7553Hq1ClkZWVh27ZtaNeuXbmfNz4+HgcOHMD27dvLfa5iFZ5lvRIDORFZX/4Ntct6EDxMdVlPSdHf5EzrhezaJdsdOxzbjjJil3ULGQZyRXHJXhFERFQBTJ06Fffeey/WrVunH6u9ZcsWnDlzBr/88ouDW+dCPD3lzV5R5G5oMLLhDR/kMJATkdWoFfJ0jyDAL1t2qoH8ww+BF18EVq4E7r3XvWdaP30aePhh4JFHgGeeMe971CsTVu79ZS+skFvIw+AnVvDeTERE5HQ6deqEI0eOoG/fvkhKSkJSUhL69euHw4cPo0OHDo5unuvQ6YzGkXuGBiILMm48L52BnIisQ0mVCnmGh4llz7Zske3q1QDcvMv6Sy8BmzcDn31m/ve4eCBnhdxChoE8P9/4PhERkTOJiYkpMnnb2bNnMWzYMHxmyYedis7HB8iWipV3WBDS4YtgpCIjKQvOu7I7EbkSJVUq5BleQYBfQdVPDeRq4Ny3D4Abd1nfsgVYvFhuW/LiXDyQM05aqHAgJyIiciVXr17FnDlzHN0M12IwjtwrLAjZkPsZydmOahERuZs0qZBneZqokKuBc/9+AG5aIVcUYPRo7b4lL079+SQlAXl51myVXTCQW4iBnIiIyDnYZZZ1wCiQ64ICka2TLuuZyeyyTkTWoUuTCnmmV1DRQK6G08uXgcuX3bNCvmQJsHUr4FXQgTs52fzxwYbh3QWvUjCQW8jTU7vNQE5EROQ4dpllHTCeaT0oCDkeEsizUhjIicg61ECe7V1ChRwA9u9HWBgQiFS02zoNOHfOru20SEYG0L07MGlS6cdOnixbtUqel6fvNVAqw5+PC3ZbZyC3ECvkREREFYzBpG4IDESuJwM5EVmXLr2gy7q3iQq5YeDctw+hocBITMOjO0ZpQdYZrV8P/PorkJBQ+rFnz8p20CDtb6651e6yBPL9+4H77gP++ce8422Ik7pZiIGciIicWb9+/Up8PMkFu/M5XKEKuRrIs28wkBORdXikS4W8SCDPyjJej3z/foR1BXpgldw/f97OLbXA33/L1py+9enpsg0MlFnrLl+WQF6tWunfW5ZA/vnnwM8/AxERwFdfmfc9NuLQCvnkyZPRpk0bBAcHo0qVKujTpw8OHz5sdExmZibi4+MRERGBoKAg9O/fHxcvXnRQixnIiYjIuYWGhpb4FRsbi8cee8zRzXQthoE8MBD5XnI/J5WBnIiswyNDKuRFuqwXDrP79yPCOwXtsE3uO/NA8m0FbczIAHJyij9OUeQYAPD3t2zWOkUpWyA/dEi2BTPXO5JDK+SbNm1CfHw82rRpg9zcXLz++uu46667cODAAQQGBgIARo0ahZ9//hmLFy9GaGgonn/+efTr1w+bN292SJsZyImIyJnNnTvX0U1wP4Uq5HleUiFnICcia/HMKBhD7hNUaiCvenQjvFAwm7izBnJF0SrkAHDjBlCpkuljc3K0YBUQYNm6bmlpxjOrmxvI1SLwgQPy/YYThdmZQwP56oLF7VXz5s1DlSpVsGPHDnTs2BHJycmYM2cOFi5ciDvuuAOAfNBo2LAhtm7diltvvdXubTYM5C44qz4RERFZqtAY8nzvgkCexmXPiMgKFAWemVIhz/UtpkJ+000SNq9dQ/S6r7XvddZAfvSocYU7Obn4QK52VwekQq4GcnMq5IVfvzmBPCMDOHVKbmdmAsePA/Xqlf59NuJUk7olF/xAKxX8Y+3YsQM5OTno2rWr/pgGDRqgRo0a2LJli8lzZGVlISUlxejLmnQ67TYr5ERERI7jiGXPEBQExUcCeW4aK+REZAVZWfDIl0pfjm+hCrkaSiMjgZtvBgAE/vqD/lsVZw3khtVxACgpk6nd1T085O+trQP5sWPGS6o5uNu60wTy/Px8jBw5Eu3bt0eTJk0AABcuXICPjw/C1H+UApGRkbhw4YLJ80yePNlorFz16tWt3la1Ss5ATkRE5DgOWfYsMFAfyPPSGciJyApSU/U38/wCpUoMGFfIQ0OBxo0BADrDEOIOgVytkPv7S/XTkjHkZQnkheYsw969pX+PDTlNII+Pj8e+ffvw3Xffles8Y8aMQXJysv7rzJkzVmqhhoGciIioAjEM5AEBgG9BIM9gICciKyhYbzsDfvD08TTdZd0gkAPAYV19AIAuK0tmYi/OtWvAlCnAd98ZV4VtTZ3QTVXShQO1Qh4QIFtbV8jVQK52fWaFHHj++eexcuVKbNiwAdUMpraPiopCdnZ2kSVaLl68iKioKJPn8vX1RUhIiNGXtTGQExERVSDqGPKAAMDDAzpfCej5DOREZA0FFfJUBMmfG1OBPCzMKJD/GthX+35TYTctDZg0CahVCxgzBhg4EHjySeMl1GwlKwvYvVtu16wpW3Mr5IBlk7oVDu2WBPKOHWVbkSvkiqLg+eefx7Jly/Dbb7+hVq1aRo+3atUK3t7eWL9+vX7f4cOHcfr0acTFxdm7uXrqJHwM5ERERBWAWiEPCgIA6Aoq5AoDORFZQ0GFPA2B8PKC6THkhSrk/1TqjhQEyx1TwfW554A335QgfPPNUlH88kugQwfgyhXbvRYA2LMHyM6WiehatCi+jSprVMjVCePMCeRHjsi2f3/ZHj1qnwsVxXBoII+Pj8c333yDhQsXIjg4GBcuXMCFCxeQUfCPEhoaiqFDh2L06NHYsGEDduzYgSFDhiAuLs4hM6yrWCEnIiKqQNRAXrAkq4d/QSDP4izrRGQFxVXIc3O1gBkaCtSvD9SpA9Spg/+i45CMgrHWpsLu/v2ynTRJKsKrV0to/ecfICHBtq9HHT/etq02HtySCnlZxpCrhd3SArmiaBXyzp3lZ5KfDxw8WPpz2YhDA/nMmTORnJyMzp07Izo6Wv+1aNEi/TEfffQR7rvvPvTv3x8dO3ZEVFQUfvjhhxLOansM5ERERBVIoQq5FshZISciKzCokBsFcgC4eFG2YWHyt2jPHmD3bgRW8i05kF++LNuuXSW8dOsGvPKK7Dt2zCYvQ08dP962LaAOHzZnlvXCXdbLGshLCmmXL8t5dTrpOVAwmbgjx5E7dB1yxYyJBfz8/JCQkIAEW1/JsQADORERUQVSqELuGSCBXMdATkTWUFAh1wfygmExAAB1ZSm1alzwdyg0FMUHckXRAnnlytp+dfUpG0x6bUStkLdrB2zebLqNhtQKeeEu6+aMIS8cyPPzgRs3tJ9XYWp1PDZWLgA0bQr8/rtDA7lTTOrmahjIiYiIHM9u65Crk7oVVMi9AiSg67IZyInICq5eBQBcQyX5c+Ppqf3dUSvkhQJmWFgJgTwtTas62zuQX7+ujdFu06ZsFXJLuqyrx1SpogX6krqtq4G8Xj3ZqhVyB07sxkBeBmogz8tzbDuIiIgqMruvQ64G8sCCCnkOAzkRWUFBFfwCovQ5XN9tvSyBXK2O+/np/24B0AL52bO2qyyqf4/r1AEiIiwbQ25qUrfSelQbzkJvzsRuaiCvL8vGOUOXdQbyMmCFnIiIqAIp1GXdO0gCuScDOZUkK0vCiT3XfibXVBC6LyKyaCA3DJwGSuyybthdXV1rGwCqVpX72dnApUvWa78hw+7qgFYhN2eW9cJjyLOzS5/93HCd9vIE8jNnzKvI2wADeRkwkBMREVUgwQVLCxV82FMDuS6Xs6xTCV59VSa1WrLE0S0hZ2cQyL3UGb4MJ3YDilTISwzkatg27K4OSDf46Gi5batu64YTugGWdVlXK+RBQVrgKm0ceXkDeViYLM8GAKdPl/xcNsJAXgYM5ERERBXI44/L7MQvvAAA8AmWQO6Va6JC/tdfwMmTdmwcOaX8fODbb+X2X385ti3Wpigy3paTGlpPSRVyVaFAHhJiRoW8SpWiz2XpOHJFMb9yrChFK+RlWfbMw0ML8qU9tyWBPCcHOHFCbquBHNC+7/r1kp/LRhjIy4CBnIiIqAKJigLefVfGRMIgkOdnGX8WOH0auP124L77HNBIcir//KNVKY8fd2xbrG3ePKBZMwk08+ZxUiVzZGYCO3Zo48ELKxhDbkkgN7vLemGWBvK33pLAunFj6ceeOiW/997eQIsWss+SLutqhRwwf+kzS8aQnz8va7t7e0v3fRUDuevx9JQtAzkREVHF4xssY8p9kaX/HAlAZhZWFFnjl+OGrSc9HcY/aBfw00/abXcL5Js2yfbUKWDIECAuTqtwOovcXOnVMn++Y9uxfj3QsqUMe2ndGmjVqmjPAkXRB3WTk7oBUg00nJwNdgzkmzdLG3/9tfRj1ep48+Za+83psl64Qg6YF8jz8y2rkKv7K1XSKqwAEB4uWwZy18EKORERUcWlVsh9kaUuHyzOn5dtdrYsO0Tll50NNGggFVlX+uC1cqV2+/hx12p7afbske2AARI0t28HVq8u3zlnzAAeeEDWj7aGH34A3nsPGDwY+Pxz65yzLN59F9i9Wy4QAMC5c8CKFcbHpKToQ3qxFfKQEOMAiVK6rBc3hhywPJCr4X7//tKPLTx+HNAq+1lZxQ9zKKlCXlJlPTVVu/hpTiBXA7d6nIqB3PUwkBMREVVcHv5aIDfK3WogB/TrClM5HTwoweHYMVmqyRmkpZX873v2rIQwnU66VWZlAYmJdmueTeXkAAcOyO0pU2R+BcC86mlx/vsPGDVKJr/78svytlDMm6fdfuYZYOlS65zXUocOyXblSuD11+X23LnGxxRUxzO8g5EJf9OBvFB3dXWXXcaQWxLIC48fB7RJMYHiq+SmKuTmrEWuvm5vb/l5WVIhN8RA7noYyImIiBwvISEBjRo1Qps2bez7xL5mBPIrV+zbJndluDbw0aOOa4ehW2+V+QSKq+b+/LNs4+KAmjXltrt0Wz98WHotBAfLa+vWTfavXVv2c/7vf1oFedas8g/3SEwE1qyR2336yAf2hx8Gdu4s33ktlZamhd527aR7PyBtO3dOO64gkCf7RQKA6UBeaMkzwDiQK5Z0Wa9RQ7bmBHJF0f6WnThR8tCE3FwZJw8YV8g9PbXu9sUF8sLLngHmdVk37K6u0zGQVyQM5ERERI4XHx+PAwcOYPv27fZ94oJA7oNsVshtzTCQHzvmuHaorl2TNiUnFx+y1e7q992nnwjQbQK52l29WTMJQJ07A15eEtYKv8akJBkzXasWcP/9wNSpRf9fnDqlVYy9vaWi/Pvv5WvjggXyIb19e6m633WXXET44YfynddS6gWkiAhZVuvmm4EOHaRthmPbCyZ0u+4bBQCmlz0zUSEPDi7nGPLERO1CSHFu3JCfHSDhXK34m7JvnwTr0FCgXj3jx0qb2E0N+pZO6lZ4jXYG8opDDeScVJKIiKgCKlQhv3RJ5m5ihdwGHFEh370beO010/MAGLZBDT2G0tOBdevktjsG8n//lW3z5rINDpaeAEDRKvm0aVKV/u8/6TL+6qtAo0bG67JPniyh8M47gSeekH2zZpW9fYqidVd//HGpzt59t9w/cqTs5y2LwutdA1qVfO5crSdAQYU8yaeECrmJQO7lBeQGyH5dZqbx+Gx1DLmpLuuRkfIk+fmlD6Uo/DuuDlcwZe9e2bZsWWS8e6kTu5VUIS9pDLka1tWfT3kDeUnrl9sQA3kZsEJORERUgflos6ynpcnn/q5dgfTjrJBbneG4VXsE8hs3gJ49ZTKuGTOKPm4Y6kwF8g0bZImrGjWAJk3cL5CrFXI1kANSgQaMA3lSkgRyAJg0SarjDRtKUHzgAenS3Lu3NmZ8/Hjg6afl9tKlWqC01D//SGj095fnAbRqrTME8gceAAID5XdZXZ++IJBf87YskAOALjREu6MG17Q0LeCaqpB7eGhLfpXWbb3w73hJ48jVJd0MlxNTlbYWuakKuSVjyE0FclNDH9QKuBrAVVz2zPUwkBMREVVgBhXyK1cKquMAPC+zQm5VqanAyZPa/fJ0WVcUmTjsySeLn+kZAN54Q5s87scfiz5eWiA37K6u0zkukG/bJq+3tDWc//lHZrF//XXzxm6bCuTqOPLfftO6QH/8sYSlxo2BMWOAl18Gdu2Sn6+Xl8zMvmKFTBLXpYt05W7ZUsZa5+QUnfjMXGrA79tXC2lqID961L4f3k0F8qAg7UKB2lPAnEBuYgw5AASFeuIGCsZnq+FU/b309S2yVJqeuRO7Ff47VlIgL6mbfGld1q0xhhzQgnV2tunx7uyy7j4YyImIiCowg0C+bq2C7GwgEKnwzTZYA40VctMURQKXOdTusWpCMVw+bPRoCXLmLi+3aJFUbOfMkVm3TYXP7duBTz7R7m/dqlX9VCUFckUxDuSAdQJ5Xp62xr05Dh0CuneX1zthQvHHZWQAjzwiwXHyZOCFF4yfQ1FkwrWmTWX27EuXZLyzTifVf1Xr1hKekpIk4CclAR99JI+NG6d9cPb1Bd5+W2bO//ZbYPZsCe4LFmjneuYZ2RrOkm4oPx/YskV6IRR24ID8+wLA0KHa/po15SJAerp9Z7s3FcgBoFMn2aoXNwrGkF/xtLxCbnKmdcPu6jqd6baZG8jV33E12Jc1kJdWIS9p2TNLxpAHBOh7MJnsfs5A7j4YyImIiCqwgkDuAQXrVktFMAoXjI9hIDetc2epWJqqlGVlAYMGAQkJcl/98N++vaSUrCypXt+4IUFu40bgl19Kf84bN4AXX9Tuz5sna1QbyskBhg2TEDpokIRMw4CtKimQ79kj7QsIkIsFAFC7tmyvXy/b+NSzZ4GOHSXUPfecFph37pSJ0jZuND7+2jXpcq/+fD/7rPju3xMmSGhUw9InnwDPPy8BMTtbxmKMHSvj+J99VsbWAzI5WWCgdh5PTxkDDkg1/N575fkbNZI2FnbzzcBDD8nPe8QIIDpae6xvXwnPhw7JRHGFvfEGcNttUkk3vMiRny9d3nNy5PWrP39AfnfUfwd7dVtXlOIDuXoxQ50foeCiz2VPmdSt3IG8pGCsMnemdfVct98u25Mni59pXa2ml1QhL8uyZyWNIS9cIS9tpnVzAnl5Z/kvAwbyMvD0lC0DORERUQVUEMgBIC1JZiCOxnnjY9yty/oPPwALF5bvHMnJMoP2f/+ZDtK//SbPMXq0Nps5IN2j1UB19KhUSNUPYeryVoWtWwesWiUBbeJEqYzWqQO8/748/tprwFdfye28PGDwYAmclSoBH34o45sB427rilLypG5qeO/aVQtTgYFa4LS0Sv7rr9KNWx1rPGuWhOiNG+XCxtKlcvFADTO5ucCAAdK1PzYWaNFCKo9qtVqVnw/8+af2s5g/H/jiC7n96afS3mrVZL+np4SknTu1arthd3WVOo5840atvRMnFp3cqzShoVr4U5ePU12+LBdiAJlcrlUrqbSnp0sX9z//lJ/3jBlFK8P2HkeemChDLjw9tV4SqkaNpH2XL0sYVwO5h+UV8pCQMgZySyvkjRrJTPGKIj0cSjrW0i7rilL2CnnhSd2A8gXy3Fzze91YEQN5GbBCTkREVIGpXSIh3dYBE4HcnSrkGRnAwIES/srT9drwe1esKPq4GsCzsyWYq/ebNJGqKiCB+I8/tO9Zs6ZoRWvPHhnXfM89EizVycWmT5dKeXy8fM/jj0uVdtgwCXZeXsDXX0tX31695HvWrtU+oJ8/b/xhvbhArnZXV5Wl2/rJk1LpvXJFQrkahidOlNemroGemKiF1AkTZEKDwED5+U6cKPtnzJCq98SJ8tq8vLTltwYNktc6dCjw3XfyXGpYDAqS1/Taa3KeLVtk26xZ0fY+8ohU0Z99Vn7Of/4J9O9v/us1dM89si180WbaNAnfzZpJlTw5WdYXDw+Xyr7681Grv4bsHcjV6nitWkZ/LwBI6FR/n/fu1QfySzoJ5CaXPStmDHmJFXJTM6yr1EB++nTJr0O9sHjTTTIfAFD8TOtl7bKek6MtXVXeMeRAyYG8uEndAgK0KyEO6LbOQF4GDOREREQVmJcX8iEVOF9koXp1oGGoBPLM6JpyjDtVyM+e1dYiLtyF2xKGk7L98ot2TpXhEmdz52pd1hs3BurW1c5hGMjPni0aEBYt0m5fuiRVr169tKD38cfS9VmnAz7/XCYC8/CQiwDqMU2bytjjzExtGbPCYc4wkF+8KOOsAe0cquIC+SefAP36yfOqFULD15CdDdx6q1Scx4+XL0BeT+/eWlV7yhRg8WIZ7w3IOOpmzeTCQPPmUqmtW1e+//Jl7QJG27ZamAeABx+USvilS8Dy5TIJ2913S48Fw3BnqkIeECDV9U8/BYYPl2EGZXXvvbLdsEG7AHL9uja+/6235LHXX5cZvbOz5d+pRQvpAm+KowJ54e7qKrXb+l9/6cfDX4SVKuTqEAVrVsgrV9YCeXHjyNVjb7rJdEMB04Hc8HffVIU8Pb34eScsCeTZ2fJ/wfAYlU7n0KXPGMjLgIGciIioAtPpkOelTezWpQvQoCCQX45sKse4U4VcnXUcKD2Qp6dLYFYrXoYMA3lKinRfN2QYyHfuBM6dk9uGgXz/fplBHNCCrmG3dUXRZq+ePx/46ScJoupkX4B0I377bekSHhkpH8bnztVmvwZkX+Fu62qYi42VrWEgX7VKnvuWW4ou+2QqkF+7JkF32TKpUkdHG09utnixbIcM0YLZ+PFSff7f/+Q1Dhki4TglRbqqK4rMIv/gg9prGDtWbqemymtdsEAuHmRmys8xIgJF3HSTvHa1ihsUBLz5pva4qUBuTQ0bysWQrCwZxgDI675xQy6U9OolVed33pFAeeSIXNRYvdqgvFyIswXypgV/J9SLPUFBuJEnYdQuY8jVQH75ctGLQYYMz9Wokdw2FcizsrSwbWmXdXXIhU5n3JtA/Z7ivs9wv2EPguICuVr51ulM/zwduPQZA3kZMJATERFVbIaBvHNnoJafBPLjAQWVr/T0kj/ouhLDKtqmTcVPzJSdDdxxh0xC1qFD0cq1GsjVyXgMu63n5WnHt2yp7a9RQz6Yq+Fw3ToJk5UryyRngHEg37dPurX7+gJ9+kiVeMIE01W7rl3l2OPHgcceK/q42m19xQp5bWqYU6u/165py3wV110dMB3Ily+X742OloCfnCzdva9dk8nMdu6Un1Pfvtr36HRSfR4zRoKnh4esl65q2NC44g1IBf7ll+Xr4EHp4l2litE8CGYZNgzo0UMmaTPVJdyadDrjbusHDmjDDsaONR6XrtPJxZqBA+WCQ3HUQH7iRNGeGbagBvIGDUw/rlbI1WEAUVH6XyVLlj0rc5f1SpW0n5d6UcAUw4na1Ar59u2yAoHhUBH1OE9P020tqcu64fhxw7H/Xl7a7O7FdVu3pEKu3g8L0/4GGXLgTOsM5GWg/h0wdfGXiIiI7CMhIQGNGjVCmzZt7P7c+d7GFXJ1DPn+7Hpalc5dquSGFfKcHBlXbcorr2jV6y1bJFjPnq09rgbyAQNk++OP2of6EyckaPv5SZdklRoC1Aq5mlpuv126UwNykUCtsi1dKtvu3YHg4NJfW3CwjPM1pWNHCcxXr0ooVwP5rbdqwUH9N961S7aGs3urTAVytVv988/La2/WTCrA06dr1fEuXUqucgIymVq/fhJCvvvOuMsvIMFj6lT5Kjxu1hI+PhKOFy8ufikta1K7rS9dKv8OSUkyiZupWdvNERMjP5u8POO17W3F3Aq5+vscGanvlW2XLus6nfTMAEpe892wQt6smTTu4kUgLk4q5jt2GB93002mJ/Izp0JuOH5cZWoc+bp18nfhpZe0ZQktCeSFu6urGMhdCyvkREREjhcfH48DBw5g+/btdn9uxUcCeWxUNmrWBCplSSDfezVG+8DnLoFcrZCrScFUt/WlS7Xq7OzZUuHMzpaKrloBUwP5M8/Ih+/Tp2W2bEDrBtuokVRi1ZnJ1UpijRoGSQVSgW/YULreZmVp3d/VQF7WCcUMeXkBTzwhtz/7TAvkDRtqXb0vX5aQp06OVXhGbUC7mHDunAT3y5dl8jVALk54eMiYdkB+hl9/LbcNu9AXR6eT7uuXLpmebM1VdekigfTyZfl/1Lat9IQwVdk0h05nv27rmZmykgBQfCC/+WbjXgplDOShoUASwuSOJV3WAZnUEJBhHYUnKATk/5U6eeBNN8nftT//BB59VP7/Hjok/y+Akpc8M2x/SRVycwP5t99Kr4kPPtDabU4gL25CNxUDuWthICciIqrYfINkrOMTg2SW9YAUCeQ7EqOhqN2j3WViN7VCrobcn382/hB09qwWXF95Rbo3r1wJREVJRX3nThnDfL5gJvqmTbVlstTx2YYzqnt5yXjpsDCtIurpqS19Bkgg1+mkEg7IGPHt2+U83t4yQ7k1DB0qz7N2rXZBoV49LXhcviyvPzdXnjcmpug5KlWSdbcBqYgvXSoh/pZbtK74/fpJ9+akJLk4Ubi7ekl0urIHVWfl76/923buLFVRU+PdLVGWQJ6SIhdUzP23AOT3RFEkJBbXbdzLSy7sqEoK5F5epsMqytFlHZD/h61aye+uqSUN1fN4eWnBuG1bmZvh00/lvnrhobSLACVN6qZWyAv37gC0oG0YyNW/I+rQCT8/47XsWSGvGBjIiYiIKjavQKlu9b0nC8jOhud1qYafzIpGVlBBcHDGCrnaLXryZK27bGnUCvlDD8kH68uXJfyqZs+WD9pt2gCTJsk+nU66dgMy3lTtrl2pknzwVSdMW7RIwothIAeAp5+WD8Zt22rPo1aag4JkRm1AgiwgVWL12DvvLF/3bEO1amkXD/Ly5MN/tWrGgVwNJTVqFB+M33tPliP76y+ZHRzQJl8D5PvUCdgACaGlVTjdXUKCrBX/yy/mDT8oTVkC+W+/ScBevtz82be3bpVtkyYld+9Xu60DRoG8yLJnYWHFnqdIl/W0NC3gmvP7o1bJ580r+pjhkmeFn79mTdlaGsiTk4suU1hShVy9uKl2wwdkqT8AmDlT5kXYtUsbaw4wkFcU6t9aBnIiIqIKSu1umpWlH8eYDW9cRQRSvAs+RDoqkB85IhVmw/GaGRkyGVj16sALL0goHDas6IdjU9RAXru2Nm57+XLZ5uZqM5i//LJxt/J27WS7datWXTasCPv5SdfTnTuLBnJT1EAeF6ellh49pGJnWG00p6u3JYYN027ffLNUZgwDuTomubix6ICEeHWmcvUDf+F2PvSQ9vNRx9lXZFWrymR7xVSHLVaWQG64EsA//5j3Pb/+Kttu3Uo+zjCQR0UVrZDXrSsXcQwvShVSpEKuBmNfX+OQWpyBA2V+gN275ctQSSFbDeSnTkkgKmnJM7WhgPy9KFjmTc9wUrfCqlWTrbriAqBVyGNipFdJ4YnzyhvIueyZa2CFnIiIqIIzDOQFHxCT/aMA6HBZKaiQO6LLemamdNeeOBF48UVt/6hRsl51crKMc/b0lMmcXn216Dm2bNECdHq69gG1WjUtRCYkABcuSPf18+flQ7ta9VapFfJt24oG8tBQmQUdkPW01Umw1EncTHn0UfnwPWpU0f379snSYzNnAoMHF3+OsujZU5uRWg11lgZyQNqtfn/btkWP9/KSLvwffaQNASDrKUsgN1zz3py5KvLytFnL1Z4VxTG8+GSqy3rlylINNlyNoBDDQK4YBvIqVcybfC8iQltN4PPPjR8rKWRXrSqBSL0gWVqFPDBQa0/hbuslTeqmLiGoDpvJydGq5Ybd1A2VNoa8uEDOZc9cCwM5ERFRBWcikGeEyQfE81mldFlXFOky/sADpidTKo9Jk7TA8eWXMmnav/9qH7a//loeV++/956EWNXJkzKrdY8e0k71g3BgoHSd7ddPuqbfuCFdrNVJnR5/3HgNYQBo3Vo+NJ05IzOhA1ogB7TgPGeOVM6Cg7X1kU1p2VK6qPboUfQxDw+p3j/zjPXHU3t7y9hvQFvyrCyB3MdHugY3awaMG2f6mEaNgJEji19Pm8pODeSJicUv3Wfoxg3pvaH6++/Sv2fHDgl0oaHy/6QkhbqsF1n2DJCu3iX8Phfpsr5nj9y2ZLjDM8/I9osvpOKtKilke3tr1etTp0oP5B4e2rCDwjOtW1IhV2dV9/Qs8lwpKQUdftRgnZ5uXI1nl3X3wkBORERUwanhMztbH8iVKlEAgJM3Ck3qNmYM8OSTWmVnwgTpMr5kiVSV1Q+NixcD8fHGQf7XX6Xr6rPPyprZJdm7V1uXul49+XT68ssS8PLzpRv0I4/IB5khQ7TlxdRQDUi31dxcqWgnJmqBvFo1qXB5eGizqc+dK1VpQF5fYUFBWuhQu/Gq3c4B6dIbHQ19abC0MbeO9PrrEsiGD5f7ZQnkgHS337NHW9aL7Cc8XKuqHjxY+vFbtsj/GzUQb9tW+hAP9ff8zjtLv6hStar8v/L0hFKrtulAXgp/fyDNUwK5LjNT/r8DWu8Tc9xxh8xqn50tQ11Upc2cbjiOvLRjgeJnWrekQq6OH4+K0gey9HS5XhYaKh2DjC5iGIZrNZBzlnX3wEBORERUwZmokHvHyof9I1cNKuRnzkhX8TlzpDv2008XfGqEVIS2bJFxso8/LoH500+1JbDy8iQAHjsGzJolSyg98YTsLywvD3jqKQnTvXvLRFje3hIQNmyQ9qphXaXO/H34sPahRu06Dki1Tx0/bli5josDHn5YwomiyId5tfpYmDqOXG2zYYXc01MuEKhKGj/uaB4eUvFU05KpSd3UgELOSx0Soc5ZUBJ1/Hi/fvK7evGiFgyLowby0rqrA3Lxad064PffkRsRqd9tSSDX6QBdaIi2IylJeqa89pplJ5kyRW7Pn6/9bEqresfGyva//8xbaq24mdbNqZCfPSt/awzHj0OuH7ZqJSNoAGDz5oLXY2o8OCvk7oWBnIiIqIIzEchD6ksgP3zVYFI3tas2IFUktRr99tsy/trbWyrjX32lVYfnzJFuoEuXSvfy8HDgvvvkA+ncudpa24beflsqeCEh8um0Th2tmzUAvPRS0cBYq5Y8f0aGFrwNx9fu2GFcITc0ZYpW0XrqqeJ/Tuo4cpVhIAeMx3s7cyAvTA0e585p3WnNqZCTY6mBXF33viTq+PG77tJ6epTUbT0lRS6wqd9jjvr1gdtu03cSASwL5AAQFOqJGyiYwC0gAFiwwPKTtG0rFx4URZvtv7SQbVghNyeQhxp0rTdkToU8LU1+vmqFPDoa+fnyZ/HQIa3Dkn4EkKlx5JYEcnMmu7QiBvIyUAO5qQvUREREVAGYCOSBdaIREQFcgcGkbmogHzFCKt9BQdKFfexYWdrq888liFerBmzcKN1Hc3KAd94B/vc/7Xt/+kkbdzxlivEHxrVrtap7QoL2IfaNN6SyffPNpitm3t5aQFYr4+ZUyNX7S5dKO0uaEdwwkIeGFl1LunFjWVMcAG6/vfjzOBs1eBw9Kv8WAQGlr/tMjqde9CmtQp6ZKRe4AJlTQZ3pvKRAvnGj9FCpW9fiizOGgdzS6QNCQ4GzKLhg9uGHxfdWKc0770jIWbFCXqfhsmemqIH8xAltmI21K+Tq3BWAXPgyqJAnJsouLy9t3rsSA3lpk7qpgTwvD0hNLf512AADeRmwQk5ERFTBGQbygmqbrnYtNGwIXIVBl3U1kHfrJlXslBQJ2mo1fPBgWaP78GH54K+O6/78cxlrHBQkgRyQbUCArLurdo09dw4YNEhC4bBhxl3AK1WS8+7dW/wSSOqSQYcOydbcCjkgk6u9/nrJk6jVr69Vxm6+2fQY8eXLZfKsW24p/jzOpnDwqFnTece/k8bcCvn27fJ/u0oVCdhqIC9ppnVLuqsXUp4KeWgoMAgL8NcLi4yX6LNUgwbytwQApk0zv0K+c6d2gbDwBTdDhmuRGyqpQg4Yd1s3qJCrU2rUqqWtenj5cqGJ3dRAnp9feiD399dK7XZe+oyBvAwYyImIiCo4NZCfOCGTenl4AO3aoVEj4AoKKkopKVJB1em06q+p0FarllYduv12oGtX7bFnn9U+QEZEaB+4p0yRoN2tm3wKbdFCm2zNkL+/rPddHMNAfu2aVhXz8JBlzdS1l0ua/bwkBT8XAEW7q6sqVZIZ1F1J4aohu6u7BjWQJyaWPFZY7a7esaP8n1UD+T//mO4im5MjS9YB5QrkHh5azjBXSAiwC7dgf+MB5b8oNHKkbBcv1mZcL20MuVodDw8vubyvnufCBeP9aoW8uECu9vgpVCE3XElRPXV2tkyOXySQp6Rowa24Sd10OoctfcZAXgYM5ERERBWcWklR1xxu0QIICUHDhkASwpAPgw/GLVpo3S7NMWGCbP38gNGjjR8bPVpKaBs3yuRNBw/KjMOLF5ccvItjGMjV6ni1alrJSV1mqKyBHNDWJ+/UqezncDbe3sb/ppzQzTWEhGi/yyVVyTdskK06nKJhQ7loduOG8bAO1eLFUsGNjCxTIC/LDOuq4oZml8ktt8hFiNxcrXJdXCCvXt34AkBpS62pF63UVQlU6vOY6rIOFFshNwzk/v7Sux0oKOwXDuTqNiBAu5hqioMmdmMgLwO1ZxYDORERUQWlfqhTZ9ju2BGALCOdD08kexp0i7Q0iLZvL2PG162TsG2oenWtW3p2NnDPPdK1vbjqc2lMBfJ69WTqYkOmuqyb69ln5cLB00+X/RzOyDCAsELuOgp1W3/uOel8Ur++/Df++etrcsELkLXtAan8qv8n1LHlKkUB3n9fbj//fJkujKkV8rIE8uJ6gpfZCy8Y3y+ui7ePj1a9BsoeyMtYIVe7rKt/+gwXPig2kBf3WlQM5K6DFXIiIiLHS0hIQKNGjdCmTRv7P3nhKktBJU0tLF/KMxhLWZbK8H33STA3ZdIk4P77ZQK3lSvLN5lY/fqyPX9eGx9bv75xIA8K0spwZaHTSfC3tC+us2Mgd00GE7slJsqKgteuyfWoP/4A1o1YIRXipk2NJ0hT/z8uW2Z8vo0bZV4Hf3+5+FQG5QnkxS3vXWa9e2s9PsLDS26U2m0dMD+QnzhhvL+kSd0A7WLgf/8Bly7JbYMKed26slVHkZgM5KWNH1cxkLsOBnIiIiLHi4+Px4EDB7C9pImWbKWYQF6tmuRX/cRuBo9ZTUyMdJF97rnyjxkNDdWq8OpUxYUr5NWqccIyUxjIXZNBhXzpUilwt24tubpSJeCOpIJlBe+/3/j71CX6fv5ZW30AAD74QLZDhpQ8qVkJrBHIrVYh9/QEhg+X25GRJR9rOFSjtEBeu7ZsL182nsW8tEnd1Aq5OnmcpyeUmyobdVk3fHpWyCsIBnIiIqIKzjCQN2ig/zSo00mVXD+xW9OmZf6Qbjdqt/XTp2Vbv76Me1c/8JRn/Lg7YyB3TWqFfP9+fP+93Hz4YenIMrhvCu5CwWzp/fsbf1+DBrJUYX4+8MUXsm/fPgnoOh0walSZm6QGckuXPANs0GUdAJ55Ri74vfNOycdZEshDQ7XAqw71AcyvkKuzvkdGIvGiJzIy5NqB2gQG8gqGgZyIiKiCUyd1A4pUwBs1Ai6j4NOhK0xkpgZyVb16MkOSur8848fdmZoAQkMtm7SPHEs/ruQSDv8pIU8thj9bfSV8kY3DugZIi21U9HufeUa2n38ufcTV+Rz69Cn7PA5wsi7rgITjhASgX7+Sj7MkkANaldyw27q5FXKVwQzrNWtqPzOzAnlxM6yr1Me57JnzYyAnIiKq4Awr5AUTuqkaNgRm4Rn8Xa1v0QmSnJFhIPf21saFqks9sfprmpoA+PNxLYGB+n+zRtiPuDitE8jNe5YAAL5X7sey5SaGafTtK//u58/LmPI9e2QOh+nTy9Ukp5ll3VKGY8gLLwVoiqmJ3UqrkFeqZDxRXqEZ1lUlBnJzx5Bz2TPXoQZyU8sQEhERUQVgGMhNVMj/QRs8fdMPxVbNli4FXn/d+HPf3r1SlDIcXpmVBfz1l40/cxgG8ptv1vrNvvmmNNLdZke3lmbNZKuus06uo6DbemPsxwMPFOxLS4Nu9WoAwFL0x/z5svrZ44/L/0sA0jNm6FC5vW+f9JletKjcvUicapZ1S1haITcVyEurkOt0xlXyQmuQF356o0CekiI/XHZZdz+skBMREVVwaiCvXt24SgStR+yhQ1L5+uADYOJELWh/8YV0kZ08WTLdmjXAG2/IEsDPPy8F98RE4NQp4LbbpBA3eLDMZ2QThoHccFbp2rVlDGl5ZnF3Z3feKf/IH3/s6JaQhW7ESiC/Fz/j/v4F/7FmzgQyMpBTvTb2oDnWrgXuuAP46itgxAhZdQsAMGyYNsnhlCkyrrycnK7Lurlq1NBul7XLemkVcsD4gkd0tH7JM3WGdcOnv3wZxkNIkpK05yu8jGRhderIChe33VbycVZWhqkDiIGciIiogrvtNvlwqY4pNVCrluT1zEz5bLdmjez/8kvgoYeAqVPlflgYcPasttQxID0zd+2S3uKZmcDVq7J/wQKgSxetOGdV1atLdSojQ1sGjczDn5dL+iXsYfTF+7gHq4AN86WXw5tvAgC8x7+OjvN1+P13yYghIcCFCxLMX38d8h987lypuo4caZX2ONUs65bw9ZV5Mg4dMr6YV5yyVMiBohXygpXniq2Qe3rKH9ikJBleoK4dHxdXcvvatwd++qmUF2F9rJCXAQM5ERFRBVezJnD8OPDyy0Ue8vTUctqaNXK/alWpeL/7rlS6n39eVk568kk5rkoVYMkSYP9+KVifOydhvFUr4MUX5Zjhw6WXrNV5eGgNNudDNZGL25raBOPxltwZMUKmWc/MBLp3B554At9+C3z7rVwwmzJFDpszx+Cz/+DBMqu6lZYDtEaX9aws+bK79etl1vSgoNKPNVyLXFHkhavjcUoK5AYVciXKjDHkgNY9fe1a+betXNlp/74xkJeBp6dsGciJiIjIlEYFEzT7+QHLl0sBadQoKSiNGCFzQAUFyWTNBw8CR4/KKku1a8uY8ccflyD+xx9SUe/eXQrYPXtqEzz//bdcDxg2DDhwwHQ7fvsNWLfOjAa/8gpw111A795W+gkQOa8zZ4CpeAWJtW6T/0y7dkmy/eILQKdDTIz0ZgkPl+ElwcGSITdtsk17rLHsGeCgbuuensaTrpUkNlYuYqSnS3JWq+NAyV3WDSrkV3xikJYm1xEN51NUA3l6esFp1UD+44+yvf12q11AsTaHBvLff/8dPXv2RExMDHQ6HZYvX270uKIoGDduHKKjo+Hv74+uXbviqDpowIFYISciIqKSjBgB3HOPFGfuu0/C94cfAmlpMuTY8HNhgwbGH6rDw6VH7PvvS9HIwwOYP196lv/3nwTw8HDpZfv++xLQmzcHxoyR86v27gW6dgW6dQOeekobqmnSwIFSzjdnpmQiF3fmDJAPT+x76SstCH70kcnJ2QIDpYAOaMuPW1t5KuSenlpx2iHd1i3h66uF65MntT9KOp3xRJmFGfy7HM+IASDZ3nD1yeBg7b7RxG6bN8u20OSbzsShgTwtLQ3NmzdHgn7qQmNTp07F9OnTMWvWLGzbtg2BgYHo3r07MjMz7dxSYwzkREREVJK4OODnn6UoY0jtZWepKlWkiPf++xLg8/MlKDz4IHDvvTJ53JQpEsDVJZT+9z9tIrgvvpA2ffedweRURBXUmTOyrdT2Zuly/c03wJAhxR6vDi1ZutR4Au7UVPl2w5URDO3bV/RCmSlqV3PDgGkJNXueOlW277crw27rhuPHS6peq4HcwwOHrkopvPACFjpdMTOtq4Gt8B9jJ+LQQN6jRw9MmjQJffv2LfKYoiiYNm0a3njjDfTu3RvNmjXD/PnzkZiYWKSSbm8M5ERERGRvERHSjf3AAeDYMeDSJQnYK1dKr8zQUGDrVin0HT4sqzEBwLRp8kF1zx4phFerJsWi4qppu3ZJsXzfPulq/957cvygQaaXXzt5UiZbfu450+f77Tf58Pzbb1b5MRCVS3a2TNIGFKw/fuut8stdQiBs1UpWRMjKAtq0kREe8fFATIxcBDM1t1turgxDmTJFeryU5L//ZGs4d5kl7rhDtitWaPs+/FAmDVfP7TTUmdYNK+QljR8HgMaNgdhYKHffjfUb5aqmqRUlTQZyQK5etmxZvnbbkNOOIT958iQuXLiArl276veFhoaiXbt22LJlS7Hfl5WVhZSUFKMva2MgJyIiIkfR6eSDtuGQy1695AM4AIwbJ5PGKYqMOX/hBQnZo0bJ0moeHsCff0pQL+zffyVw3H030LSpLOH2yity/MKFMm69sClTpOI4cybwyy9FH3/3XZn/7oMPrPLyicolMVH+b/j4mLdSFyD/56ZMkaHSx4/LRapPPwVu3JDHly0rerHq66+BI0fk9u7dJZ9fHZFb1jnH+vWT7Q8/SD5JTQUmTJAitAMmDS+Z4Uzr5ix5BkigPnYMH3ReiW++kV19+hQ9rNhAHhenH6C/fz/0k8I5C6cN5BcKLl1FRkYa7Y+MjNQ/ZsrkyZMRGhqq/6pevbrV28ZATkRERM5myBAZL56ZqU3k9sYbsq1aVQL7jh0yezQglXTD7reAdInPy5NqfHi4fIa9806pEAJFP9yry0GpnnvOuHtuUpJWGd+woZRx7ER2oHZXr1ZN+0xvjh49pFfK998DjzwCPPqo9CQJD5cV0AwvVmVnA2+9pd3fu7fkc5taV9sS3brJOPKzZ4F//pHeMerFguPHy3ZOmzFci9ycJc8KLPzeCy+/Ir0Y3n9f5qAsTA3kly7BOJAXdFe/fFnm3ujY0XRvH0dx2kBeVmPGjEFycrL+64z6v86K1P+8zvQPSURERBWbTgd89pkUkwD5wNq2bdHj7r8faNJEuqx/9JG2/+xZLayvXi0hIztbwv2oUbK/cCD/5BPpxtuqlXRbP3XKOIj88os2pj0jw3azVBOZS40GZanZBQcDDzwg1e/58+X/WLdu8phh75AvvpD/C+r/xf37iy/kKYpWSS9rIPfzk7kkABnn/tln2mNOF8jLUCG/dg144gm5PWqUthRkYcVWyAsmdPvzT7lgeP68c82l4bSBPCoqCgBw8eJFo/0XL17UP2aKr68vQkJCjL6sjRVyIiIickY1a0oYaNFCutWa4uGhheZp02S9c0CWYsvNBTp3Blq3ln3qsNoePWRCun37tDGpqanSbRcAxo4F1Dl6P/xQxqsD0pUX0CarMtWlncieyhPITenRQ7arVsk2IwOYNElu/+9/Mnl4WprkT1OuXpWeJIAMRSkrtdv6558bV+udNpCfPq3NQldKhfzECbnwFxkp1fHimAzkXl5SFocsKaky1W3999/l3+CZZ8x4HVbktIG8Vq1aiIqKwvr16/X7UlJSsG3bNsTFxTmwZQzkRERE5LweekjGjDdrVvwxffpIaL9xQ2aQ3rMHmD1bHnvppaLHV6oEtG8vt9Uq+RdfSJCoW1fGsN93n1Tf8/KAp5+W3qhqSHn5Zdn+/LM28zuRI1g7kN99t2x37AAuXgSmTpUKbGys/D9o1Ege//df09+vdlevXr30odQl6dFDwr86DKVNG9meOOFkmSUmRtZpzMuTKegBsyrkgATykoYZGAXyxo3lKmK3bvquCuoKaIDpQL5vn/y87F09d2ggT01Nxe7du7G7YKaDkydPYvfu3Th9+jR0Oh1GjhyJSZMmYcWKFdi7dy8ee+wxxMTEoI+pUfx2xEBORERErszDQ6p3ALB8uYTzlBSZxE2t+BXWs6dsV6yQqptaBXzpJW05t48/lm6927bJhYG0NBmr++qrssbyiRNaACFyBGsH8qgobQLv2bNl8jdAgrmvr0yOCBQ/jry848dVwcFA9+7a/bffluJwVpZzdc+GTicTT3h7a0m7lAq5ephhL3RTjAJ57dpShf/hBwAyt8aOHdqxpgL5wYOyVS+i2ItDA/k///yDli1bomXBb/Ho0aPRsmVLjBs3DgDwyiuvYPjw4Rg2bBjatGmD1NRUrF69Gn5+fo5stv5Nh4GciIiIXFWPHtJFU63wARKui6tAqYF80yaphl+9KmPHBw/WjomJASZPlttqJb1PHwkLnTrJ/cLd1hVFG2duysGDDPFkPdYO5IB2EWv8eAl+d9whY80B+wVyQHqoALIkWLduUqUHnLDbevPm2hU9wDaBHJA/SAW5cccOmRNDZSqQHzgg24YNS34ea3NoIO/cuTMURSnyNW/ePACATqfDxIkTceHCBWRmZmLdunWoV9b1AKyIFXIiIiJyBx06SLfy3bulkDRkSPHH1q8voSEnR9Ynr1pVquW+vsbHPfOM8WRyasfGe+6RbeFA/vjjsob6Rx8V/Wy1fLl0vW/TRhtn62rOnJEu+yWNfSX7sWUgB6Qq/ckn2vwLpQVydUI3a0Schx+WuSCWLpW8oo5Jd7pADsjMbB07yu3w8BIPLXMgN6B2Vw8Lky0r5C6OgZyIiIjcSfPmQN++WogojlolDwiQMB4TU/QYT0/puuvjI93V1c/camjZtEn7wPznnzJbdXo6MHq0hPaDB+Uz1vLlUmXMzZUZ4RcuLLltSUlauDHXpUvaBHTWcvAg8OOPwDffAPHxUq18/30J5T//bN3nIstkZABXrshtawbyW2/Vgt6IEcaBTg3kR4+aXvbPmhVyT09g+HBt/oibb5atUwZyT09ZQ+6114qfNr2ApYH8xg3pqm9IndDtwQdle+yY8XwWSUky9h8AGjQovfnWxEBeBgzkREREjpeQkIBGjRqhjTp7EdncqFHSLXb5cuCWW4o/rkULmSBpyxYZKgpIhb1FC+k2Ony4fBh+/XV5rG1b6Vm6Zo2EmbAwLYyrkzLPnm16QrhTp6Rd1arJc6jrnpcmLw/o0kVexz//lHzsX39J9/zCy7Zdvmy8DO6hQxLA+vSRdao//VReb9Wq8vgLL0iXZleWmyu9KdR1rl3J2bOyDQgotShrES8vqUw/8QQwYYLxY9HREiTz87UKrEpRrBvIC3PqCjkgs7RNnlxq9wBzA3lYmDa02LBKrihaIH/4YTkmI0ML4ID2b1OtGmCDRbpKxEBeBgzkREREjhcfH48DBw5g+/btjm5KhVGtGrB4sbb2cknq1pXjVTqdLMnk6QksWgQ89xzwxx/S5X3pUhnjeccdcv/GDQl+Dz8sSzj5+cks1YbLOQFyv0EDWb4tLU32ffmlea/lxx9lzGh+PjBnTsnHvv02sHMn8Pzz2ue/lStlQi91jXYAWLJEAnpUFNC1KzBwoFwgOHhQgtnx47IsnCubNg3o3x94801Ht8Ryht3VS+sNYqlHH5Xfo+Bg4/06XfHd1i9ckOUDPTxkDjJrc/pAbiZ1acbSArmHB3DTTXLbMJAfPSr3fX1lBbSaNWW/Ybd1R40fBxjIy4SBnIiIiMhyrVtrKx3NmiXb+HgJ7o0aAevXS0DZuxdYu1a6s990EzBggBz72WfauRQFeOUVqTi3aaOtu/7jj6a7BhtSFON12r/7rvjK9ZUr0hZAqv4//yzj6EeNks+CX34pXe4BbSK7t9+W71m4UKrwwcHaGPJ33tGCoSv68UfZbtzo0GaUiS3Gj5ujuECuVsdr1pQhHtamBvLC3bOdWW6u9FhJTtb2qRXyiIjSvz8yUraJido+tTreurWEcrUrv2Egd9T4cYCBvEzUQG7YRYmIiIiISvfmm9oY16AgGUJqyMsLaNJEKsxq99Nhw2T73XfaB/XffpMu5D4+Upl+8UWgRg0J9Or658XZvBnYulU+nEdGyvjRlStNH7t0qfFnvsmT5cKA+mE+LU1C+oULWgX/3nuLnmfgQJlELz1dLkK4SkAylJwswxAAuTihXohwFc4ayG3RXR3Qqu7JyVqodVanTskqD9WqyQU29f88YH6XdUD7WRquzKAG8vbtZWsqkLNC7mJYISciIiIqGx8fmfDslltkZnV1IqaS3HabVK7S02W1pLw8YOxYeeyZZySI63RaJX3RopLPp1bHH3tMm1l+/nzTx373nWxffFEC/JYtUpkHtArkd99pE7a1aSPd0wvT6WRMuY+PVNILFhVyKb/9pl2cyMsDdu1ybHss5ehAvnWr/K6oP0NbB/KAAO130dm7rffsCXzwAXDxotw3XDPckkCuDkc3nODx339l27q1bFkhdwMM5ERERERl17SpfOB+8knzjtfpgJEj5fb770sFfds2Wb5Y7QIPaDMor1ypjSkv7NAhmSFep5OQ/dhjsn/VKpl13dC5c9pEbiNGaOE9PV0++Kth/eeftVng1ZnoTWnSBJg4UW6/8IJUBV3JmjXG9wuP6Xd2jgrkzZtLME5JkZ4SDRoAM2bIcoOAdZY8K45Tz7ReIDdXq1C/+65sz5+XXiSKUr5ArijauRs3lm3hQJ6WBvz3n9xmhdxFMJATERER2deTT8qkcEFBEqoBCclRUdoxrVpJN9309OKXGFMnI+vVS2Zlb9hQqtq5ucC33xofu3ixfKBv316q8C+/rHWjnzxZnq9BA1liSZ3d/b77Sn4dL70kFf8bN4DBg4Hr1y37OTiKomiB/NZbZetq8yk6KpAHBAD798vFmEqVJAgOH679PG1VIQdcY2K3c+ek14CPD/Dss7IvPV3+j6Smyv9NoGyB/Nw5OY+XlxbEDQO5ogCHD8v9ypW1SeHsiYG8DNQ/xAzkRERERPah00ko//dfWa+8XTsJyIWPUbutFw7XgIwdX7JEiitvv63tHzxYtq+/Lt3Zc3JkVuavv5b9Dz0k29q1gQULpKu9um67+hgg419btCj5dXh6Al99JSFt0yY55+TJRSv6J04UP+73v/+AoUNllnp7OXZMntfbW+uyzwq5+cLD5WLQqVOyRJoaHL29tS7ttuAKgfzkSdnGxsoEiOpM9efPa/8HfH2lR0xp1J/rmTMS6tXqeN262sR5tWrJ/90bN+T/uSPHjwMM5GXCCjkRERGRY9SqJdXvrVtNz7o8cKBsly/XupEDUgl78UW5/cQTxiHo8ceBzp3lA/wrr0jVvUoVWerMw0PWXlc9+KB0n1eXzVK7yQNSHTdnOa2bbwZ++UW6sCclyYWA2FjgrbeAdevkPHXqSAW/8Nrn6elS3f/yS+ker3a1tTW1mtu+PdCpk9w+ftw+k4Xl5sp67uX5/pdeksnNPDwcE8hVQUFSHT94UHpVbNigrVNvC4YzrTsr9XdYXY5MHfd+/ry25FlEhHn/t266SaukHzumhW3DseG+vtLjpaRj7ImBvAwYyImIiIicU7NmWuV8yBCpigMy0du2bUBgoHF1HJB9v/0GzJ0rH+jVkNm0qVQzDbvFF9aggVTrAeCBB8xvZ6dOMob4668lNF29CkyYIGu8q93tr1yR2eZnzdLG0z77rDZbd3KyrNWek2P+85aVGsi7d5fAo3b7tWW39ePHZXm5iAjpUVC/PtCvn/w7paSU/L25ufL9a9ZImz/4QPZPnFh0rXBH8PCQJfHUmb9txZUq5KYCuSXjx1Vqlfzw4eLDtmG3dXVCN0dVyL0c87SujYGciIiIyHlNmSIzWC9fLlXkmBhtnOirr5oO2DqdVMr79JGg3KSJ+eNJly2T83fubFk7PT2BRx6Rbu9LlwJTp8r4+IEDpYo6ZYpMHPfss9KtvVkzmbDOwwOYM0cq9Vu2AE89pVX0c3OlChsdLa/VMDjPni3dfmNiJPw0aSIhV+3Kqygyc/ovv0jY9/GRivyWLVrw7t5dtm3bSpjZvl3bZy1XrshFla++Ml4e7sgR+Vq2TJaO69xZKp3Vqkmw7dBBXv+MGfLzMqzeBwbKzPaGvR0qAnXps/PngcxMwM/Pse0xRa2Q16olW8NArg4VtjSQb90qvyvFdUevUwdYv17+z6scVSFnIC8DBnIiIiIi5+XhIUurdewoIVWdOC0uTuu2XpywMMuDdXS06aXOzOXlJV3fDbu/A9Llvnlz6cp++rR8ARI2H39cgvcDD0hwNeXbb4Fp02SN9AkTjNdTN3zuyEipQl+/ro2zNqVDB2kPIBPhLVyojSNPT5eLGv7+Eqi//loez8mR2a0bNJCf0U03ybjpGzdk3Lyvr7wOHx/pln7mjFSxr1yR8/boIZP3NWkilcytW2Uc/+HDRdebv+kmOd+5c3Lfz0+CV6NGwPjx2izbFUlEhPx8U1Nl/Hr9+o5uUVEldVkPCJDb1q6Q9+ol/2+ysuR+aKhM0ugIDORlwEBORERE5NwCA4Fff5WZ0mNjJYxVr27eOFRnodMBr70mgXTjRul+Xbmy1iX//vslrP/yi0wm17atdMdOTZWwsWmTVM9V/fpJMD53Tqrb//4rwfjcOS3EBgRIxbtOHQnTOp0ElfbtJTCpP782bWS7ebNMcPfTTxL4/f3l+9SZsQFgzx7LX3uTJsBnn8lFFFW1atKl/403ZNm8HTuAxETpjr1qlRbiq1WTYQmPPqpVWCsqnU7+3fbtk+DrjIFc7bJuqkIeHi63yxLI//hDLjJ5eBRdWu7ee2X+huRk+apSRS7GOQIDeRl4FfzU1CsqREREROR8IiKAZ55xdCvKLyBAZpa/556ij40bJ1+FPfaYjJt+4w0JyQkJwKBBxhckFAU4e1bWX796VYJL+/bmzWbdsqWE3WvXZGiAKiNDtq1ayUzw1apJlfLIEXmey5clsIeEyEWT7Gy5gJCdLdVtX1+pio8cKZV0U3Q6oHVr+VLl5soFiKtXZZiCOa+hojAM5I6Ul1f0Akl2tnYxyFSFXB1eYkkgVy86qK+3dm3Tvw9+fvIVGWn+uW2BgbwM1JkZHf1LTURERERkiqenzBj/yCMSOkwFGp1OPteWZdbxgAAJ3L/8It3m1fCtjttWq52ABGRb8/IC7rzT9s/jitR/C7US7Qiffy49PZYtA+6+W9t/9qz0OjYMxoaBPDZWbptaUaE46rwJKkeNDTcXA3kZ1K0r29On5Sogr8ARERERkTOKibHduWfPLrovNNR2z0dlo1aeHVlMXLVKJpWbMME4kBvOsK723lAD+YUL2rJnllTIAwLkIpM6H4KzB3Iue1YGN92kjTFw5iUEiIiIiIioYitLID92TCbds5aLF2W7bZvxUnmFJ3QDtEB+/brMEQBYFsgB4zHjDORuSKfTquRHjji2LURERERERMWxtMv6gQMSaPv3t14bLlzQbickaLcLT+gGSOHT11duq2uEWxrIDSevYyB3U+pVl6NHHdsOIiIiIiKi4qjV50uXZHk6QCZ5W7/e9KpRv/0mE/7t3Gm9NhgG8u++k8n9ANMVcp1Oq5KrVfryVMgbNLDse+2NgbyMWCEnIiIiIiJnFx6uje0/dUpWiurUCejaFWjWTNarN1yj/p9/ZHv5snVWlUpN1S4ENG4s55wzR+6bCuSAFshVlgZyNYTXqiWz+TszBvKyuHYNj2wcijuxjhVyIiIiIiJyamrgPXkS+PtvbTb8/fuBhx+W9exVO3Zot9Ux3OWhVscDAoCXX5bbn34qk7yZ6rIOlD+Q33knMGoU8PHHlrfX3hjIy+Kdd1Bn45cYh4kM5ERERERE5NQMJ3b7/Xe53aMHMHq03J4/X7qpp6XJGHLV2bPlf251QreoKODBB2Xm/zNngDfe0AJ/SRVyHx/Lq9xeXsCHH9pnyb3yYiC31LVr+jUequEsLlwAUlIc3CYiIiIiIqJiqBVow0B+zz1SGff2lq7sJ04Ae/YYjyu3RiBXK+SRkbLeuDqp2wcfyDYgQFaxMmQYyCtV0pZEc0cM5Jb69FP97AIxSASg4NgxxzaJiIiIiIioOGoF+uhRYPNmud2xIxAUBMTFyf1167Tx4yprV8gBoE8f4xnca9UqGrgLB3J3xkBuifR0o4EIfshCJVzjxG5EREREROS01ED+669SWwwLA5o0kX1du8p23Tpt/Li3t2ytXSFXffKJNtFc4e7qAAM5FefLL4ErV+S3puA3IwaJHEdOREREREROS+2yrs523qED4FGQBNVA/ttvMuEbANxxh2xtUSEHJHAnJMhY7+7di34PAzkVlZMDvP++3H75ZaBaNQASyFkhJyIiIiIiZ1W4Ct2pk3a7TRsgOFimyjp0SPb17i1ba1bIDQM5AAwaJHNxDR9e9HsYyKmo5GSgdWv5TRoyRKYHBCvkRGR/S5dKt6+vv3Z0S4iIiMgVhIQYB9uOHbXbXl5Aly7a/ZgYCekAcO5c+Z9brZAbdllX+fub/p7KlQFPT7kdEVH+NjgzBnJz3XQTsGQJcPiw/OYYBHJWyInIXv75B3jkEeDSJWDSJFmihIiIiKg0apU8MBBo2dL4MbXbOiA1yILOwDh/HsjNLd/zFlchL4mHhxbgWSEnYyEhsi0I5FVxDtevA1evOrBNRFQhnD8vM5NmZsr9I0eAbdsc2iQiIiJyEWogb99equKGDAN5q1ZAlSpyTH6+FqjLQlFKrpCXRO22zkBOplWtCgCo4yer2bNKTkS2pCjAAw9I17GGDSWYA8BXXzm0WURW07dvX4SHh+P+++93dFOIiNzS7bfLtl+/oo81aKBVxdu2lQp1Qf2xXOPIU1K0QoKlgVztNt+8edmf3xUwkJdVwW9orI8E8j17HNkYInJ3Z87IuqFeXsBPPwHx8bL/u++0NzoiV/bCCy9g/vz5jm4GEZHbGj4c2L8fGDas6GM6HbBgATB1qjbruRrQzQ3kmZnAvHnS5b16deDUKa26HhwMBARY1t4ZM+Tzj7pOurtiIC+rgkAerUgg37LFkY0hInd3+LBs69YF6tSRyVeqVQOSkiSgE7m6zp07Izg42NHNICJyW15eQKNGEr5N6dhRFpNSH7ckkB89Kl3ihwyRtczPnpVJaE0teWYuT0+tDe6MgbysCgJ5cNoFeCCPgZyIbEoN5PXqydbTE3j0UbnNbutka7///jt69uyJmJgY6HQ6LF++vMgxCQkJqFmzJvz8/NCuXTv8rS5mS0RELsmSQP7zzxK+q1TR1jD/80+tQm5pd/WKhIG8rKpUATw84JGfhyq4hKNHgcuXHd0oInJX6jwV9etr+wYPlu3q1doVaCJbSEtLQ/PmzZGQkGDy8UWLFmH06NEYP348du7ciebNm6N79+64dOmS/pgWLVqgSZMmRb4SE//f3p3HR1Xf+x9/zWSSyb4RsrEjyCYisolo64IV6tWiVq1GTGl/etGoKNaqbdV6vYhLq1aloN6qvb2utOJaUIyK0soiGBZZFWQ1CQFC9m3m+/vjy0wYkkBYZ+H9fDzOYzLnnJn5fM6cmW8+c77ne7YfrzREROQQ+Ary9lz6bPVqe3v99fDgg/bvfQvywzlCfqJwHXwVaZXLZfes7dsZ1X07//guhwUL4OKLgx2YiESi/Y+Qgy3Ohw+HRYvgjTfsuWEix8LYsWMZO3Zsm8sff/xxrr/+eiZMmADAjBkzeP/993nhhRe4++67ASgqKjpq8dTX11NfX++/X1FRcdSeW0RErEM5Qu4ryPv1s6O0x8bag5Wff27nqyBvm46QH4m93dZ/2Nv+uv/vfwczGBGJZK0dIQe45hp7+8orxzceEZ+GhgaWLFnC6H2umeN0Ohk9ejRfHKPzuaZOnUpKSop/6tKlyzF5HRGRE9nhFuRutz1gAPDPf9pbdVlvmwryI7G3ID89y/bj0HnkInIs1NbakUoh8Ag5wJVX2kuTLFgAGzYc/9hEysrK8Hg8ZO3331ZWVhbFh3Dx2tGjR3PFFVfwz3/+k86dOx+wmL/nnnvYs2ePf9qyZcthxy8iIq3bt8u619v2emVldoLmAwe+S6zV1NhbHSFvmwryI7G3ID85yR4hX7QIGhuDGZCIRKJvvrHXIf95/Bt0/PzNgGU5Oc2Dp7z6ahCCEzlKPvroI3bs2EFNTQ1bt25l5AGuc+N2u0lOTg6YRETk6MrOtiOuNzYeeKws39Hxbt0gIcH+7SvIfXSEvG0qyI/E3oI8o347XVIq+GftOeyacEeQgxKRSLNuHZzMWl6suQrHlVfAfoNgXX21vX3lFVu4ixxPGRkZREVFUbLfyIIlJSVk65CIiEjYio5uPrK9f7f1hobmv/ftru4zcmTg5dXUHLRNBfmR6NQJAMf32/lN7kucwzwyX3lCwx2LyFG1di1M4EV7x+uFt98OWH7ZZRATA6tWwYoVQQhQTmgxMTEMGTKEwsJC/zyv10thYeEBj3KLiEjo83Vb//Zbe1tfbweRTUiAF16w81oryFNTYeDA5vs6Qt42FeRHYu8RcrZt4/KyGQA4jIF33gliUCISab5Z00Q++1xs/M3AbuupqXDRRfbvl18+fnHJiaOqqoqioiL/SOkbN26kqKiIzZs3AzB58mSef/55/vrXv7J69WpuvPFGqqur/aOuHyvTpk2jf//+DBs27Ji+jojIiapHD3s7fjzccQeMGgXPPANNTfDss3ZZawU5BHZbV0HeNhXkR8JXkK9YQccdq/2zPTPfbOMBIiKHLm3RB+RQTGNsop3x6aewa1fAOnl59vbPfwaNbyVH25dffsngwYMZPHgwYAvwwYMHc9999wFw1VVX8Yc//IH77ruP0047jaKiIubMmdNioLejraCggFWrVrF48eJj+joiIieqhx6yY9U0NMDjj8OSJZCebrujL1pkz6JrqyA/+2x7m5pqR16X1qkgPxK+gnzvSZv/dp9r739cCOXlwYlJRCKKMXDOBtsnrPyn19v+X01N8N57doXKStiyhUsvtedrVVXBTTdF6Lnku3fDmjWHltzOnbaL/74nu8khO+ecczDGtJheeukl/zo333wzmzZtor6+noULFzJixIjgBSwiIkfFSSfBRx/B++/D0KEwejQUFcEZZ9jlr7wCeztLtSjIf/Qj6NoVxo07nhGHHxXkR6JDB3vi5l67f/dHvqY/UZ5GKl97P4iBiUik2LV2Bxc2vgtA4i0T7AnjYLutb95sC/SuXXGOu4SXb5zPhVEfcc57d7D57GvaPlRujK3cS0vtOmVlx7dg3boV/vAH+I//gA8/PPC61dVw7bW2r1t6um3tCwraV5SXltr/GMaNgyuuaF+OVVXw9NMwaZLtiRCRv2yIiIi0n8MBP/4xLF4Mc+dCly7NRfYTT9jbjh1tabSv9HT47jt48cXjGW34cRgT2f9tVFRUkJKSwp49e47NZVF69LB72rBheBcs4i+593J9yX+z7KTLGPTNP2hstDuxa2eJPUpzwQXNJ2PIkamosH1lTjrp+GxTY+zRSJcL4uNbX/7dd5CRAUlJLZd7vbBxI6xcaSeHw15EulevYx76YTMmcIjMA6mrg88+g6+/tsNyxsbab+zBgyEzM3Ddyko7+KExdnu2NjU12X5Q27bZ5+rVy17jq73xtJZLWZm9htjmzbbvVEqKvUZHz56H95yHy+u1Fw5ftw48HhtbTg707g3duzf/0FdXx/fX3EHOrD+zLGYog+oXw/LlMGhQ8/Zdv77Nl2nq3A3Xp4X2M+LzySe2oF29uuUDcnJsIXrTTa3vw/ubP9++P+edZ1vithgDX34JH3wAc+bAv//dXOhGR8M//gEXX9z64/LyWr+e26RJ9r+AtvaHyko491zbt87n4oth5szW+81VVNgfCZ55xh6J9+nXD+66C6677vD3vVYc87bpBKPtKSJyfK1b13zNcYAf/ADmzQtePKGovW1TWBTk06ZN47HHHqO4uJhBgwbx9NNPM3z48HY99pg30hdeaI/wvPACTJjAgulfccZNp1NDHBf1/47qtVv5f46/8HPvX4jx1uONjoHbJ+O8fZI9erNhgy083G5wOqG2Fmpq7N8JCRAXZy/+V19vi5T0dFtEVFfbrpjV1c0FTHKy/WkqOdmuX1vb/Hw1NfYfzj17bAGQlmZP6Kirs/98VlTY12lqsv8gJyTY1xk0CAYMsLmuWGGnnBx7VK66Gl5/3XaddbttMdGzp40hLc0+V1mZnXbutLd1dXbduDi77sCBNvY5c2x/GKfTFiS+qVs3KC62hV5Rkc2/a1d7/uz8+fY1wPahOfNMOxz1ihX2Nfr1g5NPtsVzdLQ9jeDbb20xZoyd57uw4s6dNo6EBEhMtFNCgn3+3bvtY8vLbSEFthDq08fG16mT/ef/7bft+5mcbIuF66+3Mc+ZY4uRr7+222x/Z50FQ4bY3Fwu2LTJTnV1Nka32xb5mZk23g0b7PKqKvu+GmPjTUqy8VZX2/V8j3E4bOx79jTfOp32+hNZWfbxvn2ltta+ru/vxkZbHMbGNk8xMXad6mr73JmZdl9atsw+pjWZmfZxXq/d16qqDu/zFh9vC/Peve1+VlvbfKS3uNjmFhNjJ7fb3jocdn/ZubPt+Pr2hZ/8xBZwp58OHTvi9dq3vr7eruJyQVpSE9G7SuwPK2vW2NtOnex+3KePjSkqyj7A67Wx7dljc9661f4YsGyZHfixrasxuN227/nw4fbztWkTAI/1f5E7v/65fb96924e7rRbN3jpJfjb3+Bvf8NkZDCrZgyn7JnPyaynLj2H2D8/YT/3H34If/1r4OvFxLQ8cpyebvukZWU17ydZWfZ9zMiwn5nf/c5+ZsHuT2ecYT+bLpf9/J93nt2eH34IU6bYvPd19tn2e+DDD+1+/uqr9uj/vkXvE0/A5Mn2Od94w/6g+cYb8Mtf2uU33gi33WY/55s322J75UoavFHUL1xG0tovqUvKYPW1UzjtxUk46ursfwwPP2y3Mdjt+cYbcPvt8P33dl6vXvb75B//aP7MXnABPPec/V46ClRAHl3aniIix1+/fvbfIYD//E+YMSO48YSaiCnIX3/9da677jpmzJjBiBEjePLJJ5k5cyZr164lc/+jbq045o30t9/CwoX2QsAOBxhDcXxPsuu+a7HqFjrTha0tnyPENbjiMDhwN9UEO5QWypM6k1y1HafxBjsUAIzDYUfab0OTy82Ojv3ZkXUKidWldP9mbsjEfjRUpeSyreuZuN0QTw2JJd8Qv2Vdq+s2xSVinFE4PE3+yen1BKzTmJRGXYdORNXXEFfyHQ7vkW+rmowuVHfsjrOpgejqPSSWfIPT0xSwTqkzi3JvMjXEE4WHeGpIpoIO7MRJ2++vFwdVrlSiTBMJnsoDxlHlSmFd2ghiEmKIjzMkV24lpXQ90Q2Bn7OS6M78qvEhUm66lmem7S1W77oLHn3U/jj2+efNR8A9HnA62bDRwcRxxfxxxQUMZGWLGOd0m8jMgf9FZt90TurtpFf3JnplVZK16F2iHv5vXBvaPuq+LxMdjePkk+2PTQcTH29PJhszxvZ769IFmprwXHMtUTNfB6ApOY3aQWdgcjoRFRNF/Kv/g8PjYUHeU3x5xi14vfb3jnPWzGDAMzf6n3pXfCfSa7a13MYkcA6fsoShjIku5C3vxbg99keZqlNH0uCMJXrbdyTt2AjA94m9eP+sh6kbM44u3aNw11fQ7b1p9H7tv3A11lHnSmDDLU/Q//Hr27V9DkQF5NGl7Skicvzdc4/9jRvgySft8ShpFjEF+YgRIxg2bBjPPPMMYK9t2qVLF2655Rbuvvvugz4+GI101d0PkviIHXnWk9aBqgEjeOfkO3l+3Q/JXPw+U+rvoA/rKKMDG+hJHbHE0ICLJmqIp5Y4HBgSqCaOWhqJph43MTSQxm5SKaeKRHbSgSoSicJDNI2ksIcO7CSZCuqIpZa4gGkPKZSTihen/3nqiGU3aVSQTAMxNOEimkYSqCaTUk5nKSlUAFBOCssYRDbF9OIbAD7mPGZyBbXE0Zv1dOc70thNGrtpJJoyMthJB8rIoIwM6ojFTT0JVNOHtQxkBYlU8THnMZuxVJNAd74LmCpI5jN+wEJGkEQlXdmMhyjmcgHf0ouOlHIZb9KXNayiP8s5FTf19GM1PdmAm3pcNFFNAhvoyXd0p5FoomnEi5MddGQnHXBgSKSKRKpIoJokKmkkmnJS2U2a/9YXex/W0pmtdGIbTrzMZiwfMZoLmMv9PMAglrOBHsxmLPP4Ics5lW/ohQeXf1/JZRuXMotObCOdXcTQwGa6soluVJFINI3EUkcGZWRRgocoNtCTTXSjnFRqsT+WJFLlj7eaBDxE0YGdZFGy971L9b//5aQShYccvieLErw4A/aTffedBmKIoYFY6oilDjf1uKmnjliqSSAKD5mU0oGdrKEvXzMACOzWm0glvVmPA4MXJ1Uksp1cakho5dNjiMKDC1sg1xPrXxJNA935jt6spzfrSaaCahKoIZ4ddKSYbMpJxUUTbuqJoYEYGojCwy7SKSODErKoIy7gFVMoZyyzuYj3GcZi+tD6Dwg+TUSxlc6soS8b6UEXtjCQFXRjc6vrNxDNHlIoIYtv6MU39OJDfsSnnEMjMfutbTiZdZzDp5zBAlbRn2kUUEs8L70E+fl7V9u9257nfM01bZ7yUF8PD962kwEzbuYkvqWSJHbQkae4lS84s838nHgYwxx6s54sSsiihGyKyaKEjuygAzuJoYHXuYr/jnmQqo496OzdzNkNhSRRSbSjiS5NG/lB9Wy6Nn7LHmcqz8bcyh8aJ7HTpPs7pyQk2M4AZcVN/IlbmcCLxFHXIp6/cS3X8b/sv19dypv8J89yLp8QQyNeHHzO2czlAgwO0pK9LO1+GdvTBlBcbDvP9ORb7mEq1/G/xNDof6463DzEb3iUXwfscz69Wcf/8P/4AZ8z5yfTGfPWxDa3X3upgDw6pk2bxrRp0/B4PKxbt07bU0TkOFq4sHlwtw8+sL+7S7OIKMgbGhqIj4/n73//O+P2GZ4vPz+f8vJy3n777RaPqa+vp97XxxS7Ibp06XJ8G2nfucIZGbbb9z48Hli31lD8bTWu1ESio+38pia7LDa2ufe619s8eTyB910u+0+t02l7FTc0BE7GBE5eb3Pvda/XhpW49wpKDQ3Nz9Hitt5LcvE6opyGxp59SEx24nJBVEMtTm8TTXFJe7ez7ZHu6w3tctkjWfvf+uKorW3uYe9228fu2GHjq6uzrx0fbyeXqzl/3y3Ynra+U419Pa19va0djuaey77J623uve+bGhrsdvRNLpddNyHBTg5HYC/uujq7bZxOuywx0W7LmBj7fL4zCOJiDcneckobUtlT4SAqyvbiTUmxj93//dz3ffZ4bE6tTR6Pfd19J2h537cb7rvNfI89VpKTbY5ut30vS0pa9oTe//X3vd+eZQfK+XDv+/52Ou1ZFGeesoehaRvISqwmLaaa6NgoSEjAE5dIuTuL4qYMauvt58DhsPv+rl1QXd5IbM0uYqp24Y2KpjEumRpXMqUVsZSW2s+hb7/yTbW19qti0yZbQO//Wc/MtD3hTzvNHlh2HsYwnF99Zc/i8H0+k5LsflhTYzv4+KaNG+375duvfb39W9t+3kYPpTujDvrauWxjN2nU0sqYC/tISIBOHRvoVb2M/jWLSWzcjauxjmJHDh93/wWdToolLc3mX19vz1tbt85+p1wwfA8/7boIxykD8GTlkp5uz2DxXQQD7LZfvtz2TF+5Euq/2cJpW97Fm5yCJ7szDb36k9SzI5mZ+Iv37dubH5uRAT26ebmg8k0633oZQ4cf+XioKsiPLm1PEZHjz+uFU0+148N++61tL6VZe9smV5tLQkBZWRkej6fFdUyzsrJY4zthYT9Tp07lgQceOB7htc3pDBxEaR9RUdCvv4N+/ROPc1CHywn0bWV+XCvzpJkDSAt2EHJYUoDBLeZGAR32Tq2LBrL2TqFj8GA7HYzHY4v0hIT2FP5R1Nfb8dx8Qyvs/6OZ/bsT8fH2B4CkJPw/YjQ22tPr6+ps4WyHOogBhu2drAONKdjU5BsKIgW44IDROhx2OIxBg3xzugA3HXyjBHACPz3Ex4iIiEQup9MO81Rfr2L8SIR0QX447rnnHiZPnuy/7ztCLiIibYuKat/A6j5u97EfnP5APTpcEdd6iYiIhJ/09GBHEP5C+l+ajIwMoqKiKNlvNOKSkhKys7NbfYzb7cbd2iVtRERERERERELIkZ8IdwzFxMQwZMgQCgsL/fO8Xi+FhYWM9F2yRkRERERERCQMhfQRcoDJkyeTn5/P0KFDGT58OE8++STV1dVMmDAh2KGJiIiIiIiIHLaQL8ivuuoqduzYwX333UdxcTGnnXYac+bMaTHQm4iIiJxY9r3smYiISDgK6cueHQ26FIqIiIQatU1Hl7aniIiEmva2TSF9DrmIiIiIiIhIpFJBLiIiIiIiIhIEKshFREREREREgkAFuYiIiIiIiEgQqCAXERERERERCQIV5CIiIiIiIiJBoIJcREREwtK0adPo378/w4YNC3YoIiIih0UFuYiIiISlgoICVq1axeLFi4MdioiIyGFRQS4iIiIiIiISBK5gB3CsGWMAqKioCHIkIiIilq9N8rVRcmTU1ouISKhpb1sf8QV5ZWUlAF26dAlyJCIiIoEqKytJSUkJdhhhT229iIiEqoO19Q4T4T/Pe71etm/fTlJSEg6H44ieq6Kigi5durBlyxaSk5OPUoTBE0n5RFIuEFn5RFIuoHxCWTjlYoyhsrKS3NxcnE6dPXak1Na3TfmErkjKBSIrn0jKBSIrn3DKpb1tfcQfIXc6nXTu3PmoPmdycnLI7wCHIpLyiaRcILLyiaRcQPmEsnDJRUfGjx619QenfEJXJOUCkZVPJOUCkZVPuOTSnrZeP8uLiIiIiIiIBIEKchEREREREZEgUEF+CNxuN/fffz9utzvYoRwVkZRPJOUCkZVPJOUCyieURVIuEjyRth8pn9AVSblAZOUTSblAZOUTSbn4RPygbiIiIiIiIiKhSEfIRURERERERIJABbmIiIiIiIhIEKggFxEREREREQkCFeQiIiIiIiIiQaCC/BBMmzaN7t27Exsby4gRI1i0aFGwQzqoqVOnMmzYMJKSksjMzGTcuHGsXbs2YJ26ujoKCgro0KEDiYmJXH755ZSUlAQp4vZ7+OGHcTgc3Hbbbf554ZbLtm3buPbaa+nQoQNxcXEMHDiQL7/80r/cGMN9991HTk4OcXFxjB49mvXr1wcx4rZ5PB7uvfdeevToQVxcHCeddBIPPvgg+44bGar5fPbZZ1x88cXk5ubicDh46623Apa3J+5du3aRl5dHcnIyqamp/PKXv6Sqquo4ZtHsQPk0NjZy1113MXDgQBISEsjNzeW6665j+/btAc8RLvnsb+LEiTgcDp588smA+aGUj4Q2tfWhRW19aAnnth4iq71XWx85bb0K8nZ6/fXXmTx5Mvfffz9Lly5l0KBBXHjhhZSWlgY7tAOaN28eBQUFLFiwgLlz59LY2MiPfvQjqqur/evcfvvtvPvuu8ycOZN58+axfft2LrvssiBGfXCLFy/m2Wef5dRTTw2YH0657N69m1GjRhEdHc3s2bNZtWoVf/zjH0lLS/Ov8+ijj/LUU08xY8YMFi5cSEJCAhdeeCF1dXVBjLx1jzzyCNOnT+eZZ55h9erVPPLIIzz66KM8/fTT/nVCNZ/q6moGDRrEtGnTWl3enrjz8vL4+uuvmTt3Lu+99x6fffYZN9xww/FKIcCB8qmpqWHp0qXce++9LF26lDfffJO1a9dyySWXBKwXLvnsa9asWSxYsIDc3NwWy0IpHwldautDi9p6tfVHWyS192rrI6itN9Iuw4cPNwUFBf77Ho/H5ObmmqlTpwYxqkNXWlpqADNv3jxjjDHl5eUmOjrazJw507/O6tWrDWC++OKLYIV5QJWVlaZ3795m7ty55oc//KGZNGmSMSb8crnrrrvMWWed1eZyr9drsrOzzWOPPeafV15ebtxut3n11VePR4iH5KKLLjK/+MUvAuZddtllJi8vzxgTPvkAZtasWf777Yl71apVBjCLFy/2rzN79mzjcDjMtm3bjlvsrdk/n9YsWrTIAGbTpk3GmPDMZ+vWraZTp05m5cqVplu3buaJJ57wLwvlfCS0qK0PHWrrQ6tt9ImUtt6YyGrv1daHdj4HoyPk7dDQ0MCSJUsYPXq0f57T6WT06NF88cUXQYzs0O3ZsweA9PR0AJYsWUJjY2NAbn379qVr164hm1tBQQEXXXRRQMwQfrm88847DB06lCuuuILMzEwGDx7M888/71++ceNGiouLA/JJSUlhxIgRIZnPmWeeSWFhIevWrQNg2bJlzJ8/n7FjxwLhl49Pe+L+4osvSE1NZejQof51Ro8ejdPpZOHChcc95kO1Z88eHA4HqampQPjl4/V6GT9+PHfeeScDBgxosTzc8pHgUFsfWtTWh2bbGKltPUR+e6+2PnS5gh1AOCgrK8Pj8ZCVlRUwPysrizVr1gQpqkPn9Xq57bbbGDVqFKeccgoAxcXFxMTE+D+cPllZWRQXFwchygN77bXXWLp0KYsXL26xLNxy2bBhA9OnT2fy5Mn85je/YfHixdx6663ExMSQn5/vj7m1/S4U87n77rupqKigb9++REVF4fF4mDJlCnl5eQBhl49Pe+IuLi4mMzMzYLnL5SI9PT2kcwN7LuZdd93F1VdfTXJyMhB++TzyyCO4XC5uvfXWVpeHWz4SHGrrQ4fa+tDNJ1Lbeojs9l5tfejlsy8V5CeQgoICVq5cyfz584MdymHZsmULkyZNYu7cucTGxgY7nCPm9XoZOnQoDz30EACDBw9m5cqVzJgxg/z8/CBHd+jeeOMNXn75ZV555RUGDBhAUVERt912G7m5uWGZz4mgsbGRK6+8EmMM06dPD3Y4h2XJkiX86U9/YunSpTgcjmCHIxJ0autDi9p6CTa19aFPXdbbISMjg6ioqBYjeJaUlJCdnR2kqA7NzTffzHvvvccnn3xC586d/fOzs7NpaGigvLw8YP1QzG3JkiWUlpZy+umn43K5cLlczJs3j6eeegqXy0VWVlbY5AKQk5ND//79A+b169ePzZs3A/hjDpf97s477+Tuu+/mZz/7GQMHDmT8+PHcfvvtTJ06FQi/fHzaE3d2dnaLQZ+amprYtWtXyObma6A3bdrE3Llz/b+YQ3jl8/nnn1NaWkrXrl393wubNm3ijjvuoHv37kB45SPBo7Y+NKitx38/FPOJ1LYeIrO9V1sfmvnsTwV5O8TExDBkyBAKCwv987xeL4WFhYwcOTKIkR2cMYabb76ZWbNm8fHHH9OjR4+A5UOGDCE6Ojogt7Vr17J58+aQy+38889nxYoVFBUV+aehQ4eSl5fn/ztccgEYNWpUi8vSrFu3jm7dugHQo0cPsrOzA/KpqKhg4cKFIZlPTU0NTmfgV0pUVBRerxcIv3x82hP3yJEjKS8vZ8mSJf51Pv74Y7xeLyNGjDjuMR+Mr4Fev349H330ER06dAhYHk75jB8/nuXLlwd8L+Tm5nLnnXfywQcfAOGVjwSP2vrQoLY+tNvGSG3rIfLae7X1oZtPC8EdUy58vPbaa8btdpuXXnrJrFq1ytxwww0mNTXVFBcXBzu0A7rxxhtNSkqK+fTTT83333/vn2pqavzrTJw40XTt2tV8/PHH5ssvvzQjR440I0eODGLU7bfvyKvGhFcuixYtMi6Xy0yZMsWsX7/evPzyyyY+Pt783//9n3+dhx9+2KSmppq3337bLF++3PzkJz8xPXr0MLW1tUGMvHX5+fmmU6dO5r333jMbN240b775psnIyDC//vWv/euEaj6VlZXmq6++Ml999ZUBzOOPP26++uor/0ik7Yl7zJgxZvDgwWbhwoVm/vz5pnfv3ubqq68OuXwaGhrMJZdcYjp37myKiooCvhfq6+vDLp/W7D/yqjGhlY+ELrX1oUltfegI57bemMhq79XWR05br4L8EDz99NOma9euJiYmxgwfPtwsWLAg2CEdFNDq9OKLL/rXqa2tNTfddJNJS0sz8fHx5tJLLzXff/998II+BPs30uGWy7vvvmtOOeUU43a7Td++fc1zzz0XsNzr9Zp7773XZGVlGbfbbc4//3yzdu3aIEV7YBUVFWbSpEmma9euJjY21vTs2dP89re/DfjiD9V8Pvnkk1Y/J/n5+caY9sW9c+dOc/XVV5vExESTnJxsJkyYYCorK4OQzYHz2bhxY5vfC5988knY5dOa1hrpUMpHQpva+tCjtj50hHNbb0xktfdq6yOnrXcYY8zROdYuIiIiIiIiIu2lc8hFREREREREgkAFuYiIiIiIiEgQqCAXERERERERCQIV5CIiIiIiIiJBoIJcREREREREJAhUkIuIiIiIiIgEgQpyERERERERkSBQQS4iIiIiIiISBCrIReSYcjgcvPXWW8EOQ0RERI4htfcih0cFuUgE+/nPf47D4WgxjRkzJtihiYiIyFGi9l4kfLmCHYCIHFtjxozhxRdfDJjndruDFI2IiIgcC2rvRcKTjpCLRDi32012dnbAlJaWBtjuZdOnT2fs2LHExcXRs2dP/v73vwc8fsWKFZx33nnExcXRoUMHbrjhBqqqqgLWeeGFFxgwYABut5ucnBxuvvnmgOVlZWVceumlxMfH07t3b955551jm7SIiMgJRu29SHhSQS5ygrv33nu5/PLLWbZsGXl5efzsZz9j9erVAFRXV3PhhReSlpbG4sWLmTlzJh999FFAAzx9+nQKCgq44YYbWLFiBe+88w69evUKeI0HHniAK6+8kuXLl/PjH/+YvLw8du3adVzzFBEROZGpvRcJUUZEIlZ+fr6JiooyCQkJAdOUKVOMMcYAZuLEiQGPGTFihLnxxhuNMcY899xzJi0tzVRVVfmXv//++8bpdJri4mJjjDG5ubnmt7/9bZsxAOZ3v/ud/35VVZUBzOzZs49aniIiIicytfci4UvnkItEuHPPPZfp06cHzEtPT/f/PXLkyIBlI0eOpKioCIDVq1czaNAgEhIS/MtHjRqF1+tl7dq1OBwOtm/fzvnnn3/AGE499VT/3wkJCSQnJ1NaWnq4KYmIiMh+1N6LhCcV5CIRLiEhoUWXsqMlLi6uXetFR0cH3Hc4HHi93mMRkoiIyAlJ7b1IeNI55CInuAULFrS4369fPwD69evHsmXLqK6u9i//17/+hdPppE+fPiQlJdG9e3cKCwuPa8wiIiJyaNTei4QmHSEXiXD19fUUFxcHzHO5XGRkZAAwc+ZMhg4dyllnncXLL7/MokWL+Mtf/gJAXl4e999/P/n5+fz+979nx44d3HLLLYwfP56srCwAfv/73zNx4kQyMzMZO3YslZWV/Otf/+KWW245vomKiIicwNTei4QnFeQiEW7OnDnk5OQEzOvTpw9r1qwB7Iior732GjfddBM5OTm8+uqr9O/fH4D4+Hg++OADJk2axLBhw4iPj+fyyy/n8ccf9z9Xfn4+dXV1PPHEE/zqV78iIyODn/70p8cvQREREVF7LxKmHMYYE+wgRCQ4HA4Hs2bNYty4ccEORURERI4RtfcioUvnkIuIiIiIiIgEgQpyERERERERkSBQl3URERERERGRINARchEREREREZEgUEEuIiIiIiIiEgQqyEVERERERESCQAW5iIiIiIiISBCoIBcREREREREJAhXkIiIiIiIiIkGgglxEREREREQkCFSQi4iIiIiIiATB/wcBVOnh9eXmNwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1873,8 +2179,8 @@ "plt.legend()\n", "\n", "fig.add_subplot(1, 2, 2)\n", - "plt.plot(np.log(np.asarray(hist_train)), 'b', label=\"Training loss\")\n", - "plt.plot(np.log(np.asarray(hist_valid)), 'r', label=\"Validation loss\")\n", + "plt.semilogy(np.asarray(hist_train), 'b', label=\"Training loss\")\n", + "plt.semilogy(np.asarray(hist_valid), 'r', label=\"Validation loss\")\n", "plt.xlabel('Epoch')\n", "plt.ylabel('Logarithmic loss')\n", "plt.title(\"Logarithmic MSE\")\n", @@ -1936,12 +2242,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 0.446\n" + "The MSE loss is 0.319\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPYElEQVR4nO3deVxU5f4H8M8wyj4Mos4MKCK5E2ruIV2jGwFqKtbVLE1Jb5YNJpq59MvUtFDLshVbbqCZlfcaRVYYLlC54IKUhJESLiUD5TKjIIgz5/fHxOjINujAmeF83q/XvPA855lnvnMQ5suzHZkgCAKIiIiIJMJF7ACIiIiImhOTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLSSuwAHJHJZMLp06ehUCggk8nEDoeIiIhsIAgCLly4gICAALi41N2/w+SnFqdPn0ZgYKDYYRAREdENOHXqFDp27FjneSY/tVAoFADMF8/Hx0fkaIiIiMgWBoMBgYGBls/xujD5qUX1UJePjw+THyIiIifT0JQVTngmIiIiSWHyQ0RERJLC5IeIiIgkhXN+iIicgNFoRFVVldhhEImqdevWkMvlN90Okx8iIgcmCAJ0Oh3Onz8vdihEDsHX1xcajeam9uFj8kNE5MCqEx+VSgVPT09uvEqSJQgCysvLUVpaCgDw9/e/4baY/BAROSij0WhJfNq2bSt2OESi8/DwAACUlpZCpVLd8BAYJzwTETmo6jk+np6eIkdC5Diqfx5uZg4ckx8iIgfHoS6iq+zx88Bhr+ZiMgIndgMXSwBvNRA0FHC5+RnrRERE1Dii9vwkJiZi0KBBUCgUUKlUiI2NRUFBgVWdiIgIyGQyq8fjjz9eb7uCIOC5556Dv78/PDw8EBkZiaNHjzblW6lffhqwJhRYdy+weZr565pQczkRERE1K1GTn6ysLGi1WuzduxcZGRmoqqpCVFQUysrKrOo9+uijKC4utjxWrVpVb7urVq3C66+/jrVr1yI7OxteXl6Ijo5GRUVFU76d2uWnAZsmA4bT1uWGYnM5EyAiohsWFxeH2NhYy3FERAQSEhJuqk17tEGOTdRhr/T0dKvjlJQUqFQqHDx4EMOGDbOUe3p6QqPR2NSmIAhYs2YNnn32WYwZMwYAsH79eqjVanz++eeYMGGC/d5AQ0xGIH0+AKG2SAHIgPQFQM+RHAIjoiZjNAnYV3QWpRcqoFK4Y3CwH+QuTTuPKC4uDuvWrQNg3piuU6dOmDx5Mp555hm0atV0Hz2fffYZWrdubVPdzMxM3HXXXTh37hx8fX1vqA1yTg4150ev1wMA/Pz8rMo/+ugjbNiwARqNBqNGjcKiRYvqXP1QVFQEnU6HyMhIS5lSqcSQIUOwZ8+eWpOfyspKVFZWWo4NBoM93o55js/1PT5WBMDwh7le8D/s85pERNdIzyvG0i/zUay/2vPtr3TH4lEhiAm98X1SbBETE4Pk5GRUVlbi66+/hlarRevWrbFw4UKrepcvX4arq6tdXvP6zw+x2iDH5jCrvUwmExISEhAeHo7Q0FBL+UMPPYQNGzZg586dWLhwIT788ENMmjSpznZ0Oh0AQK1WW5Wr1WrLueslJiZCqVRaHoGBgXZ4RzBPbrZnPSKiRkjPK8aMDTlWiQ8A6PQVmLEhB+l5xU36+m5ubtBoNAgKCsKMGTMQGRmJtLQ0y1DVCy+8gICAAPTo0QMAcOrUKYwfPx6+vr7w8/PDmDFjcPz4cUt7RqMRc+bMga+vL9q2bYt58+ZBEKx71q8fsqqsrMT8+fMRGBgINzc3dO3aFf/5z39w/Phx3HXXXQCANm3aQCaTIS4urtY2zp07h8mTJ6NNmzbw9PTE8OHDreaRpqSkwNfXF1u3bkWvXr3g7e2NmJgYFBdfvb6ZmZkYPHgwvLy84Ovri/DwcJw4ccJOV5oay2GSH61Wi7y8PHzyySdW5dOnT0d0dDR69+6NiRMnYv369UhNTUVhYaHdXnvhwoXQ6/WWx6lTp+zTsLe64TqNqUdEZCOjScDSL/PrHHQHgKVf5sNoqq1G0/Dw8MDly5cBANu3b0dBQQEyMjKwZcsWVFVVITo6GgqFAt9//z127dplSSKqn7N69WqkpKTggw8+wA8//ICzZ88iNTW13tecPHkyPv74Y7z++us4cuQI3nnnHXh7eyMwMBCbN28GABQUFKC4uBivvfZarW3ExcXhwIEDSEtLw549eyAIAkaMGGG1z0x5eTlefvllfPjhh/juu+9w8uRJzJ07FwBw5coVxMbG4s4778RPP/2EPXv2YPr06dzCQEQOMewVHx+PLVu24LvvvkPHjh3rrTtkyBAAwLFjx9ClS5ca56vnBpWUlFhtfV1SUoLbbrut1jbd3Nzg5uZ2g9HXI2go4BNgntxc668gmfl80FD7vzYRSdq+orM1enyuJQAo1ldgX9FZhHVp2t2jBUHA9u3bsXXrVsycORN//vknvLy88P7771uGuzZs2ACTyYT333/fkhQkJyfD19cXmZmZiIqKwpo1a7Bw4ULcd999AIC1a9di69atdb7ur7/+ik2bNiEjI8MyFeKWW26xnK8e3lKpVFZzfq519OhRpKWlYdeuXRg61Py7+qOPPkJgYCA+//xzjBs3DoB5w721a9daPpfi4+Px/PPPAzBPpdDr9bj33nst53v16tX4C0l2I2rPjyAIiI+PR2pqKnbs2IHg4OAGn5Obmwug7nt6BAcHQ6PRYPv27ZYyg8GA7OxshIWF2SVum7nIgZiVfx9cn+H/fRyzgpOdicjuSi/YtrrV1no3YsuWLfD29oa7uzuGDx+OBx54AEuWLAEA9O7d22qez48//ohjx45BoVDA29sb3t7e8PPzQ0VFBQoLC6HX61FcXGz5AxgAWrVqhYEDB9b5+rm5uZDL5bjzzjtv+D0cOXIErVq1snrdtm3bokePHjhy5IilzNPT0+oPcn9/f8s9qPz8/BAXF4fo6GiMGjUKr732mtWQGDU/UZMfrVaLDRs2YOPGjVAoFNDpdNDpdLh06RIAoLCwEMuWLcPBgwdx/PhxpKWlYfLkyRg2bBj69Oljaadnz56Wrk+ZTIaEhAQsX74caWlpOHz4MCZPnoyAgACr5ZDNJmQ0MH494HNdsuYTYC4PGd38MRFRi6dSuNu13o246667kJubi6NHj+LSpUtYt24dvLy8AMDytdrFixcxYMAA5ObmWj1+/fVXPPTQQzf0+tX3gWoO168Ok8lkVvORkpOTsWfPHgwdOhSffvopunfvjr179zZbfGRN1GGvpKQkAObJZddKTk5GXFwcXF1dsW3bNqxZswZlZWUIDAzE/fffj2effdaqfkFBgWWlGADMmzcPZWVlmD59Os6fP4877rgD6enpcHdvuh/yeoWMNi9n5w7PRNRMBgf7wV/pDp2+oq5Bd2iU5mXvTcXLywtdu3a1qW7//v3x6aefQqVSwcfHp9Y6/v7+yM7OtmyFcuXKFRw8eBD9+/evtX7v3r1hMpmQlZVltQK4WnXPk9ForDOuXr164cqVK8jOzrYMe505cwYFBQUICQmx6b1V69evH/r164eFCxciLCwMGzduxO23396oNsg+RE1+rp+lf73AwEBkZWU1uh2ZTIbnn3/eMt7qEFzkXM5ORM1G7iLD4lEhmLEhBzJYzzqsHoRfPCqkyff7sdXEiRPx0ksvYcyYMXj++efRsWNHnDhxAp999hnmzZuHjh07YtasWVixYgW6deuGnj174pVXXsH58+frbLNz586YMmUKpk6ditdffx19+/bFiRMnUFpaivHjxyMoKAgymQxbtmzBiBEj4OHhAW9vb6s2unXrhjFjxuDRRx/FO++8A4VCgQULFqBDhw6WveQaUlRUhHfffRejR49GQEAACgoKcPToUUyePPlmLhndBIdZ7UVERPYVE+qPpEn9oVFa93prlO5ImtS/yff5aQxPT09899136NSpE+677z706tUL06ZNQ0VFhaUn6KmnnsLDDz+MKVOmICwsDAqFAmPHjq233aSkJPzrX//CE088gZ49e+LRRx+13EWgQ4cOWLp0KRYsWAC1Wo34+Pha20hOTsaAAQNw7733IiwsDIIg4Ouvv7Z5I0RPT0/88ssvuP/++9G9e3dMnz4dWq0Wjz32WCOuENmTTGio+0WCDAYDlEol9Hp9nd2vRERNraKiAkVFRQgODr6pYXsxdngmair1/VzY+vntEEvdiYio6chdZE2+nJ3ImXDYi4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDRET0tyVLluC2224TOwxEREQgISFB7DBaLCY/RERkdzqdDrNmzULXrl3h7u4OtVqN8PBwJCUloby8XOzwblhmZiZkMlm99xQTsz2yDXd4JiJq6UxG4MRu4GIJ4K0Ggoaab7bcRH777TeEh4fD19cXL774Inr37g03NzccPnwY7777Ljp06IDRo0fX+tyqqiqb75nlyC5fvmy5azw5Hvb8EBG1ZPlpwJpQYN29wOZp5q9rQs3lTeSJJ55Aq1atcODAAYwfPx69evXCLbfcgjFjxuCrr77CqFGjLHVlMhmSkpIwevRoeHl54YUXXgBgviFply5d4Orqih49euDDDz+0POf48eOQyWTIzc21lJ0/fx4ymQyZmZkArvaobN++HQMHDoSnpyeGDh2KgoICq1hXrFgBtVoNhUJhuZFqXY4fP4677roLANCmTRvIZDLExcUBMA9TxcfHIyEhAe3atUN0dHSDcdbXHgCYTCbMmzcPfn5+0Gg0WLJkia3fAmoAkx8iopYqPw3YNBkwnLYuNxSby5sgATpz5gy+/fZbaLVaeHl51VpHJrO+qeqSJUswduxYHD58GFOnTkVqaipmzZqFp556Cnl5eXjsscfwyCOPYOfOnY2O5//+7/+wevVqHDhwAK1atcLUqVMt5zZt2oQlS5bgxRdfxIEDB+Dv74+33367zrYCAwOxefNmAEBBQQGKi4vx2muvWc6vW7cOrq6u2LVrF9auXdtgbLa05+XlhezsbKxatQrPP/88MjIyGn0NqCYOexERtUQmI5A+H4BQy0kBgAxIXwD0HGnXIbBjx45BEAT06NHDqrxdu3aWXhWtVouVK1dazj300EN45JFHLMcPPvgg4uLi8MQTTwAA5syZg7179+Lll1+29JTY6oUXXsCdd94JAFiwYAFGjhyJiooKuLu7Y82aNZg2bRqmTZsGAFi+fDm2bdtWZ++PXC6Hn58fAEClUsHX19fqfLdu3bBq1SrL8fHjx+uNraH2+vTpg8WLF1vafvPNN7F9+3bcc889Nr13qht7foiIWqITu2v2+FgRAMMf5nrNYN++fcjNzcWtt96KyspKq3MDBw60Oj5y5AjCw8OtysLDw3HkyJFGv26fPn0s//b39wcAlJaWWl5nyJAhVvXDwsIa/RrVBgwYcMPPrc21sQPm+Ktjp5vDnh8iopboYol969moa9eukMlkNebW3HLLLQAADw+PGs+pa3isLi4u5r/bBeFqr1ZVVVWtda+dPF093GYymRr1era6/n00Js7aXD/xWyaTNVnsUsOeHyKilshbbd96Nmrbti3uuecevPnmmygrK7uhNnr16oVdu3ZZle3atQshISEAgPbt2wMAiouLLeevnVTcmNfJzs62Ktu7d2+9z6lewWU0Ghts35Y4G9Me2Q97foiIWqKgoYBPgHlyc63zfmTm80FD7f7Sb7/9NsLDwzFw4EAsWbIEffr0gYuLC/bv349ffvmlweGhp59+GuPHj0e/fv0QGRmJL7/8Ep999hm2bdsGwNx7dPvtt2PFihUIDg5GaWkpnn322UbHOWvWLMTFxWHgwIEIDw/HRx99hJ9//tnSS1WboKAgyGQybNmyBSNGjICHhwe8vb1rrWtLnI1pj+yHPT9ERC2RixyIqZ5ULLvu5N/HMSuaZL+fLl264NChQ4iMjMTChQvRt29fDBw4EG+88Qbmzp2LZcuW1fv82NhYvPbaa3j55Zdx66234p133kFycjIiIiIsdT744ANcuXIFAwYMQEJCApYvX97oOB944AEsWrQI8+bNw4ABA3DixAnMmDGj3ud06NABS5cuxYIFC6BWqxEfH19v/YbibGx7ZB8y4drBSAIAGAwGKJVK6PV6+Pj4iB0OEUlURUUFioqKEBwcDHd39xtrJD/NvOrr2snPPh3MiU9I7RsNEjmy+n4ubP385rAXEVFLFjLavJy9GXd4JnJ0TH6IiFo6FzkQ/A+xoyByGJzzQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiKqg06nwz333AMvLy/4+vqKHY7dZGZmQiaT4fz586LGsWTJEtx2223N/rpMfoiIyK7i4uIgk8nw+OOP1zin1Wohk8kQFxfX/IHdgFdffRXFxcXIzc3Fr7/+KnY4zUomk+Hzzz932PZuBpMfIqIWzmgyYr9uP77+7Wvs1+2H0WRs8tcMDAzEJ598gkuXLlnKKioqsHHjRnTq1KnJX99eCgsLMWDAAHTr1g0qlcpu7V6+fNlubYnJWd8Hkx8iohZs24ltiN4cjalbp2L+9/MxdetURG+OxrYT25r0dfv374/AwEB89tlnlrLPPvsMnTp1Qr9+/azqmkwmJCYmIjg4GB4eHujbty/+97//Wc4bjUZMmzbNcr5Hjx547bXXrNqIi4tDbGwsXn75Zfj7+6Nt27bQarWoqqqqN86kpCR06dIFrq6u6NGjBz788EPLuc6dO2Pz5s1Yv359vb1VV65cwZNPPglfX1+0bdsW8+fPx5QpUxAbG2upExERgfj4eCQkJKBdu3aIjo4GAGRlZWHw4MFwc3ODv78/FixYgCtXrljFsGbNGqvXu+2227BkyRLLsUwmw/vvv4+xY8fC09MT3bp1Q1pamtVzvv76a3Tv3h0eHh646667cPz48XqvS+fOnQEAY8eOhUwmsxxXD1O9//77VjcWbSjOutqr9uGHH6Jz585QKpWYMGECLly4UG98N4vJDxFRC7XtxDbMyZyDkvISq/LS8lLMyZzT5AnQ1KlTkZycbDn+4IMP8Mgjj9Sol5iYiPXr12Pt2rX4+eefMXv2bEyaNAlZWVkAzMlRx44d8d///hf5+fl47rnn8Mwzz2DTpk1W7ezcuROFhYXYuXMn1q1bh5SUFKSkpNQZX2pqKmbNmoWnnnoKeXl5eOyxx/DII49g586dAID9+/cjJiYG48ePR3FxcY2Eq9rKlSvx0UcfITk5Gbt27YLBYKh1eGfdunVwdXXFrl27sHbtWvzxxx8YMWIEBg0ahB9//BFJSUn4z3/+g+XLlzd0aWtYunQpxo8fj59++gkjRozAxIkTcfbsWQDAqVOncN9992HUqFHIzc3Fv//9byxYsKDe9vbv3w8ASE5ORnFxseUYAI4dO4bNmzfjs88+Q25urk3x1ddeYWEhPv/8c2zZsgVbtmxBVlYWVqxY0Zi333gC1aDX6wUAgl6vFzsUIpKwS5cuCfn5+cKlS5ca/dwrxivC3ZvuFkJTQmt99E7pLURuihSuGK/YPe4pU6YIY8aMEUpLSwU3Nzfh+PHjwvHjxwV3d3fhzz//FMaMGSNMmTJFEARBqKioEDw9PYXdu3dbtTFt2jThwQcfrPM1tFqtcP/991u9ZlBQkHDlytX3M27cOOGBBx6os42hQ4cKjz76qFXZuHHjhBEjRliOr421Lmq1WnjppZcsx1euXBE6deokjBkzxlJ25513Cv369bN63jPPPCP06NFDMJlMlrK33npL8Pb2FoxGoyAIghAUFCS8+uqrVs/r27evsHjxYssxAOHZZ5+1HF+8eFEAIHzzzTeCIAjCwoULhZCQEKs25s+fLwAQzp07V+f7AiCkpqZalS1evFho3bq1UFpaalVua5y1tefp6SkYDAZL2dNPPy0MGTKkzrjq+7mw9fObd3UnImqBckpzavT4XEuAAF25DjmlORikGdQkMbRv3x4jR45ESkoKBEHAyJEj0a5dO6s6x44dQ3l5Oe655x6r8suXL1sNj7311lv44IMPcPLkSVy6dAmXL1+usUro1ltvhVwutxz7+/vj8OHDdcZ35MgRTJ8+3aosPDy8zh6e2uj1epSUlGDw4MGWMrlcjgEDBsBkMlnVHTBgQI3XDwsLg0wms3r9ixcv4vfff2/U3Kg+ffpY/u3l5QUfHx+UlpZaXmfIkCFW9cPCwmxu+3pBQUFo3779DT//ep07d4ZCobAc+/v7W2JvKkx+iIhaoD/L/7RrvRs1depUxMfHAzAnMNe7ePEiAOCrr75Chw4drM65ubkBAD755BPMnTsXq1evRlhYGBQKBV566SVkZ2db1W/durXVsUwmq5GAiMnLy6vRz3FxcYG50+Sq2uYxNed7r+192BpnbcT4vnHODxFRC9Te07a/zG2td6NiYmJw+fJlVFVVWSb5XiskJARubm44efIkunbtavUIDAwEAOzatQtDhw7FE088gX79+qFr164oLCy86dh69eqFXbt2WZXt2rULISEhNrehVCqhVqut5rAYjUbk5OTY9Pp79uyxShp27doFhUKBjh07AjD3nhUXF1vOGwwGFBUV2Rxf9evs27fPqmzv3r0NPq9169YwGm1bGWhLnI1pr6kx+aGrTEag6Hvg8P/MX5thOSwRNY3+qv5Qe6ohg6zW8zLIoPHUoL+qf5PGIZfLceTIEeTn51sNSVVTKBSYO3cuZs+ejXXr1qGwsBA5OTl44403sG7dOgBAt27dcODAAWzduhW//vorFi1aZJVs3Kinn34aKSkpSEpKwtGjR/HKK6/gs88+w9y5cxvVzsyZM5GYmIgvvvgCBQUFmDVrFs6dO2c1nFWbJ554AqdOncLMmTPxyy+/4IsvvsDixYsxZ84cuLiYP57/+c9/4sMPP8T333+Pw4cPY8qUKbVex/o8/vjjOHr0KJ5++mkUFBRg48aN9U4Er9a5c2ds374dOp0O586dq7euLXE2pr2mxuSHzPLTgDWhwLp7gc3TzF/XhJrLicjpyF3kWDDYvKLn+gSo+nj+4PmQuzTug/RG+Pj4wMfHp87zy5Ytw6JFi5CYmIhevXohJiYGX331FYKDgwEAjz32GO677z488MADGDJkCM6cOYMnnnjipuOKjY3Fa6+9hpdffhm33nor3nnnHSQnJyMiIqJR7cyfPx8PPvggJk+ejLCwMHh7eyM6OtqyDLwuHTp0wNdff419+/ahb9++ePzxxzFt2jQ8++yzljoLFy7EnXfeiXvvvRcjR45EbGwsunTp0qj4OnXqhM2bN+Pzzz9H3759sXbtWrz44osNPm/16tXIyMhAYGBgje0JrmdLnI1pr6nJhOsH6QgGgwFKpRJ6vb7eH9gWIz8N2DQZwPX/Ff7+hTl+PRAyurmjIpK8iooKFBUVWe2n0ljbTmzDin0rrCY/azw1mD94PiKDIu0VKl3DZDKhV69eGD9+PJYtWyZ2OC1OfT8Xtn5+c8Kz1JmMQPp81Ex88HeZDEhfAPQcCTTDX4hEZF+RQZG4K/Au5JTm4M/yP9Hesz36q/o3S4+PVJw4cQLffvst7rzzTlRWVuLNN99EUVERHnroIbFDozqIOuyVmJiIQYMGQaFQQKVSITY2FgUFBbXWFQQBw4cPt+neINX3lbn2ERMT0wTvoAU4sRswnK6nggAY/jDXIyKnJHeRY5BmEEbcMgKDNIOY+NiZi4sLUlJSMGjQIISHh+Pw4cPYtm0bevXqJXZoVAdRe36ysrKg1WoxaNAgXLlyBc888wyioqKQn59fYyndmjVrGpw8dq2YmBirnUWrl0zSdS7WvQ/IDdUjIpKYwMDAGqvGyLGJmvykp6dbHaekpEClUuHgwYMYNmyYpTw3NxerV6/GgQMH4O/vb1Pbbm5u0Gg0NtWtrKxEZWWl5dhgMNj0vBbBW23fekRERA7OoVZ76fV6AICfn5+lrLy8HA899BDeeustm5MZAMjMzIRKpUKPHj0wY8YMnDlzps66iYmJUCqVlkf13hKSEDQU8AkA6lgOC8gAnw7mekQkCq5LIbrKHj8PDpP8mEwmJCQkIDw8HKGhoZby2bNnY+jQoRgzZozNbcXExGD9+vXYvn07Vq5ciaysLAwfPrzOzZUWLlwIvV5veZw6deqm34/TcJEDMSv/Prg+Afr7OGYFJzsTiaB659vy8nKRIyGyE0EAKi8A5WfNX28gkan+ebh+Z+jGcJjVXlqtFnl5efjhhx8sZWlpadixYwcOHTrUqLYmTJhg+Xfv3r3Rp08fdOnSBZmZmbj77rtr1Hdzc5P2nKCQ0ebl7OnzrSc/+wSYEx8ucycShVwuh6+vr+U+R56eno2a+0jkUCoMwAUdIFy5WiZrBSg0gHvD28oIgoDy8nKUlpbC19e30Zs9Xsshkp/4+Hhs2bIF3333nWVLbwDYsWMHCgsL4evra1X//vvvxz/+8Q9kZmba1P4tt9yCdu3a4dixY7UmPwRzgtNzpHlV18US8xyfoKHs8SESWfVwf1Pf6JGoSVWVA2V/1XGyGPBqB7T2tKkpX1/fRk2DqY2oyY8gCJg5cyZSU1ORmZlp2c2z2oIFC/Dvf//bqqx379549dVXMWrUKJtf5/fff8eZM2dsniwtWS5yIPgfYkdBRNeQyWTw9/eHSqWy+UaRRA7FZATWjQLK6krgZYCXCpiS1uAf3K1bt76pHp9qoiY/Wq0WGzduxBdffAGFQgGdTgfAfKM4Dw8PaDSaWrO7Tp06WSVKPXv2RGJiIsaOHYuLFy9i6dKluP/++6HRaFBYWIh58+aha9eutd5Uj4jIGcjlcrv80idqdkXfAyUH669z8SRQktNsf4CLOuE5KSkJer0eERER8Pf3tzw+/fTTRrVTUFBgWSkml8vx008/YfTo0ejevTumTZuGAQMG4Pvvv5f2vB4iIiIxOOB+cqIPe9njOdeWeXh4YOvWrTcVFxEREdmJA+4n5zBL3YmIiKgFcsD95Jj8EBERUdNxwP3kmPwQERFR06reT87nulXXPgHm8mbeT84h9vkhIiKiFs6B9pNj8kNERETNw0H2k+OwFxEREUkKkx8iIiKSFA57ERHdKJPRIeYvEFHjMPkhIroR+WlA+nzAcPpqmU+AeUlvM69cIaLG4bAXEVFj5acBmyZbJz4AYCg2l+eniRMXEdmEyQ8RUWOYjOYeH9R2e56/y9IXmOsRkUNi8kNE1Bgndtfs8bEiAIY/zPWIyCEx+SEiagwHvEM1ETUOkx8iosZwwDtUE1HjMPkhImoMB7xDNRE1DpMfIqLGcMA7VBNR4zD5ISJqLAe7QzURNQ43OSQiuhEOdIdqImocJj9ERDfKQe5QTUSNw2EvIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJiqjJT2JiIgYNGgSFQgGVSoXY2FgUFBTUWlcQBAwfPhwymQyff/55ve0KgoDnnnsO/v7+8PDwQGRkJI4ePdoE74CIiIicjajJT1ZWFrRaLfbu3YuMjAxUVVUhKioKZWVlNequWbMGMpnMpnZXrVqF119/HWvXrkV2dja8vLwQHR2NiooKe78FIiIicjIyQRAEsYOo9ueff0KlUiErKwvDhg2zlOfm5uLee+/FgQMH4O/vj9TUVMTGxtbahiAICAgIwFNPPYW5c+cCAPR6PdRqNVJSUjBhwoQG4zAYDFAqldDr9fDx8bHLeyMiIqKmZevnt0PN+dHr9QAAPz8/S1l5eTkeeughvPXWW9BoNA22UVRUBJ1Oh8jISEuZUqnEkCFDsGfPnlqfU1lZCYPBYPUgIiKilslhkh+TyYSEhASEh4cjNDTUUj579mwMHToUY8aMsakdnU4HAFCr1VblarXacu56iYmJUCqVlkdgYOANvgsiIiJydK3EDqCaVqtFXl4efvjhB0tZWloaduzYgUOHDjXpay9cuBBz5syxHBsMBiZARERELZRD9PzEx8djy5Yt2LlzJzp27Ggp37FjBwoLC+Hr64tWrVqhVStzrnb//fcjIiKi1raqh8ZKSkqsyktKSuocNnNzc4OPj4/Vg4iIiFomUZMfQRAQHx+P1NRU7NixA8HBwVbnFyxYgJ9++gm5ubmWBwC8+uqrSE5OrrXN4OBgaDQabN++3VJmMBiQnZ2NsLCwJnsvRERE5BxEHfbSarXYuHEjvvjiCygUCsucHKVSCQ8PD2g0mlp7azp16mSVKPXs2ROJiYkYO3YsZDIZEhISsHz5cnTr1g3BwcFYtGgRAgIC6lwhRkRERNIhavKTlJQEADWGsJKTkxEXF2dzOwUFBZaVYgAwb948lJWVYfr06Th//jzuuOMOpKenw93d3R5hExERkRNzqH1+HAX3+SEiInI+TrnPDxEREVFTY/JDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJaSV2AEREJHEmI3BiN3CxBPBWA0FDARe52FFRC8bkh4iIxJOfBqTPBwynr5b5BAAxK4GQ0eLFRS0ah72IiEgc+WnApsnWiQ8AGIrN5flp4sTlrExGoOh74PD/zF9NRrEjcljs+SEiouZnMpp7fCDUclIAIAPSFwA9R3IIzBbsQWsU9vwQEVHzO7G7Zo+PFQEw/GGuR/VjD1qjMfkhIqLmd7HEvvWkqsEeNJh70DgEZoXJDzkXjmkTtQzeavvWkyr2oN0QzvlpJkaTETmlOfiz/E+092yP/qr+kDvYOLbDx5ifBmP6fORcPoM/5XK0NxrR37Ut5A42pu3w1xGM0V4Y400IGmqek2IohhECctzdrv5cV1RCDpn5fNBQsSMF4MDX8ZqeMSNQy3WsWU9MjnIdmfw0g20ntmHFvhUoKb/6n0/tqcaCwQsQGRQpYmRXOXyM+WnYtuUxrGjri5JWV/8SVF+5ggVbHkMk4BAJkMNfRzBGe2GMN8lFDsSsvObn+urHkfrKFSw4cx6RMSscYrKzQ1/Hv3vGtnl6YEXbNrVcx3OILL/kED1ojnQdZYIg1DZQKGkGgwFKpRJ6vR4+Pj431da2E9swJ3MOhOvGY2WQAQBeiXhF9B8eh4/RZMS2t3tjjreLOUKZzHJK9vd/31cumhD5xGFRf1E6/HUEY7QXxmgf5hhnQxCEmj/XMhleiXjVQWJ04OvI349WbP385pyfJmQ0GbFi34oa32wAlrKV+1bCKOK8FaeI8fgPWOEh1PjBBgDh7+OVHgKMx39o/uD+5hTXkTHaBWO0j6sxoo6fa5kDxejA1xHACr829f9+bOsHMWdHOuJ1FDX5SUxMxKBBg6BQKKBSqRAbG4uCggKrOo899hi6dOkCDw8PtG/fHmPGjMEvv/xSb7txcXGQyWRWj5iYmKZ8K7XKKc2x6t67ngABunIdckpzmjEqa04Ro26/uSv3uh/saoJMBl2rVsjR7W/myK5yiuvIGO2CMdoHY7SPnNIclFQZ6v/9eFkvfowOdh1vKvmpqKjAunXr8Pbbb+Po0aONfn5WVha0Wi327t2LjIwMVFVVISoqCmVlZZY6AwYMQHJyMo4cOYKtW7dCEARERUXBaKw/Q4yJiUFxcbHl8fHHHzc6vpv1Z/mfdq3XFJwiRrlt/01trdcUnOI6Mka7YIz2wRjtgzHeGJsnPM+ZMwdVVVV44403AACXL19GWFgYfv75Z3h6emLevHnIyMhAWFiYzS+enp5udZySkgKVSoWDBw9i2LBhAIDp06dbznfu3BnLly9H3759cfz4cXTp0qXOtt3c3KDRaGyKo7KyEpWVlZZjg8Fg83uoT3vP9nat1xScIsbAocAvybbVE4lTXEfGaBeM0T4Yo30wxhtj85/K3377Le655x7L8UcffYQTJ07g6NGjOHfuHMaNG4fly5ffVDB6vR4A4OfnV+v5srIyJCcnIzg4GIGBgfW2lZmZCZVKhR49emDGjBk4c+ZMnXUTExOhVCotj4batlV/VX+oPdWWCV3Xk0EGjacG/VX97fJ6N8IpYtQMgrq1j2Xy3vVkggCNqxL9NYOaObKrnOI6Mka7YIz2wRjtgzHeGJuTn5MnTyIkJMRy/O233+Jf//oXgoKCIJPJMGvWLBw6dOiGAzGZTEhISEB4eDhCQ0Otzr399tvw9vaGt7c3vvnmG2RkZMDV1bXOtmJiYrB+/Xps374dK1euRFZWFoYPH17nUNnChQuh1+stj1OnTt3w+7iW3EWOBYMXAECNb3r18fzB80XdK8JpYgxfCshkNRKg6lUh84cuET9GZ7iOjPGmMUb7YIz2wRhvjM3Jj4uLC65dFb93717cfvvtlmNfX1+cO3fuhgPRarXIy8vDJ598UuPcxIkTcejQIWRlZaF79+4YP348Kioq6mxrwoQJGD16NHr37o3Y2Fhs2bIF+/fvR2ZmZq313dzc4OPjY/Wwl8igSLwS8QpUniqrcrWnWvwlkn9znhhfhcrLeihT7aVxiOWwgDNdR8Z4sxijfTBG+2CMjWfzPj9hYWEYN24c5syZg59//hl9+vTBsWPHEBwcDMA8eXnKlCk4fvx4o4OIj4/HF198ge+++87SXl0uX76MNm3a4P3338eDDz5o82u0b98ey5cvx2OPPdZgXXvu81PNUXa1rA9jtA/GaB+M0T4Yo30wRvto6hht/fy2ecLzvHnzMGHCBHz11Vf4+eefMWLECKtE5euvv8bgwYMbFaQgCJg5cyZSU1ORmZnZYOJT/RxBEKwmKDfk999/x5kzZ+Dv79+o+OxJ7iLHIBHnpNiCMdoHY7QPxmgfjNE+GKN9OEqMNg97jR07Fl9//TX69OmD2bNn49NPP7U67+npiSeeeKJRL67VarFhwwZs3LgRCoUCOp0OOp0Oly5dAgD89ttvSExMxMGDB3Hy5Ens3r0b48aNg4eHB0aMGGFpp2fPnkhNTQUAXLx4EU8//TT27t2L48ePY/v27RgzZgy6du2K6OjoRsVHRERELY/Nw17PP/885s6dC09PT/u9eB2bMiUnJyMuLg6nT5/Gv//9bxw8eBDnzp2DWq3GsGHD8Nxzz6FHjx5W7VQ/59KlS4iNjcWhQ4dw/vx5BAQEICoqCsuWLYNabdu9TZpi2IuIiJyYyWi+M/rFEvN9soKGOsR9x8iarZ/fNic/crkcxcXFUKlUDVd2ckx+iIjIIj8NSJ8PGE5fLfMJAGJWOsQNlekqu9/bi/c/JSIiyclPAzZNtk58AMBQbC7PTxMnLropjbofQF3DVERERC2OyWju8anlhpyWsvQF5nrkVGxe7QUA3bt3bzABOnv27E0FRERE5BBO7K7Z42NFAAx/mOsF/6PZwqKb16jkZ+nSpVAqlU0VCxERkeO4WPedyG+oHjmMRiU/EyZMkMSEZyIiInjbtkLY5nrkMGye88P5PkREJClBQ82ruuq4IScgA3w6mOuRU+FqLyIiotq4yM3L2QHUTID+Po5Zwf1+nJDNyY/JZOKQFxERSUvIaGD8esDnutsj+QSYy7nPj1Nq1JwfIiIiyQkZDfQcyR2eWxAmP0RERA1xkXM5ewvSqE0OiYiIiJwdkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUmKqMlPYmIiBg0aBIVCAZVKhdjYWBQUFFjVeeyxx9ClSxd4eHigffv2GDNmDH755Zd62xUEAc899xz8/f3h4eGByMhIHD16tCnfChERETkJUZOfrKwsaLVa7N27FxkZGaiqqkJUVBTKysosdQYMGIDk5GQcOXIEW7duhSAIiIqKgtForLPdVatW4fXXX8fatWuRnZ0NLy8vREdHo6KiojneFhERETkwmSAIgthBVPvzzz+hUqmQlZWFYcOG1Vrnp59+Qt++fXHs2DF06dKlxnlBEBAQEICnnnoKc+fOBQDo9Xqo1WqkpKRgwoQJDcZhMBigVCqh1+vh4+Nzc2+KiIiImoWtn98ONedHr9cDAPz8/Go9X1ZWhuTkZAQHByMwMLDWOkVFRdDpdIiMjLSUKZVKDBkyBHv27Kn1OZWVlTAYDFYPIiIiapkcJvkxmUxISEhAeHg4QkNDrc69/fbb8Pb2hre3N7755htkZGTA1dW11nZ0Oh0AQK1WW5Wr1WrLueslJiZCqVRaHnUlVkREROT8HCb50Wq1yMvLwyeffFLj3MSJE3Ho0CFkZWWhe/fuGD9+vF3n7yxcuBB6vd7yOHXqlN3aJiIiIsfSSuwAACA+Ph5btmzBd999h44dO9Y4X90j061bN9x+++1o06YNUlNT8eCDD9aoq9FoAAAlJSXw9/e3lJeUlOC2226r9fXd3Nzg5uZmnzdDREREDk3Unh9BEBAfH4/U1FTs2LEDwcHBNj1HEARUVlbWej44OBgajQbbt2+3lBkMBmRnZyMsLMxusRMREZFzEjX50Wq12LBhAzZu3AiFQgGdTgedTodLly4BAH777TckJibi4MGDOHnyJHbv3o1x48bBw8MDI0aMsLTTs2dPpKamAgBkMhkSEhKwfPlypKWl4fDhw5g8eTICAgIQGxsrxtskIiIiByLqsFdSUhIAICIiwqo8OTkZcXFxcHd3x/fff481a9bg3LlzUKvVGDZsGHbv3g2VSmWpX1BQYFkpBgDz5s1DWVkZpk+fjvPnz+OOO+5Aeno63N3dm+V9ERERkeNyqH1+HAX3+SEiInI+TrnPDxEREVFTc4jVXlJgNAnYV3QWpRcqoFK4Y3CwH+QuMrHDIiIikhwmP80gPa8YS7/MR7H+6t5E/kp3LB4VgphQ/3qeSURERPbGYa8mlp5XjBkbcqwSHwDQ6SswY0MO0vOKRYqMiIhImpj8NCGjScDSL/NR24zy6rKlX+bDaOKccyIioubC5KcJ7Ss6W6PH51oCgGJ9BfYVnW2+oIiIiCSOyU8TKr1g2/3HbK1HREREN4/JTxNSKWzbVNHWekRERHTzmPw0ocHBfvBXuqOuBe0ymFd9DQ72a86wiIiIJI3JTxOSu8iweFQIANRIgKqPF48K4X4/REREzYjJTxOLCfVH0qT+0Cith7Y0SnckTerPfX6IiIiaGTc5bAYxof64J0TDHZ6lwmQETuwGLpYA3mogaCjgIhc7KiIi+huTn2Yid5EhrEtbscOgppafBqTPBwynr5b5BAAxK4GQ0eLFRUREFhz2IrKX/DRg02TrxAcADMXm8vw0ceIiIiIrTH6I7MFkNPf41Lefd/oCcz0iIhIVkx8iezixu2aPjxUBMPxhrkdERKJi8kNkDxdL7FuPiIiaDJMfInvwVtu3HhERNRkmP0T2EDTUvKqrvv28fTqY6xERkaiY/BDZg4vcvJwdQJ37ecescJj9fowmAXsKz+CL3D+wp/AMjKbaJmoTEbVM3OeHyF5CRgPj19exz88Kh9nnJz2vGEu/zEexvsJS5q90x+JRIQ6147jRJHBjUCJqEjJBEPgn33UMBgOUSiX0ej18fHzEDoecjQPv8JyeV4wZG3JqLMivTikc5ZYrzpKgEZFjsfXzm8NeRPbmIgeC/wH0/pf5q4MkPkaTgKVf5te3ExGWfpkv+hBYdYJ2beIDADp9BWZsyEF6XrFIkRFRS8Hkh8jOHHU+zb6iszUSimsJAIr1FdhXdLb5grrOtQmaC0y43SUfo11243aXfMhgAuAYCVo1R/1eE1H9OOeHyI4cebim9ELdic+N1GsK1QlatMs+LG69HgGyq4nYacEPS6smY6t+MPYVnRX9XnmO/L0movqx54fIThx9uEalcLdrvaZQesGc+CS1XgMNrHugNDiLpNZrEO2yT9QEDXD87zUR1Y/JD5EdOMN8msHBfvBXute3ExH8leZVVWJRebXG4tbrAQDXL+yqPl7c+kOovFo3c2RXOcP3mojqx+SHyA6cYT6N3EWGxaNCANS5ExEWjwoRdTn5YPkvCJCdrZH4VHORAQGyMxgs/6V5A7uGM3yviah+TH6I7MAZ5tMAQEyoP5Im9YdGaT20pVG6O8Qyd3lZqV3rNQVn+V4TUd044ZnIDpxhPk21mFB/3BOiccwNBJ3gHmnO9L0motox+SGyg+r5NDp9Ra1zQWQw966IOZ/mWnIXmeirpWpVfY80QzFQ15X0CRD1HmnO9r0mopo47EVkB84wn8YpOME90vi9JnJ+TH6I7MTR59M4jep7pPlcd718AszlDnCPNH6viZwb7+1VC97bi24Gb8hpJw58j7Rq/F4TORZbP78554fIzhx2Po2zqb5HmgPj95rIOXHYi4iIiCSFyQ8RERFJCoe9iIiIWgDOQbMdkx8iIiInl55XjKVf5lvdesVf6Y7Fo0K4+rAWHPYiIiJyYul5xZixIafGPed0+grM2JCD9LxikSKryWgSsKfwDL7I/QN7Cs+IdgNg9vwQERE5KaNJwNIv82vdbVyAeePNpV/m454QjehDYI7UO8WeHyIpMhmBou+Bw/8zfzUZxY6IiG7AvqKzNXp8riUAKNZXYF/R2eYLqhaO1jvFnh8iqclPA9LnA4bTV8t8Asy3lXCA3ZOJyHalF+pOfG6kXlNwxN4pUXt+EhMTMWjQICgUCqhUKsTGxqKgoMBy/uzZs5g5cyZ69OgBDw8PdOrUCU8++ST0en297cbFxUEmk1k9YmJimvrtEDm+/DRg02TrxAcw30h002TzeSJyGiqFe8OVGlGvKThi75SoyU9WVha0Wi327t2LjIwMVFVVISoqCmVlZQCA06dP4/Tp03j55ZeRl5eHlJQUpKenY9q0aQ22HRMTg+LiYsvj448/buq3Q+TYTEZzj0+df38BSF/AITAiJzI42A/+SvcaN9mtJoN5Xs3gYL/mDMuKI/ZOiTrslZ6ebnWckpIClUqFgwcPYtiwYQgNDcXmzZst57t06YIXXngBkyZNwpUrV9CqVd3hu7m5QaPRNFnsRE7nxO6aPT5WBMDwh7meg99WgojM5C4yLB4VghkbciCD9Z821QnR4lEhok52dsTeKYea8Fw9nOXnV3eGWn2zsvoSHwDIzMyESqVCjx49MGPGDJw5c6bOupWVlTAYDFYPohbnYol96xFJiKMs0a5NTKg/kib1h0ZpnTxolO5ImtRf9H1+HLF3ymEmPJtMJiQkJCA8PByhoaG11vnrr7+wbNkyTJ8+vd62YmJicN999yE4OBiFhYV45plnMHz4cOzZswdyec27QicmJmLp0qV2eR9EDstbbd96RBLhSEu06xIT6o97QjQOucOzI/ZOyQRBcIj0dcaMGfjmm2/www8/oGPHjjXOGwwG3HPPPfDz80NaWhpat25tc9u//fYbunTpgm3btuHuu++ucb6yshKVlZVWrxUYGGjpZSJqEUxGYE2oeXJzrfN+ZOZVXwmHzXdUJyLLEu3rf2KqP6YdoWfFWTRHEmkwGKBUKhv8/HaInp/4+Hhs2bIF3333Xa2Jz4ULFxATEwOFQoHU1NRGJT4AcMstt6Bdu3Y4duxYrcmPm5sb3Nzcbjh+IqfgIjcvZ980Gajr76+YFUx8iP7miEu0nZkj9U6JOudHEATEx8cjNTUVO3bsQHBwcI06BoMBUVFRcHV1RVpaGtzdGz8h6vfff8eZM2fg78/snCQuZDQwfj3gc93Pgk+AuZz7/BBZOOISbWcnd5EhrEtbjLmtA8K6tBUtaRS150er1WLjxo344osvoFAooNPpAABKpRIeHh6WxKe8vBwbNmywmozcvn17y/ydnj17IjExEWPHjsXFixexdOlS3H///dBoNCgsLMS8efPQtWtXREdHi/ZeiRxGyGig50jzqq6LJeY5PkFD2eNDdB1HXKJN9iFq8pOUlAQAiIiIsCpPTk5GXFwccnJykJ2dDQDo2rWrVZ2ioiJ07twZAFBQUGBZKSaXy/HTTz9h3bp1OH/+PAICAhAVFYVly5ZxaIuomoucy9mJGuCIS7TJPkRNfhqaax0REdFgnevb8fDwwNatW286NiIikrbqJdo6fUVdSwSgEXkDQboxDrXPDxERkaOoXqINoMYeNY6ygSDdGCY/REREdXD0DQTpxjjEUnciIiJH5UhLtMk+mPwQERE1oHqJNrUMHPYiIiIiSWHPDzkVo0lg1zMREd0UJj/kNJzh5oJEROT4OOxFTqH65oLXbzWv01dgxoYcpOcVixQZERE5GyY/5PAaurkgYL65oNHU8IaYRERETH7I4fHmgkREZE9Mfsjh8eaCRERkT0x+yOHx5oJERGRPTH7I4VXfXLCuBe0ymFd98eaCRERkCyY/5PB4c0EiIrInJj/kFHhzQSIishduckhOgzcXJGqZuHM7NTcmP+RUeHNBopaFO7eTGDjsRUREouDO7SQWJj9ERNTsuHM7iYnJDxERNTvu3E5i4pwfsuCkQyJqLty5ncTE5IcAcNIhETUv7txOYuKwF3HSIRE1O+7cTmJi8iNxnHRIRGLgzu0kJiY/EsdJh0QkFu7cTmLhnB+J46RDIhITd24nMTD5kThOOiQisXHndmpuHPaSOE46JCIiqWHyI3GcdEhERFLD5Ic46ZCIiCSFc34IACcdEhGRdDD5IQtOOiQiIingsBcRERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUkRNfhITEzFo0CAoFAqoVCrExsaioKDAcv7s2bOYOXMmevToAQ8PD3Tq1AlPPvkk9Hp9ve0KgoDnnnsO/v7+8PDwQGRkJI4ePdrUb4eIiIicgKjJT1ZWFrRaLfbu3YuMjAxUVVUhKioKZWVlAIDTp0/j9OnTePnll5GXl4eUlBSkp6dj2rRp9ba7atUqvP7661i7di2ys7Ph5eWF6OhoVFRUNMfbIiIiIgcmEwRBEDuIan/++SdUKhWysrIwbNiwWuv897//xaRJk1BWVoZWrVrVOC8IAgICAvDUU09h7ty5AAC9Xg+1Wo2UlBRMmDChxnMqKytRWVlpOTYYDAgMDIRer4ePj4+d3h0RERE1JYPBAKVS2eDnt0PN+akezvLz86u3jo+PT62JDwAUFRVBp9MhMjLSUqZUKjFkyBDs2bOn1uckJiZCqVRaHoGBgTfxLoiIHIjJCBR9Dxz+n/mrySh2RESiqz2DEIHJZEJCQgLCw8MRGhpaa52//voLy5Ytw/Tp0+tsR6fTAQDUarVVuVqttpy73sKFCzFnzhzLcXXPDxGRU8tPA9LnA4bTV8t8AoCYlUDIaPHiIhKZwyQ/Wq0WeXl5+OGHH2o9bzAYMHLkSISEhGDJkiV2fW03Nze4ubnZtU0iIlHlpwGbJgO4bmaDodhcPn49EyCSLIcY9oqPj8eWLVuwc+dOdOzYscb5CxcuICYmBgqFAqmpqWjdunWdbWk0GgBASUmJVXlJSYnlHBFRi2Yymnt8rk98gKtl6Qs4BEaSJWryIwgC4uPjkZqaih07diA4OLhGHYPBgKioKLi6uiItLQ3u7u71thkcHAyNRoPt27dbtZGdnY2wsDC7vwciIodzYrf1UFcNAmD4w1yPSIJETX60Wi02bNiAjRs3QqFQQKfTQafT4dKlSwCuJj5lZWX4z3/+A4PBYKljNF79i6Vnz55ITU0FAMhkMiQkJGD58uVIS0vD4cOHMXnyZAQEBCA2NlaMt0lE1LwuljRcpzH1iFoYUef8JCUlAQAiIiKsypOTkxEXF4ecnBxkZ2cDALp27WpVp6ioCJ07dwYAFBQUWG18OG/ePJSVlWH69Ok4f/487rjjDqSnpzfYa0RE1CJ4qxuu05h6RC2MQ+3z4yhs3SeAiMghmYy49FII3Mp1cJHVcloAKj018Hg6H3CRN398RE3EKff5ISKim2eEC5ZWTQZgTnSuVX28tGoyjPwIIIni/3wiohZmX9FZfHLxNsyoSoAO1pvG6tAWM6oS8MnF27Cv6KxIERKJy2H2+SEiIvsovWC+j+FW02BkVA7EYJdfoMJ5lMIX+0w9Yfr7797qekRSw+SHiKiFUSmuLu4wwQV7TSEN1iOSEg57ERG1MIOD/eCvdEctc50BADIA/kp3DA6u+z6KRC0Zkx8iohZG7iLD4lHm3p7rE6Dq48WjQiCvbSkYkQQw+SEiaoFiQv2RNKk/NErroS2N0h1Jk/ojJtRfpMiIxMc5P0RELVRMqD/uCdFgX9FZlF6ogEphHupijw9JHZMfIqIWTO4iQ1iXtmKHQeRQOOxFREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksIdnmshCAIAwGAwiBwJERER2ar6c7v6c7wuTH5qceHCBQBAYGCgyJEQERFRY124cAFKpbLO8zKhofRIgkwmE06fPg2FQgGZzH43ADQYDAgMDMSpU6fg4+Njt3alhtfRPngd7YPX0T54He1D6tdREARcuHABAQEBcHGpe2YPe35q4eLigo4dOzZZ+z4+PpL8T2lvvI72wetoH7yO9sHraB9Svo719fhU44RnIiIikhQmP0RERCQpTH6akZubGxYvXgw3NzexQ3FqvI72wetoH7yO9sHraB+8jrbhhGciIiKSFPb8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyU8zeuutt9C5c2e4u7tjyJAh2Ldvn9ghOZXExEQMGjQICoUCKpUKsbGxKCgoEDssp7dixQrIZDIkJCSIHYrT+eOPPzBp0iS0bdsWHh4e6N27Nw4cOCB2WE7FaDRi0aJFCA4OhoeHB7p06YJly5Y1eG8mqfvuu+8watQoBAQEQCaT4fPPP7c6LwgCnnvuOfj7+8PDwwORkZE4evSoOME6ICY/zeTTTz/FnDlzsHjxYuTk5KBv376Ijo5GaWmp2KE5jaysLGi1WuzduxcZGRmoqqpCVFQUysrKxA7Nae3fvx/vvPMO+vTpI3YoTufcuXMIDw9H69at8c033yA/Px+rV69GmzZtxA7NqaxcuRJJSUl48803ceTIEaxcuRKrVq3CG2+8IXZoDq2srAx9+/bFW2+9Vev5VatW4fXXX8fatWuRnZ0NLy8vREdHo6KiopkjdVACNYvBgwcLWq3Wcmw0GoWAgAAhMTFRxKicW2lpqQBAyMrKEjsUp3ThwgWhW7duQkZGhnDnnXcKs2bNEjskpzJ//nzhjjvuEDsMpzdy5Ehh6tSpVmX33XefMHHiRJEicj4AhNTUVMuxyWQSNBqN8NJLL1nKzp8/L7i5uQkff/yxCBE6Hvb8NIPLly/j4MGDiIyMtJS5uLggMjISe/bsETEy56bX6wEAfn5+IkfinLRaLUaOHGn1/5Jsl5aWhoEDB2LcuHFQqVTo168f3nvvPbHDcjpDhw7F9u3b8euvvwIAfvzxR/zwww8YPny4yJE5r6KiIuh0OqufbaVSiSFDhvAz52+8sWkz+Ouvv2A0GqFWq63K1Wo1fvnlF5Gicm4mkwkJCQkIDw9HaGio2OE4nU8++QQ5OTnYv3+/2KE4rd9++w1JSUmYM2cOnnnmGezfvx9PPvkkXF1dMWXKFLHDcxoLFiyAwWBAz549IZfLYTQa8cILL2DixIlih+a0dDodANT6mVN9TuqY/JBT0mq1yMvLww8//CB2KE7n1KlTmDVrFjIyMuDu7i52OE7LZDJh4MCBePHFFwEA/fr1Q15eHtauXcvkpxE2bdqEjz76CBs3bsStt96K3NxcJCQkICAggNeRmgyHvZpBu3btIJfLUVJSYlVeUlICjUYjUlTOKz4+Hlu2bMHOnTvRsWNHscNxOgcPHkRpaSn69++PVq1aoVWrVsjKysLrr7+OVq1awWg0ih2iU/D390dISIhVWa9evXDy5EmRInJOTz/9NBYsWIAJEyagd+/eePjhhzF79mwkJiaKHZrTqv5c4WdO3Zj8NANXV1cMGDAA27dvt5SZTCZs374dYWFhIkbmXARBQHx8PFJTU7Fjxw4EBweLHZJTuvvuu3H48GHk5uZaHgMHDsTEiRORm5sLuVwudohOITw8vMZWC7/++iuCgoJEisg5lZeXw8XF+qNILpfDZDKJFJHzCw4OhkajsfrMMRgMyM7O5mfO3zjs1UzmzJmDKVOmYODAgRg8eDDWrFmDsrIyPPLII2KH5jS0Wi02btyIL774AgqFwjJ2rVQq4eHhIXJ0zkOhUNSYJ+Xl5YW2bdty/lQjzJ49G0OHDsWLL76I8ePHY9++fXj33Xfx7rvvih2aUxk1ahReeOEFdOrUCbfeeisOHTqEV155BVOnThU7NId28eJFHDt2zHJcVFSE3Nxc+Pn5oVOnTkhISMDy5cvRrVs3BAcHY9GiRQgICEBsbKx4QTsSsZebSckbb7whdOrUSXB1dRUGDx4s7N27V+yQnAqAWh/Jyclih+b0uNT9xnz55ZdCaGio4ObmJvTs2VN49913xQ7J6RgMBmHWrFlCp06dBHd3d+GWW24R/u///k+orKwUOzSHtnPnzlp/H06ZMkUQBPNy90WLFglqtVpwc3MT7r77bqGgoEDcoB2ITBC4jSYRERFJB+f8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EJHkxMXFcZt/Iglj8kNETSIuLg4ymazGIyYmRuzQ8NprryElJUXsMAAAMpkMn3/+udhhEEkKb2xKRE0mJiYGycnJVmVubm4iRQMYjUbIZDIolUrRYiAi8bHnh4iajJubGzQajdWjTZs2yMzMhKurK77//ntL3VWrVkGlUqGkpAQAEBERgfj4eMTHx0OpVKJdu3ZYtGgRrr0dYWVlJebOnYsOHTrAy8sLQ4YMQWZmpuV8SkoKfH19kZaWhpCQELi5ueHkyZM1hr0iIiIwc+ZMJCQkoE2bNlCr1XjvvfdQVlaGRx55BAqFAl27dsU333xj9f7y8vIwfPhweHt7Q61W4+GHH8Zff/1l1e6TTz6JefPmwc/PDxqNBkuWLLGc79y5MwBg7NixkMlklmMialpMfoio2UVERCAhIQEPP/ww9Ho9Dh06hEWLFuH999+HWq221Fu3bh1atWqFffv24bXXXsMrr7yC999/33I+Pj4ee/bswSeffIKffvoJ48aNQ0xMDI4ePWqpU15ejpUrV+L999/Hzz//DJVKVWtM69atQ7t27bBv3z7MnDkTM2bMwLhx4zB06FDk5OQgKioKDz/8MMrLywEA58+fxz//+U/069cPBw4cQHp6OkpKSjB+/Pga7Xp5eSE7OxurVq3C888/j4yMDADA/v37AQDJyckoLi62HBNRExP5rvJE1EJNmTJFkMvlgpeXl9XjhRdeEARBECorK4XbbrtNGD9+vBASEiI8+uijVs+/8847hV69egkmk8lSNn/+fKFXr16CIAjCiRMnBLlcLvzxxx9Wz7v77ruFhQsXCoIgCMnJyQIAITc3t0ZsY8aMsXqtO+64w3J85coVwcvLS3j44YctZcXFxQIAYc+ePYIgCMKyZcuEqKgoq3ZPnTolABAKCgpqbVcQBGHQoEHC/PnzLccAhNTU1DquIhE1Bc75IaImc9dddyEpKcmqzM/PDwDg6uqKjz76CH369EFQUBBeffXVGs+//fbbIZPJLMdhYWFYvXo1jEYjDh8+DKPRiO7du1s9p7KyEm3btrUcu7q6ok+fPg3Gem0duVyOtm3bonfv3pay6h6p0tJSAMCPP/6InTt3wtvbu0ZbhYWFlriuf21/f39LG0QkDiY/RNRkvLy80LVr1zrP7969GwBw9uxZnD17Fl5eXja3ffHiRcjlchw8eBByudzq3LUJiYeHh1UCVZfWrVtbHctkMquy6jZMJpPl9UeNGoWVK1fWaMvf37/edqvbICJxMPkhIlEUFhZi9uzZeO+99/Dpp59iypQp2LZtG1xcrk5FzM7OtnrO3r170a1bN8jlcvTr1w9GoxGlpaX4xz/+0dzho3///ti8eTM6d+6MVq1u/Fdp69atYTQa7RgZETWEE56JqMlUVlZCp9NZPf766y8YjUZMmjQJ0dHReOSRR5CcnIyffvoJq1evtnr+yZMnMWfOHBQUFODjjz/GG2+8gVmzZgEAunfvjokTJ2Ly5Mn47LPPUFRUhH379iExMRFfffVVk783rVaLs2fP4sEHH8T+/ftRWFiIrVu34pFHHmlUMtO5c2ds374dOp0O586da8KIiagae36IqMmkp6dbDQEBQI8ePfDQQw/hxIkT2LJlCwDzMNG7776LBx98EFFRUejbty8AYPLkybh06RIGDx4MuVyOWbNmYfr06Za2kpOTsXz5cjz11FP4448/0K5dO9x+++249957m/y9BQQEYNeuXZg/fz6ioqJQWVmJoKAgxMTEWPVeNWT16tWYM2cO3nvvPXTo0AHHjx9vuqCJCAAgE4RrNs0gInIQERERuO2227BmzRqxQyGiFobDXkRERCQpTH6IiIhIUjjsRURERJLCnh8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUnK/wMIYnLu+oe3BgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQIElEQVR4nO3de1xUdf4/8NdhkPswiDozoIgkphJq3lNapRWRMpVqtbtSfrM1MMlMtM3UtFA3N60t7LILtmrl/gpF2zBEobzhLVPSSAkvKRfzMiMgiDPn98fE6Mhw02HODOf13Mc82vM5n/nM+xzEefv5fM7nI4iiKIKIiIhIJlykDoCIiIjInpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhVXqQNwREajEWfPnoVSqYQgCFKHQ0RERE0giiIuX76MwMBAuLjU37/D5MeKs2fPIigoSOowiIiI6BacPn0anTp1qvc8kx8rlEolANPN8/X1lTgaIiIiagq9Xo+goCDz93h9mPxYUTvU5evry+SHiIjIyTQ2ZYUTnomIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWuMKzvRgNwMmdQHkp4KMBgocCLgqpoyIiIpIdSXt+kpOTMXDgQCiVSqjVasTGxqKgoMCiTmRkJARBsHj99a9/bbBdURTx+uuvIyAgAJ6enoiKisKxY8da8lIadiQDWB4OrHoQ+HKy6b/Lw03lREREZFeSJj+5ubmIj4/H7t27kZWVhZqaGkRHR6OiosKi3nPPPYfi4mLza+nSpQ22u3TpUrz77rtYuXIl8vLy4O3tjVGjRqGqqqolL8e6IxnAuomA/qxlub7YVM4EiIiIyK4kHfbKzMy0OE5LS4Narcb+/fsxbNgwc7mXlxe0Wm2T2hRFEcuXL8drr72GcePGAQA+/fRTaDQarF+/Ho899pjtLqAxRgOQmQRAtBYpAAHInA30GM0hMCIiIjtxqAnPOp0OAODv729RvmbNGrRv3x7h4eGYM2cOKisr622jqKgIJSUliIqKMpepVCoMHjwYu3btsvqe6upq6PV6i5dNnNxZt8fHggjoz5jqERERkV04zIRno9GIxMREREREIDw83Fz+xBNPIDg4GIGBgTh06BCSkpJQUFCAr776ymo7JSUlAACNRmNRrtFozOdulpycjAULFtjoSm5QXmrbekRERHTbHCb5iY+PR35+PrZv325RPmXKFPP/79WrFwICAjBixAgUFhaia9euNvnsOXPmYMaMGeZjvV6PoKCg22/YR9N4nebUIyIiotvmEMNeCQkJ2LRpE7Zt24ZOnTo1WHfw4MEAgOPHj1s9Xzs3qLTUsjeltLS03nlD7u7u8PX1tXjZRPBQwDcQgFBPBQHw7WiqR0RERHYhafIjiiISEhKQnp6OrVu3IiQkpNH3HDx4EAAQEBBg9XxISAi0Wi2ys7PNZXq9Hnl5eRgyZIhN4m4yFwUQs+SPg5sToD+OYxZzsjMREZEdSZr8xMfHY/Xq1Vi7di2USiVKSkpQUlKCK1euAAAKCwuxcOFC7N+/HydOnEBGRgYmTpyIYcOGoXfv3uZ2evTogfT0dACAIAhITEzEokWLkJGRgcOHD2PixIkIDAxEbGys/S8ybCww4VPA96ZkzTfQVB421v4xERERyZikc35SUlIAmBYyvFFqairi4uLg5uaGLVu2YPny5aioqEBQUBAeeeQRvPbaaxb1CwoKzE+KAcCsWbNQUVGBKVOm4NKlS7j33nuRmZkJDw+PFr8mq8LGmh5n5wrPREREkhNEUbS2CI2s6fV6qFQq6HQ6283/ISIiohbV1O9vh5jwTERERGQvTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhVXqQMgB2I0ACd3AuWlgI8GCB4KuCikjoqIiMimmPyQyZEMIDMJ0J+9XuYbCMQsAcLGShcXERGRjXHYi0yJz7qJlokPAOiLTeVHMqSJi4hum8EoYlfheWw4eAa7Cs/DYBSlDolIcuz5kTujwdTjA2t/IYoABCBzNtBjNIfAiJxMZn4xFmw8gmJdlbksQOWBeWPCEBMeIGFkRNJiz4/cndxZt8fHggjoz5jqEZHTyMwvxtTVBywSHwAo0VVh6uoDyMwvligyIulJmvwkJydj4MCBUCqVUKvViI2NRUFBgdW6oiji/vvvhyAIWL9+fYPtxsXFQRAEi1dMTEwLXEErUF5q23pEJDmDUcSCjUfq7c8FgAUbj3AIjGRL0uQnNzcX8fHx2L17N7KyslBTU4Po6GhUVFTUqbt8+XIIgtDktmNiYlBcXGx+ffbZZ7YMvfXw0di2HhFJbk/RhTo9PjcSARTrqrCn6IL9giJyIJLO+cnMzLQ4TktLg1qtxv79+zFs2DBz+cGDB7Fs2TLs27cPAQFNG6d2d3eHVqttUt3q6mpUV1ebj/V6fZPe1yoEDzU91aUvhvV5P4LpfPBQe0dGRLeo7HL9ic+t1CNqbRxqzo9OpwMA+Pv7m8sqKyvxxBNP4P33329yMgMAOTk5UKvV6N69O6ZOnYrz58/XWzc5ORkqlcr8CgoKuvWLcDYuCtPj7ACAm3vW/jiOWczJzkRORK30sGk9otZGEEXRIQZ9jUYjxo4di0uXLmH79u3m8ueffx4GgwGffPIJAEAQBKSnpyM2Nrbetj7//HN4eXkhJCQEhYWFePXVV+Hj44Ndu3ZBoaj7JW6t5ycoKAg6nQ6+vr62u0hHZnWdn46mxIfr/BA5FYNRxL1LtqJEV1Vffy60Kg9sT/ozFC5Nn05AdNtaeDFdvV4PlUrV6Pe3wzzqHh8fj/z8fIvEJyMjA1u3bsUPP/zQrLYee+wx8//v1asXevfuja5duyInJwcjRoyoU9/d3R3u7u63HnxrEDbW9Dg7V3gmcnoKFwHzxoRh6uoDEGA5oF2b6swbE8bEh+zLgRbTdYhhr4SEBGzatAnbtm1Dp06dzOVbt25FYWEh/Pz84OrqCldXU672yCOPIDIyssnt33HHHWjfvj2OHz9u69BbFxcFEPInoNdfTP9l4kPktGLCA5DyVD9oVZZDW1qVB1Ke6sd1fsi+HGwxXUmHvURRxLRp05Ceno6cnBx069bN4nxJSQl+//13i7JevXphxYoVGDNmDEJCQpr0Ob/99hs6d+6M9evXY+zYxrPLpnabERE5OoNRxJ6iCyi7XAW10gODQvzZ40P2ZTQAy8MbWFPujwdrEg/f9j+6nWLYKz4+HmvXrsWGDRugVCpRUlICAFCpVPD09IRWq7U6yblz584WiU+PHj2QnJyMhx56COXl5ViwYAEeeeQRaLVaFBYWYtasWQgNDcWoUaPsdm1ERI5A4SJgSNd2UodBctacxXRD/mSXkCQd9kpJSYFOp0NkZCQCAgLMry+++KJZ7RQUFJifFFMoFDh06BDGjh2LO++8E5MnT0b//v3x/fffc14PERGRvTngYrqS9vzcyoibtffcWObp6YnNmzffVlxERERkIw64mK7DPO1F1FpwjgUR0Q0ccDFdJj9ENsRdtImIblK7mO66iUB9iy/YeTFdh3jUnag14C7aRET1CBsLTPgU8L3pH4G+gaZyO6/zw54fIhtobBdtAaZdtEeGaTkERkTy5ECL6TL5IbKB5uyizceOiUi2ahfTlToMqQMgag24izYRkfNg8kNkA9xFm4jIeTD5IbKBQSH+CFB5oL7ZPAJMT30NCvG3Z1hERGQFkx8iG6jdRRtAnQSIu2i3YkYDUPQ9cPj/mf5rNEgdERE1ASc8E9lI7S7aN6/zo+U6P63TkQwgM8lyzyLfQNN6JnZ+bJeImkfSXd0dFXd1p9vBFZ5l4EjGHwu23fzX5x8/ZwnWLSEiJ9nVnag14i7arZzRYOrxaWhVp8zZpvVMJFi/hIgaxzk/RETNcXKn5VBXHSKgP2OqR0QOickPEVFzlJfath4R2R2THyKi5vDR2LYeEdkd5/wQETVH8FDTU136Ylif9yOYzgcPtXdkRA7PUR4IYfJDRNQcLgrT4+zrJsL0dNeNCdAff4nHLOZkZ6KbZOYX11kKJECipUA47EVE1FxhY02Ps/ve9Be2byAfcyeyIjO/GFNXH6izAXSJrgpTVx9AZn6xXeNhzw8R0a0IG2t6nP3kTtPkZh+NaaiLPT5EFgxGEQs2HmlocQgs2HgEI8O0dhsCY/JDRHSrXBRAyJ+kjoLIoe0pulCnx+dGIoBiXRX2FF2w2xppHPYiIiKiFlN2uf7E51bq2QKTHyIiImoxaqWHTevZApMfIiIiajGDQvwRoPJAfbN5BJie+hoU4m+3mJj8EBERUYtRuAiYNyYMAOokQLXH88aE2XW9HyY/RERE1KJiwgOQ8lQ/aFWWQ1talQdSnupn93V++LQXERERtbiY8ACMDNNyhWciIiKSD4WLYLfH2RvCYS8iIiKSFSY/REREJCsc9iIiImoFHGXHdGfA5IeIiMjJOdKO6c6Aw15EREROzNF2THcGTH6IiIicVGM7pgOmHdMNRms15IvJDxERkZNqzo7pdB2THyIiIifliDumOwMmP0RERE7KEXdMdwZMfoiIiJyUI+6Y7gyY/BARETkpR9wx3Rkw+SEiInJijrZjujPgIodEREROzpF2THcGTH6IiIhaAUfZMd0ZcNiLiIiIZIXJDxEREckKkx8iIiKSFUmTn+TkZAwcOBBKpRJqtRqxsbEoKCiwWlcURdx///0QBAHr169vsF1RFPH6668jICAAnp6eiIqKwrFjx1rgCoiIiMjZSJr85ObmIj4+Hrt370ZWVhZqamoQHR2NioqKOnWXL18OQWjarPWlS5fi3XffxcqVK5GXlwdvb2+MGjUKVVVc3puIiEjuBFEUHWar13PnzkGtViM3NxfDhg0zlx88eBAPPvgg9u3bh4CAAKSnpyM2NtZqG6IoIjAwEC+//DJmzpwJANDpdNBoNEhLS8Njjz1W5z3V1dWorq42H+v1egQFBUGn08HX19e2F0lEREQtQq/XQ6VSNfr97VBzfnQ6HQDA3//6MtyVlZV44okn8P7770Or1TbaRlFREUpKShAVFWUuU6lUGDx4MHbt2mX1PcnJyVCpVOZXUFDQbV4JEREROSqHSX6MRiMSExMRERGB8PBwc/lLL72EoUOHYty4cU1qp6SkBACg0WgsyjUajfnczebMmQOdTmd+nT59+havgoiIiBydwyxyGB8fj/z8fGzfvt1clpGRga1bt+KHH35o0c92d3eHu7t7i34GEREROQaH6PlJSEjApk2bsG3bNnTq1MlcvnXrVhQWFsLPzw+urq5wdTXlao888ggiIyOttlU7NFZaWmpRXlpa2qRhMyIiImrdJE1+RFFEQkIC0tPTsXXrVoSEhFicnz17Ng4dOoSDBw+aXwDwzjvvIDU11WqbISEh0Gq1yM7ONpfp9Xrk5eVhyJAhLXYtRERE5BwkHfaKj4/H2rVrsWHDBiiVSvOcHJVKBU9PT2i1Wqu9NZ07d7ZIlHr06IHk5GQ89NBDEAQBiYmJWLRoEbp164aQkBDMnTsXgYGB9T4hRkRERPIhafKTkpICAHWGsFJTUxEXF9fkdgoKCsxPigHArFmzUFFRgSlTpuDSpUu49957kZmZCQ8PD1uETURERE7Modb5cRRNXSeAiIiIHIdTrvNDRERE1NKY/BAREZGsMPkhIiIiWWHyQ0RERLLC5IeIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK0x+iIiISFaY/BAREZGsMPkhIiIiWWHyQ0RERLLC5IeIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK65SB0DUHAajiD1FF1B2uQpqpQcGhfhD4SJIHRYRETkRJj/kNDLzi7Fg4xEU66rMZQEqD8wbE4aY8AAJIyMiImfCYS9yCpn5xZi6+oBF4gMAJboqTF19AJn5xRJFRi3FYBSxq/A8Nhw8g12F52EwilKHREStBHt+yOEZjCIWbDwCa199IgABwIKNRzAyTMshsFaCvXxE1JLY80MOb0/RhTo9PjcSARTrqrCn6IL9gqIWw14+ImppTH7I4ZVdrj/xuZV65Lga6+UDTL18HAIjotvB5IccnlrpYdN65LjYy0dE9sA5P3bCR7Rv3aAQfwSoPFCiq7LaIyAA0KpM95ScG3v5iMgemPzYASdv3h6Fi4B5Y8IwdfUBCIBFAlSbPs4bE8ZkshVgLx8R2QOHvVoYJ2/aRkx4AFKe6getyvJLT6vyQMpT/ZhEthK1vXz1pbECTP9wYC8fEd0O9vy0ID6ibVsx4QEYGabl8GErxl4+clScutC6MPlpQc2ZvDmkazv7BebEFC4C71UrV9vLd/NQsZZDxSQRTl1ofZj8tCBO3iS6NezlI0dRO3Xh5h782qkLHHZ3Tkx+WhAnbxLdOvbykdQ4daH14oTnFsTJm0REzovrTrVeTH5aUO3kTQB1EiBO3iQiMnHUTWw5daH14rBXC+PkTSKi+jnyZGJOXWi9mPzYASdvEhHVVTuZWIAR97j8DDUuoQx+2Kvr4RCTibm6fOvF5MdOOHmTHAnXLCGp1U4mjnbZg3ltPkWgcH3ezFnRH2/UTMSCjR6STibmulOtF5MfIplx5GEGko89RRfQ+/J3SGmzvM45LS7ggzbLMfUysKfobkn/4ehUUxeMBuDkTqC8FPDRAMFDAReF1FE5JEEURceYWeZA9Ho9VCoVdDodfH19pQ6HyGbqW7Ok9t+tUg8zkHxs+OEUBq4fDi0uwFrHiVEEStAOe2NzMK5vZ/sHeBOH7y09kgFkJgH6s9fLfAOBmCVA2Fjp4rKzpn5/82kvIplobM0SwLRmiaM8aUOtW2jlYQQK1hMfAHARgEDhPEIrD9s3sHrUTl0Yd3dHDOnazvESn3UTLRMfANAXm8qPZEgTlwNj8kNmjvq4KdkG1ywhR9JTWWnTerJlNJh6fBr6Z03mbFM9MuOcHwLAeSBywDVLyJG4KLU2rSdbJ3fW7fGxIAL6M6Z6IX+yW1iOjsmPnRiMBhwoO4BzlefQwasD+qn7QeEgE9GuzwMxQuFVBMH1MsRrSpToQhzicdMbGa5dxYHD/8E5/Sl08O2Mfr2ehsLVTeqwLDjqz9pyLRLLn7WhMgS1HcGOsmaJo97HGzHG2xA8FPANhKgvhhEiDni445xCgQ4GA/pVVcMFAgTfQFM9B+Cw97G81Px/DUCd+6iwUk9KjnIfmfzYwZaTW7B4z2KUVl7/w6fx0mD2oNmICo6SMLLr80AUyny4azbCpY3OfM5Yo0J16RjJHzettWV7Mhb/sgaliutxaH54B7PvfBJR986RMLLrHPlnXbtmyTnjvnp/1h1cBjjEmiWOfB9rMcbb5KIAYpYge9PzWNzOD6Wu17+ONNeuYfb5S4iKWewQTys59H300QAAtnh5YnG7tlbu40VEVV4x15OSI91HzvlpYVtObsGMnBkWP2wAKKssw4ycGdhycotEkZnsKbqAc8Z98Oi4GoKrzuKc4KqDR8fVOGfcJ/k8kC3bkzHj+BqU3vQntswFmHF8DbZsT5YmsBs4+s9a4SLg4XsvNPizfvjeC9InuQ5+HwHGaCtbvL0wQ9MepQrLBKdMocAMTXts8faSKLLrHP4+Bg/FlvYdMUNdz31Ut8eW9h0l70FztPt4W8lPVVUVVq1ahQ8++ADHjh2zVUythsFowOI9iyFamYhWW7ZkzxIYJJyIVqKvgLtmIwBAuOk7r/bYXbMRJfoKO0d2neHaVSz+ZY3pjt0UpPjH8ZJf1sBw7ar9g/uDM/ysDUYDNpd8CEGw/rMWBODbko8kj9EZ7iNjvH3XY0Q9v9eCA8XowPcRwGL/tg3//djOH1JOd3bE+9jk5GfGjBmYNm2a+fjq1asYMmQInnvuObz66qvo27cvdu3a1awPT05OxsCBA6FUKqFWqxEbG4uCggKLOs8//zy6du0KT09PdOjQAePGjcPPP//cYLtxcXEQBMHiFRMT06zYbOFA2YE6We6NRIgoqSzBgbIDdozKks74C1za6Op8GdYSBMCljQ464y/2DewGBw7/xzTUVU+QoiCgRCHgwOH/2Dmy65zhZ91YjAAcPkZnuI+MsWkYo20cKDuA0hp9w38/XtVJH6OD3ccmJz/ffvstRo4caT5es2YNTp48iWPHjuHixYsYP348Fi1a1KwPz83NRXx8PHbv3o2srCzU1NQgOjoaFRXXexn69++P1NRUHD16FJs3b4YoioiOjobB0HCGGBMTg+LiYvPrs88+a1ZstnCu8pxN67WE9n7VNq3XEs7pT9m0Xktwhp81Y7QNxmgbjNE2GOOtafKE51OnTiEsLMx8/O233+Ivf/kLgoODAQDTp0/HAw880KwPz8zMtDhOS0uDWq3G/v37MWzYMADAlClTzOe7dOmCRYsWoU+fPjhx4gS6du1ab9vu7u7QaqV9RLKDVweb1msJGm+1Teu1hA6+TVvdtan1WoIz/KwZo20wRttgjLbBGG9Nk3t+XFxccONOGLt378Y999xjPvbz88PFixdvKxidzjQJ09/f+tMmFRUVSE1NRUhICIKCghpsKycnB2q1Gt27d8fUqVNx/vz5eutWV1dDr9dbvGyhn7ofNF4aCLDeHSlAgNZLi37qfjb5vFtRG2NDJI+x19PQGEQI9ezEIogitAYR/Xo9befIrnOmnzVjvD2M0TYYo20wxlvT5OSnZ8+e2LjRNDH2p59+wqlTp3DfffeZz588eRIaza0/Smc0GpGYmIiIiAiEh4dbnPvggw/g4+MDHx8ffPPNN8jKyoKbW/1ru8TExODTTz9FdnY2lixZgtzcXNx///31DpUlJydDpVKZX40lVk2lcFFg9qDZAFDnh157nDQoSdK1ImpjFP74341qyySP0dUNs+980hTTTQlQ7XHSnU9Kut6PM/2sb4ypFmNsOsZoG4zRNhjjrWnyxqbp6el47LHHcO+99+Knn37CwIEDzckQACQlJaGoqAjr1q27pUCmTp2Kb775Btu3b0enTp0szul0OpSVlaG4uBhvv/02zpw5gx07dsDDo2mLsf3666/o2rUrtmzZghEjRtQ5X11djerq63Na9Ho9goKCbLaxqbW1DbReWiQNSpJ+jYg/OEWMVtb50RpEJDn4Oj8Odx8Zo00wRttgjLbBGE2aurFps3Z1z87OxqZNm6DVajFt2jR4eV1fg2HBggUYPnw4IiMjmx1sQkICNmzYgO+++w4hISEN1r169Sratm2LTz75BI8//niTP6NDhw5YtGgRnn/++UbrtsSu7o6yqmVDnCJGrvBsE4zRNhijbTBG22CMLZD8vPHGG5g5c6ZFwnO7RFHEtGnTkJ6ejpycHHTr1q3R91RXV6Nt27b44IMPEBcX16TP+e2339C5c2esX78eY8eObbR+SyQ/RERE1LKa+v3d5Dk/CxYsQHl5uU2CqxUfH4/Vq1dj7dq1UCqVKCkpQUlJCa5cuQLANFyVnJyM/fv349SpU9i5cyfGjx8PT09PiyfLevTogfT0dABAeXk5XnnlFezevRsnTpxAdnY2xo0bh9DQUIwaNcqm8RMREZHzafKj7s0YHWuylJQUAKgzVJaamoq4uDh4eHjg+++/x/Lly3Hx4kVoNBoMGzYMO3fuhFp9/dHrgoIC85NiCoUChw4dwqpVq3Dp0iUEBgYiOjoaCxcuhLu7u82vgYjky2AUsafoAsouV0Gt9MCgEH/JtwchosY1edjLxcUFpaWl6NBBurUC7IXDXkTUmMz8YizYeATFuipzWYDKA/PGhCEmPEDCyKhFGA3AyZ2m3dF9NKa9shxsPg21wJwfFxcXqFQqCPXtg/CHCxek3QDTFpj8EFFDMvOLMXX1gTo7FdX+7ZjyVD8mQK3JkQwgMwnQn71e5hsIxCwBwhqfR0r209Tv7yYPewGmeT8qleq2gyMiclYGo4gFG49Y2aIREGFKgBZsPIKRYVoOgbUGRzKAdROBm3/i+mJT+YRPmQA5oWYlP4899pjFXBsiIrnZU3TBYqjrZiKAYl0V9hRdwJCu7ewXGNme0WDq8Wko1c2cDfQYzSEwJ9Pkp70aG+4iIpKDssv1Jz63Uo8c2MmdlkNddYiA/oypHjmVJic/LfG0FxGRs1Erm7ayfFPrkQMrL228TnPqkcNo8rCX0WhsyTiIiJzCoBB/BKg8UKKrsjoYIgDQqkyPvZOT82nifpVNrUcOo8k9P0REBChcBMwbEwYAuHkyQO3xvDFhnOzcGgQPNT3VVc9u5IAA+HY01SOnwuSHiKiZYsIDkPJUP2hVlkNbWpUHH3NvTVwUpsfZAdSb6sYs5mRnJ9SsjU3lguv8EFFTcIVnmbC6zk9HU+LDx9wdSous80NERNcpXAQ+zi4HYWNNj7NzhedWg8kPERFRY1wUQMifpI6CbIRzfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWJE1+kpOTMXDgQCiVSqjVasTGxqKgoMCizvPPP4+uXbvC09MTHTp0wLhx4/Dzzz832K4oinj99dcREBAAT09PREVF4dixYy15KUREROQkJE1+cnNzER8fj927dyMrKws1NTWIjo5GRUWFuU7//v2RmpqKo0ePYvPmzRBFEdHR0TAYDPW2u3TpUrz77rtYuXIl8vLy4O3tjVGjRqGqqsoel0VEREQOTBBFUZQ6iFrnzp2DWq1Gbm4uhg0bZrXOoUOH0KdPHxw/fhxdu3atc14URQQGBuLll1/GzJkzAQA6nQ4ajQZpaWl47LHHGo1Dr9dDpVJBp9PB19f39i6KiIiI7KKp398ONedHp9MBAPz9/a2er6ioQGpqKkJCQhAUFGS1TlFREUpKShAVFWUuU6lUGDx4MHbt2mX1PdXV1dDr9RYvIiIiap0cJvkxGo1ITExEREQEwsPDLc598MEH8PHxgY+PD7755htkZWXBzc3NajslJSUAAI1GY1Gu0WjM526WnJwMlUplftWXWBEREZHzc5jkJz4+Hvn5+fj888/rnHvyySfxww8/IDc3F3feeScmTJhg0/k7c+bMgU6nM79Onz5ts7aJiIjIsbhKHQAAJCQkYNOmTfjuu+/QqVOnOudre2S6deuGe+65B23btkV6ejoef/zxOnW1Wi0AoLS0FAEBAeby0tJS3H333VY/393dHe7u7ra5GCIiInJokvb8iKKIhIQEpKenY+vWrQgJCWnSe0RRRHV1tdXzISEh0Gq1yM7ONpfp9Xrk5eVhyJAhNoudiIiInJOkyU98fDxWr16NtWvXQqlUoqSkBCUlJbhy5QoA4Ndff0VycjL279+PU6dOYefOnRg/fjw8PT3xwAMPmNvp0aMH0tPTAQCCICAxMRGLFi1CRkYGDh8+jIkTJyIwMBCxsbFSXCYRERE5EEmHvVJSUgAAkZGRFuWpqamIi4uDh4cHvv/+eyxfvhwXL16ERqPBsGHDsHPnTqjVanP9goIC85NiADBr1ixUVFRgypQpuHTpEu69915kZmbCw8PDLtdFREREjsuh1vlxFFznh4iIyPk45To/RERERC2NyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhVJNzYlapWMBuDkTqC8FPDRAMFDAReF1FEREdEfmPwQ2dKRDCAzCdCfvV7mGwjELAHCxkoXFxERmXHYi8hWjmQA6yZaJj4AoC82lR/JkCYuIiKywOSHyBaMBlOPD0QrJ/8oy5xtqkdERJJi8kNkCyd31u3xsSAC+jOmekREJCkmP0S2UF5q23pERNRimPwQ2YKPxrb1iIioxTD5IbKF4KGmp7og1FNBAHw7muoREZGkmPwQ2YKLwvQ4O4C6CdAfxzGLud4PEZEDYPJDZCthY4EJnwK+AZblvoGmcq7zQ0TkELjIIZEthY0FeozmCs9ERA6MyQ+RrbkogJA/SR0FERHVg8NeREREJCvs+SEix8QNYomohTD5ISLHww1iiagFcdiLiBwLN4glohbG5IeIHAc3iCUiO2DyQ0SOgxvEEpEdMPkhIsfBDWKJyA6Y/BCR4+AGsURkB0x+iMhxcINYIrIDJj9E5Di4QSwR2QGTHyJyLNwglohaGBc5JCLHww1iiagFMfkhIsfEDWKJqIVw2IuIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK0x+iIiISFaY/BAREZGs8FF3IjkyGriGDhHJFpMfIrk5kgFkJgH6s9fLfANN20pw9WQikgFJh72Sk5MxcOBAKJVKqNVqxMbGoqCgwHz+woULmDZtGrp37w5PT0907twZL774InQ6XYPtxsXFQRAEi1dMTExLXw6R4zuSAaybaJn4AIC+2FR+JEOauIiI7EjS5Cc3Nxfx8fHYvXs3srKyUFNTg+joaFRUVAAAzp49i7Nnz+Ltt99Gfn4+0tLSkJmZicmTJzfadkxMDIqLi82vzz77rKUvh8ixGQ2mHh+IVk7+UZY521SPiKgVk3TYKzMz0+I4LS0NarUa+/fvx7BhwxAeHo4vv/zSfL5r165488038dRTT+HatWtwda0/fHd3d2i12haLncjpnNxZt8fHggjoz5jqcVsJImrFHOppr9rhLH9//wbr+Pr6Npj4AEBOTg7UajW6d++OqVOn4vz58/XWra6uhl6vt3gRtTrlpbatR0TkpBwm+TEajUhMTERERATCw8Ot1vn999+xcOFCTJkypcG2YmJi8OmnnyI7OxtLlixBbm4u7r//fhgM1rvzk5OToVKpzK+goKDbvh4ih+OjsW09IiInJYiiaG0CgN1NnToV33zzDbZv345OnTrVOa/X6zFy5Ej4+/sjIyMDbdq0aXLbv/76K7p27YotW7ZgxIgRdc5XV1ejurra4rOCgoLMvUxErYLRACwPN01utjrvRzA99ZV4mI+9E5FT0uv1UKlUjX5/O8Sj7gkJCdi0aRO+++47q4nP5cuXERMTA6VSifT09GYlPgBwxx13oH379jh+/LjV5Mfd3R3u7u7NjttgMKCmpqbZ7yOSTPSyPyY9A5YJkPDH+SXA1RoATf9z3aZNGygUTJaIyHlImvyIoohp06YhPT0dOTk5CAkJqVNHr9dj1KhRcHd3R0ZGBjw8PJr9Ob/99hvOnz+PgIAAW4QNURRRUlKCS5cu2aQ9IrtRhADRacCVS4Dx2vVyF1fA0w9QeAFFRc1u1s/PD1qtFoIg2CpSIqIWI2nyEx8fj7Vr12LDhg1QKpUoKSkBAKhUKnh6ekKv1yM6OhqVlZVYvXq1xWTkDh06mP+12aNHDyQnJ+Ohhx5CeXk5FixYgEceeQRarRaFhYWYNWsWQkNDMWrUKJvEXZv4qNVqeHl58S98cj6iCNRUAoYaQNEGaOMF3MKfY1EUUVlZibKyMgCw2T8wiIhakqTJT0pKCgAgMjLSojw1NRVxcXE4cOAA8vLyAAChoaEWdYqKitClSxcAQEFBgflJMYVCgUOHDmHVqlW4dOkSAgMDER0djYULF97S0NbNDAaDOfFp167dbbdHJBlPTxs1Y2qnrKwMarWaQ2BE5PAkH/ZqSGRkZKN1bm7H09MTmzdvvu3Y6lM7x8fLy6vFPoPI2dT+PtTU1DD5ISKH5zCPujsbDnURXcffByJyJkx+iIiISFaY/JDNxcXFITY21nwcGRmJxMTE22rTFm0QEREBTH5k5cbd7t3c3BAaGoo33ngD165da/zNt+Grr77CwoULm1Q3JycHgiDUWUagOW0QERE1xCEWOZQjg1HEnqILKLtcBbXSA4NC/KFwafl5EzExMUhNTUV1dTX+97//IT4+Hm3atMGcOXMs6l29ehVubm42+cyG9mqzZxtEREQAe34kkZlfjHuXbMXjH+/G9M8P4vGPd+PeJVuRmV/c4p9du9t9cHAwpk6diqioKGRkZJiHqt58800EBgaie/fuAIDTp09jwoQJ8PPzg7+/P8aNG4cTJ06Y2zMYDJgxYwb8/PzQrl07zJo1q84TejcPWVVXVyMpKQlBQUFwd3dHaGgo/vWvf+HEiRO47777AABt27aFIAiIi4uz2sbFixcxceJEtG3bFl5eXrj//vtx7Ngx8/m0tDT4+flh8+bN6NmzJ3x8fBATE4Pi4uv3OCcnB4MGDYK3tzf8/PwQERGBkydP2uhOExGRo2LyY2eZ+cWYuvoAinVVFuUluipMXX3ALgnQjTw9PXH16lUAQHZ2NgoKCpCVlYVNmzahpqYGo0aNglKpxPfff48dO3aYk4ja9yxbtgxpaWn497//je3bt+PChQtIT09v8DMnTpyIzz77DO+++y6OHj2KDz/8ED4+PggKCsKXX34JwLR2U3FxMVasWGG1jbi4OOzbtw8ZGRnYtWsXRFHEAw88YLHdSGVlJd5++2385z//wXfffYdTp05h5syZAIBr164hNjYWw4cPx6FDh7Br1y5MmTKFTy0REckAh73syGAUsWDjEatbSoow7a60YOMRjAzTtvgQmCiKyM7OxubNmzFt2jScO3cO3t7e+OSTT8zDXatXr4bRaMQnn3xiTgpSU1Ph5+eHnJwcREdHY/ny5ZgzZw4efvhhAMDKlSsbXGfpl19+wbp165CVlYWoqCgApr3XatUOb6nVavj5+Vlt49ixY8jIyMCOHTswdOhQAMCaNWsQFBSE9evXY/z48QBMa86sXLkSXbt2BWDaQ+6NN94AYNo2RafT4cEHHzSf79mzZ/NvJBEROR32/NjRnqILdXp8biQCKNZVYU/RhRaLYdOmTfDx8YGHhwfuv/9+PProo5g/fz4AoFevXhbzfH788UccP34cSqUSPj4+8PHxgb+/P6qqqlBYWAidTofi4mIMHjzY/B5XV1cMGDCg3s8/ePAgFAoFhg8ffsvXcPToUbi6ulp8brt27dC9e3ccPXrUXObl5WVObADT1gu12zD4+/sjLi4Oo0aNwpgxY7BixQqLITEiImq92PNjR2WX6098bqXerbjvvvuQkpICNzc3BAYGwtX1+h8Bb29vi7rl5eXo378/1qxZU6edDh063NLne9poS4WmaNOmjcWxIAgW85FSU1Px4osvIjMzE1988QVee+01ZGVl4Z577rFbjEREZH/s+bEjtbJpO9I3td6t8Pb2RmhoKDp37myR+FjTr18/HDt2DGq1GqGhoRYvlUoFlUqFgIAA8/5rgGkuzf79++tts1evXjAajcjNzbV6vrbnyWAw1NtGz549ce3aNYvPPX/+PAoKChAWFtbgNd2sb9++mDNnDnbu3Inw8HCsXbu2We8nIiLnw+THjgaF+CNA5YH6ZvMIAAJUpsfeHcGTTz6J9u3bY9y4cfj+++9RVFSEnJwcvPjii/jtt98AANOnT8fixYuxfv16/Pzzz3jhhRfqrNFzoy5dumDSpEl49tlnsX79enOb69atAwAEBwdDEARs2rQJ586dQ3l5eZ02unXrhnHjxuG5557D9u3b8eOPP+Kpp55Cx44dMW7cuCZdW1FREebMmYNdu3bh5MmT+Pbbb3Hs2DHO+yEikgEmP3akcBEwb4ypZ+LmBKj2eN6YMLus99MUXl5e+O6779C5c2c8/PDD6NmzJyZPnoyqqir4+voCAF5++WU8/fTTmDRpEoYMGQKlUomHHnqowXZTUlLwl7/8BS+88AJ69OiB5557DhUVFQCAjh07YsGCBZg9ezY0Gg0SEhKstpGamor+/fvjwQcfxJAhQyCKIv73v//VGepq6Np+/vlnPPLII7jzzjsxZcoUxMfH4/nnn2/GHSIiImckiE3ZNl1m9Ho9VCoVdDqd+Uu+VlVVFYqKihASEgIPj1sbnsrML8aCjUcsJj8HqDwwb0wYYsIDbit2IinY4veCiOh2NfT9fSNOeJZATHgARoZpJVnhmYiISO6Y/EhE4SJgSNd2UodBREQkO5zzQ0RERLLC5IeIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK0x+iIiISFaY/BAREZGsMPkhhzd//nzcfffdUoeByMhIJCYmSh0GERHdJiY/MlJSUoLp06cjNDQUHh4e0Gg0iIiIQEpKCiorK6UO75bl5ORAEIQGN1SVsj0iInIsXOFZKkYDcHInUF4K+GiA4KGAi6LFPu7XX39FREQE/Pz88NZbb6FXr15wd3fH4cOH8dFHH6Fjx44YO3as1ffW1NQ0ecNQR3b16lW4ublJHQYREUmMPT9SOJIBLA8HVj0IfDnZ9N/l4abyFvLCCy/A1dUV+/btw4QJE9CzZ0/ccccdGDduHL7++muMGTPGXFcQBKSkpGDs2LHw9vbGm2++CcC0G3vXrl3h5uaG7t274z//+Y/5PSdOnIAgCDh48KC57NKlSxAEATk5OQCu96hkZ2djwIAB8PLywtChQ1FQUGAR6+LFi6HRaKBUKs27yNfnxIkTuO+++wAAbdu2hSAIiIuLA2AapkpISEBiYiLat2+PUaNGNRpnQ+0BgNFoxKxZs+Dv7w+tVov58+c39UdAREQOgsmPvR3JANZNBPRnLcv1xabyFkiAzp8/j2+//Rbx8fHw9va2WkcQLDdVnT9/Ph566CEcPnwYzz77LNLT0zF9+nS8/PLLyM/Px/PPP49nnnkG27Zta3Y8f/vb37Bs2TLs27cPrq6uePbZZ83n1q1bh/nz5+Ott97Cvn37EBAQgA8++KDetoKCgvDll18CAAoKClBcXIwVK1aYz69atQpubm7YsWMHVq5c2WhsTWnP29sbeXl5WLp0Kd544w1kZWU1+x4QEZF0OOxlT0YDkJkEQLRyUgQgAJmzgR6jbToEdvz4cYiiiO7du1uUt2/f3tyrEh8fjyVLlpjPPfHEE3jmmWfMx48//jji4uLwwgsvAABmzJiB3bt34+233zb3lDTVm2++ieHDhwMAZs+ejdGjR6OqqgoeHh5Yvnw5Jk+ejMmTJwMAFi1ahC1bttTb+6NQKODv7w8AUKvV8PPzszjfrVs3LF261Hx84sSJBmNrrL3evXtj3rx55rb/+c9/Ijs7GyNHjmzStRMRkfTY82NPJ3fW7fGxIAL6M6Z6drBnzx4cPHgQd911F6qrqy3ODRgwwOL46NGjiIiIsCiLiIjA0aNHm/25vXv3Nv//gIAAAEBZWZn5cwYPHmxRf8iQIc3+jFr9+/e/5fdac2PsgCn+2tiJiMg5sOfHnspLbVuviUJDQyEIQp25NXfccQcAwNPTs8576hseq4+LiymPFsXrvVo1NTVW6944ebp2uM1oNDbr85rq5utoTpzW3DzxWxCEFoudiIhaBnt+7MlHY9t6TdSuXTuMHDkS//znP1FRUXFLbfTs2RM7duywKNuxYwfCwsIAAB06dAAAFBcXm8/fOKm4OZ+Tl5dnUbZ79+4G31P7BJfBYGi0/abE2Zz2iIjI+bDnx56ChwK+gabJzVbn/Qim88FDbf7RH3zwASIiIjBgwADMnz8fvXv3houLC/bu3Yuff/650eGhV155BRMmTEDfvn0RFRWFjRs34quvvsKWLVsAmHqP7rnnHixevBghISEoKyvDa6+91uw4p0+fjri4OAwYMAARERFYs2YNfvrpJ3MvlTXBwcEQBAGbNm3CAw88AE9PT/j4+Fit25Q4m9MeERE5H/b82JOLAoipnVQs3HTyj+OYxS2y3k/Xrl3xww8/ICoqCnPmzEGfPn0wYMAAvPfee5g5cyYWLlzY4PtjY2OxYsUKvP3227jrrrvw4YcfIjU1FZGRkeY6//73v3Ht2jX0798fiYmJWLRoUbPjfPTRRzF37lzMmjUL/fv3x8mTJzF16tQG39OxY0csWLAAs2fPhkajQUJCQoP1G4uzue0REZFzEcQbJz8QAECv10OlUkGn08HX19fiXFVVFYqKihASEgIPD49b+4AjGaanvm6c/Ozb0ZT4hFlfaJDIkdnk94KI6DY19P19Iw57SSFsrOlxdjuu8ExEREQmTH6k4qIAQv4kdRRERESywzk/REREJCtMfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx9yOiUlJRg5ciS8vb3h5+cndTg2k5OTA0EQcOnSJUnjmD9/Pu6++25JYyAiakmSJj/JyckYOHAglEol1Go1YmNjUVBQYD5/4cIFTJs2Dd27d4enpyc6d+6MF198ETqdrsF2RVHE66+/joCAAHh6eiIqKgrHjh1r6ctxaHFxcRAEAX/961/rnIuPj4cgCIiLi7N/YLfgnXfeQXFxMQ4ePIhffvlF6nDsShAErF+/3mHbIyJyBpImP7m5uYiPj8fu3buRlZWFmpoaREdHo6KiAgBw9uxZnD17Fm+//Tby8/ORlpaGzMxMTJ48ucF2ly5dinfffRcrV65EXl4evL29MWrUKFRVVdnjsprEYDRgb8le/O/X/2FvyV4YjIYW/8ygoCB8/vnnuHLlirmsqqoKa9euRefOnVv8822lsLAQ/fv3R7du3aBWq23W7tWrV23WlpRay3UQEbUY0YGUlZWJAMTc3Nx666xbt050c3MTa2pqrJ43Go2iVqsV//73v5vLLl26JLq7u4ufffaZ1fdUVVWJOp3O/Dp9+rQIQNTpdHXqXrlyRTxy5Ih45cqVZl7ddVknssQR60aI4Wnh5teIdSPErBNZt9xmYyZNmiSOGzdODA8PF1evXm0uX7Nmjdi7d29x3Lhx4qRJk8zlBoNBfOutt8QuXbqIHh4eYu/evcX//ve/5vPXrl0Tn332WfP5O++8U1y+fLnVz/z73/8uarVa0d/fX3zhhRfEq1evNhjrBx98IN5xxx1imzZtxDvvvFP89NNPzeeCg4NFAObXjTHfqKamRpw2bZqoUqlEf39/cdasWeLEiRPFcePGmesMHz5cjI+PF6dPny62a9dOjIyMFEVRFHNycsSBAweKbm5uolarFZOSkiz+vAUHB4vvvPOOxef16dNHnDdvnvkYgPjxxx+LsbGxoqenpxgaGipu2LDB4j1ff/212K1bN9HDw0OMjIwUU1NTRQDixYsXrV7TzdceHBwsiqIozps3T+zTp4/48ccfi126dBEFQWhSnI219+mnn4rBwcGir6+v+Oijj4p6vd5qXKJom98LIqLbpdPp6v3+vpFDzfmpHc7y9/dvsI6vry9cXa1vS1ZUVISSkhJERUWZy1QqFQYPHoxdu3ZZfU9ycjJUKpX5FRQUdBtX0bAtJ7dgRs4MlFaWWpSXVZZhRs4MbDm5pcU+GwCeffZZpKammo///e9/45lnnqlTLzk5GZ9++ilWrlyJn376CS+99BKeeuop5ObmAgCMRiM6deqE//73vzhy5Ahef/11vPrqq1i3bp1FO9u2bUNhYSG2bduGVatWIS0tDWlpafXGl56ejunTp+Pll19Gfn4+nn/+eTzzzDPYtm0bAGDv3r2IiYnBhAkTUFxcjBUrVlhtZ8mSJVizZg1SU1OxY8cO6PV6q8M7q1atgpubG3bs2IGVK1fizJkzeOCBBzBw4ED8+OOPSElJwb/+9S8sWrSosVtbx4IFCzBhwgQcOnQIDzzwAJ588klcuHABAHD69Gk8/PDDGDNmDA4ePIj/+7//w+zZsxtsb+/evQCA1NRUFBcXm48B4Pjx4/jyyy/x1Vdf4eDBg02Kr6H2CgsLsX79emzatAmbNm1Cbm4uFi9e3JzLJ0dhNABF3wOH/5/pv3boZSZyeHZKxhplMBjE0aNHixEREfXWOXfunNi5c2fx1VdfrbfOjh07RADi2bNnLcrHjx8vTpgwwep77NXzc81wrU6Pz42vXmm9xKh1UeI1w7Vmt92Y2l6YsrIy0d3dXTxx4oR44sQJ0cPDQzx37pxFz09VVZXo5eUl7ty506KNyZMni48//ni9nxEfHy8+8sgjFp8ZHBwsXrt2/XrGjx8vPvroo/W2MXToUPG5556zKBs/frz4wAMPmI9v7qWyRqPRWPT+Xbt2TezcuXOdnp++fftavO/VV18Vu3fvLhqNRnPZ+++/L/r4+IgGg0EUxab3/Lz22mvm4/LychGA+M0334iiKIpz5swRw8LCLNpISkpqsOentt309HSLsnnz5olt2rQRy8rKLMqbGqe19ry8vCx6el555RVx8ODB9cbFnh8H9dMGUVzWQxTn+V5/LethKidqhZra8+Mwu7rHx8cjPz8f27dvt3per9dj9OjRCAsLw/z582362e7u7nB3d7dpm9YcKDtQp8fnRiJElFSW4EDZAQzUDmyRGDp06IDRo0cjLS0Noihi9OjRaN++vUWd48ePo7KyEiNHjrQov3r1Kvr27Ws+fv/99/Hvf/8bp06dwpUrV3D16tU6TwndddddUCgU5uOAgAAcPny43viOHj2KKVOmWJRFRETU28NjjU6nQ2lpKQYNGmQuUygU6N+/P4xGo0Xd/v371/n8IUOGQBAEi88vLy/Hb7/91qy5Ub179zb/f29vb/j6+qKsrMz8OYMHD7aoP2TIkCa3fbPg4GB06NDhlt9/sy5dukCpVJqPAwICzLGTkziSAaybCNOo5g30xabyCZ8CYWMlCY1Iag6R/CQkJGDTpk347rvv0KlTpzrnL1++jJiYGCiVSqSnp6NNmzb1tqXVagEApaWlCAgIMJeXlpZK/vjuucpzNq13q5599lkkJCQAMCUwNysvLwcAfP311+jYsaPFudok8fPPP8fMmTOxbNkyDBkyBEqlEn//+9+Rl5dnUf/mn5UgCHUSECl5e3s3+z0uLi4QRcsvlJqamjr17Hnt1q6jqXFa4+g/N2qE0QBkJqFO4gP8USYAmbOBHqMBF4WVOkStm6RzfkRRREJCAtLT07F161aEhITUqaPX6xEdHQ03NzdkZGTAw8OjwTZDQkKg1WqRnZ1t0UZeXt5t/cvaFjp4Ne1f5k2td6tiYmJw9epV1NTUYNSoUXXOh4WFwd3dHadOnUJoaKjFq3Y+1I4dOzB06FC88MIL6Nu3L0JDQ1FYWHjbsfXs2RM7duywKNuxYwfCwsKa3IZKpYJGo7GYw2IwGHDgwIEmff6uXbsskoYdO3ZAqVSaE/MOHTqguLjYfF6v16OoqKjJ8dV+zp49eyzKdu/e3ej72rRpA4OhaXM2mhJnc9ojJ3JyJ6A/20AFEdCfMdUjkiFJk5/4+HisXr0aa9euhVKpRElJCUpKSsyPYtcmPhUVFfjXv/4FvV5vrnPjX9g9evRAeno6ANO/UBMTE7Fo0SJkZGTg8OHDmDhxIgIDAxEbGyvFZZr1U/eDxksDAYLV8wIEaL206Kfu16JxKBQKHD16FEeOHLEYkqqlVCoxc+ZMvPTSS1i1ahUKCwtx4MABvPfee1i1ahUAoFu3bti3bx82b96MX375BXPnzrVINm7VK6+8grS0NKSkpODYsWP4xz/+ga+++gozZ85sVjvTpk1DcnIyNmzYgIKCAkyfPh0XL160GM6y5oUXXsDp06cxbdo0/Pzzz9iwYQPmzZuHGTNmwMXF9Ovy5z//Gf/5z3/w/fff4/Dhw5g0aZLV+9iQv/71rzh27BheeeUVFBQUYO3atQ1OBK/VpUsXZGdno6SkBBcvXmywblPibE575ETK6x9ev6V6RK2MpMlPSkoKdDodIiMjERAQYH598cUXAIADBw4gLy8Phw8fRmhoqEWd06dPm9spKCiwWPhw1qxZmDZtGqZMmYKBAweivLwcmZmZjfYatTSFiwKzB5me6Lk5Aao9ThqUBIUduqF9fX3h6+tb7/mFCxdi7ty5SE5ORs+ePRETE4Ovv/7a3Dv3/PPP4+GHH8ajjz6KwYMH4/z583jhhRduO67Y2FisWLECb7/9Nu666y58+OGHSE1NRWRkZLPaSUpKwuOPP46JEydiyJAh8PHxwahRoxr9M9CxY0f873//w549e9CnTx/89a9/xeTJk/Haa6+Z68yZMwfDhw/Hgw8+iNGjRyM2NhZdu3ZtVnydO3fGl19+ifXr16NPnz5YuXIl3nrrrUbft2zZMmRlZSEoKMhi/pU1TYmzOe2RE/HR2LYeUSsjiDdPCiDo9XqoVCrzY/U3qqqqQlFREUJCQm45mdpycgsW71lsMflZ66VF0qAkRAVHNfBOulVGoxE9e/bEhAkTsHDhQqnDaXVs8XtBNmQ0AMvDTZObrc77EQDfQCDxMOf8UKvS0Pf3jRxiwrPcRAVH4b6g+3Cg7ADOVZ5DB68O6KfuZ5ceH7k4efIkvv32WwwfPhzV1dX45z//iaKiIjzxxBNSh0bU8lwUQMySP572EmCZAP3R6xyzmIkPyRaTH4koXBQt9jg7mZ50SktLw8yZMyGKIsLDw7Flyxb07NlT6tCI7CNsrOlx9swky8nPvoGmxIePuZOMMfmhVikoKKjOU2NEshM21vQ4+8mdpsnNPhogeCh7fEj2mPwQEbVmLgog5E9SR0HkUBxqby9nwnniRNfx94GInAmTn2aqXfm2srJS4kiIHEft70NDq68TETkKDns1k0KhgJ+fn3mfIy8vr0YXziNqrURRRGVlJcrKyuDn59fsxR6JiKTA5OcW1O4fxo0eiUz8/PzMvxdERI6Oyc8tEAQBAQEBUKvVTd4okqi1atOmDXt8iMipMPm5DQqFgn/pExERORlOeCYiIiJZYfJDREREssLkh4iIiGSFc36sqF2wTa/XSxwJERERNVXt93ZjC68y+bHi8uXLAEz7QxEREZFzuXz5MlQqVb3nBZHr0tdhNBpx9uxZKJVKmy5gqNfrERQUhNOnT8PX19dm7coN76Nt8D7aBu+jbfA+2obc76Moirh8+TICAwPh4lL/zB72/Fjh4uKCTp06tVj7vr6+svxDaWu8j7bB+2gbvI+2wftoG3K+jw31+NTihGciIiKSFSY/REREJCtMfuzI3d0d8+bNg7u7u9ShODXeR9vgfbQN3kfb4H20Dd7HpuGEZyIiIpIV9vwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJjx29//776NKlCzw8PDB48GDs2bNH6pCcSnJyMgYOHAilUgm1Wo3Y2FgUFBRIHZbTW7x4MQRBQGJiotShOJ0zZ87gqaeeQrt27eDp6YlevXph3759UoflVAwGA+bOnYuQkBB4enqia9euWLhwYaN7M8ndd999hzFjxiAwMBCCIGD9+vUW50VRxOuvv46AgAB4enoiKioKx44dkyZYB8Tkx06++OILzJgxA/PmzcOBAwfQp08fjBo1CmVlZVKH5jRyc3MRHx+P3bt3IysrCzU1NYiOjkZFRYXUoTmtvXv34sMPP0Tv3r2lDsXpXLx4EREREWjTpg2++eYbHDlyBMuWLUPbtm2lDs2pLFmyBCkpKfjnP/+Jo0ePYsmSJVi6dCnee+89qUNzaBUVFejTpw/ef/99q+eXLl2Kd999FytXrkReXh68vb0xatQoVFVV2TlSByWSXQwaNEiMj483HxsMBjEwMFBMTk6WMCrnVlZWJgIQc3NzpQ7FKV2+fFns1q2bmJWVJQ4fPlycPn261CE5laSkJPHee++VOgynN3r0aPHZZ5+1KHv44YfFJ598UqKInA8AMT093XxsNBpFrVYr/v3vfzeXXbp0SXR3dxc/++wzCSJ0POz5sYOrV69i//79iIqKMpe5uLggKioKu3btkjAy56bT6QAA/v7+EkfinOLj4zF69GiLP5fUdBkZGRgwYADGjx8PtVqNvn374uOPP5Y6LKczdOhQZGdn45dffgEA/Pjjj9i+fTvuv/9+iSNzXkVFRSgpKbH43VapVBg8eDC/c/7AjU3t4Pfff4fBYIBGo7Eo12g0+PnnnyWKyrkZjUYkJiYiIiIC4eHhUofjdD7//HMcOHAAe/fulToUp/Xrr78iJSUFM2bMwKuvvoq9e/fixRdfhJubGyZNmiR1eE5j9uzZ0Ov16NGjBxQKBQwGA9588008+eSTUofmtEpKSgDA6ndO7Tm5Y/JDTik+Ph75+fnYvn271KE4ndOnT2P69OnIysqCh4eH1OE4LaPRiAEDBuCtt94CAPTt2xf5+flYuXIlk59mWLduHdasWYO1a9firrvuwsGDB5GYmIjAwEDeR2oxHPayg/bt20OhUKC0tNSivLS0FFqtVqKonFdCQgI2bdqEbdu2oVOnTlKH43T279+PsrIy9OvXD66urnB1dUVubi7effdduLq6wmAwSB2iUwgICEBYWJhFWc+ePXHq1CmJInJOr7zyCmbPno3HHnsMvXr1wtNPP42XXnoJycnJUofmtGq/V/idUz8mP3bg5uaG/v37Izs721xmNBqRnZ2NIUOGSBiZcxFFEQkJCUhPT8fWrVsREhIidUhOacSIETh8+DAOHjxofg0YMABPPvkkDh48CIVCIXWITiEiIqLOUgu//PILgoODJYrIOVVWVsLFxfKrSKFQwGg0ShSR8wsJCYFWq7X4ztHr9cjLy+N3zh847GUnM2bMwKRJkzBgwAAMGjQIy5cvR0VFBZ555hmpQ3Ma8fHxWLt2LTZs2AClUmkeu1apVPD09JQ4OuehVCrrzJPy9vZGu3btOH+qGV566SUMHToUb731FiZMmIA9e/bgo48+wkcffSR1aE5lzJgxePPNN9G5c2fcdddd+OGHH/CPf/wDzz77rNShObTy8nIcP37cfFxUVISDBw/C398fnTt3RmJiIhYtWoRu3bohJCQEc+fORWBgIGJjY6UL2pFI/biZnLz33nti586dRTc3N3HQoEHi7t27pQ7JqQCw+kpNTZU6NKfHR91vzcaNG8Xw8HDR3d1d7NGjh/jRRx9JHZLT0ev14vTp08XOnTuLHh4e4h133CH+7W9/E6urq6UOzaFt27bN6t+HkyZNEkXR9Lj73LlzRY1GI7q7u4sjRowQCwoKpA3agQiiyGU0iYiISD4454eIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK0x+iIiISFaY/BAREZGsMPkhIiIiWWHyQ0RERLLC5IeIZCcuLo7L/BPJGJMfImoRcXFxEAShzismJkbq0LBixQqkpaVJHQYAQBAErF+/XuowiGSFG5sSUYuJiYlBamqqRZm7u7tE0QAGgwGCIEClUkkWAxFJjz0/RNRi3N3dodVqLV5t27ZFTk4O3Nzc8P3335vrLl26FGq1GqWlpQCAyMhIJCQkICEhASqVCu3bt8fcuXNx43aE1dXVmDlzJjp27Ahvb28MHjwYOTk55vNpaWnw8/NDRkYGwsLC4O7ujlOnTtUZ9oqMjMS0adOQmJiItm3bQqPR4OOPP0ZFRQWeeeYZKJVKhIaG4ptvvrG4vvz8fNx///3w8fGBRqPB008/jd9//92i3RdffBGzZs2Cv78/tFot5s+fbz7fpUsXAMBDDz0EQRDMx0TUspj8EJHdRUZGIjExEU8//TR0Oh1++OEHzJ07F5988gk0Go253qpVq+Dq6oo9e/ZgxYoV+Mc//oFPPvnEfD4hIQG7du3C559/jkOHDmH8+PGIiYnBsWPHzHUqKyuxZMkSfPLJJ/jpp5+gVqutxrRq1Sq0b98ee/bswbRp0zB16lSMHz8eQ4cOxYEDBxAdHY2nn34alZWVAIBLly7hz3/+M/r27Yt9+/YhMzMTpaWlmDBhQp12vb29kZeXh6VLl+KNN95AVlYWAGDv3r0AgNTUVBQXF5uPiaiFSbyrPBG1UpMmTRIVCoXo7e1t8XrzzTdFURTF6upq8e677xYnTJgghoWFic8995zF+4cPHy727NlTNBqN5rKkpCSxZ8+eoiiK4smTJ0WFQiGeOXPG4n0jRowQ58yZI4qiKKampooAxIMHD9aJbdy4cRafde+995qPr127Jnp7e4tPP/20uay4uFgEIO7atUsURVFcuHChGB0dbdHu6dOnRQBiQUGB1XZFURQHDhwoJiUlmY8BiOnp6fXcRSJqCZzzQ0Qt5r777kNKSopFmb+/PwDAzc0Na9asQe/evREcHIx33nmnzvvvueceCIJgPh4yZAiWLVsGg8GAw4cPw2Aw4M4777R4T3V1Ndq1a2c+dnNzQ+/evRuN9cY6CoUC7dq1Q69evcxltT1SZWVlAIAff/wR27Ztg4+PT522CgsLzXHd/NkBAQHmNohIGkx+iKjFeHt7IzQ0tN7zO3fuBABcuHABFy5cgLe3d5PbLi8vh0KhwP79+6FQKCzO3ZiQeHp6WiRQ9WnTpo3FsSAIFmW1bRiNRvPnjxkzBkuWLKnTVkBAQIPt1rZBRNJg8kNEkigsLMRLL72Ejz/+GF988QUmTZqELVu2wMXl+lTEvLw8i/fs3r0b3bp1g0KhQN++fWEwGFBWVoY//elP9g4f/fr1w5dffokuXbrA1fXW/ypt06YNDAaDDSMjosZwwjMRtZjq6mqUlJRYvH7//XcYDAY89dRTGDVqFJ555hmkpqbi0KFDWLZsmcX7T506hRkzZqCgoACfffYZ3nvvPUyfPh0AcOedd+LJJ5/ExIkT8dVXX6GoqAh79uxBcnIyvv766xa/tvj4eFy4cAGPP/449u7di8LCQmzevBnPPPNMs5KZLl26IDs7GyUlJbh48WILRkxEtdjzQ0QtJjMz02IICAC6d++OJ554AidPnsSmTZsAmIaJPvroIzz++OOIjo5Gnz59AAATJ07ElStXMGjQICgUCkyfPh1Tpkwxt5WamopFixbh5ZdfxpkzZ9C+fXvcc889ePDBB1v82gIDA7Fjxw4kJSUhOjoa1dXVCA4ORkxMjEXvVWOWLVuGGTNm4OOPP0bHjh1x4sSJlguaiAAAgijesGgGEZGDiIyMxN13343ly5dLHQoRtTIc9iIiIiJZYfJDREREssJhLyIiIpIV9vwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhW/j8xLgdl6+NuxAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2133,13 +2439,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "The MSE of LSTM forecasts is 1.786\n", - "The MSE of baseline ridge forecasts is 1.795\n" + "The MSE of LSTM forecasts is 1.276\n", + "The MSE of baseline ridge forecasts is 1.795\n", + "The MSE of mean of training data is 97.538\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXVElEQVR4nO3de1xUdf4/8NdhkPtN1JkBRSTxhmiJiqFluCFgecEst9KU7JeugUroV7SbUhrqmqu2G1YmtKuWboWRWxheQPGCt0hNJSRETRDzMqMQiDPn9wcxOTIg4DBnhnk9H4956DnnM595nwGd93yugiiKIoiIiIisiI3UARARERGZGhMgIiIisjpMgIiIiMjqMAEiIiIiq8MEiIiIiKwOEyAiIiKyOkyAiIiIyOrYSh2AOdJqtbh48SJcXV0hCILU4RAREVEjiKKIGzduwNvbGzY2DbfxMAEy4OLFi/Dx8ZE6DCIiImqG8+fPo1OnTg2WYQJkgKurK4CaN9DNzU3iaIiIiKgx1Go1fHx8dJ/jDWECZEBtt5ebmxsTICIiIgvTmOErHARNREREVocJEBEREVkdJkBERERkdZgAERERkdVhAkRERERWhwkQERERWR0mQERERGR1mAARERGR1WECRERERFaHK0GbklYDFO8Dbl4CXBSA72DARiZ1VERERFZH0hagpKQkDBw4EK6urpDL5YiKikJ+fr5emdDQUAiCoPf429/+1mC9oijirbfegpeXFxwdHREWFoaCgoKWvJV7O5kOrAwEPh0JfPlSzZ8rA2vOExERkUlJmgBlZ2cjJiYGBw4cQGZmJqqrqxEeHo7y8nK9ci+//DJKSkp0j2XLljVY77Jly7B69WqsWbMGubm5cHZ2RkREBCorK1vydup3Mh3YPAlQX9Q/ry6pOc8kiIiIyKQk7QLLyMjQO05NTYVcLseRI0cwdOhQ3XknJycolcpG1SmKIlauXIk33ngDY8aMAQD8+9//hkKhwJYtW/Dss88a7wYaQ6sBMhIAiAYuigAEIGMe0PNJdocRERGZiFkNglapVAAAT09PvfMbNmxA+/btERgYiPnz56OioqLeOoqKilBaWoqwsDDdOXd3dwwaNAj79+83+Jyqqiqo1Wq9h9EU76vb8qNHBNS/1pQjIiIikzCbQdBarRZxcXEYMmQIAgMDdeeff/55+Pr6wtvbG8eOHUNCQgLy8/Px1VdfGayntLQUAKBQKPTOKxQK3bW7JSUlITEx0Uh3cpebl4xbjoiIiO6b2SRAMTExOHHiBHJycvTOT506Vff3Pn36wMvLC48//jgKCwvRtWtXo7z2/PnzER8frztWq9Xw8fExSt1wUdy7TFPKERER0X0ziy6w2NhYbN26Fbt27UKnTp0aLDto0CAAwJkzZwxerx0rdOmSfovKpUuX6h1HZG9vDzc3N72H0fgOBty8AQj1FBAAt4415YiIiMgkJE2ARFFEbGws0tLSsHPnTvj5+d3zOXl5eQAALy8vg9f9/PygVCqxY8cO3Tm1Wo3c3FyEhIQYJe4msZEBkUv/OLg7CfrjOHIJB0ATERGZkKQJUExMDNavX4+NGzfC1dUVpaWlKC0txe+//w4AKCwsxDvvvIMjR47g7NmzSE9Px6RJkzB06FD07dtXV0/Pnj2RlpYGABAEAXFxcVi0aBHS09Nx/PhxTJo0Cd7e3oiKipLiNoGA0cD4fwNudyVtbt415wNGSxMXERGRlZJ0DFBycjKAmsUO75SSkoLo6GjY2dlh+/btWLlyJcrLy+Hj44Nx48bhjTfe0Cufn5+vm0EGAHPnzkV5eTmmTp2K69ev45FHHkFGRgYcHBxa/J7qFTC6Zqo7V4ImIiKSnCCKoqEFaqyaWq2Gu7s7VCqVcccDERERUYtpyue3WQyCJiIiIjIlJkBERERkdZgAERERkdVhAkRERERWhwkQERERWR0mQERERGR1mAARERGR1WECRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVocJEBEREVkdJkBERERkdZgAERERkdVhAkRERERWhwkQERERWR0mQERERGR1mAARERGR1WECRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVocJEBEREVkdJkBERERkdZgAERERkdVhAkRERERWhwkQERERWR0mQERERGR1mAARERGR1bGVOgAyM1oNULwPuHkJcFEAvoMBG5nUURERERkVEyD608l0ICMBUF/885ybNxC5FAgYLV1cRERERsYuMKpxMh3YPEk/+QEAdUnN+ZPp0sRFRETUApgAUU23V0YCANHAxT/OZcyrKUdERNQKSJoAJSUlYeDAgXB1dYVcLkdUVBTy8/MNlhVFESNGjIAgCNiyZUuD9UZHR0MQBL1HZGRkC9xBK1G8r27Ljx4RUP9aU46IiKgVkDQBys7ORkxMDA4cOIDMzExUV1cjPDwc5eXldcquXLkSgiA0uu7IyEiUlJToHp999pkxQ29dbl4ybjkiIiIzJ+kg6IyMDL3j1NRUyOVyHDlyBEOHDtWdz8vLw3vvvYfDhw/Dy8urUXXb29tDqVQaNd5Wy0Vh3HJERERmzqzGAKlUKgCAp6en7lxFRQWef/55/Otf/2pSQpOVlQW5XI4ePXpg+vTpuHLlSr1lq6qqoFar9R5WxXdwzWwv1NfCJgBuHWvKERERNZdWAxTtAY5/UfOnhGNLzWYavFarRVxcHIYMGYLAwEDd+VdffRWDBw/GmDFjGl1XZGQknnrqKfj5+aGwsBCvvfYaRowYgf3790Mmq7umTVJSEhITE41yHxbJRlYz1X3zJNQkQXcOhv4jKYpcwvWAiIio+cxsqRVBFEVDU39Mbvr06fjuu++Qk5ODTp06AQDS09Mxe/Zs/PDDD3BxcQEACIKAtLQ0REVFNbruX375BV27dsX27dvx+OOP17leVVWFqqoq3bFarYaPjw9UKhXc3Nzu78YsicFfzo41yQ/XASIiouaqXWqlzmzjP75kj/+3UT5n1Go13N3dG/X5bRYtQLGxsdi6dSt2796tS34AYOfOnSgsLISHh4de+XHjxuHRRx9FVlZWo+p/4IEH0L59e5w5c8ZgAmRvbw97e/v7uYXWIWA00PNJrgRNRETGc8+lVoSapVZ6PmnSzxtJEyBRFDFjxgykpaUhKysLfn5+etfnzZuH//f//p/euT59+uAf//gHRo0a1ejXuXDhAq5cudLoAdRWzUYG+D0qdRRERNRaNGWpFRN+/kiaAMXExGDjxo34+uuv4erqitLSUgCAu7s7HB0doVQqDQ587ty5s16y1LNnTyQlJWHs2LG4efMmEhMTMW7cOCiVShQWFmLu3Lnw9/dHRESEye6NiIiIYLZLrUg6Cyw5ORkqlQqhoaHw8vLSPTZt2tSkevLz83UzyGQyGY4dO4bRo0eje/fueOmll9C/f3/s2bOH3VxERESmZqZLrUjeBWaM59x5ztHREdu2bbuvuIiIiMhIapdaUZfA8Dggoea6iZdaMat1gIiIiKiVqV1qBUDd9eakW2qFCRARERG1rIDRNVPd3e6ajOTmbbQp8E1lFtPgiYiIqJUzs6VWmAARERGRaZjRUitMgIiI7odWYzbfaImo8ZgAERE1l5ntbUREjcdB0EREzVG7t9HdK9yqS2rOn0yXJi4iahQmQERETXXPvY1Qs7eRVmPKqIioCZgAERE1VVP2NiIis8QEiIioqcx0byMiajwmQERETWWmexsRUeMxASIiaqravY3qLOtfSwDcOpp8byMiajwmQERETWWmexsRUeMxASIiag4z3NuIiBqPCyESETWXme1tRESNxwSIiOh+mNHeRkTUeOwCIyIiIqvDBIiIiIisDhMgIiIisjpMgIiIiMjqMAEiIiIiq8MEiIiIiKwOEyAiIiKyOkyAiIiIyOowASIiIiKrwwSIiIiIrA4TICIiIrI6TICIiIjI6jABIiIiIqvDBIiIiIisDhMgIiIisjpMgIiIiMjqMAEiIiIiq8MEiIiIiKyOpAlQUlISBg4cCFdXV8jlckRFRSE/P99gWVEUMWLECAiCgC1btjRYryiKeOutt+Dl5QVHR0eEhYWhoKCgBe6AiIiILJGkCVB2djZiYmJw4MABZGZmorq6GuHh4SgvL69TduXKlRAEoVH1Llu2DKtXr8aaNWuQm5sLZ2dnREREoLKy0ti3QERERBZIEEVRlDqIWpcvX4ZcLkd2djaGDh2qO5+Xl4eRI0fi8OHD8PLyQlpaGqKiogzWIYoivL29MXv2bMyZMwcAoFKpoFAokJqaimefffaecajVari7u0OlUsHNzc0o90ZEREQtqymf32Y1BkilUgEAPD09decqKirw/PPP41//+heUSuU96ygqKkJpaSnCwsJ059zd3TFo0CDs37/f4HOqqqqgVqv1HkRERNR6mU0CpNVqERcXhyFDhiAwMFB3/tVXX8XgwYMxZsyYRtVTWloKAFAoFHrnFQqF7trdkpKS4O7urnv4+Pg08y6IiIjIEthKHUCtmJgYnDhxAjk5Obpz6enp2LlzJ3744YcWfe358+cjPj5ed6xWq5kEERERtWJm0QIUGxuLrVu3YteuXejUqZPu/M6dO1FYWAgPDw/Y2trC1rYmXxs3bhxCQ0MN1lXbTXbp0iW985cuXaq3C83e3h5ubm56DyIiImq9JE2ARFFEbGws0tLSsHPnTvj5+eldnzdvHo4dO4a8vDzdAwD+8Y9/ICUlxWCdfn5+UCqV2LFjh+6cWq1Gbm4uQkJCWuxeiIiIyHJI2gUWExODjRs34uuvv4arq6tujI67uzscHR2hVCoNttp07txZL1nq2bMnkpKSMHbsWAiCgLi4OCxatAjdunWDn58f3nzzTXh7e9c7c4yIiIisi6QJUHJyMgDU6c5KSUlBdHR0o+vJz8/XzSADgLlz56K8vBxTp07F9evX8cgjjyAjIwMODg7GCJuIiIgsnFmtA2QuuA4QERGR5bHYdYCIiIiITIEJEBEREVkdJkBERERkdZgAERERkdVhAkRERERWhwkQERERWR0mQERERGR1mAARERGR1WECRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVocJEBEREVkdJkBERERkdZgAERERkdVhAkRERERWhwkQERERWR0mQERERGR1mAARERGR1WECRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVsdW6gCIiIig1QDF+4CblwAXBeA7GLCRSR0VtWJMgIiISFon04GMBEB98c9zbt5A5FIgYLR0cVGrxi4wIiKSzsl0YPMk/eQHANQlNedPpksTF7V6TICIiEgaWk1Nyw9EAxf/OJcxr6Yc3ZtWAxTtAY5/UfMn37cGsQuMiIikUbyvbsuPHhFQ/1pTzu9Rk4VlkdiN2GRsASIiImncvGTcctaK3YjNwgSILA+beYlaBxeFcctZI3YjNhu7wMiysJmXqPXwHVzz71ddAsMf4ELNdd/Bpo7McrAbsdnYAkSWg828RK2LjazmywsAQLjr4h/HkUu4HlBD2I3YbEyAyDKwmZeodQoYDYz/N+DmpX/ezbvmPFt2G8ZuxGaTNAFKSkrCwIED4erqCrlcjqioKOTn5+uVmTZtGrp27QpHR0d06NABY8aMwenTpxusNzo6GoIg6D0iIyNb8laopTWlmZeILEvAaCDuBDB5KzDuk5o/444z+WmM2m7EOi1otQTArSO7EQ2QNAHKzs5GTEwMDhw4gMzMTFRXVyM8PBzl5eW6Mv3790dKSgpOnTqFbdu2QRRFhIeHQ6Np+Jt+ZGQkSkpKdI/PPvuspW+HWhKbeYlaNxtZzRiVPk/X/Mlur8ZhN2KzSToIOiMjQ+84NTUVcrkcR44cwdChQwEAU6dO1V3v0qULFi1ahAcffBBnz55F165d663b3t4eSqWyUXFUVVWhqqpKd6xWq5tyG2QKbOYlIjKsthvR4ASRJWxJq4dZzQJTqVQAAE9PT4PXy8vLkZKSAj8/P/j4+DRYV1ZWFuRyOdq2bYu//OUvWLRoEdq1a2ewbFJSEhITE+8veGpZnC1CZkqj1eBo2VFcrriMDk4dECQPgozftsnUAkYDPZ/khrJNIIiiaOjTxOS0Wi1Gjx6N69evIycnR+/aBx98gLlz56K8vBw9evTA//73vwZbfz7//HM4OTnBz88PhYWFeO211+Di4oL9+/dDJqv7y2CoBcjHxwcqlQpubm7Gu0m6P7WzwADoJ0F/NPNywCSZ2Pbi7VhycAkuVfzZ9apwUmBe8DyE+YZJGBmRdVKr1XB3d2/U57fZJEDTp0/Hd999h5ycHHTq1EnvmkqlQllZGUpKSrB8+XL8+uuv2Lt3LxwcHBpV9y+//IKuXbti+/btePzxx+9ZvilvIJmYwXWAOrKZl0xue/F2xGfFQ7yrRVL4IyFfEbqCSRCRiVlcAhQbG4uvv/4au3fvhp+fX4Nlb926hbZt22Lt2rV47rnnGv0aHTp0wKJFizBt2rR7lmUCZOa0GjbzkqQ0Wg0ivozQa/m5kwABCicFMsZlsDuMyISa8vkt6RggURQxY8YMpKWlISsr657JT+1zRFHU67K6lwsXLuDKlSvw8vK6d+EWxLECRlI7W4RIIkfLjtab/ACACBGlFaU4WnYUA5UDTRgZETWWpAlQTEwMNm7ciK+//hqurq4oLS0FALi7u8PR0RG//PILNm3ahPDwcHTo0AEXLlzAkiVL4OjoiCeeeEJXT8+ePZGUlISxY8fi5s2bSExMxLhx46BUKlFYWIi5c+fC398fERERUt0qxwoQtSKXKy4btRxZALY8tzqSJkDJyckAgNDQUL3zKSkpiI6OhoODA/bs2YOVK1fi2rVrUCgUGDp0KPbt2we5XK4rn5+fr5tBJpPJcOzYMXz66ae4fv06vL29ER4ejnfeeQf29vYmu7c71TdWoKyiDPFZ8RwrQGRhOjh1MGo5MnPcg7BVMosxQObGmGOAOFaAqPWp/XddVlFW54sNwH/XrYpu9undP2fOPjVHTfn85l5gLawpYwWIyDLIbGSYFzwPwJ+zvmrVHicEJzD5sXTcg7BVYwLUwjhWgKh1CvMNw4rQFZA7yfXOK5wU7NZuLbgHYatmVitBt0YcK0DUeoX5hmGYzzDO7mytuAdhq8YEqIUFyYOgcFLcc6xAkDxIguiI6H7JbGSc6t5acQ/CVo1dYC2MYwWIiCxU7R6EdXZZryXUrETPPQgtEhMgE+BYASIiC2Qjq5nqDqBuEvTHceQSrgdkoTgN3oCW2gqDK0ETEVkg7kFoMSxuLzBzw73AiIhID1eCtggWsxcYERGRReAehK0OxwARERGR1WECRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVocJEBEREVkdJkBERERkde5rIcTKykps2rQJ5eXlGD58OLp162asuIiIiIhaTKMToPj4eFRXV+P9998HANy6dQshISH46aef4OTkhLlz5yIzMxMhISEtFiwRERGRMTS6C+z777/H8OHDdccbNmxAcXExCgoKcO3aNTzzzDNYtGhRiwRJREREZEyNToDOnTuHgIAA3fH333+Pp59+Gr6+vhAEAbNmzcIPP/zQIkESERERGVOjEyAbGxvcuXH8gQMH8PDDD+uOPTw8cO3aNeNGR0RERNQCGp0A9erVC9988w0A4KeffsK5c+cwbNgw3fXi4mIoFArjR0hERERkZI0eBD137lw8++yz+N///oeffvoJTzzxBPz8/HTXv/32WwQHB7dIkERERETG1OgWoLFjx+Lbb79F37598eqrr2LTpk16152cnPDKK68YPUAiIiIiYxPEOwf2NODtt9/GnDlz4OTk1NIxSU6tVsPd3R0qlQpubm5Sh0NERESN0JTP70a3ACUmJuLmzZv3HRwRERGR1BqdADWyoYiIiIjI7DVpLzBBEFoqDiIiIiKTadJeYN27d79nEnT16tX7CoiIiIiopTUpAUpMTIS7u3tLxUJERERkEk1KgJ599lnI5fKWioWIiIjIJBo9Bojjf4iIiKi14CwwIiIisjqNToC0Wq3Ru7+SkpIwcOBAuLq6Qi6XIyoqCvn5+Xplpk2bhq5du8LR0REdOnTAmDFjcPr06QbrFUURb731Fry8vODo6IiwsDAUFBQYNXYiIiKyXE2aBm9s2dnZiImJwYEDB5CZmYnq6mqEh4ejvLxcV6Z///5ISUnBqVOnsG3bNoiiiPDwcGg0mnrrXbZsGVavXo01a9YgNzcXzs7OiIiIQGVlpSlui4iIiMxco7fCMIXLly9DLpcjOzsbQ4cONVjm2LFjePDBB3HmzBl07dq1znVRFOHt7Y3Zs2djzpw5AACVSgWFQoHU1FQ8++yz94yDW2GYN41Wg6NlR3G54jI6OHVAkDwIMhuZ1GEREZHEmvL53aRZYC1NpVIBADw9PQ1eLy8vR0pKCvz8/ODj42OwTFFREUpLSxEWFqY75+7ujkGDBmH//v0GE6CqqipUVVXpjtVq9f3cBrWg7cXbseTgElyquKQ7p3BSYF7wPIT5hjXwTCLrxS8NRHVJ2gV2J61Wi7i4OAwZMgSBgYF61z744AO4uLjAxcUF3333HTIzM2FnZ2ewntLSUgCAQqHQO69QKHTX7paUlAR3d3fdo77kiqS1vXg74rPi9ZIfACirKEN8Vjy2F2+XKDIi87W9eDsivozAlG1TkLAnAVO2TUHElxH890JWz2wSoJiYGJw4cQKff/55nWsTJkzADz/8gOzsbHTv3h3jx4836nie+fPnQ6VS6R7nz583Wt1kHBqtBksOLoGIuj22teeWHlwKjbb+sWFE1oZfGojqZxYJUGxsLLZu3Ypdu3ahU6dOda67u7ujW7duGDp0KL744gucPn0aaWlpButSKpUAgEuX9P/BX7p0SXftbvb29nBzc9N7kHk5Wna0zn/idxIhorSiFEfLjpowKiLzxS8NRA2TNAESRRGxsbFIS0vDzp074efn16jniKKoN2bnTn5+flAqldixY4funFqtRm5uLkJCQowWO5nW5YrLRi1H1NrxSwNRwyRNgGJiYrB+/Xps3LgRrq6uKC0tRWlpKX7//XcAwC+//IKkpCQcOXIE586dw759+/DMM8/A0dERTzzxhK6enj176lqEBEFAXFwcFi1ahPT0dBw/fhyTJk2Ct7c3oqKipLhNMoIOTh2MWo6oteOXBqKGSToLLDk5GQAQGhqqdz4lJQXR0dFwcHDAnj17sHLlSly7dg0KhQJDhw7Fvn379BZlzM/P180gA4C5c+eivLwcU6dOxfXr1/HII48gIyMDDg4OJrkvMr4geRAUTgqUVZQZbNIXIEDhpECQPEiC6IjMD780EDXMrNYBMhcttQ6QRiviYNFVlN2ohNzVAcF+npDZcI+1xqod0AlALwkSUPMerghdwanwRH/QaDWI+DLinl8aMsZlcEo8tRoWuw5Qa5ZxogSJ35xEierP2Wte7g5YMCoAkYFeEkZmOcJ8w7AidIXBdYASghOY/BDdQWYjw7zgeYjPiocAweCXhoTgBCY/ZLXYAmSAsVuAMk6UYPr6o3W+g9W2/SRPDGIS1ARc1I2o8QwtHqp0UvJLA7VKTfn8ZgJkgDETII1WxCNLd+q1/NxJAKB0d0BOwl/YHUZELYJfGshasAvMjBwsulpv8gMAIoASVSUOFl1FSNd2pguMiKyGzEaGgcqBUodBZFbMYiHE1qzsRuNWrG5sOSIiIrp/TIBamNy1cVPvG1uOiIiI7h8ToBYW7OcJL3cH1De6R0DNbLBgP09ThkVERGTVmAC1MJmNgAWjAgCgThJUe7xgVAAHQLc2Wg1QtAc4/kXNn9xviYjIrHAQtAlEBnoheWJQnXWAlGa4DhBnixjByXQgIwFQX/zznJs3ELkUCBgtXVxERKTDafAGWOtK0IbWC1E4KTAveB7XC2msk+nA5klAfas+jf83kyAiohbCdYDuU0slQOasdpuJu5fM5zYTTaDVACsD9Vt+9Ag1LUFxxwG2qhERGV1TPr85Boig0Wqw5OASg/sF1Z5benApNBzH0rDifQ0kPwAgAupfa8oREZGkmAARjpYd1ev2upsIEaUVpThadtSEUVmgm/W/h80qR0RELYYJEOFyxWWjlrNaLgrjliMiohbDWWCEDk4djFrOavkOrhnjoy5B3UHQgG4MkO9gU0dmkLkPyiciaklMgAhB8iAonBQoqygzOA5IgACFkwJB8iAJorMgNrKaqe6bJ6Fm1ted7+UfiUXkErMYAJ1xoqTOsgxeZrksA5M0ImoZnAVmgDXPAgOglwRxFlgzGFwHqGNN8mMGU+AzTpRg+vqj9U3UR/LEILNIgiwlSSMi88Fp8PfJGhMgwPA6QEonJRKCE5j8NJHm9m2czt2G36/9Cse2HdFzUARkttI3uGq0Ih5ZulMvqbiTgJoFOnMS/iJpS4ulJGkAW6mIzElTPr+l/x+ZzEaYbxiG+QzjStD36c+WCwDoCADw2p1tFi0XB4uu1pv8ADWddiWqShwsuoqQru1MF9gdNFoRid+chAjABloE25yGHNdRBg8c1PaECBskfnMSwwOUkicabKUislxMgEiPzEaGgcqBUodhsepruShVVWL6+qOSt1yU3ag/+WlOuZZQm6RF2BzEgjb/hrdwVXftouiJxOpJ2KYKljRJA8z/Z01EDeM0eCIjubPl4m615xK/OQmNVrpeZ7mrg1HLtYSyGzXJT3KblVDiqt41Ja4iuc1KRNgclDRJs4SfNRE1jAkQkZE0pXtJKsF+nvByd0B9HUcCarpwgv08TRmWHrlzGyxo828AwN09XLXHC9r8B3LnNiaO7E+W8LMmooYxASIyEkvoXpLZCFgwKgAA6iRBtccLRgVIOrYmWHYa3sLVOslPLRsB8BauIFh22rSB3cESftZE1DAmQERGYgndSwAQGeiF5IlBULrrx6F0dzCLcSuy8jKjlmsJlvKzJqL6cRA0kZHUdi+VqirrWwcaSom7l2pFBnpheIDSPKdvW8CWIpb0syYiw9gCRGQkltC9dCeZjYCQru0w5qGOCOnazmzi0m0p0tBIJbeOkm4pYmk/ayKqiwkQkRGZe/eSRajdUgRAvemFGWwpwp81kWXjStAGWOtK0GQ8XB3YCMx8S5Fa/FkTmQ9uhXGfmAARmQmtBijeB9y8VDPmx3ew5C0/RGS+uBUGEbUONjLA71GpoyCyCGyNbBomQERERBaO+9I1HQdBExERWbDafenuXp28dl+6jBMlEkVWl0YrYn/hFXyd9yv2F16RdLsYtgARWSsLGF+j0WpwtOwoLldcRgenDgiSB0FmZjESSele+9IJqNmXbniAUvLuMHNrpWICRGSNDM6w8q6Zfm4mM6y2F2/HkoNLcKniku6cwkmBecHzEOYbJmFkZI3MNRlvyr50IV3bmS6wu9S2Ut2dqNW2UkmxdAQTICJrczId2DwJuPu/InVJzfnx/5Y8CdpevB3xWfEQ74qxrKIM8VnxWBG6gkkQmYw5J+OWsC+dubZSSToGKCkpCQMHDoSrqyvkcjmioqKQn5+vu3716lXMmDEDPXr0gKOjIzp37oyZM2dCpVI1WG90dDQEQdB7REZGtvTtEJk/raam5afe/4oAZMyrKScRjVaDJQeX1El+AOjOLT24FBoJYyTrUZuM35n8AH8m49uLt0sUWQ1L2JeuKa1UpiRpApSdnY2YmBgcOHAAmZmZqK6uRnh4OMrLywEAFy9exMWLF7F8+XKcOHECqampyMjIwEsvvXTPuiMjI1FSUqJ7fPbZZy19O0Tmr3iffrdXHSKg/rWmnESOlh2t82FzJxEiSitKcbTsqAmjImtkCcl47b50DWwcAy+J96Uz11YqSbvAMjIy9I5TU1Mhl8tx5MgRDB06FIGBgfjyyy9117t27YrFixdj4sSJuH37Nmxt6w/f3t4eSqWyUXFUVVWhqqpKd6xWq5t4J0QW4mb9iUWzyrWAyxWXjVqOqLmakowPVA40YWR/qt2Xbvr6oxCg37ZrLvvSmWsrlVlNg6/t2vL0rD9TrV3dsaHkBwCysrIgl8vRo0cPTJ8+HVeuXKm3bFJSEtzd3XUPHx+f5t0AkbmzgJ3WOzh1MGo5ouaylGTc3PelM9dWKrPZCkOr1WL06NG4fv06cnJyDJb57bff0L9/f0ycOBGLFy+ut67PP/8cTk5O8PPzQ2FhIV577TW4uLhg//79kMnqjto31ALk4+PDrTCo9dFqgJWBNQOeDY4DEmpmg8Udl2xKvEarQcSXESirKDPY9SBAgMJJgYxxGWYxC4dar0OlhzBl25R7llsXsU6yFqA7mfNK0LWzwADDrVTGStQsci+w6dOn47vvvkNOTg46depU57parcbw4cPh6emJ9PR0tGnTptF1//LLL+jatSu2b9+Oxx9//J7luRcYtWq6WWCAwf+KzGgWGAC9JEj4I0bOAiNTuHX7Ngb8exi0NtchGMgjRBGw0Xjg8ORdsLtHrwSZZh0gi9sLLDY2Flu3bsXu3bsNJj83btxAZGQkXF1dkZaW1qTkBwAeeOABtG/fHmfOnGlUAkTUqgWMrklyDK4DZB47rYf5hmFF6AqDU48TghOY/JBJHClWoaJkJBw6rocoQi8Jqm06qCgdiSPFKknX2LEUkYFeGB6gNJtWKkkTIFEUMWPGDKSlpSErKwt+fn51yqjVakRERMDe3h7p6elwcGj6IKkLFy7gypUr8PLifihEAGqSnJ5PmvVK0GG+YRjmM8wsF58j61B2oxK3bwSi8teJsFd8A6HNn0uwiLfdUXVpFG7fCJR0jR1LI7MRzCZZlDQBiomJwcaNG/H111/D1dUVpaWlAAB3d3c4OjpCrVYjPDwcFRUVWL9+PdRqtW6GVocOHXTjeXr27ImkpCSMHTsWN2/eRGJiIsaNGwelUonCwkLMnTsX/v7+iIiIkOxeicyOBey0LrORmcXYCrJOtbOSbt8IxO0bAZA5FUGwvQHxtis0FX6onUck5Ro71HySJkDJyckAgNDQUL3zKSkpiI6OxtGjR5GbmwsA8Pf31ytTVFSELl26AADy8/N1M8hkMhmOHTuGTz/9FNevX4e3tzfCw8PxzjvvwN7evmVviIiImsUct5qonb1UqqqECBtoKrrqXRdQM9NKyjV2qPnMZhC0OeEgaCIi0zHnrSZMNXuJjKMpn99mtQ4QERFZF3PfasLc19ih5mMLkAFsASIianm1az7Vt9qyOa35ZM5r7NCfLG4aPFFT8D8iotbBEraaqGVOs5fIOJgAkUUxxUJaRGQalrLVBLVOHANEFqN2MOKdyQ8AlKoqMX39UWScKJEoMiJqDu77RlJiAkQWQaMVkfjNSYO7V9WeS/zmJDRaDmkjshRB8iAonBS6LU7uJkCA0kmJIHmQiSMja8AEiCzCwaKrdVp+7iQCKFFV4mDRVdMFRUT3RWYjw7zgeQBQJwmqPU4ITpB8ADS1TkyAyCI0dql5LklPZFlq932TO8n1ziucFNz0lloUB0GTRWjsUvNckp7I8nDfN5ICEyCyCPpL0tfFJemJLBv3fSNTYxcYWQSZjYAFowIAoM5wydrjBaMCuB4QkYXSaEXsL7yCr/N+xf7CK5zQQC2OLUBkMWqXpL97HSAl1wEismhc34ukwK0wDOBWGOaNK0ETtR6163vd/UHEzUapObgVBrVqXJKeqHW41/peAmrW9xoeoOSXHDI6jgEiPeyHJyJT4fpeJCW2AJEO++GJyJS4vhdJiS1ABID7bBGR6XF9L5ISEyDiPltEJIna9b3qG90joKYVmut7UUtgAkTsh7dSGq0Gh0oP4dtfvsWh0kPQaDVSh0RWhut7kZQ4BojYD98CNFqNWS/rv714O5YcXIJLFZd05xROCswLnse9l8ikuL4XSYUJELEf3sjMPbnYXrwd8VnxEO/q9CyrKEN8Vjw3oCSTiwz0wvAAJdf3IpNiFxixH96IapOLO5Mf4M/kYnvxdokiq6HRarDk4JI6yQ8A3bmlB5eyO4xMrnZ9rzEPdURI13ZMfqjFMQEi9sMbiSUkF0fLjtZJzu4kQkRpRSmOlh01YVRERKbHBIgA/NkPr3TX7+ZSujtwKfpGsoTk4nLFZaOWIyKyVBwDRDrsh78/lpBcdHDqYNRyRESWigkQ6eE+W81nCclFkDwICicFyirKDHbVCRCgcFIgSB4kQXRERKbDLjAiI6lNLoR6hpMLEKB0UkqaXMhsZJgXPE8Xz51qjxOCE8xqyj4RUUtgAkRkJJaSXIT5hmFF6ArIneR65xVOCk6BJyKrIYiiyP0N7qJWq+Hu7g6VSgU3NzepwyELY2gdIKWTEgnBCWaVXJj7Yo1ERE3VlM9vJkAGMAGi+8XkgojI9Jry+c1B0EQtQGYjw0DlQKnDICKienAMEBEREVkdtgARERGRSZjT8AAmQERERNTizG2jaEm7wJKSkjBw4EC4urpCLpcjKioK+fn5uutXr17FjBkz0KNHDzg6OqJz586YOXMmVCpVg/WKooi33noLXl5ecHR0RFhYGAoKClr6doiIiMgAc9woWtIEKDs7GzExMThw4AAyMzNRXV2N8PBwlJeXAwAuXryIixcvYvny5Thx4gRSU1ORkZGBl156qcF6ly1bhtWrV2PNmjXIzc2Fs7MzIiIiUFlZaYrbIiIioj+Y60bRZjUN/vLly5DL5cjOzsbQoUMNlvnvf/+LiRMnory8HLa2dXvwRFGEt7c3Zs+ejTlz5gAAVCoVFAoFUlNT8eyzz94zDk6DJyIiMo5DpYcwZduUe5ZbF7HuvmfPNuXz26xmgdV2bXl6ejZYxs3NzWDyAwBFRUUoLS1FWNif/Ynu7u4YNGgQ9u/fb/A5VVVVUKvVeg8iolZDqwGK9gDHv6j508TftMm6metG0WYzCFqr1SIuLg5DhgxBYGCgwTK//fYb3nnnHUydOrXeekpLSwEACoVC77xCodBdu1tSUhISExObGTkRkRk7mQ5kJADqi3+ec/MGIpcCAaOli4ushrluFG02LUAxMTE4ceIEPv/8c4PX1Wo1nnzySQQEBGDhwoVGfe358+dDpVLpHufPnzdq/UREkjiZDmyepJ/8AIC6pOb8yXRp4iKrYq4bRZtFAhQbG4utW7di165d6NSpU53rN27cQGRkJFxdXZGWloY2bdrUW5dSqQQAXLqkP9L80qVLumt3s7e3h5ubm96DiMiiaTU1LT8GBp7qzmXMY3cYtThz3Sha0gRIFEXExsYiLS0NO3fuhJ+fX50yarUa4eHhsLOzQ3p6OhwcHBqs08/PD0qlEjt27NCrIzc3FyEhIUa/ByIis1S8r27Ljx4RUP9aU46ohYX5hmFF6ArIneR65xVOCqwIXSHJOkCSjgGKiYnBxo0b8fXXX8PV1VU3Rsfd3R2Ojo665KeiogLr16/XG6DcoUMHyGQ12WLPnj2RlJSEsWPHQhAExMXFYdGiRejWrRv8/Pzw5ptvwtvbG1FRUVLdKhGRad28dO8yTSlHdJ/CfMMwzGcYV4IGgOTkZABAaGio3vmUlBRER0fj6NGjyM3NBQD4+/vrlSkqKkKXLl0AAPn5+XqLI86dOxfl5eWYOnUqrl+/jkceeQQZGRn3bD1qKo1Gg+rqaqPWSWQMbdq00X1BICvlorh3maaUIzICc9oo2qzWATIX91pHQBRFlJaW4vr166YPjqiRPDw8oFQqIQiGBx5S66a5fRu/LeqODuIV2Bj4FdCKQJnQDh3e+BmyepYVIbI0TVkHiL/1zVCb/Mjlcjg5OfEDhsyKKIqoqKhAWVkZAMDLy0viiEgKB4tVSL31ApLbrIRWhF4SpP3ja++CWy8guliFkK7tpAmSSEJMgJpIo9Hokp927fifBpknR0dHAEBZWRnkcjm7w6xQ2Y1KbNMGY3p1HBa0+Te8cVV3rRTtkFj9ArZpg/HEDW4RRNaJCVAT1Y75cXJykjgSoobV/o5WV1czAbJCcteaMY/btMHIrBqAYJvTkOM6yuCBg9qe0P4xCbi2HJG1YQLUTOz2InPH31HrFuznCS93B5SqKqGFDQ5oA/SuCwCU7g4I9qt/6yGi1swsFkIkIiLjktkIWDCqJum5OxWuPV4wKgAyQyOkiawAEyAyuujoaL01l0JDQxEXF3dfdRqjDiJrExnoheSJQVC663dzKd0dkDwxCJGBHCBP1osJkBWJjo6GIAgQBAF2dnbw9/fH22+/jdu3b7fo63711Vd45513GlU2KysLgiDUWWKgKXW0lIULF+Khhx6q93pRURGef/55eHt7w8HBAZ06dcKYMWNw+vRppKam6t77+h5nz57FwoULIQgCIiMj69T/97//HYIg1Fk3i6ghkYFeyEn4Cz57+WGsevYhfPbyw8hJ+AuTH7J6HAMkEY1WxMGiqyi7UQm5a00/vCmaoiMjI5GSkoKqqip8++23iImJQZs2bTB//ny9crdu3YKdnZ1RXtPT8/7HGBijjpZUXV2N4cOHo0ePHvjqq6/g5eWFCxcu4LvvvsP169fx17/+VS+peeqppxAYGIi3335bd65Dh5qdkL28vLBr1y5cuHBBb2+8devWoXPnzqa7KWo1ZDYCp7oT3YUtQBLIOFGCR5buxHMfH8Csz/Pw3McH8MjSncg4UdLir21vbw+lUglfX19Mnz4dYWFhSE9P13VbLV68GN7e3ujRowcA4Pz58xg/fjw8PDzg6emJMWPG4OzZs7r6NBoN4uPj4eHhgXbt2mHu3Lm4e23Nu7uvqqqqkJCQAB8fH9jb28Pf3x+ffPIJzp49i2HDhgEA2rZtC0EQEB0dbbCOa9euYdKkSWjbti2cnJwwYsQIFBQU6K6npqbCw8MD27ZtQ69eveDi4oLIyEiUlPz5HmdlZSE4OBjOzs7w8PDAkCFDUFxc3Kz39aeffkJhYSE++OADPPzww/D19cWQIUOwaNEiPPzww3B0dIRSqdQ97Ozs4OTkpHeudqaWXC5HeHg4Pv30U139+/btw2+//YYnn3yyWfEREZE+JkAmlnGiBNPXH0WJSn/tjVJVJaavP2qSJOhOjo6OuHXrFgBgx44dyM/PR2ZmJrZu3Yrq6mpERETA1dUVe/bswd69e3WJRO1z3nvvPaSmpmLdunXIycnB1atXkZaW1uBrTpo0CZ999hlWr16NU6dO4cMPP4SLiwt8fHzw5ZdfAqjZ3qSkpASrVq0yWEd0dDQOHz6M9PR07N+/H6Io4oknntDbmqSiogLLly/Hf/7zH+zevRvnzp3DnDlzAAC3b99GVFQUHnvsMRw7dgz79+/H1KlTmz1zqkOHDrCxscEXX3wBjeb+d9eeMmUKUlNTdcfr1q3DhAkTjNYqR0Rk7dgFZkIarYjEb07C0N4jImpmZiR+cxLDA5Qt3h0miiJ27NiBbdu2YcaMGbh8+TKcnZ2xdu1a3Yfs+vXrodVqsXbtWl1ikJKSAg8PD2RlZSE8PBwrV67E/Pnz8dRTTwEA1qxZg23bttX7uj///DM2b96MzMxMhIXV7P77wAMP6K7XdnXJ5XJ4eHgYrKOgoADp6enYu3cvBg8eDADYsGEDfHx8sGXLFjzzzDMAarql1qxZg65duwIAYmNjdV1OarUaKpUKI0eO1F3v1atX09/IP3Ts2BGrV6/G3LlzkZiYiAEDBmDYsGGYMGGC3v011siRI/G3v/0Nu3fvRv/+/bF582bk5ORg3bp1zY6RiIj+xBYgEzpYdLVOy8+dRAAlqkocLLpab5n7tXXrVri4uMDBwQEjRozAX//6VyxcuBAA0KdPH70Whh9//BFnzpyBq6srXFxc4OLiAk9PT1RWVqKwsBAqlQolJSUYNGiQ7jm2trYYMGBAva+fl5cHmUyGxx57rNn3cOrUKdja2uq9brt27dCjRw+cOnVKd87JyUmX3AA1Y2tqt4fw9PREdHQ0IiIiMGrUKKxatUrXPXbu3Dnd/bq4uODdd99tVFwxMTEoLS3Fhg0bEBISgv/+97/o3bs3MjMzm3yPbdq0wcSJE5GSkoL//ve/6N69O/r27dvkeoiIyDC2AJlQWSOXnG9sueYYNmwYkpOTYWdnB29vb9jesQmis7OzXtmbN2+if//+2LBhQ516agfsNlXtFg2m0KZNG71jQRD0xielpKRg5syZyMjIwKZNm/DGG28gMzMTAwYMQF5enq5cUwZgu7q6YtSoURg1ahQWLVqEiIgILFq0CMOHD29y/FOmTMGgQYNw4sQJTJkypcnPJyKi+rEFyIQau+R8Sy5N7+zsDH9/f3Tu3Fkv+TEkKCgIBQUFkMvl8Pf313u4u7vD3d0dXl5eyM3N1T3n9u3bOHLkSL119unTB1qtFtnZ2Qav17ZANTSOplevXrh9+7be6165cgX5+fkICAio93mG9OvXD/Pnz8e+ffsQGBiIjRs3wtbWVu9emzsDTRAE9OzZE+Xl5c16fu/evdG7d2+cOHECzz//fLPqICIiw5gAmVDt0vT1je4RAHiZ0dL0EyZMQPv27TFmzBjs2bMHRUVFyMrKwsyZM3HhwgUAwKxZs7BkyRJs2bIFp0+fxiuvvFJnDZ87denSBZMnT8aUKVOwZcsWXZ2bN28GAPj6+kIQBGzduhWXL1/GzZs369TRrVs3jBkzBi+//DJycnLw448/YuLEiejYsSPGjBnTqHsrKirC/PnzsX//fhQXF+P7779HQUHBPccB/f7778jLy9N7FBYWIi8vD2PGjMEXX3yBkydP4syZM/jkk0+wbt26RsdkyM6dO1FSUlLveCgiImoeJkAmZGlL0zs5OWH37t3o3LkznnrqKfTq1QsvvfQSKisr4ebmBgCYPXs2XnjhBUyePBkhISFwdXXF2LFjG6w3OTkZTz/9NF555RX07NkTL7/8sq6VpGPHjkhMTMS8efOgUCgQGxtrsI6UlBT0798fI0eOREhICERRxLffflun26uhezt9+jTGjRuH7t27Y+rUqYiJicG0adMafN7PP/+Mfv366T2mTZuGTp06oUuXLkhMTMSgQYMQFBSEVatWITExEa+//nqjYjKkdoo+EREZlyDevWgLQa1Ww93dHSqVSvdBX6uyshJFRUXw8/ODg0PzuqoyTpQg8ZuTegOivdwdsGBUAFdnJaMxxu8qEZElaejz+24cBC2ByEAvDA9QSrISNBERETEBkgyXpiciIpIOxwARERGR1WECRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVocJEBEREVkdJkBk9hYuXIiHHnpI6jAQGhqKuLg4qcMgIiIjYAJkRUpLSzFr1iz4+/vDwcEBCoUCQ4YMQXJyMioqKqQOr9mysrIgCEKDm7BKWR8REZkfrgQtFa0GKN4H3LwEuCgA38GAjazFXu6XX37BkCFD4OHhgXfffRd9+vSBvb09jh8/jo8++ggdO3bE6NGjDT63urq60ZuMmrNbt27Bzs5O6jCIiMgMsAVICifTgZWBwKcjgS9fqvlzZWDN+RbyyiuvwNbWFocPH8b48ePRq1cvPPDAAxgzZgz+97//YdSoUbqygiAgOTkZo0ePhrOzMxYvXgygZhf3rl27ws7ODj169MB//vMf3XPOnj0LQRCQl5enO3f9+nUIgoCsrCwAf7as7NixAwMGDICTkxMGDx6M/Px8vViXLFkChUIBV1dX3e7z9Tl79iyGDRsGAGjbti0EQUB0dDSAmi6r2NhYxMXFoX379oiIiLhnnA3VBwBarRZz586Fp6cnlEolFi5c2NgfARERmREmQKZ2Mh3YPAlQX9Q/ry6pOd8CSdCVK1fw/fffIyYmBs7OzgbLCIL+RqwLFy7E2LFjcfz4cUyZMgVpaWmYNWsWZs+ejRMnTmDatGl48cUXsWvXribH8/rrr+O9997D4cOHYWtriylTpuiubd68GQsXLsS7776Lw4cPw8vLCx988EG9dfn4+ODLL78EAOTn56OkpASrVq3SXf/0009hZ2eHvXv3Ys2aNfeMrTH1OTs7Izc3F8uWLcPbb7+NzMzMJr8HREQkLXaBmZJWA2QkABANXBQBCEDGPKDnk0btDjtz5gxEUUSPHj30zrdv317XuhITE4OlS5fqrj3//PN48cUXdcfPPfccoqOj8corrwAA4uPjceDAASxfvlzXYtJYixcvxmOPPQYAmDdvHp588klUVlbCwcEBK1euxEsvvYSXXnoJALBo0SJs37693lYgmUwGT09PAIBcLoeHh4fe9W7dumHZsmW647NnzzYY273q69u3LxYsWKCr+5///Cd27NiB4cOHN+reiYjIPLAFyJSK99Vt+dEjAupfa8qZwMGDB5GXl4fevXujqqpK79qAAQP0jk+dOoUhQ4bonRsyZAhOnTrV5Nft27ev7u9eXl4AgLKyMt3rDBo0SK98SEhIk1+jVv/+/Zv9XEPujB2oib82diIishxsATKlm5eMW66R/P39IQhCnbE2DzzwAADA0dGxznPq6yqrj41NTS4tin+2blVXVxsse+eA6tquN61W26TXa6y776MpcRpy92BwQRBaLHYiImo5bAEyJReFccs1Urt27TB8+HD885//RHl5ebPq6NWrF/bu3at3bu/evQgICAAAdOjQAQBQUlKiu37nQOOmvE5ubq7euQMHDjT4nNqZXRqN5p71NybOptRHRESWSdIEKCkpCQMHDoSrqyvkcjmioqLqtFJ89NFHCA0NhZubW6PXZlm4cCEEQdB79OzZs4Xuogl8BwNu3gCEegoIgFvHmnJG9sEHH+D27dsYMGAANm3ahFOnTiE/Px/r16/H6dOnIZM1PObo//7v/5Camork5GQUFBRgxYoV+OqrrzBnzhwANa1IDz/8MJYsWYJTp04hOzsbb7zxRpPjnDVrFtatW4eUlBT8/PPPWLBgAX766acGn+Pr6wtBELB161ZcvnwZN2/erLdsY+JsSn1ERGSZJE2AsrOzERMTgwMHDiAzMxPV1dUIDw/Xa6WoqKhAZGQkXnvttSbV3bt3b5SUlOgeOTk5xg6/6WxkQGTtQOO7k6A/jiOXtMh6QF27dsUPP/yAsLAwzJ8/Hw8++CAGDBiA999/H3PmzME777zT4POjoqKwatUqLF++HL1798aHH36IlJQUhIaG6sqsW7cOt2/fRv/+/REXF4dFixY1Oc6//vWvePPNNzF37lz0798fxcXFmD59eoPP6dixIxITEzFv3jwoFArExsY2WP5ecTa1PiIisjyCeOdgCIldvnwZcrkc2dnZGDp0qN61rKwsDBs2DNeuXaszM+duCxcuxJYtWxrdBVNVVaU3CFitVsPHxwcqlQpubm56ZSsrK1FUVAQ/Pz84ODg0qv46TqbXzAa7c0C0W8ea5CfA8GKERE1llN9VIiILolar4e7ubvDz+25mNQhapVIBgG4a8v0oKCiAt7c3HBwcEBISgqSkJHTu3Nlg2aSkJCQmJt73azZawOiaqe4mXAmaiIiI/mQ2g6C1Wi3i4uIwZMgQBAYG3lddgwYNQmpqKjIyMpCcnIyioiI8+uijuHHjhsHy8+fPh0ql0j3Onz9/X6/fKDYywO9RoM/TNX8y+SEiIjIZs2kBiomJwYkTJ4wyVmfEiBG6v/ft2xeDBg2Cr68vNm/erFtg70729vawt7e/79clIiIiy2AWCVBsbCy2bt2K3bt3o1OnTkav38PDA927d8eZM2eMXjcRERFZHkm7wERRRGxsLNLS0rBz5074+fm1yOvcvHkThYWFulWHiYiIyLpJmgDFxMRg/fr12LhxI1xdXVFaWorS0lL8/vvvujKlpaXIy8vTtd4cP34ceXl5uHr1qq7M448/jn/+85+64zlz5iA7Oxtnz57Fvn37MHbsWMhkMjz33HOmuzkiIiIyW5ImQMnJyVCpVAgNDYWXl5fusWnTJl2ZNWvWoF+/fnj55ZcBAEOHDkW/fv2Qnv7nrumFhYX47bffdMcXLlzAc889hx49emD8+PFo164dDhw4oFsFmIiIiKybWa0DZC4aWkeAa6uQpeDvKhFZm6asA2Q20+CJiIiITIUJEBlddHQ0oqKidMehoaGIi4u7rzqNUYepCIKALVu21Hv97NmzEAShWZvFEhGRcTABsiLR0dG6zWHt7Ozg7++Pt99+G7dv327R1/3qq6/uuddYraysLIOb3jaljpZy5ya7MpkMPj4+mDp1qt6AfKBmp/k716IiIiLzYxbrAFkjjVaDo2VHcbniMjo4dUCQPAgyE6wGHRkZiZSUFFRVVeHbb79FTEwM2rRpg/nz5+uVu3XrFuzs7IzymsbY2sQYdRhD7969sX37dmg0Gpw6dQpTpkyBSqXSG7ivVColjJCIiBqDLUAS2F68HRFfRmDKtilI2JOAKdumIOLLCGwv3t7ir21vbw+lUglfX19Mnz4dYWFhSE9P13VbLV68GN7e3ujRowcA4Pz58xg/fjw8PDzg6emJMWPG4OzZs7r6NBoN4uPj4eHhgXbt2mHu3Lm4e1z93d1XVVVVSEhIgI+PD+zt7eHv749PPvkEZ8+exbBhwwAAbdu2hSAIiI6ONljHtWvXMGnSJLRt2xZOTk4YMWIECgoKdNdTU1Ph4eGBbdu2oVevXnBxcUFkZCRKSkp0ZbKyshAcHAxnZ2d4eHhgyJAhKC4ubvD9s7W1hVKpRMeOHREWFoZnnnkGmZmZemXu7gI7ePAg+vXrBwcHBwwYMAA//PBDnXrT09PRrVs3ODg4YNiwYfj000/rtITl5OTg0UcfhaOjI3x8fDBz5kyUl5c3GC8RERnGBMjEthdvR3xWPC5VXNI7X1ZRhviseJMkQXdydHTErVu3AAA7duxAfn4+MjMzsXXrVlRXVyMiIgKurq7Ys2cP9u7dq0skap/z3nvvITU1FevWrUNOTg6uXr2KtLS0Bl9z0qRJ+Oyzz7B69WqcOnUKH374IVxcXODj44Mvv/wSAJCfn4+SkhKsWrXKYB3R0dE4fPgw0tPTsX//foiiiCeeeALV1dW6MhUVFVi+fDn+85//YPfu3Th37hzmzJkDALh9+zaioqLw2GOP4dixY9i/fz+mTp0KQRAa/d6dPXsW27Zta7Cl7ObNmxg5ciQCAgJw5MgRLFy4UBdDraKiIjz99NOIiorCjz/+iGnTpuH111/XK1NYWIjIyEiMGzcOx44dw6ZNm5CTk4PY2NhGx0tErZtGq8Gh0kP49pdvcaj0EDRajdQhmTV2gZmQRqvBkoNLIKLuygMiRAgQsPTgUgzzGdbi3WGiKGLHjh3Ytm0bZsyYgcuXL8PZ2Rlr167VfaCvX78eWq0Wa9eu1SUGKSkp8PDwQFZWFsLDw7Fy5UrMnz8fTz31FICadZu2bdtW7+v+/PPP2Lx5MzIzMxEWFgYAeOCBB3TXa7u65HI5PDw8DNZRUFCA9PR07N27F4MHDwYAbNiwAT4+PtiyZQueeeYZAEB1dTXWrFmDrl27AqjZcuXtt98GUDNVUqVSYeTIkbrrvXr1uuf7dvz4cbi4uECj0aCyshIAsGLFinrLb9y4EVqtFp988gkcHBzQu3dvXLhwAdOnT9eV+fDDD9GjRw/8/e9/BwD06NEDJ06cwOLFi3VlkpKSMGHCBF0rWLdu3bB69Wo89thjSE5O5jR3Iiu3vXg7lhxcovflWuGkwLzgeQjzDZMwMvPFFiATOlp2tE7Lz51EiCitKMXRsqMtFsPWrVvh4uICBwcHjBgxAn/961+xcOFCAECfPn30WjN+/PFHnDlzBq6urnBxcYGLiws8PT1RWVmJwsJCqFQqlJSUYNCgQbrn2NraYsCAAfW+fl5eHmQyGR577LFm38OpU6dga2ur97rt2rVDjx49cOrUKd05JycnXXIDAF5eXigrKwNQk2hFR0cjIiICo0aNwqpVq3TdY+fOndPdr4uLC959911dHT169EBeXh4OHTqEhIQEREREYMaMGQ3G2rdvX70EJSQkRK9Mfn4+Bg4cqHcuODhY7/jHH39EamqqXlwRERHQarUoKiq653tGRK2XufUsWAq2AJnQ5YrLRi3XHMOGDUNycjLs7Ozg7e0NW9s/fwWcnZ31yt68eRP9+/fHhg0b6tTT3FW1HR0dm/W85mjTpo3esSAIeuOTUlJSMHPmTGRkZGDTpk144403kJmZiQEDBuhNUb9zAHbt7DkAWLJkCZ588kkkJia2+Ay1mzdvYtq0aZg5c2ada507d27R1yYi82VOPQuWhi1AJtTBqXFJQ2PLNYezszP8/f3RuXNnveTHkKCgIBQUFEAul8Pf31/v4e7uDnd3d3h5eSE3N1f3nNu3b+PIkSP11tmnTx9otVpkZ2cbvF7bAqXR1N933atXL9y+fVvvda9cuYL8/HwEBAQ0eE9369evH+bPn499+/YhMDAQGzduhK2trd69NjQD7Y033sDy5ctx8eLFemM9duyYrrsMAA4cOKBXpkePHjh8+LDeuUOHDukdBwUF4eTJk3V+Dv7+/kabrUdElsccehYsFRMgEwqSB0HhpIAAwwNtBQhQOikRJA8ycWSGTZgwAe3bt8eYMWOwZ88eFBUVISsrCzNnzsSFCxcAALNmzcKSJUuwZcsWnD59Gq+88kqdNXzu1KVLF0yePBlTpkzBli1bdHVu3rwZAODr6wtBELB161ZcvnwZN2/erFNHt27dMGbMGLz88svIycnBjz/+iIkTJ6Jjx44YM2ZMo+6tqKgI8+fPx/79+1FcXIzvv/8eBQUFjRoHdKeQkBD07dtXr5vsTs8//zwEQcDLL7+MkydP4ttvv8Xy5cv1ykybNg2nT59GQkKCboxUamoqAOjGXiUkJGDfvn2IjY1FXl4eCgoK8PXXX3MQNJGVM4eeBUvFBMiEZDYyzAueBwB1kqDa44TgBLNppnRycsLu3bvRuXNnPPXUU+jVqxdeeuklVFZW6vZYmT17Nl544QVMnjwZISEhcHV1xdixYxusNzk5GU8//TReeeUV9OzZEy+//LJuOnfHjh2RmJiIefPmQaFQ1PsBn5KSgv79+2PkyJEICQmBKIr49ttv63R7NXRvp0+fxrhx49C9e3dMnToVMTExmDZtWhPeoRqvvvoq1q5di/Pnz9e55uLigm+++QbHjx9Hv3798Prrr2Pp0qV6Zfz8/PDFF1/gq6++Qt++fZGcnKybBWZvbw8A6Nu3L7Kzs/Hzzz/j0UcfRb9+/fDWW2/B29u7yfESUethDj0LloqboRrQ0puhGhqtr3RSIiE4gaP1CQCwePFirFmzxmBS1VjcDJWo9dNoNYj4MgJlFWUGxwEJEKBwUiBjXIbZfLluSU3ZDJWDoCUQ5huGYT7DJFkJmszTBx98gIEDB6Jdu3bYu3cv/v73v7N7i4juqbZnIT4rHgIEvSTIHHsWzAkTIInIbGQYqBx474JkFQoKCrBo0SJcvXoVnTt3xuzZs+tsT0JEZEiYbxhWhK4wuA4Qexbqxy4wA1q6C4zIFPi7SmRdpNpj0pywC4yIiMjKsGehaTgLrJnYcEbmjr+jRET1YwLURLXTrCsqKiSOhKhhtb+jjV0agIjImrALrIlkMhk8PDx0e0o5OTk1aQdxopYmiiIqKipQVlYGDw8PyGTWNQaAiKgxmAA1g1KpBABdEkRkjjw8PHS/q0REpI8JUDMIggAvLy/I5XJUV1dLHQ5RHW3atGHLDxFRA5gA3QeZTMYPGSIiIgvEQdBERERkdZgAERERkdVhAkRERERWh2OADKhdQE6tVkscCRERETVW7ed2YxaCZQJkwI0bNwAAPj4+EkdCRERETXXjxg24u7s3WIaboRqg1Wpx8eJFuLq6Gn2RQ7VaDR8fH5w/f/6eG7VR/fg+GgffR+Pg+2gcfB/vn7W/h6Io4saNG/D29oaNTcOjfNgCZICNjQ06derUoq/h5uZmlb+cxsb30Tj4PhoH30fj4Pt4/6z5PbxXy08tDoImIiIiq8MEiIiIiKwOEyATs7e3x4IFC2Bvby91KBaN76Nx8H00Dr6PxsH38f7xPWw8DoImIiIiq8MWICIiIrI6TICIiIjI6jABIiIiIqvDBIiIiIisDhMgE/rXv/6FLl26wMHBAYMGDcLBgwelDsmiJCUlYeDAgXB1dYVcLkdUVBTy8/OlDsviLVmyBIIgIC4uTupQLM6vv/6KiRMnol27dnB0dESfPn1w+PBhqcOyKBqNBm+++Sb8/Pzg6OiIrl274p133mnUXk7WbPfu3Rg1ahS8vb0hCAK2bNmid10URbz11lvw8vKCo6MjwsLCUFBQIE2wZooJkIls2rQJ8fHxWLBgAY4ePYoHH3wQERERKCsrkzo0i5GdnY2YmBgcOHAAmZmZqK6uRnh4OMrLy6UOzWIdOnQIH374Ifr27St1KBbn2rVrGDJkCNq0aYPvvvsOJ0+exHvvvYe2bdtKHZpFWbp0KZKTk/HPf/4Tp06dwtKlS7Fs2TK8//77Uodm1srLy/Hggw/iX//6l8Hry5Ytw+rVq7FmzRrk5ubC2dkZERERqKysNHGkZkwkkwgODhZjYmJ0xxqNRvT29haTkpIkjMqylZWViQDE7OxsqUOxSDdu3BC7desmZmZmio899pg4a9YsqUOyKAkJCeIjjzwidRgW78knnxSnTJmid+6pp54SJ0yYIFFElgeAmJaWpjvWarWiUqkU//73v+vOXb9+XbS3txc/++wzCSI0T2wBMoFbt27hyJEjCAsL052zsbFBWFgY9u/fL2Fklk2lUgEAPD09JY7EMsXExODJJ5/U+72kxktPT8eAAQPwzDPPQC6Xo1+/fvj444+lDsviDB48GDt27MDPP/8MAPjxxx+Rk5ODESNGSByZ5SoqKkJpaanev213d3cMGjSInzl34GaoJvDbb79Bo9FAoVDonVcoFDh9+rREUVk2rVaLuLg4DBkyBIGBgVKHY3E+//xzHD16FIcOHZI6FIv1yy+/IDk5GfHx8Xjttddw6NAhzJw5E3Z2dpg8ebLU4VmMefPmQa1Wo2fPnpDJZNBoNFi8eDEmTJggdWgWq7S0FAAMfubUXiMmQGShYmJicOLECeTk5EgdisU5f/48Zs2ahczMTDg4OEgdjsXSarUYMGAA3n33XQBAv379cOLECaxZs4YJUBNs3rwZGzZswMaNG9G7d2/k5eUhLi4O3t7efB+pRbELzATat28PmUyGS5cu6Z2/dOkSlEqlRFFZrtjYWGzduhW7du1Cp06dpA7H4hw5cgRlZWUICgqCra0tbG1tkZ2djdWrV8PW1hYajUbqEC2Cl5cXAgIC9M716tUL586dkygiy/R///d/mDdvHp599ln06dMHL7zwAl599VUkJSVJHZrFqv1c4WdOw5gAmYCdnR369++PHTt26M5ptVrs2LEDISEhEkZmWURRRGxsLNLS0rBz5074+flJHZJFevzxx3H8+HHk5eXpHgMGDMCECROQl5cHmUwmdYgWYciQIXWWYfj555/h6+srUUSWqaKiAjY2+h9FMpkMWq1Woogsn5+fH5RKpd5njlqtRm5uLj9z7sAuMBOJj4/H5MmTMWDAAAQHB2PlypUoLy/Hiy++KHVoFiMmJgYbN27E119/DVdXV11ftru7OxwdHSWOznK4urrWGTfl7OyMdu3acTxVE7z66qsYPHgw3n33XYwfPx4HDx7ERx99hI8++kjq0CzKqFGjsHjxYnTu3Bm9e/fGDz/8gBUrVmDKlClSh2bWbt68iTNnzuiOi4qKkJeXB09PT3Tu3BlxcXFYtGgRunXrBj8/P7z55pvw9vZGVFSUdEGbG6mnoVmT999/X+zcubNoZ2cnBgcHiwcOHJA6JIsCwOAjJSVF6tAsHqfBN88333wjBgYGivb29mLPnj3Fjz76SOqQLI5arRZnzZoldu7cWXRwcBAfeOAB8fXXXxerqqqkDs2s7dq1y+D/h5MnTxZFsWYq/JtvvikqFArR3t5efPzxx8X8/HxpgzYzgihyuU0iIiKyLhwDRERERFaHCRARERFZHSZAREREZHWYABEREZHVYQJEREREVocJEBEREVkdJkBERERkdZgAERERkdVhAkREVic6OppbAhBZOSZARNQioqOjIQhCnUdkZKTUoWHVqlVITU2VOgwAgCAI2LJli9RhEFkdboZKRC0mMjISKSkpeufs7e0ligbQaDQQBAHu7u6SxUBE5oEtQETUYuzt7aFUKvUebdu2RVZWFuzs7LBnzx5d2WXLlkEul+PSpUsAgNDQUMTGxiI2Nhbu7u5o37493nzzTdy5fWFVVRXmzJmDjh07wtnZGYMGDUJWVpbuempqKjw8PJCeno6AgADY29vj3LlzdbrAQkNDMWPGDMTFxaFt27ZQKBT4+OOPUV5ejhdffBGurq7w9/fHd999p3d/J06cwIgRI+Di4gKFQoEXXngBv/32m169M2fOxNy5c+Hp6QmlUomFCxfqrnfp0gUAMHbsWAiCoDsmopbHBIiITC40NBRxcXF44YUXoFKp8MMPP+DNN9/E2rVroVAodOU+/fRT2Nra4uDBg1i1ahVWrFiBtWvX6q7HxsZi//79+Pzzz3Hs2DE888wziIyMREFBga5MRUUFli5dirVr1+Knn36CXC43GNOnn36K9u3b4+DBg5gxYwamT5+OZ555BoMHD8bRo0cRHh6OF154ARUVFQCA69ev4y9/+Qv69euHw4cPIyMjA5cuXcL48ePr1Ovs7Izc3FwsW7YMb7/9NjIzMwEAhw4dAgCkpKSgpKREd0xEJiDxbvRE1EpNnjxZlMlkorOzs95j8eLFoiiKYlVVlfjQQw+J48ePFwMCAsSXX35Z7/mPPfaY2KtXL1Gr1erOJSQkiL169RJFURSLi4tFmUwm/vrrr3rPe/zxx8X58+eLoiiKKSkpIgAxLy+vTmxjxozRe61HHnlEd3z79m3R2dlZfOGFF3TnSkpKRADi/v37RVEUxXfeeUcMDw/Xq/f8+fMiADE/P99gvaIoigMHDhQTEhJ0xwDEtLS0et5FImopHANERC1m2LBhSE5O1jvn6ekJALCzs8OGDRvQt29f+Pr64h//+Eed5z/88MMQBEF3HBISgvfeew8ajQbHjx+HRqNB9+7d9Z5TVVWFdu3a6Y7t7OzQt2/fe8Z6ZxmZTIZ27dqhT58+unO1LVNlZWUAgB9//BG7du2Ci4tLnboKCwt1cd392l5eXro6iEg6TICIqMU4OzvD39+/3uv79u0DAFy9ehVXr16Fs7Nzo+u+efMmZDIZjhw5AplMpnftzqTE0dFRL4mqT5s2bfSOBUHQO1dbh1ar1b3+qFGjsHTp0jp1eXl5NVhvbR1EJB0mQEQkicLCQrz66qv4+OOPsWnTJkyePBnbt2+Hjc2fQxNzc3P1nnPgwAF069YNMpkM/fr1g0ajQVlZGR599FFTh4+goCB8+eWX6NKlC2xtm/9faZs2baDRaIwYGRE1BgdBE1GLqaqqQmlpqd7jt99+g0ajwcSJExEREYEXX3wRKSkpOHbsGN577z295587dw7x8fHIz8/HZ599hvfffx+zZs0CAHTv3h0TJkzApEmT8NVXX6GoqAgHDx5EUlIS/ve//7X4vcXExODq1at47rnncOjQIRQWFmLbtm148cUXm5TQdOnSBTt27EBpaSmuXbvWghET0Z3YAkRELSYjI0OvOwgAevTogeeffx7FxcXYunUrgJouo48++gjPPfccwsPD8eCDDwIAJk2ahN9//x3BwcGQyWSYNWsWpk6dqqsrJSUFixYtwuzZs/Hrr7+iffv2ePjhhzFy5MgWvzdvb2/s3bsXCQkJCA8PR1VVFXx9fREZGanXinUv7733HuLj4/Hxxx+jY8eOOHv2bMsFTUQ6gijesagGEZGZCA0NxUMPPYSVK1dKHQoRtULsAiMiIiKrwwSIiIiIrA67wIiIiMjqsAWIiIiIrA4TICIiIrI6TICIiIjI6jABIiIiIqvDBIiIiIisDhMgIiIisjpMgIiIiMjqMAEiIiIiq/P/AcrzK5VaQiC8AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkMElEQVR4nO3deVxU5f4H8M9h2LdBFGZAUUkNRdTcQ0rxioCZgXmzXUh/6VVQybwqlqlpol67aRvW9QZWWnlLlKxQNCH3ndRUVMSdxVxmFARh5vz+QCaHTdBhzgzzeb9e86pzzjPPfM9BnK/PKoiiKIKIiIjIglhJHQARERGRsTEBIiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCyOtdQBmCKtVovLly/DxcUFgiBIHQ4RERHVgyiKuHnzJry9vWFlVXcbDxOgGly+fBk+Pj5Sh0FEREQP4MKFC2jVqlWdZZgA1cDFxQVAxQN0dXWVOBoiIiKqD7VaDR8fH933eF2YANWgstvL1dWVCRAREZGZqc/wFQ6CJiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLw5WgjUmrAc7tBG4VAM4KoE0/wEomdVREREQWR9IWoISEBPTu3RsuLi7w9PREZGQksrOz9coEBwdDEAS91z/+8Y866xVFEe+88w68vLzg4OCAkJAQnDp1qjFv5f6OpQJLA4CVTwM/jKn479KAivNERERkVJImQJmZmYiJicHu3buRnp6OsrIyhIaGoqioSK/c66+/jry8PN1r8eLFdda7ePFifPjhh1i+fDn27NkDJycnhIWFoaSkpDFvp3bHUoE1owD1Zf3z6ryK80yCiIiIjErSLrC0tDS94+TkZHh6euLAgQPo37+/7ryjoyOUSmW96hRFEUuXLsXbb7+NiIgIAMCXX34JhUKBdevW4YUXXjDcDdSHVgOkTQcg1nBRBCAAaTOAjkPZHUZERGQkJjUIWqVSAQDc3d31zq9atQotWrRAQEAA4uPjUVxcXGsdubm5yM/PR0hIiO6cXC5H3759sWvXrhrfU1paCrVarfcymHM7q7f86BEB9aWKckRERGQUJjMIWqvVIi4uDkFBQQgICNCdf+mll9CmTRt4e3vj8OHDmD59OrKzs7F27doa68nPzwcAKBQKvfMKhUJ3raqEhATMnTvXQHdSxa0Cw5YjIiKih2YyCVBMTAyOHj2K7du3650fO3as7v+7dOkCLy8vDBo0CDk5OWjXrp1BPjs+Ph5TpkzRHavVavj4+Bikbjgr7l+mIeWIiIjooZlEF1hsbCw2bNiArVu3olWrVnWW7du3LwDg9OnTNV6vHCtUUKDfolJQUFDrOCI7Ozu4urrqvQymTT/A1RuAUEsBAXBtWVGOiIiIjELSBEgURcTGxiIlJQW//vorfH197/uerKwsAICXl1eN1319faFUKrFlyxbdObVajT179iAwMNAgcTeIlQwIX3T3oGoSdPc4fCEHQBMRERmRpAlQTEwMvv76a6xevRouLi7Iz89Hfn4+bt++DQDIycnBvHnzcODAAZw9exapqakYNWoU+vfvj65du+rq6dixI1JSUgAAgiAgLi4O8+fPR2pqKo4cOYJRo0bB29sbkZGRUtwm4P8MMPJLwLVK0ubqXXHe/xlp4iIiIrJQko4BSkxMBFCx2OG9kpKSEB0dDVtbW2zevBlLly5FUVERfHx8MGLECLz99tt65bOzs3UzyABg2rRpKCoqwtixY3Hjxg088cQTSEtLg729faPfU638n6mY6s6VoImIiCQniKJY0wI1Fk2tVkMul0OlUhl2PBARERE1moZ8f5vEIGgiIiIiY2ICRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkca6kDIBOj1QDndgK3CgBnBdCmH2AlkzoqIiIig2ICRH85lgqkTQfUl/865+oNhC8C/J+RLi4ieigarYi9uddQeLMEni726OPrDpmVIHVYRJJiAkQVjqUCa0YBEPXPq/Mqzo/8kkkQkRlKO5qHuT8eQ56qRHfOS26P2cP8ER7gJWFkRNLiGCCq6PZKm45qyQ/w17m0GRXliMhspB3Nw/ivD+olPwCQryrB+K8PIu1onkSREUlP0gQoISEBvXv3houLCzw9PREZGYns7Oway4qiiCFDhkAQBKxbt67OeqOjoyEIgt4rPDy8Ee6giTi3U7/bqxoRUF+qKEdEZkGjFTH3x2N1/bMGc388Bo22phJETZ+kCVBmZiZiYmKwe/dupKeno6ysDKGhoSgqKqpWdunSpRCE+vdZh4eHIy8vT/f65ptvDBl603KrwLDliEhye3OvVWv5uZcIIE9Vgr2514wXFJEJkXQMUFpamt5xcnIyPD09ceDAAfTv3193PisrC++//z72798PL6/69Vnb2dlBqVQaNN4my1lh2HJEJLnCm7UnPw9SjqipMakxQCqVCgDg7u6uO1dcXIyXXnoJn3zySYMSmoyMDHh6esLPzw/jx4/H1atXay1bWloKtVqt97IobfpVzPZCbS1sAuDasqIcEZkFTxd7g5YjMgitBsjdBhz5vuK/Eo4tNZlZYFqtFnFxcQgKCkJAQIDu/BtvvIF+/fohIiKi3nWFh4fj2Wefha+vL3JycjBz5kwMGTIEu3btgkxWfU2bhIQEzJ071yD3YZasZBVT3deMQkUSdO+YgLtJUfhCrgdEZEb6+LrDS26PfFVJjeOABABKecWUeCKjMLGlVgRRFE1iBNz48ePxyy+/YPv27WjVqhUAIDU1FW+++SYOHToEZ2dnAIAgCEhJSUFkZGS96z5z5gzatWuHzZs3Y9CgQdWul5aWorS0VHesVqvh4+MDlUoFV1fXh7sxc1LjH86WFckPp8ATmZ3KWWBAjf+sQeIrPTgVnoyjtqVWKv80GmipFbVaDblcXq/vb5NoAYqNjcWGDRvw22+/6ZIfAPj111+Rk5MDNzc3vfIjRozAk08+iYyMjHrV/8gjj6BFixY4ffp0jQmQnZ0d7OzsHuYWmgb/Z4COQ7kSNFETER7ghcRXelRbB0jJdYDImO671IpQsdRKx6FG/b6RNAESRRETJ05ESkoKMjIy4Ovrq3d9xowZ+L//+z+9c126dMEHH3yAYcOG1ftzLl68iKtXr9Z7ALVFs5IBvk9KHQURGUh4gBcG+yu5EjRJpyFLrRjx+0fSBCgmJgarV6/G+vXr4eLigvz8fACAXC6Hg4MDlEpljQOfW7durZcsdezYEQkJCRg+fDhu3bqFuXPnYsSIEVAqlcjJycG0adPQvn17hIWFGe3eiIhMhcxKQGC75lKHQZbKRJdakTQBSkxMBAAEBwfrnU9KSkJ0dHS968nOztbNIJPJZDh8+DBWrlyJGzduwNvbG6GhoZg3bx67uchouPcSEdFdJrrUiuRdYIZ4z73nHBwcsHHjxoeKi+hhcO8lIqJ7VC61os5DzeOAhIrrRl5qxaTWASIyd9x7iYioisqlVgBUX29OuqVWmAARGQj3XiIiqoX/MxVT3V2rtIK7ehtsCnxDmcQ0eKKmoCF7L3FAKhFZHBNbaoUJEJGBcO8lIqL7MKGlVpgAERkI916yUFqNyfyLlojqjwkQkYFw7yULZGJ7GxFR/XEQNJGByKwEzB7mD6DWeQ6YPcyf6wE1FZV7G1Vd4VadV3H+WKo0cRFRvTABIjKgyr2XlHL9bi6l3J4bTzYl993bCBV7G2k1xoyKiBqAXWBEBsa9lyyAie5tRET1xwSIqBFw76UmzkT3NiKi+mMCRETUUCa6txGRqTOlfRKZABERNZSJ7m1EZMpMbZ9EDoImImooE93biMhUmeI+iUyAiIgehAnubURkikx1n0R2gRERPSgT29uIyBSZ6j6JTICIiB6GCe1tRGSKTHWfRHaBERERUaMx1X0SmQARERFRo6ncJ7G2ye4CKmaDGXufRCZARERE1GhMdZ9EJkBERETUqExxn0QOgiYiIqJGZ2r7JDIBIiIiIqMwpX0SmQARERE1Aaa0z5Y5YAJERERk5kxtny1zwEHQREREZswU99kyB0yAiIiIzJSp7rNlDpgAERERmamG7LNF+pgAERERmSlT3WfLHDABIiIiMlOmus+WOWACREREZKZMdZ8tc8AEiIiIyEyZ6j5b5oAJEBERkRkzxX22zAEXQiQiIjJzprbPljlgAkRERNQEmNI+W+ZA0i6whIQE9O7dGy4uLvD09ERkZCSys7NrLCuKIoYMGQJBELBu3bo66xVFEe+88w68vLzg4OCAkJAQnDp1qhHugIiIiMyRpAlQZmYmYmJisHv3bqSnp6OsrAyhoaEoKiqqVnbp0qUQhPo15S1evBgffvghli9fjj179sDJyQlhYWEoKeE6CERERAQIoiiazPrYV65cgaenJzIzM9G/f3/d+aysLDz99NPYv38/vLy8kJKSgsjIyBrrEEUR3t7eePPNNzF16lQAgEqlgkKhQHJyMl544YX7xqFWqyGXy6FSqeDq6mqQeyMiIqLG1ZDvb5OaBaZSqQAA7u5/rVdQXFyMl156CZ988gmUSuV968jNzUV+fj5CQkJ05+RyOfr27Ytdu3bV+J7S0lKo1Wq9FxERETVdJpMAabVaxMXFISgoCAEBAbrzb7zxBvr164eIiIh61ZOfnw8AUCgUeucVCoXuWlUJCQmQy+W6l4+PzwPeBREREZkDk5kFFhMTg6NHj2L79u26c6mpqfj1119x6NChRv3s+Ph4TJkyRXesVquZBBERETVhJtECFBsbiw0bNmDr1q1o1aqV7vyvv/6KnJwcuLm5wdraGtbWFfnaiBEjEBwcXGNdld1kBQUFeucLCgpq7UKzs7ODq6ur3ouIiIiaLkkTIFEUERsbi5SUFPz666/w9fXVuz5jxgwcPnwYWVlZuhcAfPDBB0hKSqqxTl9fXyiVSmzZskV3Tq1WY8+ePQgMDGy0eyEiIiLzIWkXWExMDFavXo3169fDxcVFN0ZHLpfDwcEBSqWyxlab1q1b6yVLHTt2REJCAoYPHw5BEBAXF4f58+ejQ4cO8PX1xaxZs+Dt7V3rzDEiIiKyLJImQImJiQBQrTsrKSkJ0dHR9a4nOztbN4MMAKZNm4aioiKMHTsWN27cwBNPPIG0tDTY29vXUQsRERFZCpNaB8hUcB0gIiIi82O26wARERERGQMTICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOJIuhkq0YPQaEXszb2Gwpsl8HSxRx9fd8isBKnDIiIiM8IEiMxK2tE8zP3xGPJUJbpzXnJ7zB7mj/AALwkjIyIic8IuMDIbaUfzMP7rg3rJDwDkq0ow/uuDSDuaJ1FkRERkbpgAkVnQaEXM/fEYxBquVZ6b++MxaLQ1lSBzpdGK2JVzFeuzLmFXzlX+fInIYNgFRmZhb+61ai0/9xIB5KlKsDf3GgLbNTdeYNRo2N1JRI2JLUBkFgpv1p78PEg5Mm3s7iSixsYEyIjYnP/gPF3sDVqOTBe7O4nIGNgFZiRszn84fXzd4SW3R76qpMYvRgGAUl4xJZ7MG7s7icgY2AJkBGzOf3gyKwGzh/kDqEh27lV5PHuYP9cDagLY3UlExsAEqJGxOd9wwgO8kPhKDyjl+t1cSrk9El/pwZa0JoLdnWSKOISh6WEXWCNjc75hhQd4YbC/kitBN2Hs7iRTwyEMTRNbgBoZm/MNT2YlILBdc0Q81hKB7Zoz+Wli2N1JpoRDGJouJkCNjM35RA3H7k4yBRzC0LSxC6yRsTmf6MGwu9OymOImxxzC0LQxAWpklc35478+CAHQS4LYnE9Ut8ruTmra0o7mYV7qEfjc+h2euIFCuOGCczfMeqaLpK19HMLQtDEBMoLK5vyqg+iUHERHRBYu7Wge1q1ejv/ZfAlv22u685dL3fHu6lHAS/+Q7O9IDmFo2pgAGQmb88nUmGKXA1kWjVZExrov8KnN0mrXlLiGT22WYuY6Wwz2nynJn00OYWjamAAZEZvzyVRwWi+Zgr05VzCpbAUAoGp+YyUAWhGYVPZf7M15HYEdPI0en9kNYdBqgHM7gVsFgLMCaNMPsJJJHZXJ4iwwIgvDab1kKjRnd8BbuFYt+alkJQDewlVozu4wbmD3MJsZicdSgaUBwMqngR/GVPx3aUDFeaoRW4BID7tFmrb7TesVUDGtd7C/kj93anSewg2DlmssJj+E4VgqsGYUUPU3W51XcX7kl4D/M5KEZsqYABmRRqvBwcKDuFJ8BR6OHujh2QMyE2qeTDuahzk/HsWVsuMQrG9CLHeBh00nzBkWYDr/ygGgKb+Dg0e+whX1eXi4tkaPLq9CZm0rdVh6TPVnrT+tVwuZY67uZ60p9oUIK5Oa1muqz/FejPHBtXukHbC94v81AA7a2+GKTAYPjQY9Skohu7ec5LSwdjoDG+EKrB09ALgBkP4ZQqsB0qYDEGt5hgKQNgPoONQkusNM6c8iEyAj2XxuMxbuXYiC4gLdOYWjAjP6zEBImxAJI6uQdjQPseu/hJ3iRzjaqHTnb5bJEbt+GD7GKJNIgjZvT8DCk6tQIPvrX16KQx9gxqMvI+SJeAkj+4sp/6wrp+tauxyFneJHWN3zs9aWyVFaMAzlNwNMYlqvKT/HSozx4cjaBuG2gxLboMLiFs1QYP3XV5KivBzT/ryOJyGHQ9sgCaM07WeIczsB9WVsdnTAwubVn+GMq9cRor5UUc73SQkDNb3nyDFARrD53GZMyZii90MHgMLiQkzJmILN5zZLFFkFjVbErPRvYN/yawjWKr1rgrUK9i2/xqz0byRf7XTz9gRMOb0KBVX+1BZaAVNOr8Lm7QnSBHYPU/9Ze7rYw9rlaJ0/a2uXo5JP6zX15wgwRoOwkmFHUDSmKlqgQKbfClAok2GqogV2BEVL2nJh8s/wVgE2OzpgimfNz3CKZwtsdnSoGBgtIVN8jkyAGplGq8HCvQsh1jDqovLcor2LoNFqjB2azu4zV1DsshYAIFTp0q48LnZZi91nrhg5sr9oyu9g4clVFU+sSpDi3eNFJ1dBU37H+MHdZQ4/655t5HD02gCg9p+1o3IDeraRGzmyv5jDc2SMhqHRarAwb0vF73BNv9eCgEV5v0oWo1k8QycPLGzerO6/G5s3g8bJw/jB3WWqz1HSBCghIQG9e/eGi4sLPD09ERkZiezsbL0y48aNQ7t27eDg4AAPDw9ERETgxIkTddYbHR0NQRD0XuHh4Y15K7U6WHiwWsZ7LxEi8ovzcbDwoBGj0rc3fz+sbFTVvhArCQJgZaPC3vz9xg3sHgePfFXR7VVLkKIgIF8m4OCRr4wc2V/M4Wf9+5+HIMpu1PmzFq1v4Pc/Dxk3sHuYw3NkjIZx/xghaYxm8Qzt7Sq6ver6u9HaGgft7Ywc2V9M9TlKmgBlZmYiJiYGu3fvRnp6OsrKyhAaGoqioiJdmZ49eyIpKQnHjx/Hxo0bIYoiQkNDodHUnSmGh4cjLy9P9/rmm28a+3ZqdKW4fq0m9S3XGKysbxm0XGO4oj5v0HKNwRx+1ozRMBijYZh6jKYeHwBcKbl2/0INKNcYTPU5SjoIOi0tTe84OTkZnp6eOHDgAPr37w8AGDt2rO5627ZtMX/+fHTr1g1nz55Fu3a1zwyws7ODUqmsVxylpaUoLS3VHavV6obcRp08HOvX7Fjfco2hb+u2WJFdv3JS8XBtbdByjcEcftaM0TAYo2GYeoymHl9DPpsxVmdSY4BUqopBme7uNS8rXlRUhKSkJPj6+sLHx6fOujIyMuDp6Qk/Pz+MHz8eV69erbVsQkIC5HK57nW/uhuih2cPKBwVEFBz86QAAUpHJXp49jDYZzZUb2VPyG1aQKxljLMoAm42Huit7GncwO7Ro8urUGhECLUEKYgilBoRPbq8auTI/mIOP2vGaBj3xihoRfif0yLoDy38z2khaEWTi7EmjPH+TD0+gDE+DJNJgLRaLeLi4hAUFISAgAC9a59++imcnZ3h7OyMX375Benp6bC1rX3dl/DwcHz55ZfYsmULFi1ahMzMTAwZMqTWbrP4+HioVCrd68KFCwa7L5mVDDP6zACAaj/8yuPpfaZLuiaHzEqGOUFvVXQhV80vxIqu5dlBM6WN0doWMx59GQCqJUGVx9MffVnS9YDM5WfNGB9eZYx9srX45FMN5qzWYnKqFnNWVxz3ydaaTIyA6T/He2OqZAoxmnp8AGN8GIIo1vbvfuMaP348fvnlF2zfvh2tWrXSu6ZSqVBYWIi8vDwsWbIEly5dwo4dO2BvX7+pumfOnEG7du2wefNmDBo06L7l1Wo15HI5VCoVXF1dH+h+qqpp/QOloxLT+0yXfh2Ju2peo0GJGaYUYw3rACk1Iqab+DpA5vCzZowNo960CRcnTQYAvb/SK/9CbfXhMriGhho9rqpM/TkCph+jqccHMMZKDfn+NokEKDY2FuvXr8dvv/0GX1/fOsveuXMHzZo1w4oVK/Diiy/W+zM8PDwwf/58jBs37r5lGyMBAkxrBczamEWMXAnaIBjjgxM1GpweFILy/PyaCwgCrBUKtN+yGYJM+nhN9Tney9RjNPX4AMYINOz7W9JB0KIoYuLEiUhJSUFGRsZ9k5/K94iiqDdo+X4uXryIq1evwstL2pWMrUTA/5yI8isirD1EWEk3Jq1WMisZeit7Sx1GnWTWtujdfYzUYdTJLJ4jY3xgxfsP1J78AIAoojw/H8X7D8Cpbx/jBVYLU32O9zL1GE09PoAxNpSkCVBMTAxWr16N9evXw8XFBfl3/0KRy+VwcHDAmTNn8N133yE0NBQeHh64ePEiFi5cCAcHBzz11FO6ejp27IiEhAQMHz4ct27dwty5czFixAgolUrk5ORg2rRpaN++PcLCwqS6Vag3bULBggS9vzStlUooZsabRDM5EdVf+ZX6TdetbzkyA1pNxXYStwoAZwXQpp9J7K1FD07SBCgxMREAEBwcrHc+KSkJ0dHRsLe3x7Zt27B06VJcv34dCoUC/fv3x86dO+Hp6akrn52drZtBJpPJcPjwYaxcuRI3btyAt7c3QkNDMW/ePNjZSbMQlHrTJlyaHIeq06zKCwoqzi9byiSIyIxYe9Sv+ba+5cjEHUut2HBUffmvc67eQPgi7rJuxkxiDJCpMeQYIHMbK0BE91deVo49fZ+EW/GNGqfSagFcd3TD43u2wdqGe06btWOpwJpRqD5F9u7Q95FfMgkyIQ35/jaZafBNVUPGChCRedh3XoVPAiIgoCLZuZcWFV+NnwZEYN95VfU3k/nQaipafmrYw0p3Lm1GRTkyO0yAGhnHChA1PYU3S7DTuwvm94nCVXv9jWP/dHDD/D5R2OndBYU3SySKkAzi3E79bq9qREB9qaIcmR22zTYyjhUgano8XSrWINvp3QW7vTqj859n4F56E9fsXPBHi0egFaz0ypGZulX7Bp4PVI5MChOgRubYqyeslUqUFxRUGwQNQDcGyLGXdNtMEFHD9PF1h5fcHvmqEmgFKxzxaK93XQCglNujj2/N2/qQmXBWGLYcmRR2gTUyQSaDYubdFYqFKvug3D1WzIznAGgiMyKzEjB7mD8AVFnY/6/j2cP8IbOqee8jMhNt+lXM9qplDytAAFxbVpQjs8MEyAhcQ0PRctlSWCv0/5VgrVCgJafAE5ml8AAvJL7SA0q5fjeXUm6PxFd6IDxA2oVXyQCsZBVT3QHUmuqGL+R6QGaK0+Br0FhbYYgaTcWssCtXYO3hAcdePdnyQ2TmNFoRe3OvofBmCTxdKrq92PLTxNS4DlDLiuSHU+BNitntBWZqGisBIiIiM8WVoM2C2ewFRkREZBasZIDvk1JHQQbEMUBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZnIdaCLGkpATfffcdioqKMHjwYHTo0MFQcRERERE1mnonQFOmTEFZWRk++ugjAMCdO3cQGBiIP/74A46Ojpg2bRrS09MRGBjYaMESERERGUK9u8A2bdqEwYMH645XrVqFc+fO4dSpU7h+/Tqee+45zJ8/v1GCJCIiIjKkeidA58+fh7+/v+5406ZN+Pvf/442bdpAEARMnjwZhw4dapQgiYiIiAyp3gmQlZUV7t04fvfu3Xj88cd1x25ubrh+/bphoyMiIiJqBPVOgDp16oQff/wRAPDHH3/g/PnzGDhwoO76uXPnoFAoDB8hERERkYHVexD0tGnT8MILL+Cnn37CH3/8gaeeegq+vr666z///DP69OnTKEESERERGVK9W4CGDx+On3/+GV27dsUbb7yB7777Tu+6o6MjJkyYYPAAiYiIiAxNEO8d2FOHd999F1OnToWjo2NjxyQ5tVoNuVwOlUoFV1dXqcMhIiKiemjI93e9W4Dmzp2LW7duPXRwRERERFKrdwJUz4YiIiIiIpPXoL3ABEForDiIiIiIjKZBe4E9+uij902Crl279lABERERETW2BiVAc+fOhVwub6xYiIiIiIyiQQnQCy+8AE9Pz8aKhYiIiMgo6j0GiON/iIiIqKngLDAiIiKyOPVOgLRarcG7vxISEtC7d2+4uLjA09MTkZGRyM7O1iszbtw4tGvXDg4ODvDw8EBERAROnDhRZ72iKOKdd96Bl5cXHBwcEBISglOnThk0diIiIjJfDZoGb2iZmZmIiYnB7t27kZ6ejrKyMoSGhqKoqEhXpmfPnkhKSsLx48exceNGiKKI0NBQaDSaWutdvHgxPvzwQyxfvhx79uyBk5MTwsLCUFJSYozbIiIiIhNX760wjOHKlSvw9PREZmYm+vfvX2OZw4cPo1u3bjh9+jTatWtX7booivD29sabb76JqVOnAgBUKhUUCgWSk5Pxwgsv3DcOboVh2kSNBsX7D6D8yhVYe3jAsVdPCDKZ1GEREZHEGvL93aBZYI1NpVIBANzd3Wu8XlRUhKSkJPj6+sLHx6fGMrm5ucjPz0dISIjunFwuR9++fbFr164aE6DS0lKUlpbqjtVq9cPcBjUi9aZNKFiQgPL8fN05a6USipnxcA0NlTAyItPFfzQQVSdpF9i9tFot4uLiEBQUhICAAL1rn376KZydneHs7IxffvkF6enpsLW1rbGe/LtfjAqFQu+8QqHQXasqISEBcrlc96otuSJpqTdtwqXJcXrJDwCUFxTg0uQ4qDdtkigyItOl3rQJpweF4HxUFC5PnYrzUVE4PSiEvy9k8UwmAYqJicHRo0fx7bffVrv28ssv49ChQ8jMzMSjjz6KkSNHGnQ8T3x8PFQqle514cIFg9VNhiFqNChYkADU1GN791zBggSIdYwNI7I0/EcDUe1MIgGKjY3Fhg0bsHXrVrRq1aradblcjg4dOqB///74/vvvceLECaSkpNRYl1KpBAAUFBTonS8oKNBdq8rOzg6urq56LzItxfsPVPtLXI8oojw/H8X7DxgvKCITxn80ENVN0gRIFEXExsYiJSUFv/76K3x9fev1HlEU9cbs3MvX1xdKpRJbtmzRnVOr1dizZw8CAwMNFjsZV/mVKwYtR9TU8R8NRHWTNAGKiYnB119/jdWrV8PFxQX5+fnIz8/H7du3AQBnzpxBQkICDhw4gPPnz2Pnzp147rnn4ODggKeeekpXT8eOHXUtQoIgIC4uDvPnz0dqaiqOHDmCUaNGwdvbG5GRkVLcJhmAtYeHQcsRNXX8RwNR3SSdBZaYmAgACA4O1juflJSE6Oho2NvbY9u2bVi6dCmuX78OhUKB/v37Y+fOnXqLMmZnZ+tmkAHAtGnTUFRUhLFjx+LGjRt44oknkJaWBnt7e6PcFxmeY6+esFYqUV5QUHOTviDAWqGAY6+exg+OyATxHw1EdTOpdYBMBdcBMk2VAzoB6CdBd/epa7lsKafCE90lajQ4PSjkvv9oaL9lM6fEU5PRkO9vkxgETVQfrqGhaLlsKayrLHFgrVAw+SGqQpDJoJgZf/egymbWd48VM+OZ/JDFYgtQDdgCZNq4qBtR/XHxULIkDfn+ZgJUAyZARNSU8B8NZCnMdisMIiIyPEEmg1PfPlKHQWRSOAaIiIiILA4TICIiIrI4TICIiIjI4nAMEFFj0GqAczuBWwWAswJo0w+w4qBTIiJTwQSI9HC2iAEcSwXSpgPqy3+dc/UGwhcB/s9IFxcREekwASIdrhdiAMdSgTWjAFRZXUKdV3F+5JdMgoiITADHABGAv7aZqLp7dHlBAS5NjoN60yaJIjMjWk1Fy0/V5Af461zajIpyREQkKSZABFGjQcGChJr3C7p7rmBBAkQNv7jrdG6nfrdXNSKgvlRRjoiIJMUEiCrG/FRp+dEjiijPz0fx/gPGC8oc3SowbDkiImo0TIAI5VeuGLScxXJW3L9MQ8oREVGjYQJEsPbwMGg5i9WmX8VsLwi1FBAA15YV5YiISFJMgAiOvXrCWqkEhFq+uAUB1kolHHv1NG5g5sZKVjHVHUD1JOjucfhCrgdERGQCmAARBJkMipnxdw+qfHHfPVbMjOd6QPXh/0zFVHdXL/3zrt6cAk9EZEIEUaxp6o9lU6vVkMvlUKlUcHV1lToco+E6QAbElaCJiIyuId/fTIBqYKkJEMCVoMnEMJEkogZoyPc3V4ImPYJMBqe+faQOg4hbihBRo+IYICIyPZVbilRdWLJyS5FjqdLERURNBhMgIjIt3FKEiIyACRARmRZuKUJERsAEiIhMC7cUISIjYAJERKaFW4oQkREwASIi08ItRYjICJgAEZFp4ZYiRGQETICIyPRwSxEiamRcCJGITJP/M0DHoVwJmogaBRMgIjJdVjLA90mpoyCiJohdYERERGRxmAARERGRxWEXGJGlMoOd1kWNBsX7D6D8yhVYe3jAsVdPCDLTipGIzBMTICJLZAY7ras3bULBggSU5+frzlkrlVDMjIdraKiEkZElYjLe9AiiKNa046BFU6vVkMvlUKlUcHV1lTocIsOq3Gm92majd9fYMYFp5upNm3BpchxQ9a8noSLGlsuWMgkio2Eybj4a8v0t6RighIQE9O7dGy4uLvD09ERkZCSys7N1169du4aJEyfCz88PDg4OaN26NSZNmgSVSlVnvdHR0RAEQe8VHh7e2LdDZPrMYKd1UaNBwYKE6skPoDtXsCABooa7wVPjq0zG701+AKC8oACXJsdBvWmTRJHRw5I0AcrMzERMTAx2796N9PR0lJWVITQ0FEVFRQCAy5cv4/Lly1iyZAmOHj2K5ORkpKWlYcyYMfetOzw8HHl5ebrXN99809i3Q2T6zGCn9eL9B6p92egRRZTn56N4/wHjBUUWicl40ybpGKC0tDS94+TkZHh6euLAgQPo378/AgIC8MMPP+iut2vXDu+99x5eeeUVlJeXw9q69vDt7OygVCrrFUdpaSlKS0t1x2q1uoF3QmQmzGCn9fIrVwxajuhBNSQZd+rbx3iBkUGY1DT4yq4td3f3Osu4urrWmfwAQEZGBjw9PeHn54fx48fj6tWrtZZNSEiAXC7XvXx8fB7sBohMnRnstG7t4WHQckQPisl402YyCZBWq0VcXByCgoIQEBBQY5k///wT8+bNw9ixY+usKzw8HF9++SW2bNmCRYsWITMzE0OGDIGmlmbK+Ph4qFQq3evChQsPfT9EJskMdlp37NUT1kqlbsBzNYIAa6USjr16GjcwsjhMxps2k5kFNn78ePzyyy/Yvn07WrVqVe26Wq3G4MGD4e7ujtTUVNjY2NS77jNnzqBdu3bYvHkzBg0adN/ynAVGTZpuFhigPxjaBGeBAfrjLzgLjIxI1GhwelAIygsKah4HJAiwVijQfstmTok3EWYzC6xSbGwsNmzYgK1bt9aY/Ny8eRPh4eFwcXFBSkpKg5IfAHjkkUfQokULnD592lAhE5kvM9hp3TU0FC2XLYW1Qr8rzlqhYPJDRiPIZFDMjL97UKVF8u6xYmY8kx8zJekgaFEUMXHiRKSkpCAjIwO+vr7VyqjVaoSFhcHOzg6pqamwt7dv8OdcvHgRV69ehZeX1/0LE1kCM9hp3TU0FC6DBnHxOZKUa2gosGxp9XWAFAquA2TmJO0CmzBhAlavXo3169fDz89Pd14ul8PBwQFqtRqhoaEoLi5GSkoKnJycdGU8PDwgu/sXYceOHZGQkIDhw4fj1q1bmDt3LkaMGAGlUomcnBxMmzYNN2/exJEjR2BnZ3ffuNgFRkRE9+JK0OahId/fkrYAJSYmAgCCg4P1ziclJSE6OhoHDx7Enj17AADt27fXK5Obm4u2bdsCALKzs3UzyGQyGQ4fPoyVK1fixo0b8Pb2RmhoKObNm1ev5IeIiIzP1BMMQSbjVPcmxmQGQZsStgARERkPt5ogQzG7QdBERGSZuNUESYUJEBERSYJbTZCUmAAREZEkuO8bSYkJEBERSYJbTZCUmAAREZEkuNUESYkJEBERSYL7vpGUmAAREZEkuNUESYkJEBERSYb7vpFUJF0JmoiIiPu+kRSYABERkeS41QQZG7vAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjhcCJHIQokaDVfeJSKLxQSIqBGYenKh3rQJBQsSUJ6frztnrVRCMTOeey8RkUVgAkRkYKaeXKg3bcKlyXGAKOqdLy8oqDjPDSiJyAJwDBCRAVUmF/cmP8BfyYV60yaJIqsgajQoWJBQLfmpuFhxrmBBAkSNxsiREREZF1uAHoJGo0FZWZnUYZCJEDUaXF6xAlqlsuYCgoDLK1bAJihIsu6w4t8P444gAF5etZa5A+D6/gNw7Na1XnXa2NhAZkLde0RE9SGIYk3/FLRsarUacrkcKpUKrq6u1a6Looj8/HzcuHHD+MGRydKWlkJz9ep9y8maN4eVnZ0RIqpOe/s2NNev37ecrFkzWDk41LteNzc3KJVKCILwMOERET2U+31/34stQA+gMvnx9PSEo6Mj/9InAEC5Wo1yq/v3KlsrlbC+zy9mY9EUFaPM+v6/9jYtW0Hm5HjfcqIoori4GIWFhQAArzpaloiITAkToAbSaDS65Kd58+ZSh0MmRFOuwZ16JEC2jk6Q2dsbIaLqRDs7lP55BWIdXbeCjQ3s3JvVO7F3uNtSVFhYCE9PT3aHEZFZ4CDoBqoc8+PoeP9/HZNlsXJyhGBjU2cZwcYGVvVoWWksgiDAprYxSnfZPEBXVuXvA8fEEZG5YAL0gNjtRVU1VnJhaDK5HLY+PtWSNcHGBrY+PpDJ5Q2uU+p7IiJqKHaBERmQTC6HLYCy/Hy9bibBxgY2SuUDJReNQSaXw8rVFdqiYojlZRCsK1qmmMgQkaVgAkQGFx0djRs3bmDdunUAgODgYDz22GNYunTpA9dpiDqMxVySC0EQIHN2kjoMIiJJsAvMgkRHR0MQBAiCAFtbW7Rv3x7vvvsuysvLG/Vz165di3nz5tWrbEZGBgRBqLbEQEPqaCxz5szBY489Vuv13NxcvPTSS/D29oaDgwPadPTDiKgonLp4AStXrtQ9+9peZ8+exZw5cyAIAsLDw6vV/69//QuCICA4OLjxbpKIyEKwBUgiGq2IvbnXUHizBJ4u9ujj6w6ZVeO3EISHhyMpKQmlpaX4+eefERMTAxsbG8THx+uVu3PnDmxtbQ3yme7u7iZRR2MqKyvD4MGD4efnh7Vr18LLywsXL17EL7/8ghs3buD555/XS2qeffZZBAQE4N1339Wd8/DwAFAxlXzr1q24ePEiWrVqpbv+xRdfoHXr1sa7KSKiJowtQBJIO5qHJxb9ihf/sxuTv83Ci//ZjScW/Yq0o3mN/tl2dnZQKpVo06YNxo8fj5CQEKSmpiI6OhqRkZF477334O3tDT8/PwDAhQsXMHLkSLi5ucHd3R0RERE4e/asrj6NRoMpU6bAzc0NzZs3x7Rp01B1bc3g4GDExcXpjktLSzF9+nT4+PjAzs4O7du3x3//+1+cPXsWAwcOBAA0a1YxDTs6OrrGOq5fv45Ro0ahWbNmcHR0xJAhQ3Dq1Cnd9eTkZLi5uWHjxo3o1KkTnJ2dER4ejry8v55xRkYG+vTpAycnJ7i5uSEoKAjnzp17oOf6xx9/ICcnB59++ikef/xxtGnTBkFBQZg/fz4ef/xxODg4QKlU6l62trZwdHTUO1c5fdzT0xOhoaFYuXKlrv6dO3fizz//xNChQx8oPiIiUyBqNCjasxeqDT+haM9eSbfdYQJkZGlH8zD+64PIU5Xonc9XlWD81weNkgTdy8HBAXfu3AEAbNmyBdnZ2UhPT8eGDRtQVlaGsLAwuLi4YNu2bdixY4cukah8z/vvv4/k5GR88cUX2L59O65du4aUlJQ6P3PUqFH45ptv8OGHH+L48eP47LPP4OzsDB8fH/zwww8AgOzsbOTl5WHZsmU11hEdHY39+/cjNTUVu3btgiiKeOqpp/SmYRcXF2PJkiX46quv8Ntvv+H8+fOYOnUqAKC8vByRkZEYMGAADh8+jF27dmHs2LEPPE7Hw8MDVlZW+P7776ExwC/06NGjkZycrDv+4osv8PLLLxusVY6IyNjUmzbh9KAQnI+KwuWpU3E+KgqnB4VItkeipAlQQkICevfuDRcXF3h6eiIyMhLZ2dm669euXcPEiRPh5+cHBwcHtG7dGpMmTYJKpaqzXlEU8c4778DLywsODg4ICQnRax2QikYrYu6Px1DT3iOV5+b+eAwabePvTiKKIjZv3oyNGzfib3/7GwDAyckJK1asQOfOndG5c2d899130Gq1WLFiBbp06YJOnTohKSkJ58+fR0ZGBgBg6dKliI+Px7PPPotOnTph+fLlkNcx0+nkyZNYs2YNvvjiCwwfPhyPPPIIBg0ahOeffx4ymUzX1eXp6QmlUlljXadOnUJqaipWrFiBJ598Et26dcOqVatw6dIl3cBroKJbavny5ejVqxd69OiB2NhYbNmyBUDFcukqlQpPP/002rVrh06dOiEqKuqBu5hatmyJDz/8EO+88w6aNWuGv/3tb5g3bx7OnDnzQPU9/fTTUKvV+O2331BUVIQ1a9Zg9OjRD1QXEZHUTHGjaEkToMzMTMTExGD37t1IT09HWVkZQkNDUVRUBAC4fPkyLl++jCVLluDo0aNITk5GWloaxowZU2e9ixcvxocffojly5djz549cHJyQlhYGEpKSup8X2Pbm3utWsvPvUQAeaoS7M291mgxbNiwAc7OzrC3t8eQIUPw/PPPY86cOQCALl266LUw/P777zh9+jRcXFzg7OwMZ2dnuLu7o6SkBDk5OVCpVMjLy0Pfvn1177G2tkavXr1q/fysrCzIZDIMGDDgge/h+PHjsLa21vvc5s2bw8/PD8ePH9edc3R0RLt27XTHXl5eui0b3N3dER0djbCwMAwbNgzLli3TdY+dP39ed7/Ozs5YsGBBveKKiYlBfn4+Vq1ahcDAQPzvf/9D586dkZ6e3uB7tLGxwSuvvIKkpCT873//w6OPPoquXeu3OSkRkSkRNRoULEgAatp69O65ggUJRu8Ok3QQdFpamt5xcnIyPD09ceDAAfTv3x8BAQG6LhEAaNeuHd577z288sorKC8vh3UNexqJooilS5fi7bffRkREBADgyy+/hEKhwLp16/DCCy807k3VofBm/RKw+pZ7EAMHDkRiYiJsbW3h7e2t9wydnPSnRN+6dQs9e/bEqlWrqtVTOWC3oRwasMHmw7KputCfIOiNT0pKSsKkSZOQlpaG7777Dm+//TbS09PRq1cvZGVl6co1ZAC2i4sLhg0bhmHDhmH+/PkICwvD/PnzMXjw4AbHP3r0aPTt2xdHjx5l6w8Rma3i/QeqtfzoEUWU5+ejeP8BOPXtY7S4TGoMUGXXVl1fOJU7vNaU/AAVU5Hz8/MREhKiOyeXy9G3b1/s2rWrxveUlpZCrVbrvRqDp0v99n+qb7kH4eTkhPbt26N169a1PsNKPXr0wKlTp+Dp6Yn27dvrveRyOeRyOby8vLBnzx7de8rLy3HgwIFa6+zSpQu0Wi0yMzNrvF7ZAlXXOJpOnTqhvLxc73OvXr2K7Oxs+Pv713lPVXXv3h3x8fHYuXMnAgICsHr1alhbW+vd64POQBMEAR07dtS1aDZUZVfk0aNH8dJLLz1QHUQAAK0GyN0GHPm+4r9a6QaekuUpv3LFoOUMxWQSIK1Wi7i4OAQFBSEgIKDGMn/++SfmzZuHsWPH1lpP/t0sU6FQ6J1XKBS6a1UlJCTovtDlcjl8fHwe8C7q1sfXHV5ye9Q2zFYA4CWvmBJvCl5++WW0aNECERER2LZtG3Jzc5GRkYFJkybh4sWLAIDJkydj4cKFWLduHU6cOIEJEyZUW8PnXm3btkVUVBRGjx6NdevW6epcs2YNAKBNmzYQBAEbNmzAlStXcOvWrWp1dOjQAREREXj99dexfft2/P7773jllVfQsmVLXavf/eTm5iI+Ph67du3CuXPnsGnTJpw6dQqdOnWq8323b99GVlaW3isnJwdZWVmIiIjA999/j2PHjuH06dP473//iy+++KLeMdXk119/RV5eHtzc3B64DrJwx1KBpQHAyqeBH8ZU/HdpQMV5IiOwrmePQX3LGYrJJEAxMTE4evQovv322xqvq9VqDB06FP7+/roxK4YSHx8PlUqle124cMGg9VeSWQmYPayihaJqElR5PHuYv1HWA6oPR0dH/Pbbb2jdurVukPOYMWNQUlICV1dXAMCbb76JV199FVFRUQgMDISLiwuGDx9eZ72JiYn4+9//jgkTJqBjx454/fXXda0kLVu2xNy5czFjxgwoFArExsbWWEdSUhJ69uyJp59+GoGBgRBFET///HO1bq+67u3EiRMYMWIEHn30UYwdOxYxMTEYN25cne87efIkunfvrvcaN24cWrVqhbZt22Lu3Lno27cvevTogWXLlmHu3Ll466236hVTTSqn6BM9kGOpwJpRgPqy/nl1XsV5JkFkBI69esJaqQRqm2UrCLBWKuHYq6dR4xLEqou2SCA2Nhbr16/Hb7/9Bl9f32rXb968ibCwMDg6OmLDhg2wt6+9i+jMmTNo164dDh06pLdq74ABA/DYY4/VOq36Xmq1GnK5XNfddq+SkhLk5ubC19e3zjjqknY0D3N/PKY3INpLbo/Zw/wRHuD1QHUSSckQvxdkYFpNRUtP1eRHRwBcvYG4I4CVzKihkeWpnAUGQH8w9N2kqOWypXANDX34z6nj+7sqSQdBi6KIiRMnIiUlBRkZGTUmP2q1GmFhYbCzs0Nqaup9/3L19fWFUqnEli1bdAmQWq3Gnj17MH78+Ma4jQYLD/DCYH+lJCtBE5GFOLezjuQHAERAfaminO+TRguLLJNraCiwbCkKFiToDYi2ViigmBlvkOSnoSRNgGJiYrB69WqsX78eLi4uujE6crkcDg4OUKvVCA0NRXFxMb7++mu9AcoeHh66lXM7duyIhIQEDB8+HIIgIC4uDvPnz0eHDh3g6+uLWbNmwdvbG5GRkVLdajUyKwGB7ZpLHQYRNVW3CgxbjughuYaGwmXQoIpZYVeuwNrDA469ekKQSdMCKWkClJiYCADVNndMSkpCdHQ0Dh48qJvp0759e70yubm5aNu2LYCKVYPvXRxx2rRpKCoqwtixY3Hjxg088cQTSEtLY9M8EVkOZ8X9yzSkHJEBCDKZUae618UkxgCZmsYeA0TU1PD3wgTpxgDlATWuP88xQNT0NGQMkMnMAiMiIgOykgHhi+4e1DLvNHwhkx+yWEyAiIiaKv9ngJFfAq5VZpe6elec939GmriITICkY4CIiKiR+T8DdBxaMdvrVkHFmJ82/djyQxaPCRARUVNnJeNUd6Iq2AVGREREFocJEJm8OXPm6K3qLZXg4GDExcVJHQYRERkAEyALkp+fj8mTJ6N9+/awt7eHQqFAUFAQEhMTUVxcLHV4DywjIwOCINS5CauU9RERkenhGCCpaDVGHZR45swZBAUFwc3NDQsWLECXLl1gZ2eHI0eO4PPPP0fLli3xzDM1zwgpKyur9yajpuzOnTuwtbWVOgwiIjIBbAGSwrHUigXKVj4N/DCm4r9LAxp1Z+YJEybA2toa+/fvx8iRI9GpUyc88sgjiIiIwE8//YRhw4bpygqCgMTERDzzzDNwcnLCe++9B6Bi5e527drB1tYWfn5++Oqrr3TvOXv2LARBQFZWlu7cjRs3IAgCMjIyAPzVsrJlyxb06tULjo6O6NevH7Kzs/ViXbhwIRQKBVxcXHS7z9fm7NmzGDhwIACgWbNmEAQB0dHRACq6rGJjYxEXF4cWLVogLCzsvnHWVR8AaLVaTJs2De7u7lAqlZgzZ059fwRERGRCmAAZ27FUYM2o6psUqvMqzjdCEnT16lVs2rQJMTExcHJyqrGMIOgvlDZnzhwMHz4cR44cwejRo5GSkoLJkyfjzTffxNGjRzFu3Di89tpr2Lp1a4Pjeeutt/D+++9j//79sLa2xujRo3XX1qxZgzlz5mDBggXYv38/vLy88Omnn9Zal4+PD3744QcAFVui5OXlYdmyZbrrK1euhK2tLXbs2IHly5ffN7b61Ofk5IQ9e/Zg8eLFePfdd5Gent7gZ0BERNJiF5gxaTVA2nTUvCy9CEAA0mZUrNlhwO6w06dPQxRF+Pn56Z1v0aKFrnUlJiYGixYt0l176aWX8Nprr+mOX3zxRURHR2PChAkAgClTpmD37t1YsmSJrsWkvt577z0MGDAAADBjxgwMHToUJSUlsLe3x9KlSzFmzBiMGTMGADB//nxs3ry51lYgmUwGd3d3AICnpyfc3Nz0rnfo0AGLFy/WHZ89e7bO2O5XX9euXTF79mxd3R9//DG2bNmCwYMH1+veiYjINLAFyJjO7aze8qNHBNSXKsoZwd69e5GVlYXOnTujtLRU71qvXr30jo8fP46goCC9c0FBQTh+/HiDP7dr1666//fyqlihtrCwUPc5ffv21SsfGBjY4M+o1LNnzwd+b03ujR2oiL8ydiIiMh9sATKmWwWGLVdP7du3hyAI1cbaPPLIIwAABweHau+prausNlZWFbn0vXvrlpWV1Vj23gHVlV1vWq22QZ9XX1XvoyFx1qTqYHBBEBotdiIiajxsATImZ4Vhy9VT8+bNMXjwYHz88ccoKip6oDo6deqEHTt26J3bsWMH/P39AQAeHh4AgLy8PN31ewcaN+Rz9uzZo3du9+7ddb6ncmaXRqO5b/31ibMh9RERkXliC5AxtelXsQmhOg81jwMSKq636Wfwj/70008RFBSEXr16Yc6cOejatSusrKywb98+nDhx4r5dRf/85z8xcuRIdO/eHSEhIfjxxx+xdu1abN68GUBFK9Ljjz+OhQsXwtfXF4WFhXj77bcbHOfkyZMRHR2NXr16ISgoCKtWrcIff/yha62qSZs2bSAIAjZs2ICnnnoKDg4OcHZ2rrFsfeJsSH1ERGSe2AJkTFYyILxyoLFQ5eLd4/CFjbIeULt27XDo0CGEhIQgPj4e3bp1Q69evfDRRx9h6tSpmDdvXp3vj4yMxLJly7BkyRJ07twZn332GZKSkhAcHKwr88UXX6C8vBw9e/ZEXFwc5s+f3+A4n3/+ecyaNQvTpk1Dz549ce7cOYwfP77O97Rs2RJz587FjBkzoFAoEBsbW2f5+8XZ0PqIiMj8COK9gyEIAKBWqyGXy6FSqeDq6qp3raSkBLm5ufD19YW9vf2DfcCx1IrZYPcOiHZtWZH8+Ne8GCGRKTPI7wUR0UOq6/u7KnaBScH/mYqp7kZcCZqIiIj+wgRIKlYywPdJqaMgIiKySBwDRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBERERkcZgAkdnJz8/H4MGD4eTkBDc3N6nDMZiMjAwIgoAbN25IGsecOXPw2GOPSRoDEVFjYwJkIaKjoyEIAv7xj39UuxYTEwNBEBAdHW38wB7ABx98gLy8PGRlZeHkyZNSh2NUgiBg3bp1JlsfEZG5YAIkEY1Wg335+/DzmZ+xL38fNFpNo3+mj48Pvv32W9y+fVt3rqSkBKtXr0br1q0b/fMNJScnBz179kSHDh3g6elpsHrv3LljsLqk1FTug4ioMTEBksDmc5sR9kMYRm8cjenbpmP0xtEI+yEMm89tbtTP7dGjB3x8fLB27VrdubVr16J169bo3r27XlmtVouEhAT4+vrCwcEB3bp1w/fff6+7rtFoMGbMGN11Pz8/LFu2TK+O6OhoREZGYsmSJfDy8kLz5s0RExODsrKyOuNMTExEu3btYGtrCz8/P3z11Ve6a23btsUPP/yAL7/8ss5Wq/LyckyaNAlubm5o3rw5pk+fjqioKERGRurKBAcHIzY2FnFxcWjRogXCwsIAAJmZmejTpw/s7Ozg5eWFGTNmoLy8XC+GpUuX6n3eY489hjlz5uiOBUHAihUrMHz4cDg6OqJDhw5ITU3Ve8/PP/+MRx99FA4ODhg4cCDOnj1b53Np27YtAGD48OEQBEF3XNlltWLFCr3NSO8XZ231Vfrqq6/Qtm1byOVyvPDCC7h582ad8RERmRMmQEa2+dxmTMmYgoLiAr3zhcWFmJIxpdGToNGjRyMpKUl3/MUXX+C1116rVi4hIQFffvklli9fjj/++ANvvPEGXnnlFWRmZgKoSJBatWqF//3vfzh27BjeeecdzJw5E2vWrNGrZ+vWrcjJycHWrVuxcuVKJCcnIzk5udb4UlJSMHnyZLz55ps4evQoxo0bh9deew1bt24FAOzbtw/h4eEYOXIk8vLyqiVdlRYtWoRVq1YhKSkJO3bsgFqtrrGrZ+XKlbC1tcWOHTuwfPlyXLp0CU899RR69+6N33//HYmJifjvf/+L+fPn3+/RVjN37lyMHDkShw8fxlNPPYWXX34Z165dAwBcuHABzz77LIYNG4asrCz83//9H2bMmFFnffv27QMAJCUlIS8vT3cMAKdPn8YPP/yAtWvXIisrq17x1VVfTk4O1q1bhw0bNmDDhg3IzMzEwoULG3L7RESmTaRqVCqVCEBUqVTVrt2+fVs8duyYePv27QbXW64pFwetGSQGJAfU+OqS3EUMWRMilmvKDXEbeqKiosSIiAixsLBQtLOzE8+ePSuePXtWtLe3F69cuSJGRESIUVFRoiiKYklJiejo6Cju3LlTr44xY8aIL774Yq2fERMTI44YMULvM9u0aSOWl/91P88995z4/PPP11pHv379xNdff13v3HPPPSc+9dRTuuN7Y62NQqEQ//Wvf+mOy8vLxdatW4sRERG6cwMGDBC7d++u976ZM2eKfn5+olar1Z375JNPRGdnZ1Gj0YiiKIpt2rQRP/jgA733devWTZw9e7buGID49ttv645v3bolAhB/+eUXURRFMT4+XvT399erY/r06SIA8fr167XeFwAxJSVF79zs2bNFGxsbsbCwUO98feOsqT5HR0dRrVbrzv3zn/8U+/btW2tcD/N7QURkKHV9f1fF3eCN6GDhwWotP/cSISK/OB8HCw+it7J3o8Tg4eGBoUOHIjk5GaIoYujQoWjRooVemdOnT6O4uBiDBw/WO3/nzh29rrJPPvkEX3zxBc6fP4/bt2/jzp071WYPde7cGTKZTHfs5eWFI0eO1Brf8ePHMXbsWL1zQUFBtbb01ESlUqGgoAB9+vTRnZPJZOjZsye0Wq1e2Z49e1b7/MDAQAiCoPf5t27dwsWLFxs0Vqpr1666/3dycoKrqysKCwt1n9O3b1+98oGBgfWuu6o2bdrAw8Pjgd9fVdu2beHi4qI79vLy0sVORNQUMAEyoivFVwxa7kGNHj0asbGxACqSmKpu3boFAPjpp5/QsmVLvWt2dnYAgG+//RZTp07F+++/j8DAQLi4uOBf//oX9uzZo1fexsZG71gQhGpJiJScnJwa/B4rKyuIoqh3rqZxTca895ruo75x1sTUf25ERA+LY4CMyMOxfv9Cr2+5BxUeHo47d+6grKxMN/D3Xv7+/rCzs8P58+fRvn17vZePjw8AYMeOHejXrx8mTJiA7t27o3379sjJyXno2Dp16oQdO3bonduxYwf8/f3rXYdcLodCodAb06LRaHDw4MF6ff6uXbv0EocdO3bAxcUFrVq1AlDRipaXl6e7rlarkZubW+/4Kj9n7969eud279593/fZ2NhAo6nfjMH6xNmQ+oiImhJJE6CEhAT07t0bLi4u8PT0RGRkJLKzs/XKfP755wgODoarq2u9F4mbM2cOBEHQe3Xs2LGR7qL+enj2gMJRAQFCjdcFCFA6KtHDs0ejxiGTyXD8+HEcO3ZMr3uqkouLC6ZOnYo33ngDK1euRE5ODg4ePIiPPvoIK1euBAB06NAB+/fvx8aNG3Hy5EnMmjVLL+F4UP/85z+RnJyMxMREnDp1Cv/+97+xdu1aTJ06tUH1TJw4EQkJCVi/fj2ys7MxefJkXL9+Xa9rqyYTJkzAhQsXMHHiRJw4cQLr16/H7NmzMWXKFFhZVfy6/O1vf8NXX32Fbdu24ciRI4iKiqrxOdblH//4B06dOoV//vOfyM7OxurVq+scHF6pbdu22LJlC/Lz83H9+vU6y9YnzobUR0TUlEiaAGVmZiImJga7d+9Geno6ysrKEBoaiqKiIl2Z4uJihIeHY+bMmQ2qu3PnzsjLy9O9tm/fbujwG0xmJcOMPhUzfaomQZXH0/tMh8yqYV+mD8LV1RWurq61Xp83bx5mzZqFhIQEdOrUCeHh4fjpp5/g6+sLABg3bhyeffZZPP/88+jbty+uXr2KCRMmPHRckZGRWLZsGZYsWYLOnTvjs88+Q1JSEoKDgxtUz/Tp0/Hiiy9i1KhRCAwMhLOzM8LCwnRTxGvTsmVL/Pzzz9i7dy+6deuGf/zjHxgzZgzefvttXZn4+HgMGDAATz/9NIYOHYrIyEi0a9euQfG1bt0aP/zwA9atW4du3bph+fLlWLBgwX3f9/777yM9PR0+Pj7Vli6oqj5xNqQ+IqKmRBCrDhKQ0JUrV+Dp6YnMzEz0799f71pGRgYGDhyI69ev33f7gzlz5mDdunX1ng5cWlqK0tJS3bFarYaPjw9UKlW1JKGkpAS5ubl666001OZzm7Fw70K9AdFKRyWm95mOkDYhD1Qn1U2r1aJTp04YOXIk5s2bJ3U4TY4hfi+IiB6WWq2GXC6v8fu7KpMaBK1SqQAA7u7uD13XqVOn4O3tDXt7ewQGBiIhIaHWGTwJCQmYO3fuQ39mfYW0CcFAn4E4WHgQV4qvwMPRAz08exil5cdSnDt3Dps2bcKAAQNQWlqKjz/+GLm5uXjppZekDo2IiEyAyQyC1mq1iIuLQ1BQEAICAh6qrr59+yI5ORlpaWlITExEbm4unnzyyVpXso2Pj4dKpdK9Lly48FCfXx8yKxl6K3vjqUeeQm9lbyY/BmZlZYXk5GT07t0bQUFBOHLkCDZv3oxOnTpJHRoREZkAk2kBiomJwdGjRw0yVmfIkCG6/+/atSv69u2LNm3aYM2aNRgzZky18nZ2drrp3dQ0+Pj4VJtNRkREVMkkEqDY2Fhs2LABv/32m26qsSG5ubnh0UcfxenTpw1eNxEREZkfSbvARFFEbGwsUlJS8Ouvv+pmGBnarVu3kJOTAy8vr0apn4iIiMyLpAlQTEwMvv76a6xevRouLi7Iz89Hfn4+bt++rSuTn5+PrKwsXevNkSNHkJWVpdtUEgAGDRqEjz/+WHc8depUZGZm4uzZs9i5cyeGDx8OmUyGF1980Xg3R0RERCZL0gQoMTERKpUKwcHB8PLy0r2+++47XZnly5eje/fueP311wEA/fv3R/fu3ZGamqork5OTgz///FN3fPHiRbz44ovw8/PDyJEj0bx5c+zevdugeyURERGR+TKpdYBMRV3rCHC9E6Lq+HtBRKagIesAmcw0eCIiIiJjYQJEBhcdHY3IyEjdcXBwMOLi4h6qTkPUYSyCIGDdunW1Xj979iwEQaj3SuVERGR4TIAsSHR0tG5zWFtbW7Rv3x7vvvsuysvLG/Vz165dW+/tJzIyMmrc9LYhdTSWezfZlclk8PHxwdixY/UG5ANAXl6e3lpURERkekxiHSBLJGo0KN5/AOVXrsDawwOOvXpCaOCO4g8iPDwcSUlJKC0txc8//4yYmBjY2NggPj5er9ydO3dga2trkM80xNYmhqjDEDp37ozNmzdDo9Hg+PHjGD16NFQqld7AfaVSKWGERERUH2wBkoB60yacHhSC81FRuDx1Ks5HReH0oBCoN21q9M+2s7ODUqlEmzZtMH78eISEhCA1NVXXbfXee+/B29sbfn5+AIALFy5g5MiRcHNzg7u7OyIiInD27FldfRqNBlOmTIGbmxuaN2+OadOmoeq4+qrdV6WlpZg+fTp8fHxgZ2eH9u3b47///S/Onj2LgQMHAgCaNWsGQRAQHR1dYx3Xr1/HqFGj0KxZMzg6OmLIkCE4deqU7npycjLc3NywceNGdOrUCc7OzggPD0deXp6uTEZGBvr06QMnJye4ubkhKCgI586dq/P5WVtbQ6lUomXLlggJCcFzzz2H9PR0vTJVu8D27t2L7t27w97eHr169cKhQ4eq1ZuamooOHTrA3t4eAwcOxMqVK6u1hG3fvh1PPvkkHBwc4OPjg0mTJqGoqKjOeImIqGZMgIxMvWkTLk2OQ3l+vt758oICXJocZ5Qk6F4ODg64c+cOAGDLli3Izs5Geno6NmzYgLKyMoSFhcHFxQXbtm3Djh07dIlE5Xvef/99JCcn44svvsD27dtx7do1pKSk1PmZo0aNwjfffIMPP/wQx48fx2effQZnZ2f4+Pjghx9+AABkZ2cjLy8Py5Ytq7GO6Oho7N+/H6mpqdi1axdEUcRTTz2FsrIyXZni4mIsWbIEX331FX777TecP38eU6dOBQCUl5cjMjISAwYMwOHDh7Fr1y6MHTsWgiDU+9mdPXsWGzdurLOl7NatW3j66afh7++PAwcOYM6cOboYKuXm5uLvf/87IiMj8fvvv2PcuHF466239Mrk5OQgPDwcI0aMwOHDh/Hdd99h+/btiI2NrXe8RNS0iRoNivbshWrDTyjasxeiRiN1SKZNpGpUKpUIQFSpVNWu3b59Wzx27Jh4+/btBterLS8XTw4IFo/5daz51bGTeHJAsKgtLzfEbVQTFRUlRkREVMSi1Yrp6eminZ2dOHXqVDEqKkpUKBRiaWmprvxXX30l+vn5iVqtVneutLRUdHBwEDdu3CiKoih6eXmJixcv1l0vKysTW7VqpfscURTFAQMGiJMnTxZFURSzs7NFAGJ6enqNMW7dulUEIF6/fl3v/L11nDx5UgQg7tixQ3f9zz//FB0cHMQ1a9aIoiiKSUlJIgDx9OnTujKffPKJqFAoRFEUxatXr4oAxIyMjHo8uQqzZ88WraysRCcnJ9He3l4EIAIQ//3vf+uVAyCmpKSIoiiKn332mdi8eXO9Py+JiYkiAPHQoUOiKIri9OnTxYCAAL063nrrLb3nMGbMGHHs2LF6ZbZt2yZaWVk90J9FQ3uY3wsieniqjRurfb+cHBAsqu7+XW0p6vr+rootQEZUvP9AtZYfPaKI8vx8FO8/0GgxbNiwAc7OzrC3t8eQIUPw/PPPY86cOQCALl266LVm/P777zh9+jRcXFzg7OwMZ2dnuLu7o6SkBDk5OVCpVMjLy0Pfvn1177G2tkavXr1q/fysrCzIZDIMGDDgge/h+PHjsLa21vvc5s2bw8/PD8ePH9edc3R0RLt27XTHXl5eKCwsBFAxpig6OhphYWEYNmwYli1bpuseO3/+vO5+nZ2dsWDBAl0dfn5+yMrKwr59+zB9+nSEhYVh4sSJdcbatWtXvbVxAgMD9cpkZ2ejd+/eeuf69Omjd/z7778jOTlZL66wsDBotVrk5ube95kRUdNlaj0L5oKDoI2o/MoVg5Z7EAMHDkRiYiJsbW3h7e0Na+u//gg4OTnplb116xZ69uyJVatWVavnQVfVdnBweKD3PQgbGxu9Y0EQ9MYnJSUlYdKkSUhLS8N3332Ht99+G+np6ejVq5feFPV7B2BXzp4DgIULF2Lo0KGYO3duo89Qu3XrFsaNG4dJkyZVu9a6detG/WwiMl2iRoOCBQlATWsaiyIgCChYkACXQYOMMtHGnLAFyIis65k01Lfcg3ByckL79u3RunVrveSnJj169MCpU6fg6emJ9u3b673kcjnkcjm8vLywZ88e3XvKy8tx4EDtLVhdunSBVqtFZmZmjdcrW6A0dfRdd+rUCeXl5Xqfe/XqVWRnZ8Pf37/Oe6qqe/fuiI+Px86dOxEQEIDVq1fD2tpa717rmoH29ttvY8mSJbh8+XKtsR4+fBglJSW6c7t379Yr4+fnh/379+ud27dvn95xjx49cOzYsWo/h/bt2xtsth4RmR9T6FkwV0yAjMixV09YK5VAbQNtBQHWSiUce/U0bmC1ePnll9GiRQtERERg27ZtyM3NRUZGBiZNmoSLFy8CACZPnoyFCxdi3bp1OHHiBCZMmFBtDZ97tW3bFlFRURg9ejTWrVunq3PNmjUAgDZt2kAQBGzYsAFXrlzBrVu3qtXRoUMHRERE4PXXX8f27dvx+++/45VXXkHLli0RERFRr3vLzc1FfHw8du3ahXPnzmHTpk04deoUOnXq1KBnFBgYiK5du+p1k93rpZdegiAIeP3113Hs2DH8/PPPWLJkiV6ZcePG4cSJE5g+fTpOnjyJNWvWIDk5GQB0g7KnT5+OnTt3IjY2FllZWTh16hTWr1/PQdBEFs4UehbMFRMgIxJkMihm3l1vp2oSdPdYMTPeZJopHR0d8dtvv6F169Z49tln0alTJ4wZMwYlJSW6PVbefPNNvPrqq4iKikJgYCBcXFwwfPjwOutNTEzE3//+d0yYMAEdO3bE66+/rpvO3bJlS8ydOxczZsyAQqGo9Qs+KSkJPXv2xNNPP43AwECIooiff/65WrdXXfd24sQJjBgxAo8++ijGjh2LmJgYjBs3rgFPqMIbb7yBFStW4MKFC9WuOTs748cff8SRI0fQvXt3vPXWW1i0aJFeGV9fX3z//fdYu3YtunbtisTERN0sMDs7OwBA165dkZmZiZMnT+LJJ59E9+7d8c4778Db27vB8RJR02EKPQvmipuh1qCxN0NVb9qEggUJes2W1kolFDPj4Roa+lCxU9Pw3nvvYfny5TUmVaaIm6ESSUPUaHB6UAjKCwpqHgckCLBWKNB+y2aT+cd1Y2rIZqgcBC0B19BQuAwaJMlK0GSaPv30U/Tu3RvNmzfHjh078K9//YvdW0R0X5U9C5cmx1X0JNybBJlgz4IpYQIkEUEmg1PfPvcvSBbh1KlTmD9/Pq5du4bWrVvjzTffrLY9CRFRTVxDQ4FlS6v3LCgU7FmoA7vAatDYXWBETQ1/L4ikJ9Uek6aEXWBEREQWhj0LDcNZYA+IDWdEf+HvAxGZGyZADVQ5zbq4uFjiSIhMR+XvQ32XISAikhq7wBpIJpPBzc1Nt6eUo6Njg3YQJ2pKRFFEcXExCgsL4ebmBpmFjTcgIvPFBOgBKJVKANAlQUSWzs3NTfd7QURkDpgAPQBBEODl5QVPT0+UlZVJHQ6RpGxsbNjyQ0RmhwnQQ5DJZPyLn4iIyAxxEDQRERFZHCZAREREZHGYABEREZHF4RigGlQu6qZWqyWOhIiIiOqr8nu7PouzMgGqwc2bNwEAPj4+EkdCREREDXXz5k3I5fI6y3Az1BpotVpcvnwZLi4uBl/kUK1Ww8fHBxcuXLjvRm1UOz5Hw+BzNAw+R8Pgc3x4lv4MRVHEzZs34e3tDSurukf5sAWoBlZWVmjVqlWjfoarq6tF/uE0ND5Hw+BzNAw+R8Pgc3x4lvwM79fyU4mDoImIiMjiMAEiIiIii8MEyMjs7Owwe/Zs2NnZSR2KWeNzNAw+R8PgczQMPseHx2dYfxwETURERBaHLUBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQEb0ySefoG3btrC3t0ffvn2xd+9eqUMyKwkJCejduzdcXFzg6emJyMhIZGdnSx2W2Vu4cCEEQUBcXJzUoZidS5cu4ZVXXkHz5s3h4OCALl26YP/+/VKHZVY0Gg1mzZoFX19fODg4oF27dpg3b1699nKyZL/99huGDRsGb29vCIKAdevW6V0XRRHvvPMOvLy84ODggJCQEJw6dUqaYE0UEyAj+e677zBlyhTMnj0bBw8eRLdu3RAWFobCwkKpQzMbmZmZiImJwe7du5Geno6ysjKEhoaiqKhI6tDM1r59+/DZZ5+ha9euUodidq5fv46goCDY2Njgl19+wbFjx/D++++jWbNmUodmVhYtWoTExER8/PHHOH78OBYtWoTFixfjo48+kjo0k1ZUVIRu3brhk08+qfH64sWL8eGHH2L58uXYs2cPnJycEBYWhpKSEiNHasJEMoo+ffqIMTExumONRiN6e3uLCQkJEkZl3goLC0UAYmZmptShmKWbN2+KHTp0ENPT08UBAwaIkydPljokszJ9+nTxiSeekDoMszd06FBx9OjReueeffZZ8eWXX5YoIvMDQExJSdEda7VaUalUiv/61790527cuCHa2dmJ33zzjQQRmia2ABnBnTt3cODAAYSEhOjOWVlZISQkBLt27ZIwMvOmUqkAAO7u7hJHYp5iYmIwdOhQvT+XVH+pqano1asXnnvuOXh6eqJ79+74z3/+I3VYZqdfv37YsmULTp48CQD4/fffsX37dgwZMkTiyMxXbm4u8vPz9X635XI5+vbty++ce3AzVCP4888/odFooFAo9M4rFAqcOHFCoqjMm1arRVxcHIKCghAQECB1OGbn22+/xcGDB7Fv3z6pQzFbZ86cQWJiIqZMmYKZM2di3759mDRpEmxtbREVFSV1eGZjxowZUKvV6NixI2QyGTQaDd577z28/PLLUodmtvLz8wGgxu+cymvEBIjMVExMDI4ePYrt27dLHYrZuXDhAiZPnoz09HTY29tLHY7Z0mq16NWrFxYsWAAA6N69O44ePYrly5czAWqANWvWYNWqVVi9ejU6d+6MrKwsxMXFwdvbm8+RGhW7wIygRYsWkMlkKCgo0DtfUFAApVIpUVTmKzY2Fhs2bMDWrVvRqlUrqcMxOwcOHEBhYSF69OgBa2trWFtbIzMzEx9++CGsra2h0WikDtEseHl5wd/fX+9cp06dcP78eYkiMk///Oc/MWPGDLzwwgvo0qULXn31VbzxxhtISEiQOjSzVfm9wu+cujEBMgJbW1v07NkTW7Zs0Z3TarXYsmULAgMDJYzMvIiiiNjYWKSkpODXX3+Fr6+v1CGZpUGDBuHIkSPIysrSvXr16oWXX34ZWVlZkMlkUodoFoKCgqotw3Dy5Em0adNGoojMU3FxMays9L+KZDIZtFqtRBGZP19fXyiVSr3vHLVajT179vA75x7sAjOSKVOmICoqCr169UKfPn2wdOlSFBUV4bXXXpM6NLMRExOD1atXY/369XBxcdH1Zcvlcjg4OEgcnflwcXGpNm7KyckJzZs353iqBnjjjTfQr18/LFiwACNHjsTevXvx+eef4/PPP5c6NLMybNgwvPfee2jdujU6d+6MQ4cO4d///jdGjx4tdWgm7datWzh9+rTuODc3F1lZWXB3d0fr1q0RFxeH+fPno0OHDvD19cWsWbPg7e2NyMhI6YI2NVJPQ7MkH330kdi6dWvR1tZW7NOnj7h7926pQzIrAGp8JSUlSR2a2eM0+Afz448/igEBAaKdnZ3YsWNH8fPPP5c6JLOjVqvFyZMni61btxbt7e3FRx55RHzrrbfE0tJSqUMzaVu3bq3x78OoqChRFCumws+aNUtUKBSinZ2dOGjQIDE7O1vaoE2MIIpcbpOIiIgsC8cAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABGRxYmOjuaWAEQWjgkQETWK6OhoCIJQ7RUeHi51aFi2bBmSk5OlDgMAIAgC1q1bJ3UYRBaHm6ESUaMJDw9HUlKS3jk7OzuJogE0Gg0EQYBcLpcsBiIyDWwBIqJGY2dnB6VSqfdq1qwZMjIyYGtri23btunKLl68GJ6enigoKAAABAcHIzY2FrGxsZDL5WjRogVmzZqFe7cvLC0txdSpU9GyZUs4OTmhb9++yMjI0F1PTk6Gm5sbUlNT4e/vDzs7O5w/f75aF1hwcDAmTpyIuLg4NGvWDAqFAv/5z39QVFSE1157DS4uLmjfvj1++eUXvfs7evQohgwZAmdnZygUCrz66qv4888/9eqdNGkSpk2bBnd3dyiVSsyZM0d3vW3btgCA4cOHQxAE3TERNT4mQERkdMHBwYiLi8Orr74KlUqFQ4cOYdasWVixYgUUCoWu3MqVK2FtbY29e/di2bJl+Pe//40VK1borsfGxmLXrl349ttvcfjwYTz33HMIDw/HqVOndGWKi4uxaNEirFixAn/88Qc8PT1rjGnlypVo0aIF9u7di4kTJ2L8+PF47rnn0K9fPxw8eBChoaF49dVXUVxcDAC4ceMG/va3v6F79+7Yv38/0tLSUFBQgJEjR1ar18nJCXv27MHixYvx7rvvIj09HQCwb98+AEBSUhLy8vJ0x0RkBBLvRk9ETVRUVJQok8lEJycnvdd7770niqIolpaWio899pg4cuRI0d/fX3z99df13j9gwACxU6dOolar1Z2bPn262KlTJ1EURfHcuXOiTCYTL126pPe+QYMGifHx8aIoimJSUpIIQMzKyqoWW0REhN5nPfHEE7rj8vJy0cnJSXz11Vd15/Ly8kQA4q5du0RRFMV58+aJoaGhevVeuHBBBCBmZ2fXWK8oimLv3r3F6dOn644BiCkpKbU8RSJqLBwDRESNZuDAgUhMTNQ75+7uDgCwtbXFqlWr0LVrV7Rp0wYffPBBtfc//vjjEARBdxwYGIj3338fGo0GR44cgUajwaOPPqr3ntLSUjRv3lx3bGtri65du9431nvLyGQyNG/eHF26dNGdq2yZKiwsBAD8/vvv2Lp1K5ydnavVlZOTo4ur6md7eXnp6iAi6TABIqJG4+TkhPbt29d6fefOnQCAa9eu4dq1a3Bycqp33bdu3YJMJsOBAwcgk8n0rt2blDg4OOglUbWxsbHROxYEQe9cZR1arVb3+cOGDcOiRYuq1eXl5VVnvZV1EJF0mAARkSRycnLwxhtv4D//+Q++++47REVFYfPmzbCy+mto4p49e/Tes3v3bnTo0AEymQzdu3eHRqNBYWEhnnzySWOHjx49euCHH35A27ZtYW394H+V2tjYQKPRGDAyIqoPDoImokZTWlqK/Px8vdeff/4JjUaDV155BWFhYXjttdeQlJSEw4cP4/3339d7//nz5zFlyhRkZ2fjm2++wUcffYTJkycDAB599FG8/PLLGDVqFNauXYvc3Fzs3bsXCQkJ+Omnnxr93mJiYnDt2jW8+OKL2LdvH3JycrBx40a89tprDUpo2rZtiy1btiA/Px/Xr19vxIiJ6F5sASKiRpOWlqbXHQQAfn5+eOmll3Du3Dls2LABQEWX0eeff44XX3wRoaGh6NatGwBg1KhRuH37Nvr06QOZTIbJkydj7NixurqSkpIwf/58vPnmm7h06RJatGiBxx9/HE8//XSj35u3tzd27NiB6dOnIzQ0FKWlpWjTpg3Cw8P1WrHu5/3338eUKVPwn//8By1btsTZs2cbL2gi0hFE8Z5FNYiITERwcDAee+wxLF26VOpQiKgJYhcYERERWRwmQERERGRx2AVGREREFoctQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVmc/wcH7wnUSd3QtwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2155,23 +2462,20 @@ "print(\n", " f\"The MSE of baseline ridge forecasts is {mean_squared_error(ground_truth, predictions_baseline):.3f}\"\n", ")\n", + "print(\n", + " f\"The MSE of mean of training data is {mean_squared_error(ground_truth, [target_series_sel[:-test_samples].mean()] * len(instances)):.3f}\"\n", + ")\n", "\n", "fig = plt.figure()\n", "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", "plt.scatter(instances, ground_truth, label=\"Ground truth\")\n", + "plt.scatter(instances, [ground_truth.mean()] * len(instances), label=\"Mean of ground truth\")\n", "plt.scatter(instances, predictions_baseline, label=\"Predictions-Ridge\")\n", "plt.xlabel(\"Experiment\")\n", "plt.ylabel(\"TS\")\n", "plt.legend()\n", "plt.show()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/workflow/pred_temperature_LSTM.ipynb b/workflow/pred_temperature_LSTM.ipynb index 629d54b..bde2531 100644 --- a/workflow/pred_temperature_LSTM.ipynb +++ b/workflow/pred_temperature_LSTM.ipynb @@ -551,13 +551,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ + "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" ] }, @@ -576,7 +570,7 @@ { "data": { "text/html": [ - "Run data is saved locally in /home/yangliu/AI4S2S/cookbook/workflow/wandb/run-20230628_121945-v3pj0z4k" + "Run data is saved locally in /home/yangliu/AI4S2S/cookbook/workflow/wandb/run-20230630_150821-8t0sok9n" ], "text/plain": [ "" @@ -588,7 +582,7 @@ { "data": { "text/html": [ - "Syncing run earnest-star-19 to Weights & Biases (docs)
" + "Syncing run cool-aardvark-22 to Weights & Biases (docs)
" ], "text/plain": [ "" @@ -612,7 +606,7 @@ { "data": { "text/html": [ - " View run at https://wandb.ai/ai4s2s/test-LSTM/runs/v3pj0z4k" + " View run at https://wandb.ai/ai4s2s/test-LSTM/runs/8t0sok9n" ], "text/plain": [ "" @@ -772,1357 +766,1357 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 507.484039\n", - "Epoch : 0 [4/36(11%)]\tLoss: 487.915863\n", - "Epoch : 0 [8/36(22%)]\tLoss: 492.865540\n", - "Epoch : 0 [12/36(33%)]\tLoss: 396.486237\n", - "Epoch : 0 [16/36(44%)]\tLoss: 322.268890\n", - "Epoch : 0 [20/36(56%)]\tLoss: 182.826843\n", - "Epoch : 0 [24/36(67%)]\tLoss: 100.663895\n", - "Epoch : 0 [28/36(78%)]\tLoss: 51.026283\n", - "Epoch : 0 [32/36(89%)]\tLoss: 142.582779\n", - "Epoch : 1 [0/36(0%)]\tLoss: 3.420432\n", - "Epoch : 1 [4/36(11%)]\tLoss: 0.967753\n", - "Epoch : 1 [8/36(22%)]\tLoss: 3.453100\n", - "Epoch : 1 [12/36(33%)]\tLoss: 13.548639\n", - "Epoch : 1 [16/36(44%)]\tLoss: 18.211199\n", - "Epoch : 1 [20/36(56%)]\tLoss: 22.671017\n", - "Epoch : 1 [24/36(67%)]\tLoss: 26.456758\n", - "Epoch : 1 [28/36(78%)]\tLoss: 29.909428\n", - "Epoch : 1 [32/36(89%)]\tLoss: 30.000504\n", - "Epoch : 2 [0/36(0%)]\tLoss: 124.446793\n", - "Epoch : 2 [4/36(11%)]\tLoss: 19.417242\n", - "Epoch : 2 [8/36(22%)]\tLoss: 9.527784\n", - "Epoch : 2 [12/36(33%)]\tLoss: 5.977228\n", - "Epoch : 2 [16/36(44%)]\tLoss: 1.754250\n", - "Epoch : 2 [20/36(56%)]\tLoss: 1.923691\n", - "Epoch : 2 [24/36(67%)]\tLoss: 1.782039\n", - "Epoch : 2 [28/36(78%)]\tLoss: 2.615329\n", - "Epoch : 2 [32/36(89%)]\tLoss: 5.314155\n", - "Epoch : 3 [0/36(0%)]\tLoss: 3.040250\n", - "Epoch : 3 [4/36(11%)]\tLoss: 4.650375\n", - "Epoch : 3 [8/36(22%)]\tLoss: 6.792605\n", - "Epoch : 3 [12/36(33%)]\tLoss: 4.778971\n", - "Epoch : 3 [16/36(44%)]\tLoss: 7.502336\n", - "Epoch : 3 [20/36(56%)]\tLoss: 7.684300\n", - "Epoch : 3 [24/36(67%)]\tLoss: 3.916771\n", - "Epoch : 3 [28/36(78%)]\tLoss: 1.998745\n", - "Epoch : 3 [32/36(89%)]\tLoss: 1.892663\n", - "Epoch : 4 [0/36(0%)]\tLoss: 0.631115\n", - "Epoch : 4 [4/36(11%)]\tLoss: 1.846708\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.218843\n", - "Epoch : 4 [12/36(33%)]\tLoss: 2.464051\n", - "Epoch : 4 [16/36(44%)]\tLoss: 1.813976\n", - "Epoch : 4 [20/36(56%)]\tLoss: 2.472222\n", - "Epoch : 4 [24/36(67%)]\tLoss: 2.243789\n", - "Epoch : 4 [28/36(78%)]\tLoss: 121.339401\n", - "Epoch : 4 [32/36(89%)]\tLoss: 2.743360\n", - "Epoch : 5 [0/36(0%)]\tLoss: 1.744120\n", - "Epoch : 5 [4/36(11%)]\tLoss: 1.442416\n", - "Epoch : 5 [8/36(22%)]\tLoss: 0.350297\n", - "Epoch : 5 [12/36(33%)]\tLoss: 0.394511\n", - "Epoch : 5 [16/36(44%)]\tLoss: 126.303017\n", - "Epoch : 5 [20/36(56%)]\tLoss: 3.323524\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.858711\n", - "Epoch : 5 [28/36(78%)]\tLoss: 172.371933\n", - "Epoch : 5 [32/36(89%)]\tLoss: 2.331139\n", - "Epoch : 6 [0/36(0%)]\tLoss: 132.956375\n", - "Epoch : 6 [4/36(11%)]\tLoss: 0.580142\n", - "Epoch : 6 [8/36(22%)]\tLoss: 119.994949\n", - "Epoch : 6 [12/36(33%)]\tLoss: 33.035183\n", - "Epoch : 6 [16/36(44%)]\tLoss: 13.588066\n", - "Epoch : 6 [20/36(56%)]\tLoss: 0.914074\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.898821\n", - "Epoch : 6 [28/36(78%)]\tLoss: 151.267944\n", - "Epoch : 6 [32/36(89%)]\tLoss: 4.268299\n", - "Epoch : 7 [0/36(0%)]\tLoss: 3.442871\n", - "Epoch : 7 [4/36(11%)]\tLoss: 76.345345\n", - "Epoch : 7 [8/36(22%)]\tLoss: 204.213593\n", - "Epoch : 7 [12/36(33%)]\tLoss: 2.135722\n", - "Epoch : 7 [16/36(44%)]\tLoss: 1.010966\n", - "Epoch : 7 [20/36(56%)]\tLoss: 36.892490\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.251072\n", - "Epoch : 7 [28/36(78%)]\tLoss: 25.398968\n", - "Epoch : 7 [32/36(89%)]\tLoss: 11.205050\n", - "Epoch : 8 [0/36(0%)]\tLoss: 1.879929\n", - "Epoch : 8 [4/36(11%)]\tLoss: 2.202991\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.141301\n", - "Epoch : 8 [12/36(33%)]\tLoss: 0.373154\n", - "Epoch : 8 [16/36(44%)]\tLoss: 1.118299\n", - "Epoch : 8 [20/36(56%)]\tLoss: 150.838486\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.226276\n", - "Epoch : 8 [28/36(78%)]\tLoss: 2.440698\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.674682\n", - "Epoch : 9 [0/36(0%)]\tLoss: 1.540755\n", - "Epoch : 9 [4/36(11%)]\tLoss: 1.431563\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.541547\n", - "Epoch : 9 [12/36(33%)]\tLoss: 0.538805\n", - "Epoch : 9 [16/36(44%)]\tLoss: 0.928591\n", - "Epoch : 9 [20/36(56%)]\tLoss: 2.316908\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.257062\n", - "Epoch : 9 [28/36(78%)]\tLoss: 1.110457\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.607345\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.458218\n", - "Epoch : 10 [4/36(11%)]\tLoss: 1.242298\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.857205\n", - "Epoch : 10 [12/36(33%)]\tLoss: 0.625038\n", - "Epoch : 10 [16/36(44%)]\tLoss: 6.490541\n", - "Epoch : 10 [20/36(56%)]\tLoss: 2.178756\n", - "Epoch : 10 [24/36(67%)]\tLoss: 1.195969\n", - "Epoch : 10 [28/36(78%)]\tLoss: 1.037153\n", - "Epoch : 10 [32/36(89%)]\tLoss: 0.988637\n", - "Epoch : 11 [0/36(0%)]\tLoss: 1.273493\n", - "Epoch : 11 [4/36(11%)]\tLoss: 8.579882\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.702727\n", - "Epoch : 11 [12/36(33%)]\tLoss: 0.953151\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.632468\n", - "Epoch : 11 [20/36(56%)]\tLoss: 1.939569\n", - "Epoch : 11 [24/36(67%)]\tLoss: 0.833214\n", - "Epoch : 11 [28/36(78%)]\tLoss: 0.862693\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.253830\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.247711\n", - "Epoch : 12 [4/36(11%)]\tLoss: 0.412975\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.753600\n", - "Epoch : 12 [12/36(33%)]\tLoss: 0.294573\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.949367\n", - "Epoch : 12 [20/36(56%)]\tLoss: 1.959414\n", - "Epoch : 12 [24/36(67%)]\tLoss: 1.070011\n", - "Epoch : 12 [28/36(78%)]\tLoss: 1.325570\n", - "Epoch : 12 [32/36(89%)]\tLoss: 0.850023\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.462904\n", - "Epoch : 13 [4/36(11%)]\tLoss: 0.705739\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.194810\n", - "Epoch : 13 [12/36(33%)]\tLoss: 0.410901\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.734599\n", - "Epoch : 13 [20/36(56%)]\tLoss: 1.436058\n", - "Epoch : 13 [24/36(67%)]\tLoss: 0.647066\n", - "Epoch : 13 [28/36(78%)]\tLoss: 1.622749\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.310326\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.730382\n", - "Epoch : 14 [4/36(11%)]\tLoss: 1.474516\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.301511\n", - "Epoch : 14 [12/36(33%)]\tLoss: 0.673502\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.817516\n", - "Epoch : 14 [20/36(56%)]\tLoss: 1.372562\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.167554\n", - "Epoch : 14 [28/36(78%)]\tLoss: 0.664285\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.245148\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.827478\n", - "Epoch : 15 [4/36(11%)]\tLoss: 1.099373\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.382670\n", - "Epoch : 15 [12/36(33%)]\tLoss: 0.468295\n", - "Epoch : 15 [16/36(44%)]\tLoss: 1.152928\n", - "Epoch : 15 [20/36(56%)]\tLoss: 0.771472\n", - "Epoch : 15 [24/36(67%)]\tLoss: 0.800450\n", - "Epoch : 15 [28/36(78%)]\tLoss: 0.979096\n", - "Epoch : 15 [32/36(89%)]\tLoss: 0.737305\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.451957\n", - "Epoch : 16 [4/36(11%)]\tLoss: 1.444315\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.249873\n", - "Epoch : 16 [12/36(33%)]\tLoss: 0.243133\n", - "Epoch : 16 [16/36(44%)]\tLoss: 1.285924\n", - "Epoch : 16 [20/36(56%)]\tLoss: 1.076910\n", - "Epoch : 16 [24/36(67%)]\tLoss: 0.685634\n", - "Epoch : 16 [28/36(78%)]\tLoss: 0.916995\n", - "Epoch : 16 [32/36(89%)]\tLoss: 0.797741\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.221489\n", - "Epoch : 17 [4/36(11%)]\tLoss: 0.528118\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.216192\n", - "Epoch : 17 [12/36(33%)]\tLoss: 0.663139\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.804437\n", - "Epoch : 17 [20/36(56%)]\tLoss: 1.455652\n", - "Epoch : 17 [24/36(67%)]\tLoss: 0.471389\n", - "Epoch : 17 [28/36(78%)]\tLoss: 0.910427\n", - "Epoch : 17 [32/36(89%)]\tLoss: 0.997764\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.766803\n", - "Epoch : 18 [4/36(11%)]\tLoss: 1.670717\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.841263\n", - "Epoch : 18 [12/36(33%)]\tLoss: 0.561773\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.931006\n", - "Epoch : 18 [20/36(56%)]\tLoss: 1.004519\n", - "Epoch : 18 [24/36(67%)]\tLoss: 1.093140\n", - "Epoch : 18 [28/36(78%)]\tLoss: 0.741121\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.394340\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.367390\n", - "Epoch : 19 [4/36(11%)]\tLoss: 0.568098\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.153428\n", - "Epoch : 19 [12/36(33%)]\tLoss: 0.667192\n", - "Epoch : 19 [16/36(44%)]\tLoss: 1.287128\n", - "Epoch : 19 [20/36(56%)]\tLoss: 0.995704\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.509574\n", - "Epoch : 19 [28/36(78%)]\tLoss: 1.503845\n", - "Epoch : 19 [32/36(89%)]\tLoss: 0.967116\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.762736\n", - "Epoch : 20 [4/36(11%)]\tLoss: 0.834842\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.263556\n", - "Epoch : 20 [12/36(33%)]\tLoss: 0.834738\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.818849\n", - "Epoch : 20 [20/36(56%)]\tLoss: 1.424377\n", - "Epoch : 20 [24/36(67%)]\tLoss: 0.638177\n", - "Epoch : 20 [28/36(78%)]\tLoss: 0.680327\n", - "Epoch : 20 [32/36(89%)]\tLoss: 0.837124\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.398417\n", - "Epoch : 21 [4/36(11%)]\tLoss: 1.005584\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.370246\n", - "Epoch : 21 [12/36(33%)]\tLoss: 0.570373\n", - "Epoch : 21 [16/36(44%)]\tLoss: 1.124276\n", - "Epoch : 21 [20/36(56%)]\tLoss: 0.995895\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.824030\n", - "Epoch : 21 [28/36(78%)]\tLoss: 1.251398\n", - "Epoch : 21 [32/36(89%)]\tLoss: 0.685518\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.331775\n", - "Epoch : 22 [4/36(11%)]\tLoss: 0.577577\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.478347\n", - "Epoch : 22 [12/36(33%)]\tLoss: 0.691666\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.426376\n", - "Epoch : 22 [20/36(56%)]\tLoss: 1.177552\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.483800\n", - "Epoch : 22 [28/36(78%)]\tLoss: 5.601184\n", - "Epoch : 22 [32/36(89%)]\tLoss: 0.685395\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.714223\n", - "Epoch : 23 [4/36(11%)]\tLoss: 1.583773\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.716710\n", - "Epoch : 23 [12/36(33%)]\tLoss: 1.085480\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.791511\n", - "Epoch : 23 [20/36(56%)]\tLoss: 0.732525\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.796735\n", - "Epoch : 23 [28/36(78%)]\tLoss: 1.240137\n", - "Epoch : 23 [32/36(89%)]\tLoss: 0.793190\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.261401\n", - "Epoch : 24 [4/36(11%)]\tLoss: 0.529584\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.061653\n", - "Epoch : 24 [12/36(33%)]\tLoss: 0.459636\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.411628\n", - "Epoch : 24 [20/36(56%)]\tLoss: 0.736514\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.575145\n", - "Epoch : 24 [28/36(78%)]\tLoss: 0.847110\n", - "Epoch : 24 [32/36(89%)]\tLoss: 0.798736\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.361545\n", - "Epoch : 25 [4/36(11%)]\tLoss: 1.040322\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.172426\n", - "Epoch : 25 [12/36(33%)]\tLoss: 0.628439\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.526522\n", - "Epoch : 25 [20/36(56%)]\tLoss: 0.564514\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.438732\n", - "Epoch : 25 [28/36(78%)]\tLoss: 0.998159\n", - "Epoch : 25 [32/36(89%)]\tLoss: 0.533477\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.386964\n", - "Epoch : 26 [4/36(11%)]\tLoss: 1.630154\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.058929\n", - "Epoch : 26 [12/36(33%)]\tLoss: 0.567984\n", - "Epoch : 26 [16/36(44%)]\tLoss: 1.189938\n", - "Epoch : 26 [20/36(56%)]\tLoss: 0.955508\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.239516\n", - "Epoch : 26 [28/36(78%)]\tLoss: 1.560851\n", - "Epoch : 26 [32/36(89%)]\tLoss: 0.510755\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.603725\n", - "Epoch : 27 [4/36(11%)]\tLoss: 0.534061\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.187683\n", - "Epoch : 27 [12/36(33%)]\tLoss: 0.539697\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.494658\n", - "Epoch : 27 [20/36(56%)]\tLoss: 0.957963\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.309405\n", - "Epoch : 27 [28/36(78%)]\tLoss: 0.596245\n", - "Epoch : 27 [32/36(89%)]\tLoss: 0.487133\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.219307\n", - "Epoch : 28 [4/36(11%)]\tLoss: 0.727153\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.099510\n", - "Epoch : 28 [12/36(33%)]\tLoss: 0.651104\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.598100\n", - "Epoch : 28 [20/36(56%)]\tLoss: 0.730828\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.441607\n", - "Epoch : 28 [28/36(78%)]\tLoss: 0.808028\n", - "Epoch : 28 [32/36(89%)]\tLoss: 0.295295\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.164040\n", - "Epoch : 29 [4/36(11%)]\tLoss: 1.352591\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.220712\n", - "Epoch : 29 [12/36(33%)]\tLoss: 0.650713\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.414402\n", - "Epoch : 29 [20/36(56%)]\tLoss: 0.921695\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.518194\n", - "Epoch : 29 [28/36(78%)]\tLoss: 0.771503\n", - "Epoch : 29 [32/36(89%)]\tLoss: 0.992488\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.269008\n", - "Epoch : 30 [4/36(11%)]\tLoss: 0.403612\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.148850\n", - "Epoch : 30 [12/36(33%)]\tLoss: 0.444355\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.550474\n", - "Epoch : 30 [20/36(56%)]\tLoss: 0.706436\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.270062\n", - "Epoch : 30 [28/36(78%)]\tLoss: 0.596557\n", - "Epoch : 30 [32/36(89%)]\tLoss: 0.359698\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.267739\n", - "Epoch : 31 [4/36(11%)]\tLoss: 0.872494\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.217377\n", - "Epoch : 31 [12/36(33%)]\tLoss: 0.357370\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.581469\n", - "Epoch : 31 [20/36(56%)]\tLoss: 0.929819\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.156909\n", - "Epoch : 31 [28/36(78%)]\tLoss: 0.483220\n", - "Epoch : 31 [32/36(89%)]\tLoss: 0.762945\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.708112\n", - "Epoch : 32 [4/36(11%)]\tLoss: 0.435024\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.273886\n", - "Epoch : 32 [12/36(33%)]\tLoss: 0.232675\n", - "Epoch : 32 [16/36(44%)]\tLoss: 1.531982\n", - "Epoch : 32 [20/36(56%)]\tLoss: 0.337475\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.196759\n", - "Epoch : 32 [28/36(78%)]\tLoss: 0.618560\n", - "Epoch : 32 [32/36(89%)]\tLoss: 0.406199\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.270372\n", - "Epoch : 33 [4/36(11%)]\tLoss: 0.876308\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.245070\n", - "Epoch : 33 [12/36(33%)]\tLoss: 0.231832\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.345238\n", - "Epoch : 33 [20/36(56%)]\tLoss: 8.140718\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.454216\n", - "Epoch : 33 [28/36(78%)]\tLoss: 0.316045\n", - "Epoch : 33 [32/36(89%)]\tLoss: 0.314798\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.249792\n", - "Epoch : 34 [4/36(11%)]\tLoss: 1.754449\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.105136\n", - "Epoch : 34 [12/36(33%)]\tLoss: 0.516137\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.786574\n", - "Epoch : 34 [20/36(56%)]\tLoss: 0.377231\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.339750\n", - "Epoch : 34 [28/36(78%)]\tLoss: 0.510928\n", - "Epoch : 34 [32/36(89%)]\tLoss: 0.869089\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.204040\n", - "Epoch : 35 [4/36(11%)]\tLoss: 0.326584\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.377615\n", - "Epoch : 35 [12/36(33%)]\tLoss: 0.168307\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.283231\n", - "Epoch : 35 [20/36(56%)]\tLoss: 0.495858\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.228455\n", - "Epoch : 35 [28/36(78%)]\tLoss: 0.281946\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.625378\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.247942\n", - "Epoch : 36 [4/36(11%)]\tLoss: 0.943039\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.099586\n", - "Epoch : 36 [12/36(33%)]\tLoss: 1.193575\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.565161\n", - "Epoch : 36 [20/36(56%)]\tLoss: 0.591075\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.422009\n", - "Epoch : 36 [28/36(78%)]\tLoss: 0.211787\n", - "Epoch : 36 [32/36(89%)]\tLoss: 0.230841\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.294398\n", - "Epoch : 37 [4/36(11%)]\tLoss: 0.577148\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.361894\n", - "Epoch : 37 [12/36(33%)]\tLoss: 0.753838\n", - "Epoch : 37 [16/36(44%)]\tLoss: 1.162938\n", - "Epoch : 37 [20/36(56%)]\tLoss: 0.431796\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.296923\n", - "Epoch : 37 [28/36(78%)]\tLoss: 0.249466\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.225961\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.415230\n", - "Epoch : 38 [4/36(11%)]\tLoss: 0.589579\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.255535\n", - "Epoch : 38 [12/36(33%)]\tLoss: 0.325194\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.338503\n", - "Epoch : 38 [20/36(56%)]\tLoss: 1.089677\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.413926\n", - "Epoch : 38 [28/36(78%)]\tLoss: 0.310299\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.977933\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.475732\n", - "Epoch : 39 [4/36(11%)]\tLoss: 1.166908\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.212208\n", - "Epoch : 39 [12/36(33%)]\tLoss: 0.427814\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.308831\n", - "Epoch : 39 [20/36(56%)]\tLoss: 0.471325\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.488369\n", - "Epoch : 39 [28/36(78%)]\tLoss: 0.625600\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.449543\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.094495\n", - "Epoch : 40 [4/36(11%)]\tLoss: 0.596748\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.041893\n", - "Epoch : 40 [12/36(33%)]\tLoss: 0.330402\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.801657\n", - "Epoch : 40 [20/36(56%)]\tLoss: 0.261805\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.427501\n", - "Epoch : 40 [28/36(78%)]\tLoss: 0.101046\n", - "Epoch : 40 [32/36(89%)]\tLoss: 0.430320\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.178180\n", - "Epoch : 41 [4/36(11%)]\tLoss: 0.597963\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.111404\n", - "Epoch : 41 [12/36(33%)]\tLoss: 0.334425\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.600712\n", - "Epoch : 41 [20/36(56%)]\tLoss: 0.831337\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.167405\n", - "Epoch : 41 [28/36(78%)]\tLoss: 0.856512\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.263341\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.213090\n", - "Epoch : 42 [4/36(11%)]\tLoss: 0.531169\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.311126\n", - "Epoch : 42 [12/36(33%)]\tLoss: 0.723715\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.400058\n", - "Epoch : 42 [20/36(56%)]\tLoss: 1.338589\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.072342\n", - "Epoch : 42 [28/36(78%)]\tLoss: 0.844318\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.222099\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.404359\n", - "Epoch : 43 [4/36(11%)]\tLoss: 0.644221\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.334746\n", - "Epoch : 43 [12/36(33%)]\tLoss: 0.414446\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.482774\n", - "Epoch : 43 [20/36(56%)]\tLoss: 0.421186\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.178616\n", - "Epoch : 43 [28/36(78%)]\tLoss: 0.716391\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.143481\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.313725\n", - "Epoch : 44 [4/36(11%)]\tLoss: 0.137333\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.207881\n", - "Epoch : 44 [12/36(33%)]\tLoss: 0.569564\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.528622\n", - "Epoch : 44 [20/36(56%)]\tLoss: 0.428724\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.587079\n", - "Epoch : 44 [28/36(78%)]\tLoss: 0.445712\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.370171\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.318485\n", - "Epoch : 45 [4/36(11%)]\tLoss: 0.381179\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.716152\n", - "Epoch : 45 [12/36(33%)]\tLoss: 0.173891\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.446844\n", - "Epoch : 45 [20/36(56%)]\tLoss: 0.664207\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.347085\n", - "Epoch : 45 [28/36(78%)]\tLoss: 0.428880\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.147576\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.078045\n", - "Epoch : 46 [4/36(11%)]\tLoss: 1.052288\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.023588\n", - "Epoch : 46 [12/36(33%)]\tLoss: 0.567953\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.808846\n", - "Epoch : 46 [20/36(56%)]\tLoss: 0.058826\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.434106\n", - "Epoch : 46 [28/36(78%)]\tLoss: 0.235144\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.070250\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.248731\n", - "Epoch : 47 [4/36(11%)]\tLoss: 0.464602\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.216533\n", - "Epoch : 47 [12/36(33%)]\tLoss: 0.704866\n", - "Epoch : 47 [16/36(44%)]\tLoss: 1.448926\n", - "Epoch : 47 [20/36(56%)]\tLoss: 0.346967\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.233850\n", - "Epoch : 47 [28/36(78%)]\tLoss: 0.556294\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.675342\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.031292\n", - "Epoch : 48 [4/36(11%)]\tLoss: 0.703089\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.424832\n", - "Epoch : 48 [12/36(33%)]\tLoss: 0.346287\n", - "Epoch : 48 [16/36(44%)]\tLoss: 1.316893\n", - "Epoch : 48 [20/36(56%)]\tLoss: 0.857610\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.245881\n", - "Epoch : 48 [28/36(78%)]\tLoss: 1.281933\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.336972\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.832083\n", - "Epoch : 49 [4/36(11%)]\tLoss: 0.941388\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.201220\n", - "Epoch : 49 [12/36(33%)]\tLoss: 0.389977\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.376688\n", - "Epoch : 49 [20/36(56%)]\tLoss: 0.517796\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.092088\n", - "Epoch : 49 [28/36(78%)]\tLoss: 0.680176\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.174327\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.091433\n", - "Epoch : 50 [4/36(11%)]\tLoss: 0.436185\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.311675\n", - "Epoch : 50 [12/36(33%)]\tLoss: 0.285956\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.582378\n", - "Epoch : 50 [20/36(56%)]\tLoss: 0.919050\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.270392\n", - "Epoch : 50 [28/36(78%)]\tLoss: 0.973324\n", - "Epoch : 50 [32/36(89%)]\tLoss: 0.576271\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.670728\n", - "Epoch : 51 [4/36(11%)]\tLoss: 0.886712\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.100751\n", - "Epoch : 51 [12/36(33%)]\tLoss: 0.386025\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.529465\n", - "Epoch : 51 [20/36(56%)]\tLoss: 0.947774\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.767539\n", - "Epoch : 51 [28/36(78%)]\tLoss: 0.571711\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.251765\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.212626\n", - "Epoch : 52 [4/36(11%)]\tLoss: 1.073839\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.063755\n", - "Epoch : 52 [12/36(33%)]\tLoss: 0.774267\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.451752\n", - "Epoch : 52 [20/36(56%)]\tLoss: 1.413042\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.363818\n", - "Epoch : 52 [28/36(78%)]\tLoss: 2.202698\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.654060\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.084677\n", - "Epoch : 53 [4/36(11%)]\tLoss: 0.618550\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.336069\n", - "Epoch : 53 [12/36(33%)]\tLoss: 0.670051\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.840334\n", - "Epoch : 53 [20/36(56%)]\tLoss: 0.949424\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.209087\n", - "Epoch : 53 [28/36(78%)]\tLoss: 2.538940\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.342279\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.392449\n", - "Epoch : 54 [4/36(11%)]\tLoss: 0.486203\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.306021\n", - "Epoch : 54 [12/36(33%)]\tLoss: 0.230520\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.436410\n", - "Epoch : 54 [20/36(56%)]\tLoss: 0.684949\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.366743\n", - "Epoch : 54 [28/36(78%)]\tLoss: 0.340137\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.392396\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.241226\n", - "Epoch : 55 [4/36(11%)]\tLoss: 0.208627\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.287846\n", - "Epoch : 55 [12/36(33%)]\tLoss: 0.552863\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.498845\n", - "Epoch : 55 [20/36(56%)]\tLoss: 0.705694\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.461155\n", - "Epoch : 55 [28/36(78%)]\tLoss: 0.214350\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.191955\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.748406\n", - "Epoch : 56 [4/36(11%)]\tLoss: 1.152794\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.184812\n", - "Epoch : 56 [12/36(33%)]\tLoss: 0.518682\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.307776\n", - "Epoch : 56 [20/36(56%)]\tLoss: 1.420699\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.294112\n", - "Epoch : 56 [28/36(78%)]\tLoss: 0.778037\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.361675\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.144088\n", - "Epoch : 57 [4/36(11%)]\tLoss: 0.880363\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.191276\n", - "Epoch : 57 [12/36(33%)]\tLoss: 0.394946\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.386742\n", - "Epoch : 57 [20/36(56%)]\tLoss: 0.543866\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.342418\n", - "Epoch : 57 [28/36(78%)]\tLoss: 0.480424\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.489276\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.329949\n", - "Epoch : 58 [4/36(11%)]\tLoss: 0.303448\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.165213\n", - "Epoch : 58 [12/36(33%)]\tLoss: 0.277984\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.153901\n", - "Epoch : 58 [20/36(56%)]\tLoss: 0.422341\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.226475\n", - "Epoch : 58 [28/36(78%)]\tLoss: 0.811437\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.244592\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.039483\n", - "Epoch : 59 [4/36(11%)]\tLoss: 0.340929\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.178745\n", - "Epoch : 59 [12/36(33%)]\tLoss: 0.332853\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.132966\n", - "Epoch : 59 [20/36(56%)]\tLoss: 0.149137\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.165199\n", - "Epoch : 59 [28/36(78%)]\tLoss: 0.380043\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.070635\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.109540\n", - "Epoch : 60 [4/36(11%)]\tLoss: 0.335829\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.373097\n", - "Epoch : 60 [12/36(33%)]\tLoss: 0.203708\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.523015\n", - "Epoch : 60 [20/36(56%)]\tLoss: 1.411104\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.344621\n", - "Epoch : 60 [28/36(78%)]\tLoss: 0.369447\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.309172\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.173076\n", - "Epoch : 61 [4/36(11%)]\tLoss: 1.575993\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.073707\n", - "Epoch : 61 [12/36(33%)]\tLoss: 0.441406\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.299271\n", - "Epoch : 61 [20/36(56%)]\tLoss: 0.391899\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.553841\n", - "Epoch : 61 [28/36(78%)]\tLoss: 0.996605\n", - "Epoch : 61 [32/36(89%)]\tLoss: 1.163776\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.193393\n", - "Epoch : 62 [4/36(11%)]\tLoss: 0.680447\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.154131\n", - "Epoch : 62 [12/36(33%)]\tLoss: 0.466727\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.355742\n", - "Epoch : 62 [20/36(56%)]\tLoss: 0.944189\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.361093\n", - "Epoch : 62 [28/36(78%)]\tLoss: 0.496810\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.095560\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.131059\n", - "Epoch : 63 [4/36(11%)]\tLoss: 0.760972\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.178536\n", - "Epoch : 63 [12/36(33%)]\tLoss: 0.756130\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.349004\n", - "Epoch : 63 [20/36(56%)]\tLoss: 0.640581\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.446915\n", - "Epoch : 63 [28/36(78%)]\tLoss: 0.071328\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.337889\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.171653\n", - "Epoch : 64 [4/36(11%)]\tLoss: 0.419947\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.165812\n", - "Epoch : 64 [12/36(33%)]\tLoss: 0.390531\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.446191\n", - "Epoch : 64 [20/36(56%)]\tLoss: 0.429118\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.060738\n", - "Epoch : 64 [28/36(78%)]\tLoss: 0.285266\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.101778\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.110042\n", - "Epoch : 65 [4/36(11%)]\tLoss: 0.336258\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.267158\n", - "Epoch : 65 [12/36(33%)]\tLoss: 0.231397\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.299631\n", - "Epoch : 65 [20/36(56%)]\tLoss: 0.280416\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.132582\n", - "Epoch : 65 [28/36(78%)]\tLoss: 0.958005\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.065595\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.067539\n", - "Epoch : 66 [4/36(11%)]\tLoss: 0.475579\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.383978\n", - "Epoch : 66 [12/36(33%)]\tLoss: 0.461356\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.132429\n", - "Epoch : 66 [20/36(56%)]\tLoss: 0.354878\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.101756\n", - "Epoch : 66 [28/36(78%)]\tLoss: 0.319977\n", - "Epoch : 66 [32/36(89%)]\tLoss: 0.305964\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.395466\n", - "Epoch : 67 [4/36(11%)]\tLoss: 0.631511\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.046495\n", - "Epoch : 67 [12/36(33%)]\tLoss: 0.143324\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.444657\n", - "Epoch : 67 [20/36(56%)]\tLoss: 0.579663\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.105798\n", - "Epoch : 67 [28/36(78%)]\tLoss: 0.175852\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.188525\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.245703\n", - "Epoch : 68 [4/36(11%)]\tLoss: 0.615311\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.184509\n", - "Epoch : 68 [12/36(33%)]\tLoss: 0.460917\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.521327\n", - "Epoch : 68 [20/36(56%)]\tLoss: 0.437388\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.211834\n", - "Epoch : 68 [28/36(78%)]\tLoss: 0.454829\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.756555\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.226641\n", - "Epoch : 69 [4/36(11%)]\tLoss: 0.481717\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.684852\n", - "Epoch : 69 [12/36(33%)]\tLoss: 0.191338\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.451719\n", - "Epoch : 69 [20/36(56%)]\tLoss: 0.246406\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.059305\n", - "Epoch : 69 [28/36(78%)]\tLoss: 0.195308\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.614104\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.351343\n", - "Epoch : 70 [4/36(11%)]\tLoss: 0.248838\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.069867\n", - "Epoch : 70 [12/36(33%)]\tLoss: 0.177915\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.587915\n", - "Epoch : 70 [20/36(56%)]\tLoss: 0.308113\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.260882\n", - "Epoch : 70 [28/36(78%)]\tLoss: 0.277850\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.320749\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.351311\n", - "Epoch : 71 [4/36(11%)]\tLoss: 0.295348\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.428218\n", - "Epoch : 71 [12/36(33%)]\tLoss: 0.629254\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.674775\n", - "Epoch : 71 [20/36(56%)]\tLoss: 0.631717\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.434315\n", - "Epoch : 71 [28/36(78%)]\tLoss: 0.192866\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.300748\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.050244\n", - "Epoch : 72 [4/36(11%)]\tLoss: 0.187221\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.355841\n", - "Epoch : 72 [12/36(33%)]\tLoss: 0.486007\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.138751\n", - "Epoch : 72 [20/36(56%)]\tLoss: 0.593632\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.222655\n", - "Epoch : 72 [28/36(78%)]\tLoss: 0.778071\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.520291\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.421078\n", - "Epoch : 73 [4/36(11%)]\tLoss: 1.278967\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.145565\n", - "Epoch : 73 [12/36(33%)]\tLoss: 0.493192\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.382323\n", - "Epoch : 73 [20/36(56%)]\tLoss: 0.567345\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.282475\n", - "Epoch : 73 [28/36(78%)]\tLoss: 0.834403\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.205051\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.353666\n", - "Epoch : 74 [4/36(11%)]\tLoss: 0.850327\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.279701\n", - "Epoch : 74 [12/36(33%)]\tLoss: 0.588210\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.273438\n", - "Epoch : 74 [20/36(56%)]\tLoss: 0.107704\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.020116\n", - "Epoch : 74 [28/36(78%)]\tLoss: 0.672685\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.313326\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.063054\n", - "Epoch : 75 [4/36(11%)]\tLoss: 0.593994\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.359736\n", - "Epoch : 75 [12/36(33%)]\tLoss: 0.642095\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.491980\n", - "Epoch : 75 [20/36(56%)]\tLoss: 0.383763\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.192489\n", - "Epoch : 75 [28/36(78%)]\tLoss: 0.341851\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.420526\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.466267\n", - "Epoch : 76 [4/36(11%)]\tLoss: 0.725664\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.258868\n", - "Epoch : 76 [12/36(33%)]\tLoss: 0.386899\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.820854\n", - "Epoch : 76 [20/36(56%)]\tLoss: 1.941172\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.278641\n", - "Epoch : 76 [28/36(78%)]\tLoss: 0.196588\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.205862\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.465835\n", - "Epoch : 77 [4/36(11%)]\tLoss: 1.071351\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.677886\n", - "Epoch : 77 [12/36(33%)]\tLoss: 0.421415\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.818598\n", - "Epoch : 77 [20/36(56%)]\tLoss: 1.020175\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.742091\n", - "Epoch : 77 [28/36(78%)]\tLoss: 1.043014\n", - "Epoch : 77 [32/36(89%)]\tLoss: 1.304296\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.503657\n", - "Epoch : 78 [4/36(11%)]\tLoss: 0.364380\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.832167\n", - "Epoch : 78 [12/36(33%)]\tLoss: 0.455644\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.829458\n", - "Epoch : 78 [20/36(56%)]\tLoss: 0.338506\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.220733\n", - "Epoch : 78 [28/36(78%)]\tLoss: 0.556653\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.454469\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.325316\n", - "Epoch : 79 [4/36(11%)]\tLoss: 0.541575\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.086029\n", - "Epoch : 79 [12/36(33%)]\tLoss: 0.527262\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.246172\n", - "Epoch : 79 [20/36(56%)]\tLoss: 0.279475\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.253151\n", - "Epoch : 79 [28/36(78%)]\tLoss: 0.242834\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.333720\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.386479\n", - "Epoch : 80 [4/36(11%)]\tLoss: 0.181690\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.195253\n", - "Epoch : 80 [12/36(33%)]\tLoss: 0.477310\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.522284\n", - "Epoch : 80 [20/36(56%)]\tLoss: 0.179487\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.082368\n", - "Epoch : 80 [28/36(78%)]\tLoss: 0.283516\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.458258\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.565194\n", - "Epoch : 81 [4/36(11%)]\tLoss: 0.943087\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.266621\n", - "Epoch : 81 [12/36(33%)]\tLoss: 0.510036\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.537530\n", - "Epoch : 81 [20/36(56%)]\tLoss: 0.477839\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.294128\n", - "Epoch : 81 [28/36(78%)]\tLoss: 0.167730\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.284342\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.237424\n", - "Epoch : 82 [4/36(11%)]\tLoss: 1.890410\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.219688\n", - "Epoch : 82 [12/36(33%)]\tLoss: 0.184038\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.552833\n", - "Epoch : 82 [20/36(56%)]\tLoss: 0.716360\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.448484\n", - "Epoch : 82 [28/36(78%)]\tLoss: 0.342082\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.173762\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.129008\n", - "Epoch : 83 [4/36(11%)]\tLoss: 1.271657\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.232719\n", - "Epoch : 83 [12/36(33%)]\tLoss: 0.614202\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.794692\n", - "Epoch : 83 [20/36(56%)]\tLoss: 0.140350\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.122582\n", - "Epoch : 83 [28/36(78%)]\tLoss: 1.385823\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.641438\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.442765\n", - "Epoch : 84 [4/36(11%)]\tLoss: 0.649024\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.529150\n", - "Epoch : 84 [12/36(33%)]\tLoss: 0.456516\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.618759\n", - "Epoch : 84 [20/36(56%)]\tLoss: 0.434585\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.022508\n", - "Epoch : 84 [28/36(78%)]\tLoss: 0.363682\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.179081\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.107404\n", - "Epoch : 85 [4/36(11%)]\tLoss: 0.999953\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.288778\n", - "Epoch : 85 [12/36(33%)]\tLoss: 0.174723\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.308867\n", - "Epoch : 85 [20/36(56%)]\tLoss: 0.191982\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.563457\n", - "Epoch : 85 [28/36(78%)]\tLoss: 1.096451\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.399403\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.164414\n", - "Epoch : 86 [4/36(11%)]\tLoss: 0.688349\n", - "Epoch : 86 [8/36(22%)]\tLoss: 1.336441\n", - "Epoch : 86 [12/36(33%)]\tLoss: 1.115971\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.166427\n", - "Epoch : 86 [20/36(56%)]\tLoss: 0.193667\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.278666\n", - "Epoch : 86 [28/36(78%)]\tLoss: 0.955885\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.545948\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.466130\n", - "Epoch : 87 [4/36(11%)]\tLoss: 1.187678\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.678168\n", - "Epoch : 87 [12/36(33%)]\tLoss: 1.213233\n", - "Epoch : 87 [16/36(44%)]\tLoss: 2.553460\n", - "Epoch : 87 [20/36(56%)]\tLoss: 1.772933\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.238267\n", - "Epoch : 87 [28/36(78%)]\tLoss: 0.991708\n", - "Epoch : 87 [32/36(89%)]\tLoss: 1.196060\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.960181\n", - "Epoch : 88 [4/36(11%)]\tLoss: 1.675559\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.186355\n", - "Epoch : 88 [12/36(33%)]\tLoss: 0.128255\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.408819\n", - "Epoch : 88 [20/36(56%)]\tLoss: 0.912504\n", - "Epoch : 88 [24/36(67%)]\tLoss: 1.175293\n", - "Epoch : 88 [28/36(78%)]\tLoss: 0.990560\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.632055\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.563201\n", - "Epoch : 89 [4/36(11%)]\tLoss: 2.195781\n", - "Epoch : 89 [8/36(22%)]\tLoss: 3.471958\n", - "Epoch : 89 [12/36(33%)]\tLoss: 3.675908\n", - "Epoch : 89 [16/36(44%)]\tLoss: 1.334934\n", - "Epoch : 89 [20/36(56%)]\tLoss: 1.311227\n", - "Epoch : 89 [24/36(67%)]\tLoss: 1.792446\n", - "Epoch : 89 [28/36(78%)]\tLoss: 3.790955\n", - "Epoch : 89 [32/36(89%)]\tLoss: 3.436365\n", - "Epoch : 90 [0/36(0%)]\tLoss: 1.585278\n", - "Epoch : 90 [4/36(11%)]\tLoss: 0.416219\n", - "Epoch : 90 [8/36(22%)]\tLoss: 3.117171\n", - "Epoch : 90 [12/36(33%)]\tLoss: 3.960102\n", - "Epoch : 90 [16/36(44%)]\tLoss: 2.393560\n", - "Epoch : 90 [20/36(56%)]\tLoss: 0.589126\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.822543\n", - "Epoch : 90 [28/36(78%)]\tLoss: 3.727118\n", - "Epoch : 90 [32/36(89%)]\tLoss: 2.944671\n", - "Epoch : 91 [0/36(0%)]\tLoss: 1.716225\n", - "Epoch : 91 [4/36(11%)]\tLoss: 0.407666\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.207399\n", - "Epoch : 91 [12/36(33%)]\tLoss: 1.016862\n", - "Epoch : 91 [16/36(44%)]\tLoss: 1.032621\n", - "Epoch : 91 [20/36(56%)]\tLoss: 0.379478\n", - "Epoch : 91 [24/36(67%)]\tLoss: 1.485887\n", - "Epoch : 91 [28/36(78%)]\tLoss: 1.674209\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.893359\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.162307\n", - "Epoch : 92 [4/36(11%)]\tLoss: 0.663244\n", - "Epoch : 92 [8/36(22%)]\tLoss: 1.787985\n", - "Epoch : 92 [12/36(33%)]\tLoss: 1.857683\n", - "Epoch : 92 [16/36(44%)]\tLoss: 1.285776\n", - "Epoch : 92 [20/36(56%)]\tLoss: 1.122557\n", - "Epoch : 92 [24/36(67%)]\tLoss: 1.169221\n", - "Epoch : 92 [28/36(78%)]\tLoss: 3.342285\n", - "Epoch : 92 [32/36(89%)]\tLoss: 2.793087\n", - "Epoch : 93 [0/36(0%)]\tLoss: 1.566781\n", - "Epoch : 93 [4/36(11%)]\tLoss: 0.967281\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.457982\n", - "Epoch : 93 [12/36(33%)]\tLoss: 1.040919\n", - "Epoch : 93 [16/36(44%)]\tLoss: 3.379672\n", - "Epoch : 93 [20/36(56%)]\tLoss: 2.183326\n", - "Epoch : 93 [24/36(67%)]\tLoss: 1.253585\n", - "Epoch : 93 [28/36(78%)]\tLoss: 0.970572\n", - "Epoch : 93 [32/36(89%)]\tLoss: 1.065320\n", - "Epoch : 94 [0/36(0%)]\tLoss: 2.092313\n", - "Epoch : 94 [4/36(11%)]\tLoss: 3.136842\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.898935\n", - "Epoch : 94 [12/36(33%)]\tLoss: 0.357317\n", - "Epoch : 94 [16/36(44%)]\tLoss: 1.348559\n", - "Epoch : 94 [20/36(56%)]\tLoss: 2.541047\n", - "Epoch : 94 [24/36(67%)]\tLoss: 1.734668\n", - "Epoch : 94 [28/36(78%)]\tLoss: 1.846122\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.614514\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.471126\n", - "Epoch : 95 [4/36(11%)]\tLoss: 2.058697\n", - "Epoch : 95 [8/36(22%)]\tLoss: 1.271914\n", - "Epoch : 95 [12/36(33%)]\tLoss: 2.267414\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.515036\n", - "Epoch : 95 [20/36(56%)]\tLoss: 1.162248\n", - "Epoch : 95 [24/36(67%)]\tLoss: 1.215767\n", - "Epoch : 95 [28/36(78%)]\tLoss: 2.152397\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.872249\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.825732\n", - "Epoch : 96 [4/36(11%)]\tLoss: 1.023545\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.284041\n", - "Epoch : 96 [12/36(33%)]\tLoss: 0.907851\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.728998\n", - "Epoch : 96 [20/36(56%)]\tLoss: 0.540271\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.394503\n", - "Epoch : 96 [28/36(78%)]\tLoss: 0.688199\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.947640\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.220880\n", - "Epoch : 97 [4/36(11%)]\tLoss: 0.659343\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.111405\n", - "Epoch : 97 [12/36(33%)]\tLoss: 0.152752\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.086298\n", - "Epoch : 97 [20/36(56%)]\tLoss: 0.489436\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.573709\n", - "Epoch : 97 [28/36(78%)]\tLoss: 0.515620\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.289974\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.177648\n", - "Epoch : 98 [4/36(11%)]\tLoss: 0.389674\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.185830\n", - "Epoch : 98 [12/36(33%)]\tLoss: 0.088112\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.238551\n", - "Epoch : 98 [20/36(56%)]\tLoss: 0.491209\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.252624\n", - "Epoch : 98 [28/36(78%)]\tLoss: 0.709859\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.255970\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.470344\n", - "Epoch : 99 [4/36(11%)]\tLoss: 0.424051\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.055387\n", - "Epoch : 99 [12/36(33%)]\tLoss: 0.286219\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.704761\n", - "Epoch : 99 [20/36(56%)]\tLoss: 0.760706\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.264923\n", - "Epoch : 99 [28/36(78%)]\tLoss: 0.728058\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.417225\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.335077\n", - "Epoch : 100 [4/36(11%)]\tLoss: 0.736962\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.236133\n", - "Epoch : 100 [12/36(33%)]\tLoss: 0.427033\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.689049\n", - "Epoch : 100 [20/36(56%)]\tLoss: 0.425932\n", - "Epoch : 100 [24/36(67%)]\tLoss: 0.323791\n", - "Epoch : 100 [28/36(78%)]\tLoss: 0.999760\n", - "Epoch : 100 [32/36(89%)]\tLoss: 0.794521\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.528443\n", - "Epoch : 101 [4/36(11%)]\tLoss: 0.698077\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.310891\n", - "Epoch : 101 [12/36(33%)]\tLoss: 0.904637\n", - "Epoch : 101 [16/36(44%)]\tLoss: 0.759942\n", - "Epoch : 101 [20/36(56%)]\tLoss: 0.595933\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.066025\n", - "Epoch : 101 [28/36(78%)]\tLoss: 1.011942\n", - "Epoch : 101 [32/36(89%)]\tLoss: 0.637389\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.290049\n", - "Epoch : 102 [4/36(11%)]\tLoss: 0.305975\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.076124\n", - "Epoch : 102 [12/36(33%)]\tLoss: 0.247602\n", - "Epoch : 102 [16/36(44%)]\tLoss: 0.424071\n", - "Epoch : 102 [20/36(56%)]\tLoss: 0.302131\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.397883\n", - "Epoch : 102 [28/36(78%)]\tLoss: 0.568201\n", - "Epoch : 102 [32/36(89%)]\tLoss: 0.639221\n", - "Epoch : 103 [0/36(0%)]\tLoss: 0.031100\n", - "Epoch : 103 [4/36(11%)]\tLoss: 0.144299\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.493636\n", - "Epoch : 103 [12/36(33%)]\tLoss: 0.477068\n", - "Epoch : 103 [16/36(44%)]\tLoss: 0.295319\n", - "Epoch : 103 [20/36(56%)]\tLoss: 0.567651\n", - "Epoch : 103 [24/36(67%)]\tLoss: 0.154543\n", - "Epoch : 103 [28/36(78%)]\tLoss: 0.934411\n", - "Epoch : 103 [32/36(89%)]\tLoss: 0.423786\n", - "Epoch : 104 [0/36(0%)]\tLoss: 0.617604\n", - "Epoch : 104 [4/36(11%)]\tLoss: 0.791493\n", - "Epoch : 104 [8/36(22%)]\tLoss: 0.265794\n", - "Epoch : 104 [12/36(33%)]\tLoss: 0.353376\n", - "Epoch : 104 [16/36(44%)]\tLoss: 0.616096\n", - "Epoch : 104 [20/36(56%)]\tLoss: 1.233592\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.374678\n", - "Epoch : 104 [28/36(78%)]\tLoss: 0.330305\n", - "Epoch : 104 [32/36(89%)]\tLoss: 0.119915\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.061153\n", - "Epoch : 105 [4/36(11%)]\tLoss: 1.500544\n", - "Epoch : 105 [8/36(22%)]\tLoss: 0.708913\n", - "Epoch : 105 [12/36(33%)]\tLoss: 0.456832\n", - "Epoch : 105 [16/36(44%)]\tLoss: 0.242507\n", - "Epoch : 105 [20/36(56%)]\tLoss: 0.381658\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.477974\n", - "Epoch : 105 [28/36(78%)]\tLoss: 1.054624\n", - "Epoch : 105 [32/36(89%)]\tLoss: 0.683427\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.396312\n", - "Epoch : 106 [4/36(11%)]\tLoss: 0.632397\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.422376\n", - "Epoch : 106 [12/36(33%)]\tLoss: 0.452805\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.700580\n", - "Epoch : 106 [20/36(56%)]\tLoss: 0.304329\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.184213\n", - "Epoch : 106 [28/36(78%)]\tLoss: 0.652698\n", - "Epoch : 106 [32/36(89%)]\tLoss: 0.473258\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.315420\n", - "Epoch : 107 [4/36(11%)]\tLoss: 0.267182\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.183368\n", - "Epoch : 107 [12/36(33%)]\tLoss: 0.209567\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.558090\n", - "Epoch : 107 [20/36(56%)]\tLoss: 0.229253\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.903482\n", - "Epoch : 107 [28/36(78%)]\tLoss: 0.449808\n", - "Epoch : 107 [32/36(89%)]\tLoss: 0.817243\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.436760\n", - "Epoch : 108 [4/36(11%)]\tLoss: 0.625540\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.825404\n", - "Epoch : 108 [12/36(33%)]\tLoss: 0.110554\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.286792\n", - "Epoch : 108 [20/36(56%)]\tLoss: 2.833877\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.400053\n", - "Epoch : 108 [28/36(78%)]\tLoss: 0.988854\n", - "Epoch : 108 [32/36(89%)]\tLoss: 0.234745\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.057277\n", - "Epoch : 109 [4/36(11%)]\tLoss: 0.032007\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.998918\n", - "Epoch : 109 [12/36(33%)]\tLoss: 1.419879\n", - "Epoch : 109 [16/36(44%)]\tLoss: 1.054044\n", - "Epoch : 109 [20/36(56%)]\tLoss: 0.671824\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.170978\n", - "Epoch : 109 [28/36(78%)]\tLoss: 1.201057\n", - "Epoch : 109 [32/36(89%)]\tLoss: 0.678791\n", - "Epoch : 110 [0/36(0%)]\tLoss: 1.131525\n", - "Epoch : 110 [4/36(11%)]\tLoss: 0.581244\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.219936\n", - "Epoch : 110 [12/36(33%)]\tLoss: 1.183547\n", - "Epoch : 110 [16/36(44%)]\tLoss: 1.832149\n", - "Epoch : 110 [20/36(56%)]\tLoss: 1.537309\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.220064\n", - "Epoch : 110 [28/36(78%)]\tLoss: 0.206773\n", - "Epoch : 110 [32/36(89%)]\tLoss: 0.404106\n", - "Epoch : 111 [0/36(0%)]\tLoss: 1.263774\n", - "Epoch : 111 [4/36(11%)]\tLoss: 1.618960\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.518778\n", - "Epoch : 111 [12/36(33%)]\tLoss: 0.272339\n", - "Epoch : 111 [16/36(44%)]\tLoss: 1.621682\n", - "Epoch : 111 [20/36(56%)]\tLoss: 0.948874\n", - "Epoch : 111 [24/36(67%)]\tLoss: 0.643028\n", - "Epoch : 111 [28/36(78%)]\tLoss: 0.311759\n", - "Epoch : 111 [32/36(89%)]\tLoss: 0.589862\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.309302\n", - "Epoch : 112 [4/36(11%)]\tLoss: 1.313844\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.951113\n", - "Epoch : 112 [12/36(33%)]\tLoss: 1.455825\n", - "Epoch : 112 [16/36(44%)]\tLoss: 1.334544\n", - "Epoch : 112 [20/36(56%)]\tLoss: 0.480376\n", - "Epoch : 112 [24/36(67%)]\tLoss: 0.264695\n", - "Epoch : 112 [28/36(78%)]\tLoss: 1.501649\n", - "Epoch : 112 [32/36(89%)]\tLoss: 1.331584\n", - "Epoch : 113 [0/36(0%)]\tLoss: 0.774809\n", - "Epoch : 113 [4/36(11%)]\tLoss: 0.281862\n", - "Epoch : 113 [8/36(22%)]\tLoss: 0.119052\n", - "Epoch : 113 [12/36(33%)]\tLoss: 0.946327\n", - "Epoch : 113 [16/36(44%)]\tLoss: 1.766507\n", - "Epoch : 113 [20/36(56%)]\tLoss: 0.593605\n", - "Epoch : 113 [24/36(67%)]\tLoss: 0.346706\n", - "Epoch : 113 [28/36(78%)]\tLoss: 0.452733\n", - "Epoch : 113 [32/36(89%)]\tLoss: 0.917309\n", - "Epoch : 114 [0/36(0%)]\tLoss: 0.708329\n", - "Epoch : 114 [4/36(11%)]\tLoss: 0.468475\n", - "Epoch : 114 [8/36(22%)]\tLoss: 0.861136\n", - "Epoch : 114 [12/36(33%)]\tLoss: 0.791301\n", - "Epoch : 114 [16/36(44%)]\tLoss: 0.112276\n", - "Epoch : 114 [20/36(56%)]\tLoss: 0.797339\n", - "Epoch : 114 [24/36(67%)]\tLoss: 0.640625\n", - "Epoch : 114 [28/36(78%)]\tLoss: 2.018550\n", - "Epoch : 114 [32/36(89%)]\tLoss: 0.967172\n", - "Epoch : 115 [0/36(0%)]\tLoss: 1.015383\n", - "Epoch : 115 [4/36(11%)]\tLoss: 0.100396\n", - "Epoch : 115 [8/36(22%)]\tLoss: 0.695266\n", - "Epoch : 115 [12/36(33%)]\tLoss: 0.904562\n", - "Epoch : 115 [16/36(44%)]\tLoss: 1.446789\n", - "Epoch : 115 [20/36(56%)]\tLoss: 1.735146\n", - "Epoch : 115 [24/36(67%)]\tLoss: 0.423565\n", - "Epoch : 115 [28/36(78%)]\tLoss: 0.685821\n", - "Epoch : 115 [32/36(89%)]\tLoss: 1.112314\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.751063\n", - "Epoch : 116 [4/36(11%)]\tLoss: 1.444354\n", - "Epoch : 116 [8/36(22%)]\tLoss: 0.372787\n", - "Epoch : 116 [12/36(33%)]\tLoss: 0.268462\n", - "Epoch : 116 [16/36(44%)]\tLoss: 2.215126\n", - "Epoch : 116 [20/36(56%)]\tLoss: 1.429686\n", - "Epoch : 116 [24/36(67%)]\tLoss: 0.613314\n", - "Epoch : 116 [28/36(78%)]\tLoss: 0.127357\n", - "Epoch : 116 [32/36(89%)]\tLoss: 0.766408\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.106539\n", - "Epoch : 117 [4/36(11%)]\tLoss: 1.374461\n", - "Epoch : 117 [8/36(22%)]\tLoss: 1.323295\n", - "Epoch : 117 [12/36(33%)]\tLoss: 0.591265\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.040366\n", - "Epoch : 117 [20/36(56%)]\tLoss: 0.507397\n", - "Epoch : 117 [24/36(67%)]\tLoss: 0.428971\n", - "Epoch : 117 [28/36(78%)]\tLoss: 1.544530\n", - "Epoch : 117 [32/36(89%)]\tLoss: 1.151389\n", - "Epoch : 118 [0/36(0%)]\tLoss: 0.399716\n", - "Epoch : 118 [4/36(11%)]\tLoss: 0.830944\n", - "Epoch : 118 [8/36(22%)]\tLoss: 1.502006\n", - "Epoch : 118 [12/36(33%)]\tLoss: 1.009553\n", - "Epoch : 118 [16/36(44%)]\tLoss: 1.001731\n", - "Epoch : 118 [20/36(56%)]\tLoss: 0.468032\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.045428\n", - "Epoch : 118 [28/36(78%)]\tLoss: 1.957485\n", - "Epoch : 118 [32/36(89%)]\tLoss: 1.130660\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.924361\n", - "Epoch : 119 [4/36(11%)]\tLoss: 0.324916\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.171829\n", - "Epoch : 119 [12/36(33%)]\tLoss: 0.977008\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.834411\n", - "Epoch : 119 [20/36(56%)]\tLoss: 0.584513\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.170122\n", - "Epoch : 119 [28/36(78%)]\tLoss: 0.444271\n", - "Epoch : 119 [32/36(89%)]\tLoss: 0.517846\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.783763\n", - "Epoch : 120 [4/36(11%)]\tLoss: 0.650293\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.742213\n", - "Epoch : 120 [12/36(33%)]\tLoss: 0.243782\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.721652\n", - "Epoch : 120 [20/36(56%)]\tLoss: 0.412844\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.316899\n", - "Epoch : 120 [28/36(78%)]\tLoss: 0.791803\n", - "Epoch : 120 [32/36(89%)]\tLoss: 0.479999\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.206826\n", - "Epoch : 121 [4/36(11%)]\tLoss: 0.820453\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.323903\n", - "Epoch : 121 [12/36(33%)]\tLoss: 0.865547\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.175772\n", - "Epoch : 121 [20/36(56%)]\tLoss: 0.357807\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.105436\n", - "Epoch : 121 [28/36(78%)]\tLoss: 0.658051\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.565504\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.379463\n", - "Epoch : 122 [4/36(11%)]\tLoss: 0.789534\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.193006\n", - "Epoch : 122 [12/36(33%)]\tLoss: 0.336916\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.714976\n", - "Epoch : 122 [20/36(56%)]\tLoss: 0.728069\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.435422\n", - "Epoch : 122 [28/36(78%)]\tLoss: 0.327485\n", - "Epoch : 122 [32/36(89%)]\tLoss: 0.115325\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.932832\n", - "Epoch : 123 [4/36(11%)]\tLoss: 1.707026\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.790505\n", - "Epoch : 123 [12/36(33%)]\tLoss: 0.519756\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.500014\n", - "Epoch : 123 [20/36(56%)]\tLoss: 0.818836\n", - "Epoch : 123 [24/36(67%)]\tLoss: 1.119909\n", - "Epoch : 123 [28/36(78%)]\tLoss: 0.375711\n", - "Epoch : 123 [32/36(89%)]\tLoss: 0.412391\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.379940\n", - "Epoch : 124 [4/36(11%)]\tLoss: 0.915417\n", - "Epoch : 124 [8/36(22%)]\tLoss: 1.816001\n", - "Epoch : 124 [12/36(33%)]\tLoss: 1.768164\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.239268\n", - "Epoch : 124 [20/36(56%)]\tLoss: 0.719960\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.447358\n", - "Epoch : 124 [28/36(78%)]\tLoss: 1.382234\n", - "Epoch : 124 [32/36(89%)]\tLoss: 1.281032\n", - "Epoch : 125 [0/36(0%)]\tLoss: 1.153356\n", - "Epoch : 125 [4/36(11%)]\tLoss: 0.310354\n", - "Epoch : 125 [8/36(22%)]\tLoss: 0.391367\n", - "Epoch : 125 [12/36(33%)]\tLoss: 1.073498\n", - "Epoch : 125 [16/36(44%)]\tLoss: 1.275834\n", - "Epoch : 125 [20/36(56%)]\tLoss: 0.114763\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.283613\n", - "Epoch : 125 [28/36(78%)]\tLoss: 0.770060\n", - "Epoch : 125 [32/36(89%)]\tLoss: 0.550521\n", - "Epoch : 126 [0/36(0%)]\tLoss: 0.548615\n", - "Epoch : 126 [4/36(11%)]\tLoss: 0.409290\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.005765\n", - "Epoch : 126 [12/36(33%)]\tLoss: 0.348277\n", - "Epoch : 126 [16/36(44%)]\tLoss: 0.135186\n", - "Epoch : 126 [20/36(56%)]\tLoss: 0.087320\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.329575\n", - "Epoch : 126 [28/36(78%)]\tLoss: 0.541017\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.230414\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.232144\n", - "Epoch : 127 [4/36(11%)]\tLoss: 0.458521\n", - "Epoch : 127 [8/36(22%)]\tLoss: 0.337030\n", - "Epoch : 127 [12/36(33%)]\tLoss: 0.442213\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.561833\n", - "Epoch : 127 [20/36(56%)]\tLoss: 0.326575\n", - "Epoch : 127 [24/36(67%)]\tLoss: 0.394964\n", - "Epoch : 127 [28/36(78%)]\tLoss: 0.523652\n", - "Epoch : 127 [32/36(89%)]\tLoss: 0.253535\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.580355\n", - "Epoch : 128 [4/36(11%)]\tLoss: 0.288918\n", - "Epoch : 128 [8/36(22%)]\tLoss: 0.421121\n", - "Epoch : 128 [12/36(33%)]\tLoss: 0.920655\n", - "Epoch : 128 [16/36(44%)]\tLoss: 0.326674\n", - "Epoch : 128 [20/36(56%)]\tLoss: 0.376890\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.217185\n", - "Epoch : 128 [28/36(78%)]\tLoss: 0.545499\n", - "Epoch : 128 [32/36(89%)]\tLoss: 0.451137\n", - "Epoch : 129 [0/36(0%)]\tLoss: 0.717163\n", - "Epoch : 129 [4/36(11%)]\tLoss: 0.152541\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.090583\n", - "Epoch : 129 [12/36(33%)]\tLoss: 0.136863\n", - "Epoch : 129 [16/36(44%)]\tLoss: 0.313807\n", - "Epoch : 129 [20/36(56%)]\tLoss: 0.889233\n", - "Epoch : 129 [24/36(67%)]\tLoss: 0.207613\n", - "Epoch : 129 [28/36(78%)]\tLoss: 0.258235\n", - "Epoch : 129 [32/36(89%)]\tLoss: 0.043467\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.333487\n", - "Epoch : 130 [4/36(11%)]\tLoss: 0.515277\n", - "Epoch : 130 [8/36(22%)]\tLoss: 0.454335\n", - "Epoch : 130 [12/36(33%)]\tLoss: 0.444775\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.025399\n", - "Epoch : 130 [20/36(56%)]\tLoss: 0.413815\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.507278\n", - "Epoch : 130 [28/36(78%)]\tLoss: 0.935802\n", - "Epoch : 130 [32/36(89%)]\tLoss: 0.505981\n", - "Epoch : 131 [0/36(0%)]\tLoss: 0.429918\n", - "Epoch : 131 [4/36(11%)]\tLoss: 0.616365\n", - "Epoch : 131 [8/36(22%)]\tLoss: 0.406301\n", - "Epoch : 131 [12/36(33%)]\tLoss: 1.156886\n", - "Epoch : 131 [16/36(44%)]\tLoss: 0.914408\n", - "Epoch : 131 [20/36(56%)]\tLoss: 0.204657\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.119894\n", - "Epoch : 131 [28/36(78%)]\tLoss: 0.482390\n", - "Epoch : 131 [32/36(89%)]\tLoss: 1.010507\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.376102\n", - "Epoch : 132 [4/36(11%)]\tLoss: 0.504402\n", - "Epoch : 132 [8/36(22%)]\tLoss: 0.127814\n", - "Epoch : 132 [12/36(33%)]\tLoss: 0.442120\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.585314\n", - "Epoch : 132 [20/36(56%)]\tLoss: 0.305471\n", - "Epoch : 132 [24/36(67%)]\tLoss: 0.172302\n", - "Epoch : 132 [28/36(78%)]\tLoss: 0.174668\n", - "Epoch : 132 [32/36(89%)]\tLoss: 0.421496\n", - "Epoch : 133 [0/36(0%)]\tLoss: 0.843592\n", - "Epoch : 133 [4/36(11%)]\tLoss: 0.163471\n", - "Epoch : 133 [8/36(22%)]\tLoss: 0.170392\n", - "Epoch : 133 [12/36(33%)]\tLoss: 0.373309\n", - "Epoch : 133 [16/36(44%)]\tLoss: 0.329412\n", - "Epoch : 133 [20/36(56%)]\tLoss: 0.056845\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.284175\n", - "Epoch : 133 [28/36(78%)]\tLoss: 1.046411\n", - "Epoch : 133 [32/36(89%)]\tLoss: 0.239937\n", - "Epoch : 134 [0/36(0%)]\tLoss: 0.229588\n", - "Epoch : 134 [4/36(11%)]\tLoss: 0.201540\n", - "Epoch : 134 [8/36(22%)]\tLoss: 1.119673\n", - "Epoch : 134 [12/36(33%)]\tLoss: 1.157583\n", - "Epoch : 134 [16/36(44%)]\tLoss: 0.174117\n", - "Epoch : 134 [20/36(56%)]\tLoss: 0.108200\n", - "Epoch : 134 [24/36(67%)]\tLoss: 0.619123\n", - "Epoch : 134 [28/36(78%)]\tLoss: 1.069358\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.291268\n", - "Epoch : 135 [0/36(0%)]\tLoss: 0.227100\n", - "Epoch : 135 [4/36(11%)]\tLoss: 0.180872\n", - "Epoch : 135 [8/36(22%)]\tLoss: 0.314916\n", - "Epoch : 135 [12/36(33%)]\tLoss: 0.916336\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.633166\n", - "Epoch : 135 [20/36(56%)]\tLoss: 0.606385\n", - "Epoch : 135 [24/36(67%)]\tLoss: 0.299452\n", - "Epoch : 135 [28/36(78%)]\tLoss: 0.565051\n", - "Epoch : 135 [32/36(89%)]\tLoss: 0.633723\n", - "Epoch : 136 [0/36(0%)]\tLoss: 0.382135\n", - "Epoch : 136 [4/36(11%)]\tLoss: 1.858586\n", - "Epoch : 136 [8/36(22%)]\tLoss: 0.067723\n", - "Epoch : 136 [12/36(33%)]\tLoss: 0.143324\n", - "Epoch : 136 [16/36(44%)]\tLoss: 0.519309\n", - "Epoch : 136 [20/36(56%)]\tLoss: 1.499357\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.899675\n", - "Epoch : 136 [28/36(78%)]\tLoss: 0.136328\n", - "Epoch : 136 [32/36(89%)]\tLoss: 0.064157\n", - "Epoch : 137 [0/36(0%)]\tLoss: 0.158137\n", - "Epoch : 137 [4/36(11%)]\tLoss: 1.471879\n", - "Epoch : 137 [8/36(22%)]\tLoss: 0.790584\n", - "Epoch : 137 [12/36(33%)]\tLoss: 0.478168\n", - "Epoch : 137 [16/36(44%)]\tLoss: 0.444559\n", - "Epoch : 137 [20/36(56%)]\tLoss: 0.360243\n", - "Epoch : 137 [24/36(67%)]\tLoss: 0.671028\n", - "Epoch : 137 [28/36(78%)]\tLoss: 1.161514\n", - "Epoch : 137 [32/36(89%)]\tLoss: 0.633820\n", - "Epoch : 138 [0/36(0%)]\tLoss: 0.824548\n", - "Epoch : 138 [4/36(11%)]\tLoss: 0.344103\n", - "Epoch : 138 [8/36(22%)]\tLoss: 1.557007\n", - "Epoch : 138 [12/36(33%)]\tLoss: 0.881431\n", - "Epoch : 138 [16/36(44%)]\tLoss: 1.147642\n", - "Epoch : 138 [20/36(56%)]\tLoss: 0.419885\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.215225\n", - "Epoch : 138 [28/36(78%)]\tLoss: 1.096797\n", - "Epoch : 138 [32/36(89%)]\tLoss: 0.943045\n", - "Epoch : 139 [0/36(0%)]\tLoss: 1.056541\n", - "Epoch : 139 [4/36(11%)]\tLoss: 0.220248\n", - "Epoch : 139 [8/36(22%)]\tLoss: 0.292300\n", - "Epoch : 139 [12/36(33%)]\tLoss: 0.231629\n", - "Epoch : 139 [16/36(44%)]\tLoss: 1.550358\n", - "Epoch : 139 [20/36(56%)]\tLoss: 0.919611\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.846916\n", - "Epoch : 139 [28/36(78%)]\tLoss: 0.422873\n", - "Epoch : 139 [32/36(89%)]\tLoss: 0.372010\n", - "Epoch : 140 [0/36(0%)]\tLoss: 1.223423\n", - "Epoch : 140 [4/36(11%)]\tLoss: 1.030019\n", - "Epoch : 140 [8/36(22%)]\tLoss: 1.432284\n", - "Epoch : 140 [12/36(33%)]\tLoss: 0.789064\n", - "Epoch : 140 [16/36(44%)]\tLoss: 0.121376\n", - "Epoch : 140 [20/36(56%)]\tLoss: 0.419147\n", - "Epoch : 140 [24/36(67%)]\tLoss: 1.188094\n", - "Epoch : 140 [28/36(78%)]\tLoss: 2.134284\n", - "Epoch : 140 [32/36(89%)]\tLoss: 1.231383\n", - "Epoch : 141 [0/36(0%)]\tLoss: 0.355303\n", - "Epoch : 141 [4/36(11%)]\tLoss: 0.723455\n", - "Epoch : 141 [8/36(22%)]\tLoss: 2.405328\n", - "Epoch : 141 [12/36(33%)]\tLoss: 1.813260\n", - "Epoch : 141 [16/36(44%)]\tLoss: 2.550160\n", - "Epoch : 141 [20/36(56%)]\tLoss: 0.766602\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.704630\n", - "Epoch : 141 [28/36(78%)]\tLoss: 3.009520\n", - "Epoch : 141 [32/36(89%)]\tLoss: 2.370325\n", - "Epoch : 142 [0/36(0%)]\tLoss: 1.808760\n", - "Epoch : 142 [4/36(11%)]\tLoss: 1.361011\n", - "Epoch : 142 [8/36(22%)]\tLoss: 0.466230\n", - "Epoch : 142 [12/36(33%)]\tLoss: 1.203067\n", - "Epoch : 142 [16/36(44%)]\tLoss: 3.681576\n", - "Epoch : 142 [20/36(56%)]\tLoss: 2.120238\n", - "Epoch : 142 [24/36(67%)]\tLoss: 1.476727\n", - "Epoch : 142 [28/36(78%)]\tLoss: 0.142559\n", - "Epoch : 142 [32/36(89%)]\tLoss: 0.698607\n", - "Epoch : 143 [0/36(0%)]\tLoss: 1.977551\n", - "Epoch : 143 [4/36(11%)]\tLoss: 4.830942\n", - "Epoch : 143 [8/36(22%)]\tLoss: 1.764789\n", - "Epoch : 143 [12/36(33%)]\tLoss: 0.358185\n", - "Epoch : 143 [16/36(44%)]\tLoss: 1.096326\n", - "Epoch : 143 [20/36(56%)]\tLoss: 3.232657\n", - "Epoch : 143 [24/36(67%)]\tLoss: 1.850183\n", - "Epoch : 143 [28/36(78%)]\tLoss: 0.834650\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.696807\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.591266\n", - "Epoch : 144 [4/36(11%)]\tLoss: 3.762461\n", - "Epoch : 144 [8/36(22%)]\tLoss: 1.860173\n", - "Epoch : 144 [12/36(33%)]\tLoss: 1.546855\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.594554\n", - "Epoch : 144 [20/36(56%)]\tLoss: 0.236848\n", - "Epoch : 144 [24/36(67%)]\tLoss: 0.903128\n", - "Epoch : 144 [28/36(78%)]\tLoss: 1.532539\n", - "Epoch : 144 [32/36(89%)]\tLoss: 1.994770\n", - "Epoch : 145 [0/36(0%)]\tLoss: 1.070722\n", - "Epoch : 145 [4/36(11%)]\tLoss: 0.779545\n", - "Epoch : 145 [8/36(22%)]\tLoss: 0.137582\n", - "Epoch : 145 [12/36(33%)]\tLoss: 1.015099\n", - "Epoch : 145 [16/36(44%)]\tLoss: 1.840939\n", - "Epoch : 145 [20/36(56%)]\tLoss: 0.420687\n", - "Epoch : 145 [24/36(67%)]\tLoss: 0.708014\n", - "Epoch : 145 [28/36(78%)]\tLoss: 0.486604\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.764192\n", - "Epoch : 146 [0/36(0%)]\tLoss: 1.357723\n", - "Epoch : 146 [4/36(11%)]\tLoss: 0.680584\n", - "Epoch : 146 [8/36(22%)]\tLoss: 1.721095\n", - "Epoch : 146 [12/36(33%)]\tLoss: 0.610139\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.414758\n", - "Epoch : 146 [20/36(56%)]\tLoss: 0.281419\n", - "Epoch : 146 [24/36(67%)]\tLoss: 2.166996\n", - "Epoch : 146 [28/36(78%)]\tLoss: 3.149261\n", - "Epoch : 146 [32/36(89%)]\tLoss: 1.546014\n", - "Epoch : 147 [0/36(0%)]\tLoss: 0.489625\n", - "Epoch : 147 [4/36(11%)]\tLoss: 0.406896\n", - "Epoch : 147 [8/36(22%)]\tLoss: 2.769924\n", - "Epoch : 147 [12/36(33%)]\tLoss: 3.017699\n", - "Epoch : 147 [16/36(44%)]\tLoss: 1.069092\n", - "Epoch : 147 [20/36(56%)]\tLoss: 0.406055\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.454841\n", - "Epoch : 147 [28/36(78%)]\tLoss: 2.242705\n", - "Epoch : 147 [32/36(89%)]\tLoss: 2.344798\n", - "Epoch : 148 [0/36(0%)]\tLoss: 0.903244\n", - "Epoch : 148 [4/36(11%)]\tLoss: 0.248064\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.565148\n", - "Epoch : 148 [12/36(33%)]\tLoss: 0.701191\n", - "Epoch : 148 [16/36(44%)]\tLoss: 2.875544\n", - "Epoch : 148 [20/36(56%)]\tLoss: 2.505353\n", - "Epoch : 148 [24/36(67%)]\tLoss: 0.818810\n", - "Epoch : 148 [28/36(78%)]\tLoss: 0.185450\n", - "Epoch : 148 [32/36(89%)]\tLoss: 0.120956\n", - "Epoch : 149 [0/36(0%)]\tLoss: 1.219251\n", - "Epoch : 149 [4/36(11%)]\tLoss: 3.460644\n", - "Epoch : 149 [8/36(22%)]\tLoss: 3.095426\n", - "Epoch : 149 [12/36(33%)]\tLoss: 0.982028\n", - "Epoch : 149 [16/36(44%)]\tLoss: 0.301493\n", - "Epoch : 149 [20/36(56%)]\tLoss: 1.846171\n", - "Epoch : 149 [24/36(67%)]\tLoss: 2.562967\n", - "Epoch : 149 [28/36(78%)]\tLoss: 3.262249\n", - "Epoch : 149 [32/36(89%)]\tLoss: 1.925261\n", - "--- 0.18173228104909261 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 505.148438\n", + "Epoch : 0 [4/36(11%)]\tLoss: 481.187561\n", + "Epoch : 0 [8/36(22%)]\tLoss: 462.044128\n", + "Epoch : 0 [12/36(33%)]\tLoss: 366.548370\n", + "Epoch : 0 [16/36(44%)]\tLoss: 251.130753\n", + "Epoch : 0 [20/36(56%)]\tLoss: 152.641785\n", + "Epoch : 0 [24/36(67%)]\tLoss: 95.135040\n", + "Epoch : 0 [28/36(78%)]\tLoss: 50.719940\n", + "Epoch : 0 [32/36(89%)]\tLoss: 26.814919\n", + "Epoch : 1 [0/36(0%)]\tLoss: 5.588141\n", + "Epoch : 1 [4/36(11%)]\tLoss: 0.466125\n", + "Epoch : 1 [8/36(22%)]\tLoss: 2.091524\n", + "Epoch : 1 [12/36(33%)]\tLoss: 10.221073\n", + "Epoch : 1 [16/36(44%)]\tLoss: 13.921244\n", + "Epoch : 1 [20/36(56%)]\tLoss: 17.117250\n", + "Epoch : 1 [24/36(67%)]\tLoss: 21.652094\n", + "Epoch : 1 [28/36(78%)]\tLoss: 55.376251\n", + "Epoch : 1 [32/36(89%)]\tLoss: 19.449644\n", + "Epoch : 2 [0/36(0%)]\tLoss: 25.598974\n", + "Epoch : 2 [4/36(11%)]\tLoss: 20.395477\n", + "Epoch : 2 [8/36(22%)]\tLoss: 8.120663\n", + "Epoch : 2 [12/36(33%)]\tLoss: 9.420777\n", + "Epoch : 2 [16/36(44%)]\tLoss: 3.597255\n", + "Epoch : 2 [20/36(56%)]\tLoss: 1.684239\n", + "Epoch : 2 [24/36(67%)]\tLoss: 1.133056\n", + "Epoch : 2 [28/36(78%)]\tLoss: 1.853996\n", + "Epoch : 2 [32/36(89%)]\tLoss: 3.960218\n", + "Epoch : 3 [0/36(0%)]\tLoss: 5.782211\n", + "Epoch : 3 [4/36(11%)]\tLoss: 2.609937\n", + "Epoch : 3 [8/36(22%)]\tLoss: 4.698177\n", + "Epoch : 3 [12/36(33%)]\tLoss: 3.696248\n", + "Epoch : 3 [16/36(44%)]\tLoss: 6.770689\n", + "Epoch : 3 [20/36(56%)]\tLoss: 7.983230\n", + "Epoch : 3 [24/36(67%)]\tLoss: 4.530883\n", + "Epoch : 3 [28/36(78%)]\tLoss: 2.614764\n", + "Epoch : 3 [32/36(89%)]\tLoss: 2.655967\n", + "Epoch : 4 [0/36(0%)]\tLoss: 0.273827\n", + "Epoch : 4 [4/36(11%)]\tLoss: 1.573417\n", + "Epoch : 4 [8/36(22%)]\tLoss: 0.460414\n", + "Epoch : 4 [12/36(33%)]\tLoss: 1.230751\n", + "Epoch : 4 [16/36(44%)]\tLoss: 1.158980\n", + "Epoch : 4 [20/36(56%)]\tLoss: 1.895503\n", + "Epoch : 4 [24/36(67%)]\tLoss: 1.891235\n", + "Epoch : 4 [28/36(78%)]\tLoss: 2.686343\n", + "Epoch : 4 [32/36(89%)]\tLoss: 2.884769\n", + "Epoch : 5 [0/36(0%)]\tLoss: 1.899021\n", + "Epoch : 5 [4/36(11%)]\tLoss: 2.124950\n", + "Epoch : 5 [8/36(22%)]\tLoss: 0.508926\n", + "Epoch : 5 [12/36(33%)]\tLoss: 0.603784\n", + "Epoch : 5 [16/36(44%)]\tLoss: 0.967377\n", + "Epoch : 5 [20/36(56%)]\tLoss: 2.262344\n", + "Epoch : 5 [24/36(67%)]\tLoss: 1.447259\n", + "Epoch : 5 [28/36(78%)]\tLoss: 1.585567\n", + "Epoch : 5 [32/36(89%)]\tLoss: 2.005277\n", + "Epoch : 6 [0/36(0%)]\tLoss: 0.267711\n", + "Epoch : 6 [4/36(11%)]\tLoss: 0.692746\n", + "Epoch : 6 [8/36(22%)]\tLoss: 0.934087\n", + "Epoch : 6 [12/36(33%)]\tLoss: 0.330126\n", + "Epoch : 6 [16/36(44%)]\tLoss: 1.182773\n", + "Epoch : 6 [20/36(56%)]\tLoss: 2.099797\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.140517\n", + "Epoch : 6 [28/36(78%)]\tLoss: 1.404310\n", + "Epoch : 6 [32/36(89%)]\tLoss: 1.768536\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.887577\n", + "Epoch : 7 [4/36(11%)]\tLoss: 1.446585\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.324149\n", + "Epoch : 7 [12/36(33%)]\tLoss: 0.659936\n", + "Epoch : 7 [16/36(44%)]\tLoss: 0.752861\n", + "Epoch : 7 [20/36(56%)]\tLoss: 1.832946\n", + "Epoch : 7 [24/36(67%)]\tLoss: 0.966665\n", + "Epoch : 7 [28/36(78%)]\tLoss: 1.335188\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.858761\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.365670\n", + "Epoch : 8 [4/36(11%)]\tLoss: 0.659925\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.393722\n", + "Epoch : 8 [12/36(33%)]\tLoss: 0.327984\n", + "Epoch : 8 [16/36(44%)]\tLoss: 0.932140\n", + "Epoch : 8 [20/36(56%)]\tLoss: 2.097388\n", + "Epoch : 8 [24/36(67%)]\tLoss: 1.133661\n", + "Epoch : 8 [28/36(78%)]\tLoss: 1.769539\n", + "Epoch : 8 [32/36(89%)]\tLoss: 1.693012\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.408563\n", + "Epoch : 9 [4/36(11%)]\tLoss: 1.068734\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.322112\n", + "Epoch : 9 [12/36(33%)]\tLoss: 0.574979\n", + "Epoch : 9 [16/36(44%)]\tLoss: 0.661888\n", + "Epoch : 9 [20/36(56%)]\tLoss: 1.520240\n", + "Epoch : 9 [24/36(67%)]\tLoss: 0.980948\n", + "Epoch : 9 [28/36(78%)]\tLoss: 1.352848\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.580777\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.412241\n", + "Epoch : 10 [4/36(11%)]\tLoss: 0.963011\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.150706\n", + "Epoch : 10 [12/36(33%)]\tLoss: 0.400519\n", + "Epoch : 10 [16/36(44%)]\tLoss: 0.670630\n", + "Epoch : 10 [20/36(56%)]\tLoss: 1.628976\n", + "Epoch : 10 [24/36(67%)]\tLoss: 0.973781\n", + "Epoch : 10 [28/36(78%)]\tLoss: 1.203155\n", + "Epoch : 10 [32/36(89%)]\tLoss: 0.967892\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.318564\n", + "Epoch : 11 [4/36(11%)]\tLoss: 5.368523\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.196310\n", + "Epoch : 11 [12/36(33%)]\tLoss: 0.619376\n", + "Epoch : 11 [16/36(44%)]\tLoss: 0.729584\n", + "Epoch : 11 [20/36(56%)]\tLoss: 1.388925\n", + "Epoch : 11 [24/36(67%)]\tLoss: 0.936926\n", + "Epoch : 11 [28/36(78%)]\tLoss: 1.305025\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.281577\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.387617\n", + "Epoch : 12 [4/36(11%)]\tLoss: 0.665237\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.156064\n", + "Epoch : 12 [12/36(33%)]\tLoss: 0.390973\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.640283\n", + "Epoch : 12 [20/36(56%)]\tLoss: 1.553416\n", + "Epoch : 12 [24/36(67%)]\tLoss: 0.959071\n", + "Epoch : 12 [28/36(78%)]\tLoss: 0.905930\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.281052\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.266963\n", + "Epoch : 13 [4/36(11%)]\tLoss: 0.626828\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.223715\n", + "Epoch : 13 [12/36(33%)]\tLoss: 0.459082\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.696827\n", + "Epoch : 13 [20/36(56%)]\tLoss: 1.533000\n", + "Epoch : 13 [24/36(67%)]\tLoss: 1.027120\n", + "Epoch : 13 [28/36(78%)]\tLoss: 0.941354\n", + "Epoch : 13 [32/36(89%)]\tLoss: 0.892558\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.189570\n", + "Epoch : 14 [4/36(11%)]\tLoss: 0.549811\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.171009\n", + "Epoch : 14 [12/36(33%)]\tLoss: 0.383958\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.663104\n", + "Epoch : 14 [20/36(56%)]\tLoss: 1.451902\n", + "Epoch : 14 [24/36(67%)]\tLoss: 1.117269\n", + "Epoch : 14 [28/36(78%)]\tLoss: 0.990990\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.136361\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.182192\n", + "Epoch : 15 [4/36(11%)]\tLoss: 0.527077\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.267449\n", + "Epoch : 15 [12/36(33%)]\tLoss: 0.324529\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.635805\n", + "Epoch : 15 [20/36(56%)]\tLoss: 1.173936\n", + "Epoch : 15 [24/36(67%)]\tLoss: 0.965765\n", + "Epoch : 15 [28/36(78%)]\tLoss: 1.132812\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.357028\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.151217\n", + "Epoch : 16 [4/36(11%)]\tLoss: 0.507627\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.520277\n", + "Epoch : 16 [12/36(33%)]\tLoss: 0.614567\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.414361\n", + "Epoch : 16 [20/36(56%)]\tLoss: 1.368334\n", + "Epoch : 16 [24/36(67%)]\tLoss: 0.846762\n", + "Epoch : 16 [28/36(78%)]\tLoss: 1.016679\n", + "Epoch : 16 [32/36(89%)]\tLoss: 0.598533\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.244999\n", + "Epoch : 17 [4/36(11%)]\tLoss: 0.491022\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.267225\n", + "Epoch : 17 [12/36(33%)]\tLoss: 0.516404\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.575029\n", + "Epoch : 17 [20/36(56%)]\tLoss: 1.294104\n", + "Epoch : 17 [24/36(67%)]\tLoss: 1.212664\n", + "Epoch : 17 [28/36(78%)]\tLoss: 1.505179\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.012760\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.260495\n", + "Epoch : 18 [4/36(11%)]\tLoss: 0.649487\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.184152\n", + "Epoch : 18 [12/36(33%)]\tLoss: 0.503276\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.407428\n", + "Epoch : 18 [20/36(56%)]\tLoss: 1.148067\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.489842\n", + "Epoch : 18 [28/36(78%)]\tLoss: 1.198951\n", + "Epoch : 18 [32/36(89%)]\tLoss: 0.763963\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.304600\n", + "Epoch : 19 [4/36(11%)]\tLoss: 0.641902\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.236052\n", + "Epoch : 19 [12/36(33%)]\tLoss: 0.573888\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.327249\n", + "Epoch : 19 [20/36(56%)]\tLoss: 1.418954\n", + "Epoch : 19 [24/36(67%)]\tLoss: 0.489770\n", + "Epoch : 19 [28/36(78%)]\tLoss: 1.170379\n", + "Epoch : 19 [32/36(89%)]\tLoss: 1.280859\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.500501\n", + "Epoch : 20 [4/36(11%)]\tLoss: 0.742929\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.251100\n", + "Epoch : 20 [12/36(33%)]\tLoss: 0.474908\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.542650\n", + "Epoch : 20 [20/36(56%)]\tLoss: 1.045166\n", + "Epoch : 20 [24/36(67%)]\tLoss: 0.458625\n", + "Epoch : 20 [28/36(78%)]\tLoss: 1.095053\n", + "Epoch : 20 [32/36(89%)]\tLoss: 0.790924\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.154021\n", + "Epoch : 21 [4/36(11%)]\tLoss: 0.496545\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.297880\n", + "Epoch : 21 [12/36(33%)]\tLoss: 0.246268\n", + "Epoch : 21 [16/36(44%)]\tLoss: 0.252153\n", + "Epoch : 21 [20/36(56%)]\tLoss: 0.928596\n", + "Epoch : 21 [24/36(67%)]\tLoss: 0.527373\n", + "Epoch : 21 [28/36(78%)]\tLoss: 1.072787\n", + "Epoch : 21 [32/36(89%)]\tLoss: 0.504416\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.239585\n", + "Epoch : 22 [4/36(11%)]\tLoss: 0.576861\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.306901\n", + "Epoch : 22 [12/36(33%)]\tLoss: 0.159370\n", + "Epoch : 22 [16/36(44%)]\tLoss: 0.313108\n", + "Epoch : 22 [20/36(56%)]\tLoss: 1.031682\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.519940\n", + "Epoch : 22 [28/36(78%)]\tLoss: 1.341585\n", + "Epoch : 22 [32/36(89%)]\tLoss: 0.593542\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.179223\n", + "Epoch : 23 [4/36(11%)]\tLoss: 0.574387\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.132475\n", + "Epoch : 23 [12/36(33%)]\tLoss: 0.213038\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.284739\n", + "Epoch : 23 [20/36(56%)]\tLoss: 0.824717\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.472143\n", + "Epoch : 23 [28/36(78%)]\tLoss: 1.159807\n", + "Epoch : 23 [32/36(89%)]\tLoss: 0.444330\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.254970\n", + "Epoch : 24 [4/36(11%)]\tLoss: 0.568621\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.216534\n", + "Epoch : 24 [12/36(33%)]\tLoss: 0.196348\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.252408\n", + "Epoch : 24 [20/36(56%)]\tLoss: 0.889114\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.317530\n", + "Epoch : 24 [28/36(78%)]\tLoss: 1.121642\n", + "Epoch : 24 [32/36(89%)]\tLoss: 0.377160\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.162609\n", + "Epoch : 25 [4/36(11%)]\tLoss: 0.370015\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.117949\n", + "Epoch : 25 [12/36(33%)]\tLoss: 0.226949\n", + "Epoch : 25 [16/36(44%)]\tLoss: 0.236665\n", + "Epoch : 25 [20/36(56%)]\tLoss: 0.679455\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.281173\n", + "Epoch : 25 [28/36(78%)]\tLoss: 1.085547\n", + "Epoch : 25 [32/36(89%)]\tLoss: 0.261526\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.160689\n", + "Epoch : 26 [4/36(11%)]\tLoss: 0.468562\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.062409\n", + "Epoch : 26 [12/36(33%)]\tLoss: 0.670255\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.209688\n", + "Epoch : 26 [20/36(56%)]\tLoss: 0.820774\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.266793\n", + "Epoch : 26 [28/36(78%)]\tLoss: 0.984641\n", + "Epoch : 26 [32/36(89%)]\tLoss: 0.463211\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.215550\n", + "Epoch : 27 [4/36(11%)]\tLoss: 0.658540\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.727886\n", + "Epoch : 27 [12/36(33%)]\tLoss: 0.198605\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.206882\n", + "Epoch : 27 [20/36(56%)]\tLoss: 0.661130\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.223412\n", + "Epoch : 27 [28/36(78%)]\tLoss: 1.314858\n", + "Epoch : 27 [32/36(89%)]\tLoss: 0.314786\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.142954\n", + "Epoch : 28 [4/36(11%)]\tLoss: 0.204232\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.326274\n", + "Epoch : 28 [12/36(33%)]\tLoss: 0.421265\n", + "Epoch : 28 [16/36(44%)]\tLoss: 0.307062\n", + "Epoch : 28 [20/36(56%)]\tLoss: 0.861256\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.288486\n", + "Epoch : 28 [28/36(78%)]\tLoss: 1.405098\n", + "Epoch : 28 [32/36(89%)]\tLoss: 0.186949\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.125017\n", + "Epoch : 29 [4/36(11%)]\tLoss: 0.711308\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.184895\n", + "Epoch : 29 [12/36(33%)]\tLoss: 0.532898\n", + "Epoch : 29 [16/36(44%)]\tLoss: 0.158151\n", + "Epoch : 29 [20/36(56%)]\tLoss: 1.113483\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.180697\n", + "Epoch : 29 [28/36(78%)]\tLoss: 0.692520\n", + "Epoch : 29 [32/36(89%)]\tLoss: 0.173185\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.212938\n", + "Epoch : 30 [4/36(11%)]\tLoss: 0.491663\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.157977\n", + "Epoch : 30 [12/36(33%)]\tLoss: 0.073204\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.399520\n", + "Epoch : 30 [20/36(56%)]\tLoss: 0.732387\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.268429\n", + "Epoch : 30 [28/36(78%)]\tLoss: 0.683909\n", + "Epoch : 30 [32/36(89%)]\tLoss: 19.948956\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.072119\n", + "Epoch : 31 [4/36(11%)]\tLoss: 1.214102\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.839894\n", + "Epoch : 31 [12/36(33%)]\tLoss: 1.223127\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.823768\n", + "Epoch : 31 [20/36(56%)]\tLoss: 0.567715\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.420821\n", + "Epoch : 31 [28/36(78%)]\tLoss: 1.014955\n", + "Epoch : 31 [32/36(89%)]\tLoss: 1.617566\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.431339\n", + "Epoch : 32 [4/36(11%)]\tLoss: 0.768887\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.470974\n", + "Epoch : 32 [12/36(33%)]\tLoss: 0.334018\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.237348\n", + "Epoch : 32 [20/36(56%)]\tLoss: 0.940603\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.886216\n", + "Epoch : 32 [28/36(78%)]\tLoss: 0.167170\n", + "Epoch : 32 [32/36(89%)]\tLoss: 2.265817\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.859351\n", + "Epoch : 33 [4/36(11%)]\tLoss: 0.509233\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.366048\n", + "Epoch : 33 [12/36(33%)]\tLoss: 0.688142\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.757897\n", + "Epoch : 33 [20/36(56%)]\tLoss: 1.583678\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.766269\n", + "Epoch : 33 [28/36(78%)]\tLoss: 0.530918\n", + "Epoch : 33 [32/36(89%)]\tLoss: 1.014384\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.243347\n", + "Epoch : 34 [4/36(11%)]\tLoss: 0.916030\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.680216\n", + "Epoch : 34 [12/36(33%)]\tLoss: 0.500579\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.168039\n", + "Epoch : 34 [20/36(56%)]\tLoss: 0.467304\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.092526\n", + "Epoch : 34 [28/36(78%)]\tLoss: 1.247370\n", + "Epoch : 34 [32/36(89%)]\tLoss: 1.299630\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.234113\n", + "Epoch : 35 [4/36(11%)]\tLoss: 0.786768\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.139753\n", + "Epoch : 35 [12/36(33%)]\tLoss: 0.369672\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.555399\n", + "Epoch : 35 [20/36(56%)]\tLoss: 1.242628\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.533303\n", + "Epoch : 35 [28/36(78%)]\tLoss: 1.543690\n", + "Epoch : 35 [32/36(89%)]\tLoss: 0.974949\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.218838\n", + "Epoch : 36 [4/36(11%)]\tLoss: 0.926816\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.664061\n", + "Epoch : 36 [12/36(33%)]\tLoss: 0.288672\n", + "Epoch : 36 [16/36(44%)]\tLoss: 1.286678\n", + "Epoch : 36 [20/36(56%)]\tLoss: 1.387703\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.272284\n", + "Epoch : 36 [28/36(78%)]\tLoss: 6.353126\n", + "Epoch : 36 [32/36(89%)]\tLoss: 1.238589\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.930272\n", + "Epoch : 37 [4/36(11%)]\tLoss: 1.390698\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.641488\n", + "Epoch : 37 [12/36(33%)]\tLoss: 0.343006\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.449105\n", + "Epoch : 37 [20/36(56%)]\tLoss: 0.811063\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.622566\n", + "Epoch : 37 [28/36(78%)]\tLoss: 1.277533\n", + "Epoch : 37 [32/36(89%)]\tLoss: 0.757840\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.443750\n", + "Epoch : 38 [4/36(11%)]\tLoss: 0.794250\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.200156\n", + "Epoch : 38 [12/36(33%)]\tLoss: 0.349072\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.323256\n", + "Epoch : 38 [20/36(56%)]\tLoss: 0.569961\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.794085\n", + "Epoch : 38 [28/36(78%)]\tLoss: 1.055390\n", + "Epoch : 38 [32/36(89%)]\tLoss: 0.414999\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.175185\n", + "Epoch : 39 [4/36(11%)]\tLoss: 0.851548\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.420405\n", + "Epoch : 39 [12/36(33%)]\tLoss: 0.372467\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.708261\n", + "Epoch : 39 [20/36(56%)]\tLoss: 0.600883\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.328008\n", + "Epoch : 39 [28/36(78%)]\tLoss: 0.884630\n", + "Epoch : 39 [32/36(89%)]\tLoss: 0.379709\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.171745\n", + "Epoch : 40 [4/36(11%)]\tLoss: 0.684769\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.154164\n", + "Epoch : 40 [12/36(33%)]\tLoss: 0.347881\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.329897\n", + "Epoch : 40 [20/36(56%)]\tLoss: 0.748771\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.217129\n", + "Epoch : 40 [28/36(78%)]\tLoss: 0.134441\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.384551\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.201660\n", + "Epoch : 41 [4/36(11%)]\tLoss: 0.634147\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.488421\n", + "Epoch : 41 [12/36(33%)]\tLoss: 1.124412\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.172175\n", + "Epoch : 41 [20/36(56%)]\tLoss: 1.340690\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.302503\n", + "Epoch : 41 [28/36(78%)]\tLoss: 0.861084\n", + "Epoch : 41 [32/36(89%)]\tLoss: 0.288902\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.190286\n", + "Epoch : 42 [4/36(11%)]\tLoss: 0.618529\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.356948\n", + "Epoch : 42 [12/36(33%)]\tLoss: 0.353008\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.072380\n", + "Epoch : 42 [20/36(56%)]\tLoss: 0.419466\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.234878\n", + "Epoch : 42 [28/36(78%)]\tLoss: 1.129360\n", + "Epoch : 42 [32/36(89%)]\tLoss: 0.123113\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.054506\n", + "Epoch : 43 [4/36(11%)]\tLoss: 0.357096\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.250214\n", + "Epoch : 43 [12/36(33%)]\tLoss: 0.433666\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.101008\n", + "Epoch : 43 [20/36(56%)]\tLoss: 0.244675\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.275862\n", + "Epoch : 43 [28/36(78%)]\tLoss: 0.779114\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.165625\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.146699\n", + "Epoch : 44 [4/36(11%)]\tLoss: 0.442961\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.158242\n", + "Epoch : 44 [12/36(33%)]\tLoss: 0.225024\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.161809\n", + "Epoch : 44 [20/36(56%)]\tLoss: 0.686248\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.287028\n", + "Epoch : 44 [28/36(78%)]\tLoss: 0.702109\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.107372\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.185690\n", + "Epoch : 45 [4/36(11%)]\tLoss: 0.732336\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.133776\n", + "Epoch : 45 [12/36(33%)]\tLoss: 0.439040\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.187590\n", + "Epoch : 45 [20/36(56%)]\tLoss: 0.513467\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.089012\n", + "Epoch : 45 [28/36(78%)]\tLoss: 0.192713\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.037176\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.210400\n", + "Epoch : 46 [4/36(11%)]\tLoss: 0.416780\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.165280\n", + "Epoch : 46 [12/36(33%)]\tLoss: 0.053342\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.012009\n", + "Epoch : 46 [20/36(56%)]\tLoss: 0.568222\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.175414\n", + "Epoch : 46 [28/36(78%)]\tLoss: 0.853642\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.203973\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.262228\n", + "Epoch : 47 [4/36(11%)]\tLoss: 0.504034\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.252107\n", + "Epoch : 47 [12/36(33%)]\tLoss: 0.025600\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.199611\n", + "Epoch : 47 [20/36(56%)]\tLoss: 0.553687\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.307200\n", + "Epoch : 47 [28/36(78%)]\tLoss: 0.234742\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.235293\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.092998\n", + "Epoch : 48 [4/36(11%)]\tLoss: 0.488977\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.134274\n", + "Epoch : 48 [12/36(33%)]\tLoss: 0.851267\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.422727\n", + "Epoch : 48 [20/36(56%)]\tLoss: 0.608971\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.271737\n", + "Epoch : 48 [28/36(78%)]\tLoss: 0.454775\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.063672\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.325508\n", + "Epoch : 49 [4/36(11%)]\tLoss: 0.403339\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.243075\n", + "Epoch : 49 [12/36(33%)]\tLoss: 0.156796\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.136313\n", + "Epoch : 49 [20/36(56%)]\tLoss: 0.076903\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.099951\n", + "Epoch : 49 [28/36(78%)]\tLoss: 0.108966\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.245688\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.348731\n", + "Epoch : 50 [4/36(11%)]\tLoss: 0.446839\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.197771\n", + "Epoch : 50 [12/36(33%)]\tLoss: 0.372488\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.103378\n", + "Epoch : 50 [20/36(56%)]\tLoss: 0.343731\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.233521\n", + "Epoch : 50 [28/36(78%)]\tLoss: 0.372527\n", + "Epoch : 50 [32/36(89%)]\tLoss: 0.043850\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.550775\n", + "Epoch : 51 [4/36(11%)]\tLoss: 0.451025\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.119609\n", + "Epoch : 51 [12/36(33%)]\tLoss: 0.134784\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.188572\n", + "Epoch : 51 [20/36(56%)]\tLoss: 0.366579\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.192190\n", + "Epoch : 51 [28/36(78%)]\tLoss: 0.380612\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.111332\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.163350\n", + "Epoch : 52 [4/36(11%)]\tLoss: 0.356627\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.216677\n", + "Epoch : 52 [12/36(33%)]\tLoss: 0.406206\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.297715\n", + "Epoch : 52 [20/36(56%)]\tLoss: 0.141578\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.116860\n", + "Epoch : 52 [28/36(78%)]\tLoss: 0.530331\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.170246\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.381275\n", + "Epoch : 53 [4/36(11%)]\tLoss: 0.348139\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.335541\n", + "Epoch : 53 [12/36(33%)]\tLoss: 0.124847\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.258001\n", + "Epoch : 53 [20/36(56%)]\tLoss: 0.178782\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.238619\n", + "Epoch : 53 [28/36(78%)]\tLoss: 0.415877\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.100437\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.081156\n", + "Epoch : 54 [4/36(11%)]\tLoss: 0.386368\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.837409\n", + "Epoch : 54 [12/36(33%)]\tLoss: 0.666803\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.089787\n", + "Epoch : 54 [20/36(56%)]\tLoss: 0.189060\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.296038\n", + "Epoch : 54 [28/36(78%)]\tLoss: 0.160360\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.486605\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.624062\n", + "Epoch : 55 [4/36(11%)]\tLoss: 1.032569\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.285151\n", + "Epoch : 55 [12/36(33%)]\tLoss: 0.336291\n", + "Epoch : 55 [16/36(44%)]\tLoss: 1.106069\n", + "Epoch : 55 [20/36(56%)]\tLoss: 0.381215\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.471293\n", + "Epoch : 55 [28/36(78%)]\tLoss: 0.367933\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.213155\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.468724\n", + "Epoch : 56 [4/36(11%)]\tLoss: 1.033065\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.111104\n", + "Epoch : 56 [12/36(33%)]\tLoss: 0.382226\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.079845\n", + "Epoch : 56 [20/36(56%)]\tLoss: 0.159520\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.116626\n", + "Epoch : 56 [28/36(78%)]\tLoss: 1.039907\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.234875\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.088747\n", + "Epoch : 57 [4/36(11%)]\tLoss: 0.504149\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.089694\n", + "Epoch : 57 [12/36(33%)]\tLoss: 0.109227\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.514877\n", + "Epoch : 57 [20/36(56%)]\tLoss: 0.648686\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.396564\n", + "Epoch : 57 [28/36(78%)]\tLoss: 0.345732\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.112680\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.200984\n", + "Epoch : 58 [4/36(11%)]\tLoss: 0.433660\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.135068\n", + "Epoch : 58 [12/36(33%)]\tLoss: 0.410227\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.132842\n", + "Epoch : 58 [20/36(56%)]\tLoss: 0.241061\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.383544\n", + "Epoch : 58 [28/36(78%)]\tLoss: 1.599551\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.079575\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.190714\n", + "Epoch : 59 [4/36(11%)]\tLoss: 0.442133\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.556801\n", + "Epoch : 59 [12/36(33%)]\tLoss: 0.338196\n", + "Epoch : 59 [16/36(44%)]\tLoss: 1.168757\n", + "Epoch : 59 [20/36(56%)]\tLoss: 1.749450\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.656083\n", + "Epoch : 59 [28/36(78%)]\tLoss: 1.078569\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.550618\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.987723\n", + "Epoch : 60 [4/36(11%)]\tLoss: 1.151033\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.093100\n", + "Epoch : 60 [12/36(33%)]\tLoss: 0.137183\n", + "Epoch : 60 [16/36(44%)]\tLoss: 1.042699\n", + "Epoch : 60 [20/36(56%)]\tLoss: 2.272436\n", + "Epoch : 60 [24/36(67%)]\tLoss: 1.140916\n", + "Epoch : 60 [28/36(78%)]\tLoss: 0.506850\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.981858\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.414156\n", + "Epoch : 61 [4/36(11%)]\tLoss: 1.475227\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.790442\n", + "Epoch : 61 [12/36(33%)]\tLoss: 0.959055\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.687017\n", + "Epoch : 61 [20/36(56%)]\tLoss: 0.991804\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.540736\n", + "Epoch : 61 [28/36(78%)]\tLoss: 0.234528\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.786315\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.291553\n", + "Epoch : 62 [4/36(11%)]\tLoss: 0.551487\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.035087\n", + "Epoch : 62 [12/36(33%)]\tLoss: 0.514566\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.426550\n", + "Epoch : 62 [20/36(56%)]\tLoss: 0.731959\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.342878\n", + "Epoch : 62 [28/36(78%)]\tLoss: 0.198309\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.266847\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.395846\n", + "Epoch : 63 [4/36(11%)]\tLoss: 0.347448\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.104253\n", + "Epoch : 63 [12/36(33%)]\tLoss: 0.464699\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.743897\n", + "Epoch : 63 [20/36(56%)]\tLoss: 0.562298\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.348697\n", + "Epoch : 63 [28/36(78%)]\tLoss: 0.081006\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.267587\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.403919\n", + "Epoch : 64 [4/36(11%)]\tLoss: 0.583187\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.034230\n", + "Epoch : 64 [12/36(33%)]\tLoss: 0.050419\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.518728\n", + "Epoch : 64 [20/36(56%)]\tLoss: 0.858394\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.227439\n", + "Epoch : 64 [28/36(78%)]\tLoss: 0.271283\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.535153\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.340800\n", + "Epoch : 65 [4/36(11%)]\tLoss: 0.950589\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.207805\n", + "Epoch : 65 [12/36(33%)]\tLoss: 0.075296\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.121557\n", + "Epoch : 65 [20/36(56%)]\tLoss: 0.743605\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.310311\n", + "Epoch : 65 [28/36(78%)]\tLoss: 0.039568\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.241201\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.220189\n", + "Epoch : 66 [4/36(11%)]\tLoss: 0.986661\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.429216\n", + "Epoch : 66 [12/36(33%)]\tLoss: 0.190286\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.342904\n", + "Epoch : 66 [20/36(56%)]\tLoss: 0.475970\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.163098\n", + "Epoch : 66 [28/36(78%)]\tLoss: 0.199488\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.848465\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.485472\n", + "Epoch : 67 [4/36(11%)]\tLoss: 0.500362\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.077705\n", + "Epoch : 67 [12/36(33%)]\tLoss: 0.037596\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.107943\n", + "Epoch : 67 [20/36(56%)]\tLoss: 0.325441\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.418580\n", + "Epoch : 67 [28/36(78%)]\tLoss: 0.657075\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.121216\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.140856\n", + "Epoch : 68 [4/36(11%)]\tLoss: 0.551161\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.013699\n", + "Epoch : 68 [12/36(33%)]\tLoss: 0.771003\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.240587\n", + "Epoch : 68 [20/36(56%)]\tLoss: 0.679748\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.792342\n", + "Epoch : 68 [28/36(78%)]\tLoss: 0.306854\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.203654\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.400457\n", + "Epoch : 69 [4/36(11%)]\tLoss: 0.839640\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.168603\n", + "Epoch : 69 [12/36(33%)]\tLoss: 0.108740\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.308156\n", + "Epoch : 69 [20/36(56%)]\tLoss: 1.052503\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.403796\n", + "Epoch : 69 [28/36(78%)]\tLoss: 0.120811\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.132655\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.366187\n", + "Epoch : 70 [4/36(11%)]\tLoss: 0.963034\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.330540\n", + "Epoch : 70 [12/36(33%)]\tLoss: 0.316742\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.400366\n", + "Epoch : 70 [20/36(56%)]\tLoss: 0.674161\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.219539\n", + "Epoch : 70 [28/36(78%)]\tLoss: 0.631030\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.089863\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.318906\n", + "Epoch : 71 [4/36(11%)]\tLoss: 0.768939\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.174508\n", + "Epoch : 71 [12/36(33%)]\tLoss: 0.426376\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.412015\n", + "Epoch : 71 [20/36(56%)]\tLoss: 0.379367\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.217094\n", + "Epoch : 71 [28/36(78%)]\tLoss: 0.393932\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.260534\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.327018\n", + "Epoch : 72 [4/36(11%)]\tLoss: 0.485621\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.088836\n", + "Epoch : 72 [12/36(33%)]\tLoss: 0.098148\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.857462\n", + "Epoch : 72 [20/36(56%)]\tLoss: 0.504475\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.126964\n", + "Epoch : 72 [28/36(78%)]\tLoss: 0.510952\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.107330\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.302419\n", + "Epoch : 73 [4/36(11%)]\tLoss: 0.391586\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.210357\n", + "Epoch : 73 [12/36(33%)]\tLoss: 0.076893\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.454856\n", + "Epoch : 73 [20/36(56%)]\tLoss: 0.395524\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.151184\n", + "Epoch : 73 [28/36(78%)]\tLoss: 0.263772\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.064785\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.342791\n", + "Epoch : 74 [4/36(11%)]\tLoss: 0.852182\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.161477\n", + "Epoch : 74 [12/36(33%)]\tLoss: 0.256317\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.293542\n", + "Epoch : 74 [20/36(56%)]\tLoss: 0.757781\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.185360\n", + "Epoch : 74 [28/36(78%)]\tLoss: 0.131448\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.751071\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.251350\n", + "Epoch : 75 [4/36(11%)]\tLoss: 0.752285\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.331330\n", + "Epoch : 75 [12/36(33%)]\tLoss: 0.066289\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.216346\n", + "Epoch : 75 [20/36(56%)]\tLoss: 0.365823\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.100306\n", + "Epoch : 75 [28/36(78%)]\tLoss: 0.170005\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.091758\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.142475\n", + "Epoch : 76 [4/36(11%)]\tLoss: 0.423894\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.255001\n", + "Epoch : 76 [12/36(33%)]\tLoss: 0.117551\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.117521\n", + "Epoch : 76 [20/36(56%)]\tLoss: 0.288481\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.090718\n", + "Epoch : 76 [28/36(78%)]\tLoss: 0.708676\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.289311\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.066839\n", + "Epoch : 77 [4/36(11%)]\tLoss: 0.388720\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.172362\n", + "Epoch : 77 [12/36(33%)]\tLoss: 0.131603\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.078004\n", + "Epoch : 77 [20/36(56%)]\tLoss: 0.184629\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.170910\n", + "Epoch : 77 [28/36(78%)]\tLoss: 0.422732\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.123110\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.085224\n", + "Epoch : 78 [4/36(11%)]\tLoss: 0.271152\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.096152\n", + "Epoch : 78 [12/36(33%)]\tLoss: 0.165972\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.178150\n", + "Epoch : 78 [20/36(56%)]\tLoss: 0.089388\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.157062\n", + "Epoch : 78 [28/36(78%)]\tLoss: 0.516113\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.128400\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.387980\n", + "Epoch : 79 [4/36(11%)]\tLoss: 0.231512\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.177240\n", + "Epoch : 79 [12/36(33%)]\tLoss: 0.040197\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.169139\n", + "Epoch : 79 [20/36(56%)]\tLoss: 0.216605\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.048632\n", + "Epoch : 79 [28/36(78%)]\tLoss: 0.339666\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.040378\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.201622\n", + "Epoch : 80 [4/36(11%)]\tLoss: 0.464308\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.083405\n", + "Epoch : 80 [12/36(33%)]\tLoss: 0.248514\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.005458\n", + "Epoch : 80 [20/36(56%)]\tLoss: 0.205395\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.033503\n", + "Epoch : 80 [28/36(78%)]\tLoss: 0.094527\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.075376\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.049962\n", + "Epoch : 81 [4/36(11%)]\tLoss: 0.562263\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.069180\n", + "Epoch : 81 [12/36(33%)]\tLoss: 0.043206\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.044344\n", + "Epoch : 81 [20/36(56%)]\tLoss: 0.210113\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.016055\n", + "Epoch : 81 [28/36(78%)]\tLoss: 0.604758\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.165790\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.196803\n", + "Epoch : 82 [4/36(11%)]\tLoss: 0.572601\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.059269\n", + "Epoch : 82 [12/36(33%)]\tLoss: 0.058224\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.160307\n", + "Epoch : 82 [20/36(56%)]\tLoss: 0.384265\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.091639\n", + "Epoch : 82 [28/36(78%)]\tLoss: 0.141055\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.324417\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.089226\n", + "Epoch : 83 [4/36(11%)]\tLoss: 0.346364\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.345324\n", + "Epoch : 83 [12/36(33%)]\tLoss: 0.261385\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.697991\n", + "Epoch : 83 [20/36(56%)]\tLoss: 0.180457\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.007168\n", + "Epoch : 83 [28/36(78%)]\tLoss: 0.042873\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.282469\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.356585\n", + "Epoch : 84 [4/36(11%)]\tLoss: 0.287864\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.075103\n", + "Epoch : 84 [12/36(33%)]\tLoss: 0.117800\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.154776\n", + "Epoch : 84 [20/36(56%)]\tLoss: 0.101845\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.214729\n", + "Epoch : 84 [28/36(78%)]\tLoss: 0.496741\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.086333\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.299150\n", + "Epoch : 85 [4/36(11%)]\tLoss: 0.428410\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.540416\n", + "Epoch : 85 [12/36(33%)]\tLoss: 0.259992\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.244744\n", + "Epoch : 85 [20/36(56%)]\tLoss: 0.281234\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.175025\n", + "Epoch : 85 [28/36(78%)]\tLoss: 0.391115\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.582699\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.364494\n", + "Epoch : 86 [4/36(11%)]\tLoss: 0.625559\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.159026\n", + "Epoch : 86 [12/36(33%)]\tLoss: 0.125137\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.621458\n", + "Epoch : 86 [20/36(56%)]\tLoss: 0.554957\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.067801\n", + "Epoch : 86 [28/36(78%)]\tLoss: 0.140771\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.144510\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.291078\n", + "Epoch : 87 [4/36(11%)]\tLoss: 0.918951\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.272629\n", + "Epoch : 87 [12/36(33%)]\tLoss: 0.133226\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.158878\n", + "Epoch : 87 [20/36(56%)]\tLoss: 0.540778\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.251610\n", + "Epoch : 87 [28/36(78%)]\tLoss: 0.600893\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.426465\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.119330\n", + "Epoch : 88 [4/36(11%)]\tLoss: 0.440438\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.143525\n", + "Epoch : 88 [12/36(33%)]\tLoss: 0.581278\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.548583\n", + "Epoch : 88 [20/36(56%)]\tLoss: 0.101318\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.284670\n", + "Epoch : 88 [28/36(78%)]\tLoss: 0.173301\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.567535\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.591789\n", + "Epoch : 89 [4/36(11%)]\tLoss: 0.746135\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.236921\n", + "Epoch : 89 [12/36(33%)]\tLoss: 0.190889\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.548965\n", + "Epoch : 89 [20/36(56%)]\tLoss: 0.085313\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.580343\n", + "Epoch : 89 [28/36(78%)]\tLoss: 0.184932\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.236142\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.139232\n", + "Epoch : 90 [4/36(11%)]\tLoss: 0.273177\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.857480\n", + "Epoch : 90 [12/36(33%)]\tLoss: 0.582873\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.166760\n", + "Epoch : 90 [20/36(56%)]\tLoss: 0.186883\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.240635\n", + "Epoch : 90 [28/36(78%)]\tLoss: 0.518828\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.454759\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.634324\n", + "Epoch : 91 [4/36(11%)]\tLoss: 0.249185\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.313072\n", + "Epoch : 91 [12/36(33%)]\tLoss: 0.636360\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.429538\n", + "Epoch : 91 [20/36(56%)]\tLoss: 0.586264\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.177217\n", + "Epoch : 91 [28/36(78%)]\tLoss: 0.249414\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.328144\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.699569\n", + "Epoch : 92 [4/36(11%)]\tLoss: 0.786770\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.056814\n", + "Epoch : 92 [12/36(33%)]\tLoss: 0.031136\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.161279\n", + "Epoch : 92 [20/36(56%)]\tLoss: 0.701188\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.457922\n", + "Epoch : 92 [28/36(78%)]\tLoss: 0.605793\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.055673\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.179404\n", + "Epoch : 93 [4/36(11%)]\tLoss: 0.821694\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.204717\n", + "Epoch : 93 [12/36(33%)]\tLoss: 0.299077\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.417725\n", + "Epoch : 93 [20/36(56%)]\tLoss: 0.197114\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.317608\n", + "Epoch : 93 [28/36(78%)]\tLoss: 0.327102\n", + "Epoch : 93 [32/36(89%)]\tLoss: 1.064498\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.512139\n", + "Epoch : 94 [4/36(11%)]\tLoss: 0.238621\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.092972\n", + "Epoch : 94 [12/36(33%)]\tLoss: 0.249808\n", + "Epoch : 94 [16/36(44%)]\tLoss: 0.355105\n", + "Epoch : 94 [20/36(56%)]\tLoss: 0.205945\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.651016\n", + "Epoch : 94 [28/36(78%)]\tLoss: 0.578657\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.149530\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.475559\n", + "Epoch : 95 [4/36(11%)]\tLoss: 0.620163\n", + "Epoch : 95 [8/36(22%)]\tLoss: 1.275573\n", + "Epoch : 95 [12/36(33%)]\tLoss: 0.194408\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.116959\n", + "Epoch : 95 [20/36(56%)]\tLoss: 0.268944\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.823027\n", + "Epoch : 95 [28/36(78%)]\tLoss: 0.536795\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.138851\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.147528\n", + "Epoch : 96 [4/36(11%)]\tLoss: 0.367619\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.502290\n", + "Epoch : 96 [12/36(33%)]\tLoss: 0.277322\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.314263\n", + "Epoch : 96 [20/36(56%)]\tLoss: 0.493367\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.279780\n", + "Epoch : 96 [28/36(78%)]\tLoss: 0.076003\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.201008\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.373112\n", + "Epoch : 97 [4/36(11%)]\tLoss: 0.418882\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.096935\n", + "Epoch : 97 [12/36(33%)]\tLoss: 0.142398\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.292992\n", + "Epoch : 97 [20/36(56%)]\tLoss: 0.492764\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.136633\n", + "Epoch : 97 [28/36(78%)]\tLoss: 0.125291\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.049241\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.257102\n", + "Epoch : 98 [4/36(11%)]\tLoss: 0.595618\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.244193\n", + "Epoch : 98 [12/36(33%)]\tLoss: 0.274328\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.045561\n", + "Epoch : 98 [20/36(56%)]\tLoss: 0.369388\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.119866\n", + "Epoch : 98 [28/36(78%)]\tLoss: 0.430298\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.165205\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.442106\n", + "Epoch : 99 [4/36(11%)]\tLoss: 0.319470\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.116928\n", + "Epoch : 99 [12/36(33%)]\tLoss: 0.516852\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.767723\n", + "Epoch : 99 [20/36(56%)]\tLoss: 0.102293\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.164339\n", + "Epoch : 99 [28/36(78%)]\tLoss: 0.173098\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.777830\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.586682\n", + "Epoch : 100 [4/36(11%)]\tLoss: 0.340665\n", + "Epoch : 100 [8/36(22%)]\tLoss: 0.147469\n", + "Epoch : 100 [12/36(33%)]\tLoss: 0.182332\n", + "Epoch : 100 [16/36(44%)]\tLoss: 0.283462\n", + "Epoch : 100 [20/36(56%)]\tLoss: 0.207662\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.497050\n", + "Epoch : 100 [28/36(78%)]\tLoss: 0.165086\n", + "Epoch : 100 [32/36(89%)]\tLoss: 0.117203\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.083228\n", + "Epoch : 101 [4/36(11%)]\tLoss: 0.546391\n", + "Epoch : 101 [8/36(22%)]\tLoss: 0.431156\n", + "Epoch : 101 [12/36(33%)]\tLoss: 0.398226\n", + "Epoch : 101 [16/36(44%)]\tLoss: 1.288929\n", + "Epoch : 101 [20/36(56%)]\tLoss: 0.640342\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.401745\n", + "Epoch : 101 [28/36(78%)]\tLoss: 0.407061\n", + "Epoch : 101 [32/36(89%)]\tLoss: 1.305236\n", + "Epoch : 102 [0/36(0%)]\tLoss: 0.803203\n", + "Epoch : 102 [4/36(11%)]\tLoss: 0.803634\n", + "Epoch : 102 [8/36(22%)]\tLoss: 0.246378\n", + "Epoch : 102 [12/36(33%)]\tLoss: 0.677488\n", + "Epoch : 102 [16/36(44%)]\tLoss: 1.857794\n", + "Epoch : 102 [20/36(56%)]\tLoss: 1.637340\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.607095\n", + "Epoch : 102 [28/36(78%)]\tLoss: 0.254901\n", + "Epoch : 102 [32/36(89%)]\tLoss: 0.450059\n", + "Epoch : 103 [0/36(0%)]\tLoss: 1.180508\n", + "Epoch : 103 [4/36(11%)]\tLoss: 1.737358\n", + "Epoch : 103 [8/36(22%)]\tLoss: 0.399888\n", + "Epoch : 103 [12/36(33%)]\tLoss: 0.145695\n", + "Epoch : 103 [16/36(44%)]\tLoss: 1.078226\n", + "Epoch : 103 [20/36(56%)]\tLoss: 2.185148\n", + "Epoch : 103 [24/36(67%)]\tLoss: 1.145702\n", + "Epoch : 103 [28/36(78%)]\tLoss: 0.967929\n", + "Epoch : 103 [32/36(89%)]\tLoss: 0.555476\n", + "Epoch : 104 [0/36(0%)]\tLoss: 1.243436\n", + "Epoch : 104 [4/36(11%)]\tLoss: 1.967332\n", + "Epoch : 104 [8/36(22%)]\tLoss: 0.957190\n", + "Epoch : 104 [12/36(33%)]\tLoss: 0.382028\n", + "Epoch : 104 [16/36(44%)]\tLoss: 0.336646\n", + "Epoch : 104 [20/36(56%)]\tLoss: 1.186655\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.802149\n", + "Epoch : 104 [28/36(78%)]\tLoss: 0.526138\n", + "Epoch : 104 [32/36(89%)]\tLoss: 0.238018\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.150440\n", + "Epoch : 105 [4/36(11%)]\tLoss: 0.649219\n", + "Epoch : 105 [8/36(22%)]\tLoss: 1.940693\n", + "Epoch : 105 [12/36(33%)]\tLoss: 1.726291\n", + "Epoch : 105 [16/36(44%)]\tLoss: 1.048240\n", + "Epoch : 105 [20/36(56%)]\tLoss: 0.640212\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.224103\n", + "Epoch : 105 [28/36(78%)]\tLoss: 0.495840\n", + "Epoch : 105 [32/36(89%)]\tLoss: 2.218499\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.800397\n", + "Epoch : 106 [4/36(11%)]\tLoss: 0.318850\n", + "Epoch : 106 [8/36(22%)]\tLoss: 0.186796\n", + "Epoch : 106 [12/36(33%)]\tLoss: 0.328822\n", + "Epoch : 106 [16/36(44%)]\tLoss: 0.880447\n", + "Epoch : 106 [20/36(56%)]\tLoss: 0.526012\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.372196\n", + "Epoch : 106 [28/36(78%)]\tLoss: 0.545029\n", + "Epoch : 106 [32/36(89%)]\tLoss: 0.210318\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.627842\n", + "Epoch : 107 [4/36(11%)]\tLoss: 0.713033\n", + "Epoch : 107 [8/36(22%)]\tLoss: 0.506655\n", + "Epoch : 107 [12/36(33%)]\tLoss: 0.069775\n", + "Epoch : 107 [16/36(44%)]\tLoss: 0.258880\n", + "Epoch : 107 [20/36(56%)]\tLoss: 0.485790\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.434654\n", + "Epoch : 107 [28/36(78%)]\tLoss: 0.986387\n", + "Epoch : 107 [32/36(89%)]\tLoss: 0.479963\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.096445\n", + "Epoch : 108 [4/36(11%)]\tLoss: 0.286673\n", + "Epoch : 108 [8/36(22%)]\tLoss: 0.381003\n", + "Epoch : 108 [12/36(33%)]\tLoss: 0.614597\n", + "Epoch : 108 [16/36(44%)]\tLoss: 0.450621\n", + "Epoch : 108 [20/36(56%)]\tLoss: 0.669061\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.096559\n", + "Epoch : 108 [28/36(78%)]\tLoss: 0.275418\n", + "Epoch : 108 [32/36(89%)]\tLoss: 0.804102\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.838495\n", + "Epoch : 109 [4/36(11%)]\tLoss: 1.215745\n", + "Epoch : 109 [8/36(22%)]\tLoss: 0.062430\n", + "Epoch : 109 [12/36(33%)]\tLoss: 0.159007\n", + "Epoch : 109 [16/36(44%)]\tLoss: 1.296312\n", + "Epoch : 109 [20/36(56%)]\tLoss: 2.450544\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.601764\n", + "Epoch : 109 [28/36(78%)]\tLoss: 0.213653\n", + "Epoch : 109 [32/36(89%)]\tLoss: 0.523616\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.794437\n", + "Epoch : 110 [4/36(11%)]\tLoss: 1.870096\n", + "Epoch : 110 [8/36(22%)]\tLoss: 0.811448\n", + "Epoch : 110 [12/36(33%)]\tLoss: 0.082044\n", + "Epoch : 110 [16/36(44%)]\tLoss: 0.358022\n", + "Epoch : 110 [20/36(56%)]\tLoss: 1.638812\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.672341\n", + "Epoch : 110 [28/36(78%)]\tLoss: 0.718325\n", + "Epoch : 110 [32/36(89%)]\tLoss: 0.167818\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.562024\n", + "Epoch : 111 [4/36(11%)]\tLoss: 0.820200\n", + "Epoch : 111 [8/36(22%)]\tLoss: 0.834176\n", + "Epoch : 111 [12/36(33%)]\tLoss: 1.139762\n", + "Epoch : 111 [16/36(44%)]\tLoss: 0.326634\n", + "Epoch : 111 [20/36(56%)]\tLoss: 0.946186\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.598871\n", + "Epoch : 111 [28/36(78%)]\tLoss: 0.794655\n", + "Epoch : 111 [32/36(89%)]\tLoss: 0.416314\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.327260\n", + "Epoch : 112 [4/36(11%)]\tLoss: 0.519059\n", + "Epoch : 112 [8/36(22%)]\tLoss: 0.187847\n", + "Epoch : 112 [12/36(33%)]\tLoss: 0.433497\n", + "Epoch : 112 [16/36(44%)]\tLoss: 0.343210\n", + "Epoch : 112 [20/36(56%)]\tLoss: 0.408844\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.119463\n", + "Epoch : 112 [28/36(78%)]\tLoss: 0.447131\n", + "Epoch : 112 [32/36(89%)]\tLoss: 0.275187\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.434932\n", + "Epoch : 113 [4/36(11%)]\tLoss: 0.267949\n", + "Epoch : 113 [8/36(22%)]\tLoss: 0.038561\n", + "Epoch : 113 [12/36(33%)]\tLoss: 0.204059\n", + "Epoch : 113 [16/36(44%)]\tLoss: 0.241844\n", + "Epoch : 113 [20/36(56%)]\tLoss: 0.217105\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.291218\n", + "Epoch : 113 [28/36(78%)]\tLoss: 0.281015\n", + "Epoch : 113 [32/36(89%)]\tLoss: 0.333592\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.141699\n", + "Epoch : 114 [4/36(11%)]\tLoss: 0.247860\n", + "Epoch : 114 [8/36(22%)]\tLoss: 0.084436\n", + "Epoch : 114 [12/36(33%)]\tLoss: 0.329118\n", + "Epoch : 114 [16/36(44%)]\tLoss: 0.193044\n", + "Epoch : 114 [20/36(56%)]\tLoss: 0.250687\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.232723\n", + "Epoch : 114 [28/36(78%)]\tLoss: 0.878178\n", + "Epoch : 114 [32/36(89%)]\tLoss: 0.440108\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.100904\n", + "Epoch : 115 [4/36(11%)]\tLoss: 0.374544\n", + "Epoch : 115 [8/36(22%)]\tLoss: 0.009168\n", + "Epoch : 115 [12/36(33%)]\tLoss: 0.017287\n", + "Epoch : 115 [16/36(44%)]\tLoss: 0.069933\n", + "Epoch : 115 [20/36(56%)]\tLoss: 0.550595\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.016625\n", + "Epoch : 115 [28/36(78%)]\tLoss: 0.102405\n", + "Epoch : 115 [32/36(89%)]\tLoss: 0.142739\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.151976\n", + "Epoch : 116 [4/36(11%)]\tLoss: 0.267868\n", + "Epoch : 116 [8/36(22%)]\tLoss: 0.548577\n", + "Epoch : 116 [12/36(33%)]\tLoss: 0.053482\n", + "Epoch : 116 [16/36(44%)]\tLoss: 0.043041\n", + "Epoch : 116 [20/36(56%)]\tLoss: 0.148280\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.047300\n", + "Epoch : 116 [28/36(78%)]\tLoss: 0.034180\n", + "Epoch : 116 [32/36(89%)]\tLoss: 0.058306\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.317567\n", + "Epoch : 117 [4/36(11%)]\tLoss: 0.199254\n", + "Epoch : 117 [8/36(22%)]\tLoss: 0.029637\n", + "Epoch : 117 [12/36(33%)]\tLoss: 0.087505\n", + "Epoch : 117 [16/36(44%)]\tLoss: 0.356819\n", + "Epoch : 117 [20/36(56%)]\tLoss: 0.124659\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.187283\n", + "Epoch : 117 [28/36(78%)]\tLoss: 0.085256\n", + "Epoch : 117 [32/36(89%)]\tLoss: 0.185519\n", + "Epoch : 118 [0/36(0%)]\tLoss: 1.665215\n", + "Epoch : 118 [4/36(11%)]\tLoss: 0.085111\n", + "Epoch : 118 [8/36(22%)]\tLoss: 0.010460\n", + "Epoch : 118 [12/36(33%)]\tLoss: 0.127448\n", + "Epoch : 118 [16/36(44%)]\tLoss: 0.181292\n", + "Epoch : 118 [20/36(56%)]\tLoss: 1.402862\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.157969\n", + "Epoch : 118 [28/36(78%)]\tLoss: 0.158897\n", + "Epoch : 118 [32/36(89%)]\tLoss: 0.145005\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.174923\n", + "Epoch : 119 [4/36(11%)]\tLoss: 0.194443\n", + "Epoch : 119 [8/36(22%)]\tLoss: 0.035642\n", + "Epoch : 119 [12/36(33%)]\tLoss: 0.058165\n", + "Epoch : 119 [16/36(44%)]\tLoss: 0.118919\n", + "Epoch : 119 [20/36(56%)]\tLoss: 0.179913\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.262855\n", + "Epoch : 119 [28/36(78%)]\tLoss: 0.503860\n", + "Epoch : 119 [32/36(89%)]\tLoss: 0.425094\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.145393\n", + "Epoch : 120 [4/36(11%)]\tLoss: 0.149935\n", + "Epoch : 120 [8/36(22%)]\tLoss: 0.342409\n", + "Epoch : 120 [12/36(33%)]\tLoss: 0.069583\n", + "Epoch : 120 [16/36(44%)]\tLoss: 0.189382\n", + "Epoch : 120 [20/36(56%)]\tLoss: 0.493422\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.024969\n", + "Epoch : 120 [28/36(78%)]\tLoss: 0.103296\n", + "Epoch : 120 [32/36(89%)]\tLoss: 0.103516\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.326754\n", + "Epoch : 121 [4/36(11%)]\tLoss: 0.450237\n", + "Epoch : 121 [8/36(22%)]\tLoss: 0.060618\n", + "Epoch : 121 [12/36(33%)]\tLoss: 0.100700\n", + "Epoch : 121 [16/36(44%)]\tLoss: 0.117357\n", + "Epoch : 121 [20/36(56%)]\tLoss: 0.558369\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.164942\n", + "Epoch : 121 [28/36(78%)]\tLoss: 0.278770\n", + "Epoch : 121 [32/36(89%)]\tLoss: 0.117040\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.197312\n", + "Epoch : 122 [4/36(11%)]\tLoss: 0.513615\n", + "Epoch : 122 [8/36(22%)]\tLoss: 0.308748\n", + "Epoch : 122 [12/36(33%)]\tLoss: 0.199831\n", + "Epoch : 122 [16/36(44%)]\tLoss: 0.065613\n", + "Epoch : 122 [20/36(56%)]\tLoss: 0.187940\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.066833\n", + "Epoch : 122 [28/36(78%)]\tLoss: 0.310203\n", + "Epoch : 122 [32/36(89%)]\tLoss: 0.452692\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.502539\n", + "Epoch : 123 [4/36(11%)]\tLoss: 0.451618\n", + "Epoch : 123 [8/36(22%)]\tLoss: 0.149488\n", + "Epoch : 123 [12/36(33%)]\tLoss: 0.219420\n", + "Epoch : 123 [16/36(44%)]\tLoss: 0.589294\n", + "Epoch : 123 [20/36(56%)]\tLoss: 0.229330\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.112291\n", + "Epoch : 123 [28/36(78%)]\tLoss: 0.193194\n", + "Epoch : 123 [32/36(89%)]\tLoss: 0.156191\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.353021\n", + "Epoch : 124 [4/36(11%)]\tLoss: 0.679400\n", + "Epoch : 124 [8/36(22%)]\tLoss: 0.770952\n", + "Epoch : 124 [12/36(33%)]\tLoss: 0.099951\n", + "Epoch : 124 [16/36(44%)]\tLoss: 0.170315\n", + "Epoch : 124 [20/36(56%)]\tLoss: 0.484753\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.590766\n", + "Epoch : 124 [28/36(78%)]\tLoss: 1.056039\n", + "Epoch : 124 [32/36(89%)]\tLoss: 0.291728\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.014179\n", + "Epoch : 125 [4/36(11%)]\tLoss: 0.666761\n", + "Epoch : 125 [8/36(22%)]\tLoss: 0.898730\n", + "Epoch : 125 [12/36(33%)]\tLoss: 0.839078\n", + "Epoch : 125 [16/36(44%)]\tLoss: 0.133622\n", + "Epoch : 125 [20/36(56%)]\tLoss: 0.296906\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.522242\n", + "Epoch : 125 [28/36(78%)]\tLoss: 1.357634\n", + "Epoch : 125 [32/36(89%)]\tLoss: 0.483945\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.249091\n", + "Epoch : 126 [4/36(11%)]\tLoss: 0.298418\n", + "Epoch : 126 [8/36(22%)]\tLoss: 0.117557\n", + "Epoch : 126 [12/36(33%)]\tLoss: 0.204880\n", + "Epoch : 126 [16/36(44%)]\tLoss: 0.587431\n", + "Epoch : 126 [20/36(56%)]\tLoss: 1.187847\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.372977\n", + "Epoch : 126 [28/36(78%)]\tLoss: 0.206767\n", + "Epoch : 126 [32/36(89%)]\tLoss: 0.171439\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.644328\n", + "Epoch : 127 [4/36(11%)]\tLoss: 2.266160\n", + "Epoch : 127 [8/36(22%)]\tLoss: 0.580379\n", + "Epoch : 127 [12/36(33%)]\tLoss: 0.135999\n", + "Epoch : 127 [16/36(44%)]\tLoss: 0.512999\n", + "Epoch : 127 [20/36(56%)]\tLoss: 1.872483\n", + "Epoch : 127 [24/36(67%)]\tLoss: 1.238966\n", + "Epoch : 127 [28/36(78%)]\tLoss: 0.521182\n", + "Epoch : 127 [32/36(89%)]\tLoss: 0.259993\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.265112\n", + "Epoch : 128 [4/36(11%)]\tLoss: 1.502435\n", + "Epoch : 128 [8/36(22%)]\tLoss: 1.752910\n", + "Epoch : 128 [12/36(33%)]\tLoss: 1.213190\n", + "Epoch : 128 [16/36(44%)]\tLoss: 0.182892\n", + "Epoch : 128 [20/36(56%)]\tLoss: 1.473798\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.285437\n", + "Epoch : 128 [28/36(78%)]\tLoss: 0.903030\n", + "Epoch : 128 [32/36(89%)]\tLoss: 1.723643\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.712713\n", + "Epoch : 129 [4/36(11%)]\tLoss: 0.479779\n", + "Epoch : 129 [8/36(22%)]\tLoss: 0.786888\n", + "Epoch : 129 [12/36(33%)]\tLoss: 1.123224\n", + "Epoch : 129 [16/36(44%)]\tLoss: 0.927045\n", + "Epoch : 129 [20/36(56%)]\tLoss: 0.342439\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.093316\n", + "Epoch : 129 [28/36(78%)]\tLoss: 0.230954\n", + "Epoch : 129 [32/36(89%)]\tLoss: 1.265112\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.735851\n", + "Epoch : 130 [4/36(11%)]\tLoss: 1.008205\n", + "Epoch : 130 [8/36(22%)]\tLoss: 0.474685\n", + "Epoch : 130 [12/36(33%)]\tLoss: 0.268080\n", + "Epoch : 130 [16/36(44%)]\tLoss: 0.550381\n", + "Epoch : 130 [20/36(56%)]\tLoss: 0.850722\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.801836\n", + "Epoch : 130 [28/36(78%)]\tLoss: 1.241949\n", + "Epoch : 130 [32/36(89%)]\tLoss: 0.450840\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.125799\n", + "Epoch : 131 [4/36(11%)]\tLoss: 0.547972\n", + "Epoch : 131 [8/36(22%)]\tLoss: 2.403544\n", + "Epoch : 131 [12/36(33%)]\tLoss: 0.906547\n", + "Epoch : 131 [16/36(44%)]\tLoss: 0.386849\n", + "Epoch : 131 [20/36(56%)]\tLoss: 0.363257\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.881987\n", + "Epoch : 131 [28/36(78%)]\tLoss: 1.516602\n", + "Epoch : 131 [32/36(89%)]\tLoss: 1.657330\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.553499\n", + "Epoch : 132 [4/36(11%)]\tLoss: 0.270250\n", + "Epoch : 132 [8/36(22%)]\tLoss: 1.147920\n", + "Epoch : 132 [12/36(33%)]\tLoss: 1.012349\n", + "Epoch : 132 [16/36(44%)]\tLoss: 0.965370\n", + "Epoch : 132 [20/36(56%)]\tLoss: 1.128829\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.132303\n", + "Epoch : 132 [28/36(78%)]\tLoss: 0.443447\n", + "Epoch : 132 [32/36(89%)]\tLoss: 1.139149\n", + "Epoch : 133 [0/36(0%)]\tLoss: 2.019506\n", + "Epoch : 133 [4/36(11%)]\tLoss: 1.483567\n", + "Epoch : 133 [8/36(22%)]\tLoss: 0.222766\n", + "Epoch : 133 [12/36(33%)]\tLoss: 0.479214\n", + "Epoch : 133 [16/36(44%)]\tLoss: 1.252902\n", + "Epoch : 133 [20/36(56%)]\tLoss: 2.039283\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.835975\n", + "Epoch : 133 [28/36(78%)]\tLoss: 1.013910\n", + "Epoch : 133 [32/36(89%)]\tLoss: 0.484830\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.873319\n", + "Epoch : 134 [4/36(11%)]\tLoss: 2.239208\n", + "Epoch : 134 [8/36(22%)]\tLoss: 1.142551\n", + "Epoch : 134 [12/36(33%)]\tLoss: 0.698097\n", + "Epoch : 134 [16/36(44%)]\tLoss: 0.395490\n", + "Epoch : 134 [20/36(56%)]\tLoss: 0.630927\n", + "Epoch : 134 [24/36(67%)]\tLoss: 2.416898\n", + "Epoch : 134 [28/36(78%)]\tLoss: 1.961826\n", + "Epoch : 134 [32/36(89%)]\tLoss: 0.963865\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.513699\n", + "Epoch : 135 [4/36(11%)]\tLoss: 1.159483\n", + "Epoch : 135 [8/36(22%)]\tLoss: 1.378969\n", + "Epoch : 135 [12/36(33%)]\tLoss: 1.816255\n", + "Epoch : 135 [16/36(44%)]\tLoss: 0.669326\n", + "Epoch : 135 [20/36(56%)]\tLoss: 0.399843\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.242482\n", + "Epoch : 135 [28/36(78%)]\tLoss: 0.449311\n", + "Epoch : 135 [32/36(89%)]\tLoss: 1.769494\n", + "Epoch : 136 [0/36(0%)]\tLoss: 1.712812\n", + "Epoch : 136 [4/36(11%)]\tLoss: 0.357971\n", + "Epoch : 136 [8/36(22%)]\tLoss: 0.150119\n", + "Epoch : 136 [12/36(33%)]\tLoss: 0.545350\n", + "Epoch : 136 [16/36(44%)]\tLoss: 1.334263\n", + "Epoch : 136 [20/36(56%)]\tLoss: 1.960453\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.963578\n", + "Epoch : 136 [28/36(78%)]\tLoss: 0.330901\n", + "Epoch : 136 [32/36(89%)]\tLoss: 0.297327\n", + "Epoch : 137 [0/36(0%)]\tLoss: 2.078467\n", + "Epoch : 137 [4/36(11%)]\tLoss: 2.584589\n", + "Epoch : 137 [8/36(22%)]\tLoss: 2.093008\n", + "Epoch : 137 [12/36(33%)]\tLoss: 0.218757\n", + "Epoch : 137 [16/36(44%)]\tLoss: 0.139294\n", + "Epoch : 137 [20/36(56%)]\tLoss: 0.793414\n", + "Epoch : 137 [24/36(67%)]\tLoss: 2.099733\n", + "Epoch : 137 [28/36(78%)]\tLoss: 2.589034\n", + "Epoch : 137 [32/36(89%)]\tLoss: 0.720929\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.317908\n", + "Epoch : 138 [4/36(11%)]\tLoss: 0.666286\n", + "Epoch : 138 [8/36(22%)]\tLoss: 2.043915\n", + "Epoch : 138 [12/36(33%)]\tLoss: 1.559101\n", + "Epoch : 138 [16/36(44%)]\tLoss: 1.181897\n", + "Epoch : 138 [20/36(56%)]\tLoss: 0.792096\n", + "Epoch : 138 [24/36(67%)]\tLoss: 0.428118\n", + "Epoch : 138 [28/36(78%)]\tLoss: 1.314481\n", + "Epoch : 138 [32/36(89%)]\tLoss: 1.589546\n", + "Epoch : 139 [0/36(0%)]\tLoss: 1.632950\n", + "Epoch : 139 [4/36(11%)]\tLoss: 0.499525\n", + "Epoch : 139 [8/36(22%)]\tLoss: 0.559933\n", + "Epoch : 139 [12/36(33%)]\tLoss: 1.184841\n", + "Epoch : 139 [16/36(44%)]\tLoss: 1.278426\n", + "Epoch : 139 [20/36(56%)]\tLoss: 0.974399\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.395211\n", + "Epoch : 139 [28/36(78%)]\tLoss: 0.073856\n", + "Epoch : 139 [32/36(89%)]\tLoss: 0.585635\n", + "Epoch : 140 [0/36(0%)]\tLoss: 1.202225\n", + "Epoch : 140 [4/36(11%)]\tLoss: 1.409314\n", + "Epoch : 140 [8/36(22%)]\tLoss: 0.254555\n", + "Epoch : 140 [12/36(33%)]\tLoss: 0.191000\n", + "Epoch : 140 [16/36(44%)]\tLoss: 0.255447\n", + "Epoch : 140 [20/36(56%)]\tLoss: 0.781477\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.367237\n", + "Epoch : 140 [28/36(78%)]\tLoss: 0.354671\n", + "Epoch : 140 [32/36(89%)]\tLoss: 0.152837\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.193786\n", + "Epoch : 141 [4/36(11%)]\tLoss: 0.526449\n", + "Epoch : 141 [8/36(22%)]\tLoss: 0.141756\n", + "Epoch : 141 [12/36(33%)]\tLoss: 0.421991\n", + "Epoch : 141 [16/36(44%)]\tLoss: 0.213014\n", + "Epoch : 141 [20/36(56%)]\tLoss: 0.204618\n", + "Epoch : 141 [24/36(67%)]\tLoss: 0.598376\n", + "Epoch : 141 [28/36(78%)]\tLoss: 0.236039\n", + "Epoch : 141 [32/36(89%)]\tLoss: 0.416823\n", + "Epoch : 142 [0/36(0%)]\tLoss: 1.078028\n", + "Epoch : 142 [4/36(11%)]\tLoss: 0.915580\n", + "Epoch : 142 [8/36(22%)]\tLoss: 0.561300\n", + "Epoch : 142 [12/36(33%)]\tLoss: 0.203219\n", + "Epoch : 142 [16/36(44%)]\tLoss: 0.573979\n", + "Epoch : 142 [20/36(56%)]\tLoss: 0.322530\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.309427\n", + "Epoch : 142 [28/36(78%)]\tLoss: 0.163867\n", + "Epoch : 142 [32/36(89%)]\tLoss: 0.075040\n", + "Epoch : 143 [0/36(0%)]\tLoss: 0.242410\n", + "Epoch : 143 [4/36(11%)]\tLoss: 0.312566\n", + "Epoch : 143 [8/36(22%)]\tLoss: 0.509524\n", + "Epoch : 143 [12/36(33%)]\tLoss: 0.126450\n", + "Epoch : 143 [16/36(44%)]\tLoss: 0.726203\n", + "Epoch : 143 [20/36(56%)]\tLoss: 0.135466\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.099054\n", + "Epoch : 143 [28/36(78%)]\tLoss: 0.439739\n", + "Epoch : 143 [32/36(89%)]\tLoss: 0.803386\n", + "Epoch : 144 [0/36(0%)]\tLoss: 0.256622\n", + "Epoch : 144 [4/36(11%)]\tLoss: 0.951811\n", + "Epoch : 144 [8/36(22%)]\tLoss: 0.360674\n", + "Epoch : 144 [12/36(33%)]\tLoss: 0.391882\n", + "Epoch : 144 [16/36(44%)]\tLoss: 0.858808\n", + "Epoch : 144 [20/36(56%)]\tLoss: 0.519849\n", + "Epoch : 144 [24/36(67%)]\tLoss: 0.635749\n", + "Epoch : 144 [28/36(78%)]\tLoss: 0.867352\n", + "Epoch : 144 [32/36(89%)]\tLoss: 0.480857\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.963310\n", + "Epoch : 145 [4/36(11%)]\tLoss: 1.298752\n", + "Epoch : 145 [8/36(22%)]\tLoss: 0.179455\n", + "Epoch : 145 [12/36(33%)]\tLoss: 0.038442\n", + "Epoch : 145 [16/36(44%)]\tLoss: 0.435327\n", + "Epoch : 145 [20/36(56%)]\tLoss: 0.476076\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.304078\n", + "Epoch : 145 [28/36(78%)]\tLoss: 1.038557\n", + "Epoch : 145 [32/36(89%)]\tLoss: 0.654183\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.204737\n", + "Epoch : 146 [4/36(11%)]\tLoss: 0.970392\n", + "Epoch : 146 [8/36(22%)]\tLoss: 0.515129\n", + "Epoch : 146 [12/36(33%)]\tLoss: 0.710956\n", + "Epoch : 146 [16/36(44%)]\tLoss: 0.466451\n", + "Epoch : 146 [20/36(56%)]\tLoss: 0.115085\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.297739\n", + "Epoch : 146 [28/36(78%)]\tLoss: 1.263527\n", + "Epoch : 146 [32/36(89%)]\tLoss: 0.274987\n", + "Epoch : 147 [0/36(0%)]\tLoss: 1.063654\n", + "Epoch : 147 [4/36(11%)]\tLoss: 0.266227\n", + "Epoch : 147 [8/36(22%)]\tLoss: 0.040175\n", + "Epoch : 147 [12/36(33%)]\tLoss: 0.386203\n", + "Epoch : 147 [16/36(44%)]\tLoss: 0.858166\n", + "Epoch : 147 [20/36(56%)]\tLoss: 0.287465\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.364928\n", + "Epoch : 147 [28/36(78%)]\tLoss: 0.894572\n", + "Epoch : 147 [32/36(89%)]\tLoss: 0.207129\n", + "Epoch : 148 [0/36(0%)]\tLoss: 1.035094\n", + "Epoch : 148 [4/36(11%)]\tLoss: 0.792202\n", + "Epoch : 148 [8/36(22%)]\tLoss: 0.573911\n", + "Epoch : 148 [12/36(33%)]\tLoss: 0.181461\n", + "Epoch : 148 [16/36(44%)]\tLoss: 0.474999\n", + "Epoch : 148 [20/36(56%)]\tLoss: 0.434514\n", + "Epoch : 148 [24/36(67%)]\tLoss: 0.521438\n", + "Epoch : 148 [28/36(78%)]\tLoss: 0.437689\n", + "Epoch : 148 [32/36(89%)]\tLoss: 1.160885\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.215505\n", + "Epoch : 149 [4/36(11%)]\tLoss: 0.336407\n", + "Epoch : 149 [8/36(22%)]\tLoss: 1.062175\n", + "Epoch : 149 [12/36(33%)]\tLoss: 0.169331\n", + "Epoch : 149 [16/36(44%)]\tLoss: 0.302514\n", + "Epoch : 149 [20/36(56%)]\tLoss: 0.457066\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.534421\n", + "Epoch : 149 [28/36(78%)]\tLoss: 1.031029\n", + "Epoch : 149 [32/36(89%)]\tLoss: 0.598749\n", + "--- 0.16259276469548542 minutes ---\n" ] } ], @@ -2191,7 +2185,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjZUlEQVR4nOzdd3gUVdsG8HvTeyFCQiihSu8gIlJUFBARBMWCr4ion0qR4qvyqoAVxYJiAVQECyCKYgcEBEQERYqCAtJDCy0kIT1k5/vj5OzM9pnNJrvZ3L/ryrWbzZbZzSY79zzPOcekKIoCIiIiIiIiIqpUQb7eACIiIiIiIqLqiIGciIiIiIiIyAcYyImIiIiIiIh8gIGciIiIiIiIyAcYyImIiIiIiIh8gIGciIiIiIiIyAcYyImIiIiIiIh8gIGciIiIiIiIyAcYyImIiIiIiIh8gIGciIiIiKgK6t27N3r37q37uq1bt67YDSrToEED3H333ZXyWERVHQM5UTWyYMECmEwmmEwm/PLLL3Y/VxQF9erVg8lkwg033GC5PDc3F1OnTkXr1q0RHR2NpKQktG/fHg8//DBOnDhhud60adMs9+/oKyMjo1KeJxERkV7ys/GPP/7w9aaU24kTJzBt2jTs2LHD15viNQ0aNIDJZEKfPn0c/vy9996z7GfY/g5/+eUX9O/fH3Xq1EFERATq16+PgQMHYtGiRVbXc7Xv8sADD1TYcyMCgBBfbwARVb6IiAgsWrQIV155pdXl69evx7FjxxAeHm65rKSkBD179sSePXswYsQIjB07Frm5ufj777+xaNEi3HTTTUhNTbW6n9mzZyMmJsbucRMSEirk+RAREVVHP/74o9X3J06cwNNPP40GDRqgffv2vtkoAHv37kVQkPfqfhEREVi7di0yMjKQkpJi9bOFCxciIiIChYWFVpd//vnnuPXWWy0FhMTERBw6dAg///wz3nvvPdxxxx1W17/22mtx11132T32pZde6rXnQeQIAzlRNXT99dfj888/x6xZsxASov4bWLRoETp16oSzZ89aLvvqq6+wfft2LFy40O7Dq7CwEMXFxXb3f/PNN+OSSy6puCdARERUjeXn5yMqKgphYWG+3hSHtAf2vaF79+7YsmULlixZgocffthy+bFjx7BhwwbcdNNN+OKLL6xuM23aNLRs2RKbN2+2e51Onz5t9xiXXnop7rzzTq9uN5EebFknqoZuv/12nDt3DqtWrbJcVlxcjKVLl9qF7gMHDgAQH4a2IiIiEBcXV7EbS0RE5Ae2b9+O/v37Iy4uDjExMbjmmmuwefNmu+v99ddf6NWrFyIjI1G3bl0899xzmD9/PkwmEw4fPmy53tdff40BAwYgNTUV4eHhaNy4MZ599lmUlpZa3Z8c+71161b07NkTUVFR+N///mf5mRxDvm7dOnTp0gUAMHLkSEvL9YIFC6zu759//sFVV12FqKgo1KlTBzNmzLD6+bp162AymfDZZ5/h6aefRp06dRAbG4ubb74Z2dnZKCoqwvjx41GrVi3ExMRg5MiRKCoqsroPR2PIs7KyMGHCBDRo0ADh4eGoW7cu7rrrLqsigDMREREYMmSIXav54sWLkZiYiL59+9rd5sCBA+jSpYvDgxa1atVy+5hElYUVcqJqqEGDBujWrRsWL16M/v37AwCWL1+O7Oxs3HbbbZg1a5blumlpaQCAjz76CE8++SRMJpPb+8/MzLS7LCQkhC3rRERUJf3999/o0aMH4uLi8OijjyI0NBRz585F7969sX79enTt2hUAcPz4cVx11VUwmUyYPHkyoqOj8f777zusGC9YsAAxMTGYOHEiYmJi8NNPP2HKlCnIycnByy+/bHXdc+fOoX///rjttttw5513Ijk52e7+WrRogWeeeQZTpkzB/fffjx49egAArrjiCst1zp8/j379+mHIkCEYNmwYli5disceewxt2rSx7A9I06dPR2RkJB5//HHs378fb775JkJDQxEUFITz589j2rRp2Lx5MxYsWICGDRtiypQpTl+/3Nxc9OjRA7t378Y999yDjh074uzZs/jmm29w7NgxXV11d9xxB6677jocOHAAjRs3BiA6+26++WaEhobaXT8tLQ1r1qzBsWPHULduXbf3X1hY6PDgQFxcnN92IlCAUIio2pg/f74CQNmyZYvy1ltvKbGxsUp+fr6iKIpyyy23KFdddZWiKIqSlpamDBgwQFEURcnPz1eaNWumAFDS0tKUu+++W5k3b55y6tQpu/ufOnWqAsDhV7NmzSrviRIREemk/Wx0ZvDgwUpYWJhy4MABy2UnTpxQYmNjlZ49e1ouGzt2rGIymZTt27dbLjt37pxSo0YNBYBy6NAhy+Xy81fr//7v/5SoqCilsLDQclmvXr0UAMqcOXPsrt+rVy+lV69elu+3bNmiAFDmz5/v8LoAlI8++shyWVFRkZKSkqIMHTrUctnatWsVAErr1q2V4uJiy+W33367YjKZlP79+1vdb7du3ZS0tDSry9LS0pQRI0ZYvp8yZYoCQPnyyy/ttstsNttdZntfAwYMUC5evKikpKQozz77rKIoivLPP/8oAJT169c7/B3OmzdPAaCEhYUpV111lfLUU08pGzZsUEpLS+0ew9m+CwBl8eLFLrePqLzYsk5UTQ0bNgwFBQX47rvvcOHCBXz33Xd27eoAEBkZid9++w3//e9/AYgj+qNGjULt2rUxduxYuzY1APjiiy+watUqq6/58+dX+HMiIiLyttLSUvz4448YPHgwGjVqZLm8du3auOOOO/DLL78gJycHALBixQp069bNakK1GjVqYPjw4Xb3GxkZaTl/4cIFnD17Fj169EB+fj727Nljdd3w8HCMHDmy3M8lJibGapx0WFgYLrvsMhw8eNDuunfddZdV5blr165QFAX33HOP1fW6du2Ko0eP4uLFi04f94svvkC7du1w00032f1MT+cdAAQHB2PYsGFYvHgxADGZW7169SydALbuuecerFixAr1798Yvv/yCZ599Fj169EDTpk3x66+/2l1/0KBBdvsuq1atwlVXXaVr+4g8xZZ1omqqZs2a6NOnDxYtWoT8/HyUlpbi5ptvdnjd+Ph4zJgxAzNmzMCRI0ewZs0avPLKK3jrrbcQHx+P5557zur6PXv25KRuREQUEM6cOYP8/Hw0a9bM7mctWrSA2WzG0aNH0apVKxw5cgTdunWzu16TJk3sLvv777/x5JNP4qeffrIEeik7O9vq+zp16nilbbpu3bp2ATgxMRF//fWX3XXr169v9X18fDwAoF69enaXm81mZGdnIykpyeHjHjhwAEOHDi3PpgMQbeuzZs3Cn3/+iUWLFuG2225zGej79u2Lvn37Ij8/H1u3bsWSJUswZ84c3HDDDdizZ4/VWPK6des6XVqNqCKxQk5Ujd1xxx1Yvnw55syZg/79++sa452WloZ77rkHGzduREJCAhYuXFjxG0pERBRAsrKy0KtXL/z555945pln8O2332LVqlV46aWXAABms9nq+tpqenkEBwc7vFxRFN3XNXIf3ta1a1c0btwY48ePx6FDhxx29jkSFRWFHj164K233sKTTz6J8+fPY/ny5RW8tUT6sEJOVI3ddNNN+L//+z9s3rwZS5YsMXTbxMRENG7cGLt27aqgrSMiIvK9mjVrIioqCnv37rX72Z49exAUFGSpGqelpWH//v1217O9bN26dTh37hy+/PJL9OzZ03L5oUOHyrWtetu/K5s39xduv/12PPfcc2jRooVHa6137twZAHDy5EmvbA9RebFCTlSNxcTEYPbs2Zg2bRoGDhzo8Dp//vmnw1lHjxw5gn/++cdhCx8REVGgCA4OxnXXXYevv/7aatmyU6dOYdGiRbjyyistS4D27dsXmzZtwo4dOyzXy8zMtOsmk1VmbVW5uLgY77zzTrm2NTo6GoCowPuToUOH4s8//8SyZcvsfma0sn7vvfdi6tSpePXVV11eb82aNQ4v/+GHHwCA+y/kN1ghJ6rmRowY4fLnq1atwtSpU3HjjTfi8ssvR0xMDA4ePIgPPvgARUVFmDZtmt1tli5dipiYGLvLr732WodLtRAREfnaBx98gBUrVthd/vDDD+O5557DqlWrcOWVV+Khhx5CSEgI5s6di6KiIqt1vB999FF88sknuPbaazF27FjLsmf169dHZmampYJ9xRVXIDExESNGjMC4ceNgMpnw8ccfl7vtu3HjxkhISMCcOXMQGxuL6OhodO3aFQ0bNizX/ZbXf//7XyxduhS33HIL7rnnHnTq1AmZmZn45ptvMGfOHLRr1073faWlpTnc97A1aNAgNGzYEAMHDkTjxo2Rl5eH1atX49tvv0WXLl3sChH//vsvPvnkE7v7SU5OxrXXXqt7+4iMYiAnIpeGDh2KCxcu4Mcff8RPP/2EzMxMJCYm4rLLLsOkSZMczj764IMPOryvtWvXMpATEZFfmj17tsPL7777brRq1QobNmzA5MmTMX36dJjNZnTt2hWffPKJZQ1yQEx4tnbtWowbNw4vvPACatasidGjRyM6Ohrjxo1DREQEACApKQnfffcdJk2ahCeffBKJiYm48847cc0116Bv374eP4fQ0FB8+OGHmDx5Mh544AFcvHgR8+fP93kgj4mJwYYNGzB16lQsW7YMH374IWrVqoVrrrlG1xrhnnj//ffx9ddf47PPPsOJEyegKAoaNWqEJ554Ao899hhCQqxjkJxV3VavXr0YyKlCmZTKmIGBiIiIiKiaGj9+PObOnYvc3Fynk6IRUfXEMeRERERERF5SUFBg9f25c+fw8ccf48orr2QYJyI7bFknIiIiIvKSbt26oXfv3mjRogVOnTqFefPmIScnB0899ZSvN42I/BADORERERGRl1x//fVYunQp3n33XZhMJnTs2BHz5s2zWt6MiEjiGHIiIiIiIiIiH+AYciIiIiIiIiIfYCAnIiIiIiIi8oGAH0NuNptx4sQJxMbGwmQy+XpziIiIoCgKLly4gNTUVAQF8dh4efGznoiI/I3ez/qAD+QnTpxAvXr1fL0ZREREdo4ePYq6dev6ejOqPH7WExGRv3L3WR/wgTw2NhaAeCHi4uJ8vDVERERATk4O6tWrZ/mMovLhZz0REfkbvZ/1AR/IZetaXFwcP6SJiMivsL3aO/hZT0RE/srdZz0HrhERERERERH5AAM5ERERERERkQ8wkBMRERERERH5QMCPISci0ktRFFy8eBGlpaW+3hSq4oKDgxESEsIx4kREfoaf9eQt3vqsZyAnIgJQXFyMkydPIj8/39ebQgEiKioKtWvXRlhYmK83hYiIwM968j5vfNYzkBNRtWc2m3Ho0CEEBwcjNTUVYWFhrGySxxRFQXFxMc6cOYNDhw6hadOmCAriCDEiIl/iZz15kzc/6xnIiajaKy4uhtlsRr169RAVFeXrzaEAEBkZidDQUBw5cgTFxcWIiIjw9SYREVVr/Kwnb/PWZz0P2RMRlWEVk7yJ7yciIv/D/83kTd54P/EdSUREREREROQDDOREREREREREPsBATkREFg0aNMDrr7+u+/rr1q2DyWRCVlZWhW0TACxYsAAJCQkV+hhERETVBT/v/QcDORFRFWQymVx+TZs2zaP73bJlC+6//37d17/iiitw8uRJxMfHe/R4RERE5Bw/7wMfZ1knIqqCTp48aTm/ZMkSTJkyBXv37rVcFhMTYzmvKApKS0sREuL+X37NmjUNbUdYWBhSUlIM3YaIiIj04ed94GOF3IAePYA2bYBDh3y9JURUkRQFyMvzzZei6NvGlJQUy1d8fDxMJpPl+z179iA2NhbLly9Hp06dEB4ejl9++QUHDhzAoEGDkJycjJiYGHTp0gWrV6+2ul/bFjaTyYT3338fN910E6KiotC0aVN88803lp/btrDJVrOVK1eiRYsWiImJQb9+/ax2KC5evIhx48YhISEBSUlJeOyxxzBixAgMHjzY0O9p9uzZaNy4McLCwtCsWTN8/PHHmt+hgmnTpqF+/foIDw9Hamoqxo0bZ/n5O++8g6ZNmyIiIgLJycm4+eabDT02Ba5HHwVatwYWLvT1lhBRRfPV573ez3qAn/dA4H/eM5Ab8M8/wK5dQGGhr7eEiCpSfj4QE+Obr/x87z2Pxx9/HC+++CJ2796Ntm3bIjc3F9dffz3WrFmD7du3o1+/fhg4cCDS09Nd3s/TTz+NYcOG4a+//sL111+P4cOHIzMz08Xrl49XXnkFH3/8MX7++Wekp6fjkUcesfz8pZdewsKFCzF//nxs3LgROTk5+Oqrrww9t2XLluHhhx/GpEmTsGvXLvzf//0fRo4cibVr1wIAvvjiC8ycORNz587Fvn378NVXX6FNmzYAgD/++APjxo3DM888g71792LFihXo2bOnocenwHX0KPD338CZM77eEiKqaL76vPfmZz3Az/sq/3mvBLjs7GwFgJKdnV3u+7rkEkUBFGXXLi9sGBH5jYKCAuWff/5RCgoKFEVRlNxc8bfui6/cXOPbP3/+fCU+Pt7y/dq1axUAyldffeX2tq1atVLefPNNy/dpaWnKzJkzLd8DUJ588knL97m5uQoAZfny5VaPdf78ecu2AFD2799vuc3bb7+tJCcnW75PTk5WXn75Zcv3Fy9eVOrXr68MGjRI93O84oorlPvuu8/qOrfccoty/fXXK4qiKK+++qpy6aWXKsXFxXb39cUXXyhxcXFKTk6O08fzBtv3lZY3P5vIu6/nf/4j/hZnzPDChhGR33D0P9lXn/eefNYrCj/vJX/6vPfGZz0r5AbIdd/NZt9uBxFVrKgoIDfXN19RUd57Hp07d7b6Pjc3F4888ghatGiBhIQExMTEYPfu3W6PmLdt29ZyPjo6GnFxcTh9+rTT60dFRaFx48aW72vXrm25fnZ2Nk6dOoXLLrvM8vPg4GB06tTJ0HPbvXs3unfvbnVZ9+7dsXv3bgDALbfcgoKCAjRq1Aj33Xcfli1bhosXLwIArr32WqSlpaFRo0b4z3/+g4ULFyLf2+UKqrJCQ8VpSYlvt4OIKp6vPu+9+VkP8PO+qn/eM5AbwEBOVD2YTEB0tG++TCbvPY/o6Gir7x955BEsW7YML7zwAjZs2IAdO3agTZs2KC4udnk/oTKhWF4fE8wu/hE6ur5iZMCcF9SrVw979+7FO++8g8jISDz00EPo2bMnSkpKEBsbi23btmHx4sWoXbs2pkyZgnbt2lX4Ui5UNTCQE1Ufvvq89+ZnPcDP+6r+ec9AbgADORFVZRs3bsTdd9+Nm266CW3atEFKSgoOHz5cqdsQHx+P5ORkbNmyxXJZaWkptm3bZuh+WrRogY0bN1pdtnHjRrRs2dLyfWRkJAYOHIhZs2Zh3bp12LRpE3bu3AkACAkJQZ8+fTBjxgz89ddfOHz4MH766adyPDMKFHJy4rICCxFRlcPP+6r1ec9lzwxgICeiqqxp06b48ssvMXDgQJhMJjz11FMuj3xXlLFjx2L69Olo0qQJmjdvjjfffBPnz5+HyUDJ4L///S+GDRuGDh06oE+fPvj222/x5ZdfWmaRXbBgAUpLS9G1a1dERUXhk08+QWRkJNLS0vDdd9/h4MGD6NmzJxITE/HDDz/AbDajWbNmFfWUqQphhZyIqjp+3letz3sGcgMYyImoKnvttddwzz334IorrsAll1yCxx57DDk5OZW+HY899hgyMjJw1113ITg4GPfffz/69u2L4OBg3fcxePBgvPHGG3jllVfw8MMPo2HDhpg/fz569+4NAEhISMCLL76IiRMnorS0FG3atMG3336LpKQkJCQk4Msvv8S0adNQWFiIpk2bYvHixWjVqlUFPWOqShjIiaiq4+d91fq8NymV3ehfyXJychAfH4/s7GzExcWV674aNgQOHwY2bwa6dvXO9hGR7xUWFuLQoUNo2LAhIiIifL051Y7ZbEaLFi0wbNgwPPvss77eHK9x9b7y5mcTeff1fOIJ4IUXgLFjgVmzvLSBRORz/Kz3vUD8vPfGZz0r5AawQk5EVH5HjhzBjz/+iF69eqGoqAhvvfUWDh06hDvuuMPXm0ZkqZBzDDkRUfnw814fTupmAAM5EVH5BQUFYcGCBejSpQu6d++OnTt3YvXq1WjRooWvN43IMqkbW9aJiMqHn/f6sEJuAAM5EVH51atXz27GVCJ/wTHkRETewc97fVghN4CBnIiIqGK9+OKLMJlMGD9+vE8en4GciIgqEwO5AQzkREREFWfLli2YO3cu2rZt67Nt4BhyIiKqTAzkBjCQExERVYzc3FwMHz4c7733HhITE322HRxDTkRElYmB3AAGciIioooxevRoDBgwAH369HF73aKiIuTk5Fh9eQtb1omIqDJxUjcDGMiJiIi879NPP8W2bduwZcsWXdefPn06nn766QrZFgZyIiKqTKyQG8BATkRE5F1Hjx7Fww8/jIULFyIiIkLXbSZPnozs7GzL19GjR722PQzkRERUmRjIDWAgJ6JA07t3b6vZrBs0aIDXX3/d5W1MJhO++uqrcj+2t+7HlWnTpqF9+/YV+hhUPlu3bsXp06fRsWNHhISEICQkBOvXr8esWbMQEhKC0tJSu9uEh4cjLi7O6stb5BhyTupGRIGEn/f+y6eBvEGDBjCZTHZfo0ePBgAUFhZi9OjRSEpKQkxMDIYOHYpTp075bHsZyInIXwwcOBD9+vVz+LMNGzbAZDLhr7/+Mny/W7Zswf3331/ezbPi7EPy5MmT6N+/v1cfi6qea665Bjt37sSOHTssX507d8bw4cOxY8cOBAcHV+r2sEJORP6En/eBz6djyLds2WJ15HvXrl249tprccsttwAAJkyYgO+//x6ff/454uPjMWbMGAwZMsRnC8wzkBORvxg1ahSGDh2KY8eOoW7dulY/mz9/Pjp37uzR0lE1a9b01ia6lZKSUmmPRf4rNjYWrVu3trosOjoaSUlJdpdXBgZyIvIn/LwPfD6tkNesWRMpKSmWr++++w6NGzdGr169kJ2djXnz5uG1117D1VdfjU6dOmH+/Pn49ddfsXnzZp9sLwM5UTWhKEBenm++FEXXJt5www2oWbMmFixYYHV5bm4uPv/8c4waNQrnzp3D7bffjjp16iAqKgpt2rTB4sWLXd6vbQvbvn370LNnT0RERKBly5ZYtWqV3W0ee+wxXHrppYiKikKjRo3w1FNPoaQszSxYsABPP/00/vzzT0sXlNxm2xa2nTt34uqrr0ZkZCSSkpJw//33Izc31/Lzu+++G4MHD8Yrr7yC2rVrIykpCaNHj7Y8lh5msxnPPPMM6tati/DwcLRv3x4rVqyw/Ly4uBhjxoxB7dq1ERERgbS0NEyfPh0AoCgKpk2bhvr16yM8PBypqakYN26c7semqoGBnKga8dXnvc7PeoCf99Xh895vZlkvLi7GJ598gokTJ8JkMmHr1q0oKSmxWv6kefPmqF+/PjZt2oTLL7/c4f0UFRWhqKjI8r03l0JhICeqJvLzgZgY3zx2bi4QHe32aiEhIbjrrruwYMECPPHEEzCZTACAzz//HKWlpbj99tuRm5uLTp064bHHHkNcXBy+//57/Oc//0Hjxo1x2WWXuX0Ms9mMIUOGIDk5Gb/99huys7Otxp9JsbGxWLBgAVJTU7Fz507cd999iI2NxaOPPopbb70Vu3btwooVK7B69WoAQHx8vN195OXloW/fvujWrRu2bNmC06dP495778WYMWOsdkLWrl2L2rVrY+3atdi/fz9uvfVWtG/fHvfdd5/b5wMAb7zxBl599VXMnTsXHTp0wAcffIAbb7wRf//9N5o2bYpZs2bhm2++wWeffYb69evj6NGjlgnDvvjiC8ycOROffvopWrVqhYyMDPz555+6HpeMWbdunc8eWwZyjiEnqgZ89Xmv87Me4Od9tfi8V/zEkiVLlODgYOX48eOKoijKwoULlbCwMLvrdenSRXn00Ued3s/UqVMVAHZf2dnZ5d7Gnj0VBVCUzz4r910RkR8pKChQ/vnnH6WgoEBckJsr/th98ZWbq3u7d+/erQBQ1q5da7msR48eyp133un0NgMGDFAmTZpk+b5Xr17Kww8/bPk+LS1NmTlzpqIoirJy5UolJCTE8n9ZURRl+fLlCgBl2bJlTh/j5ZdfVjp16mT5furUqUq7du3srqe9n3fffVdJTExUcjXP//vvv1eCgoKUjIwMRVEUZcSIEUpaWppy8eJFy3VuueUW5dZbb3W6LbaPnZqaqjz//PNW1+nSpYvy0EMPKYqiKGPHjlWuvvpqxWw2293Xq6++qlx66aVKcXGx08fTsntfaWRnZ3vts4m8+3quXy/+FC+91AsbRkR+w+H/ZF993hv4rFcUft4riv9+3nvjs95vZlmfN28e+vfvj9TU1HLdT0UuhcIKOVE1ERUljl774isqSvdmNm/eHFdccQU++OADAMD+/fuxYcMGjBo1CgBQWlqKZ599Fm3atEGNGjUQExODlStXIj09Xdf97969G/Xq1bP6v9ytWze76y1ZsgTdu3dHSkoKYmJi8OSTT+p+DO1jtWvXDtGaikH37t1hNpuxd+9ey2WtWrWymuSrdu3aOH36tK7HyMnJwYkTJ9C9e3ery7t3747du3cDEG1yO3bsQLNmzTBu3Dj8+OOPluvdcsstKCgoQKNGjXDfffdh2bJluMgyasBhyzpRNeKrz3sDn/UAP++BwP6894tAfuTIEaxevRr33nuv5bKUlBQUFxcjKyvL6rqnTp1yOTFARS6FwkBOVE2YTKKVzBdfZa1oeo0aNQpffPEFLly4gPnz51vm4QCAl19+GW+88QYee+wxrF27Fjt27EDfvn1RXFzstZdq06ZNGD58OK6//np899132L59O5544gmvPoZWqExLZUwmE8xe/KfcsWNHHDp0CM8++ywKCgowbNgw3HzzzQCAevXqYe/evXjnnXcQGRmJhx56CD179jQ0po38HwM5UTXiq897g5/1AD/vA/nz3i8C+fz581GrVi0MGDDAclmnTp0QGhqKNWvWWC7bu3cv0tPTHR6xqQwM5ETkb4YNG4agoCAsWrQIH330Ee655x7L+LKNGzdi0KBBuPPOO9GuXTs0atQI//77r+77btGiBY4ePYqTJ09aLrOdVPPXX39FWloannjiCXTu3BlNmzbFkSNHrK4TFhbmcC1p28f6888/kZeXZ7ls48aNCAoKQrNmzXRvsytxcXFITU21W6lj48aNaNmypdX1br31Vrz33ntYsmQJvvjiC2RmZgIAIiMjMXDgQMyaNQvr1q3Dpk2bsHPnTq9sH/kHjiEnIn/Ez3v9qtrnvc8ndTObzZg/fz5GjBiBkBB1c+Lj4zFq1ChMnDgRNWrUQFxcHMaOHYtu3bo5ndCtojGQE5G/iYmJwa233orJkycjJycHd999t+VnTZs2xdKlS/Hrr78iMTERr732Gk6dOmX1YeRKnz59cOmll2LEiBF4+eWXkZOTgyeeeMLqOk2bNkV6ejo+/fRTdOnSBd9//z2WLVtmdZ0GDRrg0KFD2LFjB+rWrYvY2FiEh4dbXWf48OGYOnUqRowYgWnTpuHMmTMYO3Ys/vOf/yA5OdmzF8eB//73v5g6dSoaN26M9u3bY/78+dixYwcWLlwIAHjttddQu3ZtdOjQAUFBQfj888+RkpKChIQELFiwAKWlpejatSuioqLwySefIDIyEmlpaV7bPvI9uSvCCjkR+RN+3htTlT7vfV4hX716NdLT03HPPffY/WzmzJm44YYbMHToUPTs2RMpKSn48ssvfbCVAgM5EfmjUaNG4fz58+jbt6/V+K8nn3wSHTt2RN++fdG7d2+kpKRg8ODBuu83KCgIy5YtQ0FBAS677DLce++9eP75562uc+ONN2LChAkYM2YM2rdvj19//RVPPfWU1XWGDh2Kfv364aqrrkLNmjUdLsUSFRWFlStXIjMzE126dMHNN9+Ma665Bm+99ZaxF8ONcePGYeLEiZg0aRLatGmDFStW4JtvvkHTpk0BiBlkZ8yYgc6dO6NLly44fPgwfvjhBwQFBSEhIQHvvfceunfvjrZt22L16tX49ttvkZSU5NVtJN9iyzoR+St+3utXlT7vTYpiYCG8KignJwfx8fHIzs4u93jyAQOAH34APvgAGDnSSxtIRD5XWFiIQ4cOoWHDhoiIiPD15lCAcPW+8uZnE3n39Tx0CGjUCIiMFCsiEVFg4Gc9VQRvfNb7vEJelbBCTkREFNg4hpyIiCoTA7kBDORERESBTduyHtg9hERE5A8YyA1gICciIgpsmvll4WayYCIionJjIDeAgZyIiCiwaZe+5cRuRERU0RjIDWAgJwpsAT7HJVUyvp+qJgZyosDG/83kTd54PzGQG8BAThSYQsv2wPM5pTJ5kXw/hWoTHvk97a+LE7sRBQ5+1lNF8MZnfYj7q5DEQE4UmIKDg5GQkIDTp08DEGtkmkwmH28VVVWKoiA/Px+nT59GQkICgoODfb1JZID218UKOVHg4Gc9eZM3P+sZyA1gICcKXCkpKQBg+aAmKq+EhATL+4qqDpNJTOx28SIDOVGg4Wc9eZs3PusZyA1gICcKXCaTCbVr10atWrVQwr1wKqfQ0FBWxquw0FAGcqJAxM968iZvfdYzkBvAQE4U+IKDgxmkiKq50FCgoIBjyIkCFT/ryZ9wUjcDGMiJiIgCn1yLnAU0IiKqaAzkBjCQExERBT45WS4DORERVTQGcgMYyImIiAIfAzkREVUWBnIDGMiJiIgCnwzkHENOREQVjYHcAAZyIiKiwMcKORERVRYGcgMYyImIiAIfJ3UjIqLKwkBuAAM5ERFR4GOFnIiIKgsDuQEM5ERERIHP40BeVAR07gw8/LDXt4mIiAITA7kBDORERESBz+NJ3XbvBrZuBT791OvbREREgYmB3AAGciIiosDn8RhymeBLS726PUREFLgYyA1gICciIgp8HresyxswkBMRkU4M5AYwkBMREQU+jwM5K+RERGQQA7kBDORERESBz+Mx5KyQExGRQQzkBjCQExERBb5yt6xzR4GIiHRiIDeAgZyIiCjwcVI3IiKqLAzkBjCQExERBT5O6kZERJWFgdwABnIiIqLA5/EYcnkDsxlQFK9uExERBSYGcgMYyImIiAJfuSvkAHcWiIhIFwZyAxjIiYiIAl+5x5ADbFsnIiJdGMgNYCAnIiIKfF6pkDOQExGRDgzkBjCQExERed/s2bPRtm1bxMXFIS4uDt26dcPy5ct9tj3lXoccYCAnIiJdGMgNYCAnIiLyvrp16+LFF1/E1q1b8ccff+Dqq6/GoEGD8Pfff/tkezyukGsTPHcWiIhIhxBfb0BVwkBORETkfQMHDrT6/vnnn8fs2bOxefNmtGrVqtK3x+Mx5KyQExGRQQzkBjCQExERVazS0lJ8/vnnyMvLQ7du3Rxep6ioCEVFRZbvc3JyvLoNXqmQM5ATEZEObFk3gIGciIioYuzcuRMxMTEIDw/HAw88gGXLlqFly5YOrzt9+nTEx8dbvurVq+fVbeGkbkREVFkYyA1gICciIqoYzZo1w44dO/Dbb7/hwQcfxIgRI/DPP/84vO7kyZORnZ1t+Tp69KhXt8XjSd1YISciIoN8HsiPHz+OO++8E0lJSYiMjESbNm3wxx9/WH6uKAqmTJmC2rVrIzIyEn369MG+fft8sq0M5ERERBUjLCwMTZo0QadOnTB9+nS0a9cOb7zxhsPrhoeHW2Zkl1/exAo5ERFVFp8G8vPnz6N79+4IDQ3F8uXL8c8//+DVV19FYmKi5TozZszArFmzMGfOHPz222+Ijo5G3759UVhYWOnby0BORERUOcxms9U48crk8aRurJATEZFBPp3U7aWXXkK9evUwf/58y2UNGza0nFcUBa+//jqefPJJDBo0CADw0UcfITk5GV999RVuu+22St1eBnIiIiLvmzx5Mvr374/69evjwoULWLRoEdatW4eVK1f6ZHu8UiHnzgIREeng0wr5N998g86dO+OWW25BrVq10KFDB7z33nuWnx86dAgZGRno06eP5bL4+Hh07doVmzZtcnifRUVFyMnJsfryFgZyIiIi7zt9+jTuuusuNGvWDNdccw22bNmClStX4tprr/XJ9ng8hpwt60REZJBPK+QHDx7E7NmzMXHiRPzvf//Dli1bMG7cOISFhWHEiBHIyMgAACQnJ1vdLjk52fIzW9OnT8fTTz9dIdvLQE5EROR98+bN8/UmWOGyZ0REVFl8WiE3m83o2LEjXnjhBXTo0AH3338/7rvvPsyZM8fj+6zImVcZyImIiAKfx2PIWSEnIiKDfBrIa9eubbfGaIsWLZCeng4ASElJAQCcOnXK6jqnTp2y/MxWRc68ykBOREQU+FghJyKiyuLTQN69e3fs3bvX6rJ///0XaWlpAMQEbykpKVizZo3l5zk5Ofjtt9/QrVu3St1WgIGciIioOuAYciIiqiw+HUM+YcIEXHHFFXjhhRcwbNgw/P7773j33Xfx7rvvAgBMJhPGjx+P5557Dk2bNkXDhg3x1FNPITU1FYMHD6707WUgJyIiCnyskBMRUWXxaSDv0qULli1bhsmTJ+OZZ55Bw4YN8frrr2P48OGW6zz66KPIy8vD/fffj6ysLFx55ZVYsWIFIiIiKn17GciJiIgCH5c9IyKiyuLTQA4AN9xwA2644QanPzeZTHjmmWfwzDPPVOJWOcZATkREFPg8ntSNFXIiIjLIp2PIqxoGciIiosDnlQo5AzkREenAQG4AAzkREVHg46RuRERUWRjIDWAgJyIiCnyc1I2IiCoLA7kBDORERESBz+Mx5KyQExGRQQzkBjCQExERBT5WyImIqLIwkBvAQE5ERBT4vDKGnDsLRESkAwO5AQzkREREgY8VciIiqiwM5AYwkBMREQU+jiEnIqLKwkBuAAM5ERFR4JMV8tJSQFH03+5iESvkRERkDAO5AQzkREREgU8GcsDYOPKiXLVCfv4sAzkREbnHQG4AAzkREVHg0wZyI23r5iL1yvv2MJATEZF7DOQGMJATEREFPo8DebFaTmcgJyIiPRjIDWAgJyIiCnxyUjfA4MRumisf2MedBSIico+B3AAGciIiosAXHAyYTOK8obXINVdOP1yKwkLvbhcREQUeBnIDGMiJiIiqB6NrkZvNQLDZetmzrVu9v11ERBRYGMgNYCAnIiKqHowG8uPHgRCoFfJglGLjxgrYMCIiCigM5AYwkBMREVUPchy53kB+4AAQCvXKwSjFr79WwIYREVFAYSA3gIGciIioejBaId//rxnBUHcQZCBXlArYOCIiChgM5AYwkBMREVUPMpDrndTt8H7rK4YHl+LMGWD/fi9vGBERBRQGcgMYyImIiKoHoxXyI/utr1i/nthZ4DhyIiJyhYHcAAZyIiKi6sFoIE8/aF0hr1e7FAAr5ERE5BoDuQEM5ERERNWDkUndFAVIP2B9xegIEcjPn/f2lhERUSBhIDeAgZyIiKh6MDKG/Nw5oCDX+opRDORERKQDA7kBDORERETVg5GWddslzwAgKpyBnIiI3GMgN4CBnIiIqHowGshDYFMhZyAnIiIdGMgNYCAnIiKqHoyMId+/30GFPIyBnIiI3GMgN4CBnIiIqHowMobcUct6RJjYWcjM9PaWERFRIGEgN4CBnIiIqHow0rJ++LB9y3qkpkKuKF7eOCIiChgM5AYwkBMREVUPRgJ5ZqaDCnmoCOSlpUBurre3joiIAgUDuQEM5ERERNWDkUB+/rx9hTzEVGq5D44jJyIiZxjIDWAgJyIiqh6MTOp2/rx9hdxkLkWNGurPiYiIHGEgN4CBnIiIyPumT5+OLl26IDY2FrVq1cLgwYOxd+9en26T3kndiouB/Hz7CjlKS5GYKM4ykBMRkTMM5AYEaV4tTtBCRETkHevXr8fo0aOxefNmrFq1CiUlJbjuuuuQl5fns23S27Iuw7ZthZyBnIiI9Ajx9QZUJbaB3GTy3bYQEREFihUrVlh9v2DBAtSqVQtbt25Fz549fbJNRgN5fNRFIF/zA00g59JnRETkDAO5AdpAbjZbf09ERETekZ2dDQCoIQdh2ygqKkJRUZHl+5ycHK9vg94x5FlZ4jQxpsQ6kJvNrJATEZFbjJQG2AZyIiIi8i6z2Yzx48eje/fuaN26tcPrTJ8+HfHx8ZavevXqeX079I4hVyvkbFknIiLjfBrIp02bBpPJZPXVvHlzy88LCwsxevRoJCUlISYmBkOHDsWpU6d8tr0M5ERERBVr9OjR2LVrFz799FOn15k8eTKys7MtX0ePHvX6dhhuWY+2n9SNs6wTEZE7Pm9Zb9WqFVavXm35PiRE3aQJEybg+++/x+eff474+HiMGTMGQ4YMwcaNG32xqQzkREREFWjMmDH47rvv8PPPP6Nu3bpOrxceHo7w8PAK3RajgTwukhVyIiIyzueBPCQkBCkpKXaXZ2dnY968eVi0aBGuvvpqAMD8+fPRokULbN68GZdffnllbyoDORERUQVQFAVjx47FsmXLsG7dOjRs2NDXm6R7DLkM27FRXPaMiIiM8/kY8n379iE1NRWNGjXC8OHDkZ6eDgDYunUrSkpK0KdPH8t1mzdvjvr162PTpk1O76+oqAg5OTlWX97CQE5EROR9o0ePxieffIJFixYhNjYWGRkZyMjIQEFBgc+2yegY8thw5xVyzrJORETO+DSQd+3aFQsWLMCKFSswe/ZsHDp0CD169MCFCxeQkZGBsLAwJCQkWN0mOTkZGRkZTu+zIid6YSAnIiLyvtmzZyM7Oxu9e/dG7dq1LV9Llizx2TYZbVmPiWCFnIiIjPNpy3r//v0t59u2bYuuXbsiLS0Nn332GSIjIz26z8mTJ2PixImW73NycrwWyhnIiYiIvE9RFF9vgh29gVwuexZjWyHnsmdERKSDz1vWtRISEnDppZdi//79SElJQXFxMbLkJ12ZU6dOORxzLoWHhyMuLs7qy1sYyImIiKoHoxXy6HDns6xnZQF+eMyBiIj8gF8F8tzcXBw4cAC1a9dGp06dEBoaijVr1lh+vnfvXqSnp6Nbt24+2T6TST3PQE5ERBS45KRueseQR4eVJffgYHGqaVkvLQUuXPD+NhIRUdXn05b1Rx55BAMHDkRaWhpOnDiBqVOnIjg4GLfffjvi4+MxatQoTJw4ETVq1EBcXBzGjh2Lbt26+WSGdSkoSIRxBnIiIqLAZbRCHhVadsXwcCA/HygtRWSk+LaoSFzPi017REQUIHxaIT927Bhuv/12NGvWDMOGDUNSUhI2b96MmjVrAgBmzpyJG264AUOHDkXPnj2RkpKCL7/80pebbGlbZyAnIqJAsm3bNuzcudPy/ddff43Bgwfjf//7H4qLi324Zb5hNJBHhpaV0uX66KWlAMCZ1omIyCWfBvJPP/0UJ06cQFFREY4dO4ZPP/0UjRs3tvw8IiICb7/9NjIzM5GXl4cvv/zS5fjxysBATkREgej//u//8O+//wIADh48iNtuuw1RUVH4/PPP8eijj/p46yqfnkB+8aLaih4ZUnbFiAhxahPIObEbERE54ldjyKsCBnIiIgpE//77L9q3bw8A+Pzzz9GzZ08sWrQICxYswBdffOHbjfMBOYbcVSDPzlbPhwe7rpAzkBMRkSMM5AYxkBMRUSBSFAXmsg+31atX4/rrrwcA1KtXD2fPnvXlpvmErJC7mtTNsgZ5DBBstqmQl72WcqZ1BnIiInKEgdwgBnIiIgpEnTt3xnPPPYePP/4Y69evx4ABAwAAhw4dQnJyso+3rvLpaVmXITsxEWpyZ4WciIgMYCA3iIGciIgC0euvv45t27ZhzJgxeOKJJ9CkSRMAwNKlS3HFFVf4eOsqn+FAXqKZZR1gICciIl18uuxZVcRATkREgaht27ZWs6xLL7/8MoLl2trViMcVck7qRkREBrBCbhADORERBaKjR4/i2LFjlu9///13jB8/Hh999BFCZTqtRuSkbnrGkOupkHPZMyIicoSB3CAGciIiCkR33HEH1q5dCwDIyMjAtddei99//x1PPPEEnnnmGR9vXeXzuGWdFXIiIjKAgdwgBnIiIgpEu3btwmWXXQYA+Oyzz9C6dWv8+uuvWLhwIRYsWODbjfMBbSAvKABmzwZOn7a+TlaWOE1IgNNJ3TjLOhERucJAbhADORERBaKSkhKEl4XJ1atX48YbbwQANG/eHCdPnvTlpvmENpA/9RTw0EPAq69aX8dlhbxsR4EVciIicoWB3CAGciIiCkStWrXCnDlzsGHDBqxatQr9+vUDAJw4cQJJSUk+3rrKJ8eQFxUBCxeK8xkZ1tfhsmdERFReDOQGMZATEVEgeumllzB37lz07t0bt99+O9q1awcA+Oabbyyt7NWJrJCfOqUG8YIC6+sYmdQtK4v7DkREZI/LnhnEQE5ERIGod+/eOHv2LHJycpAoUySA+++/H1FRUT7cMt9wNLF8fr7190Yq5GYzcOECEB/v/W0lIqKqi4HcIAZyIiIKVMHBwbh48SJ++eUXAECzZs3QoEED326UjxgO5E5mWZf5HBDt70RERFpsWTeIgZyIiAJRXl4e7rnnHtSuXRs9e/ZEz549kZqailGjRiHfNolWAyEOSha6KuQ2gdxkUu/L1RJqRERUPTGQG8RATkREgWjixIlYv349vv32W2RlZSErKwtff/011q9fj0mTJvl68yqdtkLerZs41QZysxnIzhbnXY0h194XAzkREdliIDeIgZyIiALRF198gXnz5qF///6Ii4tDXFwcrr/+erz33ntYunSprzev0kVGqufvu0+caid1y8kBFEWcT0iA02XPAAZyIiJyjmPIDWIgJyKiQJSfn4/k5GS7y2vVqlUtW9YTEoAXXgDCwoAOHcRl2pdBtqtHRpYVxZ1M6gYwkBMRkXOskBvEQE5ERIGoW7dumDp1KgoLCy2XFRQU4Omnn0Y32bNdzUyeDEyapFbLHQVyy4T0OlrWi4srbluJiKhqYoXcIAZyIiIKRG+88Qb69u2LunXrWtYg//PPPxEREYGVK1f6eOt85PRpICQEUVE1ALgJ5KyQExGRBxjIDWIgJyKiQNS6dWvs27cPCxcuxJ49ewAAt99+O4YPH45I7YDq6qKgAGjZEoiMRNS2IwCCUFwscnZwMJCVJa6WkFB2fSfLngGi7V17FSIiIomB3CAGciIiClRRUVG4T85gVt0dOgScOwcAiLpwCkBtACKnx8QAFy6Iq8XFlV2fFXIiIvIAA7lBDORERBQovvnmG93XvfHGGytwS/zQkSOWsxGn0yEDeX6+COS5ueJnMTFlV3JRIWcgJyIiZxjIDWIgJyKiQDF48GBd1zOZTCjVBMxqIT3dctZ0NB2RkV1RUKCOI8/LE6dOAzkg1kUzmRjIiYjIKQZygxjIiYgoUJj5YeacJpDj6FFERcEqkMsKeXR02XVsW9YBUSUPCeEs60RE5BSXPTOIgZyIiKga0Aby9HRERYmztoHcrkJuG8jBSd2IiMg5BnKDGMiJiIiqASeBvKBAnNoFcmcVcnAMOREROcdAbhADORERUTWgmdQN6emQK785HEOuKOokbtox5AzkRETkBgO5QQzkREREAa60FDh2TP2+bAw54GQMuayOA6yQExGRIQzkBjGQExERBbiTJ62WLcPp00gIF73qDseQa5M2K+RERGQAA7lBDORERBSIfvjhB6xcudLu8pUrV2L58uU+2CIfkuPH09Is06jXM4mKucNArrNCzlnWiYjIFgO5QQzkREQUiB5//HGHa40rioLHH3/cB1vkQ9pAXq8eAKCuWVwmJ3WzGkOuLX2HhgImkzhftrPAWdaJiMgZBnKDGMiJiCgQ7du3Dy1btrS7vHnz5ti/f78PtsiH5IRu9euLLwC1Lx4F4GQMuUzaJhMQHCy+ALasExGRWwzkBjGQExFRIIqPj8fBgwftLt+/fz+iy9q2K8rPP/+MgQMHIjU1FSaTCV999VWFPp5bskKuCeTJxeIyly3rISHiVO4sMJATEZEbDOQGMZATEVEgGjRoEMaPH48DBw5YLtu/fz8mTZqEG2+8sUIfOy8vD+3atcPbb79doY+jm7ZlvSyQ1ypwEchl0pbJmxVyIiLSKcTXG1DVMJATEVEgmjFjBvr164fmzZujbt26AIBjx46hR48eeOWVVyr0sfv374/+/ftX6GMYoq2Qlw0AT8pTA3lJiTpBW0wMgLNlFXIGciIiMoiB3CAGciIiCkTx8fH49ddfsWrVKvz555+IjIxE27Zt0bNnT19vmp2ioiIUFRVZvs/JyfHuAzgI5AkXxBjyggJ1QjegbAz5ybKkLVvWnQRyzrJORES2/KZl/cUXX4TJZML48eMtlxUWFmL06NFISkpCTEwMhg4dilOnTvluI8FATkREgctkMuG6667Df//7X4wZM8YvwzgATJ8+HfHx8ZavemUzoXtFTg6QlSXO16tnaVmPy04HoCA/X21XDw0ty+sXXVfIOcs6ERE54xcV8i1btmDu3Llo27at1eUTJkzA999/j88//xzx8fEYM2YMhgwZgo0bN/poSxnIiYgocMyaNQv3338/IiIiMGvWLJfXHTduXCVtlXuTJ0/GxIkTLd/n5OR4L5TL6nhiIhAbawnZocX5qIFM5OcnWY8fB9SkbVshL9tZYMs6ERE54/NAnpubi+HDh+O9997Dc889Z7k8Ozsb8+bNw6JFi3D11VcDAObPn48WLVpg8+bNuPzyy32yvQzkREQUKGbOnInhw4cjIiICM2fOdHo9k8nkV4E8PDwc4eHhFXPn2nZ1AIiIAGrVAk6fRj0cRX5+kvUa5IDbCjkDOREROePzQD569GgMGDAAffr0sQrkW7duRUlJCfr06WO5rHnz5qhfvz42bdrkNJBX9LgyBnIiIgoUhw4dcni+WtPOsC7Vrw+cPo36SMeZ/PbWa5AD9hVyLntGREQ6+TSQf/rpp9i2bRu2bNli97OMjAyEhYUhISHB6vLk5GRkZGQ4vc/p06fj6aef9vamWjCQExEReVdubi72799v+f7QoUPYsWMHatSogfqyUl1ZbCvk8vwff6A+0pFeAOct624q5JzUjYiIbHkUyI8ePQqTyWRZFuX333/HokWL0LJlS9x///267+Phhx/GqlWrEBER4clmOFSh48rAQE5ERIFJURQsXboUa9euxenTp2G2+aD78ssvK+yx//jjD1x11VWW7+Xn+IgRI7BgwYIKe1yHnAVyAPWRjvx8OG9ZdzLLOid1IyIiZzwK5HfccQfuv/9+/Oc//0FGRgauvfZatGrVCgsXLkRGRgamTJni9j62bt2K06dPo2PHjpbLSktL8fPPP+Ott97CypUrUVxcjKysLKsq+alTp5CSkuL0fit0XBkYyImIKDCNHz8ec+fOxVVXXYXk5GSYTKZKe+zevXtDUZRKezyXOnQAMjOBNm3Uy5KSAACJOG81y7rRCjkDORER2fIokO/atQuXXXYZAOCzzz5D69atsXHjRvz444944IEHdAXya665Bjt37rS6bOTIkWjevDkee+wx1KtXD6GhoVizZg2GDh0KANi7dy/S09PRrVs3TzbbKxjIiYgoEH388cf48ssvcf311/t6U3xr0iTxpVV2oD8cRVaB3DKGnJO6ERGRhzwK5CUlJZYq9OrVq3HjjTcCEJOunTx5Utd9xMbGonXr1laXRUdHIykpyXL5qFGjMHHiRNSoUQNxcXEYO3YsunXr5rMZ1gEGciIiCkzx8fFo1KiRrzfDP5Xt84Sh2HWFnMueERGRQUGe3KhVq1aYM2cONmzYgFWrVqFfv34AgBMnTiCprK3LG2bOnIkbbrgBQ4cORc+ePZGSklKhY9j0YCAnIqJANG3aNDz99NMoKCjw9ab4H02FvKgIuHBBXMxlz4iIqLw8qpC/9NJLuOmmm/Dyyy9jxIgRaNeuHQDgm2++sbSye2LdunVW30dERODtt9/G22+/7fF9ehsDORERBaJhw4Zh8eLFqFWrFho0aIBQmSLLbNu2zUdb5gc0gRwAzpwRFxtd9oyzrBMRkS2PAnnv3r1x9uxZ5OTkIDEx0XL5/fffj6ioKK9tnD9iICciokA0YsQIbN26FXfeeWelT+rm92wC+enT4mK9FXLOsk5ERM54FMgLCgqgKIoljB85cgTLli1DixYt0LdvX69uoL9hICciokD0/fffY+XKlbjyyit9vSn+pyxRR5qKAMVBIHc2hpwt60RE5IZHY8gHDRqEjz76CACQlZWFrl274tVXX8XgwYMxe/Zsr26gv2EgJyKiQFSvXj3ExcX5ejP8U1mFPDLIumWdy54REVF5eRTIt23bhh49egAAli5diuTkZBw5cgQfffQRZs2a5dUN9DcM5EREFIheffVVPProozh8+LCvN8X/lAXyCJOTMeSyZZ0VciIiMsijlvX8/HzExsYCAH788UcMGTIEQUFBuPzyy3HkyBGvbqC/YSAnIqJAdOeddyI/Px+NGzdGVFSU3aRumZmZPtoyPyDHkJcFcrtZ1p1VyLnsGRERueFRIG/SpAm++uor3HTTTVi5ciUmTJgAADh9+nTAt7sxkBMRUSB6/fXXfb0J/ktWyMsmdZOMLnvGWdaJiMiWR4F8ypQpuOOOOzBhwgRcffXV6NatGwBRLe/QoYNXN9DfMJATEVEgGjFihK83wX+VBfIwZ4HczbJnnGWdiIic8SiQ33zzzbjyyitx8uRJyxrkAHDNNdfgpptu8trG+SMGciIiClRmsxn79+/H6dOnYbb5oOvZs6ePtsoPyECuWAdyuzHknNSNiIgM8iiQA0BKSgpSUlJw7NgxAEDdunVx2WWXeW3D/BUDORERBaLNmzfjjjvuwJEjR6AoitXPTCYTSsvCZbVUFshDFeuecy57RkRE5eXRLOtmsxnPPPMM4uPjkZaWhrS0NCQkJODZZ5+1O6IeaBjIiYgoED3wwAPo3Lkzdu3ahczMTJw/f97yVa0ndAPUQG4u3xhyBnIiIrLlUYX8iSeewLx58/Diiy+ie/fuAIBffvkF06ZNQ2FhIZ5//nmvbqQ/YSAnIqJAtG/fPixduhRNmjTx9ab4n7JAHqJchAlmKGX1DEvLuoEKuaIAJlNlbDQREVUFHgXyDz/8EO+//z5uvPFGy2Vt27ZFnTp18NBDDzGQExERVTFdu3bF/v37GcgdkbOyAQhHEQoRifBwNX+7W/ZM3lxRREYP8XjAIBERBRqPPhIyMzPRvHlzu8ubN28e8G1tDORERBQo/vrrL8v5sWPHYtKkScjIyECbNm3s1iFv27ZtZW+e/yirkANqILe0qwNqy7qbCjkgsjsDORERSR59JLRr1w5vvfUWZs2aZXX5W2+9FfAf2AzkREQUKNq3bw+TyWQ1ids999xjOS9/Vu0ndbOpkAOwDuS2FXKbZc9sA3lkZEVtKBERVTUeBfIZM2ZgwIABWL16tWUN8k2bNuHo0aP44YcfvLqB/oaBnIiIAsWhQ4d8vQlVg8kkQnlxseNArnNSN4ATuxERkTWPZlnv1asX/v33X9x0003IyspCVlYWhgwZgr///hsff/yxt7fRrzCQExFRoJArpaSlpeHIkSOoU6eO1WVpaWmoU6cOjhw54utN9b2ytnUZyC0TugFuJ3ULDlYncmMgJyIiLY9HMaWmptpN3vbnn39i3rx5ePfdd8u9Yf6KgZyIiALRVVddhZMnT6JWrVpWl2dnZ+Oqq66q3i3rgAjkFy54VCGXPyouZiAnIiJrHlXIqzMGciIiCkRyrLitc+fOIdqqHFxN2VTIHY4hd1IhB9Rh6MXFFbmRRERU1XCeT4MYyImIKJAMGTIEgJjA7e6770a4Zkbx0tJS/PXXX7jiiit8tXn+o+x1CYNI1C4ndbNZ9kz7I1bIiYhIi4HcIAZyIiIKJPHx8QBEhTw2NhaRminAw8LCcPnll+O+++7z1eb5D1djyN0sewYwkBMR+cy33wKvvAIsWAA0bOjrrbFjKJDLo+jOZGVllWdbqgQGciIiCiTz588HADRo0ACPPPII29Od0dOy7mTZM+2PGMiJiCrZ7NnAzz+LYD5unK+3xo6hQC6Porv6+V133VWuDfJ3DORERBSIpk6d6utN8G9lg8BdTurGCjkRkf85flyc+mnx2FAgl0fRqzMGciIiChQdO3bEmjVrkJiYiA4dOjic1E3atm1bJW6ZH3JVIS8qsrqOq0DOSd2IiCpZIAVyYiAnIqLAMWjQIMskboMHD/btxvg7V2PICwvFaUSEOHUxyzor5ERElaiwEDh3TpzPzvbttjjBQG4QAzkREQUK2aZeWlqKq666Cm3btkVCQoJvN8pfuaqQy0AuJ8RjyzoRkX84cUI976cVcq5DbhADORERBZrg4GBcd911OH/+vK83xX/pCeQuKuQM5ERkSGEhcO21wPPP+3pL/MOhQ8DZs8ZvJ9vVAb+tkDOQG8RATkREgah169Y4ePCgrzfDf3kSyLkOORF56tdfgdWrgXfe8fWW+N7x40CrVkDv3sZvywp54GEgJyKiQPTcc8/hkUcewXfffYeTJ08iJyfH6qvaKwvkUcEOxpAXFIhTVsiJyFsOHRKn+fm+3Q5/8N134v/sv/8CimLstlWgQs4x5AYxkBMRUSC6/vrrAQA33nij1WzriqLAZDKhVBMuq6WyQB4dWgyUupnUzcE65HJSN86yTkS6HD4sThnIgeXLxWlJiVjVQv6v1UMbyP20Qs5AbhADORERBaK1a9f6ehP8W1kg79ymCJcHAy1bll2uKOqyZ6yQE5G3yAp5cTFw8SIQUk1jW1GRaN2XcnI8D+TZ2eJ/toslPn2hmv5mPcdATkREgahXr16+3gT/VhbIr+tZhOte0VwuwzjAQE5E3iMDOSCq5HFxvtsWX9qwAcjLU7+/cAGoVUv/7bWBvKREtL5HRXlv+7yAgdwgBnIiIgpk+fn5SE9PR7FNb3Xbtm19tEV+QvacawM4oLarA1z2jIi8R7asAyKQGg3kq1YBn3wCvPEGUJWXs/zhB+vvjc5pog3kgGhbZyCv2hjIiYgoEJ05cwYjR47EcjlWzwbHkIsKudNAHhSktpQykBNReRQWWs8O7sk48ilTgM2bgWuuAe66y3vbVtlsP5OMBHJFsX4dAdG2nppa/u3yIs6ybhADORERBaLx48cjKysLv/32GyIjI7FixQp8+OGHaNq0Kb755ptK2Ya3334bDRo0QEREBLp27Yrff/+9Uh5XF3eBPCJCHZfIZc+IqDzS062/NxrIFQXYtUuctw2kVcnBg8CePeJ/atOm4jIjgTwzU/2fLUO4H07sxkBuEAM5EREFop9++gmvvfYaOnfujKCgIKSlpeHOO+/EjBkzMH369Ap//CVLlmDixImYOnUqtm3bhnbt2qFv3744ffp0hT+2Ls4Cue2SZ4DDCjlnWSci3bTjxwHrMdR6pKcDubni/MmT3tkmX5DV8e7dgfr1xfkLF/TfXrarX3KJOu7cD5c+YyA3iIGciIgCUV5eHmqV7bAkJibizJkzAIA2bdpg27ZtFf74r732Gu677z6MHDkSLVu2xJw5cxAVFYUPPvigwh9bFz0VcsnBsmeskBORbtrx44DxCrmsjgNARka5N8dn1qwRp/37q2PojVTIZSCvU0cdR88KubXZs2ejbdu2iIuLQ1xcHLp162Y1dq2wsBCjR49GUlISYmJiMHToUJw6dcqHW8xATkREgalZs2bYu3cvAKBdu3aYO3cujh8/jjlz5qB27doV+tjFxcXYunUr+vTpY7ksKCgIffr0waZNm+yuX1RUhJycHKuvCmckkHMMORGVh22FvDyBvCpXyMsODKNpUyA2VpwvbyBnhdxa3bp18eKLL2Lr1q34448/cPXVV2PQoEH4+++/AQATJkzAt99+i88//xzr16/HiRMnMGTIEF9uMgM5EREFpIcffhgny3bcpk6diuXLl6N+/fqYNWsWXnjhhQp97LNnz6K0tBTJyclWlycnJyPDQXVn+vTpiI+Pt3zVq1evQrcPAAM5EXlGUYzfprwt64ESyOXzjo5WK+SetKzXqQPEx4vzflgh9+ks6wMHDrT6/vnnn8fs2bOxefNm1K1bF/PmzcOiRYtw9dVXAwDmz5+PFi1aYPPmzbj88st9sckM5EREFJDuvPNOy/lOnTrhyJEj2LNnD+rXr49LLrnEh1tmb/LkyZg4caLl+5ycnIoP5QzkRGTUa68BU6cCv/wCtGun/3ayZd1kEoG+urasOwrknlbIz58X51khd660tBSffvop8vLy0K1bN2zduhUlJSVW7WvNmzdH/fr1HbavSRXdxsZATkRE1UFUVBQ6duxYKWH8kksuQXBwsN2wtFOnTiElJcXu+uHh4ZbhbvKrwslAbjsrmwzkcg1ygIGciICLF4GXXhKTq8mx0HrJCnnjxuLUSCC/eBHYvVv9PjdXneCtqpHbHR3tWcu6nGGeFXLXdu7ciW7duqGwsBAxMTFYtmwZWrZsiR07diAsLAwJNgvZO2tfk6ZPn46nn366wraXgZyIiAKRtuKsZTKZEBERgSZNmmDQoEGoUaOG1x87LCwMnTp1wpo1azB48GAAgNlsxpo1azBmzBivP55HPJllXbOzwFnWiaqZn34C5CoR587pv11enjp2ulUrYP9+Yy3rBw6I/1ORkSK45OWJKnmTJvrvw1/I5x0TU76W9dRU9XZ+WCH3eSBv1qwZduzYgezsbCxduhQjRozA+vXrPb6/im5jYyAnIqJAtH37dmzbtg2lpaVo1qwZAODff/9FcHAwmjdvjnfeeQeTJk3CL7/8gpYtW3r98SdOnIgRI0agc+fOuOyyy/D6668jLy8PI0eO9PpjeUQmarasE5Een36qnjcSyGW7ekKCuna2kQq5bFdv1UpUg/fvF+PIq3Ig90bLuizoskJuLywsDE3K3iCdOnXCli1b8MYbb+DWW29FcXExsrKyrKrkztrXpPDwcITLo9gVgIGciIgCkax+z58/39ICnp2djXvvvRdXXnkl7rvvPtxxxx2YMGECVq5c6fXHv/XWW3HmzBlMmTIFGRkZaN++PVasWGE30ZvPcNkzItKrqAj48kv1e08CeYMGQFSUOG+kQl42OTZatxZhfP/+qjmOvLhYtN8DnrWsFxWpnQZ16ojOAcAvK+R+M4ZcMpvNKCoqQqdOnRAaGoo1mjEXe/fuRXp6Orp16+az7WMgJyKiQPTyyy/j2WeftRqPHR8fj2nTpmHGjBmIiorClClTsHXr1grbhjFjxuDIkSMoKirCb7/9hq5du1bYYxnGSd2I/IMns5ZXtuXLrYOfkUAux483bCiCKOBZhbx1a0AuWVkVZ1rXHoTwpEIun3N4OJCU5NdjyH0ayCdPnoyff/4Zhw8fxs6dOzF58mSsW7cOw4cPR3x8PEaNGoWJEydi7dq12Lp1K0aOHIlu3br5bIZ1gIGciIgCU3Z2Nk7L8Y4aZ86csUyQmpCQgOLqOgiagZzI9378EahZE1i40Ndb4trixeK0TRtxWt4KuaeBXHYVG62Ql5YCzz8PlGMYcbnJCd1CQ8WX0THkckK32rXFbPWy45qB3Nrp06dx1113oVmzZrjmmmuwZcsWrFy5Etdeey0AYObMmbjhhhswdOhQ9OzZEykpKfhS2/7hAwzkREQUiAYNGoR77rkHy5Ytw7Fjx3Ds2DEsW7YMo0aNsky09vvvv+PSSy/17Yb6CgM5ke99+60It6NHAzarMlQIRQGeegr4+GP9t8nNFdsJAHJSSk8r5EZb1ouKgH//FedbtfK8Qr56NfDkk8CDDxq7na2cHOCyywAnk4a6pB0/DhivkMvgnpgoTmWF3A9b1n06hnzevHkufx4REYG3334bb7/9diVtkXsM5EREFIjmzp2LCRMm4LbbbsPFsnF7ISEhGDFiBGbOnAlALD/6/vvv+3IzfaecgZyzrBN5gQyW2dnAY48BCxZU7OPt3g0895yY5fvOO0Wl1Z3Nm8XqCw0aAGVFRkOB/NgxcVqvHpCZKc7rrZDv3Sv+78THi3HTnlbIt20Tp/v3i3HcIR5GxjVrgC1bxLj2V15Rg5Qe2hnWAXUM+YUL4kCJu9+FfM3kQQ1ZIc/NLd9zqgB+N4bc35UrkJ87VzXGvRARUbUTExOD9957D+fOncP27duxfft2nDt3Du+++y6iyyoU7du3R/v27X27ob4iA/nFi9Y7AXLZM0frkGuuxwo5kRdog+WHHwK//FKxjycPAOTmqkuYuSMr940bi7HLgDhwpzdUy1bt+HjjLev79onT5s1FYJWB3GiFfMcOcVpSAhw9auy2Wn/8IU7z89UWcr2cVcgVRV/HgHzN5P9mWSEHjM3UXgkYyA3yOJAvXw5ccgkwY4bXt4mIiMhbYmJiUKNGDdSoUQMxsjJBaiAHrKvkbFknqjwykLdtK05Hj67YtlVtCD940NhtatUSVV1ZidVbJddWdmUY1duyLh9btqrLU6MV8j//VM/v32/stloykANqK71etoE8MlL936onUNtWyEND1fN+No6cgdwgjwP5X39ZnxIREfkRs9mMZ555BvHx8UhLS0NaWhoSEhLw7LPPwsxxWtaBXNt3zmXPiCqPDJZz54q/yb/+0h+UPSGXzQL0P468Tc2aokotq+R6A7k2iBqtkGsfG1Ar5KdPq0uI6Xl8bXj2NJArincDuclkbOkz2b0kX0NAbVv3s3HkDOQGeRzI5Yc3P4mJiMgPPfHEE3jrrbfw4osvWlrWX3jhBbz55pt46qmnfL15vicHgQOskFP1dvQoMHKkdRW1MuTmqiGtdWugRg1xXu+s257QVsjlZGt6b1Orljg1Gsi1lV2jk7rZBvKaNUV4URTrgwuu7NplPcTW00B++LA6Bh4Q49uNkK37MpADxmZat62QA3679Jn/jGavIjwO5PITmJ/ERETkhz788EO8//77uPHGGy2XtW3bFnXq1MFDDz2E559/3odb5wdMJpGqS0o8CuSc1I0CxjvviMnUFKXiJ1XTktXx6Ggx0ZccUqM3rHqivC3rgLFArihqkIyONr4OuW0gDw4W25GRIcaRyxZ2V2wPtHgayLXVcaD8FXLA2EzrtmPIAVbIAwUDORERBaLMzEw0b97c7vLmzZsjU1vlqM4czbTOCjlVNzJolWeyL0/IQC7bsGVQk5XUiuBJILcNxUYCeWGhWp3WVsg9DeSA8XHkckI3OYFneQN5s2bi1NNArp3LxEjLehWqkDOQG1TuQM5D40RE5IfatWuHt956y+7yt956C+3atfPBFvkhBnIKZOfOiSW7XFEUdUksuTyXp/LygBdfBA4c0Hd9Z4G8sirkldGyrn0uti3relZqko+tDeRGZ1qXFfKbbxanBw54NnGeDOTDh4vTQ4eM5SBXFXJPW9ZZIQ8MHENORESBaMaMGfjggw/QsmVLjBo1CqNGjULLli2xYMECvPzyy77ePP/gKJBz2TMKFCNGAN26AVu3Or9Oero6LvjYsfIt5zt3LjB5MvDMM/qubxvIK7tl/ehRfYHSNhQbCeQyRIaHi/8jMoyazfoeu7wVcrNZnYB64EDxj6uoyPjBF7NZfR8NHCieR2mp/oMaQPlb1h1N6sYKeWBgyzoREQWiXr164d9//8VNN92ErKwsZGVlYciQIdi7dy969Ojh683zD6yQUyDbs0ecumotltVxQITH8gSb9evFqd71vWWglAGzslvWFQU4csT19QsK1O0pT4VcPjdtmHTXtm42A2fPWj82YKxCfvCg2P7wcKBlS6BhQ3G50bb1AwdEFToiAmjVCrj0UnG5kYndHE3q5knLOseQBx4GciIiClSpqal4/vnn8cUXX+CLL77Ac889B7PZjPvvv9/Xm+Yf9AZyLntGVZEMc67mjLCtnh8/7tljmc3AL7+I83pnSa/slvXCQnXbUlPFqbtx5LJCHRamVnM9qZBr186W/zzcPc+sLPV/ziWXqJcbqZDLdvXWrcX66U2aiO+NBvItW8Rp+/Zi+2UgNzKO3FuTurFCHngYyImIqDo5d+4c5s2b5+vN8A/lqJBzlnXyayUlatXw/Hnn19NWyAHPx5Hv2aMGfz3hCnDesl5RFXIZrkNCgI4dxXl3LdfadnWTSZwvT4Uc0D+xm9zeuDj1fxVgrEIuA7mc0M3TQC7Hj3fuLE49mditIseQM5BXbRxDTkREVE2xZZ0ClbYq7qxCrihqhVxWYD0N5LI6DvhvhVw7OVvjxuK83gq5tmVcrpduJJBrQ6TRQK4dPw4Yq5DLGdblRJ6eBvLt28Vpp07itDwVcu0s694aQ86W9aqNFXIiIqJqSgZybZmbgZz8XWmp+8nXZLs64LxCfuKECKlBQUC/fuKyygzkssJbWZO6aQO5HEvtLpA7muXck5Z1bVVY74EHZ4E8Odl621yRgblVK3HqaSCXv6sGDcSpJ2PIHVXIvTWGnBXyqo2BnIiIqJryQoVcTzbyG1u2AIMGATt3VuzjvPsucO21fle1Cgi5uaJduFcv19fThkVnFXLZrt6ypRqwPB1DvmGDet5NuDKbgQH9zSg9eUpcYHQd8iVLgLQ04PffjW2jNpA3aiTOu2tZd1Qhl4FcO8bbmfJUyB0dDACAxERxmpvrPofI3728D20gN/KPS96PfO7y/ZKRoX+IgqNJ3QJ02bMQX29AVcOWdSIiCiRDhgxx+fMsP6sk+JQcCC4DeUmJuoPtKJA7WPZM3kzelV+bNQv45htR1dq+3brS5E0vvSQqj+vWiQMAtiZPFo89ZUrFPH4gW7FCzHh94IAIi7ZhTdJWyN0F8o4dgbp1xXlPKuTHjgGHD6vfl5SIvyntuGeN9HTg9xXnEIyyvzUZdvVWjpctE3fy3nvAZZfp305HgVxvhdxRy7qiiO4D7YRrthxVyLVrkbvi6GAAoLZpA+KggLP3gKKolWMZXBs0EP/PCgpE1VtObueKoqjvIfnc4+NFpf7UKWDfPrWV3ZXKnNRtzBhx4HHVKp/8c2aF3CBWyImIKJDEx8e7/EpLS8Ndd93l6830D7YVclkdBxyvQ+6gQg5UoV2BffvE6d69wBNPVMxjFBWp4cxRS29GBvDii8DUqX7XZlolfPuten73bufX0772zlrWtYG8Th1x3pNAvnGjOJXjlAGXFc8LF4AUiPHP54IuQWFp2R+T3pZ1Gd5WrTJW5dWGa9l6nZXletI7R1XqsDC11dpd27qjCrkMpJ6OIQ8JUR/f1bYXFKj/nGRVPTRUfe5629ZzctT/fTKQA8bHkZe3Zd3RGHJthVy+FxQFeP994OefgV279G2bl7FCbhADORERBZL58+f7ehOqDleBXFvdc7DsmbboUlxsvY/ptw4cUM+//joweDDQs6d3H2P/fnWnylFlNj1dPb9vH9Cli3cfP5CVlgLff69+/88/zn9/eirkckK3Tp3UoOVJIJfjx3v1Er/T/HwRsJxUjnNz1UB+wpyCH98GJk2C/pZ12Z585Ih4vzVtKl6LsWOBadOAHj0c304byKOj1QrvwYPOK7zOqtRJSeLIgqsl5QDXFXJPAzkgAvaFC64PasmwHhxs/fhNmoj/Bfv36/v7lwcdIiOtD1ReeqkYqqB3HLmrSd2MtKxrt0G+by9eFPcRFyeuJ/+nnzihzqhfiVghN4iBnIiIqJpyFsjDwtQdBMC6Zb2sChOiKYFUiV2BrCw1pN16q3ge99zjfgysUdpqmaPqoTbwyYo96bNpk/Vr+s8/zq/rblK3nBx1vHjbtmrLelaW8UnV5PjxHj10BSxthTwDKXjuubJcq7dlXVtNXbVKnD75JPDTT6KN3Rnb9nM948gdtawD+id2czWG3NNJ3QC14u2qQi7DemKiumQboL9dX5LPUT5nyUiFXFHK17JuNqv/n7WvpfYggXzPa38nJ06437YKwEBuEMeQExERVVPOArl2/DigBnLAssNgMqmhvErsCsjqeHKymHQtKkodi+xN2mqZo+qhNpAbWTIp0HgyE6BsV5eBxlUg14aSwkK13VeSv5vwcBGK4uLU9mEjE7vl5AB//SXOd++u3oeLQK6tkBcmpCArC5gzB/rXIbcN5CdPirkRtM/LEdtqt56Z1p1NrKY3kLuaZb08FXLZqu0qkMufyetKRgO57YRukpG1yIuL1YN/jlrW8/NFldsZ7ftXG8gBtRND/i4YyKseGcgVxeD/RlbIiYiIqjZPAnlVXfpMjhdt0kSEL0/WEdZDG8hZIXfso49EKPnyS2O3k4H8/vvFqd4KOWAfVGXbt3aCME8mdtuyRexAN2gg1sfWMSZYG8gvaSVmWD90CJ5VyNeuFeOF5d+lq0BuW+2Wz1cu6WVLUVy3rAPlq5CXt2Ud0F8h15IHItzNMC/J56gdPw5Y/w9xF6K0B1kcBXLb69jSBnLbyShtfxea34n52AmrVS0rCwO5QdqONI8C+cWLVWi9EyIiIrIoZyCPCinGbViMsB++EuHIF3t+emkDOeDZOsJ6uKuQHz2qnq+ugfyVV0TAGDtWf3v4/v1iEreQEGDCBHHZyZPOA5ltILe9nqNA7snEbps3i9PLLxenBlvWzbVEINfdsq4oaiAPDRXP48UX1Z87C+SKYl/tlpVV29dKystTg2BFVMjdPU89gVzPGPKKqpA3aiSC1IULYiy+K/K5hoVZj/cJD1f/D7tqW5evY3i4dXjTbpeDlvVTO04gPBzo08f15nkbA7lB2t+pobZ17eFwVy0WRERE5J9sA7nc+dbRsg4A/1E+wmLcgdTRNwGtWgH167vfQf/+e9E2rp2cqzLI1nQZyI20mxphtEJe3Yoau3er68CfOAG89pq+28nqeM+eQL16anXX2Uzrtq99RVXIbQO5wZZ1U2ptAGXZUduy7ux9kZ+v/g1ec416mRwj7ewAxYUL6t+53kAuA3FkpP2sjRVdIc/OVrOGtyvkMpCfPq3vgJCzCnl4uDpju7sDe47Gj0t6Zlp3tOSZ5KJlPfTMCac3q0gM5AZ5HMi1R8GrRK8aERERWXFWIbdtiXRSIW9r3gEAKKlRS1TrTp0S63u78s03YkdYT7vy2bPe28eQFfLGjcVpRVTIz561Dn7uArl2ornqYskScSpboF96SSwF587ateJ0wABx2rKlOHXWti5fVxm49VTIZSDXO4ZcUcodyEPqpqibJ8OaoliveKAlQ1tQkPUa9/J8ZqbjMC+r49HR6uPIoCuDt7Pb1KplPSkaUL4KuZ5J3eQ2xcTY/z8CyjeGPD5eDel62tadVcgB/UNfHM2wLumZ2M1VIHfRsh6RKQK57bGEisZAbpBXKuT+3KJGREREjslALj/HnbWsa3cWNIG8oVmE3GMPviAmtALcB0wZvtytAXzsmGgh1oaO8rBtWa+ICrm8L9mSaluVNZvVsCdf++rUtq4oaiB/+WWga1cRVKZMcX9b+Tq1bStOXQXyixfV6qgMTBVRIT94ULzfw8KA9u3FZTqqndqW9YgGDlrWAedhVW53XBxw3XXq5Y8/Lk4vXnQ8FtnRbOnuKuTOJnQDylch1zOpm6t2daB8FXLAWNu6swo5oP//iKsKuZ6lzxytQS65CORRuacRghKHxxIqEgO5QV4J5KyQExERVT1yMXEPx5A3vChCbl7tJpYd54sZZ/Hcc+rSzHbkBFLuZjffvl0cKNiwofxt3Xl56uPajiE/edL9kkN6yWq7XPe3oMB6MqbTp8U+U1CQCKNA9QrkO3cCe/aIgxGDBwOvviounzfP9e/AbFYrmbLDwVUgl+HbZFKDV0WMIZfV8Y4d1QMsOsJVYXYRkiC2MbqxpkIeHKz+7Tmb4Eu+TnFx4rm98QYwaxZw2WXqNjgKqY4CuQy77lrWbSd0A7xTIfdGIPdkDDlgbGI3Z8ueAfor5PL36SqQ66mQO+oWcDGGPAgKUpDBQO7v2LJORERUTemd1M1RhbykBKkXjwAALiQ3sVTbtq08g6eeAiZNcvKYskJ+/Lj9UlRaMkDn5pa/rVuG/xo11B35+Hgxlh0ofyiWBwxkIO/cWT2Ioa3MyqBXuzbQokX5HltRgJtvFmOqDx/27D4q22efidN+/UQI6d5d/D7MZuvJ7mwdPy7eoyEhYvw44DqQy/dLYqIa6CqiQm7brg7oalk3nRVhszQoBPENEi1XLymB+wnPtIEcAMaNE5PjmUxqBdfRxG6uKuTaydsc3cbbFXIjLev+UCHX07JegWPI//oLWPu9Z2PIASAVJ9iy7u9YISciIqqm9AZyk0ndYZCBPD0dobiIfEQiL662Zcf5319FGHI4LFhRrH/gamdYuxST3tmQnbEdPy55Yxz50KFAmzZiJ1jeT/PmajjS7hzL0Fm3rr7K2pQpYmd71y77nx09Cnzxhegg6NoV2LTJ8+dQGbTt6rfeql5eW0xq5nK9ZHlAJS1NHQ4gD2gcPWoffrUVTRnGjATy06f1Dcd0FchdVDuVbPGzksg4JCSqY7OzsqCOMXYXyLXbLTl7roDjandcnLp2oaODXo5CvKQN5K46WDxdh9xdIC/PGHJA3xrskquWdfl3fOCA60mujbasKwrw559AURFuvx149w3PxpADIpCzQu7nGMiJiIiqKb2BHFArvjKQl4Xcg2iEktIgS5UmNEfs2DtcfSkz03qfwVXbujaQ610vuKAAGDNGnQDM9nFku7pU3nHkhYVicrq//wYee0wN5M2aqTvJjirkdesCTZuK884q5GYz8M47Yuf6lVfsf/7HH+r506eBq64S47L1LiNW2Q4eFO+Z8HBg4ED1chnIna2FDai/P+0BlRo1gBTR7o09e6yvL8PlJZeoIUpPy3pSkvo34W5it4ICYMcOcV4byPWMBy77WWlUHEJC1JtYTeymp2XdltEKucnkehy5q5Z1GZQLC12vn+3pLOuuDgYAxirkjgK5rJCXd1K3unVFG/nFi647VfQEcvmeBIDvvgPat0fBuEfxzz9AJHSMIbdtWS977RjIqwCPArmiWB8FYiAnIiKqevQuewY4DeT70UQUE8t27GtC7MTn5jooMtqGLlcTu3lSIf/0U+Dtt4FHH3X8OLaBvLwVcm1omzdPvZ9LL3VcIXcWyB1VGLdvV2+7ZIl98JCB/LbbgBtvFL/DRx8VQWPWLP9bTk2Gu9RU65mmPQ3kgPO2dUeBXE+F3GQSS/cB7ocBbNsm9oVr11ZvA+hrWb8gQnVptLiuVbY02rKu5ezgA+A84MpA7mimdVct6zEx6ra6WoPb03XI9basZ2c7DzDydXDVsn7okOu/ldJSNdg7qpAHBal/y64O7LmaZd3R/4o//xQ32yKW9YuCizHkzlrW27QBwEBeJXgUyG0DOAM5ERFR1eNJhVzuLGgCeUkJsD9b7DjXxFnnSyLbhi5XFXK9re1asmL5999Wk885DeTlrZDbjjU2m8VrV7++6wp5vXoiEAQFiR11R/39P/6oni8sBD75xPrnW7eK0969RZX+gw/EfZ4+DTz8MPD77549p4riLEimpopTV4Fc/v5tA7lsW7ddi9xRy7qeCjmgvkfcrQKgbVfXLgmmo2U9OF+EdSVWvBZWm6hdi9wRV4HcVcu6DM22AdfTCjmgzsHgbNm64mK1gOftSd1k1VtRnL/Wrirk9euL31t+vnrgwZHz59XA7mwgtp4De64q5LLTQ/s3UPaaFmeI36UM5Eqkiwp5QYE4EFT2vJU2YkUCjiGvArT/QxjIiYiIqhG965AD9mPIbQL5Rz+IHfu6EWcs+792ucB2x11vy7reQF5WVUJBgXUrqrsK+b//elZRlmPC27dXd4qbNhWvlaNJr7RjyMPCgAYN1Me3JQN5u3bidO5cdRsVRa2QywnkRo4UrdtXXCEutw2p3nD6NDBjBvDkk6JF/5tv9N/WWQAuT4VczopuW6H1tEIOuB9KIMlx/R06WF+uo0Ieki8CpKnsulab6I0KuaNALrs55GsmuZppXd6PszQnA7mzCrk2cBttWXcXyCMi1AOHjjoCSkvV18pRhTwsTJ0g0NX/F/kaaMfb29IzH4SrWdbl34D2/2PZ34MpSzw3Gcizih0E8thYdW4FzYGkwqatAbBCXmXIz1gGciIiomrEC2PIZSBftkEE8viSs6iRKIKjXS6QoUvuCDurQhqZ/E17GxnIATUwFRWpQdg20DVqJJ5Xbq7rScWckRXvtm3F8lOAqFgD7lvWAefhLy8P2LhRnH//fXGA5O+/gV9/FZcdPixe3LAwoHVr9XahoWqA9/ZyahcuiOf22GPA88+LYD5kiPPqqC1nQbI8gdxZmJTfJyVVXCCXAVe+lyUdY8hDCsTPghIcVMhdBPLsbKA0U7MOuS1nz1VRnAdyVy3rrirMgPtALp9DSIi6xCJgPambs/Dhql1ecjWOXDse29n265nYzdWEbpKeThudFfLvvgMWLoTl7yqyUPwua0SI4UTHzzsI5Nq5AOQ2xMcjJ14MpahjOuFw6HlFYiD3gOFAbjsojIGciIio6vE0kJeWWnZi96MJDh4E9mWJHcKg0ouoFy/CV86xHLEguazsyvB25ZXi9MgRx/sQ585ZX370qPt9jaNHrdckloFcjtGOibFvvQ0LU3fKPWlbl0G/Xj1g+HARlOUEbLYt62azfYhzFv7WrxfPt0EDoFMnMU4cEFVyQK2Ot22r/g4l2QXgzUCuKMDdd4uqe+3aYuK8xo3F+0AuZeaOpxXy8+fVwCXH/UrOwqQMUZdcYr1etXZH113Lut5Abhtw3bSsm81ARLH4WXCCgzHkTlrW9+8XXdYbvvdgDHlOjhoInQVy24MaZrP6HDwN5LICbpsGtd/L/zm2jy3/V8ghDY64CuTysuho55VtPRO7uZrQTdJTIXcVyMv+BpSMDAwbBtx5J1B4RDz/OCUbkWGlaN9MvJZHzjjoXtJun9yGpCScCxevXR14cLCxnBjIPcAKORERUTUkw5w80K43kB87BhQXo8QUiqOohy1bgCJEIC9IhIkG0SIgNX17PNCjB/Dtt+K2MnR17iwe++JFID3d/rHk9ZKSxLaYzY6vp6WtjgNqIJeV5s6drcfpSbK69d57Yjxw27auZ27Wsq14p6WplUDbCvmZM+J1NpnUECrDn22FTrarX3eduP4DD4jvlywRlXxtu7otGfLdjYE24qWXxDj10FBx+uabYv1rAFi8WN99ZDup7LoL5LI6npxsH2bcVci1gVxR1G0oLVUr2M4q5AcOuN4xdhfICwsdLoOVnw/EQgTdkBritXDUsv7hO3n48EP1djNnluXqDA+WPZPbmpBgH46dvYYXLqgH0hw9FqC/Qm77e9MOiXHUmn/mjPgdmUzqYziiPdhiy111H9C3FrmeCrkM5MeOOW/D11EhN+XlIbjgAgAFpgzx9xAEBT3aZqN+krjfAyeclLplIJfj2JOScCpYBPJEJdPxOvMViIHcAwzkRERE3vH888/jiiuuQFRUFBJc7Qz6AxkejVbIy8Le6ZhGMCMYW7aIH+VHimpbvUixcx93cLv4gWy1lqErNVVtP3Y0jlx7Pe1Os6IAjzwCjB9vvyMvA7ncgd+5U5z+/LM47dnT/nEAdWd68WLgt9/E7VatcnxdW9oKuS3bCrkM7ykpasVOjiG3ndFbBvJrrxWnl10mDmwUFwOvvuo6kGsrvK7GxSuK+9Apt+2JJ8T5t95Sl/gaNkzsQG7ebF9hNJvFGuny9QGcr58tA3lenuM2b2ft6oDz6q62ZT08XA2h8kCL9nFst0eudV5Y6Hzps7w8Ndw7C+S2j1MmNxeIhbhcBnJHFfKsE3l48EGxCZmZwIIF4jpx8GAMubODB4DzLgP5/MLDHf8/ADyvkAcHq/fpKMDK4SPJyerYaEdcrUXuaoZ1SU/Lup4KeWKi2tlgO9Gj5GqW9ZgYy+UpyEAsLiC8VA3QPducR61Y8TodPBXleDSEbct6UhJOF8UjH2UHP1wNCakADOQeYCAnIiLyjuLiYtxyyy148MEHfb0p7nm67JkM5HEi/Ml9+Ys1RLWtdqgIRLHnDosf/P23OJVtqCkp+gJ57drWO83bt4tA+sYbQLdu1m3FMpDL9u5//xXPa/168b2zQH7NNeK0Zk2gVStxXs7W7o5thVzLdlI37QzrkqNAfuyYaA0PCgKuvlq9/H//E6dz5qgzqDsK5I0aicpibq7r2aPnzBHh/c03nV8HEAcozGbROXDfferlKSnqePlPP7W+zU8/ATffDDz0kHqZswq5Jow4DA16Anl2tvVwSm3LOmAfVOW2hIXZv9dDQtT3nLO2dRlwo6Ptn09YmPp35SSQy1BtinO+7FkMclFQII6FvP++mlt1BXLbgKonkNse1JAVZmfVcUAd+2y0Qg64nthNBnJX7eqA65Z1b1fIXQVyk0n9H+AskLua1A2wvJa1cRIpsJ6X4bImmYgqW4c8T4myHI+z4qBCfi7ThBMoew09mSOjHHwayKdPn44uXbogNjYWtWrVwuDBg7HXZgr8wsJCjB49GklJSYiJicHQoUNxytX6fZWAY8iJiIi84+mnn8aECRPQpmwNWD2KioqQk5Nj9VUpPF32rCwknY23nrU8NEXs3CcHnUE8shBZmCV+INvHtUHb1fJS2utpd5qXLVOvs3OnCKS//CK+l4F8wAARIi5eBFauFGEkJEQEeEcGDBD3feQIMHq0uExPIC8sVI9EOArktiHQUXhPSxOnZ8+qO+zy+XTsaN0m27evuCw/X1w3IkJdh1srPFxdF9vVOGi5bJe7bgAZ5ho0sG/5v/12cWrbti5DtPZAg7MKOaBWyR2FBmdLngEikMmdWBmcLl5UA5q7QO4sbLpr+9cGXEfDIFyMI79wQa2Qy1Bt1WleFtiiIcLskg8LsXj6YQDAiBFqIDfHGFj2zFUgd9ayLl8jV4HW0wq59jJHLeveCOR6KuSXXireP0ePWv9v0dLTsg6oB9q0XSFarg5OAJa/gRRkoFUN60Depu55y2tZgEjLn64VGcjley4pCefOoXoG8vXr12P06NHYvHkzVq1ahZKSElx33XXI07zZJkyYgG+//Raff/451q9fjxMnTmDIkCE+3GpWyImIiHxp+vTpiI+Pt3zVc9QCXRFkIC8pETsBepc9KwsqZxOsA3lMAxGALsFZpOGI+oPDh0W1Vu4sGqmQaydekjvNM2aIieFycoAHHxSnMjy1a6fOPP7OO+K0SxfHoUBq2FA85/btxffbt6s/KywE/vnHfidJhpzISMc769oKuaJYL3kmJSSogedI2eslCzlt21rfn8mkVskBsa3OJqvSM45chuVt25xfB3DdBTB0qNiGnTvVLghAPVChDUrOKuSA67XIXVXItcvLyUCpDaMyjNkGN3dh091M664CLuBypnVthRw2y55pW9ZjkItatYCP8B9sz2qI3jX+wptvAvFlt91zwkWFPDfXunimt0KufY/rqZC7W4fcVQjVzrRuy2gg93QMeVKSGAIDAKNGOZ6nQk/LOuC+Qu4ukGsq5MOvsf47SA7NtLxO+YhyHMjl71GqzoF8xYoVuPvuu9GqVSu0a9cOCxYsQHp6OrZu3QoAyM7Oxrx58/Daa6/h6quvRqdOnTB//nz8+uuv2Ozw1a0cDORERES+M3nyZGRnZ1u+jjqrsnibdobu4mLDY8jPJ6mBPDUViKgnqm01Ss+gAQ5b3/6nn8RpZKQILEYr5OvWidAXEgLce6+YKC4+XlTfp00ToTclRcykLgP5ypXi1Fm7uq22bUXwzchQQ8b48aKVvXlz4O231R1rbVB1VCWV4aikRAQkOc7a9mCLbdu6DORysjmtm24S2wE4bleX9MwULh/v5En19c7JERPIyYnwANdhLjER6NdPnNfOti4DuTYc66mQGw3kgP0YaFnRTExUxx97WiH3NJC7WItcO4bctkKubVmPRh5efx3oCjE84eErtyI2RkG8SWz7T384COTx8ep7UXswRE8gLy21XirMSIVcdm3Y0lMhdxTI3b2+UnnHkAPAs8+KA3bnz4vpzW0n4vNBhbxRpPUBDlPWeatArj32JZ0stjlgkJSEzMxqGshtZZe9mWuU/RK3bt2KkpIS9OnTx3Kd5s2bo379+ti0aZPD+6iMNjYGciIiIucef/xxmEwml1979uzx+P7Dw8MRFxdn9VUptIG8qEhfIL940RKis5LUkNSuHSw793HFZ+0D+erV4jQlRYQGGbDkZG1ajgK5DFxXXSV2shMSgAkTxGUzZ2o2AtZrcwP6A3l0tDrJ244dYv9Gjo/et08s99W3r3XF21k3Q1SU+vpmZgJyP69jR+vr2QZyOSmT3A6toCDg3XfFa6Adn23LXYX84kXrCctkR8Ds2WJptalT1Z+5qpAD6jh37ftfjl0vKFDfU64q5M4CeVGR+vjOArlty7V2QjfJWYXcWSB3dbAI0B/InbSs21bItZtnjlQDeffLS1E3SDxW31ZHgYICBCulAIAffnHwOgYHOw6p8jV0tL3h4er2aid201Mhj4lRu2kcta3rqZBXVMu6ngo5IMb8L14sXoMNG9SlBSWjFXJ3gdzRpG6AVYU8WbHpOMhUZ0nPR5TDl/rD7+wD+blzwHGU/c6rayA3m80YP348unfvjtZlHwwZGRkICwuzm3U1OTkZGU7aPSqjja3cY8htvyciIgogkyZNwu7du11+NbJdI7kqkLOsA/oD+cmTYufQZEJuUprlx+3bwxKOYgpdBHIZvtLSxH0WFNjvxGoDuQysknaY3/jx1jvcjgJ5UBDQvbv983GmQwdxumOHCNHZ2WJnfNYs8Xpt3Ciqtu6Cqsmk7sTv2CGeY3Aw0LWr9fW0gVxR1EDuqEIOiNnWf/oJaNHC+XNwVyE/dkxURCXZti5/R9phBO7Cp/x9alOCNtjJsORJhfzQIfGaREerwduW7aRkthO6AZ5XyJ3NQu/lCrncvPx84HS+2rKeGpSBILP4PUWeOWp5Dc0wYc3maIdFaYfjyN1tr6OJ3fQEWu2yZK4CudEKeWWNIZcaN1Zb120LpHomdQPUA3OOWtYVxW2F/GJNtUJeo6js70AGtPPWY8hzc62PY/zxB/D1r9Yt66UJ1bhlXWv06NHYtWsXPrWdedKgymhjY4WciIjIuZo1a6J58+Yuv8K04baqCApSxyEXFembZV1OspWaiqAI9TlrK+QRuZqWdRmS5RhpGb5CQ9Ux29oWaUVRg1lKiqgo1aolvjeZgEGD1OvGxwOTJqnfy8eSs6UD4jFcVflsaceR//CDON+vHzB2rLrk19q17ivkgJq0vvlGnHboYL9Drg3kGRkixAUFqZ0BntBWyB0tfWa7zNq2beJ3v2GD+D49Xd23c1VdBRyPI9YGctsQbKRCrp3QzdGwAEAN6vIx5XZoA7zt7OPuAnn9+uL9WVjoOGCVYwy5owp5XJz69PadEO+PuOA8hJzU7PMfVQN5blAcii8GYd06B49te/ChpETtWHC2vY4mdnP3GkmuZlqXYdvVLOvlqZDLgwWejiHXkgfAbMeR621Zd1UhLyxUQ5aTQH4mWLyOqaaTiMguew/LA2uZ6hhyJUK8btqX+3//A87B+oDB6VLRsr4FXXBw9KvqAYdK4heBfMyYMfjuu++wdu1a1NUcOU1JSUFxcTGybN44p06dQop8Q9uojDY2BnIiIiLvSE9Px44dO5Ceno7S0lLs2LEDO3bsQK7DcpYf0M60rqdCLkNSgwZWc4q1bw9LIA/LUSvkyoAbrO9Hu78jW8llEAREYpE78jKoyXB6+eXqZdK4ceJxg4LU6nPNmmpQ1NuuLmkr5DKQX3+9OJXLfK1b575CDqhVtW+/FaeOKvXaQC6r4w0aWA8nMKphQ5HwLlxwvPSZPDgi22e3bRNrxcvZ9s1mEUxyctRQ6SzMyd+nNpBrHzMzU7TIy9+pkQq5PHAglyFzxLa6K59bmtq9YVc1dhc23S19Vo6W9bycUkRDrmEm9umDgtTc+PfhsmXPTHnW4VATyEsixe3kwgJWbA8+nDwpDsqEhrrvMnDUsu4u0HpaIZfB1PaghfYAgtEK+YUL6u9Wbr+eCjmgvl/k+wcQHcDy/7beCvn58/YHGbTfOwnkR0vKAnlQBkzyb0muoqCpkEddIl5LeZWTJ8VCCedN1tt3KEdUyA+gCQofmqj+D6skPg3kiqJgzJgxWLZsGX766Sc0tPkH0qlTJ4SGhmLNmjWWy/bu3Yv09HR0c7YcRyXgsmdERETeMWXKFHTo0AFTp05Fbm4uOnTogA4dOuAPh4vH+gEZvvPyjAXytDRLII+MLCvmlO3wB59XA/mFngOs70cbqGVY/vln9TIZymJj1Z1XWbW+9Vb77YqLExX2deusxxn36iVOb7jB/jauyCr7v/+K2cODgsS4cUCM3QbEYzmaNd2WDEcy6Fx5pf11tIHc1YRuRkREqEufORoHLYNu//7i9MgR+7XEDx1Sg2dcnBoybclAnp0tquyKYl1pPX/eOpgaqZDLifCMBHL53LRDHYy2rAPOx+GXlqrb6UHLeknmBfvraTbxr4PiIEmUOde62nrsmF0gd7jMvO3BB/k7TE1Vd/htOWpZ11shdxXIXVXI5etru8TgqVPiPRQSYj9zuC1tIC8pEZOztWghXicZ0vVWyOXfy/Hj6sRu8jU0mdy/DnFx6gEu264KGcjDw9X/ozb25Yq/gRqlZ9Tby0B+7pyleymmlnWFXB6zia6TYPX73X06yfISuDuWUBF8GshHjx6NTz75BIsWLUJsbCwyMjKQkZGBgrIXMT4+HqNGjcLEiROxdu1abN26FSNHjkS3bt1wuWyD8gFWyImIiLxjwYIFUBTF7qu3rK76Gzl52F9/uQ7kcmdBhqS0NMsQ9DZtyvYzy3agTVlZSEQWAOBs7TbWbd3aCrkMqH//rYYB7fhx6bnngKVLRdu4s+fQo4f1ZXPmAFu2ANdc4/g2ziQnWz/25Zere7SXXy52qk+cQOmfO8VlrlrWbfeEHVXItWuRy7HcjiZ0M8rVOHIZWtu1U6/30UfiVM5MfvCgGuZcHXSIj1er+adOicqkdqbqzEw13EVGOl6qTb7eWVnqsAntdtrOI6Bl27LuKpDrbVkHnM+0fvq0COVBQdbvZS0XLesykF8MDrPqgpDZctteEV7DzEX267iXBTW5Brm2oG1he/BBz4zljlrWK7pCLv/2f/nF+nLZrl67tvMDCJJ80S5eBL7/XhzQOnkSWLHCeIU8JUW8N0tL1W2Qr2FiotMgbWEyOR9H7m6GdQB7z12CUgQhCIraJi/niZBdDgASaotJ9OTLLX+9tesGW55rEcKweWe0ZbSKu277iuDTQD579mxkZ2ejd+/eqF27tuVryZIlluvMnDkTN9xwA4YOHYqePXsiJSUFX375pQ+3moGciIio2rrsMnH6229qB5yjdcjlDqms2qWlWQo4cuUrJCZa7USfRRLOFcVYT7KmDbuXXKJWgeSOuaNAnpQk1rx2t4OulZjoemkwV2TbOmDd6hkRYRlHHmwuC516WtYBUeW1bbcHrNciX7VKnHojkLtauku25TZooM76Ln/3gweLU20gdxXmTCbrtnXbsm1mpusJ3QDx/OVBIG3ruzz44yqQO2tZ195GhsZjx0SwKU8gl69JcrJ68MKWi5Z1c5a4rDjcuuNA5kZZIQcA7N5tfWO53lWsiwq5J4HcUcu6nmXPAM8r5F27iv8p6enWnQAyDLtb8kzer/y/9P776uXffmu8Qh4UpAZqWXbWO6Gb5GwcubsZ1gEcSg/GKSRbb4/8P6BZEUEGcvlnYjVypmw7zyEJv28RkxLExjo+BlbRfN6y7ujr7rvvtlwnIiICb7/9NjIzM5GXl4cvv/zS6fjxysJATkREVE116SJOtZUqVy3rcmchLQ3XXy/y87RpZdcJCrLaeT2MBmK/WDvJmu0+j23buqNAXtlkizwADLBpudd0OhQFR7ouP2l/5qhdXZLhUQ4HKG/LOuB66S5ZeU1Ls16GrVUr4IorxPlDh/SNkwesA7lt2fb8edcTugEi1DtqWzc6hrywUL29dgx5kybiMc6fFylWTyCXj6kdUwzoC7guWtaVHHGZbDuX5FulQAlHqYwztksplgXyoAQdgVwGUiOB3FGFXG/LuqPVolxVyGNiHE/qqHdCN0D8TuWRjOXL1cu/+UY9wKQ3kAP248jlQQ29JWZnFXI5Dt1FhfzwYSADmv+Nycnq70V2jYSGolYdka5tK+R16sAqkMtjN75oVwf8ZFK3qoZjyImIiKopWSH/6y/1MleBXCrbeZXLiltoxn0eRgOxT+usQg6oreZyYjcPAnlmpv3kyOUiQ2rt2uqYckkTyM9G1HU++zdgvTfsauk12wqwNyrk8j7++cf68tJStYKnrZADQJ8+6gR6eivkgPVM27aBXE+FHFB/3zKQXbigVij1tqzLIBUdbf3aR0aqAXv3bn2BXD5n2+WiyhnI5WtRGuW4Qg6YkIdo68eSr82uXQCA0CQXLevOxpAbbVmv6Ao54Lht3UggB9TnazaL4Fyjhvp+CwpyPveBI3IcufxnIk/1Fk5lILetkMuA7iaQn4Tmf15Kiv2BgKgou+MfVsfMyv73nkOSZVVDBvIqhBVyIiKiaqpxY7FTKwccBgU5bsV1EsjtOArkskJuMtnP9CwD+bZtIsB4EMj79xed715bGfbGG8VyavPm2Qfuyy9HcZAY+3sy2MX4ccB4hRwQ1UQ97bruyBnnd+2yDksnTogxt6Gh4jV2FcjdLXkmuWtZd1chB+wr5LI6XqOG69vJ91txsSWwokED+9+bHI+rN5DLQHjmjHUhSk/AldubkwNzQRG2XTUJ/74uZuwPyhMhXY4Dl7RDnXNh09osuxbKDjiE14q3bJrdvru3Wtb1VshdLXvmqkIOqAeptIFcOwmdHtoX7qab1IkKAXEwwdUBM1u2FXJ5kLJNG323l50k2gp5fj4wZYo436ePw5sVF4unbVUhT0mxXg8PACIj7Y5/OKuQS74YPw4wkHuEgZyIiKiaMpnUtnVAVMcd7cRqA3nNms53sjWB2xLI27cXA80ffNA+7NerJ6qXZjOwcKE667LOQJ6fD/z+u9j3X7FC103cCw0FXnnFeudeiojAzigxjvyo4qaVW74WCQlqIHREG8ibNjU2Vt6ZWrXUluCfflIvl0G3Xj3xO5Xj8zt0AK6+Wq0kZ2aq1XVPWtblhGXaWdb1VMhlINczfhwQ70P5XpQrGTi6jdFAnpQEy6yF2jZ6gxXyfU8vQsd1ryH4cbEOdHBe2WsR46xCDrVCDoi/R+0QCgARySLMl5aqnekW5QnkskJeWKgugae3Qp6bq1bEJXcVchnId+5UfydGK+Ta7bv5ZmDgQPV7vRO6SbYVchnI27bVd3tHFfJnnxV/c/XqAU884fBmR4+WLU4QovmfJye10z6HqCi74x+OKuSF0WogZ4W8CmEgJyIiqsZsA7kj2kDurDoOOK6Qh4SIMZ5vv+34NnIc+YMPqhNXNW/ufrsBHDignl+7VtdNyu3ryNsAAOtLXVS9ATEB3H33AbNmuQ7Z2gDpjXZ1SVbkVq9WL3M06dnSpaJDISpKjO2VBxLki+uuQq7to5WBXE6KZrRCLgOZnvHjknzPyUDu6P0pA/nff6ut5K4CucmkhkJt27rBQB6z4nMAQK2iozCbgeB8+diOx5ADQEmoJsDWq2c3k39IYpwlh9q1rWuXAlMUYy3rOTmiXCt/XyaT+5bv2Fj1f4ZtldxdhTw1VXRkmM3A5s3iMk9b1hMSxAGlfv3Ug35Gxo8D1hXy0lK140JvILetkO/aJQ7sAcBbbzmd1E2+1UuSbCrkgF0g1/6p2f16hwwB2rTBtibq8pAM5FUIx5ATERFVY3IcOeA8kGsDpdFA7o5lmvay8ytX6p4h/d9/1fNr16qd9xVptvn/0BAH8Wb+KKsVvuyEhADvvgv85z+u71Abjr0xoZt07bXidNUq9YXRs5SYbFuXPKmQy+ehdwy5PACzdas41VshB+wDuasK+R9/qK+Fu3ZsTwO5PPBw7hxSdomDIbHIxfE9FxBWKF6LoHjnFfKLkZrg5iCQIy4OtWqJs3YTu2kr5OfPqxOCuQq4CQlqiD11yvoAirtuDZPJ+ThydxVywL5t3WgglwcTBg0SHQ3x8eoBvvJUyA8cENsfEaFOkOiO/D2dPy86BkaPFsNDBg0Sw2CckG91U6rNGHLA+kiNJpDn54vNlCtVpqYC6NYN+OsvZHdWl3pky3oVwgo5ERFRNebNCrmmZf0I0uxbah259VZ1HeHly4HrrtNxI0G7KlVGhriLiqQoQFa2CYfREGYE6Xt+7mhfT29WyK+8UoSUo0fVF0o7w7oz2kAeFmZ1kMUhR2PIZSDXM8u63FZAVBUzM41VyOV7To57dhTIZeCXBwfCwpy/1yUZujXLThmqkBcXI7hU3Uc+9ttxhBWJCnlwgvMx5IhyXSFHXJzlKdsFcu0kZ3LZtBo1HC9lKGmX/DpyRP/4cclZIHdXIQfU3/vGjSJdyiN4egP52LHAvfeK1nBp6FBxque9oyVfg9xcYP16cb51a/drkEtxcerv/p13xMoRkZGiQ8YF+VaPaKCpkMuOEe0bIzISMTHq8Q157OqSS6zfyo0bq+dZIa9C5FAxBnIiIqJqqHZttQrqbMddu1OqY13oopgayEWsvgq5ySTW+/YgjGor5EDFt63n58OqKi4nAi+XhAS1lKWzVV+XqCg18Mg1zh21rNvSBpk6ddxPjOWqQn7+vL6AV6uWepuNGz2rkEuObpOYqAZHd9si2VbIc3PVQK8nkNs4tf0EokrF7UNrWF9HW8kMitNUyOvXt+9Q0FTI7VrWIyPVv2E5nlrPJIHadm29M6xLjgJ5aak6Dt1VhVy+PzdtUpc/i4zU/9iXXgq89571QYsHHgCWLLEO6XpERsLywn73nTjV264uye2QE7mNH69W3p2QQ9ajm7ivkAPqyy0Due3bg4G8ivK4ZV3+wTOQExERVW2ySl7eCnlZdbWgoZhZXVcgd6KkBJble5yRhd+WLcVpRQdymS0l7UpR5fLmm8Bjj+lu1dfNdhy50ZZ1PWFOJoTCQnXcuQzXiqImDlcVcsB6CTxPxpBLzt6f2on1PAnkcmxwTIzr5xIRYfX3kg4R0s7+dQKxEBXysEucV8hDEmwq5JGR1snKVcs6oP5uz58XrejuhkwA6mt2+LDnFXLtWuTaCd5cVcibNxdDZgoLxRhoQLzuRmZHtxUUBAwbZn0ARi/5OsgDWEYDuUzHRUXid/bYY25vIt9WiS3cjyHX/kgGcts/UW0gZ8t6FSIDue5xVzKAyz8wBnIiIqKqTY4jL28g79YNWLoUJ15YAMDzQJ6RIYpVw4e7vp4M5PffL07XravYceS2gdwrFXIAuOMO4MUXyxdEHJHjyH/6SVQwZTjW27Lubvw4IPYHZUCVbcp16qj7iTJcuwt4MpB/+61apXW1nZJ2Kb3ISPul9SSjgdy2ZV22Y8gJ65wxmSyvx8HIlliH3gCA/H3HEQdRIQ9OcD6GPKKGTSDXnpZtu9OWdUBUh+fMEVXnnBzgv/91vb1A+SrkthPyAWogN5mwaFkkbrlFfWtYCQoCli0T7zPZfaC3XV2HuXPF5OtyrLVbspotx957WiEHgCef1PU+k5OypzaJAm65RfwdyANRrJBXHx6PIZctKAzkREREVdvgwaLyd9VVjn+uN5CbTMDQoYhpK0JdZqZnAfmXX0T4/eILdd/YVk6O2iU7fLjYXz1zRp2ovSJUWIW8onToINJeTo4orRUXi6qpq8q30Qo5oJbtpJo11TAhA63eCvmePeK0Vi3X7c6StkLuaA1yqbwVcrldeoYVlLWtfxd+M05A3E9QhlohN9nMsh4To86rFlnTZlI37SngumUdEOtm/9//iVn+XY0d15JVdU/GkMvwKIcZAJb0rURFYfQYE5YuBb7+2sntU1PFHBKy1V/nkofulJaKAvUXX6gFb7ds/7fpXYNckr+nBg3EqhFuKIrN0mWffSbGnsv/tzZjyAE1kMv/PbZ/ogkJ4k84OFjfiI+KwEDuAY8DuTzyaTvrOhEREVUtzZuLHXFn4y7lDmJcnK7KmcxixcX2yxPrCeiyGHnxIrB9u+PryOp4rVoik8kJmyuybb3CKuQVJThYHGyRmjcXSzHZrgevVbeu+nNPAnlcnFiHXL4J9M5q3qCB9ePpTRO2gdyZygzkV1wBxMfjg5L/4DjEc0oxqxVy23HmJpPoLL/8cuCSNDcVcnct657QtqwbrZDLAzgHD6qXlf3RFwVHWf5mtBMw2mnbVlTK27cH7rpL3+O6oV3eXHuswCXteO/UVPcTGtoaOVJMKrdwofgbcOPcObV67/BPzUXLuuSoiWXVKuDXXz3r2vcGBnIPeDyGnC3rREREgcPVbMJyZ0FnSIqOBkJDxXntTOSffCKy3pIlrm+vnaztt98cX0fu4Mu54Hr3Fqfr1unaRI/Yzqru9xVyQIxP37BBbOzu3cDDD7u+fnCwGtD0BnLtnr/sp7ZddspdhdxkUqvkgP5Arm1Rd9W94Wkgz8kRE7oZCeQLF6Lg36P4M6+JpUKeCrVC7ui1+OAD0WUeHBetbqO8njZ1xcS4bln3hHzd0tPVN7nRCrlcvxuwVMjPF6sHF2wnYLRzzTXi6NuAAZaLFAVYvBjYv1/fpmj9/LN6Xncg175/jLarAyLQL10qDsjoINvVk5PFxP92XLSsS47+RBs1sl7NsrIxkHug3BVyBnIiIqLAJsO6njG9ENlKuyQyII7nT54s9jdmznR9ez2B3HZIb4cO4lTOK1YRqlyFHBBHR6680tiA0oceAjp1EiFJD23ZTqZF2xml9AQ8bSDXu2yV3gp5aqpamdazLbGx6vWPHzcWyIOCcKZQ3PZUsEhMdeC8Qm4lpqxlXVsVl+djY4GgINct656oV0/80RYWqke69FbI69QRR99KStThCWUV8sxCdUI3ZxXynBznf0effy6mV3joIX2boiVXLgOsi/cuaSvk7doZf1CDZCC3XdnOwkGF3DaQ65nmobIxkHuAY8iJiIjIJYOBHFD3JWUgX7xYHS/522+uq1baQL55s+PryB18GcidLYfsTTKQy32nKhHIPTFxIvDHH/pDvJ5A7q5CDpS/Qu7qNiaTWiXXW/2VVfI//xSVY5PJ/aRuZWRYLr5E3EdtnFQDuavXQiYsuXQAoAbFsu2WgfzcOetl+DwWFmb9XAH9gVzbUSGTb1mFPA/RlknG/v3XfrhKZqY4vlGzpmjXnz7deoiL7KTZu9fY01EUH1XIDZL/D50Gcu3fUNkYctuWdb1NLJWJgdwDrJATERGRS63EMmaWdYN1kPuSZ86IfYwZM8T3spXdWdv6uXNq0DWZRCesdkUlSYZ22bIuA/mZM+6XS/OUDORyv71KtKxXBm1KkGlRW90zmdTKryutWqm301shT0xUJ3JzF+Ll8n5671umnTVr1PvXOVGabCdXksVrE4YSRKFshkJXFfLrrwe++gqYNUu9rFs3Mci8bH3rpCTxlBXFiweF5JtaHtHSe9ACUMeRlyXfizkiVecjCs88I7Y1O9u+ov/888DJk+J5/PYb8L//qSsm5OUBy5eL8ydPGsgpECMztH+bhw7pnFyyRg31ebdvr/8BPSQr5E6r3G4q5O5W4PMVBnIPeDyGnBVyIiKi6mH8eLFXfOutum8iK2PjxgHPPAP884/YeZw+XVz+6aeObyeDdr16apHQUdu6bYVc5sDS0oqrXMtALp9bwFbIjXJXIY+LU3c4XQkKAl5/HbjnHuDqq/U9dkiICNpJSdZVZUeef17M6O1uPT1JVo1/+kmc6mlXLyMDeY2UMOTH1rL+oatAHhwMDBpknbxCQ4GPPgLuu89yFdm84LVx5LYHM/RWyAH1AEdZhXzTUtG6nhuehJtvVgv82rb1gwfF9AaAmFvijTfE+U8/FUF1xQp1hYWSEmMHv2R1/IorxMGA3FydtzeZgA8/FBvj7r3kBW5b1t2MIa9Tx/srJXoDA7kH2LJORERELplM9r2Sbjz/vFg1KCMDePppcdmDD4qJiENCRGfs7t32t9NWvi+/XJy3DeTnzqlzTzVpIk5DQ9WQUlFt6zKQy8dkhbyMnkCu1113AfPmqa0UemzYIGYIdxV0AVH9vP56IDQUkyYBjz/u5n5lIJezihkI5LIaXKsWUFpLXVu7JChM1wzc7nh9HLntcBQPK+QrVgBHv/oDAJBwVQeEhaldLNqhKJMniwhx3XXi+Mi4cWLVxdJS4K23xHJlWtplzt2R48evu079FepuWx80SGxMJXDbsh4Zqc72VhbIo6PVZhN/HD8OMJB7hC3rRERE5G316omld4YMEd+Hh4sJvmvUAPr2FZc5alvXBvKuXcV520Aur1O3rro7AlT8OHLbCnlmprFW2oDlKJBr222NhDtPhIXpa4kvc/w48NprwEsv2U/UZ8V2gK4HFfKaNYHgNPV+isK902NcYTOtSx5UyPN2HsQttwAdla0AgO7jOgNQA7mskG/eLJbcNpmAl19W72b8eHH67rvAd9+J8/LvW28g144f79nTrnjvU++9JyafTE8X37ttWdfOjqn5Ryf/zzGQBxAue0ZEREQVISZGzJS8ZAmwejVQu7a4/LbbxOmHH4qf79mjjvF0FMh//10dF15YqI4tlTv6ksyFjsace4NtIDeb3QQ6P5WVBcydq67TXG41a6q9s7J062mFvBJoJwmTE4M7lJpq/b2HFfKIRur9FEd457WosLXIJQ8q5Pl/H4QpNwfNIV5gU+dOANRhJfJv+9VXxemIEdZzp91wg/jbysoCLlwQx0PkcoYuf08aBw6I8B4aKjpsbIa3+4yiiKE7O3YAH38s/ne4rZADaurWTF4o/8/544RuAAO5R1ghJyIioooSFAQMG2Y9H9yNN4puzMOHxc9atAAmTRI/0wbyVq1Ei2ZurmgvHjZMVIeefVZcR841J7mqkG/ZIqr1zpZf0kOG7+RktSBbFceRv/Ya8MADwJ13eukOQ0PVlCCPumgDeUVXyA3Stk5XVCCXQblWLSCojno/FyPdtNXr5PWWddsx5EZ+Z2Vl6Jqlp3Bt5EZxWf36lhCpbVkvKFAPqI0ZY303QUGii0YaMkTNo3or5L/+Kk67dBH/Y/ylQr5rlxrAN2wQw12Ki8VxLNu3mZV588Qi9Z07Wy6SBxl0Tvhf6RjIPcAx5ERERFSZ4uLERNKjRqn7mXPninHhMjBfeqmYvEpOjP3KK6KanpMjdtInTgSeesr6fl0F8tdeA5YtE/u2npKBPCFBXf66Ko4j375dnH73ndoaXG7vvCNKgG3aiO+1LetVtUKuLUEmJlovseaGtmXd6n5i/bRlXbsGd3g4EBGh/7aJicgPEwF+fN2l4jJNgJTBcf9+YNUqMYN63bpAx472dzVypNotf8staljVWyGX7eByTjZ/qZD/8IN6/tdfxcFIQBzHcjldQtu24kXRzN72wgui/V12GvmbEF9vQFXECjkRERFVtuuuE1+KIjLc33+LGdgLCsSkb7Jg98gjokLesCHQqZNYqvryyx1P2i2LtI4C+V9/iVNPK2WKYh3Ik5LETnVVrJDv2aOef/hhoE8fY/nLocGDxZdURSrksmrpkKz2A6I6bmBKa23LOoLUEmhSA+9WyL0WyKOiRMo/c0bX+PEjR8R7JjkZKC4xYX9pQ7TFDlyesUxcoVMny3UbNBB/0wUFwNtvi8sGD3b8csbEiBnWDxwQf+vy4IneCrkcriL/F8gKuT8F8gsX1C4Bl+3qTtStC9x7r3e2qyKwQu4BjiEnIiIiXzGZxOzrgLr0UePGYgceAAYMEO3mn30GPPaYWMrI2QpaskJuO4a8sFDdsfd0xzwvTx3HXpUr5EVF6kGJpCRxXq4R71VxcaLFQZ73I7or5GFhainaQLu6oli3rGsr5MGJ3h1D7rWWdUA9CubmAMqFC6Jw26KFeP8sXw7sKxWl6NALZcsfaCrkISHqvAs//ihOtcdubHXtCtxxhzgvK+TlDeRHjgAXL+q7D287fx7YWNbJLyv3ixeLU08Cub9jIPcAK+RERETkS3feKXYr5DF/28na9HJWId+9Ww3TnlbIZXU8NFSMTZVLrFW1Cvn+/WKfLz5erVZOn+7FCd4kk0ltW/ejCnlxsfVBGbet0DIRGgjkeXnqGto1a8J6kLC7pdl08nrLOqBO7OamQn7woBg6cv68aCv/4APgEBpaX0lTIQesxzsnJIgZ0PUw2rIuA7k8OJeaKo6rlJa66YaoQKtWicdv0UI90CAPCvnrTOnlwUDugXKPITebueYHEREReSw+XqxFLHkayJ2NIZft6oAI0Dk5xu9b265uMlXdQC7b1Zs3F5Pk1aolOggqZNIrGcj9qEJ+8KD1bqvboHfZZeJUb4KEWrWOjCzbXb7kEnWgsJdeC6+3rANqIHdzAOXkSfX8tm3AN98AB9FIvbBBA/UPpIz2b/qGG/QvMy+bC06f1lcDtK2QBwWphX9fTewm29Wvv956ckuAFXIq42kgX78lyu4yIiIiIk/ItnUAaNbMs/uQgfz0abUiDlgHcsCztnVtIAeqbsu6NpCbTOow6QpZu12OI/ejCrmsTEZGilO3gfydd8SC0ZdfrvsxtO3qJhPEzrZ8ob1cIc/OVjtLyq1FC3HqZj0t2T5ep446DrykjqZCrmlXl7SB3FW7uq2kJDW8aw8EOGMbyAHfTuxmNqvjxQcMEMd3tAcjGMgJgOdjyCc8GWV3GREREZEnOnQArr5a7JdccYVn9yGXwzabrSvXf/5pfT1PKmW2gTwQKuSA83H3XtGvnwjjBsJsRZMTunXvLk5Pnxbj6p0KCTHcV2w1w7oke6+9VCFPTFT34b32Hhw+HHj3XXVdQSdkMO7XD3j+eXG+10hNhdxFIA8PB/r21b9JQUH6x5Hn5orhAoB1IPflxG6bN4v3Q2yseM9FRlq/PGxZJwCeV8jzEG13GREREZGnvv5aBCbb9cX1Cg1Vg7Ks+CqKGsjlxFKOdsw//BC45x7nuzSBUiHfvVuc2gbyCqmQT5sm0qKnLQ8VQFbIu3UT4RDQV3k1wmqGdUkuB9eokd31PREUpI4I8Fogj4gA7rvPbUqUwbh2bWDyZPH4w/+XppbLbcaPA2LG9JEjxfKDMTHGNktvIJfv4eho68fw5Vrkzz0nTgcPFmPZAeu2dVbICYDngbwAkXaXEREREXkqJkYNzZ6yrfieOiVCc1AQMHCguMx2x1xRxPJq8+cDGzY4vt9AqJArivMKeYUEckCdad1PyAp58+bGJwzTy2qGdenVV4Gff1bfhF7gq4NCMhjL169GDcAUGSEGSTdq5LAjIiRETP720EPGH0920Lv7PTlqVwd817K+YYNoVw8JAaZMUS/v0UOcakcyBBIGcg942rJeglCUyKXfGciJiIjID9jOtC7HjzdtqlbebQP50aNqqElPd3y/gVAhP35ctPRql6FytXZ7cbGYRVvOxh4IZCC/9FL9Qc8ohy3rsbEiiTlbs88DvjooJDsK7MLkt98C+/YZL4G7obdCbjvDuu3tK+ygkwOKAvzvf+L8qFFAkybqz3r3Fk0jgwapyzsGEgZyDxgK5KWl4h0GoBhhKEHZrAQM5EREROQHbCu+MpC3bet8LOnWrer5o0cd3+/5suWVHVXIy3aN/J6sjjdpok4s5apC/uuvwNKlwDPP6H+Mw4dFx7McW+xPsrPV53nppWpntrcDucOW9QpQkYG8tNT57r1thdzCZPLqAQdJbyeDswq5bO2Xf8OVYfly4JdfxCiAp56y/llsrPhb/PLLytueysRA7gFDgVzzlykq5AzkRERE5D9sW9a1gVzbuqrd79m2TT3vLJA7a1m/eNGzZdQqwpNPivGpzrbHtl0dcD2pmwxep0+LCbP0WLFCBKfFi/VdvzLJ6nhKiphbTVbIvb0+tcOW9QoguzT0BnKzGXj5ZWDZMvfXHT5c3L/ta2M2qxVyu0BeQeTvSe8YcmeBPDu78lZqlgexxo51O2l9wGEg9wADOREREQUKZy3rbduKCZSCg8Ws2toAqq2Q621Zj4oSX4B/tK0fOgS88AKwcSPw44+Or+MqkDuqkGsnO9M7/lZOmnbokP91DshtkzN+l6dl3dVzc9iyXgHkQSG9779PPwUefRS4917X1zt1CvjsM3FgZ9Uq65+dOycOQplM9q3hFcVoy7qzQK4oIpQbpSjGDrplZwO//y7Ojx9v/PGqOgZyDxgK5Jrlzdp0CEUxxHSBOecYyImIiMj3tAGzuBj45x/xfdu2Yrxm/friezmOXFH0tazLQC537gG1AioDmC+99ZYaErUVfy1XgVwGLS1tANI7Q7UMvfn5/vG6aMkKuZz03dNAvmCBmMl75Ur7n5WWqo/ToIEnW6mfkZb1ixeBqVPF+cxM1x0PX3+tvpe2b7f+mXxP1KxpvZ52RSrvpG5hYerBM0/a1keNEt0CcoUCd377Tbx+jRpVXheBP2Eg94AnFXIzTOjYJRhKiPhL3LOTgZyIiOjw4cMYNWoUGjZsiMjISDRu3BhTp05FseaANlUsuTOekQFs2iR2XeLjgbQ0cblsW5cB88QJ6+Cot2UdUAN5ZU4W5UhuLjBvnvq9kUB+ySViX1BR1LHPkjaQHzigb1tkIAd8s+6zK/v2idOmTcWpJ4G8oAB47DFx+tVX9j//919xMCI6Wq3EVxQjgfzDD4H9+9XvXVWbtWObbd9LTid0q0Ay1ObkiPf69u2OO1mcTeoGeD6OXFFEi39JiVr1dmfTJnHarZuxxwoUDOQe8CSQlyAUjZuYEBwhAvneXQzkREREe/bsgdlsxty5c/H3339j5syZmDNnDv4np9ulCqetkL/6qjg/bJi6RLLtEkgycMjLL1xw3NbqKJDLx/J1JfjDD8U2R0eL77dts2+pzspSg6d2WfDgYLW12vbAgrZlXU+FvKhITOpm5DaVSW6PnGFeO6mb3vb6999Xf9+yEq4l30/t21f8im96x5AXFdlPzOcskGdlAWvWqN/v2CGq/ra3q8zKb2ysOnH7XXcBHTsCvXrZ/86cVcgBzwP5/v3q377e9ep//VWcMpD7wM8//4yBAwciNTUVJpMJX9kcNlMUBVOmTEHt2rURGRmJPn36YJ88VOdDngbyRo2A0CgRyPf9w0BORETUr18/zJ8/H9dddx0aNWqEG2+8EY888gi+DNTpdP2QNiR/+60I4pMmqT+XM63LcCbb1Xv0EOspA46rb64CuS8r5GYzMGuWOD91qgiBZ87YB64vvhCnzZtbPwfA+cRuRlvW9++33p/0twq53B75HpBV3uJifeOwi4vFpGiSo914Gcg7dvR8O/XSO4b8vffEezo1VV0i3Fkg//570d7evLlo887Ls36evgjkgNrNICekO3zYuuKvKM4ndQM8D+Rbtqjnnb1m77wDvPGGOG82i5Z1gIHcJ/Ly8tCuXTu87WSxxhkzZmDWrFmYM2cOfvvtN0RHR6Nv374oLCys5C215skY8mKEoVEjIDxGBPL9exjIiYiIHMnOzkYNmfQcKCoqQk5OjtUXea5mTRHCZfVs8GDrirBty7o2QMnx5bZt64rivy3rq1eLSm1cHPDAA0DLluJy21Zj2dI+cqT9fTg7sGC0Qq5tVwf8K5Dn5qot+TKQh4Wpv0M9beuffCLeG/LP+ehR0Z6uJV/3Dh3Kv83u6G1Zf/ddcfq//6nrYTsLl/LY4c03A+3aifPaceS+aFkH1PH4KSnq3/Avv6g/z8pSp7ryZsu6tk3dUYX87Flg9GgxedvWrWKceXa2OJjRtq2xxwoUPg3k/fv3x3PPPYebbrrJ7meKouD111/Hk08+iUGDBqFt27b46KOPcOLECbtKulZlfEgbCeT52dYV8shYEcjPny7xebsWERGRv9m/fz/efPNN/N///Z/T60yfPh3x8fGWr3r16lXiFgaekBC1lRcA/vtf65/brkUuK+SdOolZ2AH7QK5dLsmTlnWzWdxnRcw6LttjhwwRrb2yMqsN5Lt3i3GtwcGi5deWo0B+4YL1xF+HDlm3LjsiA3lEhDj1p5Z1+ftOSLD+HeodR15aCrz4ojg/ebIayrVVWrPZNxXy8+ed/26OHQN27hQHqW691fWM5fn5Yv1sQLyf5EEF7XvJVxXyl14Cnn5aPJdbbhGXbdyo/lx2dyQmAuHh9rf3RiB39JrJeRkAMbGiHD/epYv4X1Qd+e0Y8kOHDiEjIwN9+vSxXBYfH4+uXbtik/zNOVAZH9JGAvnxwyKQl5pCER8PyxjyUJRYvSGJiIgCyeOPPw6TyeTya4/NB+Hx48fRr18/3HLLLbjvvvuc3vfkyZORnZ1t+TrqbFYx0k0GzCuvtG8bldW148fFut0nToiw0q6dfSAvKBBBoE0b8X1kpBo2Af0V8gcfFNX3Sy8VbeXOllYrLQVef12EDr1kIGzRQpw6CuSyOn7DDY7beW2XigPUamBMjAgWxcXul52SgbxXL3HqTxVyuS3y9y/pDeTr1onW7cRE0YkgJ4bTtnMfOiQmHgsLUzsVKpIM5IriPGjKmeAvu0wcqHIVyFetEu/5tDQxBt7Re0nerrIr5O3aAVOmiOdw5ZXiMm2F3NX4ccCzQF5SYv3cHVXItV0hixeLYTIAcMUV+h8n0PhtIM8oe5ck2/RQJCcnW37mSGV8SBsJ5CePiF4QRa5zEKoGcr0THRAREVU1kyZNwu7du11+NdLs6Z84cQJXXXUVrrjiCrwr+0WdCA8PR1xcnNUXlc9ll4n9m6eesv9ZUhIgmxmff16cNm8ugqdtIB8/Hnj8cVFlTE4W40Tl5HCAvgr5d9+pLcP794vJtTp3tl9iDBCTs02Y4H6daC0ZyOVEZbZVzeJi4KOPxPl77nF8H44q5DJ41amjtgu7q3jLcNK/vzg9etQy/VCl2LlTHDR59ln7n9mOH5e0E7u5snSpOL35ZvFekTOoayd2k69527aVsyRYaKgYqgA4b1uXFW/5O5GB3NHzlTXCfv3E+1wG8u3b1e4Oub/vy+W8ZNjdu1cdhuBqhnXAs0C+c6eYEE9mpRMn7LtctMdhi4qAb74R56vr+HHAjwO5pyrjQ9pIIM84Kv6rmsLF+uPaQO7uqCkREVFVVbNmTTRv3tzlV1iY+Gw8fvw4evfujU6dOmH+/PkICgq43RO/9/bbIjxed539z0wmEa4+/FCtjv5/e3ceH1V1/g/8c2eSTPaEJCQhIez7KrIZcaugYBFFqVZ+qLhUvyAo7toqorXuVatiUalV21pRrAiioCyKGzuERZBFkC0kAUJWSDLJnN8fDyd3ZjKTTEJgFj7v1yuvSWY9586d3Hnu85xzhgyRSz2GfO9e+V6kJ0J78UVgzx7AvdDBUyD7yCMS5P3jHzK+VD/mzjtlDHJEhAQR+/fXbdvs2XK5Zo3nmd490QG5Hht81llyuX+/nCiYP19eLz0d+O1vPT+Hp0ndnEuT9bmm+pY+U8o1Q26zScb/dBZ8zJsHVFRIptKdPpngHpDrfcDT+6HV1LiOrQbMgNw5Q346y9W1+saR2+2S9QYkyAbqz5Dn5MilPqnTs6d81T96VPZ/h8N/Y8idJSWZFQh6yEZ9E7oBTQvIdbm6zshXVppzSWg6INeT5Wnuf59JAvaIl35i78h3q2nKz8+vvc1fGhOQ5++XgNxiY4aciIjInQ7G27Rpg7/+9a84dOgQ8vLy6q2Go+YXGWmuO+6JxSJjqbdvl0Dr+efleucM+aZNEuTExEgw7Wlcqi5ZP3rUnFDq/fcl+3jbbRK05eVJBv6554Bx4+rO8q45LzflcLiOj/WmqMgMxHSGPC7ODBYXLJAMPwCMH+99TKunEwvOgZf7RHieHD5sBjtdutQdq386bNkil9u21Z1szVvJus6Q13fi4Lvv5ORGUhLwm9/Idbpk3VOGPFAC8uXLpYQ+OVmqMgDXgNw927thg1zqkzoREeZwjXXr5D3WlR1+Dl9qT6Lpz4mvJeuFhb6/hg7IL7jAfLz7iQx9EkqX0wNyckwvJXgmCtiAvH379khPT8cSp4X9SkpKsHLlSmT7uaahMQF5wQEJyMOiXAPyCFQxICciojPeokWLsHPnTixZsgStW7dGq1atan8o8ERHS/m6/rKtA/L9+4GlS+X388/3Xn6clGSuNX3okGQkdWAXGSkBqsUi2fioKLneW3D72Weu5d3LljXcfp2xTk8312kGzIDw1lslg9umjZTfe1Nfybpzhry+gFwHJm3bynb1R0D+009y6XAAmze73uatZN3bzPrOdLn66NHmvuBesq6UfwJyHQR6WvpMl6sPH27up/pfUUWFa7Y3L09+LBYzCAdch0Do7/qpqaenJL8+7uPIT8UYch2QDxpknshwjneqqszPRN++gJ67U5+0OVP5NSAvKytDTk4Ock7Ue+zevRs5OTnYu3cvDMPA3Xffjb/85S+YN28eNm3ahBtvvBEZGRkYPXq0P5vdqID8cK6c/tXrj7NknYiIyHTTTTdBKeXxhwJfZqaUtFdWAh9+KNfV9+XaYjEzYfn5Zql7ZKTMbH7HHRKMDxpkPsZbcKvL43Xm1ZeA3L1cXdMBYU2NBBJLl9af0dS3OWdAG5sh1wG5XmLudAfkNTWu43l1+TUgwbK3knXnqghPH9OaGvO90eXqgPk+HTokge2BA7L9rFbXgPZUqy9D7j5+HJB9U88Q7/zdXWfHO3eWEyqa3pdWrvTfhG6e6Az5mjUyEV1zB+SlpWbFxcCBZp+dt9kvv8j+ERcnt0+bJvM1PPNM4/oSavwakK9Zswb9+vVDvxOnku69917069cPjz32GADgwQcfxJ133onbb78dAwcORFlZGRYuXIhI5+k6/cDXgNzhAArz5dStLbbuGHJmyImIiCiYhYebX7xXrpTLiy+u/zHOE7s5Z2HbtZOx7Ndf73p/T8FtWZk5G/Zf/yqXa9a4LjvmifuEbtr558tlaqqUwbvf7i4lRb4PKmVmWp0z5Prx9Y0hdw/IfQnim9OuXXIiRXMOyA8dkhJ2w6g7lEGXrJeX1x0fDMgY5bw8WSpt6FDz+thYc1/ZscNcPq9nT9eZ+E81bwF5bq4E2YYhGXJnnsaRu5eraxdcIJeLF8uyXs6P96cOHST4ttuB1atPLiDfskXmV3Beb33tWvk8ZGXJc3rKkOsTQN26yXYODwduuMF8T85Ufg3IL7roIo9nxN99910AgGEY+POf/4y8vDxUVFRg8eLF6KLrXfzI14C8oABAtQTkEbEcQ05EREShx3mF2YQEs2TXG+dyb29ZWGeeAtUFC6SEuGNHYNQoCRpraswJq7zxliE/5xzJiufkSLDQEKvVLH3WgY3zbNq6P4cPy5hkT/ydIdfl6ppzQK7bkJFRN1iOijL77qlsXZerX3mljKl25ly2/s478vvpXu5Kt909INel3P361R3P7Ckg19vLPSDv1cuch+CLL+QyEDLkhmFmyS+91Hz/G5plvbi4bswzdap8Bl97zbxOD3nQn39PGXIdkOt9nkTAjiEPZL4G5Hv3SuANAJaIugF5UZGUjBAREREFK+eA/MILzbG33jivRa6DbPeJw5x5Csh1SfSYMRJo6HW8Gypb1xlr94AckFL7xgRO7uPIncuTExLMrJ+3AFuPpT5dAfnRo8ALL5gZT11e3L+/XG7cKCc1nNvg7USJ+3J3zvRJkcsvr3ubLlv/3/+AuXPlvZsypXH9OFn6fXEfQ65P1vTqVfcxntZe1wF537517//kk65DNwIhQw4Ad90lcwBUVspQi7Aw18+vMx2QK+W6gkFJCfD55/K7cwWI3n76pIunDLk+CeXLSa8zCQPyJvA1IN+3TyZvA2CeIjwRkEeHSaDOLDkREREFM+cv9L5MzuSpZL2+gFwHhUeOmNk6Xa6u10f3NSD3liFvCl3qm58v42d1ubwO6hsqQdcBvJ4kTfezoKDh0ntPjh6VTL+38bgvvQQ8+KD8AGaGdPRoyXqXl5sBVkOVC/o937vX9XqlzGXNunev+zgdrM2ZI5fXXHP6gzNvJev17RvuGfLjx83g0j1DDkig+8EH5r6g16X3twsuAH79VeZrmD5dVkzwVi5us5kTKzqXrc+daw510NsMMPcdPVyDGXLfMSBvgsYE5DpDXju14onLFrEMyImIiCj46YASaHj8OOC5ZL2+gDwuziwh3rVLvtQXFclEWnppKh2Qr1pVd/kurbzc/N7V0BhxXzj3Qz9vXJw5e7t+DR24OaupMUvZdSYyMdH8/ddfG9+er76ScfzPPmtONOds61a5nDNHbtcZ8j59zEnVdNa3oRMl3jLk+qSJYXjexu4jTx95pN4unRLeAnL3gNKZe0C+ebPEAamp3sdgp6XJMIinngKuu+7k291cDENOgkyaJMM96qMns3MOyGfNMn/PzZXPFVD3hIYOyPVnQylmyL1hQN4EzRGQJ54IyDnTOhEREQUzHZwlJ3su93WnS9YLCnwbQw64ZptXrJDfBw401wnv0EHKiu124OWXPc/+rQOupCQz8D0ZzgG584Rumi5ldp74SnOeDM25LXo7jB0LvPJK45ac0sFOSYm5nJgzva2PHAG+/trMVvboYWZ53QPyxpas66CsdWvPE7XpknUAuOIKORlwunkbQ96YDLlzubpheH+tbt2AP/0JiIlpcnP9yn1ityNH5MQPYIY2u3bJCSa9f+nt575+e0GB7PeG0TwVKqGEAXkTNKlkXe+1J0rXE6OZISciIqLgN3w4MGKEjJu1+PDNUgeyO3YAhYXye1MC8nPOMW83DOC22+T3Rx+VUuilS4FXX5WAqKCg/vHjTaH7kZfnuuSZpsdmewqOdb/j4syTCoD0ISJCMrB33+06S3lD9Jh0wFwT3pnz2PQXX5RJ8SIjZdu7B+S+lqx7C8i9beOOHc1A3R/ZccB1DLk+cXPsmBls+5Ih9zahW6hxD8g/+USqK/r2Nfu+c6eMra+qknBH7xvO67cXF5sngNq3P72z6geDsIbvQu4aM6lbe50hdxtDHs+AnIiIiEJAbKy5frMvdIZcB4gtW0pgWh/ngHz5cvk9O9v1Po89JsHWvffKpGF64jdAAqiLLpLfmysg188zb54ZuDhnyPV61Dt3SkCSkGDepgMc90z9hAnAtdfK2sz33CPtrqyU8bwNcQ7Iv/7anOlbv55zVl6Pwe/eXSbhcw7Iq6vNseGNLVnX48e9bWObTUrmy8td15o/nXRAXl0tY//j480TEImJZpm2M+cJyhwO70uehRr3gFyXq48dK9tg9Wo50aX37fbtzUkdo6JkexYVyYkMlqt7xwx5EzRHyXpcJANyIiIiOvO4L7PUUHYcMAPDnBxzMjLnDDkgWfLJk4HvvpOll9q2lTGyERFywuDvf5f7NVdAfsUVsmRXaann9aaTk801vN2z5N4CckACwilT5ESHUr7Nuq6Ua0D+/feSsdT0cyQnSwCq9eghl717y/Y7eFCy9DU1st28zQ6uA/L9+12/D+sMuXNpursRI2R2fH+JjjYztLps3Xn8uKcS9LQ0ub66WjK9ehiCpxnWQ4lzQF5YKCd6AOD3vzc/Rzt3eq+McB5Hrj+3nNCtLgbkTeBLQG63y87nNSC3cQw5ERERnXnc13iub0I39/usWCHBZ/v23tdPHjxYAuBff5Xs9aOPyvV79shlcwXkVqtksp3HB7svm+atbF0H5J6ysYDrpGjOS0t5U1BgTqaWnCwl2KtWmbfrgLxzZ9flyHr2lMvYWHPCtXfflcu+fb0PQcjMlNeqqgIOHTKvb85Z7E8l93HkDbU7PNys7Bg7VrZvr16eZ5IPJc4B+fr18tnr2FFmjXcOyL1NiKdP6OzebWbX3StbiAF5k/gSkOsJDKIsbmPIT1zG2JghJyIiojNPRIRrZrgxAbnmnh2vz0MPmZlgoHlmWHd+rpdeMv92zyjrgHztWtfr9Rjy+iaXa0xArrPj7dqZ486dx5E7jwl3zk47b5cXXpDb7r8fePttYP58768XHm7OLu5ctt5QyXqgcF+L3Jf5BfR7u3GjnIx57z3f5kwIZs4BuS7T11UBev/0JUP+8sty0qh1a1lmj1yF+G50avgSkOt/TklxnseQx4QzICciIqIzk3N225eS9cxMM7cBNC4gj4gAZs6U3y2WuktvnazbbpOsaXy8lLA70+PI3QPy+krWtaYE5F26mGvBOwfkzsuYjRghY/YtFtcx0KNGAR9/LIH5LbeYGWFv9HJ3+jtvYaHZr+Y86XEquC99pgPK+tqdmWn+/sgj5nsbyuoLyHXwvXevuYSee0CuT2Lo26dMcf0ck+Ckbk3gS0CuJ8NIjLUDxaiTIY8Kk4D8yBHfJ+sgIiIiCgWpqeasy75kyK1Wyf7qDGxjy17PPReYO1eGFOpy5eZiGMD778u46zC3b9Y6Q759uyxHpsdv+xKQO09k1xA9YVaXLuZa8MuXA8ePy+RazsuYRUfL0lVHjphj3JsiK0vWPdcBuQ5qMzPlNQKZe8m6LxlyPW7+rLP8N0P86eYckOt9TAfkqaky1KGszPwsu5/QcB7CERsL/OEPp7a9wYoZ8iZoTIa8RYznMeQRFntt0jwv7xQ0koiIiChAOWfIfQnIne8XGdm0ybSuuOLUTSZmGHWDcUDGy+tATi+VBZgl697GkANNy5B37SrjxDMzZXz3jz/K9e7LmJ1zDjByZMPPWx/3mdaDZfw44Fqybreb8wvUlyGfMgX4v/+TKgL9HT7U6YA8Px/YulV+11UV7uuJWyxy0syZ8xCOP/xBZl2nuhiQN0FjAvKEqBNjyN1K1g273WXmQSIiIqIzhQ7IrVYZV+oLHSz17x9cAZEubXae2K0xJeu7djW8so9zybphmFnyRYvksb/+Kn/7evLDF+4BebCMHwfMgDw3V4LxmhqpJHCflM9Z167AG28Efjl+c9L7508/yYmLxERzqALg+l63aVO34lcH5BYLcNddp7SpQY0BeRM0JiDXy5u5Z8hRVVX7oedM60RERHQm0eOT27b1nFn25JJL5PKaa05Nm04VTxO7+RKQt2kj26aysv7vitXVZnZaj48fMUIuFyyQxE9VVeNOfvhCB+R6mGYwZcgHD5bLDz+UsnvA+5JnZzK9f+qYp08f123k/F57OlFxzjnAuHEyL4Evc0WcqTiGvAkaE5DHegvImSEnIiKiM5SeIKsxwdvo0VI6675sWqBrakAeFiYnLH75RX68BdN79kj20mYzg+RLL5XAaeNGWZMcMAP85hLMJesjR8pa9evXAw8+KNcFQ7tPN/f9032oiHMQ7mn7hYUB//lP87cr1DBD3gTOAblSshahO/3PKSbc87JnsNtryzgYkBMREdGZ5OqrgUmTgCeeaNzjUlODL4upS9Z//lmy3YBvY8gB38aR63L1zp3N76gpKcDAgfL7G2/IZXOWqwNmQJ6b65ql79y5eV/nVDAM4M9/lt919QED8roaCsidtxm3X9MxIG8C/c+uqkrO1rZoYU50AEiArtc11MubuY8hd86Qs2SdiIiIziSJicD06Y1bvixYpaXJ+GSlzO98vmTIATOIri8g17Nfd+3qer0uW//mG7ls7pLhtDTJgDocwD/+YX73DZYx1iNHmqXrQPC0+3Sy2WTf1ZyXyQMaLlkn3zAgbwIdkC9eDMybJ4G581qP+/fLZWwsEAaWrBMRERGdqQzDLNHfv1++N5aXy98NBeTOE7t54zyhmzMdkGvNHZBbrWbGdOJEuUxPl++/wcA5Sw4ww+uN3ketVqBnT9fbMjLMJe7c9z/yHQPyJvA0hlyfnQTMcvWsLJlNHYDHgNz5nzMRERERhSY9/nv/fjM7DgAJCfU/zr1k/fhx+dGUknHiQN2AaNAg14C/uUvWAWDhQuDRR83X0ePlg8UllwDXXSfVBYMG+bs1gUm/t127ypKDziwWYMYM4LHHgB49Tn/bQgUD8iawOG213r3lUp+dBFwDclR5H0Ouz1Tu3i3/UImIiIgo9HgKyBMTJetYH+eA/OhR+d7ZsiUwbZp83xwzBvjhB7mPezBstcrkbtqpmOU6JQV48klpy9y5wFtvNf9rnEqGAXzwgYzvj4/3d2sCkw7I3cePazfeKHNBBNvcDoGEAXkT9DtL4fKIrzDxd4cwfbpc5y1DDrv3MeRt28rOW14OHDp0WppORERERKeZp4C8oXJ1wMxqFxYCt94qgXl5uZRat2kDzJkjXy1ff91MEjlzLls/lctOxcQAV1xhrjtNoSMlRS7dx49T82FA3gTdN8zCZ1XD8ffC69Ctm1y3Z49ZQrR7t1y2aQMzIPeQIbfZzDFF+jFEREREFFqaGpDHxpprts+ZI4mcp582xzu3bw/8+CNwxx2eHz9ihDxH+/bBt1wcBYZ77pGy/vHj/d2S0MWAvClef10uly5Fy6PbkZgoJed6uQe9zmSfPqgbkOtM+Ynr9dnK+ibrICIiIqLg5RyQ6yXPfAnIAdfZq6dMAf74R2DLFplcOCcHGDDA+2PT02Wt7W+/ZUkxNc0FF0hZf1qav1sSuhiQN9aWLeZgHQDGP9+uXWZi2zYpI9q8Wf4eNAjmGHIPJeuAWYrEDDkRERFRaPKUIW9oDXJNZ8M7dgSeekp+Dw8Hhg71bdxzp07m6xNR4GFA3lj/+IdcpqfL5bvvonsnCa63bwfWrZPZ1zMyToyjqadkHTADcmbIiYiIiEKTDogPHgQKCuR3XzPkEyfKbOAffmguMUVEoYMBeWNUVgL/+pf8PmOGBOUFBRip5gOQDPnq1XJz7dIJDQTkLFknIiIiCm0tW8pXQKWArVvlOl8D8uxs4Kuvgm9JMSLyDQPyxpgzBzhyRE5zjhoF3HQTAGDIVsmab9sGrFold60NyOtZ9gxgyToRERFRqLNYzBnIN22SS18DciIKbQzIG2PmTLm85RZZ3PGWWwAA6RsWojX2uQTkAweeeEw9y55BqdoM+d695l2JiIiIKLTosnU9CbCvY8iJKLQxIPfVoUMymZth1Abi6NwZOP98GA4HrsQ8FBWZme7aGS+9lawDQE0N0tOByEgZd67XLyciIiKi0KIDcodDLpkhJyKAAbnvWraUqTE/+gho29a8/rLLAACjohbXXtWlC5CYeOKP+gJyux0WC8eRExEREYU695nOGZATEcCAvHFSUoDf/c71umHDAABD7F/DimoATuPHAe9jyJ1uY0BOREREFNoYkBORJwzIT9bZZwMtWiC2uhj9sRaA0/hxpYBqCdLrjCEHOLEbEZG/VVWZiwITEZ1C7gE5x5ATEcCA/ORZrcDFFwMALsEiAB5mWAfMQNxqlXHoAJc+I6KmKSsDPvkEKC/3d0v8r7QUWLhQtklj/fIL0KmTnBX9+efmbxsRkRNmyInIEwbkzeFE2fowLEZYGHDWWSeu/+gjuWzZEoiPN+/Ppc+IyOEAamoa/7ht24DBg4ExY4BrrpFKnMbIzwcefBB44AHg+PHGv36g2LABuPlmoFUrmctj5MjGbc89e+Rk6r59QFGRTNbZlPeDiMhHzgG5xQLExfmvLUQUOBiQNwc9jtz4EXffVo7ISMgXu7/8RW6/7z7JjGteAnJmyIlOwvLlwNNPA++9B3z7LVBZeWpf7/hxYNYsCex8VVwMvPIKcOWVQHIy0KYNsHat74//9FMZE7Nli/y9YAEwb55vjy0vBx5/HOjYEXjhBeCvfwWGDpUVJBpj40bgzTeBHTsa9zh3v/wC/PvfTfvHt2kTkJ0NvPuuWSXw7bfSL18cOCDB+N69slpGfLzsP6+80vi2EBH5KD1dAnFAJv+18Fs4EQGACnHFxcUKgCouLj51L+JwKNW2rVKAUgsWyHX/+Y/8nZSkVEmJ6/0TE+W2rVuVUnKzpLmUOpXNbDYOh1IrVij1r38p9cUXSq1erVR5efO/zvHjSn35pVJr13q+vbJSqW++UWrXruZ/7WBhtytVWirvSWOUlir1449KvfeevH/1PX7PHqVuuEGpW25RqqDA831ycpR65BGluneX/fv++5U6fLhxbaqpUWrjRqX+/nelxo5V6vLLZT+rR1WVUvP+W6p2XDbZ/BDpn27dlDpwoP7X3LJFqY8+ks9iTY084S+/KLVjR/2PW7NGnh9QKixMqVtvVWrnzvof8803SrVpU7edMTFKLVxY/2OVUmr2bKUsFnnMBRcoNWGC/N62bcOfv+XLlerUyXzN/v3N/0Pt28t2r091tVJvvy2P089hsSh13XVKrV/fcNs1u12pN99UatAg1+e59lrZH2tqGn6O4mKlunSRx553nlLffSdt0+/FmjX1P76kRKm+feX+HTootX+/UjNnyt+RkUr9/LN5X4dD/v+ceG83bfKtib44LcemIDJq1CiVlZWlbDabSk9PV9dff7060NDn1wm3JwWLjAz5d9Opk79bQkSnmq/HJkOpxtY7nn6vv/46XnjhBeTl5aFv37547bXXMMhlKnPvSkpKkJCQgOLiYsQ7l403tz/8AXj7beDee4Hnnwd69ZIxiU89BfzpT673TU2VrNS6dTLp2xdfYP1f5qN39XpYLIAyLNjboi8+bHUPFsReg+suOYKb2n2DKHVM6uE7dpSs2MyZUud+0UXA5ZdLGWvr1kBYmPlaGzYA77wDfP010Lu33K9XL+DgQSA3VzL3sbFSNxUbC8TEyHOuXi2Zq5495Xnj4yUjlpMDzJ5dt74+MlIqBYYOlQoAu11K9fv0kQxUYaGUhpaVSfvCw+VUcVYWVEkpjPmfAV98AVRUyCwn5eUyLrS0VJ7/qqsk+5WUJJm1Tz8F/vEPKb8FZHK9MWOASy6R35UCfvoJWL8e2L5dfiorgbQ0eV19abdLhnLDBhnzHxkJ2GxyGRkJtGsn2zc7G4iOrvu+V1UBa9bItuzSBejaVaojdBlsz56yXZWS/eH772UCqdJS6auWkiLvXYcOsoi9rqLYvVvaNmSIbE+lgC+/BN54A9i6VW6326Wt6enAuecC48fL++BclaHbOX++/Gza5NqPzEzJ2t50k7y+YUgG+M03gUcfNbOQqaly3ejR8vfBg7LPz5pVd9vExwM33ijb7/zz5bHufv0VmDsXWLwY+OGHupNrRURIX2++uc5Dd+9SeGPEp/i/HfehA2R/nI/L0SGzAt3K18JSdBTHW3fC7AlLgVat0O7oetQoC3ZE90VRoQOXrv4L+s5/GobjRJlydLTsI7ps+bLLzM8yINs+Jwf473+Bv/1NPrsxMea2sVqB66+Xz3uXLmZD8/OBZ5+V7KtS8h5PmCDv1bRpwJIl8pl48EEpm+7Yse52WrxYSrKrqmRbvPmm/N69u+xrf/yj/K/R81Po9m7dKlnkF1+UEvnWrYGXXpLVIrZtk+fctUv2t4cfBh55RH4/elS2R1SUfI5uu00yyIDc3rev7E9ar17AddcBPXrI/p6aKvu+8/+iH34A7rhDMuyApIZ69AA2bzbvk54ubRo5Uv6fuNdzKgWMHQt8+KH0Zf16+ewoJeX7//sfVKdO2DHxJXxRPRzRpfkYsOMDJBZsw49pV2NO+aV4ZNWVODt/ASoS01C1bAXi+7QDlIIaPhzGokWojk3Ar79/GEU9h6Dvx48i/MdvAQBrUi/DHwvuwcSPh+HqMQZO1mk7NgWJl19+GdnZ2WjVqhUOHDiA+++/HwDw448/+vR4bk8KFoMHA6tWSbHTqlX+bg0RnUq+HpsCPiD/8MMPceONN+KNN97A4MGD8be//Q2zZ8/Gtm3bkOrpC76b03aQnjVLvigC8gXx8GGZrePXX13HjwMS/OTmmoFrPYoRjwSU+NwMh8WK8tg0GAAsDjuiyxpZjuqjqogYHMwciFhHMeJKDiDiaEGTnscBAwoGrHB4vL26ZTqshYdgeBnbWZOYBEtJEQyH+XhHfAJQVQVLRfONj1VWK6pT0mFPbgV7TAKUQ8E4fhwxO3MQVmW+jsOwwKLMtiiLBapHTzgKixCWu8+3F4uPR/UFF6P6132I3CzlzI6wcBy/+HJEFB5E+JoVDT9HSooEdhkZEjSvX1+3hLtVK6BjR6j162E4TQ7m6NkbjnAbrJtzYJxYJcA+6FxYS4th2foTAKC6RQrKsrojZnsOwitK4TAs2NHjSpRc8ju0bB+LzJnTEL45x3UbdusG++DzUZGQCuz8BWHbf0L0TtcTA47oGNgHZKNi4Pmw5qxD7JK5AID8Vn1RU1yG8IpS7I3pgbysgUja9iOya34AAORFZOH+xLfxfsElAICutl+xoOpitFe7cQgpiEQF4iCTfhUjHkeQXBvE/4Qe6GDsRpSS99ERYYNRUy37nMUC1acPHA4Ahw7DenB/bVvzzvsdNkyYgdbHtqPjB08i8uuF0k+LBfb+5+B4576wH7cjaf6/YbHLti+48g8onvYywlvEwmoFSg5XIX7KTcj67gPzedsNRl5qXxyM74qqKiCq6CAu2DIDkdXl+LblGLw0+EN06GxFu3ZAu3Wf4Ir3xsh7ZLXhcHQbHAtPgN1iQ0JFPlqV7ax93mVZ4/Bu/+nI7JmIXr1k17AWHkKXF/6Alj9K2bsjJhZGxfHaz1tlZDzCqo7B6qhGuTUOH3ebin3Dbkbb/ik427oBXT55BuGfzXGdwFK/3zEx8s3TMKC27YBl/15pZ1wL7LvxUYTfNA7pfdNgbNoIvPQirJ9+AqPcnJjNERaOiu794LDXwCgrg3GsDNbjZbAdL0aNJQxv/r9vsT8rG8nJ8i/2wMYjmDyzD1IqcwEAJYhDPEpd2nQYyUjBERxDFC7CN1hnHYTzzpPzc78s24+Z+aPQD677bSUiEA47LJBD5aoBd2DQ6tfr9LexGEDWb968eRg9ejQqKysR7rw6iRfcnhQsxoyROTkvvVTOrxNR6AqZgHzw4MEYOHAgpk+fDgBwOBzIysrCnXfeiYcffrjO/SsrK1HpFHiUlJQgKyvr1B+ki4tlevXt283rPGXHATktqrNLiYnARRfhy4hRuGfeb5DeLhL9exzHyJIPMHjVq4gqKYADBjagLwqRhH5YjyQcxW60w0zchlUYhEvxFS7DAnTBdtjg+sW4EhGYiysxB1ehLzbgcsxHBnJxAJnIRQYMKMShFLEoQyzKEIdS5CEdqzEQv6AjemMTzsEK2FCJHeiM7eiCLzEc83E5jkNnjBV6YxNG4TOcjXVwwIJqhKE19qMPNiIBJaiGFbnIQDESYEUNbKhEJg4gEvJebUAfzMFVyEUGklCIcNixCJdgFQahO7biJdyL4fgKAJCHNOTgLLyNW/EpRiMRRbgKc/BbfIGL8A0SUQxAvpCvw9nYgh7Yji44hmikId/lx4BCDs7COpyNUsTBhkpEogKRqEA0jqEPNuIifIMs7Ic3h5CCXeiArthW+9p6i7ZCXu39KmDD9zgP+9EapYhDJWxQMBBudSAj7BCyjP3oat+EpJrDtY+pgQW70R6d8EvtdccRiRmYiPm4HPsjO6MqpgWSag4hs3oPrqyajTFVH6AF6i7jdARJWIRL8RkuxxLjEpREpiIiArCXVuBCx1KMw/sYg//VvicAcAAZ+DMew0zchnDY8Tgex314EREwTyStwkBMxAysQ//a6ww4MMr4HCOsX+E8x7fo7djocdvVwILvcD4+wygsw4XIwVmoQVjtc0zFk3gCj3vd9hWWKFTecS8Snn4IiIvDDz/IXGXLlwOtsQ/LLL9BB4dsu2JrC1jgQFyNvEfF4cl4NGkGpudfAyuq0QG7UIZY5CEdnfALnjX+iKvV/1xerxzRWIgR+DduwFxcCcDMlA7EKjyKv+AKfFannSswGE9gGhbisjq3GXDgGszGLfgnLsGi2sDP3SIMw+WYjyrYnK5VmI7JmIA3PJ7UqkQElmAoZuI2fIqrvGxFhTH4H17DnS77q7N5GIU78HccQOs6t2VGH8WI43NwuZqHVBQgFmVog721nwXNAQNv41b8Ec/gCFLqPE8EKnEBvsVIfI6R+BydsbPOfQDAjjDchVfxBibWua0tfsVdeBVjjVlopQ4CADYkXohfbD0wovB9RNtLoAwDr134P8zIu6rOxOrhVgcmxP8XD5U9ilb2vfgXbsRUPIkooxLTu76GYXv/Cctnc2tX1jgZDCC9KywsxMSJE3HgwAF8//33Hu/jt2M90UmaMgV49VXg97/3XFxGRKEjJALyqqoqREdH4+OPP8ZoXSILYPz48SgqKsLcuXPrPObxxx/HE088Uef603KQVkpKs3ftkgD94os9z9ixYwewciXQr5+UnJ64j1KuFaeoqADWr4ejc1d8vjwJGzcC1XaFiJLDUEnJiI23wGqVlyoqAiqPOxBZlIeoooOwVxuosFtRmd4WmT0TkZUl98nNlftbLPJa+jI6WqqtdXNycyW5n5MjydXCQrOKu2VLqSwNC5M5kfbulaY6HPJcSUnyc+wYsG+vgj2/EKXWRITZrIiIkIpwmw049xwH/t+wAnRqV40Fm1rjq6+kqnvfPnkuQKpfo6IA5VBIcxxEsYpHGWLhcMj2cr80aqrRS22CPSwK+6O7ICLSArtdksOVlR4TeS5026OjpY1VVUDhEYWoooPIshxApuUgEq2lsIRZYIRZUZjRC9WduyMp2UBlhUJ4YT5+PWjD2l8SkZdvoBVyMRCrYTds+CXzAiS1jkZRkSSti4vrvr4BB/pjLYZiCcojkrAqYzRUy1QkH9yEi/P+i+PV4fg77kA+0r32IQKV6IsNyMQBZCAXRUjEKgzCTnSCcwDpSSKO4grMQyVs2BCVjSMxbVBWbrhMxh2NcvSL2obshC2ITInFr71HoWW6FQUFUgW9ezdw5Ijr87ZAIYbgB5yP7xBnlCHX1gEHYzphU8J5OBadgpoaKSo5ckTey/Bw2f4tWgCDIjeif9JudDynJbr0tqF67QZg9SqEJ8agx1v3ILy9a5CoFLBihVS792t9CJYFn8tnrXdvs+x8+3Yp609NRUGBZCkWLZJK/p9/NkcT9MRmtMZ+KBioMiLxc/wgRCREISZG2me1SkV6bq65z3bETgzEagwI34jU8EIsTBqHbanno7rGwNGj8jm026UyPjraXHUrIgKILdqPHvlfo13lNmSWb4clIgwViekoz+iEPRfdhMikaBQXAzt3yucuIkKquuOj7MhU+5FeuQeRNeUIq6mEIywCBzpegOroeBiGfDYrKqR/mzfLttajGo4dA+zFx5BxbCcOIwUFqiU6tjqGc9oeRPt2Ctae3ZCaZqC4WKrg9Y+n+eAsFsBqONClZgvOwQrYEY4d6Iy9kV3haJGMxET5LO7fX/fzGB8v77lhABll29G1apNspJgYGHGxsMTHoqZFCiwpSYiLk21+5Ihs07ZtpZL+7LOBfn1qYN2wrnZYDAAZJvLBB1Lq/tvfApB99YsvgJISGZUyaNCJkSl2O3D0KArDUpGTI+9Pu3aQO8bFuf2jbhoG5HU99NBDmD59Oo4dO4ZzzjkH8+fPR3Jyssf7+vVYT3QS/vUvGVn25z8DU6f6uzVEdCqFRECem5uLzMxM/Pjjj8jOzq69/sEHH8SyZcuwcuXKOo/hWfPAU+dEQwPsdjkBkJgoQU9zt8Vuly/y+kcH9DExrkNeT1ZVlQwzrq6WkwruVZfV1RIjlJbK9/zSUrkuLU2qyT0Nn9XtramR4fhFRTLU22JxPcni7W99ncNhnqCIjZUgKDJSXr+iQrZ7RIRrX/ToCotF+lMfu12CtcpK8/2PiZE+RUZ63x/0SZ1miHearKZG2l5dbQ7Pj4+XQM1bu6qr5T0MC5MgNyrqzJg9VwfDUVGyfaKjzf382DEZih4e7vmz7HDI7YYh94mMrPsZCWVnQkD+8MMP47nnnqv3Plu3bkW3bt0AAIcPH0ZhYSH27NmDJ554AgkJCZg/fz4MDx88HuspWOnpPbp2dZ3qhYhCj6/H+mYMPwKDzWaDrbmjODopjQ2uwsMlKD1VbXEONE+liIj6XyssTALhFi18ez7DMA/eYWES4HhJHjVZeLjnoKihvnh6noyMxr9+IASxVqskVhsjLEwqK840ycne98GYGPnxxmJp/v2XAst9992Hm266qd77dNDrfgJISUlBSkoKunTpgu7duyMrKwsrVqxwOSGv8VhPwcowZD5LIiItoAPylJQUWK1W5OuZtE/Iz89HemO/MRMREdFp07JlS7Rs2bJJj3WcGANS6T4ZJRERUYgJgHyUdxEREejfvz+WLFlSe53D4cCSJUs8njEnIiKi4LJy5UpMnz4dOTk52LNnD5YuXYqxY8eiY8eOPNYTEVHIC+iAHADuvfdezJw5E++99x62bt2KiRMnory8HDd7WJeYiIiIgkt0dDQ++eQTDB06FF27dsWtt96KPn36YNmyZSxLJyKikBfQJesA8Pvf/x6HDh3CY489hry8PJx11llYuHAh0k7VIGMiIiI6bXr37o2lS5f6uxlERER+EfABOQBMnjwZkydP9ncziIiIiIiIiJpNwJesExEREREREYUiBuREREREREREfsCAnIiIiIiIiMgPGJATERERERER+QEDciIiIiIiIiI/YEBORERERERE5AcMyImIiIiIiIj8gAE5ERERERERkR8wICciIiIiIiLygzB/N+BUU0oBAEpKSvzcEiIiIqGPSfoYRSeHx3oiIgo0vh7rQz4gLy0tBQBkZWX5uSVERESuSktLkZCQ4O9mBD0e64mIKFA1dKw3VIifnnc4HMjNzUVcXBwMwzip5yopKUFWVhb27duH+Pj4Zmqh/4RSf0KpL0Bo9SeU+gKwP4EsmPqilEJpaSkyMjJgsXD02Mnisd479idwhVJfgNDqTyj1BQit/gRTX3w91od8htxisaB169bN+pzx8fEBvwM0Rij1J5T6AoRWf0KpLwD7E8iCpS/MjDcfHusbxv4ErlDqCxBa/QmlvgCh1Z9g6Ysvx3qeliciIiIiIiLyAwbkRERERERERH7AgLwRbDYbpk2bBpvN5u+mNItQ6k8o9QUIrf6EUl8A9ieQhVJfyH9CbT9ifwJXKPUFCK3+hFJfgNDqTyj1RQv5Sd2IiIiIiIiIAhEz5ERERERERER+wICciIiIiIiIyA8YkBMRERERERH5AQNyIiIiIiIiIj9gQN4Ir7/+Otq1a4fIyEgMHjwYq1at8neTGvTMM89g4MCBiIuLQ2pqKkaPHo1t27a53KeiogKTJk1CcnIyYmNjMWbMGOTn5/upxb579tlnYRgG7r777trrgq0vBw4cwPXXX4/k5GRERUWhd+/eWLNmTe3tSik89thjaNWqFaKiojBs2DDs2LHDjy32rqamBlOnTkX79u0RFRWFjh074sknn4TzvJGB2p9vv/0Wo0aNQkZGBgzDwKeffupyuy/tLiwsxLhx4xAfH4/ExETceuutKCsrO429MNXXH7vdjoceegi9e/dGTEwMMjIycOONNyI3N9flOYKlP+4mTJgAwzDwt7/9zeX6QOoPBTYe6wMLj/WBJZiP9UBoHe95rA+dYz0Dch99+OGHuPfeezFt2jSsW7cOffv2xfDhw1FQUODvptVr2bJlmDRpElasWIFFixbBbrfj0ksvRXl5ee197rnnHnz22WeYPXs2li1bhtzcXFx99dV+bHXDVq9ejTfffBN9+vRxuT6Y+nL06FEMGTIE4eHhWLBgAbZs2YIXX3wRLVq0qL3P888/j1dffRVvvPEGVq5ciZiYGAwfPhwVFRV+bLlnzz33HGbMmIHp06dj69ateO655/D888/jtddeq71PoPanvLwcffv2xeuvv+7xdl/aPW7cOPz0009YtGgR5s+fj2+//Ra333776eqCi/r6c+zYMaxbtw5Tp07FunXr8Mknn2Dbtm244oorXO4XLP1xNmfOHKxYsQIZGRl1bguk/lDg4rE+sPBYz2N9cwul4z2P9SF0rFfkk0GDBqlJkybV/l1TU6MyMjLUM88848dWNV5BQYECoJYtW6aUUqqoqEiFh4er2bNn195n69atCoBavny5v5pZr9LSUtW5c2e1aNEideGFF6opU6YopYKvLw899JA677zzvN7ucDhUenq6euGFF2qvKyoqUjabTX3wwQeno4mNMnLkSHXLLbe4XHf11VercePGKaWCpz8A1Jw5c2r/9qXdW7ZsUQDU6tWra++zYMECZRiGOnDgwGlruyfu/fFk1apVCoDas2ePUio4+7N//36VmZmpNm/erNq2batefvnl2tsCuT8UWHisDxw81gfWsVELlWO9UqF1vOexPrD70xBmyH1QVVWFtWvXYtiwYbXXWSwWDBs2DMuXL/djyxqvuLgYAJCUlAQAWLt2Lex2u0vfunXrhjZt2gRs3yZNmoSRI0e6tBkIvr7MmzcPAwYMwDXXXIPU1FT069cPM2fOrL199+7dyMvLc+lPQkICBg8eHJD9Offcc7FkyRJs374dALBhwwZ8//33uOyyywAEX380X9q9fPlyJCYmYsCAAbX3GTZsGCwWC1auXHna29xYxcXFMAwDiYmJAIKvPw6HAzfccAMeeOAB9OzZs87twdYf8g8e6wMLj/WBeWwM1WM9EPrHex7rA1eYvxsQDA4fPoyamhqkpaW5XJ+Wloaff/7ZT61qPIfDgbvvvhtDhgxBr169AAB5eXmIiIio/XBqaWlpyMvL80Mr6zdr1iysW7cOq1evrnNbsPVl165dmDFjBu6991786U9/wurVq3HXXXchIiIC48ePr22zp/0uEPvz8MMPo6SkBN26dYPVakVNTQ2eeuopjBs3DgCCrj+aL+3Oy8tDamqqy+1hYWFISkoK6L4BMhbzoYcewtixYxEfHw8g+Prz3HPPISwsDHfddZfH24OtP+QfPNYHDh7rA7c/oXqsB0L7eM9jfeD1xxkD8jPIpEmTsHnzZnz//ff+bkqT7Nu3D1OmTMGiRYsQGRnp7+acNIfDgQEDBuDpp58GAPTr1w+bN2/GG2+8gfHjx/u5dY330Ucf4f3338d///tf9OzZEzk5Obj77ruRkZERlP05E9jtdlx77bVQSmHGjBn+bk6TrF27Fq+88grWrVsHwzD83Rwiv+OxPrDwWE/+xmN94GPJug9SUlJgtVrrzOCZn5+P9PR0P7WqcSZPnoz58+fj66+/RuvWrWuvT09PR1VVFYqKilzuH4h9W7t2LQoKCnD22WcjLCwMYWFhWLZsGV599VWEhYUhLS0taPoCAK1atUKPHj1cruvevTv27t0LALVtDpb97oEHHsDDDz+M6667Dr1798YNN9yAe+65B8888wyA4OuP5ku709PT60z6VF1djcLCwoDtmz5A79mzB4sWLao9Yw4EV3++++47FBQUoE2bNrX/F/bs2YP77rsP7dq1AxBc/SH/4bE+MPBYj9q/A7E/oXqsB0LzeM9jfWD2xx0Dch9ERESgf//+WLJkSe11DocDS5YsQXZ2th9b1jClFCZPnow5c+Zg6dKlaN++vcvt/fv3R3h4uEvftm3bhr179wZc34YOHYpNmzYhJyen9mfAgAEYN25c7e/B0hcAGDJkSJ1labZv3462bdsCANq3b4/09HSX/pSUlGDlypUB2Z9jx47BYnH9l2K1WuFwOAAEX380X9qdnZ2NoqIirF27tvY+S5cuhcPhwODBg097mxuiD9A7duzA4sWLkZyc7HJ7MPXnhhtuwMaNG13+L2RkZOCBBx7Al19+CSC4+kP+w2N9YOCxPrCPjaF6rAdC73jPY33g9qcO/84pFzxmzZqlbDabevfdd9WWLVvU7bffrhITE1VeXp6/m1aviRMnqoSEBPXNN9+ogwcP1v4cO3as9j4TJkxQbdq0UUuXLlVr1qxR2dnZKjs724+t9p3zzKtKBVdfVq1apcLCwtRTTz2lduzYod5//30VHR2t/vOf/9Te59lnn1WJiYlq7ty5auPGjerKK69U7du3V8ePH/djyz0bP368yszMVPPnz1e7d+9Wn3zyiUpJSVEPPvhg7X0CtT+lpaVq/fr1av369QqAeumll9T69etrZyL1pd0jRoxQ/fr1UytXrlTff/+96ty5sxo7dmzA9aeqqkpdccUVqnXr1ionJ8fl/0JlZWXQ9ccT95lXlQqs/lDg4rE+MPFYHziC+VivVGgd73msD51jPQPyRnjttddUmzZtVEREhBo0aJBasWKFv5vUIAAef955553a+xw/flzdcccdqkWLFio6OlpdddVV6uDBg/5rdCO4H6SDrS+fffaZ6tWrl7LZbKpbt27qrbfecrnd4XCoqVOnqrS0NGWz2dTQoUPVtm3b/NTa+pWUlKgpU6aoNm3aqMjISNWhQwf1yCOPuPzjD9T+fP311x4/J+PHj1dK+dbuI0eOqLFjx6rY2FgVHx+vbr75ZlVaWuqH3tTfn927d3v9v/D1118HXX888XSQDqT+UGDjsT7w8FgfOIL5WK9UaB3veawPnWO9oZRSzZNrJyIiIiIiIiJfcQw5ERERERERkR8wICciIiIiIiLyAwbkRERERERERH7AgJyIiIiIiIjIDxiQExEREREREfkBA3IiIiIiIiIiP2BATkREREREROQHDMiJiIiIiIiI/IABORGdUoZh4NNPP/V3M4iIiOgU4vGeqGkYkBOFsJtuugmGYdT5GTFihL+bRkRERM2Ex3ui4BXm7wYQ0ak1YsQIvPPOOy7X2Ww2P7WGiIiITgUe74mCEzPkRCHOZrMhPT3d5adFixYApLxsxowZuOyyyxAVFYUOHTrg448/dnn8pk2bcPHFFyMqKgrJycm4/fbbUVZW5nKff/7zn+jZsydsNhtatWqFyZMnu9x++PBhXHXVVYiOjkbnzp0xb968U9tpIiKiMwyP90TBiQE50Rlu6tSpGDNmDDZs2IBx48bhuuuuw9atWwEA5eXlGD58OFq0aIHVq1dj9uzZWLx4scsBeMaMGZg0aRJuv/12bNq0CfPmzUOnTp1cXuOJJ57Atddei40bN+K3v/0txo0bh8LCwtPaTyIiojMZj/dEAUoRUcgaP368slqtKiYmxuXnqaeeUkopBUBNmDDB5TGDBw9WEydOVEop9dZbb6kWLVqosrKy2ts///xzZbFYVF5enlJKqYyMDPXII494bQMA9eijj9b+XVZWpgCoBQsWNFs/iYiIzmQ83hMFL44hJwpxv/nNbzBjxgyX65KSkmp/z87OdrktOzsbOTk5AICtW7eib9++iImJqb19yJAhcDgc2LZtGwzDQG5uLoYOHVpvG/r06VP7e0xMDOLj41FQUNDULhEREZEbHu+JghMDcqIQFxMTU6ekrLlERUX5dL/w8HCXvw3DgMPhOBVNIiIiOiPxeE8UnDiGnOgMt2LFijp/d+/eHQDQvXt3bNiwAeXl5bW3//DDD7BYLOjatSvi4uLQrl07LFmy5LS2mYiIiBqHx3uiwMQMOVGIq6ysRF5enst1YWFhSElJAQDMnj0bAwYMwHnnnYf3338fq1atwttvvw0AGDduHKZNm4bx48fj8ccfx6FDh3DnnXfihhtuQFpaGgDg8ccfx4QJE5CamorLLrsMpaWl+OGHH3DnnXee3o4SERGdwXi8JwpODMiJQtzChQvRqlUrl+u6du2Kn3/+GYDMiDpr1izccccdaNWqFT744AP06NEDABAdHY0vv/wSU6ZMwcCBAxEdHY0xY8bgpZdeqn2u8ePHo6KiAi+//DLuv/9+pKSk4He/+93p6yARERHxeE8UpAyllPJ3I4jIPwzDwJw5czB69Gh/N4WIiIhOER7viQIXx5ATERERERER+QEDciIiIiIiIiI/YMk6ERERERERkR8wQ05ERERERETkBwzIiYiIiIiIiPyAATkRERERERGRHzAgJyIiIiIiIvIDBuREREREREREfsCAnIiIiIiIiMgPGJATERERERER+QEDciIiIiIiIiI/+P/1yOWRQR8oWgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADW4UlEQVR4nOzdd3gUVdsG8HvTe6ElhBIQkRC6NJFeFFHpoGJD4JX31SgK2PhUQEVRsCIRLAg2LIAgWCgiICBIR3qR0HtJQnqb74+TszNbs7vZzZbcv+vKNZvNlsmm7NzzPOccnaIoCoiIiIiIiIioQvm5eweIiIiIiIiIKiMGciIiIiIiIiI3YCAnIiIiIiIicgMGciIiIiIiIiI3YCAnIiIiIiIicgMGciIiIiIiIiI3YCAnIiIiIiIicgMGciIiIiIiIiI3YCAnIiIiIiIicgMGciIiIiIiL9StWzd069bN5ts2bdrUtTtUql69enjkkUcq5LmIvB0DOVElMm/ePOh0Ouh0OmzYsMHk64qioE6dOtDpdLj77rv112dlZWHSpElo2rQpwsPDUbVqVbRs2RJPPfUUzp49q7/d5MmT9Y9v7uP8+fMV8n0SERHZSr43btu2zd27Um5nz57F5MmTsWvXLnfvitPUq1cPOp0OvXr1Mvv1Tz/9VH+cYfwz3LBhA/r06YNatWohJCQEdevWRd++fTF//nyD21k7dvnf//7nsu+NCAAC3L0DRFTxQkJCMH/+fHTq1Mng+nXr1uH06dMIDg7WX1dYWIguXbrg4MGDGD58OJ588klkZWVh3759mD9/PgYOHIiEhASDx5k1axYiIiJMnjcmJsYl3w8REVFltHLlSoPPz549i1deeQX16tVDy5Yt3bNTAA4dOgQ/P+fV/UJCQrBmzRqcP38e8fHxBl/75ptvEBISgry8PIPrFyxYgHvvvVdfQIiNjUVaWhr+/PNPfPrpp7j//vsNbn/bbbfh4YcfNnnum266yWnfB5E5DOREldCdd96JBQsWYMaMGQgIUP8NzJ8/H61bt8bly5f11y1ZsgQ7d+7EN998Y/LmlZeXh4KCApPHHzJkCKpVq+a6b4CIiKgSy8nJQVhYGIKCgty9K2ZpT+w7Q8eOHbF161Z8//33eOqpp/TXnz59GuvXr8fAgQOxaNEig/tMnjwZycnJ2Lx5s8nrdPHiRZPnuOmmm/Dggw86db+JbMGWdaJKaNiwYbhy5QpWrVqlv66goAALFy40Cd3//vsvAPFmaCwkJARRUVGu3VkiIiIPsHPnTvTp0wdRUVGIiIhAz549sXnzZpPb/fPPP+jatStCQ0NRu3ZtTJkyBXPnzoVOp8Px48f1t/vpp59w1113ISEhAcHBwWjQoAFee+01FBcXGzyeHPu9fft2dOnSBWFhYfi///s//dfkGPK1a9eibdu2AIARI0boW67nzZtn8Hj79+9H9+7dERYWhlq1amHatGkGX1+7di10Oh1++OEHvPLKK6hVqxYiIyMxZMgQZGRkID8/H08//TRq1KiBiIgIjBgxAvn5+QaPYW4MeXp6OsaOHYt69eohODgYtWvXxsMPP2xQBLAkJCQEgwYNMmk1//bbbxEbG4vevXub3Offf/9F27ZtzZ60qFGjRpnPSVRRWCEnqoTq1auHDh064Ntvv0WfPn0AAL/99hsyMjJw3333YcaMGfrbJiYmAgC+/PJLvPTSS9DpdGU+/tWrV02uCwgIYMs6ERF5pX379qFz586IiorCc889h8DAQHz88cfo1q0b1q1bh/bt2wMAzpw5g+7du0On02HChAkIDw/HZ599ZrZiPG/ePERERGDcuHGIiIjAH3/8gYkTJyIzMxPTp083uO2VK1fQp08f3HfffXjwwQcRFxdn8niNGzfGq6++iokTJ2L06NHo3LkzAODWW2/V3+batWu44447MGjQINxzzz1YuHAhnn/+eTRr1kx/PCBNnToVoaGheOGFF3D06FF8+OGHCAwMhJ+fH65du4bJkydj8+bNmDdvHurXr4+JEydafP2ysrLQuXNnHDhwACNHjsTNN9+My5cvY+nSpTh9+rRNXXX3338/br/9dvz7779o0KABANHZN2TIEAQGBprcPjExEatXr8bp06dRu3btMh8/Ly/P7MmBqKgoj+1EIB+hEFGlMXfuXAWAsnXrVmXmzJlKZGSkkpOToyiKogwdOlTp3r27oiiKkpiYqNx1112KoihKTk6O0qhRIwWAkpiYqDzyyCPKnDlzlAsXLpg8/qRJkxQAZj8aNWpUcd8oERGRjbTvjZYMGDBACQoKUv7991/9dWfPnlUiIyOVLl266K978sknFZ1Op+zcuVN/3ZUrV5QqVaooAJS0tDT99fL9V+u///2vEhYWpuTl5emv69q1qwJAmT17tsntu3btqnTt2lX/+datWxUAyty5c83eFoDy5Zdf6q/Lz89X4uPjlcGDB+uvW7NmjQJAadq0qVJQUKC/ftiwYYpOp1P69Olj8LgdOnRQEhMTDa5LTExUhg8frv984sSJCgDlxx9/NNmvkpISk+uMH+uuu+5SioqKlPj4eOW1115TFEVR9u/frwBQ1q1bZ/ZnOGfOHAWAEhQUpHTv3l15+eWXlfXr1yvFxcUmz2Hp2AWA8u2331rdP6LyYss6USV1zz33IDc3Fz///DOuX7+On3/+2aRdHQBCQ0Px999/49lnnwUgzuiPGjUKNWvWxJNPPmnSpgYAixYtwqpVqww+5s6d6/LviYiIyNmKi4uxcuVKDBgwADfccIP++po1a+L+++/Hhg0bkJmZCQBYvnw5OnToYDChWpUqVfDAAw+YPG5oaKj+8vXr13H58mV07twZOTk5OHjwoMFtg4ODMWLEiHJ/LxEREQbjpIOCgtCuXTscO3bM5LYPP/ywQeW5ffv2UBQFI0eONLhd+/btcerUKRQVFVl83kWLFqFFixYYOHCgydds6bwDAH9/f9xzzz349ttvAYjJ3OrUqaPvBDA2cuRILF++HN26dcOGDRvw2muvoXPnzmjYsCH++usvk9v379/f5Nhl1apV6N69u037R+QotqwTVVLVq1dHr169MH/+fOTk5KC4uBhDhgwxe9vo6GhMmzYN06ZNw4kTJ7B69Wq8/fbbmDlzJqKjozFlyhSD23fp0oWTuhERkU+4dOkScnJy0KhRI5OvNW7cGCUlJTh16hSaNGmCEydOoEOHDia3u/HGG02u27dvH1566SX88ccf+kAvZWRkGHxeq1Ytp7RN165d2yQAx8bG4p9//jG5bd26dQ0+j46OBgDUqVPH5PqSkhJkZGSgatWqZp/333//xeDBg8uz6wBE2/qMGTOwe/duzJ8/H/fdd5/VQN+7d2/07t0bOTk52L59O77//nvMnj0bd999Nw4ePGgwlrx27doWl1YjciVWyIkqsfvvvx+//fYbZs+ejT59+tg0xjsxMREjR47Exo0bERMTg2+++cb1O0pERORD0tPT0bVrV+zevRuvvvoqli1bhlWrVuGtt94CAJSUlBjcXltNLw9/f3+z1yuKYvNt7XkMZ2vfvj0aNGiAp59+GmlpaWY7+8wJCwtD586dMXPmTLz00ku4du0afvvtNxfvLZFtWCEnqsQGDhyI//73v9i8eTO+//57u+4bGxuLBg0aYO/evS7aOyIiIverXr06wsLCcOjQIZOvHTx4EH5+fvqqcWJiIo4ePWpyO+Pr1q5diytXruDHH39Ely5d9NenpaWVa19tbf+uaM48Xhg2bBimTJmCxo0bO7TWeps2bQAA586dc8r+EJUXK+RElVhERARmzZqFyZMno2/fvmZvs3v3brOzjp44cQL79+8328JHRETkK/z9/XH77bfjp59+Mli27MKFC5g/fz46deqkXwK0d+/e2LRpE3bt2qW/3dWrV026yWSVWVtVLigowEcffVSufQ0PDwcgKvCeZPDgwdi9ezcWL15s8jV7K+v/+c9/MGnSJLzzzjtWb7d69Wqz1//6668AwOMX8hiskBNVcsOHD7f69VWrVmHSpEno168fbrnlFkRERODYsWP4/PPPkZ+fj8mTJ5vcZ+HChYiIiDC5/rbbbjO7VAsREZG7ff7551i+fLnJ9U899RSmTJmCVatWoVOnTnj88ccREBCAjz/+GPn5+QbreD/33HP4+uuvcdttt+HJJ5/UL3tWt25dXL16VV/BvvXWWxEbG4vhw4djzJgx0Ol0+Oqrr8rd9t2gQQPExMRg9uzZiIyMRHh4ONq3b4/69euX63HL69lnn8XChQsxdOhQjBw5Eq1bt8bVq1exdOlSzJ49Gy1atLD5sRITE80eexjr378/6tevj759+6JBgwbIzs7G77//jmXLlqFt27YmhYjDhw/j66+/NnmcuLg43HbbbTbvH5G9GMiJyKrBgwfj+vXrWLlyJf744w9cvXoVsbGxaNeuHcaPH2929tHHHnvM7GOtWbOGgZyIiDzSrFmzzF7/yCOPoEmTJli/fj0mTJiAqVOnoqSkBO3bt8fXX3+tX4McEBOerVmzBmPGjMEbb7yB6tWrIyUlBeHh4RgzZgxCQkIAAFWrVsXPP/+M8ePH46WXXkJsbCwefPBB9OzZE71793b4ewgMDMQXX3yBCRMm4H//+x+Kioowd+5ctwfyiIgIrF+/HpMmTcLixYvxxRdfoEaNGujZs6dNa4Q74rPPPsNPP/2EH374AWfPnoWiKLjhhhvw4osv4vnnn0dAgGEMkrOqG+vatSsDObmUTqmIGRiIiIiIiCqpp59+Gh9//DGysrIsTopGRJUTx5ATERERETlJbm6uwedXrlzBV199hU6dOjGME5EJtqwTERERETlJhw4d0K1bNzRu3BgXLlzAnDlzkJmZiZdfftndu0ZEHoiBnIiIiIjISe68804sXLgQn3zyCXQ6HW6++WbMmTPHYHkzIiKJY8iJiIiIiIiI3IBjyImIiIiIiIjcgIGciIiIiIiIyA18fgx5SUkJzp49i8jISOh0OnfvDhERERRFwfXr15GQkAA/P54bLy++1xMRkaex9b3e5wP52bNnUadOHXfvBhERkYlTp06hdu3a7t4Nr8f3eiIi8lRlvdf7fCCPjIwEIF6IqKgoN+8NERERkJmZiTp16ujfo6h8+F5PRESextb3ep8P5LJ1LSoqim/SRETkUdhe7Rx8ryciIk9V1ns9B64RERGRV0pNTUVycjLatm3r7l0hIiJyCAM5EREReaWUlBTs378fW7dudfeuEBEROYSBnIiIiIiIiMgNfH4MORGRrRRFQVFREYqLi929K+Tl/P39ERAQwDHiREQehu/15CzOeq9nICciAlBQUIBz584hJyfH3btCPiIsLAw1a9ZEUFCQu3eFiIjA93pyPme81zOQE1GlV1JSgrS0NPj7+yMhIQFBQUGsbJLDFEVBQUEBLl26hLS0NDRs2BB+fhwhRkTkTnyvJ2dy5ns9AzkRVXoFBQUoKSlBnTp1EBYW5u7dIR8QGhqKwMBAnDhxAgUFBQgJCXH3Lvmk1NRUpKamsvWUiMrE93pyNme91/OUPRFRKVYxyZn4++R6nGWdiOzF/83kTM74feJvJBEREREREZEbMJATERERERERuQEDORER6dWrVw/vv/++zbdfu3YtdDod0tPTXbZPADBv3jzExMS49DmIiIgqC77few4GciIiL6TT6ax+TJ482aHH3bp1K0aPHm3z7W+99VacO3cO0dHRDj0fERERWcb3e9/HWdaJiLzQuXPn9Je///57TJw4EYcOHdJfFxERob+sKAqKi4sREFD2v/zq1avbtR9BQUGIj4+36z5EzsJZ1onI1/H93vexQm6Hzp2BZs2AtDR37wkRuZKiANnZ7vlQFNv2MT4+Xv8RHR0NnU6n//zgwYOIjIzEb7/9htatWyM4OBgbNmzAv//+i/79+yMuLg4RERFo27Ytfv/9d4PHNW5h0+l0+OyzzzBw4ECEhYWhYcOGWLp0qf7rxi1sstVsxYoVaNy4MSIiInDHHXcYHFAUFRVhzJgxiImJQdWqVfH8889j+PDhGDBggF0/p1mzZqFBgwYICgpCo0aN8NVXX2l+hgomT56MunXrIjg4GAkJCRgzZoz+6x999BEaNmyIkJAQxMXFYciQIXY9N3kGV8yy/vzz4r1+/nynPSQReSh3vd/b+l4P8P0e8P33ewZyO+zfD+zdC+TluXtPiMiVcnKAiAj3fOTkOO/7eOGFF/Dmm2/iwIEDaN68ObKysnDnnXdi9erV2LlzJ+644w707dsXJ0+etPo4r7zyCu655x78888/uPPOO/HAAw/g6tWrVl6/HLz99tv46quv8Oeff+LkyZN45pln9F9/66238M0332Du3LnYuHEjMjMzsWTJEru+t8WLF+Opp57C+PHjsXfvXvz3v//FiBEjsGbNGgDAokWL8N577+Hjjz/GkSNHsGTJEjRr1gwAsG3bNowZMwavvvoqDh06hOXLl6NLly52PT/5rlOnxHv9xYvu3hMicjV3vd87870e4Pu917/fKz4uIyNDAaBkZGSU+7GqVVMUQFH27nXCjhGRx8jNzVX279+v5ObmKoqiKFlZ4m/dHR9ZWfbv/9y5c5Xo6Gj952vWrFEAKEuWLCnzvk2aNFE+/PBD/eeJiYnKe++9p/8cgPLSSy/pP8/KylIAKL/99pvBc127dk2/LwCUo0eP6u+TmpqqxMXF6T+Pi4tTpk+frv+8qKhIqVu3rtK/f3+bv8dbb71VefTRRw1uM3ToUOXOO+9UFEVR3nnnHeWmm25SCgoKTB5r0aJFSlRUlJKZmWnx+ZzB+PdKy5nvTeTc1/Phh8Xf4rRpTtgxIvIY5v4nu+v93pH3ekXh+73kSe/3znivZ4XcDnLd95IS9+4HEblWWBiQleWej7Aw530fbdq0Mfg8KysLzzzzDBo3boyYmBhERETgwIEDZZ4xb968uf5yeHg4oqKicNFK+TAsLAwNGjTQf16zZk397TMyMnDhwgW0a9dO/3V/f3+0bt3aru/twIED6Nixo8F1HTt2xIEDBwAAQ4cORW5uLm644QY8+uijWLx4MYqKigAAt912GxITE3HDDTfgoYcewjfffIMcZ5cryGsFBoptYaF794OIXM9d7/fOfK8H+H7v7e/3DOR2YCAnqhx0OiA83D0fOp3zvo/w8HCDz5955hksXrwYb7zxBtavX49du3ahWbNmKCgosPo4gTKh6F8fHUqs/CM0d3vFngFzTlCnTh0cOnQIH330EUJDQ/H444+jS5cuKCwsRGRkJHbs2IFvv/0WNWvWxMSJE9GiRQuXL+VC3oGBnKjycNf7vTPf6wG+33v7+z0DuR0YyInIm23cuBGPPPIIBg4ciGbNmiE+Ph7Hjx+v0H2Ijo5GXFycwSRcxcXF2LFjh12P07hxY2zcuNHguo0bNyI5OVn/eWhoKPr27YsZM2Zg7dq12LRpE/bs2QMACAgIQK9evTBt2jT8888/OH78OP74449yfGfkKxjIicjb8f3eu97vueyZHRjIicibNWzYED/++CP69u0LnU6Hl19+2eqZb1d58sknMXXqVNx4441ISkrChx9+iGvXrkFnR8ng2WefxT333INWrVqhV69eWLZsGX788Uf9LLLz5s1DcXEx2rdvj7CwMHz99dcIDQ1FYmIifv75Zxw7dgxdunRBbGwsfv31V5SUlKBRo0au+pbJRVyx7BkDORF5O77fe9f7PQO5HRjIicibvfvuuxg5ciRuvfVWVKtWDc8//zwyMzMrfD+ef/55nD9/Hg8//DD8/f0xevRo9O7dG/7+/jY/xoABA/DBBx/g7bffxlNPPYX69etj7ty56NatGwAgJiYGb775JsaNG4fi4mI0a9YMy5YtQ9WqVRETE4Mff/wRkydPRl5eHho2bIhvv/0WTZo0cdF3TK6SkpKClJQUZGZmIjo62imPyUBORN6O7/fe9X6vUyq60b+CyTfpjIwMREVFleux6tcHjh8HNm8G2rd3zv4Rkfvl5eUhLS0N9evXR0hIiLt3p9IpKSlB48aNcc899+C1115z9+44jbXfK2e+N5FzX8+XXwamTAGeeAL48EMn7SARuR3f693PF9/vnfFezwq5HVghJyIqvxMnTmDlypXo2rUr8vPzMXPmTKSlpeH+++93964RsUJOROQkfL+3DSd1swMDORFR+fn5+WHevHlo27YtOnbsiD179uD3339H48aN3b1rRAzkREROwvd727BCbgcGciKi8qtTp47JjKlEnoKBnIjIOfh+bxtWyO3AQE5EROTbGMiJiKgiMZDbgYGciIjItzGQExFRRWIgtwMDORERkW9jICcioorEQG4HBnIiIiLPkZqaiuTkZLRt29Zpj8lATkREFYmB3A4M5ERERJ4jJSUF+/fvx9atW532mAzkRERUkRjI7cBATkRE5NtkIC8ocO9+EBFR5cBAbgcGciLyNd26dcPTTz+t/7xevXp4//33rd5Hp9NhyZIl5X5uZz2ONZMnT0bLli1d+hzkW1ghJyJfxPd7z8VAbgcGciLyFH379sUdd9xh9mvr16+HTqfDP//8Y/fjbt26FaNHjy7v7hmw9CZ57tw59OnTx6nPRVReDORE5En4fu/7GMjtwEBORJ5i1KhRWLVqFU6fPm3ytblz56JNmzZo3ry53Y9bvXp1hIWFOWMXyxQfH4/g4OAKeS4iWzGQE5En4fu972MgtwMDOVEloShAdrZ7PhTFpl28++67Ub16dcybN8/g+qysLCxYsACjRo3ClStXMGzYMNSqVQthYWFo1qwZvv32W6uPa9zCduTIEXTp0gUhISFITk7GqlWrTO7z/PPP46abbkJYWBhuuOEGvPzyyygsTTPz5s3DK6+8gt27d0On00Gn0+n32biFbc+ePejRowdCQ0NRtWpVjB49GllZWfqvP/LIIxgwYADefvtt1KxZE1WrVkVKSor+uWxRUlKCV199FbVr10ZwcDBatmyJ5cuX679eUFCAJ554AjVr1kRISAgSExMxdepUAICiKJg8eTLq1q2L4OBgJCQkYMyYMTY/N3kHBnKiSsRd7/c2vtcDfL+vDO/3AS57ZB/EQE5USeTkABER7nnurCwgPLzMmwUEBODhhx/GvHnz8OKLL0Kn0wEAFixYgOLiYgwbNgxZWVlo3bo1nn/+eURFReGXX37BQw89hAYNGqBdu3ZlPkdJSQkGDRqEuLg4/P3338jIyDAYfyZFRkZi3rx5SEhIwJ49e/Doo48iMjISzz33HO69917s3bsXy5cvx++//w4AiI6ONnmM7Oxs9O7dGx06dMDWrVtx8eJF/Oc//8ETTzxhcBCyZs0a1KxZE2vWrMHRo0dx7733omXLlnj00UfL/H4A4IMPPsA777yDjz/+GK1atcLnn3+Ofv36Yd++fWjYsCFmzJiBpUuX4ocffkDdunVx6tQpnDp1CgCwaNEivPfee/juu+/QpEkTnD9/Hrt377bpecl7BAWJLQM5USXgrvd7G9/rAb7fV4r3e8XHZWRkKACUjIyMcj9Wly6KAijKDz84YceIyGPk5uYq+/fvV3Jzc8UVWVnij90dH1lZNu/3gQMHFADKmjVr9Nd17txZefDBBy3e56677lLGjx+v/7xr167KU089pf88MTFRee+99xRFUZQVK1YoAQEBypkzZ/Rf/+233xQAyuLFiy0+x/Tp05XWrVvrP580aZLSokULk9tpH+eTTz5RYmNjlSzN9//LL78ofn5+yvnz5xVFUZThw4criYmJSlFRkf42Q4cOVe69916L+2L83AkJCcrrr79ucJu2bdsqjz/+uKIoivLkk08qPXr0UEpKSkwe65133lFuuukmpaCgwOLzaZn8Xmk4872JnPt6bt4s/hTr1XPCjhGRxzD7P9ld7/d2vNcrCt/vFcVz3++d8V7PlnU7sEJOVEmEhYmz1+74sGM8V1JSEm699VZ8/vnnAICjR49i/fr1GDVqFACguLgYr732Gpo1a4YqVaogIiICK1aswMmTJ216/AMHDqBOnTpISEjQX9ehQweT233//ffo2LEj4uPjERERgZdeesnm59A+V4sWLRCuqRh07NgRJSUlOHTokP66Jk2awN/fX/95zZo1cfHiRZueIzMzE2fPnkXHjh0Nru/YsSMOHDgAQLTJ7dq1C40aNcKYMWOwcuVK/e2GDh2K3Nxc3HDDDXj00UexePFiFBUV2fV9kudjyzpRJeKu93s7x27z/d633+8ZyO3AQE5USeh0opXMHR+lrWi2GjVqFBYtWoTr169j7ty5aNCgAbp27QoAmD59Oj744AM8//zzWLNmDXbt2oXevXujwIkLLG/atAkPPPAA7rzzTvz888/YuXMnXnzxRac+h1agTEuldDodSpz4T/nmm29GWloaXnvtNeTm5uKee+7BkCFDAAB16tTBoUOH8NFHHyE0NBSPP/44unTpYteYNnKu1NRUJCcno23btk57TAZyokrEXe/3dr7XA3y/9+X3ewZyOzCQE5Gnueeee+Dn54f58+fjyy+/xMiRI/XjyzZu3Ij+/fvjwQcfRIsWLXDDDTfg8OHDNj9248aNcerUKZw7d05/3ebNmw1u89dffyExMREvvvgi2rRpg4YNG+LEiRMGtwkKCkJxcXGZz7V7925kZ2frr9u4cSP8/PzQqFEjm/fZmqioKCQkJGDjxo0G12/cuBHJyckGt7v33nvx6aef4vvvv8eiRYtw9epVAEBoaCj69u2LGTNmYO3atdi0aRP27NnjlP0j+6WkpGD//v3YunWr0x6TgZyIPBHf723nbe/3nNTNDgzkRORpIiIicO+992LChAnIzMzEI488ov9aw4YNsXDhQvz111+IjY3Fu+++iwsXLhi8GVnTq1cv3HTTTRg+fDimT5+OzMxMvPjiiwa3adiwIU6ePInvvvsObdu2xS+//ILFixcb3KZevXpIS0vDrl27ULt2bURGRposf/LAAw9g0qRJGD58OCZPnoxLly7hySefxEMPPYS4uDjHXhwznn32WUyaNAkNGjRAy5YtMXfuXOzatQvffPMNAODdd99FzZo10apVK/j5+WHBggWIj49HTEwM5s2bh+LiYrRv3x5hYWH4+uuvERoaisTERKftH7kfAzkReSK+39vHm97vWSG3AwM5EXmiUaNG4dq1a+jdu7fB+K+XXnoJN998M3r37o1u3bohPj4eAwYMsPlx/fz8sHjxYuTm5qJdu3b4z3/+g9dff93gNv369cPYsWPxxBNPoGXLlvjrr7/w8ssvG9xm8ODBuOOOO9C9e3dUr17d7FIsYWFhWLFiBa5evYq2bdtiyJAh6NmzJ2bOnGnfi1GGMWPGYNy4cRg/fjyaNWuG5cuXY+nSpWjYsCEAMYPstGnT0KZNG7Rt2xbHjx/Hr7/+Cj8/P8TExODTTz9Fx44d0bx5c/z+++9YtmwZqlat6tR9JPdiICciT8X3e9t50/u9TlHsWAjPC2VmZiI6OhoZGRmIiooq12PddRfw66/A558DI0Y4aQeJyO3y8vKQlpaG+vXrIyQkxN27Qz7C2u+VM9+byLmv57lzQEKCOAlfRuclEXkRvteTKzjjvZ4VcjuwQk5EROTbZIW8pITv90RE5HpuD+RnzpzBgw8+iKpVqyI0NBTNmjXDtm3b9F9XFAUTJ05EzZo1ERoail69euHIkSNu2VcGciIiIt+mndiXbetERORqbg3k165dQ8eOHREYGIjffvsN+/fvxzvvvIPY2Fj9baZNm4YZM2Zg9uzZ+PvvvxEeHo7evXsjLy+vwveXgZyIiMi3MZATEVFFcuss62+99Rbq1KmDuXPn6q+rX7++/rKiKHj//ffx0ksvoX///gCAL7/8EnFxcViyZAnuu+++Ct1fBnIiIiLfxkBOREQVya0V8qVLl6JNmzYYOnQoatSogVatWuHTTz/Vfz0tLQ3nz59Hr1699NdFR0ejffv22LRpk9nHzM/PR2ZmpsGHszCQE/k2H5/jkioYf5+8U4CmVMFATuR7+L+ZnMkZv09uDeTHjh3DrFmz0LBhQ6xYsQKPPfYYxowZgy+++AIAcP78eQAwWZMuLi5O/zVjU6dORXR0tP6jTp06TttfBnIi3xRYWhLLyclx856QL5G/T4Hakit5PJ1ODeUM5ES+g+/15ArOeK93a8t6SUkJ2rRpgzfeeAMA0KpVK+zduxezZ8/G8OHDHXrMCRMmYNy4cfrPMzMznRbKGciJfJO/vz9iYmJw8eJFAGKNTJ1O5+a9Im+lKApycnJw8eJFxMTEwN/f3927RHYKDASKihjIiXwJ3+vJmZz5Xu/WQF6zZk0kJycbXNe4cWMsWrQIABAfHw8AuHDhAmrWrKm/zYULF9CyZUuzjxkcHIzg4GCX7C8DOZHvkv9v5Bs1UXnFxMTof6/IuwQGArm5DOREvobv9eRsznivd2sg79ixIw4dOmRw3eHDh5GYmAhATPAWHx+P1atX6wN4ZmYm/v77bzz22GMVvbsM5EQ+TKfToWbNmqhRowYKeRRO5RQYGMjKeAVITU1FamoqiouLnfq4svOwoMCpD0tEbsb3enImZ73XuzWQjx07FrfeeiveeOMN3HPPPdiyZQs++eQTfPLJJwDEH83TTz+NKVOmoGHDhqhfvz5efvllJCQkYMCAARW+v/L1ZiAn8l3+/v4MUkReIiUlBSkpKcjMzER0dLTTHlcGch6vE/kmvteTJ3FrIG/bti0WL16MCRMm4NVXX0X9+vXx/vvv44EHHtDf5rnnnkN2djZGjx6N9PR0dOrUCcuXL0dISEiF7y8r5ERERL6PgZyIiCqKWwM5ANx99924++67LX5dp9Ph1VdfxauvvlqBe2UeAzkREZHvYyAnIqKK4tZlz7wNAzkREZHvYyAnIqKKwkBuBwZyIiIi38dATkREFYWB3A4M5ERERL4vKEhsGciJiMjVGMjtIAO5k1dXISIiIg/CCjkREVUUBnI7sEJORETk+xjIiYioojCQ24GBnIiIyPcxkBMRUUVhILcDAzkREZHvYyAnIqKKwkBuBwZyIiIi38dATkREFYWB3A4M5ERERL6PgZyIiCoKA7kdGMiJiIh8HwM5ERFVFAZyOzCQExER+T4GciIiqigM5HZgICciIvJ9DORERFRRGMjtwEBORETk+xjIiYioojCQ24GBnIiIyPcxkBMRUUVhILcDAzkREZHvYyAnIqKKwkBuBwZyIiIiz5Gamork5GS0bdvWqY/LQE5ERBWFgdwODORERESeIyUlBfv378fWrVud+rgykBcUOPVhiYiITDCQ24GBnIiIyPexQk5ERBWFgdwODORERES+j4GciIgqCgO5HRjIiYiIfB8DORERVRQGcjswkBMREfk+BnIiIqooDOR2YCAnIiLyfQzkRERUURjI7cBATkRE5PsYyImIqKIwkNuBgZyIiMj3BQWJLQM5ERG5GgO5HRjIiYiIfB8r5EREVFEYyO3AQE5EROT7GMiJiKiiMJDbgYGciIjI9zGQExFRRWEgtwMDORERke9jICcioorCQG4HBnIiIiLfx0BOREQVhYHcDgzkREREvo+BnIiIKgoDuR0YyImIiHwfAzkREVUUBnI7MJATERH5PgZyIiKqKAzkdmAgJyIi8n0mgfzqVWDaNODMGbftExER+SYGcjswkBMREfk+k0A+Zw7w/PPAe++5bZ+IiMg3MZDbgYGciIjI95kE8osXxTYjwy37Q0REvouB3A4M5ERERL7PJJBnZYltUZFb9oeIiHwXA7kdGMiJiIh8n0kgz842uoKIiMg5GMjtwEBORETk+2QgLygovYIVciIichEGcjswkBMREfk+bYVcUcBATkRELsNAbgcGciIiIt8nAzkAFBdDbVlnICciIidjILcDAzkREZHv0wbywkKoFXKOISciIidjILcDAzkREZHvMwnkrJATEZGLuDWQT548GTqdzuAjKSlJ//W8vDykpKSgatWqiIiIwODBg3HhwgW37S8DORERkWsMHDgQsbGxGDJkiLt3xXKFnIGciIiczO0V8iZNmuDcuXP6jw0bNui/NnbsWCxbtgwLFizAunXrcPbsWQwaNMht+8pATkRE5BpPPfUUvvzyS3fvBgDA31+9zEBORESuFOD2HQgIQHx8vMn1GRkZmDNnDubPn48ePXoAAObOnYvGjRtj8+bNuOWWWyp6VxnIiYiIXKRbt25Yu3atu3cDAKDTiSp5YSFQmF8C5OSIL3AMOREROZnbK+RHjhxBQkICbrjhBjzwwAM4efIkAGD79u0oLCxEr1699LdNSkpC3bp1sWnTJouPl5+fj8zMTIMPZ2EgJyIiMvXnn3+ib9++SEhIgE6nw5IlS0xuk5qainr16iEkJATt27fHli1bKn5H7RAUJLZF13NL1z4DK+REROR0bg3k7du3x7x587B8+XLMmjULaWlp6Ny5M65fv47z588jKCgIMTExBveJi4vD+fPnLT7m1KlTER0drf+oU6eO0/aXgZyIiMhUdnY2WrRogdTUVLNf//777zFu3DhMmjQJO3bsQIsWLdC7d29cvHixgvfUdnIceXFmtnolAzkRETmZW1vW+/Tpo7/cvHlztG/fHomJifjhhx8QGhrq0GNOmDAB48aN03+emZnptFDOQE5ERGSqT58+Bu/pxt599108+uijGDFiBABg9uzZ+OWXX/D555/jhRdesPv58vPzkZ+fr//cmd1wkj6QZ2SpV7JlnYiInMztLetaMTExuOmmm3D06FHEx8ejoKAA6enpBre5cOGC2THnUnBwMKKiogw+nIWBnIiIyD4FBQXYvn27wRA0Pz8/9OrVy+oQNGtc2Q0nyUBekqkJ5KyQExGRk3lUIM/KysK///6LmjVronXr1ggMDMTq1av1Xz906BBOnjyJDh06uGX/GMiJiIjsc/nyZRQXFyMuLs7geuMhaL169cLQoUPx66+/onbt2lbD+oQJE5CRkaH/OHXqlNP3WwZyJYst60RE5DpubVl/5pln0LdvXyQmJuLs2bOYNGkS/P39MWzYMERHR2PUqFEYN24cqlSpgqioKDz55JPo0KGDW2ZYBxjIiYiIXOX333+3+bbBwcEIDg524d5oKuTXWSEnIiLXcWsgP336NIYNG4YrV66gevXq6NSpEzZv3ozq1asDAN577z34+flh8ODByM/PR+/evfHRRx+5bX8ZyImIiOxTrVo1+Pv748KFCwbXlzUEzd1kIMd1jiEnIiLXcWsg/+6776x+PSQkBKmpqRZnba1oDORERET2CQoKQuvWrbF69WoMGDAAAFBSUoLVq1fjiSeecO/OWcGWdSIiqghuDeTehoGciIjIVFZWFo4ePar/PC0tDbt27UKVKlVQt25djBs3DsOHD0ebNm3Qrl07vP/++8jOztbPuu4oedK+uLi4vN+CCRnIddlsWSciItdhILcDAzkREZGpbdu2oXv37vrP5fKjw4cPx7x583Dvvffi0qVLmDhxIs6fP4+WLVti+fLlJhO92SslJQUpKSnIzMxEdHR0uR7LmL5lPZsVciIich0GcjswkBMREZnq1q0bFEWxepsnnnjCo1vUjekr5DkcQ05ERK7jUcueeToGciIiospBBnI/tqwTEZELMZDbgYGciIioctAH8ly2rBMRkeswkNuBgZyIiMhzpKamIjk5GW3btnX6Y+sDubZlvaSEBwFERORUDOR2YCAnIiLyHCkpKdi/fz+2bt3q9MeWgdw/N8vwC6ySExGREzGQ24GBnIiIqHLQB/L8bMMvMJATEZETMZDbgYGciIiocpCBPCCPFXIiInIdBnI7MJATERFVDvpAblwh59JnRETkRAzkdmAgJyIiqhxkIA/MZ4WciIhch4HcDgzkRERElQMDORERVQQGcjswkBMREXmOilj2LKiQk7oREZHrMJDbQQZyRREfRERE5D6uX/ZMQWABx5ATEZHrMJDbwU/zajGQExER+a6gICAUufBD6Ru+LJmzQk5ERE7EQG4HbSBn2zoREZHvCgwEIqAZPx4dLbYM5ERE5EQM5HZgICciIqocDAJ5eLgomQMM5ERE5FQM5HZgICciIqocAgOBcJSOHw8PBwICxGWOISciIicKcPcOeBMGciIiosrBoEIeEaF+gRVyIiJyIlbI7cBATkRE5DlcveyZQcs6J3UjIiIXYCC3AwM5ERGR53D1smf6lvWICLVlnYGciIiciIHcDgzkRERElYNJhZxjyImIyAUYyO3AQE5ERFQ5sEJOREQVgYHcDgzkRERElYPJpG4cQ05ERC7AQG4HnU69zEBORETku9iyTkREFYGB3A46nRrKGciJiIh8F1vWiYioIjCQ20m2rTOQExER+S6LFXIGciIiciIGcjsxkBMRkTfYsWMH9uzZo//8p59+woABA/B///d/KCgocOOeOU+FrUPOMeREROQiDOR2YiAnIiJv8N///heHDx8GABw7dgz33XcfwsLCsGDBAjz33HNu3jvncMs65BxDTkRETsRAbicGciIi8gaHDx9Gy5YtAQALFixAly5dMH/+fMybNw+LFi1y7855AbasExFRRWAgtxMDOREReQNFUVBS+mb1+++/48477wQA1KlTB5cvX3bnrnkFTupGREQVgYHcTgzkRETkDdq0aYMpU6bgq6++wrp163DXXXcBANLS0hAXF+fmvfN8JhVyjiEnIiIXYCC3EwM5ERF5g/fffx87duzAE088gRdffBE33ngjAGDhwoW49dZb3bx3ns9kUjeOISciIhcIcPcOeBsGciIi8gbNmzc3mGVdmj59Ovz9/d2wR96FLetERFQRWCG3EwM5ERF5g1OnTuH06dP6z7ds2YKnn34aX375JQJl+zVZxJZ1IiKqCAzkdmIgJyIib3D//fdjzZo1AIDz58/jtttuw5YtW/Diiy/i1VdfdfPeeb7AAIXLnhERkcsxkNuJgZyIiLzB3r170a5dOwDADz/8gKZNm+Kvv/7CN998g3nz5rl357xAUHEu/KAAAJQwLntGRESuwUBuJwZyIiLyBoWFhQgODgYglj3r168fACApKQnnzp1z5655hfCrpwAAeQhGNhjIiYjINRjI7cRATkRE3qBJkyaYPXs21q9fj1WrVuGOO+4AAJw9exZVq1Z18945R2pqKpKTk9G2bVunP3bY9vUAgC1oh0tX/DiGnIiIXIKB3E4M5ERE5A3eeustfPzxx+jWrRuGDRuGFi1aAACWLl2qb2X3dikpKdi/fz+2bt3q9MfWbRCBfD064+JFcAw5ERG5BJc9sxMDOREReYNu3brh8uXLyMzMRGxsrP760aNHIywszI175iU2bAAgAnmLS2DLOhERuQQDuZ0YyImIyFv4+/ujqKgIG0rDZaNGjVCvXj337pQ3OHsWOHYMxfDDX7gV92gr5AzkRETkRB7Tsv7mm29Cp9Ph6aef1l+Xl5eHlJQUVK1aFRERERg8eDAuXLjgvp0EAzkREXmH7OxsjBw5EjVr1kSXLl3QpUsXJCQkYNSoUcjJyXH37nm29aJd/VSVFriOKFy6BI4hJyIil/CIQL5161Z8/PHHaN68ucH1Y8eOxbJly7BgwQKsW7cOZ8+exaBBg9y0lwIDOREReYNx48Zh3bp1WLZsGdLT05Geno6ffvoJ69atw/jx4929e55NBvJ6nQGAY8iJiMhl3B7Is7Ky8MADD+DTTz81GOOWkZGBOXPm4N1330WPHj3QunVrzJ07F3/99Rc2b97stv1lICciIm+waNEizJkzB3369EFUVBSioqJw55134tNPP8XChQvdvXuerTSQX00WgfwSx5ATEZGLuD2Qp6Sk4K677kKvXr0Mrt++fTsKCwsNrk9KSkLdunWxadMmi4+Xn5+PzMxMgw9nYiAnIiJvkJOTg7i4OJPra9SowZZ1a9LTgT17AAC5bcxUyBnIiYjIidwayL/77jvs2LEDU6dONfna+fPnERQUhJiYGIPr4+LicP78eYuPOXXqVERHR+s/6tSp49R99vcXWwZyIiLyZB06dMCkSZOQl5envy43NxevvPIKOnTo4MY983AbNwKKAjRsiKiG4oQGx5ATEZGruG2W9VOnTuGpp57CqlWrEBIS4rTHnTBhAsaNG6f/PDMz06mhnBVyIiLyBh988AF69+6N2rVr69cg3717N0JCQrBixQo3750HK21XR6dOqF5dXOQYciIichW3BfLt27fj4sWLuPnmm/XXFRcX488//8TMmTOxYsUKFBQUID093aBKfuHCBcTHx1t83ODgYAQHB7tsvxnIiYjIGzRt2hRHjhzBN998g4MHDwIAhg0bhgceeAChoaFu3jsPJofFde6MGjXExUuXAMU/ADqAFXIiInIqtwXynj17Yk/pGC1pxIgRSEpKwvPPP486deogMDAQq1evxuDBgwEAhw4dwsmTJ93aasdATkRE3iIsLAyPPvqou3fDuyxfDmzdCjRujOrh4qr8fCC3KBBhAAM5ERE5ldsCeWRkJJo2bWpwXXh4OKpWraq/ftSoURg3bhyqVKmCqKgoPPnkk+jQoQNuueUWd+wyAAZyIiLyXEuXLrX5tv369XPhnnix0FCgSxcAQBiA8HAgOxvIzAkQgZwt60RE5ERuC+S2eO+99+Dn54fBgwcjPz8fvXv3xkcffeTWfWIgJyIiTzVgwACbbqfT6VBcXOzanakAqampSE1Nden3Ur26COTpWQGIB1ghJyIip/KoQL527VqDz0NCQvRvtp6CgZyIiDxVSSV7c0pJSUFKSgoyMzMRHR3tkueoUQM4fhzIyOayZ0RE5HxuX4fc2zCQExERVR5ypvWr17nsGREROR8DuZ0YyImIiCoPOdP6tetc9oyIiJyPgdxODORERESVh75CnsmWdSIicj4GcjsxkBMREVUeskJ+JYOBnIiInI+B3E4M5ERERJWHrJBfzuAYciIicj4GcjsxkBMRkTf49ddfsWLFCpPrV6xYgd9++80Ne+SdZIX80jWOISciIudjILcTAzkREXmDF154wez63Iqi4IUXXnDDHnknGcgvp7NlnYiInI+B3E4M5ERE5A2OHDmC5ORkk+uTkpJw9OhRN+yRd5It6/oKOQM5ERE5EQO5nRjIiYjIG0RHR+PYsWMm1x89ehTh4eFu2CPvJAN5ThHHkBMRkfMxkNuJgZyIiLxB//798fTTT+Pff//VX3f06FGMHz8e/fr1c+OeeZeQECAyEigCx5ATEZHzMZDbiYGciIi8wbRp0xAeHo6kpCTUr18f9evXR+PGjVG1alW8/fbb7t49r1KjhiaQs0JOREROFODuHfA2DOREROQNoqOj8ddff2HVqlXYvXs3QkND0bx5c3Tp0sXdu+Z1qlcH0v5lyzoRETkfA7mdGMiJiMhb6HQ63H777bj99tvdvSterUYN4Ig8ZCopER9+bDIkIqLyYyC3EwM5ERF5qhkzZmD06NEICQnBjBkzrN52zJgxFbRX3q96dU3LOiCq5EFB7tshIiLyGQzkdmIgJyIiT/Xee+/hgQceQEhICN577z2Lt9PpdAzkdjAYQw4wkBMRkdMwkNuJgZyIiDxVWlqa2ctUPjVqAIUIVK/gOHIiInISDoCyEwM5ERFR5RIfb1Qh59JnRETkJA5VyE+dOgWdTofatWsDALZs2YL58+cjOTkZo0ePduoOehoGciIi8gaKomDhwoVYs2YNLl68iBKjN64ff/zRTXvmPKmpqUhNTUVxcbFLnycuDijR1jBYISciIidxqEJ+//33Y82aNQCA8+fP47bbbsOWLVvw4osv4tVXX3XqDnoaBnIiIvIGTz/9NB566CGkpaUhIiIC0dHRBh++ICUlBfv378fWrVtd+jxxcQCgQyHXIiciIidzqEK+d+9etGvXDgDwww8/oGnTpti4cSNWrlyJ//3vf5g4caJTd9KTMJATEZE3+Oqrr/Djjz/izjvvdPeueD0RyMU48kAUMZATEZHTOFQhLywsRHBwMADg999/R79+/QAASUlJOHfunPP2zgMxkBMRkTeIjo7GDTfc4O7d8AmxsUBgoGYcOceQExGRkzgUyJs0aYLZs2dj/fr1WLVqFe644w4AwNmzZ1G1alWn7qCnYSAnIiJvMHnyZLzyyivIzc119654PT8/o6XPWCEnIiIncahl/a233sLAgQMxffp0DB8+HC1atAAALF26VN/K7qsYyImIyBvcc889+Pbbb1GjRg3Uq1cPgYGBBl/fsWOHm/bMO8XFAUVnGMiJiMi5HArk3bp1w+XLl5GZmYnY2Fj99aNHj0ZYWJjTds4TMZATEZE3GD58OLZv344HH3wQcXFx0Ol07t4lrxYfr1mLnIGciIicxKFAnpubC0VR9GH8xIkTWLx4MRo3bozevXs7dQc9DQM5ERF5g19++QUrVqxAp06d3L0rPiEujmPIiYjI+RwaQ96/f398+eWXAID09HS0b98e77zzDgYMGIBZs2Y5dQc9DQM5ERF5gzp16iAqKsrdu+EzDAI5K+REROQkDgXyHTt2oHPnzgCAhQsXIi4uDidOnMCXX36JGTNmOHUHPQ0DOREReYN33nkHzz33HI4fP+7uXfEJcXFsWSciIudzqGU9JycHkZGRAICVK1di0KBB8PPzwy233IITJ044dQc9DQM5ERF5gwcffBA5OTlo0KABwsLCTCZ1u3r1qpv2zDvFx7NlnYiInM+hQH7jjTdiyZIlGDhwIFasWIGxY8cCAC5evOjz7XEM5ERE5A3ef/99d++CT2HLOhERuYJDgXzixIm4//77MXbsWPTo0QMdOnQAIKrlrVq1cuoOehoZyIuL3bsfRERE1gwfPtzdu+BT4uKAHAZyIiJyMocC+ZAhQ9CpUyecO3dOvwY5APTs2RMDBw502s55IlbIiYjIW5SUlODo0aO4ePEiSozeuLp06eKmvfJO8fHAodIx5IW5RQgs4/ZERES2cCiQA0B8fDzi4+Nx+vRpAEDt2rXRrl07p+2Yp2IgJyIib7B582bcf//9OHHiBBRFMfiaTqdDMVu97BIbCxTrAgAFyLhciGru3iEiIvIJDs2yXlJSgldffRXR0dFITExEYmIiYmJi8Nprr5mcgfc1DOREROQN/ve//6FNmzbYu3cvrl69imvXruk/OKGb/XQ6wC9Q1DEyrrBlnYiInMOhCvmLL76IOXPm4M0330THjh0BABs2bMDkyZORl5eH119/3ak76UkYyImIyBscOXIECxcuxI033ujuXfEZ/sEBQAGQeZWBnIiInMOhQP7FF1/gs88+Q79+/fTXNW/eHLVq1cLjjz/OQE5ERORm7du3x9GjRxnIncgvJBC4zkBORETO41Agv3r1KpKSkkyuT0pK8vk2OAZyIiLyVP/884/+8pNPPonx48fj/PnzaNasmck65M2bN6/o3fN6ASHisCnrGtchJyJyquJiIDcXiIhw955UOIcCeYsWLTBz5kzMmDHD4PqZM2f6/Bs8AzkREXmqli1bQqfTGUziNnLkSP1l+TVO6uaYwFBx2JSdwQo5EZFT9esHrF8PHDsGVKtc02Y6FMinTZuGu+66C7///rt+DfJNmzbh1KlT+PXXX526g56GgZyIiDxVWlqau3fBpwWFlVbI0xnIiYicRlGANWtEhfzgQaBTJ3fvUYVyaJb1rl274vDhwxg4cCDS09ORnp6OQYMGYd++ffjqq6+cvY8ehYGciIg8lVz5JDExESdOnECtWrUMrktMTEStWrVw4sQJd++qVwoKF23/OZkM5ERETnPligjjAJCZ6d59cQOH1yFPSEgwmbxt9+7dmDNnDj755JNy75inYiAnIiJv0L17d5w7dw41atQwuD4jIwPdu3dny7oDgsPFYVNuJseQExEBAEaMAPbuBTZsAIKDHXuMU6fUy5UwkDtUIa/MGMiJiMgbyLHixq5cuYLw8HA37JH3C40oDeTXWSEnIkJREfDVV8C2bcCePY4/zsmT6uVKGMgdrpA7w6xZszBr1iwcP34cANCkSRNMnDgRffr0AQDk5eVh/Pjx+O6775Cfn4/evXvjo48+QlxcnNv2mYGciIg82aBBgwCICdweeeQRBGsqFsXFxfjnn39w6623umv3vFpIlGhZL8wrQn6+48UgIiKfcPq0mB1dXm7TxrHHYYXcfWrXro0333wT27dvx7Zt29CjRw/0798f+/btAwCMHTsWy5Ytw4IFC7Bu3TqcPXtWf6DhLgzkRETkyaKjoxEdHQ1FURAZGan/PDo6GvHx8Rg9ejS+/vprd++mVwoundQtEIW4eNHNO0NE5G7a+Ui0odperJDbrqwwnJ6ebteT9+3b1+Dz119/HbNmzcLmzZtRu3ZtzJkzB/Pnz0ePHj0AAHPnzkXjxo2xefNm3HLLLXY9l7MwkBMRkSebO3cuAKBevXp45pln2J7uRLpAcdgUgCJcuQLUqePmHSIicidnBXJWyG2nPctu7iMxMREPP/ywQztSXFyM7777DtnZ2ejQoQO2b9+OwsJC9OrVS3+bpKQk1K1bF5s2bbL4OPn5+cjMzDT4cCYGciIi8gaTJk3yqjD+888/o1GjRmjYsCE+++wzd++OeQFqIL9+3c37QkTkbtpAfvq044/DCrnt5Fl3Z9qzZw86dOiAvLw8REREYPHixUhOTsauXbsQFBSEmJgYg9vHxcXh/PnzFh9v6tSpeOWVV5y+nxIDOREReaqbb74Zq1evRmxsLFq1amV2Ujdpx44dFbhn1hUVFWHcuHFYs2YNoqOj0bp1awwcOBBVq1Z1964ZChRjyANQVBmPGYmIDLFC7hRundQNABo1aoRdu3YhIyMDCxcuxPDhw7Fu3TqHH2/ChAkYN26c/vPMzEzUcWJPGQM5ERF5qv79++sncRswYIB7d8YOW7ZsQZMmTVCrVi0AQJ8+fbBy5UoMGzbMzXtmJEAdQ84KORFVeqUTcwNwvEJeVAScOaN+zkBe8YKCgnDjjTcCAFq3bo2tW7figw8+wL333ouCggKkp6cbVMkvXLiA+Ph4i48XHBxsMKOsszGQExGRp5o0aRIAMQyse/fuaN68uUmnmSv8+eefmD59OrZv345z585h8eLFJicEUlNTMX36dJw/fx4tWrTAhx9+iHbt2gEAzp49qw/jAFCrVi2c0R6geQq2rBMRqbQV8jNnREDys3PO8HPnDINVJQzkHrcOeUlJCfLz89G6dWsEBgZi9erV+q8dOnQIJ0+eRIcOHdy2fwzkRETk6fz9/XH77bfj2rVrFfJ82dnZaNGiBVJTU81+/fvvv8e4ceMwadIk7NixAy1atEDv3r1x0dumKmcgJyISSkoMx34XFgIXLtj/ONrHACplIHdrhXzChAno06cP6tati+vXr2P+/PlYu3YtVqxYgejoaIwaNQrjxo1DlSpVEBUVhSeffBIdOnRw2wzrAAM5ERF5h6ZNm+LYsWOoX7++y5+rT58+6NOnj8Wvv/vuu3j00UcxYsQIAMDs2bPxyy+/4PPPP8cLL7yAhIQEg4r4mTNn9NVzc/Lz85Gfn6//3NkTuFqkGUPOQE5EldqFC0BBAeDvD1SrJj4/fRqoWdO+x5HjxyMigKysShnI3Vohv3jxIh5++GE0atQIPXv2xNatW7FixQrcdtttAID33nsPd999NwYPHowuXbogPj4eP/74ozt3mYGciIi8wpQpU/DMM8/g559/xrlz51y6Aok1BQUF2L59u8GqKX5+fujVq5d+1ZR27dph7969OHPmDLKysvDbb7+hd+/eFh9z6tSpBqu8OHOuGKs4hpyISJDt6rVqAfXqicuOTOwmK+RNmohtJQzkbq2Qz5kzx+rXQ0JCkJqaarEFzh0YyImIyBvceeedAIB+/foZzLauKAp0Oh2Ki4srZD8uX76M4uJixMXFGVwfFxeHgwcPAgACAgLwzjvvoHv37igpKcFzzz1ndYZ1V0/gahFb1omIBDmhW2IiEBcH/P23Y4Fc3qdpU/EY1687Nhbdi7l9Ujdvw0BORETeYM2aNe7eBbv069cP/fr1s+m2rp7A1SIGciLyNenpwJtvAg88ADRrZvv9ZIU8MRGoXl1cdmSmdeMKOSBa16Oi7H8sL8VAbicGciIi8gZdu3Z19y4AAKpVqwZ/f39cMJrsp6xVUzwSx5ATka/5+mvgrbeAQ4eAxYttv58M5PXqAbGx4nJ5KuQNG4r/sYWFom2dgZwsYSAnIiJvkpOTg5MnT6KgoMDg+ubNm1fI8wcFBaF169ZYvXq1fim0kpISrF69Gk888USF7IPTcAw5EfmaQ4fEdt8+++6nrZBHR4vL5RlDXreuCOFXrlS6ceQM5HZiICciIm9w6dIljBgxAr/99pvZrztzDHlWVhaOHj2q/zwtLQ27du1ClSpVULduXYwbNw7Dhw9HmzZt0K5dO7z//vvIzs7Wz7ruKDnPTEWNh2fLOhH5HPm/+99/gfx8wNbhQNox5JGR4rK9Les5OSKAA5U6kFee0fJOwkBORETe4Omnn0Z6ejr+/vtvhIaGYvny5fjiiy/QsGFDLF261KnPtW3bNrRq1QqtWrUCAIwbNw6tWrXCxIkTAQD33nsv3n77bUycOBEtW7bErl27sHz5cpOJ3uyVkpKC/fv3Y+vWreX+HmzClnUi8jX//iu2JSXAkSO23UdRDCvktWuLy2fOAPacINUueRYdrbapuzKQz5kDDB8ODBoEDBkC7N/vuueyESvkdmIgJyIib/DHH3/gp59+Qps2beDn54fExETcdtttiIqKwtSpU3HXXXc57bm6desGRVGs3uaJJ57wvhZ1Y5qW9UpWwCEiX1RUBKSlqZ8fPChmOy/L1atAdra4XLeuOFnp7y/C+PnzYik0W8hAXrcuoNO5PpBfugT85z+G18XHAzNnuub5bMQKuZ0YyImIyBtkZ2ejRo0aAIDY2FhcunQJANCsWTPs2LHDnbvmvdiyTkS+5NQpEcqlAwdsu5+sjsfHAyEhIownJIjr7Glbl+PH5bKVrg7k58+LbWQkcO+94rLRhKPuwEBuJwZyIiLyBo0aNcKh0sl6WrRogY8//hhnzpzB7NmzUbNmTTfvnZfSBPKcHPs6M4mIPI5m7g8AokJuC227uiTb1u2Z2O3sWbGVFXVXB/KrV8U2IQEYOFBcLj1Z7U5sWbcTAzkREXmDp556CufOnQMATJo0CXfccQe++eYbBAUFYd68ee7dOSep8EndNGPIAbFUrpxcmIjI68jx4yEhQF6e7RVy7YRuUp06wKZN9lXIZRgu7eZyeSCXE8hVqQJUqyYuX77smueyAwO5nRjIiYjIGzz44IP6y61bt8aJEydw8OBB1K1bF9XkgYiXS0lJQUpKCjIzMxFdEcm4tEIehEIAwPXrDOREHqe4WLRQu0thITB9OtCpE9Cli/v2wxayQt6jB/Drr2IJtJISNfBYItu8ZZs64FiFXAby6tXF1t5A/tRTYl++/lr//9kqWSGvWlV9Tg+okLNl3U4M5ERE5I3CwsJw8803+0wYdwsZyP1EhZzjyIk8zDPPiMqndqKyijZ3LvDiiyIsejpZIb/9dtEBlJNjW6DOyhJbGaABdRy4PYFcVqcdCeQ5OcCMGcD33wO2rrShrZDL57xyxe3BjhVyOzGQExGRNxg3bpzZ63U6HUJCQnDjjTeif//+qFKlSgXvmReTs6z7FQElDOREHmflSiA9XVR7U1Lsv//Fi6J66miFXVGADz8Ul+UEYp5MVsgbNQIaNhRLgB08aNiKbo785xcRoV4XHy+2Fy/a/vyyOi1PFNsTyLXBf80aoEOHsu+jrZBXrSouFxeL3xk3vhcykNuJgZyIiLzBzp07sWPHDhQXF6NRo0YAgMOHD8Pf3x9JSUn46KOPMH78eGzYsAHJyclu3lsvUTqGPFDHCrlF6enA9u1A9+5lt70SOZv8o3RkJYk9e4CWLYGHHgIcnWdj7Vpg715x+coVEdB1Oscey9UURa2Q33gjkJQkAvmBA0Dv3tbvKyvk2kAux+/Y84+xPC3rxoH8//6v7PtoK+RBQWKfMzLEfrgxkPM/pZ0YyImIyBv0798fvXr1wtmzZ7F9+3Zs374dp0+fxm233YZhw4bhzJkz6NKlC8aOHevuXfUesmVdp44hJyPjxwO9egG//OLuPaHKSAY5RwL5P/+IA/w//3T8+WV1HBBjyeVa3Z7o3DkgN1d0AyQmAo0bi+ttmWndXCC3d/y3olhuWc/IKPv+csk0ANi4EcjPL/s+2go5oFbm3TyOnIHcTgzkRETkDaZPn47XXnsNUZoxftHR0Zg8eTKmTZuGsLAwTJw4Edu3b3fjXpZPamoqkpOT0bZt24p5Qs2yZwADuVmy4ia3RBVFUdQwuHevbQFNS4bAkydFmLbXiRPATz+Jy7IqLgOgJ5J/o4mJovsnKUl8bstM6zKQR0aq19kbyLOy1J9ReVvWc3OBLVvKvo+2Qg6oJwLcPNM6A7mdGMiJiMgbZGRk4KKZsXyXLl1CZunBTkxMDAoKCip615wmJSUF+/fvx1ZbJ/QpLwbysslQY0uFi8iZ8vOBIvG3iaIitXXcVjIEFher62zb46OPREDo1UsdT+3JgVyOH2/QQGydVSG39W9fVqVDQ4HwcMPHsDeQA6JtvSzGFXIPmWmdgdxODOREROQN+vfvj5EjR2Lx4sU4ffo0Tp8+jcWLF2PUqFEYMGAAAGDLli246aab3Luj3kSuQ64wkFskD8bT0926G1QJGYc4e9vWtUHy2DH7n3/xYrF97DG1Aisrsp5IO34cEBO7AWJStrJOJFgL5Pn5tnUnGLerax/DnkDerp3Y2hLIjSvkHrIWOQO5nRjIiYjIG3z88cfo2bMn7rvvPiQmJiIxMRH33XcfevbsidmzZwMAkpKS8Nlnn7l5T71IaYXcX+EYcmN//lk6qTQr5OQs+fnAzp2iFd0WxiHO3uE42vvbO+SipEStqrdurVZgvalCHhGhLl126JD1+5oL5Nr2dVv+ORrPsA4YBvKyfu4ykD/8sNhu2gTk5Vm+vaKwQu4rGMiJiMgbRERE4NNPP8WVK1ewc+dO7Ny5E1euXMEnn3yC8NL2wJYtW6Jly5bu3VFvog/kokJu61BJX7dzJ9C1KzD8YYUVcnKe8eOBm28Gli2z7fbGIbA8FXJ7A/mFC0BBgQgKCQlqBdaTA7lxhRwA4uLEtqzKvrllzwICgLAwcdmWf47GM6wDaiAvKRHrjFuiKOqkbrfdJoYI5OeLUG5JTo5auTeukDOQexcGciIi8iYRERGoUqUKqlSpggjtwRPZr7Rl3a/ETMu6rVU8HyQLVRfScsT4W4CBnMpv3z6xXbvWttvLEBgaKrb//GPf5GzlCeSyOl6rlvg/UVEt645MPicZV8gB21rGi4vFJGqAYSC39f6SuZb18HB1Qjxrj5Gers5gX7u2WGYRsN62Lk+OBAaq+81J3bwTAzkREXmDkpISvPrqq4iOjta3rMfExOC1115DCd/EHFNaIfdTSqBDiRrIX39dVMXS0ty3b26k7xLVBhq2rFN5yTC7a5dtt5cBrkkTsb50fr5tM4Yb3x+wfwy5rNYmJoptRVTIV60SwXL4cOvVZHOys9WTZnXrqtfLtcSthWHtUm7GgdyW+0vmWtZ1OttCvTwLWLWqqMp37Cg+t/a7oh0/LkM/W9a9EwM5ERF5gxdffBEzZ87Em2++qW9Zf+ONN/Dhhx/i5ZdfdvfueafSQA6Imdb1gXzJEjGAeuNGt+yWu8lA7p+lCeGskFN5aQO5LR0o8g8yOhpo1Upctqdt3bhCbk/Xi6yQy3BbEWPI164VbfJffikCqT0nBGUADQ42v3SZtRNqcvy4v7+4v5Y9FXJzLeu2PoYM5HLMe61aYmtmZRE9+fskfzYAW9a9FQM5ERF5gy+++AKfffYZHnvsMTRv3hzNmzfH448/jk8//RTz5s1z9+45hbvWIQeMAvm1a2LryeNFXUgG8oBczQG0rwXyy5eBd95x+4F7paEoaoC6dg04fbrs+8gAFxUlxp4D9gVybQDMzrYe7oxZqpC7smVdu3+7dgFt2gCHD9t2X/l7XKOGWi0GbAvD2jXItfe19f6SuZZ1Wx/DOJDXqCG21n5m8v+z/Nlon5st696FgZyIiLzB1atXkZSUZHJ9UlISrvpIcKzwdchLx5ADFgK53FYyMpBHw6hl3ZfG1c+cCTzzDDBoEA8CK4J2Ai7AtrZ1GeAiI9VAbs9M68ZVYXvGkRtXyCuiZV2Gz5deEt/v1avAwIFqYLblvjLISra0nJubYV2q6Aq5fL1tCeTWKuQ5Ofa3/TsRA7mdGMiJiMgbtGjRAjNnzjS5fubMmWjRooUb9sgHaCrkgSgUgbykRK0G+8iJDnuZDeTFxYZjTb2dDAAbNohwTq5lXLG0J5BHRQGNG4vLtrZxK5oVAho2FFt7xpHLQC4r5BXRsi4DbatWwC+/ADVrAvv3AyNGlH0yzFIgt6Vl3dwM68b3d3QMua2PITsSjCvk2dmWg7W5CnlkJBAUZLg/bsBAbicGciIi8gbTpk3D559/juTkZIwaNQqjRo1CcnIy5s2bh+nTp7t797yTn3rYpK+QZ2aqBwUM5IZf8KWJ3bStxy+8oM5QbaykBHj6aeCbbypkt3yWcav37t1l30cGxagoIDZWXLb1dzA3V10hQFbX7amQu7NlvUYNsezXokWii2fhQmDGDNvu60h12lkVcme2rEdGquPZLQVrcxVync4j2tYZyO3EQE5ERN6ga9euOHz4MAYOHIj09HSkp6dj0KBBOHToEDp37uzu3fNOOp2+Sq4P5No2dbasG37Bl8aRy4P5qCgR3kaONF+F/Osv4IMPgFGj3D4u1asZB1l7W9ZjYsTlnBwx8VlZZHDX6YDmzcVlWwN5ZqbpjOXalnV7h25s3Ajcey/Qtq2oer/wgvnbGVe5O3QApk0Tlz/91PpzaMeQazmrZb2sEyEFBeptnBHIdbqy29bNVcgBj5jYjYHcTgzkRETkLRISEvD6669j0aJFWLRoEaZMmYKSkhKMHj3a3bvmvUrHkQegCIWFQMEFTQhnhdzwC74UyOXP9r33xO/A+vXA8eOmtzt3Tmzz84E5cyps93yODORNm4rtv/+WXXXVtqzLUAfYViXX3leuy21ry7qsjlepooZUGfoKC+0fuvHMM8APPwDbtonVGz77zPQ2eXlqR4A20A4cKLaHD1tfo7w8LevOqJDLk1X+/urJE1sfo6REneRPBnJAfR0sBXJzFXLt/RjIvQcDORERebMrV65gDoOC40or5IEQB7u5Z1khr1Qt661bi/ZgwHwF/MIF9fJHH6lt0GQf+Xo3agTUri0u//OP9ftoW9b9/dVgZ8uJIfm7Gh2tBnJbK+TGE7oBYm1s2UJtb9v6mTNi++qr6v2Nq/wyPAYEGAbaunVFUC4stDysAig7kLu6ZV3+7VStajAUyKbHuHRJvB46nbrcGVD+Cjlb1r0HAzkREVElVhrII4KLAAB551ght6tC/v77wPjxnncglZ0tZlD/8kvTr2mX4KpSxfoM2tpAfvIk8PPPzt/XykAb2Fq2FJfLGkeubVkH1KBqSyCX99UG8vPnbatuG0/oBoiw6MhM64qihu3771cnkjQOmdpArV16TKdTJ7Tbt8/y81gaQ15Rs6xbmmHdlseQ7eo1axqsfFFmIGeF3HcwkBMREXmGCl+HHBCVLwA1wsRBqUHL+rVrvrXUl41sDuSKAkyYALz7LrBli/N3oDyWLwcWLwbeesv0a1lZQJE4AYOqVdUJw8x1RMhALsPKhx+Wf98qI214kqtClDWOXNt2DtgXyGWFXE4IJ3/GtrStG0/oJjkSyLOz1d/nuDjxAYiTA1qWKtwA0KSJ2O7fb/l5LI0ht6dlXZ740LIl0Guf33iGde0+WHoM4xnWJUcr5Azk3oeBnIiIyDNU+DrkgP6gr06IOHgruqQJZY6MF/UBcrlofSAPDRVb44P6vDw1bKxc6ZwnP3BAhKdx48r3OAcPiq25g3kZDkNCxAkZWyrkTz4pDhpXr7YejMg8bSCXFfKyArm2ZR1Qw6G9LesAcMMNYmtLIDfXsg44tvSZDIUhIUB4uDo8wjiQW6swJyeLraUKuaKU3bKen2+4DryWM5Y9szTDuvYxLJ0UMJ7QTZLfi7lgrSjqz8G4Qu4BLesBZd+EtBjIiYjIkw0aNMjq19N9aaItdyg96KsdKIJXyRWjKum1a+YPVH2YSYW8bl3g0CHTIKT9fOVKYOJEyw+6ejUwa5ZocZdjiM3ZskXswO+/O7DnGjKQX7kixn37+6tfM251lYHcWoW8bVugTx+xPvSyZWpIqqzS04FffwWGDFHXfbZGvubVqqmznu/dK4KVtkVbyxkt6zIMJiQA27dbrrZqlVUht2cMubaVXKcTbdmAcyvkmZnqmHRLM5wDInjLcfBarm5Zl9+TnCDRmLkJ3bT3M/czu35d7XJhhdz7MZATEZEni46OtvqRmJiIhx9+2N276b1KD/pq+pce9BmHsko4jtwkkMtgYlzh0n6+ebPlCtj+/cCAAWJd5bLW85ZhR06E5ahDh8RWUUx/ptrx44DazmzuZy3DQFwc0KqVuGxuNvbK5q23gAceAF580bbba0+CJCSIy3l5Yhkzc0pKTCvkjrSsywq5Pe3m5saQ2/sYknEruaUKubVALk/+HDqkhlBz942IULtZJH9/UZkHLP99OjOQm2tZr19fbE+cMD8ponwt5MkKyVogN+5y0fKAZc9YIbcTAzkREXmyuXPnunsXfFvpmM4aEAd9unQGchnIo1B6EC6DiXEQ0h7gFxcDf/yhLtOkvc3AgepBf1lBW77eV6+K9cGNA4YtFEWtkAPiwFwbFIxbXW2pkNeoAdSrJy4zkKvt03PmiNnDy/o5aSd1Cw8Xk3cVFoqfhQyMWtnZ6vwNjgRy7aRugO1hurAQOHtWXDZuWS9PIJdVW0da1uvWFaEzJ0fMtJ6UZPh1a2EeEK9fdrblUG1LIM/JEScDAixETWst67VqifsVFooquXGHjKXv3Vogt9Surn0czrLuPRjIiYiIKrHSg77qJSJ4+WeaaVl3tawsYMwYoCLHzlthtmUdsN6yDpiOI1cUYPhwsYayVFYg17YDy2Bkr3Pn1OoqYFopM25Zt1Qhz8pSK7hxcWqlLy2t7H3IyXH9hICHD4uZ5A8ccO3zmCPH/V67BixYUPbtta+5LTOWy5+fv78a9h2d1A2wPUyfPi1+bsHBpgFX/r7Y07JuayC3Fqr9/NQqubm2dUsTukllTcxmLZBrJ3rT/k1Z2gdzgTwgQG1HN/e3Y+l71wZy478l4y4XLbkPV6+a7yioAAzkdtIulVcJJ1IlIiKq3EoP+qoUiYPCwKzSAC7HHFdEhfzjj8Xs3c8+W77HuXQJ6N8f+O67cj1MXh4QjDwEo3RcqgzkllrWZdVsxQrDg6nt24GffhJjjCdMENfZWiEH1LGl9pLt6pKlQC4P5i2FNVkdDw0VYUVWyE+csH7QuH+/eMwnnrB71+3yzjuWZ5J3NRnIAWD2bOu3LShQw5xxV4Klvy/t+HE5xrwiWta1E7oZj213pEJuvByZI4EcsD6xmy0VcsCxlvWgINEWDlhvW7cWyAHrJ7Ms3Vd+Xlhouu/WKuTakO6mDicGcjtpAzmr5ERERJVM6UFsTIE4qA3KKQ3ksk27Iirk69eL7bZt5sdY2uqDD4ClS4GnnhIHsQ7Ky1Or4yXQqS2mllrWO3cWLchpacC//6pfl5XxW24RY8iBsqve2gNoR8eRa9vVAdPWVeODeUvLnslAHhcnwlnt2uLAMS/PcH1yY1u3ihmtv//etQeXO3aI7bZt1m93/Tpw993OC+45OepJDX9/YNMm62uKy9fbz08N1bYGcu2kZOWZ1M3WMG1pQjd7HkPL3jHklgKttYndyrpvWePArS17pr2/taXT5N+YuTHkgOVAbm2G+JAQdZ+M29atVcgDAtTrbZnEzwUYyO3EQE5ERFSJlY4hj8wTB24huaWhrEEDsXV1haWkBNiwQVzOzjYNk7YqKgLmzROXL14UM2A7SBvIs/0i1YNbSy3rtWsDHTuKy9q2de3kWHIir3PnrB9waduBnRXIy2pZL6tCLteODgoS42EB6+PI5fNdueL4z7MshYXAnj3i8oEDaqgyZ/58MTv8K6+U60SNnqyOR0SIlnnAepVcvt6xsWrnia0t644GcuMKubW15rXkCSP5c9ZyVcu6opTddl6eCnlZLevWlj0Dyg70JSXWx5ADlgP59euWZ4gHLC99Zq1CDqh/s9ZOnLkQA7mdGMiJiIgqsdIDvvDsi/BDMcIK0sX1MpC7ukJ+6JDhAf6WLdZvf/y4YbuwtGKFYYAtx2SA2kCeqYtWD+gttaxHRwO33y4u//GH+nVtII+PFwddRUXWZz92RoVctqxbWv7IUsu68c9aO8O6ZMvEbtqKvDzZ4mwHD6rrSpeUADt3Wr6tnNk+N9f67WylXTf6scfE5a+/VicfMGZ8AgSwr2VdkoHcWqXW+P72tqyb+5lLzpjUTT5udrZ6EiU7W/xsAMuhWlbIzc20XlaYt7VC7mggv3xZdPbodPZXyOXrHR5uOls6YHliN2sVcoCB3NswkBMREVVipQfK/iVFqIuT8FNKDwZuuEFsy1MhLymxXrkE1HZ1ydrEbleuAC1bAm3amC4X9dlnYnvHHWL7yy+2tWvu2wfcequYKbu0eqoN5BmIVoNQbq5azQIMA/nNN4vL2oqwNpAHBKgHydaCtjMr5J06ia2tLeu5uWowAkwr5IBtgVx7AsD45+ssxsHaUtv6iROG++CMEwTaQN6tmwhTWVmWx/xrZ1iXXN2y7uikbtpZ9Y1pH8PWiaeMq9cREWrwlVVyeZvQUPMzzgPibygsTPz9aYeFmHsOY9ZazouL1f8llgJ5WRV2+Xdeq5blNektBfKyxp5bCuSskPsWBnIiIiLPkJqaiuTkZLRt27binjQ4WH+g3wiisloSHKK2WJenQj5hgjiIN559XEsGJLmUkbUK+Q8/iIPqixdF4JbOnweWLROX334baNdOVNG++UZsf/zR8hjf554TY4AnTQJuvRXKwUMGgfxaSbRhKNIe1MtgFBMD3HijuPzvv+oBlfF4XPmaWhpHXlBgeALDXCBftEi0yK9bZ/4xcnLUgCADeVkt61FRaiu19udtLpx5SoVcBnIZgCydyJk/3/BzZwdyna7s8CNfb231tKJb1uXzZWernQXm2FIhLyws+0SbZC5wGreta29jPJGc5OcHNG4sLhuPIy9rDLm1QK09sedohVz+LZgbdy/JQH7mjOFJvbJOJlgK5PJzSxX5yhzIp06dirZt2yIyMhI1atTAgAEDcMhopsu8vDykpKSgatWqiIiIwODBg3HBTS8WoP7/BRjIiYiI3CklJQX79+/H1ope/qv0oK9HgjhmuZAfi437LSyFZavCQuDTT8V23DjLk7XJ6uXYsWL7zz+WW3+//lq9/MMP6uUvvhCP36GDaG195BFx/YcfAq1aAYMHq5Oqae3ZI8aay8m2tm0D2rdD9ZLz+kCerkSjoNhfbR3WhiFt6JFV8Lw8cdCtKIYVckAdl2up8m188sPc7ebNE9cvXmz+MY4cEdsqVdQAU1Yg1+nUsGcukGvDmQwWtlbIjx93fLZ4a2QgHzxYbM1VyBVF/Z0ZOVJsN24s/7JC2kAO2B7IndWynp1tfSx8cbG4DaCGyehoNexaO8lmrUIeFiZO4Fnbby1tK7q5QH7unNiWFUqlhg3F1tEKublALU8s+Pmps6nbc39A/VuQJ6vMiYsTHQAlJYZDbhytkMuTevIkn7nnAypnIF+3bh1SUlKwefNmrFq1CoWFhbj99tuRLf8oAIwdOxbLli3DggULsG7dOpw9exaD5IQQbsAKORERUSVXetD3dB/R6nwVsXjmDQvjim3155/qffftU8fxap0+LQ5m/fyAYcNEtaew0Hw1+9gx4K+/1M9/+UUcTBcUAJ98Iq77z3/E9r77RHBISwP27hXXHT+uhhTp7bfFdvBgEc4bNIAuMxNdsc6gZf36dZivTmoDeUCAGlaPHhWBRT6fXDZNHjxbCuTGk2WdPWt6cCaD59Gj5h9DtqsnJZkfQ15crH4P2vGn5gJieVvWAwPF1tlVckUBdu0Sl+XP/MgR08rx7t2imhocDEydKrYXL1p+7WxVkYFcWyG31Klh6b6AWh3287O83ryWtQq5Leuna8nfg+Bgw+qzcYXc1kAuh9EcO6Zep51QzZGWde34cUvV+XIG8qtXgR49dbgWU/p1bdu6oxVyBnLLli9fjkceeQRNmjRBixYtMG/ePJw8eRLbt28HAGRkZGDOnDl499130aNHD7Ru3Rpz587FX3/9hc2bN7tlnxnIiYiIKrnSg7egY6Ut69GxuIpyVshlBVcewE+cKFplr1wRa3NnZalBrWVLUQls1058bq5DQLYe9+wp2sNzc4GffwZSU8UBeo0awD33iNvExgJjxoiK19ixaijRHgifOqU+5rPPijbw7t0BAE2x1zSQm5vYTQZA+TVZwTtyRK2Ox8WplTdZIbfUsi5f68REEQ6MJ4A7e1YNMWUF8kaN1EB++bJaFU5PVy+bC+RlVchtWYtcBqQePcTW2YE8LU38HIKCxJJz8kRI6fG2njwJdPfd4vdDDgUp7/7IQC5PtFRUIA8IUIOttbZ1ed+QEMMxzWU9Z3Fx2ROkycewZaZ1bdjUhl1LgdxSlVgyNw776lU1wFhq37bWsl7WDOtAuQP5qlXAmjXA7ozSr2v335EKufw/CjCQ2yKj9J92ldJf3u3bt6OwsBC9evXS3yYpKQl169bFpk2bzD5Gfn4+MjMzDT6ciYGciIiokpMHfaVhLjguFldReuCdkSEO1OfPF0H3t9/KfrySEjWQf/yxOGg8cUIE3tq1Rft448YiTAPqWGcZmIzHkWtbjx96SA3eH38sJmMDgNdfNzyofustMT703XfV8d3aytr774vA2727+rxNm4oN9iLGTxxv2VQhl18rfZ7rO49ix2KjdnWg7Aq5DEpxceYngNO2ZaelmR8GIIdKJiWpASU/X60EygP5qCi1gg2Yr56aq5Zq1yI3XksaEB0O8jUaOFBsnT2xm2xXb9pUfA/y52fctr5mjdjK3xf5e1aeQK4o6twAskJuaW1tydwa1Y6MIQdsG0duPKGbrc+pDbeWAqI8qWBPhdz4sSyNIXekQi5/R2NjDX+ftWxpWbe0BnlZ9wfKDOTy/Nv+HDMnFGytkGtPzMlW/6AgzrJelpKSEjz99NPo2LEjmpb+gz9//jyCgoIQI/+YSsXFxeG8hT/iqVOnIjo6Wv9RR/7xO4n2hBUDORERUSUkD/pKD/RCEmKRjhj16+npwJdfiu348WUfMGzdKo5CIyJEdXLyZHH9pk0iyIWHi3Z1GYw6dxZbGayMK+Tbt4ugGRoqQt6994rr164V+9SiBTBihOF9dDr1IMf4QF6ObwfEpG6SJpBX8bfQsq6tkBtPnFVaId+96Ai+nGImkJdVIdcuZWRuvLm2AlxQYH5s9oEDYpuUJF7n0FDxuXZtcPkcWsZhLS9P/f60gTwwUIRywHzbunx8Pz+gb19xec8e2yYis5UM5K1aiW2bNmJr/Hsjv2cZlGQg37jR8efOyFBDXEWPIQdsC+TGS55JZa1FLve/alVRjTdHfg+2rGBgayC3t2X9+HH1f5At97W1Zb2s+5sL5Nq5IiwEcpmfj8FMIC+rQi6v177e2nZ1S2328nfy4sXyz5ngAI8J5CkpKdi7dy++++67cj3OhAkTkJGRof84ZW7tzXLQvl8xkBMREVVCRuNFoxNjUYRAZKI0DFy9qoadAwcsTygGcSyx/aXSr991l2ibHTEC+N//xHbTJnGQ+H//J8JdSAjQpYu4vQzkBw8aHjzL6nj//uLguFkz0ZItvfee4Sy1xowD+dGjogIZHq6uHw7oA3kD/IsEnTiKzkSUYcu6DEIlJaaBvLRCXi39KBJhJZCXVSGvWtX8bY0rwMZt69evi/ALiGEAgOk4ckvLJRmHNRkAgoLUEChZG0cun6dKFREYGjYUgcCZQzMtBXLj10d+rzL83nqr2B46ZH0teGvkcXiVKuq60eUJ5Dk55icxNNeyDri2Qm5t/Lgk28a1VWpL7A3kZbWs164t/s4LCtRQakt13ZYKuaOB/MoVda4IC0VTuatpMpBr/25srZDLtc61D2ipXV17v8LC8q2U4SCPCORPPPEEfv75Z6xZswa15VlEAPHx8SgoKEC60R/RhQsXEC9/OY0EBwcjKirK4MPZZNs6AzkREVElZHQwGJUYi/BwqG3rO3YYHsRPmWJadVm1Cpg8GXvfWIrI338U18mW5YAAYNYs4PPPgVtuEUHm9ddFoNy1S33+GjXUsCfbnIuKAFncePBBsdXp1MuDBunHfltkHMj37RPbJk0Mx+7VqIHCmGrwg4LWRX8DsNKynpWlvgZGLeuJhUdRD8fFddqqmTyAvnLFfAizViFXFLVCLoOL8WzTmzaJg/bERHV8s3YcufY5jAO5cVjTzrZtXIWzFsjl88jnTU62fFtHGQdyuQb8iRPq82uXkNOut96kibjsaNu68YRugGOBPCpK/d0zF5ic0bJuXCEvK5Bbm2FdatBAbG2ZGM9S2HS0ZT0gQD3BJavMtlTIrY0htyeQm6uwy9/rhAR1BnojskKe5kiFvGpV8fenKOrvkXxAa4E8JET9vt3Qtu7WQK4oCp544gksXrwYf/zxB+rLs0ilWrdujcDAQKxevVp/3aFDh3Dy5El06NChondXj4GciIioEjM6mNVViUXTpsA1ObGbXEe8YUNRVd61SywXJs2ZA9xxB/DKK2j+cn/chCPIRxDQp4/1561b17DSDQD9+qmPCQCrV4sDymrVDKvZzz8PLFggWunLIgO5PBCWM6/LcCbpdMiuL6rksSUitFhsWZdbWeUHgHr1oAQEIBR56IDSuYG0FfLYWPW28qBay1qF/MwZ8Tr4+6tLuBmHoj//FNuuXdXr5LhlW1vWZTi0Fs6sLX0mn0c+b82aYmtpfLW9Ll8Wr51OBzRvLq6LjjYdcy9fSz8/w2AqX5uff3bs+e0N5CUl5rsSypr13BUt686okMv5GIxPBplTVoX8wgXx+tjasg6YVuhtqa7LQF1QYHoirLwVchuWPDOpkF+4IDojFKXskxEBAabDBGypkANuHUfu1kCekpKCr7/+GvPnz0dkZCTOnz+P8+fPI7d0Db7o6GiMGjUK48aNw5o1a7B9+3aMGDECHTp0wC233OK2/WYgJyIiqsSMD8BjY9G8uaZCLgN5jx7A44+Ly+PHAzNnivHh//mPOIjo0gUXqjdBMfwwDyNQFOZAV9/o0WK7bJk48JTt6vfeazhpU2AgMGSIOEFQFm2FXFEMK+RGrtdtavC5ySzrMghpZ1iXFeSAABTVrgcAiEfpQbA2kOt01id207ZYGwdy2Y7dpIlo2QdMQ5EM5HIIAGDasm6pQm4cDq2FM3sq5GVNeGYv+fgxMYYhylJrfmysYRfE0KFiu2iRmOzOXtYCeXa2GvCk9HT1ALusrgQtd7Ss21MhP3as7OBgKZDLxy8uFj9PWyvkgOnJNbmVJ37M0f6eGIdqWwK5tQp76d9AXnw9i6Mg5Lm3dMQiHdHq/TIy1PXkrZ1QkL9fMogzkFs3a9YsZGRkoFu3bqhZs6b+4/vvv9ff5r333sPdd9+NwYMHo0uXLoiPj8ePP/7oxr1mICciIqrUjA+EY2PRrJmmQi4nD2vbFhg3TlTtDh0CnnwSeOUV8bXnngPWrsULd+1FMPLxP8y2ad4nE02aAB07ioP1Dz9Ux6vLFnVH1KkjKstyZnArgfxaLQuB3DgIGc+wXionoaHhA2oDOWB9YjdzLevytZft6m3amG8bzssD/hZt9lYDuaUx5JZa1u0N5MYVcmcHckvt2PL5jFvzjTsBOncWQSYjA1i+3P7nNxfIIyLUyfOMw4/cj8hIwyXItPtmLiCXp2XdlRXyxERRtc3Lszw5oWQpkAcGqj+vZ54RoTQszL4KuQzicoK+9u0t38ffX+00MA7V5V32rPRvYPaKemjVyvQcT06OYTONQdu6fL0jI9XOGXPkcopySUP5uls7CQFU3kCuKIrZj0ceeUR/m5CQEKSmpuLq1avIzs7Gjz/+aHH8eEVhICciIqrEoqMNw0JpINdXyKU2bUTA2rpVVMb79BEH6G+/LZYZ0+lw+jRQDDFDs7mubJv8979iO22aqDo2aGD9gLssgYHqmOqDB8U64YDZQH6lZhkVcuOWdaPQk17tRvW+fjGmgcqWCrm5lnVZIW/d2rBtWI5j37JFtOTGx6tfB2wfQ248qZutgdx46TVLFXKHfxmMWKr+WjrxYBzI/f3VWfodmXjZXCDX6QzbsLUsvd7afTMOyEVFIskBjrWsu7JCrh3HXVbburVWdBkmv/pKbKdPtzgG24C22+XcObHV6cTcFNZYGgduT8t6Vpbp73vpDOv7suvhzBlg/37DL8tf+7AwMdXBIZQO0dm9u+zx41LjxmIrV1Bghdw3MZATERFVYjqd4UGzcYUcEBUcOUFXo0bApEliHPnx46J9vZR2Ja6yCmgWDRkiAqI8MHnwQcvL+9hKHsgvXy4CT1SUunyXxsXqhiE9A9GiMGapQm4UyC9GqWH4uJJouuKQtQq5uZb1jAxxUkJbIa9XTxy8ZWerB9vadnXta2XvGHJbKuR16oigWFCgjseXPK1Cbi4I33ef2C5dqs6QbStzgRywHH7kBHTGnRKA5YAsq7ZA+QK5KyrkgHrCp6yJ3awFTm0x8r//BR57zPpjSdoKuayON2tm+r0as1Tltmcdcu3tpdIK+QmIn+/u3YZf1hazW7QANqF0zrC//rJ97DwDeeXAQE5EROR+qampSE5ORlu5/FdFMgrkVasCRZGa0NaypeEYbjMURc0rQDmKoqGhwPDh6ucPPODgA2nIQL5smdgmJ5sN+df9Y3AKalDXL3tmPKmbDERGLeunQ9WW9eNKounEzNaWPtOGyKgodXz8//4nwk1AgJjILChIrfjLUGRu/Dhg/7JncsyztUDu7w/IyYjl80rWxpDbux5yejrw6KOAdmhnWYG8rAo5IIZeNGggqtBLlxp+LSfH8skD7S+4fP0lS+Hnl1/E9o47TB/PUkCWoTE42LRq7MqWdVsq5IA6ZMJahTwnR63ymwvkssuic2dgxgzbT7jJv+MzZ4A//hCX5fry1lgaB25LhTw4WO0g0t5fUVB87DgA4DjqATAN5NoJ0Vu2BP5C6dJ7mzapr7c9FfLcXPVnz0DuWxjIiYiI3C8lJQX79+/HVrnmd0UyCuQAEFFXE2ZsOEkgi7lSubqUH39cVK3uvFMdQ1ke8kBeVpnMtKsDYmjsXoi29YLgCJTA37BlXbZ0WwiGx/zUCvkJJJq+BpZa1vPz1RevShURUGR4lxPbPfaYOtZUW6UsLBQVN6DsQF5Wy3pJiTjgl+PszVV2tc8jl6eTjCvkMhQUFFgPkeY89RTw2WdieIRkKWza2poPiNdWVsmN29Z79RJhe8EC0/tduiR+TtqfjWQu/OTmqqHxrrtMH6+sCrm5qm15Wtblzzgjw7T1WlGcWyGXvwdBQea/j5deEm3qP/1kOrbemqpV1fD8ww9i27Fj2fcrT8u69v7aQH71KvxzxP2vhosTNGVVyHehJXJ1oeJnLpfeK+sESFKS2F68qP5dhoaW3RXAQO5dGMiJiIgqOXnwFhysn6CqSgO1ZX3l1TYYMsR0jKSWtl0dKGcgb9hQhFY5qVt5yUAuNW1q9mb5+WogLwoTB7zXr0Md85qZKQ7qLQTyo0X1UAR/ABYCuaWWdXPLdMnKWFKSGB4wY4Z6e22VcudOEea162xLloKqceU4JEQMdAVE1fviRfG5pRMxnTuL7fr1hpVv4wp5SIgaBO1pW1+6VF3STj4mYDls2lMhB4Bhw8T2t99EcAZERXfzZnGC47771BMh0p49YlunjmmINBd+1qwRj12njvnft7Iq5MbfI1C+Crn8OSiK+WAqXwdnVMi17djmqt9164oJ3WJjTb9mjU6n/i3L32V7ArkjFXIL9887eBwAcBY18ezL4kTZrl2Gfw7aCnmzZkCxLhBblNK/Kdk9UVaFPCJCHSIhl85OSCi7q4CB3LswkBMREVVy8iBcc4Acn6yGmae/aYNFi4C+fS1nAeNA7vAYcsnczNSOMg7kNlTIiyM0gTwqSj3APXLEYsv6+SuB+vbVE0g0fQ20FXLtkbu5Zbo+/lgE03/+MV3TXVYpDx1SK8hduhgu8QWoQTUzU3wjsgpvrnIsf/ay8ti1q+XXv1078bXz59Vgpl1XWT4vYDqx25UrwKxZagA0duWKOrEfoHYlAJZb1u2pkANiyEK1aiJ8y66JAwfUn0lJCfDww8D8+ep9ZBjSrvMuyd8N7UkHGbjuust8eHIkkGsnFywuFhPUDR9u+Ltk6aRFUJAaPI2fUwbo8PCylxI0nlTw6lXg1VcNv3dbJyxzhPZvuXZt0+ED5lhqWbdllnVAfS1PntRfteWH4wCAc8H1MGaMGFFy7Zr5eTRq1hT/zho00LSty/8htswuL0/OaQN5WbSB3N7hIuXEQO4ABnIiIqJKzkwgv7GDOJi+jggoDRuhdm0xqfHDD5s/ZpDDawPEJOtOm1jbKeRkUJKVQL4cd+Bi9I240kOsWa2fY+umm8T28GGLwfDyZeAdjMc6v274Hb1MX4PatUXVODfXsN3AXEU3Lk6cATE3dl9WKRcuFFXe0FBg4kTT28XEiDHfgKiyA+Jzc+2u8rnlOPtevUxvI4WEqNVzOY78+nV1XWVzgVwGttdeE0MSXn/d/GOPHy9uK39meXniA7B9UreyKuQ6nRiPD6h9xnKCuq5dxfAARQEmTFDDjAxDPXuaPp5xNVJRDAO5OWW1rFurkGdlAWvXipMnX35p+LzydTYXhi09p63jxwH155KRIU58PPOMmOTxrbfU28h9sOXx7KX9W+7Y0bbx5+VtWZcdIePH63/HTq4XM6wH3lgPoaFqZ7m2bV1bIQdE27o+kEu2nLSQgVy2udsTyPPzzS/Z5kIM5A5gICciIqrk5MGbJsDU79sUx4Y8h7TnZmPfQX8sWSKKbMuWGR57S7Iy1KKF2HpUIK9SRT0oj4mxuIZvXh5wEXGY/ugRXHlyMgAzgfzIEYvB8NIlYDYew7Ot1yADMaavQXCwOv56xQr1+rIqusZklVKGxS+/FOsqGfPzU8PqyJFie889ppV0QD0ZI0PKbbdZ3wdt2zqgVkXDwtT2d8A0kO/aJbbm1gE/c0ZtFf/mG3U/ZTXRljHkimLb6ykD+T//iK0cn9usGfDOOyKknTwplpRLT1eXnjMXyI2XPdu/XyyJFRIC9Ohh/vkthWP5h6Q9qSFpv++PP1YvHzsmthcvitZ7Pz+7Znbfs9rG8eOAOPkjh17s3Al8/724rJ1xXy4tqF2Cz1m0FXJb2tUBm1rWrRaR33hD/P2fOQOMGAHs349Wh74FAIQ0rgdATNoGmA/k8t9N06bAZhgt0WZPhVx2ldgSyMPC1BMNFdy2zkDuAAZyIiKiSu6uu4B+/YBx49TrdDrcsOAtNH/rAfj5iSWwZ84UX3r5ZbXTV5I5QhZOL1zwoGML7djTJk0sVtVkITYkRJ2LymyF3ELLusykMuuZPSnRu7fYrlypXldWRdfYDTeole/XXxdLxVkiw2pOjliybvZs87fTPneNGhbH2etZCuTGFT/jQH7woNju2KEGZ+nTT0UrdpcuYiZ3GyfT04fXoiJxG1teT+NALgNl06YidN59t/h8wQJg3Trxy3zTTWaXyzOpkMvqePfuhicntCwFcpnomjUzvU9goNpSrp1fQQZyuTU3zt3Cc2ZnA5+8JvY7J9LGirYM2q+/rs6mfviw+vVDh8RW/s04k7ZCbssM60CZs6z/vjkCkZGi4cSsiAjRjRAcDPz8M9CkCZrkbEMBAhF432AA6olIeb4JMF2hrGlT4DKq42SwZqJKWyrksvwu2RLIAbeNI2cgdwADORERUSVXpYqY8XjQIKs3+89/RG4vLhbdvFoykLduLfJuUZHhfFxupw3kFpgL5FlZpYXoMlrWi4rU3GhTIF+3Tq14WZpszZLwcGDePOCDD0x/EMbkAX94uFhCzFwrtPFz9+pVdiuwbBf+91+RPOQP27iyqw3k6emG7dWyDRwQ7e6ffiouP/642MqqvXEgN/4egoPVH9ilS7a9ntqWdUVRK+Ty92OoGLKAhQuB338Xl81VxwE1+GRliYAq2/4ttatr9y0zU231l/sDqCVXY/IkUFGRep1xIDeeM8H4OTWBfNs2IKZQVMhP5asV8ueeEwHSZOk+QB0ysW6det3Jk+rvswznjRqZ34/ykNXi2FjzJy3MMdeyXlKin1Ph7Y8jkZ0t/gVa1KIF8O67+k9/Qj800+1Drb6t9V8G1B+fdoUybYUcAP4s0rSt21Mhlyx0+JhgIPceDORERERkC50OePNNcezw00/qkEZAHUNer56aAcs9sZsz3XmnqBr27WvxJuYCeUlJaRHQXIVcE8ivXhW5TqdTM53Z7z85WbT85uWp1WVL64Nb8+CDwJgxZQfnnj3FNzRvnnhuS7QzXlsbPy5FR6spZP16yxVyGR7On1crp5IMuoCYwO7sWREiBg403KeyKuSAeiLg1Ck1GFp7PZOTxS/ylSviZyon7JI/vD59xEmMEyeAL74Q11kK5JGR6pJ069eLPww/P3H2yhJtd4X8fSooUOcWkK+ttfvJdcrLEcg3bQLiIALb/ss19Lvz3nviHMXmzWYeR9uKHhCgVu2PHhVn6+SSaK6okN9wA7BokahUywkrymKuZV1W9gH8uVO0dh8/bv7u586VrmD32GPAokXYNeNPDMBPKL6hob4RQf64jh4V52XkyTjtCmU33ih+ZH8WawK5uaEJxqpXNzy5xAq572EgJyIiIls1bgyMGiUuP/usOoxZVsjr1FEzmEeNIx81Shwpy1ZkM7SBPDxczbrXr0NUBXU6cVAvvzFNOJJ5NDZWXaXI7Pev06lVcjmO3N6WdXu8+KJIWNba2o2f25ZADqht67/9VnaF/Nw5tV29dGk9rFql/gLNmiW2o0ap7daOBHJZnfX3t9wNIPdBBka5HnlCgvqc2rb169fFz617d/OPpdOp4WfKFLHt00f9RTAnIED9PuTP/+BBEcqjosSZLXO0gfw//xFbWwO58esJEchrQFTIt5yMQ0mJ6LiXBXjjjnoAaoUcECe4ZOn38GFxQiQ/X/wMbZkB3RGDBgG33lr27ST5fe/ZI+YEUBT9pIKFASHIhfh9tBTIR4wQ52LWrNUBgwZha4j4vdeeb6hRQ/yqK4p4Gu34cfl/JCBA/P9cj9K/m7g49aSKNTqdYZWcgdz3MJATERGRPSZPFnll82YxlFWuqgWI4q88XvSoQA6Yn7FcQxvIdTp1TqTr1yEOnGVIkiFSEwy1S3DLExJZWeq8UQaMA7m9k7rZy5aDfhnIGzWyHiS17rtPbOfPVwfPWhtDLgP50KHiZ3H8uAiRBw+K9nWdDhg9Wr2vcYC0NKmb9nllFb5KlbK7B2TbulzezHjcvPYkRqtW1k+YyPAj20a034clxhVr2e/cooXlfZeBvHZt0SUBOFwhVxTDCvmxrBrYs8dweLrZQK6tkI8aZdg9Ik+I3HijOs+Bu3XuLNrb09PFLPp9+ohWHwCvh74OQLzWZ8+K8yFaigJs3Cgu//GH2Mpv0bgBQDuxm/H4calpU+AgGmPJvd+qE+LZgoHctzGQExERkT0SEtT536ZPV9vVY2JEiPXICrkNtIEcMDOxW8OGhnfQBEPtEtyRkWoXr9nXoFcvcQC2b59oLXBlhdxWt90mAuozz9h+n1tvFQGnsBDKt2LW6aJYCxXyy5dF6RAQEw106CAuf/utOnfB3Xcbzg6uDeQFBeoPyFzlW1bItYG8LDKQy4RlPL/AnXeqk7JZaleXtDOUJySI+5bFWiAv63nuvVcNxmfOiNfGnkB+5AjSH/8/tLn0KxIgfkkvIA7LlomGB8lsIG/cWFS/W7USJ5dkMj10yHJadafgYHGi5O67xeu0YgXg7489T32GV66PQ7Vq4m++pMRwHXFAjGSQJ9X+/lts5a+Y8RB5+WNbvdp0hnVJnvP5we8+82vaWyIDeUSE+o+pLAzk3oOBnIiIiOz1xBOiBXPzZvUAXk5ALQ9CPWoMuQ3KDOTakBEaalBxNx5CLYtYZl+DKlXU6ej/7//ExGjyendp0EAEQtkGbav/+z8AgK60a2DfBaMKedWqaqVUlhqTktRl1eSU/bVrAx9+aHhfbSDXTshlLpAbV8ht6TaQgVwyrpCHhYnXIzAQGDbM+mPJEw+AqBrbMr5Z/rxlB4DsMrA0oRsAvPCCGIYwcaL4HuUv6cGDIpgDZQfy3buBDh0QO3sqfsVdaAixTNlF1MDbbxsMrzaZCB+A+N3/919RXg8IMKyQW0qr7hYVBSxZIl67Ro2AJUsw5ZwYe/PAA+p5IOO2de1qblu2iLxk6ZzDPfeIxoaFC8Uwd8ByINc+rk3kHW3tXgEYyL0JAzkRERHZKz5enbNq2jSxlceKPlsh1x6BGy15pm1ZB2x4DeQM3F99pU4o5qqWdVe67TZk3NRG/+mmo0YVcj8/NRjIycuSkgzHqVerJsaTG6+dLV9jbSCPiDDfCi0r5DJR2XJyw7gSbW4G/vfeE/vdqpX1x5Lfo05n+0kNbcVaUWyrkDdsKMapR0UZLue3Zo14jMhIy79H8vlOnQKuXMH5mEY4D7HfxWEROIU6+pdZ/g2YrZADIojLoRDmWtY9qUIu+fuL1+7gQWR3vxtLloirH3lEHY1y4oThXbTBOSNDzLknz58Zf4s336zOr/Hnn2JrrmUdEOdPtJPrl6lnT3Hy6/33bb9P797iJI3cmQrCQO4ABnIiIiJyhBwmK6vDxhVynw7kRuOYtS3rgA2vwdixYhmlRx4B2rcHBgywXhn1VDodljb5P/2nq3ZW1w+x19NWj8PCxC9KmzYiTMbEiBZi47WWAbVCnp5ufUI3QD0TIg9obQnkdeoYPp65Wej9/CyvJa4lK8J33237ZGZyH69cUZeO8/OzujSfCRnI5Yz1N9xgefy5Nqj37o1BdbahFs5gzeR18Nv0F8Lj1FZoOXzeYiDXkkM5rlwBtm4Vlz0xkGucOydGQUREiD87GcitVcgBMey7qEg0CdSqZfq4b7xheK7OuEJet654zsJC4MgRO3bY319MRHf77bbfJzxcnBEoY+4MZ2MgdwADORERETnittsMi5oykHvspG5lyM8XWxnIZY48cKD0BjYEcpsr5BERIpTPnavOjmfrMk4eZuap/tiAjkhHNNZcTNYv6a2nTSWNGomDz4AAURFOSxOlRXO0LetyQjdLM6cbz+5uS7eBTqe2rScm2j4215z77hOTw8kl0mwhU+DXXwN//SUuJyWps9DbQgZyuSa4pXZ1QJxwuPdeYOxYZM1fir/3RaAE/mg4qgt0zZvpmxaqVgX69xeXbQrk4eHqH79sv/fwQC53U/6KldWyLofrf/212DZsqGYorerV1Yn2AdMKuU6nVsnllAq+hoHcAQzkRERE5Ag/P8PuXHMVcpNqqQczrpDLydCXLSu9Qd266pJcNrase9s4enulpwPbdvihJ1ajT4tzuIYq+OUXoxtpK+TascURESavowFzY8jLqpBLto7Hl4HcePy4vQICxDhz7XruZfnf/0SV/tgxICVFXGetXd0cGcCzsw0/N8ffXyzx9u672Lo7CCUl4m9W/t3KSfOHDxfLeAG2BfLcXJierDL+eXgYOXpC/vqZq5AXFakn40aONPy6tfMN//0v0KmTOHdkrunF4XHkXoKB3AEM5EREROSoESPUIb3ywF7mr4ICGytsHkIGcjk09s47xXHSrl2lw7z9/dVSWRkt697aJWCvtWvFMWT9RsF4aLSo7P76q9GNtIHcXGu6JfYEckcq5IBYOiwuDnj4Ydv3y1miooDPPhOX5S+QvcMWjAO4tUCusWmT2MrJ7gHRbZ+WJlYEM54A3pIffhAF8t+OaRJqo0ZlLznnZsYVcnNjyP/9V3TNhIaqJyska3PWBQSIJdLOnTP9tQQYyMkMBnIiIiJyVK1aYsLnnj1FVQgQgVYe0NsTSPfsEfnEXVV14wp59epiZS9ArZIrpeNlS6Jsa1n39Qr56tVi27OnutLXxo1q4AHgnkBua4X8llvEGun33GP7fjnT7bcbrlnuaIXc0ucWbNsmtu3bG15fr54Ycmw835wl69eLr688rgnkHt6uDphWyGXL+unTojIOqIG5SRPxumhXtivrWwwMtDz1AFvWyQQDORERkfulpqYiOTkZbeVyWF5k4kQxp5T2ANTeid0URSxH/eijhusgVyTjQA6oM8kvXSq2qy6J2bY3n1En7lIU05Z1bQusLx9j/fGH2PbsKb7n5GSguFhMmq5X3kCena2uv2UpkMfEGM6+7k0z1r/9tkh4sbFAu3b23Tcx0bAabWMg37lTbC1NHi9f+uJizaSGZsjf+zNhakI96ud9gTw+XoxGKS5W1yKXgbxpU/ESa3805TnnIOcOTEtT563wJQzkDmAgJyIicr+UlBTs378fW+UsxV5Otq9PmaIuj2zNjh3A0aPispyfqiIVF6vLEJkL5GvWACtXAkP+GodhmI/Xs57S3+b6ddGeD6iF2sRE0bqal6ce4Puac+fEMlA6HdCtm7hOVskN2ta1gVzOyG0LbfiWvcSWJnXz8zMM4e5c091ekZHiD+DYMfvGoAOiHUX+sel0pkvHmXHtmjoW2lKHfGioOrectbZ1Gcjvm6gm1E/W3oTi4jJ3w62MW9b9/NSXTv6qaQM5YNhNUJ5AHh8vfuQlJeoSar6EgdwBDORERETkbM89J8aW/vmn6MJ9/XUgNRX48ktxoGt83LFggXp548aK3VfAsFKlDeSNGomD78JCYOBA4Doi8R2GYc22SH0Il6EkLEztEggIUIuVdi1v5EXWrBHbm29W82/nzmJrMD42OVkkkFtusW0JMcnfXw3gMkFaqpADhhOJeVMgB8Qfi7UJ7qxp0EBsa9dWJ0CwYtcusU1MtP4yaVdls0QO1QhLrgeldJWAVSdvwldflbkbbmVcIQdMZ1o3DuS33CK21aqV79dLpzNcut3XMJA7gIGciIiInK1HD1H0u/lmcUD/0kvAE0+IGZybNRPZKSVFjNdUFDE5lLRtW8W3csp2dcAwkANA375im5MjxpHGxoqZpXfsENcbjx+XZDHYVwO5DCzayqGcndsgxFWpIlLO2rX2P4ksYdoSyLXjyL2pZb285JkfJ7WrS7ZM7CZPRlWrGQjdK69gb+vh2I0WePFF8ffiqcwFcu0wk7w89e+2WTOx7d4deP55cWKxvBjIyQADOREREbnCTTeJ5ZWnTQMeeggYMkS0NoeFiYP8jz4Sw2e3bxfjKcPCRI7KzxfXAcCSJaIytXu3a/dVBnJ/f9PlwGXbOiAOxrt0EZfXrxdb4xnWJV8+6AaAixfFVrvMuHwNTKqqVarYVL01IQO57Pu3pUIeECCWVKss5Lh8G8fnOyuQa+dOqFYNwP/9H27cMA91E/1w9izwwQc27Y5bGLesA4YzrR86JIaxxMaqv99+fmIGemfM/ydnaffF/w0M5A4wCOTZ2b475R8RERFVuOBg4NlnRav6ggWizTk9HfjwQ/H1SZNEOzsgll2SLc8bN4pjk2eeAf7+W6xKJcd4u4K5Cd2kTp2AMWOAV14BBg9W91EGcnlQLavDkq9XyC9cEFvt7NMykF+/7qQuB+3sYoDlMeTaJ69a1eOX3XKq0aOB6dNFG4oNnBXIs7LUn7F86UNCgBdeEJdXrrRpd9yirAq5XI2uWTPX/CrJk3WHDjn/sd2NgdwBBoF81CigeXPARyaUISIiIs8TGCja1e+4Q0yGtmSJuP6ee4COHcXljRtFh7Oc9Oiff4D33nPdPlkL5H5+oto3caL4XAbyDRtETvz4Y/H5XXcZ3q8yBvLoaHWyc2tjj21mPMmZLRVybxs/Xl7R0eLMlZzczYrcXODgQXG5vIFcVsdDQsQQeEl2zjvl5+8i5irkcgz5hg3AzJni8rPPuub5fbl7hoHcAQaBXJ6m8cUp/4iIiMhj6HTAJ5+Iub4AcUDfp48ayP/6S3wdUIPt5Mmitd0VrAVyY61aifb6a9fESYLDh0Xhdvhww9vJ/T52TF3b2JfIlnVtZ4BOpw7floGtXOwJ5NoKOZm1Z484iVStGlCrlvXbypexrEBerZphFVnez5MDubUKuezEmTxZdO24gvzfcPGiui++goHcAQaBPDNTfOLJszAQERGRT6hTB3j/fXF52DARcm++WbS5X7qkTvT27bdi7HlurpgYzhVk660tgTwwEOjQQVyWXcKjRpkOW65TR3wvhYXAyZPO21dPoCjmK+SAlXHkjjCeedxaIL/5ZrEtq/RbiWnb1ctqxS6rQm5p7gRtIFcUx/bTlRTFfCCvWVP8bQPAgAHAyy+7bh+iotSx6b7WQcNA7gCDQH79uvgkN9dt+0NERESVx8iR4oBUtogGBwNt24rLiiIyVuvWwOzZ4rpff1WDgDPZUyEH1Lb1/HwRbMydKPDzA268UVz2tdbU69fV18w4kLu0Qm5tDHmnTmLRe3mWh0zIQC7PXVhja8u68eoC8uefn++ZNb7cXOiXLNT+evn7ixNsQ4eKOS/8XJwsfbVtnYHcAWYDuSf+9RAREZFPuvFGwwm4Zds6ADz6qNjK9cABdQZ2Z7I3kMuZ1gGxLJqlFad8dRy5rI5HRJguLS4rphXesg4ACQmuT1JezNYJ3QDbA7lxhTwiQq00e2LbuqyO+/ubdrVMnCg6c+RQGldy1cRuhw8DW7Y49zHtwb8+B8j/WUphkfpuxEBOREREbtKpk9iGhQH3369e37q12LoykNu6Mlf79kBQkLg8Zozl2/lqIDc3flxyasu6NpAHBzu2dBoBEPMY/POPuOzKQK6dR8ATA7mc0C0mxr2T8buiQl5SAvTqJU5quqvyzkDuABnI/XOuq1eyZZ2IiIjc5I47gLFjgc8/N+xQrohAbmuFPCwM+PprMft6jx6Wb2dLIJ83T3y/JSW2PbcnsDR+HHBhy3pZ1XGyKi1N/J6HhalDKayRgdxSqJZDR4xb1gHPDuTmxo+7g72BXFHEGunffy+G+JhbVvDIEeDUKXHy5ccfnbev9ghwz9N6N7OBnBVyIiIicpOAAODdd02vl4F82zbnP6e9gRwQY03LIg+6rQXyZ54RweX++9Xx857OWiB3Wcu6tfHjVCYZoOPjbevq11bIFcW0mmypQg4wkNuiUSOxPXzY/OurdfWqqHrLJesA8Tf42muGt9u8Wb28ZIm6JnxFYoXcAfIPMiCXFXIiIiLyXHIiqlOnnD+xmyOB3BayQn78uDqRlFZurhpaXLWkmyu4pWWdFfJyka3nti7TLm9XWAhkZ5t+3VsC+cWLQLt2wJQp4nNza5C7Q/36Yhx7djZw7pz1265fL8K4vz+QlCSumzFD/V6kTZvUy3//LeY4rGgM5A4wG8hZISciIiIPExVlOrHbzJlihvPyrvPtqkBes6ZYY7242HzgPntWvXz8uHOf25UqrGVdW8ZkIC8XewN5WJg6T4K5ceTe0rL+6afA1q3qSg2eUiEPChKhHCh7Yjf5v2HgQGDfPqBZM7Fa9QcfGN5OVsjlz23pUqftrs0YyB3AMeRERETkLbTjyI8fB556CkhNBX77rXyP66pArtOp43XNta1rK1jeVCF3S8s6A3m52BvIdTrrE7t5Q4VcUYAvvhCXz54V465lIHd3hRywfRz5iRNim5gosptcI/3994GMDHE5KwvYs0dcfuwxsV2yxJl7axsGcgfIQB6Ym6leyQo5EREReSBtIE9NVSdCW7SofI/rqkAOAMnJYvvCC6ZVcE+skGdnl12xk4HcWsu6UwJ5YKBoMQAYyMtJhmMZlm0hb2scyIuL1es8OZBv2qSeCJOTomlnWXc3OaTl33+t304G8nr1xHbwYPF/JSMD+PBDcd3WreL/YZ06wOOPi+v++EM9AVFRGMgdwDHkRERE5C1kIN+0SbSiSkuXirGujnJlIH/pJdG6vm+fGMv611/q1zwxkN9/vxinKtesNkeOIbfWsp6VZX4maLvJUiYndSsXeyvk2tsaB3I50RtgPuB7SiCX1XEpLc1zWtYBoHZtsS1rrLf835CYKLbaKvk774ifh2xXv+UWUXlPThZDecrbPWQvBnIH6CvkeRxDTkRERJ5NTux2/ryoDjVsKMawXrsGrF3r+OO6ukK+ZYtY+/nSJWDAAPXkgfZA/PhxNeS4099/i+2aNZZvY61lPTpaTD4FOHliN1bIy8WZgVx2P8TEiCYGY54QyHNzge++E5dlJ0damudM6gYAtWqJbVmBXNuyLg0dCjRtKk4wTJliGMgB8X8GABYvdtbe2oaB3AH6CjkDOREREXk47cRuADBmjHrgaeu6u6dPm1ajXRnIAVEJW79ePP6lS8DJk+J6bYU8L08Nuu6SlaXuw44d5m+TlycmlALMB3I/PxetRc5AXi7lDeTr1wOPPCJCtrXx44BnBPKffhK/p4mJwD33iOs8rUIuA/np05Zvk5Wlvo7aQO7vL6rjgJjcUp6Q7NBBbAcMAIKD1ZNjFYWB3AFmK+RsWSciIiIPJdvWo6NFQBg0SHy+eLEY22rNhQtA8+aisnT0qHq9bK12VSAHxFDoG24Ql+VzG1fG3N22rp1YzlIgl+3qQUGWM7JTA5lMIXXqOOHBvNuJE8D06eoJEXuUJ5AfOwYMGSJawGfP9o5A/tVXYvvww+rfnTaQe1qF3FJ3jKyOx8SY/r3dfjvQp4/ouMnMFN0KrVqJr7VpI35O337rkl23yK2B/M8//0Tfvn2RkJAAnU6HJUbT2imKgokTJ6JmzZoIDQ1Fr169cMTcdJsVjC3rRERE5E3uvltsx44FIiKAHj3EgeqFC4br8Jrz0kuiZTU7G/jf/9SDYFdXyCU547qcxElWyIODxdbdgfzYMfXyoUPm15/WTuim05l/HKdO7DZ9uug9HjjQCQ/m3V55BXjuOWDuXPvvW55A/vnn6omYNWusL3mmvV96evmXJHTU7t1ie9dd6vJi2pZ1T6qQ5+WZrikumWtX13r7bbUK3qqV+j9MpxP/HyuaWwN5dnY2WrRogdTUVLNfnzZtGmbMmIHZs2fj77//Rnh4OHr37o08+Q7gJjKQB7FCTkRERF5g2DARXCdOFJ8HBQH9+onLr78O7N9v/n47dwJz5qj3Wb1araJVVCBv0EBsjx4VJwNkhbxtW7F199Jn2kBeUgL884/pbayNH5ecGsjj4oB77zU/WLmS2btXbMualduc8gRybefJxo3q762lCrn2OSwFTVcqLhbzTACisUIbyD2pZT0kRO0msDSO3HiGdWPJycB//ysu9+zp1N1ziFsDeZ8+fTBlyhQMNHP2TlEUvP/++3jppZfQv39/NG/eHF9++SXOnj1rUkmvaPoKeT4r5EREROT5dDpRLdJWZ4cPF9vly4EmTYAuXdQqHiDC79ixYjtsmKg0AsC4cSI0uqNCnp6uPq8c9+nuCrlx0DM307q1Jc8kT2hZ9kWWhjqUpbhYDaL2LHumDdb33w/Ex4vf2Z9/FtdZCuSBgeqk+O74Hbh0SXzPfn7i91QG8itXPKtlHTCd2O3UKaBrV2DZMvG58Qzr5rz/vlhp4sUXXbWXtvPYMeRpaWk4f/48evXqpb8uOjoa7du3xyYrvVX5+fnIzMw0+HA2sxXyoqLyrR1CREREVIF69gRWrhQTGfn7iwmo5s9Xv75kCbBuHRAaCrz5JjB+PNCsmThAHz1arUXI1nFX0VbIZbt6lSpA48bisrsDuayQx8eLrblx5NaWPJOcWiEnAOJ3VVab7Q3k2iq1PUE0IUFso6LEBGLduonP5e+FpZZ1wL0nZeTfVlwcEBAg9t+4M8ATKuSAaSD/+mvgzz+BV18Vn5fVsg6IEyB9+4p5KtzNYwP5+dKeiTij/1xxcXH6r5kzdepUREdH6z/quGAyC30gzzcK+2xbJyIiIi9y221iYrc33hCfr1qlfu3jj8V27Figbl1xADtnjmhdX7xYtOECFVchP3ZMnVk5IcGwpdadZCCXE+VZq5C7I5CvXQts3+7cx/QW2qmnrM3KbY5sV4+KEgHVVh07Au++KzpP4uOB7t0Nv26pQg64N5CfOye2NWuq18m/MUCcmHP1yTdbGQfygwfFdscOcSKlrJZ1T+OxgdxREyZMQEZGhv7j1KlTTn8ONZBfN/wCAzkREZFDBg4ciNjYWAwZMsTdu1Ip3X672K5dCxQUANevq2tqP/SQeru2bYFZs8TlkhKxdXUgr1tXVPDz8oCtW8V1CQnqwfaJE+q+VLTiYvWEwNChYrtnj3gNtexpWXdmIP/nHzGBX48elXN0pTaQnz9f9ooCWo6MHwfEsJCxY9UhFT16GH7dlkBuvIa5ra5fF8uVLVpk/31lhVxW+AHDQO4p1XHAdOkzGchLSkSl3JaWdU/isYE8vrTv54LR4pIXLlzQf82c4OBgREVFGXw4mwzkwcaBvDL+pyMiInKCp556Cl9++aW7d6PSat5ctNJmZ4tZ11etEqHyxhuBRo0MbztypFjLXHJ1IA8MVMP3n3+Kba1aYp1yf3+xn1aaJ13q7Fnx/AEBQKdOorW5sBDYt8/wdva0rNtSHT11CujdG/j9d+u3e+cdMQdAZqYYnuDr9u8HPvtMXQlAG8iLi+1bs97RQG6sQQPxuyq5smX999+BBQvEEBN7mQvk2gqzJwZyufSZDOQA8Ouv6v8DBvJyql+/PuLj47F69Wr9dZmZmfj777/RQZ5ychN9hbyAgZyIiMgZunXrhsjISHfvRqXl5yfa1wER3JYuFZf79jW/TNfbb4sW7Vq1xLhyV5Nt63/9JbYJCSIEy6DjrnHksl09MVHsj1zP2Lht3dkt67NmiZ/T229bvs3p04ZzAixebP0x09Mtr6PuDU6fFhMTPvqoOoGa8WrJ9rStOyuQ63SGbeuubFmX+6ydnNFWZVXIPWVCN8AwkJ8/b7jG/Pffi214uH2T8bmTWwN5VlYWdu3ahV27dgEQE7nt2rULJ0+ehE6nw9NPP40pU6Zg6dKl2LNnDx5++GEkJCRgwIAB7tzt0kCuIFgGcjmwhC3rRETkg/7880/07dsXCQkJ0Ol0Zlc7SU1NRb169RASEoL27dtjy5YtFb+jVC4ykK9YAfzyi7gsl0YzFhgo2mJPnqyYA3U5sZtc41sekLt7HLkM5HL/br5ZbI2DrbNb1uX4/QMH1OuuXgXatweefBLIzwdmzBBzDsvG0mXLrM8//NBDQOvW3jnevKhIrAQgg6wcbmEcyO2Z2M1ZgRyouECekSG2jgx78KaWdXki7swZtTou/7bka2C8qoQns2OKAufbtm0bumt+Q8eNGwcAGD58OObNm4fnnnsO2dnZGD16NNLT09GpUycsX74cIa7ujSqDnx8Qilz4KaUDlmrUEL/FrJATEZEPys7ORosWLTBy5EgMkjNXaXz//fcYN24cZs+ejfbt2+P9999H7969cejQIdQoPUpq2bIlioqKTO67cuVKJGiPAG2Qn5+P/Px8/eeuWFGlMpKBXAaymBgxQZU1fhVU2pEVckn+ysiWWndVyOWSZzfcILayQq4N5EVFasCypUKelSUCtaUJtAoLAXm+6+RJcfuICDGJ2JYt4mPHDnX97dmzRdX40iUxk77xmGZJVvV37hTB3B0URUwc2KYN0LKl9dulporv8dZbxT5v2KB+fcMGcRsZyJOSRHBzR4UcECsa+PmJn1N0tOXblTeQy+XJsrNFnTA01Pb7ljWpmydWyC9fBnbvFpfbtRM/39I6r9e0qwNuDuTdunWDIgd5mKHT6fDqq6/iVTmHvYfw8wMioWlXr15dBHJWyImIyAf16dMHffr0sfj1d999F48++ihGjBgBAJg9ezZ++eUXfP7553jhhRcAQN8N5wxTp07FK3JRbHKaWrWA5GQxDhcA+vQRlXBPICvQkjwgd3cglxVyGchlkN25UwTnwEAR2hVFjLW3Vh2NjhZj4ouLRSDTnqeSjyUfW67FDgCHDonnlcEEUFv7k5LEsIN+/UTQXbzYfCAvLFQD2cmTtn//zrZqlTh5cOONwOHD5iucigKMGyfWkQbU1QAAYPp04NlnxQmJ48fVVuYuXUQgd6RC7oy257p1gZ9+EoHcWtXWWRVyQIRVexab8qYx5FWqiBNW+fnAH3+I65KSgJtuUgO5t8ywDnjwGHJPZhDIIyLUBexYISciokqmoKAA27dvR69evfTX+fn5oVevXti0aZNLnrMiVlSprGSVHBBBzlNYqpDLCp6sVFc040DesKEILnl5YrZ1ANi8WWzbtBGB2xI/P7UaK1uOi4uBp54CwsLUmbNlu7ok29b/+Udsx40TwQQAXnpJPK4c7blkiTrhmdbZs+pM9XLJKHeQk/YdPWrabp6TI37Ojz6qhvEHHwRuuUUsxTduHPDMMyL8FheLtakBEUrlCR17ArkMxc6okAPA3Xera5Jb4uxAbquiInVYhTaQh4SoFXNPCuQ6nXpSbt06sU1KMjzZ5E0VcgZyBxgE8shItR+EFXIiIqpkLl++jOLiYsQZ9eLGxcXhvB1TX/fq1QtDhw7Fr7/+itq1a1sN8xWxokplJQN5QABwxx3u3Rctbeusn5/a+t2kidju3m0+aJbl44/FcmWaERB2kScCZODz8xPjuAE1iMvtLbeU/Xiygn74sDisHDpUHQv+1lvia7L6LacwkoFcVsiHDhVVwj17gAceENf16iVqSKdPmx8jrj2n5c4KufbP/rffxDYvT7Qjh4eLEzNz5ojXed484KuvxH3y8sSM8oCY7R4QXwfESRI55thay3pBAfDCC6KtH3Buy7qtnNWyDtgXyC9eFCdk/P1NZ4GXf3ue1LIOqIFcdkEkJQGdO6snvRjIfZxJIA8LE5dZISciInLI77//jkuXLiEnJwenT592+4oqldVttwEPPwy88YZnHYCHhqqhKj5ePehu2lS0cl+9an/buqIA//d/wMKFplVnW2RmqqFHe8JABvK//xZbGcjl9dbIEw1Dh4pwvnixqP4GBIg12HftUvdVTrh34IAYH37unKgcNm0qXq+mTdXHDQkRQxAAYOZM0+fVhnB3BfLiYnVsPCDGxAOiM0CuPx8aKoZVLFoEDB+u3lbbBt65s9jK7oWGDQ1n5bZk4UJx0uPJJ8Xn7g7kjpxgcrRCLtvVtX9bUpcuYivnR/AU8mcqJSUBUVFA//7i992WE2CegoHcAX5+QBRKT8cwkBMRUSVWrVo1+Pv744LRAr8XLlxAvJzembxGUBDwxRdiHK6nkVVobUttcLBYQx0Atm2z7/GOH1dDlz3rU0tyZveqVQ0n6tIG8uxstXXdloDw0ktAhw7iJENOjnjclSvFEnMA8OKLIngHBIhZ0QERyGW7eoMGohJuzpNPiuD6xRfADz8Yfk1bIT91Sm1fd7WsLDV47tsnPpeBcO1a0SXw6afi80mTxOu5b5/agm+ODOSStkIu1602R05qt2+f6JhwZyDPz3csVjhaITc3oZv0xhvi78PSZIDuog3k1aqpr90334gTDBxD7uPYsk5ERCQEBQWhdevWWL16tf66kpISrF692uVV7tTUVCQnJ6Nt27YufR7yDHIcuXFlrE0bsbV3uS7t7S9etH9/jNvVJRnIDx0Cfv9dVH5r1VJDoTU9e4qW9PR00Tq9dy/QtSswerT4+q+/iu3NN6tLrB09qn4v8uSEOZ07i44AQDyetqNAWxUvLBRrO7va+vXiMHrSJPG5bFfv1k28Vnl5wCefiDHCfn7Af/5j2zJWjRsbdnc0bKiexMnJMQytWrLlv6hIhHJ3BPKICHXyPkfa1stbITe34IVOZ325PnfR/h9ISlIvh4R4VnePLRjIHcCWdSIiqkyysrKwa9cu/UzpaWlp2LVrF06WHsWPGzcOn3766f+3d+fxTVVpH8B/SdOkC91rN2jZBISyyjaIM4ogm8vgMqJWBJeXQYuCKOIGuAyjqK8yIoI67iOIqCDgiwwgiyI7FIGWgohspS3QfV9y3j8eb5O0paQLvUn4fT+ffG5yc5Ock6Q5fe455zn45JNPkJKSgoceegiFhYVVWdcvlsTERCQnJ2OHNp6VPJoWgHbp4rhfy2xe3x5y++MbEpAfOCBbLYGaJizMdvLgrbdkW9/hs35+MhdaC+IHDbIljgNkObrYWJlXXVEBfPON7O/Ro+7nnTlTeuBzc4G777b1hFfPi9gcw9a1tcLffFOG/2sB+YABtuH1Tz8t25EjnTuhAcj/6do8ckACcl9fW2B9vmHr9lnqd+8GsrPlenMG5AZD4+aR2wfkZ844/7i6AnJXZf99sA/I3RED8gZgDzkREV1Kdu7ciV69eqHXH5MIp0yZgl69emHGjBkAgNGjR+P111/HjBkz0LNnTyQlJeH777+vkeiNqDEefFCGbz/3nON++x7y+sy7bWwPuba8Um1za7Vecm1JpsbOZzUaJbu4ZuBACd60QESbr15XDzkgva8LF0rAv2WLbai7FoBrPdDNkWldC4wLCiQjem0BufavtTZCwFnasHWDwTa/v67EbhkZjt+BDRts36XmDMgBW0Benx5uQMp7MXrIXdX5esjdEQPyBnAIyAMD2UNOREQe7dprr4VSqsblYy2NMYCJEyfi2LFjKC0txbZt29DfmQxWRPVgNkvSOe3fLk18vNyXk2NL5HUhSjVdQN6zZ837qgfgTZFgatw4CahNJgnIARmebe9CPeSAzK3VZnlovcJaD3m3brJtjh5y+57q11+XzPKAvFeDB9uyyMfE2AJ0Zw0eLNv4eBnCDNSd2M2+dxywnUhp0UK+W81Jyw6uvR/OKiyU6REaBuTugwF5A7CHnIiIiMg1mM22QHTnTpl7/OCDMhT6fH7/3TYkGah/UrfcXFvwX1sQbH8+ymSyDbdvjKgoYM0a4Lvv5DrgGJAHBDi/1JN2EiEpSQI5bb60NtS7OXvIAVuCvE6dpEc6MNBWlvvvtwXnzrrySsnSvmSJbZ99YrfqtIBcmw6hJTlr7t5xwPZd2b27fo+rPje+IUnd3Ckgj46WmAyoeWLK3dTz600A55ATERERuZI+fWRprF27JJnaBx9Itu6777YtJWZP6x339pYkZvXtIdeGesfG2oYY2+vRQzLAl5bK9eq9+g11zTWOt+0Dke7dbQHKhWgnEZKSbL3jAQHN20Ou9cr262db7sx+JMG8ecDixcCTTzbs+YcNc7yt9ajWNmRdC8jvuAN4+WXbuvTuFJDbD1cHGtZDXluWdVdlNsva82fPOuZXcEfsIW8A9pATERHpj1nWSaMldlu5UgIqQIbvLlpU+/FaQjdtrnF9A/K6hqsDEixogdXFXA+5ekDuLK3ce/fagu+4OLkAFz8gLyuzveezZtn22y/M0KUL8MILkriuKTgzZL13b9tJCUDfgHz/ftuJgZ9+ksR2dX0uWkBuscj27FnncirYn5Bypx5yAJg8GfjHP/QuReMxIG8A9pATERHpj1nWSaMldktJkSHrAQFy+9NPaz9e6yEfOVK2hYVycdaFAnJAhs0HBwP33OP889ZX+/a24dzOzB/XdOkij8vOlmXWAOnt14a8X+wh69oQabNZ5nvfdJME3sOHX7zXPN+Q9dJS4OBBud6jh2OSPj0C8rg4ed2KCgnKAVl/ftUq4LPPzv84bci61ltcXg7k51/49TIyJHA3mWQ9b2p+DMgbwGgEApEnNxiQExEREemqSxdb8i6TSdbr9vYG9uwB9u2T/T//DKxe7ZjQbdAgW49ifZaJciYgv/9+CXgvZg+5t3fDeuItFlvv+ooVso2Lk6AckOAuL6/JilmDFhTHxEgm9K+/lsDQ2TnwDXG+IespKRL8BgdL0G7/meoRkBsMjsPWc3OBzZvldl3fUa2HPDraFpo48522H67u7JQHalp82xuAQ9aJiIiIXIe3t23Y+mOPSUKwG2+U2599Bnz5pQxPHz5cEq5lZ0vvbNeutjnmziZ2Ky+39VzWFZA3l6++kjW969NDDtjKrs1Vjo2VZGrBwXK7+trkTUkLyLUg2du76Yamn4/WQ37unON8a224eo8eEgzr3UMOOAbka9bYsqfXNS9c6yEPCrL1dDszj9wdM6x7GgbkDcAh60RERESuZd484NVXgRdflNv33ivb994DEhIAq1UCLm2GQ7duEpRHRMhtZ+eRHzwoc6ADA2UJMb3FxgLXXlv/x1U/maD1jjfHsHU9gsCQEBniD9h6nAHHgByQ74W2HrteAbl2cmn3bhmqrqkrwNZOMgQH1y8g1xIU2i8jRs2LAXkDsIeciIiIyLX06AFMnWobuj5ypARUubkyJPmee4AjR4C//U3u13rQawvIlQKSk4EPP5SEWvbsh6u78xDf6j3qWkK35kjsVr2HvLloWeo3brTtqx6Qt2gBdOwo12vLoN8ctB7yvXtl+oXGmYC8Pj3kpaXA/Ply/ZZbGlZWajw3/hnRD3vIiYiI9Mcs61QXsxkYN06u33Yb8NFHQNu2Mnz97Flg5ky5r3pAvnix7IuPBx54QIa6T5hg+zfPmfnj7qB6QK71kGsB+bFjUuft22V0QVNylYC8pMQ2YsL+87zvPplTrWXhb27t2skIjNJSID3dtr+ph6wvWiTP37IlMHp0o4pMjcCAvAG8VAX88EdvOHvIiYiIdMEs63Qhs2YBmzZJkK1lIwek51Mbllw9IJ87VwIZX1+Zbw4A774rvZbPPSeJ4QD3D8jDw23zqgHbdW3I+tq1Mny7f3/g88+b9rX1Dsh37pQM5KtXy7ZlS8fPc9o0KWOHDs1bPo3R6DiXPT5ets4OWb/ssgsfrxTwxhty/dFHZR4/6YMBeQNYygtsNwIDHXvInVnwj4iIiIguOh8f6eX08jr/MfZJ3ZSyJWzbsgXYulUC05gYIDVVAvwDB+T++iZRc0VaHSIibEP9tR7ynTuB336T61u2NO3r6hWQt24t8/4rKyXr/uLFsn/06JrTD7QTNnrRhq0DtnwIhYXn7/+rrYe8rizra9bICgT+/sD48Y0uLjUCA/IGsJTJcPVyg7esG6H1kFutknqTiIiIiNyCfQ/5iRPS02gy2ZYFGzxYApc5c2To+vXXy9bde8gBWx204eqAbf40YOulTU5uutdUynHZs+am9ZL/3/8By5fLdVccrm0fkI8ebRvhce5c7cfXJ6mbUpIAEZBpGVpmfdIHA/IGMJdKQF5sCpAdWg85wHnkRERERG7EPiDXesc7dZI56JrQUGDSJEmA9d//ytadE7pphg6V7YABtn09ewKffCLzrN9/X/Y1NiBPTZVe2JMnJXDUenn1yOytZaRfsEB6nNu2BVwxDcW110qCuWuvlZ79CwXZziZ1U0qWBly3ToL8yZObuOBUb6YLH0LVaT3kxV4BCARk0oXRKD3kRUU8zURERETkJuwD8n375Hq3bvqVpzn95S+yBJk2bB+Qodr2Q6QBGfp85oxtbnJ9/f3vEuArZQsAQ0Jsg0ybk9ZDXlYm29Gj9R+eXptWrYCjR23vUXi4JGA7X0BuP2RdO1lU/VilgGeeAf71L7n93ntyQoL05QHn9pqfuSQPAFCk9ZAbDLZeciZ2IyIiInIbWkB+5oxtCaxLJSAHJJv4+Xr7/f1ta62npDTs+ffssWU1X75cpgUA+q173aaN4xB9VxyurgkPl89Auw5cuIe8riHrn30GvPKKXH/nHckmT/pjQN4AlhL5xhcZA2w7ufQZERFRs+KyZ9QUtF5fq9UWOHbtql95XE2XLrJt6LD1OXNs1zMzga++kut6BeQGg62XvGNH90nOV1dAXlEBFPyRczooyPadzsqSBHaapUtlO3Uq8NBDF6+sVD8MyOtLKcT/uAAAkFzR0ZZUnUufERERNSsue0ZNwdtb5ogDMnwbuLR6yC+kMQH56dOy1jUAdO8u24ULZatHQjfN/ffLv+7TprnmcPXa1BWQ5+XZrgcF2b7PSgHZ2bb7kpJkO3LkRSkiNRAD8vpatgyhe9ahBBZMK5qBo0f/2M8eciIiIiK3pA1bBySRlrYWNzUuIH/nHVmA6KqrgBkzZJ+eCd00gwbJv+z3369fGeqrroBcG67u5ycnmLy9bSmttKXPsrOB33+X6+4yKuBSwYC8PoqLgSlTAACLWz2Bo2iHDRv+uI895ERERERuyT4gj4/3jAzqTaWhAXlxsWQyBySr9/DhtrXOAX0DcndUV0Bun9DtfMdr+RHatJGEeuQ6+HNTH6+/LqeWWrbE73c9DQC2gJw95ERERERuyT7LOIerO9LWYz992nH484V88okEg61bA6NGSXKy66+33c+AvH6c6SGvLSDXesi14era2vPkOhiQO+vUKeDll+X666/j6mGS8nD9epmfUdVDzoCciIiIyK3Y95AzIHcUGChLcAHOZ1qvrJR+LAB4/HFZ7xoAbrnFdgwD8vpxJiC3X3m5Y0fZbt0qWwbkrosBubOio4F584DbbwdGj8aAATI/4+RJ4LffwGXPiIiIiNwUA/K61XfY+tdfA0eOAGFhjvO0b7pJgnMvLyAurunL6cnqO2RdS9y2cqVsGZC7LgbkzjIaZbG+JUsAgwF+fkD//nLXhg1gDzkRERGRm7IPyLnkWU31CciVAl59Va5PnGhbRxuQoHLFCuDLL20BJjnHPiCvWuXpD7X1kA8bJic+UlKAgwdtnx0DctfDgLwRrr1WtuvXgz3kRERERG5KC8gjI21rOJNNfQLyH34Adu2SvqqJE2veP3w4cOutTVu+S4EWkJeWAoWFjvfV1kMeHAz8+c9y/bXXJNt9cDBHJrgiBuSNMGiQbDdsAJQvk7oRERE1p3nz5qFLly7o27ev3kUhN3f11UDbtsADD+hdEtekBeT79gFlZXUfO3eubB94gL3gTcnPz5alvvqw9dqSugHAjTfK9tNPZduzp/usu34pYUDeCH/6E2A2S7637FIue0ZERNScEhMTkZycjB07duhdFHJzERGSE2jWLL1L4pri4wGLBUhLA664Ali0CLBaax5XUfHHyFEA48Y1axE9nsFw/nnktQ1ZB2wBeUWFbDlc3TUxIG8EPz9g4EC5viuZPeRERERE5HmCg4H//AeIigKOHgXuvhu4/HI5gXH6tO24pCQgL096ahn8Nb3qS5lpahuyDkim9fbtbbd79bpoRaNGYEDeSFOmyHbTDvaQExEREZFnuv124NdfgZdeksDv6FHgueeA7t1ltCgAbNwo26uvloRi1LQu1ENePSA3GGy95ABPkrgqBuSNdMMNkm09p5w95ERERETkufz9JQhPSwM++UTm3Z89C3z+udyvBeTXXKNfGT3Z+QJyrYe8+pB1wBaQm80y3YBcDwPyRjIYgBdfBIohPeTFWQzIiYgASOaf6muz1JdSwMKFwM8/N02ZiIio0fz8gHvvBZ56Sm4vXAhUVgI//ii3tZWIqGlpKwA420MOSBLqyZOBN9+UoJxcDwPyJnD99UBsR+khP5bCIetERPjvf4HoaFlzJSurYc+hFPDII0BCAnDddTI+koiIXMbttwPe3sDevcDixdJTGxDAucoXS2095KdPA0eOyPXWrWs+xstLgvGHH7745aOGYUDeBAwG4LYx0kOefaoIu3bpXCAioqaQkgK88079A+pFi2SMXFYWsHkzMHhwzQw0F6KUJOmYN09ul5baknZcLEVFQEYGkJ7O6UdERE4IDQVGjJDrTzwh24EDAZNJvzJ5stoC8oULJeP9VVdxjXF3xYC8iXTtKz3kPijGAw8A5eU6F8gVHT4M7N6tdynoUqQU8O9/A2+8IRPf6is7W9LLVh8j5qysLGD1amD2bODxx4EDBxr2PM2lsFDGIXbvDiQmSorWN96QoPhCFiyQHu3ycuDmm4HISEm7O2iQBLrOqKgAJk0C5syR208/Laf4ly2TnvcLOXlSHvPSS9Jt48yw+Y8+kv90oqKkZ/+yy4DPPnOuvEREl7C775atlm2d88cvntoCcq2pGjOm+ctDTUR5uNzcXAVA5ebmXtwX2rRJKUAdNnZUgFL//KdSKiNDqXvvVSohQam0tIv7+i7q/feVatVKqRVjFiur2awUoNTLLytltdY8+OhRpX79VanKyvM/odWqVF6eUiUlF35xq1WpnJzaX6s+ioqU2rdPqfLymvdVVir18cdKjRun1BNPKPX663JsbU6eVGruXKU+/VSpzZuVyspqXLk8hdXq3OepSU5WavBgpdq3V+rRR5X68ccLf2cef1y+e4BSRqNSI0YotW2bc6/3++9Kdewoj23RQqnp05XKznbusenpSj32mFI+PrbX155n+XLnnsO+HmvXKvX22/I9eucdKVt1BQVKPfecUn36KHXNNUqNGqXUffcpNWWK/O39/LNSFRXnf51ly5SKi7OVNSrKdr1zZ6UOHz7/YxcutB37yCPyuRw8qFRMjOzr1En+DuqSlaXU0KG255k/X/ZPmiS3r7hCqbKy2h9bWqrUK68o5e/v+H63bSt/d+f7LXjtNcfjDQbb9ZkzG/8bUotma5suEXw/ifRTWOj4s7tli94l8lzr1sl73KWL3N67V26bzUqdO6dv2agmZ9smg1KNzbhz8c2bNw+vvfYa0tPT0aNHD8ydOxf9+vVz6rF5eXkICgpCbm4uAgMDL14hd+0C+vSB1cuE+ZXjscv0J7xpegJBJZkAgLKAUOTPmgvT5W1gOLAfXjnnYI4OgykyDAazt/yGWa1yUQqq0ooTJxROHSlFB58TCC/4XZZUCw8HwsJkwo7BYLsoJRNIkpJk7Yn4eKBvX6BzZ+mhCgmR02knT8r9J09Kb1VQENCmjTxnbi5w7pz0IJ44IcdHR8v4l6Ag6R2zWmXNhCFDZH9SErBnj+35cnMlY4SPDw7kx+G55f1wOQ5jNqbBCLuv2oMPAnPnAj4+QGYmMHUq8Omncl+LFkDPnii9ahB+tAyBuTAb/U9+DcumNVKmigrA1xe44w7gf/4H+NOfHNfWUApYswZ45hn5XLp3B8aPB4YOlYwjRUXA/v1S9qIiWZvjuuvkPSgult7Qw4eB1FRg7Vp5ruJiWXBz+nQ5FWwwAMnJMiHnp58cvwtGI/DQQ9I716IFcOwY8Pbb0nNo38Po5SXv4513yjij1q0Bi8V2f2oq8NZbUobWrYEePaSuQ4fKBC1APo/ycsfH2SsrAwoK5FJRIelQDQa5r7gYWLlSMrBs2SKfQ8+eQL9+Uq5+/eTYnByZGLZ7N/D77zKkVytP585ATIxc4uJs5VBKjispkc/Y1xcIDLS9dlmZ1G/RIknNevy4fLfj4uTU+rhx8rlpz5WbK+VbvlzSu1bvqe3RQxZDHTnS9hraY6dMsfW09uol31ft/X/6aflMvb2lV9jf3/HxBw7I+52WJsdoQ1+Cg2Vs3qOP2j4Le0lJwLvvSgpabSnEyy8H+vSRv63Nm+V1nn1Wvsfx8fK9qaiQ76j956kUsGmTfJ+rJzYzmSSrzrhx8l04cgSYOVP+HusSHg4MHy7DyocOlTIeOiS94CtWyDGtW8vf6MiRUo9nnpHPNCQE+Ppr6fG2t3q1PF9Fhbwvc+bY3ssjR+Rv7Phx6W1ftUq+i3+MaawstyJrcwoqlq5A8JL34Xv6Nyg/Pxg+/RS47TYAQFFaDoydO8In7wxyL2uPvOGjEZxwAwKu7CDZhT74QMp/7Ji85lVXST21v19A/taff15+G1u0ALZtA957D/j4Y7l/6lQZxaCUfDavvCL7hw6VOg0f3mTr+DRb2+Th5s2bh3nz5qGyshKHDh3i+0mkkzFjZCCZv7/8G+XtrXeJPNMvv8i/PBER0iRPnQq8/jpw663SNJNrcbatd/mAfPHixbj33nuxYMEC9O/fH3PmzMGSJUuQmpqKiIiICz6+2f7pKS2Vf9Y2bHDYvQ9dUQYzeoNDtd9GIgpjOmJq2mMwwooKgwlpQZ0RWnQSLcqyoQwGVHqZYapwYlisHWU0oiI8CtbQcJRVGGEtKEZQemrTFt5kkkADkH/IKytt9/n5SWButcqc21WrpFwWC1BeDoPVWnVoYbf+MLbwg/nEEXidPO5YD4MBuZYI5BuDUWS1oFPJL7XX12xGSd8/w5ifC+9fU2AsKkRlUAgqI2MAAMaCfBiKCmAszIeh2tyJ8pg4FIz4G1SlQuA3H8GUl33eKqs2bSSA/f57GIqdSFZoNEqQFRYmwZ22BofG21uGAVut0opc4Kenok17GEtLYDibWaMeZdcNR/mY+2FatQLe3y2FsbBA9nfqiorLYmA1+8DrXAbMx3+FV/Y5AEDO7HdROnY8vH8/DL9XZ8Lnm0XyOi2CYCwthrG8DCowEIaePeVE1P79wMGD8lnHxwPffw9s3w41YwYMfww5L/YPw5nA9igvVSgvs6KizApzeSE6qkNVZU3y6Y9/eL+IlFbXY9hwAwb/pRw9/z0RLb97r+qYSv9AVCoDzEW5sMKADP92SAvuAr/KfMTm7EOLEqmD1eKDyiHD4OVngfF0Ws2TQZo2bSQw9/UFsrOhsrJRnJaF8kO/I2DbGhjzcs/7vitvb5ROfALZic+hUPmhsFDOW5UfP41u00ch5PB2WI1eKA2NhtHHjEqrAWUFZfDPT4e3KsdX3nfhQZ//IL6bEb16SfxeVgZ4px1D4teDEF1sS8xWYTDBoKzwgtWhDMcRi1u9liO3bU8EBMg5naQkYGjxMnyOBPjDcX53JYxVz1EcHIVTj8yG39/HwKoMyD5VhMCP30Krj1+CV4ntcaV+wbAU5dg+p7tm4/AtT8JstmWhDfn63+j70UPwssrfflF4LAqmzETE0w+c9/1zFgPypsX3k0hfmzbJedo77pBz7XRxpKUBLVvKv1yffioB+enTwNKlwKhRepeOqvOYgLx///7o27cv3n77bQCA1WpFbGwsHnnkETylrbVgp7S0FKV2vWd5eXmIjY1tnkZaKWDjRpS/MAteP27A7j9Pwpq//AO/HfNC71X/wN2ZbyIXQdiPrkhHFEKRhXCchQkVsMIIK4xQMFRtYTTCx9+EgwWtcES1RRH8EIZzVY8xQDlcTiAWSeiJU2iJ7vgFfbATbXEUEchEKLJwFuE4iVY4hZY4hZY4jWiEIButcQyhyEI2QpCNEJxGNI4jDucQhiikozWOwR+FKIUF3ijHQGzGX7AJfijGCbTCLvTGEbRHBiKRjRB4oxx+KEInpGJo8HbElf2KA7fPRL8vp6K4xIAbsQLvYTyiYZtPugc9MQELsAu90Qmp6I9tGIK1GOK1HmVGHywpH4VlGIVfcTlyEIzu+AX/g/dxB75ECxTW+ChKYME7eBgLMAHDsBoP4AO0xxGUwxtlMOMQOmIPeqEMZgzCelyJ3VU9+KUw4wja4zA6YBd64zuvvyI7tD3GFb2Dh4teQ7iyTdz5Fn/FZONbOGmMqxqscFXZeryNiYhHMgCgDN7Yhv54ETOwFkMASK/h5TiMO/EFbsFSdEJqjSDDCgNW4kZ8hPsQjrPoiSQMxX/RAb/W+6tZCjMMUDDDMbA9ijZYjpuxBQOQhhhcid24Cj9jJP7P4X3dj3gswygcQXucM0bgcsMRdLPuRTscQUukIVqdqjVIKjNYYFEljqMj7D6jTZah+NpvDH72vgYR1nS0q0jFDXlfYKR1RY2y5iIQp9ASb+Ix/BsPVr2PoTiHaZiNRzAXviip8TrF8MFEvI0P4RhE3Y4lmI+HEI5zdb53G4yDcJfpK5xTobBaAVRW4g4sxguYed7PogzeWIpb8C7+jvUYVFVWG4V78SnuwX8wAFtq/Q5Xf75/40H8A8/hNOTEi9kMXFm2FdPwCq7EbpQY/VDqHYANgTfjw9AnUAzfqoE3GRlAfr48lwnluMb0M26xfIfrS79Dx4pkVMALx41tsFv1wnT1Ig6ic63l8EEx/o0HkYCFtd6/EjfgVnyDctS+rkpLnMQyjEIf1Mx8WQILfjJfh80hN+GDwjtxoiCkxjGtWwM3XluA2L0r0SN1MeKLdyIWMhrgV7TH63gCn2AsSv5YhtJeK5zAi5iBwViHOJwAAOSjBb7FX/Eh7sd6XFdrmTvgEP6OdzEOHyMMWVh98zwM+7bxqWoZQDYtvp9E+vvtNxmU6e+vd0k8V0UFEBvrmJIlNFSCci5p5no8IiAvKyuDn58fvvrqK4yyO+0zduxY5OTk4Ntvv63xmOeffx4vvPBCjf3N3khXVNRIMVlZoQCDAUaj/JNcUCD/JNd2adlSRlz6+MjtNWvkh66y0vGijXC1vw7ICPOgIBlhm5kpI9F9fGR0rckkHfpFRTKs6MwZeQ0fH7koJSONa7uUlsoffKClFCHmQpT4hVaNri0vl0tFhWxHjJCR2toPxLFj0qF37hyQnaUQWngCrc5JwqXt4SORcc4Eg0FGkoaGAjfdJB20BoPUfe1aGfn622/yHJWVQGVZJQxnMmHKTIN/yTlEXKYQFalwyLcHfjkTjdOn5X2+EH8UwIQKFMMXZTDDaDTAZJKePXtmlCICmSiCH4rgV+s//gDghQpcYTwMr8tCYYq+DCazEbm5QF6ejL7WEjgbjVLfdm0VrupwBr2jTiGmRR7CLfnIjemM497tceKEjLLetQvIzFDojBT82boRmYZIpBjjcdZwGaLUacQgDZXwQgFaoNAYIFuDXCoM3vBRxbi+8nuMqvgK3oZyfOU/Dj/5D0NZpZfDZwwAvijCSPwfumI/vsdw7PPtDxgMdSSeVojGaXRCKkKRhcPogEPoiFL4AFDwQQnCcRaRyIAVRpxALM4iHDUDVRGGs+iFPchGCDIRgUxEoNLkAx8f+Uyqfy5eXkBL42kMNGyGv6EYfsZiZCEMh9Xl+FW1R75qUfV3ogkIAFqH5qOd9VccPBOG0yXBaIuj6IU9iEQG9qMr9qAXTiO6RjkNBqBD2wr8LWIj4sKLEB5hRFi4QbaXGZHXridOlEYgJ0cGDISFyQj91atldgAgfxeVlUBJfjmicw8iOs4b7fqGoePlVgSdSkbgyWQUeQXgVGg3/Gq6AjsP+GLPHttaow0RGip/8/a/+iHIQj4CUAHH8YVeXvJPlZ9fzW1c+RGUZeYgJ7MMZm+F7n0t6DnQHxF/7oSwcAMqKiSX2t69MlrcYpHO+tatgfbtFLxVGdKPFCLrVDFaxRnRMd4bbboFwOQvPyZKyaj733+XmQSFhTL4Qvs90OTmAim7i/HblgwcyIvF7ye8cPy4/NacOiV/X6Gh8jdWXCy/Bb6+QNfos+je4ihOBHVFkfKt+u3UfsO05dNDQ6WH32oFSnJK0Of41+j+9I247f5aFnqtJwaQTYvvJxFdKjIyZLbVu+9KW/fkkzLbilyPRwTkaWlpaNmyJX7++WcMGDCgav+TTz6JjRs3Ytu2bTUeo2sPObkkq1UC4NJS+6xNtqDE21tOUmhbLy/5Rx6Qx2gnNIxGOcb+orF/Th8fCQB8fByDB3vaSYu6jtGDUhKMFBdLcF5RIUGJnywiUHUSx2q1pS7QAhhtW1Fhq1Nd2/PdFxAgAWxgoARJpaXyuZjNtmO04Fr7rOrzHmqpGuzPlyklwVphodS7rEyet/rFIANXEBRke0+ak3ayTBtG7u0twW5FhaRXOHtW3hetrNolLEwCWh8f+ZzS0mRGgXYCzWJxDLr9/W1pKtyV/fvgihhANi2+n0R0qamokJmSnTtzmTlX5Wzb5HEfn8VigeV8Ca7okqT1QrdoUf/HWiwyNCg2tmnLZDK55o+nwSB1Pt+fkJ9f8wai53ufvLwanltLC67tGQxyIqC2/GyuxGCQHl7fWgZmOJFSA4AE2q1by8WTNVHuNSIiIpdkMgHduuldCmoKLr0OeXh4OLy8vJCRkeGwPyMjA1FRUTqVioiIiIiIiKjxXDogN5vN6N27N9atW1e1z2q1Yt26dQ5D2ImIiIiIiIjcjQsOmnU0ZcoUjB07Fn369EG/fv0wZ84cFBYW4r777tO7aEREREREREQN5vIB+ejRo3HmzBnMmDED6enp6NmzJ77//ntERkbqXTQiIiIiIiKiBnP5gBwAJk6ciIkTJ+pdDCIiIiIiIqIm49JzyImIiIiIiIg8FQNyIiIiIiIiIh0wICciIiIiIiLSAQNyIiIickvz5s1Dly5d0LdvX72LQkRE1CAMyImIiMgtJSYmIjk5GTt27NC7KERERA3CgJyIiIiIiIhIBwzIiYiIiIiIiHTAgJyIiIiIiIhIBwzIiYiIiIiIiHRg0rsAF5tSCgCQl5enc0mIiIiE1iZpbRQ1Dtt6IiJyNc629R4fkOfn5wMAYmNjdS4JERGRo/z8fAQFBeldDLfHtp6IiFzVhdp6g/Lw0/NWqxVpaWkICAiAwWBo1HPl5eUhNjYWJ06cQGBgYBOVUD+eVB9PqgvgWfXxpLoArI8rc6e6KKWQn5+PmJgYGI2cPdZYbOvPj/VxXZ5UF8Cz6uNJdQE8qz7uVBdn23qP7yE3Go1o1apVkz5nYGCgy38B6sOT6uNJdQE8qz6eVBeA9XFl7lIX9ow3Hbb1F8b6uC5PqgvgWfXxpLoAnlUfd6mLM209T8sTERERERER6YABOREREREREZEOGJDXg8ViwcyZM2GxWPQuSpPwpPp4Ul0Az6qPJ9UFYH1cmSfVhfTjad8j1sd1eVJdAM+qjyfVBfCs+nhSXTQen9SNiIiIiIiIyBWxh5yIiIiIiIhIBwzIiYiIiIiIiHTAgJyIiIiIiIhIBwzIiYiIiIiIiHTAgLwe5s2bhzZt2sDHxwf9+/fH9u3b9S7SBb388svo27cvAgICEBERgVGjRiE1NdXhmJKSEiQmJiIsLAwtWrTAbbfdhoyMDJ1K7LxXXnkFBoMBkydPrtrnbnU5deoU7rnnHoSFhcHX1xfdunXDzp07q+5XSmHGjBmIjo6Gr68vhgwZgsOHD+tY4vOrrKzE9OnT0bZtW/j6+qJ9+/Z46aWXYJ830lXrs2nTJtx0002IiYmBwWDAsmXLHO53ptxZWVlISEhAYGAggoOD8cADD6CgoKAZa2FTV33Ky8sxbdo0dOvWDf7+/oiJicG9996LtLQ0h+dwl/pUN2HCBBgMBsyZM8dhvyvVh1wb23rXwrbetbhzWw94VnvPtt5z2noG5E5avHgxpkyZgpkzZ2L37t3o0aMHhg0bhszMTL2LVqeNGzciMTERW7duxZo1a1BeXo6hQ4eisLCw6pjHHnsMK1aswJIlS7Bx40akpaXh1ltv1bHUF7Zjxw68++676N69u8N+d6pLdnY2Bg4cCG9vb6xatQrJycn43//9X4SEhFQd8+qrr+Ktt97CggULsG3bNvj7+2PYsGEoKSnRseS1mz17NubPn4+3334bKSkpmD17Nl599VXMnTu36hhXrU9hYSF69OiBefPm1Xq/M+VOSEjAgQMHsGbNGqxcuRKbNm3C+PHjm6sKDuqqT1FREXbv3o3p06dj9+7d+Oabb5Camoqbb77Z4Th3qY+9pUuXYuvWrYiJialxnyvVh1wX23rXwraebX1T86T2nm29B7X1ipzSr18/lZiYWHW7srJSxcTEqJdfflnHUtVfZmamAqA2btyolFIqJydHeXt7qyVLllQdk5KSogCoLVu26FXMOuXn56sOHTqoNWvWqGuuuUZNmjRJKeV+dZk2bZq6+uqrz3u/1WpVUVFR6rXXXqval5OToywWi1q0aFFzFLFebrjhBnX//fc77Lv11ltVQkKCUsp96gNALV26tOq2M+VOTk5WANSOHTuqjlm1apUyGAzq1KlTzVb22lSvT222b9+uAKhjx44ppdyzPidPnlQtW7ZU+/fvV61bt1Zvvvlm1X2uXB9yLWzrXQfbetdqGzWe0tYr5VntPdt6167PhbCH3AllZWXYtWsXhgwZUrXPaDRiyJAh2LJli44lq7/c3FwAQGhoKABg165dKC8vd6jbFVdcgbi4OJetW2JiIm644QaHMgPuV5fly5ejT58++Nvf/oaIiAj06tUL77//ftX9R48eRXp6ukN9goKC0L9/f5esz1VXXYV169bh0KFDAIC9e/fip59+wogRIwC4X300zpR7y5YtCA4ORp8+faqOGTJkCIxGI7Zt29bsZa6v3NxcGAwGBAcHA3C/+litVowZMwZTp05FfHx8jfvdrT6kD7b1roVtvWu2jZ7a1gOe396zrXddJr0L4A7Onj2LyspKREZGOuyPjIzEwYMHdSpV/VmtVkyePBkDBw5E165dAQDp6ekwm81Vf5yayMhIpKen61DKun3xxRfYvXs3duzYUeM+d6vLb7/9hvnz52PKlCl45plnsGPHDjz66KMwm80YO3ZsVZlr+965Yn2eeuop5OXl4YorroCXlxcqKysxa9YsJCQkAIDb1UfjTLnT09MRERHhcL/JZEJoaKhL1w2QuZjTpk3DXXfdhcDAQADuV5/Zs2fDZDLh0UcfrfV+d6sP6YNtvetgW++69fHUth7w7Paebb3r1cceA/JLSGJiIvbv34+ffvpJ76I0yIkTJzBp0iSsWbMGPj4+ehen0axWK/r06YN//vOfAIBevXph//79WLBgAcaOHatz6ervyy+/xOeff46FCxciPj4eSUlJmDx5MmJiYtyyPpeC8vJy3HHHHVBKYf78+XoXp0F27dqFf/3rX9i9ezcMBoPexSHSHdt618K2nvTGtt71cci6E8LDw+Hl5VUjg2dGRgaioqJ0KlX9TJw4EStXrsT69evRqlWrqv1RUVEoKytDTk6Ow/GuWLddu3YhMzMTV155JUwmE0wmEzZu3Ii33noLJpMJkZGRblMXAIiOjkaXLl0c9nXu3BnHjx8HgKoyu8v3burUqXjqqadw5513olu3bhgzZgwee+wxvPzyywDcrz4aZ8odFRVVI+lTRUUFsrKyXLZuWgN97NgxrFmzpuqMOeBe9fnxxx+RmZmJuLi4qt+FY8eO4fHHH0ebNm0AuFd9SD9s610D23pU3XbF+nhqWw94ZnvPtt4161MdA3InmM1m9O7dG+vWravaZ7VasW7dOgwYMEDHkl2YUgoTJ07E0qVL8cMPP6Bt27YO9/fu3Rve3t4OdUtNTcXx48ddrm6DBw/Gvn37kJSUVHXp06cPEhISqq67S10AYODAgTWWpTl06BBat24NAGjbti2ioqIc6pOXl4dt27a5ZH2KiopgNDr+pHh5ecFqtQJwv/ponCn3gAEDkJOTg127dlUd88MPP8BqtaJ///7NXuYL0Rrow4cPY+3atQgLC3O4353qM2bMGPzyyy8OvwsxMTGYOnUqVq9eDcC96kP6YVvvGtjWu3bb6KltPeB57T3betetTw365pRzH1988YWyWCzq448/VsnJyWr8+PEqODhYpaen6120Oj300EMqKChIbdiwQZ0+fbrqUlRUVHXMhAkTVFxcnPrhhx/Uzp071YABA9SAAQN0LLXz7DOvKuVeddm+fbsymUxq1qxZ6vDhw+rzzz9Xfn5+6j//+U/VMa+88ooKDg5W3377rfrll1/UX//6V9W2bVtVXFysY8lrN3bsWNWyZUu1cuVKdfToUfXNN9+o8PBw9eSTT1Yd46r1yc/PV3v27FF79uxRANQbb7yh9uzZU5WJ1JlyDx8+XPXq1Utt27ZN/fTTT6pDhw7qrrvucrn6lJWVqZtvvlm1atVKJSUlOfwulJaWul19alM986pSrlUfcl1s610T23rX4c5tvVKe1d6zrfectp4BeT3MnTtXxcXFKbPZrPr166e2bt2qd5EuCECtl48++qjqmOLiYvXwww+rkJAQ5efnp2655RZ1+vRp/QpdD9UbaXery4oVK1TXrl2VxWJRV1xxhXrvvfcc7rdarWr69OkqMjJSWSwWNXjwYJWamqpTaeuWl5enJk2apOLi4pSPj49q166devbZZx1++F21PuvXr6/172Ts2LFKKefKfe7cOXXXXXepFi1aqMDAQHXfffep/Px8HWpTd32OHj163t+F9evXu119alNbI+1K9SHXxrbe9bCtdx3u3NYr5VntPdt6z2nrDUop1TR97URERERERETkLM4hJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJ6KLymAwYNmyZXoXg4iIiC4itvdEDcOAnMiDjRs3DgaDocZl+PDheheNiIiImgjbeyL3ZdK7AER0cQ0fPhwfffSRwz6LxaJTaYiIiOhiYHtP5J7YQ07k4SwWC6KiohwuISEhAGR42fz58zFixAj4+vqiXbt2+Oqrrxwev2/fPlx33XXw9fVFWFgYxo8fj4KCAodjPvzwQ8THx8NisSA6OhoTJ050uP/s2bO45ZZb4Ofnhw4dOmD58uUXt9JERESXGLb3RO6JATnRJW769Om47bbbsHfvXiQkJODOO+9ESkoKAKCwsBDDhg1DSEgIduzYgSVLlmDt2rUODfD8+fORmJiI8ePHY9++fVi+fDkuv/xyh9d44YUXcMcdd+CXX37ByJEjkZCQgKysrGatJxER0aWM7T2Ri1JE5LHGjh2rvLy8lL+/v8Nl1qxZSimlAKgJEyY4PKZ///7qoYceUkop9d5776mQkBBVUFBQdf93332njEajSk9PV0opFRMTo5599tnzlgGAeu6556puFxQUKABq1apVTVZPIiKiSxnbeyL3xTnkRB5u0KBBmD9/vsO+0NDQqusDBgxwuG/AgAFISkoCAKSkpKBHjx7w9/evun/gwIGwWq1ITU2FwWBAWloaBg8eXGcZunfvXnXd398fgYGByMzMbGiViIiIqBq290TuiQE5kYfz9/evMaSsqfj6+jp1nLe3t8Ntg8EAq9V6MYpERER0SWJ7T+SeOIec6BK3devWGrc7d+4MAOjcuTP27t2LwsLCqvs3b94Mo9GITp06ISAgAG3atMG6deuatcxERERUP2zviVwTe8iJPFxpaSnS09Md9plMJoSHhwMAlixZgj59+uDqq6/G559/ju3bt+ODDz4AACQkJGDmzJkYO3Ysnn/+eZw5cwaPPPIIxowZg8jISADA888/jwkTJiAiIgIjRoxAfn4+Nm/ejEceeaR5K0pERHQJY3tP5J4YkBN5uO+//x7R0dEO+zp16oSDBw8CkIyoX3zxBR5++GFER0dj0aJF6NKlCwDAz88Pq1evxqRJk9C3b1/4+fnhtttuwxtvvFH1XGPHjkVJSQnefPNNPPHEEwgPD8ftt9/efBUkIiIitvdEbsqglFJ6F4KI9GEwGLB06VKMGjVK76IQERHRRcL2nsh1cQ45ERERERERkQ4YkBMRERERERHpgEPWiYiIiIiIiHTAHnIiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItLB/wOVqnFl03JwxgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2213,8 +2207,8 @@ "plt.legend()\n", "\n", "fig.add_subplot(1, 2, 2)\n", - "plt.plot(np.log(np.asarray(hist_train)), 'b', label=\"Training loss\")\n", - "plt.plot(np.log(np.asarray(hist_valid)), 'r', label=\"Validation loss\")\n", + "plt.semilogy(np.asarray(hist_train), 'b', label=\"Training loss\")\n", + "plt.semilogy(np.asarray(hist_valid), 'r', label=\"Validation loss\")\n", "plt.xlabel('Epoch')\n", "plt.ylabel('Logarithmic loss')\n", "plt.title(\"Logarithmic MSE\")\n", @@ -2230,7 +2224,7 @@ "outputs": [], "source": [ "# save the checkpoint model training if necessary\n", - "output_path = \"../models/\"\n", + "output_path = \"./\"\n", "\n", "torch.save({\n", " 'epoch': epoch,\n", @@ -2269,7 +2263,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "66d6495564d0458fadedad0da3adb791", + "model_id": "726b75ee653e40049d95a790a0ffb6ec", "version_major": 2, "version_minor": 0 }, @@ -2288,7 +2282,7 @@ " .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n", " .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n", " \n", - "

Run history:


testing_loss█▁▃
train_loss█▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂
validation_loss█▂▂▁▂▂▂▂▂▂▁▂▂▂▁▁▁▂▁▁▂▂▂▂▃▂▂▂▂▁▂▃▂▂▁▂▁▁▃▁

Run summary:


testing_loss0.97235
train_loss1.92526
validation_loss1.57945

" + "

Run history:


testing_loss▁▃█
train_loss█▁▂▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁
validation_loss█▂▂▂▂▂▂▂▂▂▂▂▁▁▂▂▁▁▁▁▂▂▂▂▂▂▃▂▂▂▂▂▂▁▃▁▂▃▁▁

Run summary:


testing_loss1.52785
train_loss0.59875
validation_loss0.95168

" ], "text/plain": [ "" @@ -2300,7 +2294,7 @@ { "data": { "text/html": [ - " View run earnest-star-19 at: https://wandb.ai/ai4s2s/test-LSTM/runs/v3pj0z4k
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" + " View run cool-aardvark-22 at: https://wandb.ai/ai4s2s/test-LSTM/runs/8t0sok9n
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" @@ -2312,7 +2306,7 @@ { "data": { "text/html": [ - "Find logs at: ./wandb/run-20230628_121945-v3pj0z4k/logs" + "Find logs at: ./wandb/run-20230630_150821-8t0sok9n/logs" ], "text/plain": [ "" @@ -2354,19 +2348,19 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 0.275\n" + "The MSE loss is 0.342\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP6ElEQVR4nO3de1xUZf4H8M9hlPswiDozoIjknVDzHlJKGyFpKtVqlqakm2Zgkplov0xNC7UsrS2s3AXNrNw1jNzCEJW8gRdilTRSwssqF/MyIyioM+f3x8ToyG0GB2aG83m/XvOy85xnnvOdkzBfn9sRRFEUQURERCQRTrYOgIiIiKgpMfkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKS1sHYA90uv1OHfuHORyOQRBsHU4REREZAZRFHHlyhX4+fnByan2/h0mPzU4d+4c/P39bR0GERERNcCZM2fQvn37Ws8z+amBXC4HYLh5Xl5eNo6GiIiIzKHVauHv72/8Hq8Nk58aVA11eXl5MfkhIiJyMPVNWeGEZyIiIpIUJj9EREQkKUx+iIiISFI454eIyAHodDrcuHHD1mEQ2VTLli0hk8nuuh0mP0REdkwURRQXF+Py5cu2DoXILnh7e0OtVt/VPnxMfoiI7FhV4qNUKuHu7s6NV0myRFHE1atXUVpaCgDw9fVtcFtMfoiI7JROpzMmPq1bt7Z1OEQ25+bmBgAoLS2FUqls8BAYJzwTEdmpqjk+7u7uNo6EyH5U/TzczRw4Jj9ERHaOQ11Et1jj54HDXk1FrwNO7QXKSgBPFRAwGHC6+xnrREREZBmb9vwkJCRgwIABkMvlUCqViIqKQn5+vkmdsLAwCIJg8nrhhRfqbFcURbzxxhvw9fWFm5sbwsPDcfz48cb8KHU7mgqsDAbWPgZsmmL4c2WwoZyIiIialE2Tn8zMTMTExCArKwvp6em4ceMGIiIiUF5eblLv+eefR1FRkfG1fPnyOttdvnw5PvjgA6xevRrZ2dnw8PDAsGHDUFFR0Zgfp2ZHU4GNEwHtOdNybZGhnAkQEVGDRUdHIyoqyngcFhaGuLi4u2rTGm2QfbPpsFdaWprJcXJyMpRKJQ4dOoQhQ4YYy93d3aFWq81qUxRFrFy5Eq+//jpGjx4NAFi3bh1UKhU2b96McePGWe8D1EevA9LiAYg1RQpAANLmAt1HcAiMiBqNTi9if+FFlF6pgFLuioGBPpA5Ne48oujoaKxduxaAYWO6Dh06YOLEiXjttdfQokXjffV88803aNmypVl1d+7ciYceegiXLl2Ct7d3g9ogx2RXc340Gg0AwMfHx6T8iy++wPr166FWqzFy5EjMnz+/1tUPhYWFKC4uRnh4uLFMoVBg0KBB2LdvX43JT2VlJSorK43HWq3WGh/HMMfnzh4fEyKgPWuoF/igda5JRHSbtLwiLPruKIo0t3q+fRWuWDAyCJHBDd8nxRyRkZFISkpCZWUlvv/+e8TExKBly5aYN2+eSb3r16/D2dnZKte88/vDVm2QfbOb1V56vR5xcXEIDQ1FcHCwsfyZZ57B+vXrsWPHDsybNw+ff/45JkyYUGs7xcXFAACVSmVSrlKpjOfulJCQAIVCYXz5+/tb4RPBMLnZmvWIiCyQlleE6etzTBIfACjWVGD6+hyk5RU16vVdXFygVqsREBCA6dOnIzw8HKmpqcahqrfeegt+fn7o1q0bAODMmTMYO3YsvL294ePjg9GjR+PkyZPG9nQ6HWbNmgVvb2+0bt0ac+bMgSia9qzfOWRVWVmJ+Ph4+Pv7w8XFBZ07d8Y//vEPnDx5Eg899BAAoFWrVhAEAdHR0TW2cenSJUycOBGtWrWCu7s7Hn30UZN5pMnJyfD29sbWrVvRo0cPeHp6IjIyEkVFt+7vzp07MXDgQHh4eMDb2xuhoaE4deqUle40Wcpukp+YmBjk5eXhq6++MimfOnUqhg0bhp49e2L8+PFYt24dUlJSUFBQYLVrz5s3DxqNxvg6c+aMdRr2VNVfx5J6RERm0ulFLPruaK2D7gCw6Luj0OlrqtE43NzccP36dQBARkYG8vPzkZ6eji1btuDGjRsYNmwY5HI5du3ahT179hiTiKr3rFixAsnJyfjnP/+J3bt34+LFi0hJSanzmhMnTsSXX36JDz74AMeOHcMnn3wCT09P+Pv7Y9OmTQCA/Px8FBUVYdWqVTW2ER0djYMHDyI1NRX79u2DKIoYPny4yT4zV69exbvvvovPP/8cP/30E06fPo3Zs2cDAG7evImoqCgMHToUhw8fxr59+zB16lRuYWBDdjHsFRsbiy1btuCnn35C+/bt66w7aNAgAMCJEyfQqVOnauer5gaVlJSYbH1dUlKC++67r8Y2XVxc4OLi0sDo6xAwGPDyM0xurvFXkGA4HzDY+tcmIknbX3ixWo/P7UQARZoK7C+8iJBOjbt7tCiKyMjIwNatWzFjxgycP38eHh4eWLNmjXG4a/369dDr9VizZo0xKUhKSoK3tzd27tyJiIgIrFy5EvPmzcMTTzwBAFi9ejW2bt1a63V/++03bNy4Eenp6capEPfcc4/xfNXwllKpNJnzc7vjx48jNTUVe/bsweDBht/VX3zxBfz9/bF582aMGTMGgGHDvdWrVxu/l2JjY/Hmm28CMEyl0Gg0eOyxx4zne/ToYfmNJKuxac+PKIqIjY1FSkoKtm/fjsDAwHrfk5ubC6D2Z3oEBgZCrVYjIyPDWKbVapGdnY2QkBCrxG02JxkQuezPgzsz/D+PI5dysjMRWV3pFfNWt5pbryG2bNkCT09PuLq64tFHH8VTTz2FhQsXAgB69uxpMs/nv//9L06cOAG5XA5PT094enrCx8cHFRUVKCgogEajQVFRkfEfwADQokUL9O/fv9br5+bmQiaTYejQoQ3+DMeOHUOLFi1Mrtu6dWt069YNx44dM5a5u7ub/IPc19fX+AwqHx8fREdHY9iwYRg5ciRWrVplMiRGTc+myU9MTAzWr1+PDRs2QC6Xo7i4GMXFxbh27RoAoKCgAIsXL8ahQ4dw8uRJpKamYuLEiRgyZAh69eplbKd79+7Grk9BEBAXF4clS5YgNTUVR44cwcSJE+Hn52eyHLLJBI0Cxq4DvO5I1rz8DOVBo5o+JiJq9pRyV6vWa4iHHnoIubm5OH78OK5du4a1a9fCw8MDAIx/VikrK0O/fv2Qm5tr8vrtt9/wzDPPNOj6Vc+Bagp3rg4TBMFkPlJSUhL27duHwYMH4+uvv0bXrl2RlZXVZPGRKZsOeyUmJgIwTC67XVJSEqKjo+Hs7Ixt27Zh5cqVKC8vh7+/P5588km8/vrrJvXz8/ONK8UAYM6cOSgvL8fUqVNx+fJlPPDAA0hLS4Ora+P9kNcpaJRhOTt3eCaiJjIw0Ae+ClcUaypqG3SHWmFY9t5YPDw80LlzZ7Pq9u3bF19//TWUSiW8vLxqrOPr64vs7GzjVig3b97EoUOH0Ldv3xrr9+zZE3q9HpmZmSYrgKtU9TzpdLpa4+rRowdu3ryJ7Oxs47DXhQsXkJ+fj6CgILM+W5U+ffqgT58+mDdvHkJCQrBhwwbcf//9FrVB1mHT5OfOWfp38vf3R2ZmpsXtCIKAN9980zjeahecZFzOTkRNRuYkYMHIIExfnwMBprMOqwbhF4wMavT9fsw1fvx4vPPOOxg9ejTefPNNtG/fHqdOncI333yDOXPmoH379pg5cyaWLl2KLl26oHv37njvvfdw+fLlWtvs2LEjJk2ahMmTJ+ODDz5A7969cerUKZSWlmLs2LEICAiAIAjYsmULhg8fDjc3N3h6epq00aVLF4wePRrPP/88PvnkE8jlcsydOxft2rUz7iVXn8LCQnz66acYNWoU/Pz8kJ+fj+PHj2PixIl3c8voLtjNai8iIrKuyGBfJE7oC7XCtNdbrXBF4oS+jb7PjyXc3d3x008/oUOHDnjiiSfQo0cPTJkyBRUVFcaeoFdeeQXPPvssJk2ahJCQEMjlcjz++ON1tpuYmIi//vWvePHFF9G9e3c8//zzxqcItGvXDosWLcLcuXOhUqkQGxtbYxtJSUno168fHnvsMYSEhEAURXz//fdmb4To7u6OX3/9FU8++SS6du2KqVOnIiYmBtOmTbPgDpE1CWJ93S8SpNVqoVAooNFoau1+JSJqbBUVFSgsLERgYOBdDdvbYodnosZS18+Fud/fdrHUnYiIGo/MSWj05exEjoTDXkRERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiKiPy1cuBD33XefrcNAWFgY4uLibB1Gs8Xkh4iIrK64uBgzZ85E586d4erqCpVKhdDQUCQmJuLq1au2Dq/Bdu7cCUEQ6nymmC3bI/Nwh2ciouZOrwNO7QXKSgBPFRAw2PCw5Uby+++/IzQ0FN7e3nj77bfRs2dPuLi44MiRI/j000/Rrl07jBo1qsb33rhxw+xnZtmz69evG58aT/aHPT9ERM3Z0VRgZTCw9jFg0xTDnyuDDeWN5MUXX0SLFi1w8OBBjB07Fj169MA999yD0aNH4z//+Q9GjhxprCsIAhITEzFq1Ch4eHjgrbfeAmB4IGmnTp3g7OyMbt264fPPPze+5+TJkxAEAbm5ucayy5cvQxAE7Ny5E8CtHpWMjAz0798f7u7uGDx4MPLz801iXbp0KVQqFeRyufFBqrU5efIkHnroIQBAq1atIAgCoqOjARiGqWJjYxEXF4c2bdpg2LBh9cZZV3sAoNfrMWfOHPj4+ECtVmPhwoXm/i+gejD5ISJqro6mAhsnAtpzpuXaIkN5IyRAFy5cwI8//oiYmBh4eHjUWEcQTB+qunDhQjz++OM4cuQIJk+ejJSUFMycOROvvPIK8vLyMG3aNDz33HPYsWOHxfH83//9H1asWIGDBw+iRYsWmDx5svHcxo0bsXDhQrz99ts4ePAgfH198fHHH9falr+/PzZt2gQAyM/PR1FREVatWmU8v3btWjg7O2PPnj1YvXp1vbGZ056Hhweys7OxfPlyvPnmm0hPT7f4HlB1HPYiImqO9DogLR6AWMNJEYAApM0Fuo+w6hDYiRMnIIoiunXrZlLepk0bY69KTEwMli1bZjz3zDPP4LnnnjMeP/3004iOjsaLL74IAJg1axaysrLw7rvvGntKzPXWW29h6NChAIC5c+dixIgRqKiogKurK1auXIkpU6ZgypQpAIAlS5Zg27Zttfb+yGQy+Pj4AACUSiW8vb1Nznfp0gXLly83Hp88ebLO2Oprr1evXliwYIGx7b///e/IyMjAI488YtZnp9qx54eIqDk6tbd6j48JEdCeNdRrAvv370dubi7uvfdeVFZWmpzr37+/yfGxY8cQGhpqUhYaGopjx45ZfN1evXoZ/9vX1xcAUFpaarzOoEGDTOqHhIRYfI0q/fr1a/B7a3J77IAh/qrY6e6w54eIqDkqK7FuPTN17twZgiBUm1tzzz33AADc3Nyqvae24bHaODkZ/t0uird6tW7cuFFj3dsnT1cNt+n1eouuZ647P4clcdbkzonfgiA0WuxSw54fIqLmyFNl3Xpmat26NR555BH8/e9/R3l5eYPa6NGjB/bs2WNStmfPHgQFBQEA2rZtCwAoKioynr99UrEl18nOzjYpy8rKqvM9VSu4dDpdve2bE6cl7ZH1sOeHiKg5ChgMePkZJjfXOO9HMJwPGGz1S3/88ccIDQ1F//79sXDhQvTq1QtOTk44cOAAfv3113qHh1599VWMHTsWffr0QXh4OL777jt888032LZtGwBD79H999+PpUuXIjAwEKWlpXj99dctjnPmzJmIjo5G//79ERoaii+++AK//PKLsZeqJgEBARAEAVu2bMHw4cPh5uYGT0/PGuuaE6cl7ZH1sOeHiKg5cpIBkVWTioU7Tv55HLm0Ufb76dSpE37++WeEh4dj3rx56N27N/r3748PP/wQs2fPxuLFi+t8f1RUFFatWoV3330X9957Lz755BMkJSUhLCzMWOef//wnbt68iX79+iEuLg5LliyxOM6nnnoK8+fPx5w5c9CvXz+cOnUK06dPr/M97dq1w6JFizB37lyoVCrExsbWWb++OC1tj6xDEG8fjCQAgFarhUKhgEajgZeXl63DISKJqqioQGFhIQIDA+Hq6tqwRo6mGlZ93T752audIfEJqnmjQSJ7VtfPhbnf3xz2IiJqzoJGGZazN+EOz0T2jskPEVFz5yQDAh+0dRREdoNzfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREtSguLsYjjzwCDw8PeHt72zocq9m5cycEQcDly5dtGsfChQtx3333Nfl1mfwQEZFVRUdHQxAEvPDCC9XOxcTEQBAEREdHN31gDfD++++jqKgIubm5+O2332wdTpMSBAGbN2+22/buBpMfIqJmTqfX4UDxAXz/+/c4UHwAOr2u0a/p7++Pr776CteuXTOWVVRUYMOGDejQoUOjX99aCgoK0K9fP3Tp0gVKpdJq7V6/ft1qbdmSo34OJj9ERM3YtlPbMGzTMEzeOhnxu+IxeetkDNs0DNtObWvU6/bt2xf+/v745ptvjGXffPMNOnTogD59+pjU1ev1SEhIQGBgINzc3NC7d2/8+9//Np7X6XSYMmWK8Xy3bt2watUqkzaio6MRFRWFd999F76+vmjdujViYmJw48aNOuNMTExEp06d4OzsjG7duuHzzz83nuvYsSM2bdqEdevW1dlbdfPmTbz00kvw9vZG69atER8fj0mTJiEqKspYJywsDLGxsYiLi0ObNm0wbNgwAEBmZiYGDhwIFxcX+Pr6Yu7cubh586ZJDCtXrjS53n333YeFCxcajwVBwJo1a/D444/D3d0dXbp0QWpqqsl7vv/+e3Tt2hVubm546KGHcPLkyTrvS8eOHQEAjz/+OARBMB5XDVOtWbPG5MGi9cVZW3tVPv/8c3Ts2BEKhQLjxo3DlStX6ozvbjH5ISJqprad2oZZO2eh5GqJSXnp1VLM2jmr0ROgyZMnIykpyXj8z3/+E88991y1egkJCVi3bh1Wr16NX375BS+//DImTJiAzMxMAIbkqH379vjXv/6Fo0eP4o033sBrr72GjRs3mrSzY8cOFBQUYMeOHVi7di2Sk5ORnJxca3wpKSmYOXMmXnnlFeTl5WHatGl47rnnsGPHDgDAgQMHEBkZibFjx6KoqKhawlVl2bJl+OKLL5CUlIQ9e/ZAq9XWOLyzdu1aODs7Y8+ePVi9ejXOnj2L4cOHY8CAAfjvf/+LxMRE/OMf/8CSJUvqu7XVLFq0CGPHjsXhw4cxfPhwjB8/HhcvXgQAnDlzBk888QRGjhyJ3Nxc/O1vf8PcuXPrbO/AgQMAgKSkJBQVFRmPAeDEiRPYtGkTvvnmG+Tm5poVX13tFRQUYPPmzdiyZQu2bNmCzMxMLF261JKPbzmRqtFoNCIAUaPR2DoUIpKwa9euiUePHhWvXbtm8Xtv6m6KD298WAxODq7x1TO5pxi+MVy8qbtp9bgnTZokjh49WiwtLRVdXFzEkydPiidPnhRdXV3F8+fPi6NHjxYnTZokiqIoVlRUiO7u7uLevXtN2pgyZYr49NNP13qNmJgY8cknnzS5ZkBAgHjz5q3PM2bMGPGpp56qtY3BgweLzz//vEnZmDFjxOHDhxuPb4+1NiqVSnznnXeMxzdv3hQ7dOggjh492lg2dOhQsU+fPibve+2118Ru3bqJer3eWPbRRx+Jnp6eok6nE0VRFAMCAsT333/f5H29e/cWFyxYYDwGIL7++uvG47KyMhGA+MMPP4iiKIrz5s0Tg4KCTNqIj48XAYiXLl2q9XMBEFNSUkzKFixYILZs2VIsLS01KTc3zprac3d3F7VarbHs1VdfFQcNGlRrXHX9XJj7/c2nuhMRNUM5pTnVenxuJ0JE8dVi5JTmYIB6QKPE0LZtW4wYMQLJyckQRREjRoxAmzZtTOqcOHECV69exSOPPGJSfv36dZPhsY8++gj//Oc/cfr0aVy7dg3Xr1+vtkro3nvvhUwmMx77+vriyJEjtcZ37NgxTJ061aQsNDS01h6emmg0GpSUlGDgwIHGMplMhn79+kGv15vU7devX7Xrh4SEQBAEk+uXlZXhf//7n0Vzo3r16mX8bw8PD3h5eaG0tNR4nUGDBpnUDwkJMbvtOwUEBKBt27YNfv+dOnbsCLlcbjz29fU1xt5YmPwQETVD56+et2q9hpo8eTJiY2MBGBKYO5WVlQEA/vOf/6Bdu3Ym51xcXAAAX331FWbPno0VK1YgJCQEcrkc77zzDrKzs03qt2zZ0uRYEIRqCYgteXh4WPweJycnGDpNbqlpHlNTfvaaPoe5cdbEFv/fOOeHiKgZautu3r/Mza3XUJGRkbh+/Tpu3LhhnOR7u6CgILi4uOD06dPo3Lmzycvf3x8AsGfPHgwePBgvvvgi+vTpg86dO6OgoOCuY+vRowf27NljUrZnzx4EBQWZ3YZCoYBKpTKZw6LT6ZCTk2PW9fft22eSNOzZswdyuRzt27cHYOg9KyoqMp7XarUoLCw0O76q6+zfv9+kLCsrq973tWzZEjqdeSsDzYnTkvYaG5MfukWvAwp3AUf+bfizCZbDElHj6KvsC5W7CgKEGs8LEKB2V6Ovsm+jxiGTyXDs2DEcPXrUZEiqilwux+zZs/Hyyy9j7dq1KCgoQE5ODj788EOsXbsWANClSxccPHgQW7duxW+//Yb58+ebJBsN9eqrryI5ORmJiYk4fvw43nvvPXzzzTeYPXu2Re3MmDEDCQkJ+Pbbb5Gfn4+ZM2fi0qVLJsNZNXnxxRdx5swZzJgxA7/++iu+/fZbLFiwALNmzYKTk+Hr+S9/+Qs+//xz7Nq1C0eOHMGkSZNqvI91eeGFF3D8+HG8+uqryM/Px4YNG+qcCF6lY8eOyMjIQHFxMS5dulRnXXPitKS9xsbkhwyOpgIrg4G1jwGbphj+XBlsKCcihyNzkmHuQMOKnjsToKrj+IHxkDlZ9kXaEF5eXvDy8qr1/OLFizF//nwkJCSgR48eiIyMxH/+8x8EBgYCAKZNm4YnnngCTz31FAYNGoQLFy7gxRdfvOu4oqKisGrVKrz77ru499578cknnyApKQlhYWEWtRMfH4+nn34aEydOREhICDw9PTFs2DDjMvDatGvXDt9//z3279+P3r1744UXXsCUKVPw+uuvG+vMmzcPQ4cOxWOPPYYRI0YgKioKnTp1sii+Dh06YNOmTdi8eTN69+6N1atX4+233673fStWrEB6ejr8/f2rbU9wJ3PitKS9xiaIdw7SEbRaLRQKBTQaTZ0/sM3G0VRg40QAd/5V+PMX5th1QNCopo6KSPIqKipQWFhosp+Kpbad2oal+5eaTH5Wu6sRPzAe4QHh1gqVbqPX69GjRw+MHTsWixcvtnU4zU5dPxfmfn9zwrPU6XVAWjyqJz74s0wA0uYC3UcATfAvRCKyrvCAcDzk/xBySnNw/up5tHVvi77Kvk3S4yMVp06dwo8//oihQ4eisrISf//731FYWIhnnnnG1qFRLZj8SN2pvYD2XB0VREB71lAv8MEmC4uIrEfmJGu05exkWOmUnJyM2bNnQxRFBAcHY9u2bejRo4etQ6Na2HTOT0JCAgYMGAC5XA6lUomoqCjk5+fXWFcURTz66KNmPRit6qF6t78iIyMb4RM0A2W17wPSoHpERBLj7++PPXv2QKPRQKvVYu/evRgyZIitw6I62DT5yczMRExMDLKyspCeno4bN24gIiIC5eXl1equXLmy3pnzt4uMjERRUZHx9eWXX1oz9ObDU2XdekRERHbOpsNeaWlpJsfJyclQKpU4dOiQSdacm5uLFStW4ODBg/D19TWrbRcXF6jVarPqVlZWorKy0nis1WrNel+zEDAY8PIDtEWoed6PYDgfMLipIyOiP3FdCtEt1vh5sKul7hqNBgDg4+NjLLt69SqeeeYZfPTRR2YnMwCwc+dOKJVKdOvWDdOnT8eFCxdqrZuQkACFQmF8VW2sJQlOMiBy2Z8Hd/as/XkcuZSTnYlsoGrn26tXr9o4EiL7UfXzcOfO0Jawm6Xuer0eo0aNwuXLl7F7925j+bRp06DT6bBmzRoAhm2vU1JSEBUVVWtbX331Fdzd3REYGIiCggK89tpr8PT0xL59+2rcHKqmnh9/f3/pLHUHDMvd0+JNJz97tTMkPlzmTmQzRUVFuHz5MpRKJdzd3S0a/ieyO6II3LgK6G4AspZAS3fAzL/Toiji6tWrKC0thbe3d40jQQ631D0mJgZ5eXkmiU9qaiq2b9+On3/+2aK2xo0bZ/zvnj17olevXujUqRN27tyJhx9+uFp9FxcX4zNkJCtolGE5+6m9hsnNnirDUBd7fIhsqqrHu7Ef9EjU6G5cBa5dBvQ3b5U5tQDcvA1JkJm8vb0tGgmqiV0kP7GxsdiyZQt++ukn4/NMAGD79u0oKCiAt7e3Sf0nn3wSDz74IHbu3GlW+/fccw/atGmDEydO1Jj80J+cZFzOTmRnBEGAr68vlEql2Q+KJLI7J7YDP9a0p1zV9IplQOe/1NtMy5YtLX68R01smvyIoogZM2YgJSUFO3fuNG5lXmXu3Ln429/+ZlLWs2dPvP/++xg5cqTZ1/nf//6HCxcumD1ZmojI3shkMqv80idqcnod8OMrQFlte8oJwI+zgaAjTTbaYNMJzzExMVi/fj02bNgAuVyO4uJiFBcX49q1awAM3b3BwcEmL8DwnJLbE6Xu3bsjJSUFAFBWVoZXX30VWVlZOHnyJDIyMjB69Gh07ty5xicKExERUSOyZDPdJmLT5CcxMREajQZhYWHw9fU1vr7++muL2snPzzeuFJPJZDh8+DBGjRqFrl27YsqUKejXrx927drFeT1ERERNzQ4307X5sJc13nN7mZubG7Zu3XpXcREREZGV2OFmuna1zw8RERE1M1Wb6VbbS66KYNhapQk302XyQ0RERI3HDjfTZfJDREREjStoFDB2HeB1x6prLz9DeRNvpmsX+/wQERFRM2dHm+ky+SEiIqKmYSeb6XLYi4iIiCSFyQ8RERFJCpMfIiIikhTO+SEiaii9zi4mbxKRZZj8EBE1xNFUIC3e9JlFXn6G/UyaeNkuEVmGw15ERJY6mgpsnFj9YY3aIkP50VTbxEVEZmHyQ0RkCb3O0OODmp5N+GdZ2lxDPSKyS0x+iIgscWpv9R4fEyKgPWuoR0R2ickPEZElykqsW4+ImhyTHyIiS3iqrFuPiJockx8iIksEDDas6qr2dOoqAuDVzlCPiOwSkx8iIks4yQzL2QFUT4D+PI5cyv1+iOwYkx8iIksFjQLGrgO8fE3LvfwM5dznh8iucZNDIqKGCBoFdB/BHZ6JHBCTHyKihnKSAYEP2joKIrIQh72IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpNk1+EhISMGDAAMjlciiVSkRFRSE/P7/GuqIo4tFHH4UgCNi8eXOd7YqiiDfeeAO+vr5wc3NDeHg4jh8/3gifgIiIiByNTZOfzMxMxMTEICsrC+np6bhx4wYiIiJQXl5ere7KlSshCIJZ7S5fvhwffPABVq9ejezsbHh4eGDYsGGoqKiw9kcgIiIiByOIoijaOogq58+fh1KpRGZmJoYMGWIsz83NxWOPPYaDBw/C19cXKSkpiIqKqrENURTh5+eHV155BbNnzwYAaDQaqFQqJCcnY9y4cdXeU1lZicrKSuOxVquFv78/NBoNvLy8rPshiYiIqFFotVooFIp6v7/tas6PRqMBAPj4+BjLrl69imeeeQYfffQR1Gp1vW0UFhaiuLgY4eHhxjKFQoFBgwZh3759Nb4nISEBCoXC+PL397/LT0JERET2ym6SH71ej7i4OISGhiI4ONhY/vLLL2Pw4MEYPXq0We0UFxcDAFQqlUm5SqUynrvTvHnzoNFojK8zZ8408FMQERGRvWth6wCqxMTEIC8vD7t37zaWpaamYvv27fj5558b9douLi5wcXFp1GsQERGRfbCLnp/Y2Fhs2bIFO3bsQPv27Y3l27dvR0FBAby9vdGiRQu0aGHI1Z588kmEhYXV2FbV0FhJSYlJeUlJiVnDZkRERNS82TT5EUURsbGxSElJwfbt2xEYGGhyfu7cuTh8+DByc3ONLwB4//33kZSUVGObgYGBUKvVyMjIMJZptVpkZ2cjJCSk0T4LEREROQabDnvFxMRgw4YN+PbbbyGXy41zchQKBdzc3KBWq2vsrenQoYNJotS9e3ckJCTg8ccfhyAIiIuLw5IlS9ClSxcEBgZi/vz58PPzq3WFGBEREUmHTZOfxMREAKg2hJWUlITo6Giz28nPzzeuFAOAOXPmoLy8HFOnTsXly5fxwAMPIC0tDa6urtYIm4iIiByYXe3zYy/M3SeAiIiI7IdD7vNDRERE1NiY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpKUFrYOgIjIUen0IvYXXkTplQoo5a4YGOgDmZNg67CIqB5MfoiIGiAtrwiLvjuKIk2FscxX4YoFI4MQGexrw8iIqD4c9iIislBaXhGmr88xSXwAoFhTgenrc5CWV2SjyIjIHEx+iIgsoNOLWPTdUYg1nKsqW/TdUej0NdUgInvA5IeIyAL7Cy9W6/G5nQigSFOB/YUXmy4oIrIIkx8iIguUXqk98WlIPSJqekx+iIgsoJS7WrUeETU9Jj9ERBYYGOgDX4UralvQLsCw6mtgoE9ThkVEFmDyQ0RkAZmTgAUjgwCgWgJUdbxgZBD3+yGyY0x+iIgsFBnsi8QJfaFWmA5tqRWuSJzQl/v8ENk5bnJIRNQAkcG+eCRIzR2erUGvA07tBcpKAE8VEDAYcJLZOipqxpj8EBE1kMxJQEin1rYOw7EdTQXS4gHtuVtlXn5A5DIgaJTt4qJmjcNeRERkG0dTgY0TTRMfANAWGcqPptomLkel1wGFu4Aj/zb8qdfZOiK7xZ4fIiJqenqdocen1r2yBSBtLtB9BIfAzMEeNIuw54eIiJreqb3Ve3xMiID2rKEe1Y09aBZj8kNERE2vrMS69aSq3h40GHrQOARmgskPERE1PU+VdetJFXvQGoRzfpqITq9DTmkOzl89j7bubdFX2RcyOxvHdogYb15HzpHPcV57Gm29OqBvz2cha+Fs67BMOMR9ZIxWwRjvQsBgw5wUbRF0EJHj6oLzMhna6nToW1EJGQTD+YDBto4UgB3fx9t6xnRADfexej1bspf7yOSnCWw7tQ1L9y9FydVbf/lU7irMHTgX4QHhNozsFoeIcXcClv72BUpkt/ZRUf38PuZ2HY/wB+bZMLJbHOI+MkarYIx3yUkGRC7Dti3TsLS1N0pa3Po6Ut28ibkXLiM8cqldTHa26/v4Z8/YNnc3LG3dqob7eAnhV6/ZRQ+aPd1HQRTFmgYKJU2r1UKhUECj0cDLy+uu2tp2ahtm7ZwF8Y7xWOHPjfDfC3vP5j88DhHj7gTMOvGFIULhVvIj/PnX973Otk+AHOI+MkarYIzWYYjxZYiiWP3nWhDwXtj7dhKjHd9HvQ7bPu6JWZ5Otf9+LNMj/MUjNk0km+o+mvv9fVdzfioqKrB27Vp8/PHHOH78+N001Szp9Dos3b+02v9sAMayZfuXQWfDiWgOEePN61j6W/XEBwDEP4+X/fYFdDevN31wf3KI+8gYrYIxWsetGFHLz7VgRzHa8X0EsNSnVd2/H1v7wJbTne3xPpqd/MyaNQszZswwHl+/fh0hISF4/vnn8dprr6FPnz7Yt2+fRRdPSEjAgAEDIJfLoVQqERUVhfz8fJM606ZNQ6dOneDm5oa2bdti9OjR+PXXX+tsNzo6GoIgmLwiIyMtis0ackpzTLr37iRCRPHVYuSU5jRhVKYcIsYjnxuGuoSaHxsgCgKKZQJyjnzexJHd4hD3kTFaBWO0DsZoHTmlOSi5oa379+N1je1jtLP7aHby8+OPP+KRRx4xHn/xxRc4deoUjh8/jkuXLmHMmDFYsmSJRRfPzMxETEwMsrKykJ6ejhs3biAiIgLl5eXGOv369UNSUhKOHTuGrVu3QhRFREREQKerO0OMjIxEUVGR8fXll19aFJs1nL963qr1GoNDxKg9bdV6jcEh7iNjtArGaB2M0ToYY8OYPeH59OnTCAoKMh7/+OOP+Otf/4qAgAAAwMyZMzF8+HCLLp6WlmZynJycDKVSiUOHDmHIkCEAgKlTpxrPd+zYEUuWLEHv3r1x8uRJdOrUqda2XVxcoFarLYrH2tq6t7VqvcbgEDF6dbBqvcbgEPeRMVoFY7QOxmgdjLFhzO75cXJywu1zo7OysnD//fcbj729vXHp0qW7Ckaj0QAAfHx8ajxfXl6OpKQkBAYGwt/fv862du7cCaVSiW7dumH69Om4cOFCrXUrKyuh1WpNXtbQV9kXKneVcULXnQQIULur0VfZ1yrXawiHiLHns1DpROPkvTsJogi1TkTfns82cWS3OMR9ZIxWwRitgzFaB2NsGLOTnx49euC7774DAPzyyy84ffo0HnroIeP5U6dOQaVq+FI6vV6PuLg4hIaGIjg42OTcxx9/DE9PT3h6euKHH35Aeno6nJ1r39slMjIS69atQ0ZGBpYtW4bMzEw8+uijtQ6VJSQkQKFQGF/1JVbmkjnJMHfgXACo9j+96jh+YLxN94pwiBhbOGNu1/GGmO5IgKqO47uOt+l+Pw5xHxmjVTBG62CM1sEYG8bspe4pKSkYN24cHnjgAfzyyy8YMGCAMRkCgPj4eBQWFmLjxo0NCmT69On44YcfsHv3brRv397knEajQWlpKYqKivDuu+/i7Nmz2LNnD1xdXc1q+/fff0enTp2wbds2PPzww9XOV1ZWorKy0nis1Wrh7+9vlaXuQM17G6jd1YgfGG/zZZxVHCLGGvb5UetExNv5Pj92dx8Zo1UwRutgjNbBGA3MXepu0T4/GRkZ2LJlC9RqNWbMmAF3d3fjuUWLFmHo0KEICwuzONjY2Fh8++23+OmnnxAYGFhn3evXr6NVq1ZYs2YNnn76abOv0bZtWyxZsgTTpk2rt6419/mpYi+7WtbFIWLkDs9WwRitgzFaB2O0DsbYCMnPm2++idmzZ5skPHdLFEXMmDEDKSkp2LlzJ7p06VLveyorK9GqVSt8/PHHiI6ONus6//vf/9ChQwds3rwZo0aNqrd+YyQ/RERE1LisvsnhokWLUFZWZpXgqsTExGD9+vXYsGED5HI5iouLUVxcjGvXrgEwDFclJCTg0KFDOH36NPbu3YsxY8bAzc3NZGVZ9+7dkZKSAgAoKyvDq6++iqysLJw8eRIZGRkYPXo0OnfujGHDhlk1fiIiInI8Zic/jfEUjMTERGg0GoSFhcHX19f4+vrrrwEArq6u2LVrF4YPH47OnTvjqaeeglwux969e6FUKo3t5OfnG1eKyWQyHD58GKNGjULXrl0xZcoU9OvXD7t27YKLi4vVPwMRERE5FrOHvZycnFBSUoK2bW23V0BT4bAXERGZ0OuAU3sNT0f3VBmeNm9n82nI/O9vi57q3rVrVwi1bKFd5eLFi5Y0SUREZN+OpgJp8YD23K0yLz8gchkQVP88UrI/FiU/ixYtgkKhaKxYmjWdXsT+wosovVIBpdwVAwN9IHOqO5EkIiIbO5oKbJwI3PlQTm2RoXzsOiZADsii5GfcuHEmc23IPGl5RVj03VEUaSqMZb4KVywYGYTIYF8bRkZERLXS6ww9PjU8jdxQJgBpc4HuIzgE5mDMnvBc33AX1SwtrwjT1+eYJD4AUKypwPT1OUjLK7JRZEREVKdTe02HuqoRAe1ZQz1yKDZd7dXc6fQiFn13tNZ/MwDAou+OQqfnvSWixqHTi9hXcAHf5p7FvoIL/H1jibKS+utYUo/shtnDXnq9vjHjaJb2F16s1uNzOxFAkaYC+wsvIqRT66YLjIgkgUPud8nTzOdVmluP7IbZPT9kudIrtSc+DalHRGQuDrlbQcBgw6quWp5GDgiAVztDPXIoTH4akVJu3oNXza1HRGQODrlbiZPMsJwdQPUE6M/jyKWc7OyAmPw0ooGBPvBVuNb1bwb4KgzL3omIrMWSIXeqR9Aow3J2rzuGCb38uMzdgVm01J0sI3MSsGBkEKavz4EA08WSVQnRgpFB3O+HiKyKQ+5WFjTKsJydOzw3G+z5aWSRwb5InNAXaoXp0JZa4YrECX056ZCIrI5D7o3ASQYEPgj0/KvhTyY+Do09P00gMtgXjwSpucMzETWJqiH3Yk1FjfN+BBj+AcYhd5IqJj9NROYkcDk7ETUJDrkT1Y3DXkREzRCH3Ilqx54fIqJmikPuRDVj8kNE1IxxyJ2oOg57ERERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCTFpslPQkICBgwYALlcDqVSiaioKOTn55vUmTZtGjp16gQ3Nze0bdsWo0ePxq+//lpnu6Io4o033oCvry/c3NwQHh6O48ePN+ZHISIisimdXsS+ggv4Nvcs9hVcgE4v2joku2XT5CczMxMxMTHIyspCeno6bty4gYiICJSXlxvr9OvXD0lJSTh27Bi2bt0KURQREREBnU5Xa7vLly/HBx98gNWrVyM7OxseHh4YNmwYKioqmuJjERERNam0vCI8sGw7nv4sCzO/ysXTn2XhgWXbkZZXZOvQ7JIgiqLdpIbnz5+HUqlEZmYmhgwZUmOdw4cPo3fv3jhx4gQ6depU7bwoivDz88Mrr7yC2bNnAwA0Gg1UKhWSk5Mxbty4euPQarVQKBTQaDTw8vK6uw9FRETUiNLyijB9fQ7u/DIX/vwzcUJfRAb7NnVYNmHu97ddzfnRaDQAAB8fnxrPl5eXIykpCYGBgfD396+xTmFhIYqLixEeHm4sUygUGDRoEPbt21fjeyorK6HVak1eRETUNDhc03A6vYhF3x2tlvgAMJYt+u4o7+kdWtg6gCp6vR5xcXEIDQ1FcHCwybmPP/4Yc+bMQXl5Obp164b09HQ4OzvX2E5xcTEAQKVSmZSrVCrjuTslJCRg0aJFVvgURERkibS8Iiz67iiKNLemJfgqXLFgZJBkeivuxv7Ciyb37k4igCJNBfYXXkRIp9ZNF5ids5uen5iYGOTl5eGrr76qdm78+PH4+eefkZmZia5du2Ls2LFWnb8zb948aDQa4+vMmTNWa5uIiGpWNVxz55d3saYC09fncL6KGUqvmPddaG49qbCL5Cc2NhZbtmzBjh070L59+2rnFQoFunTpgiFDhuDf//43fv31V6SkpNTYllqtBgCUlJSYlJeUlBjP3cnFxQVeXl4mLyIiajwcrrEOpdzVqvWkwqbJjyiKiI2NRUpKCrZv347AwECz3iOKIiorK2s8HxgYCLVajYyMDGOZVqtFdnY2QkJCrBY7ERE1nCXDNVS7gYE+8FW4Gic330mAYRhxYGDNc2mlyqbJT0xMDNavX48NGzZALpejuLgYxcXFuHbtGgDg999/R0JCAg4dOoTTp09j7969GDNmDNzc3DB8+HBjO927dzf2BAmCgLi4OCxZsgSpqak4cuQIJk6cCD8/P0RFRdniYxIR0R04XGMdMicBC0YGAUC1BKjqeMHIIMicakuPpMmmyU9iYiI0Gg3CwsLg6+trfH399dcAAFdXV+zatQvDhw9H586d8dRTT0Eul2Pv3r1QKpXGdvLz840rxQBgzpw5mDFjBqZOnYoBAwagrKwMaWlpcHVltx8RkT3gcI31RAb7InFCX6gVpvdKrXCV1DJ3S9jVPj/2gvv8EBE1Lp1exAPLtqNYU1HjvB8Bhi/v3fF/Ya+FmXR6EfsLL6L0SgWUcsNQl9Tunbnf33az1J2IiKSjarhm+vocCIBJAsThmoaROQlczm4mu1jtRURE0sPhGrIV9vwQEZHNRAb74pEgteSHa6hpMfkhIiKb4nANNTUmP0RERNQk7GVSNpMfIiIianT29Bw3TngmIiKiRmVvz3Fj8kNERESNxh6f48bkh4iIiBqNPT7HjckPERERNRp7fI4bkx8iIiJqNPb4HDeu9iKyNr0OOLUXKCsBPFVAwGDASWbrqIiIbGJgoA98Fa71PsdtYKBPk8XE5IfImo6mAmnxgPbcrTIvPyByGRA0ynZxERHZiD0+x43DXkTWcjQV2DjRNPEBAG2Rofxoqm3iIiKyMXt7jpsgimLTrS1zEFqtFgqFAhqNBl5eXrYOhxyBXgesDK6e+BgJhh6guCMcAiMiyWrsHZ7N/f7msBeRNZzaW0fiAwAioD1rqBf4YJOFRURkT+zlOW4c9iKyhrIS69YjIqJGw54fImvwVFm3HtnNAxCJqPlh8kNkDQGDDXN6tEVAbYs5vfwM9ahe9vQARCJqfjjsRWQNTjLDcnYAIkx7J4zHkUs52dkM9vYARCJqfpj8EFlL0Cj8HLIKpTDdqKsEPvg5ZBX3+TGDPT4AkYiaHw57EVlJWl4Rpu9oAwGrMNDpVyhxGaXwxgF9d+h3OCGxXRGHbOphyQMQ7WHFCBE5JiY/RFZwe4+FCCdk6YNMzgsw9Fg8EqTmpN062OMDEImo+eGwF5EVWNJjQbWzxwcgElHzw54fIitgj4V13P4ARAF6k+HD/fruEOHU5A9AJKLmh8kPkRWwx8I6qh6AuHnDarzRch38hFs9ZedEH7x5YyKiRr7AoUMiuitMfois4PYei1p2+WGPhZkinQ5gmPMqiHfcSbVwEYnOqyA49QPAlXNE1HCc80NGOr2IfQUX8G3uWewruGCXy4ntNcaqHgsAuLNPoup4wcgg9ljUR68D0uIhQKz2y8kJf97LtLmGekREDcSeHwLgGDvq2nuMkcG+SJzQt1qMajuK0e7xAbFE1ASY/JBxR907+1CqdtRNnNDX5l/cjhAjYEiAHglS85lUDcUHxJKd4rPmmhcmPxJX34669rA/jSPEeDuZk8AN+BqKD4glO2Tvvc5kOc75kThH2J/GEWIkK6l6QGy1mVNVBMCrHR8QS02Gz5prnpj8SJwj7E/jCDE6GnudOH77A2JrnTrOB8RSE+Gz5povDntJnCPsT+MIMToSu+/CDxoFjF0HpMWbTn728jMkPnxALDURPmuu+WLyI3GOsD+NI8ToKBxl4jiCRgHdRxhWdZWVGOb4BAxmjw81KfY6N18c9pI4R9ifxhFidAQO14XvJDMsZ+/5V8OfTHyoibHXufli8kPG/WnUCtMfYLXC1W56AhwhRnvHieNElqnqda5j+j182evskDjsRQAcY38aR4jRnrELn8gyVb3O09fnQABMek3Z6+zYmPyQkSPsT+MIMdorduETWY47tzdPTH6IJIITx4kahr3OzQ+THyKJYBc+UcOx17l54YRnIgnhxHEiIvb8EElOZLAvHuneFr9mb8W1S2fh1qodug8aClkL/jogImngbzsiqTmaCllaPO69fffkbD/DYyW4ezIRSYBNh70SEhIwYMAAyOVyKJVKREVFIT8/33j+4sWLmDFjBrp16wY3Nzd06NABL730EjQaTZ3tRkdHQxAEk1dkZGRjfxwi+3c0Fdg40fSxEQCgLTKUH021TVxERE3IpslPZmYmYmJikJWVhfT0dNy4cQMREREoLy8HAJw7dw7nzp3Du+++i7y8PCQnJyMtLQ1Tpkypt+3IyEgUFRUZX19++WVjfxwi+6bXGZ6XVdcez2lzDfWIiJoxmw57paWlmRwnJydDqVTi0KFDGDJkCIKDg7Fp0ybj+U6dOuGtt97ChAkTcPPmTbSoY46Ci4sL1Gp1o8VO5HBO7a3e42NCBLRnDfUCH2yysIiImppdrfaqGs7y8al9nxGNRgMvL686Ex8A2LlzJ5RKJbp164bp06fjwoULtdatrKyEVqs1eRE1O2Ul1q1HROSg7Cb50ev1iIuLQ2hoKIKDg2us88cff2Dx4sWYOnVqnW1FRkZi3bp1yMjIwLJly5CZmYlHH30UOl3N3fkJCQlQKBTGl7+//11/HiK746mybj0iIgcliKJoF49wnj59On744Qfs3r0b7du3r3Zeq9XikUcegY+PD1JTU9GyZUuz2/7999/RqVMnbNu2DQ8//HC185WVlaisrDS5lr+/v7GXiahZ0OuAlcGGyc217fHs5QfEHeET1InIIWm1WigUinq/v+2i5yc2NhZbtmzBjh07akx8rly5gsjISMjlcqSkpFiU+ADAPffcgzZt2uDEiRM1nndxcYGXl5fJi6jZcZIZlrMDQLXnVP95HLmUiQ8RNXs2TX5EUURsbCxSUlKwfft2BAYGVquj1WoREREBZ2dnpKamwtXV8ocu/u9//8OFCxfg68vda0nigkYBY9cBXnf8LHj5Gcq5zw8RSYBNh71efPFFbNiwAd9++y26detmLFcoFHBzczMmPlevXkVKSgo8PDyMddq2bQuZzPAv1O7duyMhIQGPP/44ysrKsGjRIjz55JNQq9UoKCjAnDlzcOXKFRw5cgQuLi71xmVutxmRw9LrDKu6ykoMc3wCBrPHh4gcnrnf3zZd6p6YmAgACAsLMylPSkpCdHQ0cnJykJ2dDQDo3LmzSZ3CwkJ07NgRAJCfn29cKSaTyXD48GGsXbsWly9fhp+fHyIiIrB48WKzEh8iSXCScTk7EUmW3Ux4tifs+SEiInI8DjXhmYiIiKipMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSYpNk5+EhAQMGDAAcrkcSqUSUVFRyM/PN56/ePEiZsyYgW7dusHNzQ0dOnTASy+9BI1GU2e7oijijTfegK+vL9zc3BAeHo7jx4839schIiIiB2DT5CczMxMxMTHIyspCeno6bty4gYiICJSXlwMAzp07h3PnzuHdd99FXl4ekpOTkZaWhilTptTZ7vLly/HBBx9g9erVyM7OhoeHB4YNG4aKioqm+FhERERkxwRRFEVbB1Hl/PnzUCqVyMzMxJAhQ2qs869//QsTJkxAeXk5WrRoUe28KIrw8/PDK6+8gtmzZwMANBoNVCoVkpOTMW7cuGrvqaysRGVlpfFYq9XC398fGo0GXl5eVvp0RERE1Ji0Wi0UCkW93992NeenajjLx8enzjpeXl41Jj4AUFhYiOLiYoSHhxvLFAoFBg0ahH379tX4noSEBCgUCuPL39//Lj4FEZEd0euAwl3AkX8b/tTrbB0Rkc3VnEHYgF6vR1xcHEJDQxEcHFxjnT/++AOLFy/G1KlTa22nuLgYAKBSqUzKVSqV8dyd5s2bh1mzZhmPq3p+iIgc2tFUIC0e0J67VeblB0QuA4JG2S4uIhuzm+QnJiYGeXl52L17d43ntVotRowYgaCgICxcuNCq13ZxcYGLi4tV2yQisqmjqcDGiQDumNmgLTKUj13HBIgkyy6GvWJjY7Flyxbs2LED7du3r3b+ypUriIyMhFwuR0pKClq2bFlrW2q1GgBQUlJiUl5SUmI8R0TUrOl1hh6fOxMf4FZZ2lwOgZFk2TT5EUURsbGxSElJwfbt2xEYGFitjlarRUREBJydnZGamgpXV9c62wwMDIRarUZGRoZJG9nZ2QgJCbH6ZyAisjun9poOdVUjAtqzhnpEEmTT5CcmJgbr16/Hhg0bIJfLUVxcjOLiYly7dg3ArcSnvLwc//jHP6DVao11dLpb/2Lp3r07UlJSAACCICAuLg5LlixBamoqjhw5gokTJ8LPzw9RUVG2+JhERE2rrKT+OpbUI2pmbDrnJzExEQAQFhZmUp6UlITo6Gjk5OQgOzsbANC5c2eTOoWFhejYsSMAID8/32Tjwzlz5qC8vBxTp07F5cuX8cADDyAtLa3eXiMiombBU1V/HUvqETUzdrXPj70wd58AIiK7pNcBK4MNk5trnPcjGFZ9xR0BnGRNHR1Ro3HIfX6IiMgKnGSG5ewAAOGOk38eRy5l4kOSxeSHiKg5ChplWM7u5Wta7uXHZe4keXazzw8REVlZ0Cig+wjDqq6yEsMcn4DB7PEhyWPyQ0TUnDnJgMAHbR0FkV3hsBcRERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCnd4rkHVg+61Wq2NIyEiIiJzVX1vV32P14bJTw2uXLkCAPD397dxJERERGSpK1euQKFQ1HpeEOtLjyRIr9fj3LlzkMvlEATBau1qtVr4+/vjzJkz8PLyslq7UsP7aB28j9bB+2gdvI/WIfX7KIoirly5Aj8/Pzg51T6zhz0/NXByckL79u0brX0vLy9J/qW0Nt5H6+B9tA7eR+vgfbQOKd/Hunp8qnDCMxEREUkKkx8iIiKSFCY/TcjFxQULFiyAi4uLrUNxaLyP1sH7aB28j9bB+2gdvI/m4YRnIiIikhT2/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhclPE/roo4/QsWNHuLq6YtCgQdi/f7+tQ3IoCQkJGDBgAORyOZRKJaKiopCfn2/rsBze0qVLIQgC4uLibB2Kwzl79iwmTJiA1q1bw83NDT179sTBgwdtHZZD0el0mD9/PgIDA+Hm5oZOnTph8eLF9T6bSep++uknjBw5En5+fhAEAZs3bzY5L4oi3njjDfj6+sLNzQ3h4eE4fvy4bYK1Q0x+msjXX3+NWbNmYcGCBcjJyUHv3r0xbNgwlJaW2jo0h5GZmYmYmBhkZWUhPT0dN27cQEREBMrLy20dmsM6cOAAPvnkE/Tq1cvWoTicS5cuITQ0FC1btsQPP/yAo0ePYsWKFWjVqpWtQ3Moy5YtQ2JiIv7+97/j2LFjWLZsGZYvX44PP/zQ1qHZtfLycvTu3RsfffRRjeeXL1+ODz74AKtXr0Z2djY8PDwwbNgwVFRUNHGkdkqkJjFw4EAxJibGeKzT6UQ/Pz8xISHBhlE5ttLSUhGAmJmZaetQHNKVK1fELl26iOnp6eLQoUPFmTNn2jokhxIfHy8+8MADtg7D4Y0YMUKcPHmySdkTTzwhjh8/3kYROR4AYkpKivFYr9eLarVafOedd4xlly9fFl1cXMQvv/zSBhHaH/b8NIHr16/j0KFDCA8PN5Y5OTkhPDwc+/bts2Fkjk2j0QAAfHx8bByJY4qJicGIESNM/l6S+VJTU9G/f3+MGTMGSqUSffr0wWeffWbrsBzO4MGDkZGRgd9++w0A8N///he7d+/Go48+auPIHFdhYSGKi4tNfrYVCgUGDRrE75w/8cGmTeCPP/6ATqeDSqUyKVepVPj1119tFJVj0+v1iIuLQ2hoKIKDg20djsP56quvkJOTgwMHDtg6FIf1+++/IzExEbNmzcJrr72GAwcO4KWXXoKzszMmTZpk6/Acxty5c6HVatG9e3fIZDLodDq89dZbGD9+vK1Dc1jFxcUAUON3TtU5qWPyQw4pJiYGeXl52L17t61DcThnzpzBzJkzkZ6eDldXV1uH47D0ej369++Pt99+GwDQp08f5OXlYfXq1Ux+LLBx40Z88cUX2LBhA+69917k5uYiLi4Ofn5+vI/UaDjs1QTatGkDmUyGkpISk/KSkhKo1WobReW4YmNjsWXLFuzYsQPt27e3dTgO59ChQygtLUXfvn3RokULtGjRApmZmfjggw/QokUL6HQ6W4foEHx9fREUFGRS1qNHD5w+fdpGETmmV199FXPnzsW4cePQs2dPPPvss3j55ZeRkJBg69AcVtX3Cr9zasfkpwk4OzujX79+yMjIMJbp9XpkZGQgJCTEhpE5FlEUERsbi5SUFGzfvh2BgYG2DskhPfzwwzhy5Ahyc3ONr/79+2P8+PHIzc2FTCazdYgOITQ0tNpWC7/99hsCAgJsFJFjunr1KpycTL+KZDIZ9Hq9jSJyfIGBgVCr1SbfOVqtFtnZ2fzO+ROHvZrIrFmzMGnSJPTv3x8DBw7EypUrUV5ejueee87WoTmMmJgYbNiwAd9++y3kcrlx7FqhUMDNzc3G0TkOuVxebZ6Uh4cHWrduzflTFnj55ZcxePBgvP322xg7diz279+PTz/9FJ9++qmtQ3MoI0eOxFtvvYUOHTrg3nvvxc8//4z33nsPkydPtnVodq2srAwnTpwwHhcWFiI3Nxc+Pj7o0KED4uLisGTJEnTp0gWBgYGYP38+/Pz8EBUVZbug7Ymtl5tJyYcffih26NBBdHZ2FgcOHChmZWXZOiSHAqDGV1JSkq1Dc3hc6t4w3333nRgcHCy6uLiI3bt3Fz/99FNbh+RwtFqtOHPmTLFDhw6iq6ureM8994j/93//J1ZWVto6NLu2Y8eOGn8fTpo0SRRFw3L3+fPniyqVSnRxcREffvhhMT8/37ZB2xFBFLmNJhEREUkH5/wQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQkeRER0dzm38iCWPyQ0SNIjo6GoIgVHtFRkbaOjSsWrUKycnJtg4DACAIAjZv3mzrMIgkhQ82JaJGExkZiaSkJJMyFxcXG0UD6HQ6CIIAhUJhsxiIyPbY80NEjcbFxQVqtdrk1apVK+zcuRPOzs7YtWuXse7y5cuhVCpRUlICAAgLC0NsbCxiY2OhUCjQpk0bzJ8/H7c/jrCyshKzZ89Gu3bt4OHhgUGDBmHnzp3G88nJyfD29kZqaiqCgoLg4uKC06dPVxv2CgsLw4wZMxAXF4dWrVpBpVLhs88+Q3l5OZ577jnI5XJ07twZP/zwg8nny8vLw6OPPgpPT0+oVCo8++yz+OOPP0zafemllzBnzhz4+PhArVZj4cKFxvMdO3YEADz++OMQBMF4TESNi8kPETW5sLAwxMXF4dlnn4VGo8HPP/+M+fPnY82aNVCpVMZ6a9euRYsWLbB//36sWrUK7733HtasWWM8Hxsbi3379uGrr77C4cOHMWbMGERGRuL48ePGOlevXsWyZcuwZs0a/PLLL1AqlTXGtHbtWrRp0wb79+/HjBkzMH36dIwZMwaDBw9GTk4OIiIi8Oyzz+Lq1asAgMuXL+Mvf/kL+vTpg4MHDyItLQ0lJSUYO3ZstXY9PDyQnZ2N5cuX480330R6ejoA4MCBAwCApKQkFBUVGY+JqJHZ+KnyRNRMTZo0SZTJZKKHh4fJ66233hJFURQrKyvF++67Txw7dqwYFBQkPv/88ybvHzp0qNijRw9Rr9cby+Lj48UePXqIoiiKp06dEmUymXj27FmT9z388MPivHnzRFEUxaSkJBGAmJubWy220aNHm1zrgQceMB7fvHlT9PDwEJ999lljWVFRkQhA3LdvnyiKorh48WIxIiLCpN0zZ86IAMT8/Pwa2xVFURwwYIAYHx9vPAYgpqSk1HIXiagxcM4PETWahx56CImJiSZlPj4+AABnZ2d88cUX6NWrFwICAvD+++9Xe//9998PQRCMxyEhIVixYgV0Oh2OHDkCnU6Hrl27mrynsrISrVu3Nh47OzujV69e9cZ6ex2ZTIbWrVujZ8+exrKqHqnS0lIAwH//+1/s2LEDnp6e1doqKCgwxnXntX19fY1tEJFtMPkhokbj4eGBzp0713p+7969AICLFy/i4sWL8PDwMLvtsrIyyGQyHDp0CDKZzOTc7QmJm5ubSQJVm5YtW5ocC4JgUlbVhl6vN15/5MiRWLZsWbW2fH1962y3qg0isg0mP0RkEwUFBXj55Zfx2Wef4euvv8akSZOwbds2ODndmoqYnZ1t8p6srCx06dIFMpkMffr0gU6nQ2lpKR588MGmDh99+/bFpk2b0LFjR7Ro0fBfpS1btoROp7NiZERUH054JqJGU1lZieLiYpPXH3/8AZ1OhwkTJmDYsGF47rnnkJSUhMOHD2PFihUm7z99+jRmzZqF/Px8fPnll/jwww8xc+ZMAEDXrl0xfvx4TJw4Ed988w0KCwuxf/9+JCQk4D//+U+jf7aYmBhcvHgRTz/9NA4cOICCggJs3boVzz33nEXJTMeOHZGRkYHi4mJcunSpESMmoirs+SGiRpOWlmYyBAQA3bp1wzPPPINTp05hy5YtAAzDRJ9++imefvppREREoHfv3gCAiRMn4tq1axg4cCBkMhlmzpyJqVOnGttKSkrCkiVL8Morr+Ds2bNo06YN7r//fjz22GON/tn8/PywZ88exMfHIyIiApWVlQgICEBkZKRJ71V9VqxYgVmzZuGzzz5Du3btcPLkycYLmogAAIIo3rZpBhGRnQgLC8N9992HlStX2joUImpmOOxFREREksLkh4iIiCSFw15EREQkKez5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpPw/bHEWlLmELs8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP4UlEQVR4nO3dfVyT5f4H8M+YyuMYom4DRSSfCTWfQ0rpRECaSnU0S1PSX3oMTDIT7ZepaaGeLKtTWMdzQDMrf8cw8hSGKOQT+EAcNYyU8OEoA/NhUxTE7f79MZlOBg4d3Bv35/167WX3dV+79t0S9+V6lAmCIICIiIhIIlzEDoCIiIioKTH5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCktxA7AERmNRpw5cwYKhQIymUzscIiIiMgGgiDg0qVL8Pf3h4tL3f07TH6sOHPmDAICAsQOg4iIiO7CqVOn0KFDhzrvM/mxQqFQADB9eN7e3iJHQ0RERLbQ6/UICAgwf4/XhcmPFTVDXd7e3kx+iIiInMydpqxwwjMRERFJCpMfIiIikhQmP0RERCQpnPNDROQEDAYDqqurxQ6DSFQtW7aEXC6/53aY/BAROTBBEKDVanHx4kWxQyFyCD4+PtBoNPe0Dx+THyIiB1aT+KhUKnh4eHDjVZIsQRBw5coVlJeXAwD8/Pzuui0mP0REDspgMJgTnzZt2ogdDpHo3N3dAQDl5eVQqVR3PQTGCc9ERA6qZo6Ph4eHyJEQOY6an4d7mQPH5IeIyMFxqIvoJnv8PHDYq6kYDcCJ3cDlMsBLDQQOAVzufcY6ERERNYyoPT9JSUkYOHAgFAoFVCoVYmJiUFRUZFEnPDwcMpnM4vGXv/yl3nYFQcCbb74JPz8/uLu7IyIiAkePHm3Mt1K/wnRgZQiw5glg4xTTnytDTOVERETUpERNfnJychAXF4fc3FxkZmaiuroakZGRqKiosKj34osvorS01PxYvnx5ve0uX74cH374IVatWoW8vDx4enoiKioKlZWVjfl2rCtMBzZMBPRnLMv1paZyJkBERHctNjYWMTEx5uvw8HAkJCTcU5v2aIMcm6jDXhkZGRbXqampUKlUOHDgAIYOHWou9/DwgEajsalNQRCwcuVKvPHGGxg9ejQAYO3atVCr1di0aRPGjRtnvzdwJ0YDkJEIQLAWKQAZkDEX6DGCQ2BE1GgMRgF7S86j/FIlVAo3DAryhdylcecRxcbGYs2aNQBMG9N17NgREydOxOuvv44WLRrvq+ebb75By5YtbaqbnZ2NRx55BBcuXICPj89dtUHOyaHm/Oh0OgCAr6+vRfkXX3yBdevWQaPRYOTIkZg/f36dqx9KSkqg1WoRERFhLlMqlRg8eDD27NljNfmpqqpCVVWV+Vqv19vj7Zjm+Nze42NBAPSnTfWCHrbPaxIR3SLjcCkWfVeIUt3Nnm8/pRsWjAxGdMjd75Nii+joaKSkpKCqqgrff/894uLi0LJlS8ybN8+i3rVr19CqVSu7vObt3x9itUGOzWFWexmNRiQkJCAsLAwhISHm8ueeew7r1q3D9u3bMW/ePHz++eeYMGFCne1otVoAgFqttihXq9Xme7dLSkqCUqk0PwICAuzwjmCa3GzPekREDZBxuBTT1+VbJD4AoNVVYvq6fGQcLm3U13d1dYVGo0FgYCCmT5+OiIgIpKenm4eq3n77bfj7+6N79+4AgFOnTmHs2LHw8fGBr68vRo8ejePHj5vbMxgMmDVrFnx8fNCmTRvMmTMHgmDZs377kFVVVRUSExMREBAAV1dXdOnSBf/4xz9w/PhxPPLIIwCA1q1bQyaTITY21mobFy5cwMSJE9G6dWt4eHjg8ccft5hHmpqaCh8fH2zZsgU9e/aEl5cXoqOjUVp68/PNzs7GoEGD4OnpCR8fH4SFheHEiRN2+qSpoRwm+YmLi8Phw4fx1VdfWZRPnToVUVFR6NWrF8aPH4+1a9ciLS0NxcXFdnvtefPmQafTmR+nTp2yT8Ne6jvXaUg9IiIbGYwCFn1XWOegOwAs+q4QBqO1Go3D3d0d165dAwBkZWWhqKgImZmZ2Lx5M6qrqxEVFQWFQoEdO3Zg165d5iSi5jkrVqxAamoq/vnPf2Lnzp04f/480tLS6n3NiRMn4ssvv8SHH36II0eO4NNPP4WXlxcCAgKwceNGAEBRURFKS0vxwQcfWG0jNjYW+/fvR3p6Ovbs2QNBEDB8+HCLfWauXLmCd999F59//jl++uknnDx5ErNnzwYAXL9+HTExMRg2bBgOHjyIPXv2YOrUqdzCQEQOMewVHx+PzZs346effkKHDh3qrTt48GAAwLFjx9C5c+da92vmBpWVlVlsfV1WVoYHHnjAapuurq5wdXW9y+jrETgE8PY3TW62+k+QzHQ/cIj9X5uIJG1vyflaPT63EgCU6iqxt+Q8Qjs37u7RgiAgKysLW7ZswYwZM3D27Fl4enpi9erV5uGudevWwWg0YvXq1eakICUlBT4+PsjOzkZkZCRWrlyJefPm4amnngIArFq1Clu2bKnzdX/77Tds2LABmZmZ5qkQ9913n/l+zfCWSqWymPNzq6NHjyI9PR27du3CkCGmf6u/+OILBAQEYNOmTRgzZgwA04Z7q1atMn8vxcfH46233gJgmkqh0+nwxBNPmO/37Nmz4R8k2Y2oPT+CICA+Ph5paWnYtm0bgoKC7vicgoICAHWf6REUFASNRoOsrCxzmV6vR15eHkJDQ+0St81c5ED0shsXt2f4N66jl3KyMxHZXfkl21a32lrvbmzevBleXl5wc3PD448/jmeeeQYLFy4EAPTq1ctins9//vMfHDt2DAqFAl5eXvDy8oKvry8qKytRXFwMnU6H0tJS8y/AANCiRQsMGDCgztcvKCiAXC7HsGHD7vo9HDlyBC1atLB43TZt2qB79+44cuSIuczDw8PiF3I/Pz/zGVS+vr6IjY1FVFQURo4ciQ8++MBiSIyanqjJT1xcHNatW4f169dDoVBAq9VCq9Xi6tWrAIDi4mIsXrwYBw4cwPHjx5Geno6JEydi6NCh6N27t7mdHj16mLs+ZTIZEhISsGTJEqSnp+PQoUOYOHEi/P39LZZDNpngUcDYtYD3bcmat7+pPHhU08dERM2eSuFm13p345FHHkFBQQGOHj2Kq1evYs2aNfD09AQA8581Ll++jP79+6OgoMDi8dtvv+G55567q9evOQeqKdy+Okwmk1nMR0pJScGePXswZMgQfP311+jWrRtyc3ObLD6yJOqwV3JyMgDT5LJbpaSkIDY2Fq1atcLWrVuxcuVKVFRUICAgAE8//TTeeOMNi/pFRUXmlWIAMGfOHFRUVGDq1Km4ePEiHnroIWRkZMDNrfF+yOsVPMq0nJ07PBNRExkU5As/pRu0usq6Bt2hUZqWvTcWT09PdOnSxaa6/fr1w9dffw2VSgVvb2+rdfz8/JCXl2feCuX69es4cOAA+vXrZ7V+r169YDQakZOTY7ECuEZNz5PBYKgzrp49e+L69evIy8szD3udO3cORUVFCA4Otum91ejbty/69u2LefPmITQ0FOvXr8eDDz7YoDbIPkRNfm6fpX+7gIAA5OTkNLgdmUyGt956yzze6hBc5FzOTkRNRu4iw4KRwZi+Lh8yWM46rBmEXzAyuNH3+7HV+PHj8de//hWjR4/GW2+9hQ4dOuDEiRP45ptvMGfOHHTo0AEzZ87E0qVL0bVrV/To0QPvvfceLl68WGebnTp1wqRJkzB58mR8+OGH6NOnD06cOIHy8nKMHTsWgYGBkMlk2Lx5M4YPHw53d3d4eXlZtNG1a1eMHj0aL774Ij799FMoFArMnTsX7du3N+8ldyclJSX47LPPMGrUKPj7+6OoqAhHjx7FxIkT7+Ujo3vgMKu9iIjIvqJD/JA8oR80Ssteb43SDckT+jX6Pj8N4eHhgZ9++gkdO3bEU089hZ49e2LKlCmorKw09wS9+uqreP755zFp0iSEhoZCoVDgySefrLfd5ORk/PnPf8ZLL72EHj164MUXXzSfItC+fXssWrQIc+fOhVqtRnx8vNU2UlJS0L9/fzzxxBMIDQ2FIAj4/vvvbd4I0cPDA7/++iuefvppdOvWDVOnTkVcXBymTZvWgE+I7Ekm3Kn7RYL0ej2USiV0Ol2d3a9ERI2tsrISJSUlCAoKuqdhezF2eCZqLPX9XNj6/e0QS92JiKjxyF1kjb6cnciZcNiLiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERHTDwoUL8cADD4gdBsLDw5GQkCB2GM0Wkx8iIrI7rVaLmTNnokuXLnBzc4NarUZYWBiSk5Nx5coVscO7a9nZ2ZDJZPWeKSZme2Qb7vBMRNTcGQ3Aid3A5TLASw0EDjEdttxIfv/9d4SFhcHHxwfvvPMOevXqBVdXVxw6dAifffYZ2rdvj1GjRll9bnV1tc1nZjmya9eumU+NJ8fDnh8iouasMB1YGQKseQLYOMX058oQU3kjeemll9CiRQvs378fY8eORc+ePXHfffdh9OjR+Pe//42RI0ea68pkMiQnJ2PUqFHw9PTE22+/DcB0IGnnzp3RqlUrdO/eHZ9//rn5OcePH4dMJkNBQYG57OLFi5DJZMjOzgZws0clKysLAwYMgIeHB4YMGYKioiKLWJcuXQq1Wg2FQmE+SLUux48fxyOPPAIAaN26NWQyGWJjYwGYhqni4+ORkJCAtm3bIioq6o5x1tceABiNRsyZMwe+vr7QaDRYuHChrf8L6A6Y/BARNVeF6cCGiYD+jGW5vtRU3ggJ0Llz5/Djjz8iLi4Onp6eVuvIZJaHqi5cuBBPPvkkDh06hMmTJyMtLQ0zZ87Eq6++isOHD2PatGl44YUXsH379gbH87//+79YsWIF9u/fjxYtWmDy5Mnmexs2bMDChQvxzjvvYP/+/fDz88Mnn3xSZ1sBAQHYuHEjAKCoqAilpaX44IMPzPfXrFmDVq1aYdeuXVi1atUdY7OlPU9PT+Tl5WH58uV46623kJmZ2eDPgGrjsBcRUXNkNAAZiQAEKzcFADIgYy7QY4Rdh8COHTsGQRDQvXt3i/K2bduae1Xi4uKwbNky873nnnsOL7zwgvn62WefRWxsLF566SUAwKxZs5Cbm4t3333X3FNiq7fffhvDhg0DAMydOxcjRoxAZWUl3NzcsHLlSkyZMgVTpkwBACxZsgRbt26ts/dHLpfD19cXAKBSqeDj42Nxv2vXrli+fLn5+vjx4/XGdqf2evfujQULFpjb/tvf/oasrCw89thjNr13qht7foiImqMTu2v3+FgQAP1pU70msHfvXhQUFOD+++9HVVWVxb0BAwZYXB85cgRhYWEWZWFhYThy5EiDX7d3797m//bz8wMAlJeXm19n8ODBFvVDQ0Mb/Bo1+vfvf9fPtebW2AFT/DWx071hzw8RUXN0ucy+9WzUpUsXyGSyWnNr7rvvPgCAu7t7refUNTxWFxcX0+/tgnCzV6u6utpq3VsnT9cMtxmNxga9nq1ufx8NidOa2yd+y2SyRotdatjzQ0TUHHmp7VvPRm3atMFjjz2Gv/3tb6ioqLirNnr27Ildu3ZZlO3atQvBwcEAgHbt2gEASktLzfdvnVTckNfJy8uzKMvNza33OTUruAwGwx3btyXOhrRH9sOeHyKi5ihwCODtb5rcbHXej8x0P3CI3V/6k08+QVhYGAYMGICFCxeid+/ecHFxwb59+/Drr7/ecXjotddew9ixY9G3b19ERETgu+++wzfffIOtW7cCMPUePfjgg1i6dCmCgoJQXl6ON954o8Fxzpw5E7GxsRgwYADCwsLwxRdf4JdffjH3UlkTGBgImUyGzZs3Y/jw4XB3d4eXl5fVurbE2ZD2yH7Y80NE1By5yIHomknFsttu3riOXtoo+/107twZP//8MyIiIjBv3jz06dMHAwYMwEcffYTZs2dj8eLF9T4/JiYGH3zwAd59913cf//9+PTTT5GSkoLw8HBznX/+85+4fv06+vfvj4SEBCxZsqTBcT7zzDOYP38+5syZg/79++PEiROYPn16vc9p3749Fi1ahLlz50KtViM+Pr7e+neKs6HtkX3IhFsHIwkAoNfroVQqodPp4O3tLXY4RCRRlZWVKCkpQVBQENzc3O6ukcJ006qvWyc/e7c3JT7B1jcaJHJk9f1c2Pr9zWEvIqLmLHiUaTl7E+7wTOTomPwQETV3LnIg6GGxoyByGJzzQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiKqg1arxWOPPQZPT0/4+PiIHY7dZGdnQyaT4eLFi6LGsXDhQjzwwANN/rpMfoiIyK5iY2Mhk8nwl7/8pda9uLg4yGQyxMbGNn1gd+H9999HaWkpCgoK8Ntvv4kdTpOSyWTYtGmTw7Z3L5j8EBE1cwajAfu0+/D9799jn3YfDEZDo79mQEAAvvrqK1y9etVcVllZifXr16Njx46N/vr2UlxcjP79+6Nr165QqVR2a/fatWt2a0tMzvo+mPwQETVjW09sRdTGKEzeMhmJOxIxectkRG2MwtYTWxv1dfv164eAgAB888035rJvvvkGHTt2RN++fS3qGo1GJCUlISgoCO7u7ujTpw/+9a9/me8bDAZMmTLFfL979+744IMPLNqIjY1FTEwM3n33Xfj5+aFNmzaIi4tDdXV1vXEmJyejc+fOaNWqFbp3747PP//cfK9Tp07YuHEj1q5dW29v1fXr1/Hyyy/Dx8cHbdq0QWJiIiZNmoSYmBhznfDwcMTHxyMhIQFt27ZFVFQUACAnJweDBg2Cq6sr/Pz8MHfuXFy/ft0ihpUrV1q83gMPPICFCxear2UyGVavXo0nn3wSHh4e6Nq1K9LT0y2e8/3336Nbt25wd3fHI488guPHj9f7uXTq1AkA8OSTT0Imk5mva4apVq9ebXGw6J3irKu9Gp9//jk6deoEpVKJcePG4dKlS/XGd6+Y/BARNVNbT2zFrOxZKLtSZlFefqUcs7JnNXoCNHnyZKSkpJiv//nPf+KFF16oVS8pKQlr167FqlWr8Msvv+CVV17BhAkTkJOTA8CUHHXo0AH/93//h8LCQrz55pt4/fXXsWHDBot2tm/fjuLiYmzfvh1r1qxBamoqUlNT64wvLS0NM2fOxKuvvorDhw9j2rRpeOGFF7B9+3YAwL59+xAdHY2xY8eitLS0VsJVY9myZfjiiy+QkpKCXbt2Qa/XWx3eWbNmDVq1aoVdu3Zh1apVOH36NIYPH46BAwfiP//5D5KTk/GPf/wDS5YsudNHW8uiRYswduxYHDx4EMOHD8f48eNx/vx5AMCpU6fw1FNPYeTIkSgoKMD//M//YO7cufW2t2/fPgBASkoKSktLzdcAcOzYMWzcuBHffPMNCgoKbIqvvvaKi4uxadMmbN68GZs3b0ZOTg6WLl3akLffcALVotPpBACCTqcTOxQikrCrV68KhYWFwtWrVxv83OuG68KjGx4VQlJDrD56pfYSIjZECNcN1+0e96RJk4TRo0cL5eXlgqurq3D8+HHh+PHjgpubm3D27Flh9OjRwqRJkwRBEITKykrBw8ND2L17t0UbU6ZMEZ599tk6XyMuLk54+umnLV4zMDBQuH795vsZM2aM8Mwzz9TZxpAhQ4QXX3zRomzMmDHC8OHDzde3xloXtVot/PWvfzVfX79+XejYsaMwevRoc9mwYcOEvn37Wjzv9ddfF7p37y4YjUZz2ccffyx4eXkJBoNBEARBCAwMFN5//32L5/Xp00dYsGCB+RqA8MYbb5ivL1++LAAQfvjhB0EQBGHevHlCcHCwRRuJiYkCAOHChQt1vi8AQlpamkXZggULhJYtWwrl5eUW5bbGaa09Dw8PQa/Xm8tee+01YfDgwXXGVd/Pha3f3zzVnYioGcovz6/V43MrAQK0V7TIL8/HQM3ARomhXbt2GDFiBFJTUyEIAkaMGIG2bdta1Dl27BiuXLmCxx57zKL82rVrFsNjH3/8Mf75z3/i5MmTuHr1Kq5du1ZrldD9998PuVxuvvbz88OhQ4fqjO/IkSOYOnWqRVlYWFidPTzW6HQ6lJWVYdCgQeYyuVyO/v37w2g0WtTt379/rdcPDQ2FTCazeP3Lly/jv//9b4PmRvXu3dv8356envD29kZ5ebn5dQYPHmxRPzQ01Oa2bxcYGIh27drd9fNv16lTJygUCvO1n5+fOfbGwuSHiKgZOnvlrF3r3a3JkycjPj4egCmBud3ly5cBAP/+97/Rvn17i3uurq4AgK+++gqzZ8/GihUrEBoaCoVCgb/+9a/Iy8uzqN+yZUuLa5lMVisBEZOnp2eDn+Pi4gJTp8lN1uYxNeV7t/Y+bI3TGjH+v3HODxFRM9TOw7bfzG2td7eio6Nx7do1VFdXmyf53io4OBiurq44efIkunTpYvEICAgAAOzatQtDhgzBSy+9hL59+6JLly4oLi6+59h69uyJXbt2WZTt2rULwcHBNrehVCqhVqst5rAYDAbk5+fb9Pp79uyxSBp27doFhUKBDh06ADD1npWWlprv6/V6lJSU2Bxfzevs3bvXoiw3N/eOz2vZsiUMBttWBtoSZ0Paa2xMfugmowEo2QEc+pfpzyZYDktEjaOfqh/UHmrIILN6XwYZNB4a9FP1a9Q45HI5jhw5gsLCQoshqRoKhQKzZ8/GK6+8gjVr1qC4uBj5+fn46KOPsGbNGgBA165dsX//fmzZsgW//fYb5s+fb5Fs3K3XXnsNqampSE5OxtGjR/Hee+/hm2++wezZsxvUzowZM5CUlIRvv/0WRUVFmDlzJi5cuGAxnGXNSy+9hFOnTmHGjBn49ddf8e2332LBggWYNWsWXFxMX89/+tOf8Pnnn2PHjh04dOgQJk2aZPVzrM9f/vIXHD16FK+99hqKioqwfv36eieC1+jUqROysrKg1Wpx4cKFeuvaEmdD2mtsTH7IpDAdWBkCrHkC2DjF9OfKEFM5ETkduYsccweZVvTcngDVXCcOSoTcpWFfpHfD29sb3t7edd5fvHgx5s+fj6SkJPTs2RPR0dH497//jaCgIADAtGnT8NRTT+GZZ57B4MGDce7cObz00kv3HFdMTAw++OADvPvuu7j//vvx6aefIiUlBeHh4Q1qJzExEc8++ywmTpyI0NBQeHl5ISoqyrwMvC7t27fH999/j71796JPnz74y1/+gilTpuCNN94w15k3bx6GDRuGJ554AiNGjEBMTAw6d+7coPg6duyIjRs3YtOmTejTpw9WrVqFd955547PW7FiBTIzMxEQEFBre4Lb2RJnQ9prbDLh9kE6gl6vh1KphE6nq/cHttkoTAc2TARw+1+FG/9gjl0LBI9q6qiIJK+yshIlJSUW+6k01NYTW7F071KLyc8aDw0SByUiIjDCXqHSLYxGI3r27ImxY8di8eLFYofT7NT3c2Hr9zcnPEud0QBkJKJ24oMbZTIgYy7QYwTQBL8hEpF9RQRG4JGAR5Bfno+zV86inUc79FP1a5IeH6k4ceIEfvzxRwwbNgxVVVX429/+hpKSEjz33HNih0Z1YPIjdSd2A/oz9VQQAP1pU72gh5ssLCKyH7mLvNGWs5NppVNqaipmz54NQRAQEhKCrVu3omfPnmKHRnUQdc5PUlISBg4cCIVCAZVKhZiYGBQVFVmtKwgCHn/8cZsORqs5VO/WR3R0dCO8g2bgct37gNxVPSIiiQkICMCuXbug0+mg1+uxe/duDB06VOywqB6iJj85OTmIi4tDbm4uMjMzUV1djcjISFRUVNSqu3LlyjvOnL9VdHQ0SktLzY8vv/zSnqE3H15q+9YjIiJycKIOe2VkZFhcp6amQqVS4cCBAxZZc0FBAVasWIH9+/fDz8/PprZdXV2h0WhsqltVVYWqqirztV6vt+l5zULgEMDbH9CXwvq8H5npfuCQpo6MiG7guhSim+zx8+BQS911Oh0AwNfX11x25coVPPfcc/j4449tTmYAIDs7GyqVCt27d8f06dNx7ty5OusmJSVBqVSaHzUba0mCixyIXnbj4vaetRvX0Us52ZlIBDU73165ckXkSIgcR83Pw+07QzeEwyx1NxqNGDVqFC5evIidO3eay6dNmwaDwYDVq1cDMG17nZaWhpiYmDrb+uqrr+Dh4YGgoCAUFxfj9ddfh5eXF/bs2WN1cyhrPT8BAQHSWeoOmJa7ZyRaTn72bm9KfLjMnUg0paWluHjxIlQqFTw8PBo0/E/kcAQBqL4CGKoBeUugpQdg499pQRBw5coVlJeXw8fHx+pIkNMtdY+Li8Phw4ctEp/09HRs27YNP//8c4PaGjdunPm/e/Xqhd69e6Nz587Izs7Go48+Wqu+q6ur+QwZyQoeZVrOfmK3aXKzl9o01MUeHyJR1fR4N/ZBj0SNrvoKcPUiYLx+s8ylBeDuY0qCbOTj49OgkSBrHCL5iY+Px+bNm/HTTz+ZzzMBgG3btqG4uBg+Pj4W9Z9++mk8/PDDyM7Otqn9++67D23btsWxY8esJj90g4ucy9mJHIxMJoOfnx9UKpXNB0USOZxj24Afre0pVzO9YhnQ5U93bKZly5YNPt7DGlGTH0EQMGPGDKSlpSE7O9u8lXmNuXPn4n/+538synr16oX3338fI0eOtPl1/vvf/+LcuXM2T5YmInI0crncLv/oEzU5owH48VXgcl17ysmAH2cDwYeabLRB1AnPcXFxWLduHdavXw+FQgGtVgutVourV68CMHX3hoSEWDwA0zkltyZKPXr0QFpaGgDg8uXLeO2115Cbm4vjx48jKysLo0ePRpcuXayeKExERESNqCGb6TYRUZOf5ORk6HQ6hIeHw8/Pz/z4+uuvG9ROUVGReaWYXC7HwYMHMWrUKHTr1g1TpkxB//79sWPHDs7rISIiamoOuJmu6MNe9njOrWXu7u7YsmXLPcVFREREduKAm+k61D4/RERE1MzUbKZbay+5GjLT1ipNuJkukx8iIiJqPA64mS6THyIiImpcwaOAsWsB79tWXXv7m8qbeDNdh9jnh4iIiJo5B9pMl8kPERERNQ0H2UyXw15EREQkKUx+iIiISFKY/BAREZGkcM4PEdHdMhocYvImETUMkx8iortRmA5kJFqeWeTtb9rPpImX7RJRw3DYi4iooQrTgQ0Tax/WqC81lRemixMXEdmEyQ8RUUMYDaYeH1g7m/BGWcZcUz0ickhMfoiIGuLE7to9PhYEQH/aVI+IHBKTHyKihrhcZt96RNTkmPwQETWEl9q+9YioyTH5ISJqiMAhplVdtU6nriEDvNub6hGRQ2LyQ0TUEC5y03J2ALUToBvX0Uu53w+RA2PyQ0TUUMGjgLFrAW8/y3Jvf1M59/khcmjc5JCI6G4EjwJ6jOAOz0ROiMkPEdHdcpEDQQ+LHQURNRCHvYiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCmiJj9JSUkYOHAgFAoFVCoVYmJiUFRUZLWuIAh4/PHHIZPJsGnTpnrbFQQBb775Jvz8/ODu7o6IiAgcPXq0Ed4BERERORtRk5+cnBzExcUhNzcXmZmZqK6uRmRkJCoqKmrVXblyJWQymU3tLl++HB9++CFWrVqFvLw8eHp6IioqCpWVlfZ+C0RERORkZIIgCGIHUePs2bNQqVTIycnB0KFDzeUFBQV44oknsH//fvj5+SEtLQ0xMTFW2xAEAf7+/nj11Vcxe/ZsAIBOp4NarUZqairGjRtX6zlVVVWoqqoyX+v1egQEBECn08Hb29u+b5KIiIgahV6vh1KpvOP3t0PN+dHpdAAAX19fc9mVK1fw3HPP4eOPP4ZGo7ljGyUlJdBqtYiIiDCXKZVKDB48GHv27LH6nKSkJCiVSvMjICDgHt8JEREROSqHSX6MRiMSEhIQFhaGkJAQc/krr7yCIUOGYPTo0Ta1o9VqAQBqtdqiXK1Wm+/dbt68edDpdObHqVOn7vJdEBERkaNrIXYANeLi4nD48GHs3LnTXJaeno5t27bh559/btTXdnV1haura6O+BhERETkGh+j5iY+Px+bNm7F9+3Z06NDBXL5t2zYUFxfDx8cHLVq0QIsWplzt6aefRnh4uNW2aobGysrKLMrLyspsGjYjIiKi5k3U5EcQBMTHxyMtLQ3btm1DUFCQxf25c+fi4MGDKCgoMD8A4P3330dKSorVNoOCgqDRaJCVlWUu0+v1yMvLQ2hoaKO9FyIiInIOog57xcXFYf369fj222+hUCjMc3KUSiXc3d2h0Wis9tZ07NjRIlHq0aMHkpKS8OSTT0ImkyEhIQFLlixB165dERQUhPnz58Pf37/OFWJEREQkHaImP8nJyQBQawgrJSUFsbGxNrdTVFRkXikGAHPmzEFFRQWmTp2Kixcv4qGHHkJGRgbc3NzsETYRERE5MYfa58dR2LpPABERETkOp9znh4iIiKixMfkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGktBA7ACIikjijATixG7hcBnipgcAhgItc7KioGWPyQ0RE4ilMBzISAf2Zm2Xe/kD0MiB4lHhxUbPGYS8iIhJHYTqwYaJl4gMA+lJTeWG6OHE5K6MBKNkBHPqX6U+jQeyIHBZ7foiIqOkZDaYeHwhWbgoAZEDGXKDHCA6B2YI9aA3Cnh8iImp6J3bX7vGxIAD606Z6VD/2oDUYkx8iImp6l8vsW0+q7tiDBlMPGofALDD5ISKipueltm89qWIP2l3hnJ8mYjAakF+ej7NXzqKdRzv0U/WD3MHGsZ0ixuvXkH/oc5zVn0Q7747o1+t5yFu0EjssC07xOTJGu2CM9yBwiGlOir4UBgjId3PFWbkc7QwG9Kusghwy0/3AIWJHCsCBP8dbesYMgJXPsXY9MTnK58jkpwlsPbEVS/cuRdmVm3/51B5qzB00FxGBESJGdpNTxLgzCUt/+wJlcpm5TP3z+5jbbTwiHponYmQ3OcXnyBjtgjHeIxc5EL0MWzdPw9I2PihrcfPrSH39Ouaeu4iI6KUOMdnZoT/HGz1jWz3csbRNayuf4wVEXLnqED1ojvQ5ygRBsDZQKGl6vR5KpRI6nQ7e3t731NbWE1sxK3sWhNvGY2UwfYG/F/6e6D88ThHjziTMOvaFKULZzeRHduOv73tdxE+AnOJzZIx2wRjtwxTjKxAEofbPtUyG98Lfd5AYHfhzNBqw9ZNemOXlUve/j5eNiHjpkKiJZFN9jrZ+f9/TnJ/KykqsWbMGn3zyCY4ePXovTTVLBqMBS/curfU/G4C5bNneZTCIOBHNKWK8fg1Lf6ud+ACAcON62W9fwHD9WtMHd4NTfI6M0S4Yo33cjBF1/FzLHChGB/4cASz1bV3/v49tfCHmdGdH/BxtTn5mzZqFGTNmmK+vXbuG0NBQvPjii3j99dfRt29f7Nmzp0EvnpSUhIEDB0KhUEClUiEmJgZFRUUWdaZNm4bOnTvD3d0d7dq1w+jRo/Hrr7/W225sbCxkMpnFIzo6ukGx2UN+eb5F997tBAjQXtEivzy/CaOy5BQxHvrcNNR12w92DUEmg1YuQ/6hz5s4spuc4nNkjHbBGO2DMdpHfnk+yqr19f/7eE0nfowO9jnanPz8+OOPeOyxx8zXX3zxBU6cOIGjR4/iwoULGDNmDJYsWdKgF8/JyUFcXBxyc3ORmZmJ6upqREZGoqKiwlynf//+SElJwZEjR7BlyxYIgoDIyEgYDPVniNHR0SgtLTU/vvzyywbFZg9nr5y1a73G4BQx6k/atV5jcIrPkTHaBWO0D8ZoH4zx7tg84fnkyZMIDg42X//444/485//jMDAQADAzJkzMXz48Aa9eEZGhsV1amoqVCoVDhw4gKFDhwIApk6dar7fqVMnLFmyBH369MHx48fRuXPnOtt2dXWFRqNpUDz21s6jnV3rNQaniNG7o13rNQan+BwZo10wRvtgjPbBGO+OzT0/Li4uuHVudG5uLh588EHztY+PDy5cuHBPweh0OgCAr6+v1fsVFRVISUlBUFAQAgIC6m0rOzsbKpUK3bt3x/Tp03Hu3Lk661ZVVUGv11s87KGfqh/UHmrzhK7bySCDxkODfqp+dnm9u+EUMfZ6HmqDYJ68dzuZIEBjENCv1/NNHNlNTvE5Mka7YIz2wRjtgzHeHZuTn549e+K7774DAPzyyy84efIkHnnkEfP9EydOQK2++6V0RqMRCQkJCAsLQ0hIiMW9Tz75BF5eXvDy8sIPP/yAzMxMtGpV994u0dHRWLt2LbKysrBs2TLk5OTg8ccfr3OoLCkpCUql0vy4U2JlK7mLHHMHzQWAWv/Ta64TByWKuleEU8TYohXmdhtvium2BKjmOrHbeFH3+3GKz5Ex2gVjtA/GaB+M8e7YvNQ9LS0N48aNw0MPPYRffvkFAwcONCdDAJCYmIiSkhJs2LDhrgKZPn06fvjhB+zcuRMdOnSwuKfT6VBeXo7S0lK8++67OH36NHbt2gU3Nzeb2v7999/RuXNnbN26FY8++mit+1VVVaiqqjJf6/V6BAQE2GWpO2B9bwONhwaJgxJFX8ZZwylitLLPj8YgINHB9/lxuM+RMdoFY7QPxmgfjNHE1qXuDdrnJysrC5s3b4ZGo8GMGTPg4eFhvrdo0SIMGzYM4eHhDQ42Pj4e3377LX766ScEBQXVW/fatWto3bo1Vq9ejWeffdbm12jXrh2WLFmCadOm3bGuPff5qeEou1rWxyli5A7PdsEY7YMx2gdjtA/G2AjJz1tvvYXZs2dbJDz3ShAEzJgxA2lpacjOzkbXrl3v+Jyqqiq0bt0an3zyCWJjY216nf/+97/o2LEjNm3ahFGjRt2xfmMkP0RERNS47L7J4aJFi3D58mW7BFcjLi4O69atw/r166FQKKDVaqHVanH16lUApuGqpKQkHDhwACdPnsTu3bsxZswYuLu7W6ws69GjB9LS0gAAly9fxmuvvYbc3FwcP34cWVlZGD16NLp06YKoqCi7xk9ERETOx+bkpzFOwUhOToZOp0N4eDj8/PzMj6+//hoA4Obmhh07dmD48OHo0qULnnnmGSgUCuzevRsqlcrcTlFRkXmlmFwux8GDBzFq1Ch069YNU6ZMQf/+/bFjxw64urra/T0QERGRc7F52MvFxQVlZWVo1068vQKaCoe9iIjIgtEAnNhtOh3dS206bd7B5tOQ7d/fDTrVvVu3bpDVsYV2jfPnzzekSSIiIsdWmA5kJAL6MzfLvP2B6GVA8J3nkZLjaVDys2jRIiiVysaKhYiIyLEUpgMbJgK3H8qpLzWVj13LBMgJNSj5GTdunMVcGyIiombLaDD1+Fg5jdxUJgMy5gI9RnAIzMnYPOH5TsNdREREzcqJ3ZZDXbUIgP60qR45FVFXexERETmsy2V3rtOQeuQwbB72MhqNjRkHERGRY/Gy8bxKW+uRw7C554eIiEhSAoeYVnXVcRo5IAO825vqkVNh8kNERGSNi9y0nB1A7QToxnX0Uk52dkJMfoiIiOoSPMq0nN3bz7Lc25/L3J1Yg5a6ExERSU7wKNNydu7w3Gww+SEiasYMRgF7S86j/FIlVAo3DAryhdyFW5c0mIscCHpY7CjITpj8EBE1UxmHS7Hou0KU6irNZX5KNywYGYzoEL96nknUvHHODxFRM5RxuBTT1+VbJD4AoNVVYvq6fGQcLhUpMiLxMfkhImpmDEYBi74rrPNQBgBY9F0hDEZuXkvSxOSHiKiZ2VtyvlaPz60EAKW6SuwtOd90QRE5ECY/RETNTPmluhOfu6lH1Nww+SEiamZUCje71iNqbrjaq4lwuSkRNZVBQb7wU7pBq6u0Ou9HBkCjNP07RCRFTH6aAJebElFTkrvIsGBkMKavy4cMsEiAan7lWjAymL+AkWRx2KuROdNyU4NRwJ7ic/i24DT2FJ/jShAiJxYd4ofkCf2gUVoObWmUbkie0I+/eJGkseenEd1puakMpuWmjwVrRP8NjL1TRM1PdIgfHgvWcMid6Dbs+WlEzrLc1Jl6p4ioYeQuMoR2boPRD7RHaOc2THyIwOSnUTnDclNuhkZERFLD5KcROcNyU2fpnSIiIrIXJj+NqGa5aV2dzDKY5tWIudzUGXqniIiI7InJTyOqWW4KoFYC5CjLTZ2hd4qIiMiemPw0MkdfbuoMvVNERET2xKXuTcCRl5tyMzQiIpIamSAIXMZzG71eD6VSCZ1OB29vb7HDaRLc54eIiJydrd/f7PkhAI7dO0VERGRPTH7IrGYzNCIiouaMyQ85FYNRYO8UERHdEyY/5DQ4L4mIiOyBS93JKfD8MSIishcmP+TweP4YERHZE5Mfcng8f4yIiOyJyQ85PJ4/RkRE9sTkhxwezx8jIiJ7YvJDDo/njxERkT0x+SGHV3P+GIBaCRDPHyMiooZi8kNOITrED8kT+kGjtBza0ijdkDyhH/f5ISIim3GTQ3IaPH+MiIjsgckPORWeP0ZERPeKw15EREQkKaImP0lJSRg4cCAUCgVUKhViYmJQVFRkUWfatGno3Lkz3N3d0a5dO4wePRq//vprve0KgoA333wTfn5+cHd3R0REBI4ePdqYb4WIiIichKjJT05ODuLi4pCbm4vMzExUV1cjMjISFRUV5jr9+/dHSkoKjhw5gi1btkAQBERGRsJgMNTZ7vLly/Hhhx9i1apVyMvLg6enJ6KiolBZyU3wiIiIpE4mCILDHIh09uxZqFQq5OTkYOjQoVbrHDx4EH369MGxY8fQuXPnWvcFQYC/vz9effVVzJ49GwCg0+mgVquRmpqKcePG3TEOvV4PpVIJnU4Hb2/ve3tTRERE1CRs/f52qDk/Op0OAODra32zuoqKCqSkpCAoKAgBAQFW65SUlECr1SIiIsJcplQqMXjwYOzZs8fqc6qqqqDX6y0eRERE1Dw5TPJjNBqRkJCAsLAwhISEWNz75JNP4OXlBS8vL/zwww/IzMxEq1atrLaj1WoBAGq12qJcrVab790uKSkJSqXS/KgrsSIiIiLn5zDJT1xcHA4fPoyvvvqq1r3x48fj559/Rk5ODrp164axY8fadf7OvHnzoNPpzI9Tp07ZrW0iIiJyLA6xz098fDw2b96Mn376CR06dKh1v6ZHpmvXrnjwwQfRunVrpKWl4dlnn61VV6PRAADKysrg53dz19+ysjI88MADVl/f1dUVrq6u9nkzRERE5NBE7fkRBAHx8fFIS0vDtm3bEBQUZNNzBEFAVVWV1ftBQUHQaDTIysoyl+n1euTl5SE0NNRusRMREZFzEjX5iYuLw7p167B+/XooFApotVpotVpcvXoVAPD7778jKSkJBw4cwMmTJ7F7926MGTMG7u7uGD58uLmdHj16IC0tDQAgk8mQkJCAJUuWID09HYcOHcLEiRPh7++PmJgYMd4mERERORBRh72Sk5MBAOHh4RblKSkpiI2NhZubG3bs2IGVK1fiwoULUKvVGDp0KHbv3g2VSmWuX1RUZF4pBgBz5sxBRUUFpk6diosXL+Khhx5CRkYG3NwsD8UkIiIi6XGofX4cBff5ISIicj5Ouc8PERERUWNj8kNERESSwuSHiIiIJIXJDxEREUmKQ2xySERE5MgMRgF7S86j/FIlVAo3DAryhdxFJnZYdJeY/BAREdUj43ApFn1XiFLdzWOV/JRuWDAyGNEhfvU8kxwVh72IiIjqkHG4FNPX5VskPgCg1VVi+rp8ZBwuFSkyuhdMfoiIiKwwGAUs+q4Q1jbDqylb9F0hDEZul+dsmPwQERFZsbfkfK0en1sJAEp1ldhbcr7pgiK7YPJDRERkRfmluhOfu6lHjoPJDxERkRUqhW3nQdpajxwHV3sR2ZvRAJzYDVwuA7zUQOAQwEUudlQWuGyX6M4GBfnCT+kGra7S6rwfGQCN0vTzQ86FyQ+RPRWmAxmJgP7MzTJvfyB6GRA8Sry4bsFlu0S2kbvIsGBkMKavy4cMsEiAan5VWDAymL84OCEOexHZS2E6sGEihFsTHwCCvhTYMNF0X2RctkvUMNEhfkie0A8apeXQlkbphuQJ/fgLg5OSCYLANXq30ev1UCqV0Ol08Pb2FjsccgZGA7AyBIL+DKz9DihABpm3P5BwSLQhMINRwEPLttW5eqWmC39n4p/4myzRbThU7Bxs/f7msBeRPZzYDdSR+ACADAKgP22qF/Rwk4ZWoyHLdkM7t2m6wIicgNxFxp+LZoTDXkR2YLyktWu9xsBlu0REJkx+iOzgyCUPu9ZrDFy2S47KYBSwp/gcvi04jT3F57hjMjU6DnsR2cExj15oLfhCg/OwNg3AKABatMExj164v+nDA8Blu+SYuPqQxMCeHyI7UHl7YlH1RACmROdWNdeLqp+HytuziSO7qWbZLoBac5O4bJfEwNWHJBYmP0R2MCjIFwcVQ/FSdQK0sOw50aINXqpOwEHFUNF7VbhslxwFDw0lMXHYi8gObm6GVonMqgEY6PIrVLiIcvhgn7EHjHBBsoP0qkSH+OGxYA2X7ZKouPqQxMTkh8hOanpVFn1XiFxdsLncEecvcNkuiY2rD0lMTH6I7Ii9KkS24epDEhOTHyI7Y6+KnTjBAbF097j6kMTE5IeIHI8THBBL94aHhpKYuNqLiBzLjQNicdsBsXCgA2LJPrj6kMTCg02t4MGmRCK5cUBsrcTHTGbqARLxgFiyPx4aSvbCg02JyPncOCC2buIfEEv2x3ly1NQ47EVEjuNymX3rERFZweSHiByHl9q+9YiIrGDyQ0SOI3AIrrprap2PVsMoAFfdNaZl70REd4nJDxE5DANcbDggdiIM/KeLiO4B/wUhIoext+Q8vrr8AKbXcUDs9OoEfHX5AewtOS9ShETUHHC1FxE5jJpznLYYByGzagAG3XJA7N4bB8TeWo+I6G4w+SEih3HrOU5GuCDXGHzHekREDcVhLyJyGDXnPdW1vZ0MgB/PeyKie8Tkh4gcRs15TwBqJUA874mI7IXJDxE5FJ73RESNjXN+iMjhRIf44bFgDc97IqJGweSHiBwSz3sian4c5RBbJj9ERETU6DIOl2LRd4Uo1d3cqsJP6YYFI4ObfDibc36IpMhoAEp2AIf+ZfrTaBA7IiJqxjIOl2L6unyLxAcAtLpKTF+Xj4zDpU0aD3t+iKSmMB3ISAT0Z26WefsD0cuA4FHixUVEzZLBKGDRd4WwdmSfANNKzkXfFeKxYE2TDYGJ2vOTlJSEgQMHQqFQQKVSISYmBkVFReb758+fx4wZM9C9e3e4u7ujY8eOePnll6HT6eptNzY2FjKZzOIRHR3d2G+HyPEVpgMbJlomPgCgLzWVF6aLExcRNVt7S87X6vG5lQCgVFfZpMfWiJr85OTkIC4uDrm5ucjMzER1dTUiIyNRUVEBADhz5gzOnDmDd999F4cPH0ZqaioyMjIwZcqUO7YdHR2N0tJS8+PLL79s7LdD5NiMBlOPT52/fwHImMshMCKyK1uPo2nKY2tEHfbKyMiwuE5NTYVKpcKBAwcwdOhQhISEYOPGjeb7nTt3xttvv40JEybg+vXraNGi7vBdXV2h0WgaLXYip3Nid+0eHwsCoD9tqhf0cJOF5cwcZeUKkSOz9Tiapjy2xqHm/NQMZ/n61r11vU6ng7e3d72JDwBkZ2dDpVKhdevW+NOf/oQlS5agTRvry2arqqpQVVVlvtbr9XcRPZGDu1xm33oS50grV4gcWc2xNVpdpdV+ZxlMm5g25bE1DrPay2g0IiEhAWFhYQgJCbFa548//sDixYsxderUetuKjo7G2rVrkZWVhWXLliEnJwePP/44DAbr3flJSUlQKpXmR0BAwD2/HyKH46W2bz0Jc7SVK0SOzBGPrZEJgmAtEWty06dPxw8//ICdO3eiQ4cOte7r9Xo89thj8PX1RXp6Olq2bGlz27///js6d+6MrVu34tFHH61131rPT0BAgLmXiahZMBqAlSGmyc11/f7l7Q8kHAJc5E0dndMwGAU8tGxbnRM4a36L3Zn4Jw6BEd2iKXpL9Xo9lErlHb+/HWLYKz4+Hps3b8ZPP/1kNfG5dOkSoqOjoVAokJaW1qDEBwDuu+8+tG3bFseOHbOa/Li6usLV1fWu4ydyCi5y03L2DRNh+oq+NQG68SUdvZSJzx00ZOUKd6gmusmRjq0RNfkRBAEzZsxAWloasrOzERQUVKuOXq9HVFQUXF1dkZ6eDje3hk+I+u9//4tz587Bz4/j8CRxwaOAsWvr2OdnKff5sYEjrlwhchaOcmyNqMlPXFwc1q9fj2+//RYKhQJarRYAoFQq4e7uDr1ej8jISFy5cgXr1q2DXq83T0Zu164d5HLTb6g9evRAUlISnnzySVy+fBmLFi3C008/DY1Gg+LiYsyZMwddunRBVFSUaO+VyGEEjwJ6jDCt6rpcZprjEziEPT42csSVK0TUMKImP8nJyQCA8PBwi/KUlBTExsYiPz8feXl5AIAuXbpY1CkpKUGnTp0AAEVFReaVYnK5HAcPHsSaNWtw8eJF+Pv7IzIyEosXL+bQFlENFzmXs98lR1y5QkQN4zATnh2JrROmiEiaalZ7AVZnTiF5Qj8udycSga3f3w6z1J2IyFlEh/gheUI/aJSWQ1sapRsTHxKNwShgT/E5fFtwGnuKz8FgZN9GXRxitRcRkbNxpJUrRNx0s2E47GUFh72IiMhZ1AzD3v5lLsVhWA57ERERNXMGo4BF3xXWd1wxFn1XyCGw2zD5ISIiclIN2XSTbmLyQ0RE5KS46ebdYfJDRETkpLjp5t1h8kNEROSkajbdrGuNoQymVV/cdNMSkx8iIiInJXeRYcHIYAColQDVXC8YGcwtGG7D5IeIiMiJcdPNhuMmh0RERE6Om242DJMfIiKiZkDuIkNo5zZih+EUOOxFREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREkiJq8pOUlISBAwdCoVBApVIhJiYGRUVF5vvnz5/HjBkz0L17d7i7u6Njx454+eWXodPp6m1XEAS8+eab8PPzg7u7OyIiInD06NHGfjtERETkBERNfnJychAXF4fc3FxkZmaiuroakZGRqKioAACcOXMGZ86cwbvvvovDhw8jNTUVGRkZmDJlSr3tLl++HB9++CFWrVqFvLw8eHp6IioqCpWVlU3xtoiIiMiByQRBEMQOosbZs2ehUqmQk5ODoUOHWq3zf//3f5gwYQIqKirQokWLWvcFQYC/vz9effVVzJ49GwCg0+mgVquRmpqKcePG1XpOVVUVqqqqzNd6vR4BAQHQ6XTw9va207sjIiKixqTX66FUKu/4/e1Qc35qhrN8fX3rrePt7W018QGAkpISaLVaREREmMuUSiUGDx6MPXv2WH1OUlISlEql+REQEHAP74KIyIEYDUDJDuDQv0x/Gg1iR0QkOusZhAiMRiMSEhIQFhaGkJAQq3X++OMPLF68GFOnTq2zHa1WCwBQq9UW5Wq12nzvdvPmzcOsWbPM1zU9P0RETq0wHchIBPRnbpZ5+wPRy4DgUeLFRSQyh0l+4uLicPjwYezcudPqfb1ejxEjRiA4OBgLFy6062u7urrC1dXVrm0SEYmqMB3YMBHAbTMb9KWm8rFrmQCRZDnEsFd8fDw2b96M7du3o0OHDrXuX7p0CdHR0VAoFEhLS0PLli3rbEuj0QAAysrKLMrLysrM94iImjWjwdTjc3viA9wsy5jLITCSLFGTH0EQEB8fj7S0NGzbtg1BQUG16uj1ekRGRqJVq1ZIT0+Hm5tbvW0GBQVBo9EgKyvLoo28vDyEhoba/T0QETmcE7sth7pqEQD9aVM9IgkSNfmJi4vDunXrsH79eigUCmi1Wmi1Wly9ehXAzcSnoqIC//jHP6DX6811DIabv7H06NEDaWlpAACZTIaEhAQsWbIE6enpOHToECZOnAh/f3/ExMSI8TaJiJrW5bI712lIPaJmRtQ5P8nJyQCA8PBwi/KUlBTExsYiPz8feXl5AIAuXbpY1CkpKUGnTp0AAEVFRRYbH86ZMwcVFRWYOnUqLl68iIceeggZGRl37DUiImoWvNR3rtOQekTNjEPt8+MobN0ngIjIIRkNwMoQ0+Rmq/N+ZKZVXwmHABd5U0dH1Giccp8fIiKyAxe5aTk7AEB2280b19FLmfiQZDH5ISJqjoJHmZaze/tZlnv7c5k7SZ7D7PNDRER2FjwK6DHCtKrrcplpjk/gEPb4kOQx+SEias5c5EDQw2JHQeRQOOxFREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksIdnq2oOeher9eLHAkRERHZquZ7u+Z7vC5Mfqy4dOkSACAgIEDkSIiIiKihLl26BKVSWed9mXCn9EiCjEYjzpw5A4VCAZlMZrd29Xo9AgICcOrUKXh7e9utXanh52gf/Bztg5+jffBztA+pf46CIODSpUvw9/eHi0vdM3vY82OFi4sLOnTo0Gjte3t7S/Ivpb3xc7QPfo72wc/RPvg52oeUP8f6enxqcMIzERERSQqTHyIiIpIUJj9NyNXVFQsWLICrq6vYoTg1fo72wc/RPvg52gc/R/vg52gbTngmIiIiSWHPDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPw0oY8//hidOnWCm5sbBg8ejL1794odklNJSkrCwIEDoVAooFKpEBMTg6KiIrHDcnpLly6FTCZDQkKC2KE4ndOnT2PChAlo06YN3N3d0atXL+zfv1/ssJyKwWDA/PnzERQUBHd3d3Tu3BmLFy++49lMUvfTTz9h5MiR8Pf3h0wmw6ZNmyzuC4KAN998E35+fnB3d0dERASOHj0qTrAOiMlPE/n6668xa9YsLFiwAPn5+ejTpw+ioqJQXl4udmhOIycnB3FxccjNzUVmZiaqq6sRGRmJiooKsUNzWvv27cOnn36K3r17ix2K07lw4QLCwsLQsmVL/PDDDygsLMSKFSvQunVrsUNzKsuWLUNycjL+9re/4ciRI1i2bBmWL1+Ojz76SOzQHFpFRQX69OmDjz/+2Or95cuX48MPP8SqVauQl5cHT09PREVFobKysokjdVACNYlBgwYJcXFx5muDwSD4+/sLSUlJIkbl3MrLywUAQk5OjtihOKVLly4JXbt2FTIzM4Vhw4YJM2fOFDskp5KYmCg89NBDYofh9EaMGCFMnjzZouypp54Sxo8fL1JEzgeAkJaWZr42Go2CRqMR/vrXv5rLLl68KLi6ugpffvmlCBE6Hvb8NIFr167hwIEDiIiIMJe5uLggIiICe/bsETEy56bT6QAAvr6+IkfinOLi4jBixAiLv5dku/T0dAwYMABjxoyBSqVC37598fe//13ssJzOkCFDkJWVhd9++w0A8J///Ac7d+7E448/LnJkzqukpARardbiZ1upVGLw4MH8zrmBB5s2gT/++AMGgwFqtdqiXK1W49dffxUpKudmNBqRkJCAsLAwhISEiB2O0/nqq6+Qn5+Pffv2iR2K0/r999+RnJyMWbNm4fXXX8e+ffvw8ssvo1WrVpg0aZLY4TmNuXPnQq/Xo0ePHpDL5TAYDHj77bcxfvx4sUNzWlqtFgCsfufU3JM6Jj/klOLi4nD48GHs3LlT7FCczqlTpzBz5kxkZmbCzc1N7HCcltFoxIABA/DOO+8AAPr27YvDhw9j1apVTH4aYMOGDfjiiy+wfv163H///SgoKEBCQgL8/f35OVKj4bBXE2jbti3kcjnKysosysvKyqDRaESKynnFx8dj8+bN2L59Ozp06CB2OE7nwIEDKC8vR79+/dCiRQu0aNECOTk5+PDDD9GiRQsYDAaxQ3QKfn5+CA4Otijr2bMnTp48KVJEzum1117D3LlzMW7cOPTq1QvPP/88XnnlFSQlJYkdmtOq+V7hd07dmPw0gVatWqF///7IysoylxmNRmRlZSE0NFTEyJyLIAiIj49HWloatm3bhqCgILFDckqPPvooDh06hIKCAvNjwIABGD9+PAoKCiCXy8UO0SmEhYXV2mrht99+Q2BgoEgROacrV67AxcXyq0gul8NoNIoUkfMLCgqCRqOx+M7R6/XIy8vjd84NHPZqIrNmzcKkSZMwYMAADBo0CCtXrkRFRQVeeOEFsUNzGnFxcVi/fj2+/fZbKBQK89i1UqmEu7u7yNE5D4VCUWuelKenJ9q0acP5Uw3wyiuvYMiQIXjnnXcwduxY7N27F5999hk+++wzsUNzKiNHjsTbb7+Njh074v7778fPP/+M9957D5MnTxY7NId2+fJlHDt2zHxdUlKCgoIC+Pr6omPHjkhISMCSJUvQtWtXBAUFYf78+fD390dMTIx4QTsSsZebSclHH30kdOzYUWjVqpUwaNAgITc3V+yQnAoAq4+UlBSxQ3N6XOp+d7777jshJCREcHV1FXr06CF89tlnYofkdPR6vTBz5kyhY8eOgpubm3DfffcJ//u//ytUVVWJHZpD2759u9V/DydNmiQIgmm5+/z58wW1Wi24uroKjz76qFBUVCRu0A5EJgjcRpOIiIikg3N+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iEhyYmNjuc0/kYQx+SGiRhEbGwuZTFbrER0dLXZo+OCDD5Camip2GAAAmUyGTZs2iR0GkaTwYFMiajTR0dFISUmxKHN1dRUpGsBgMEAmk0GpVIoWAxGJjz0/RNRoXF1dodFoLB6tW7dGdnY2WrVqhR07dpjrLl++HCqVCmVlZQCA8PBwxMfHIz4+HkqlEm3btsX8+fNx63GEVVVVmD17Ntq3bw9PT08MHjwY2dnZ5vupqanw8fFBeno6goOD4erqipMnT9Ya9goPD8eMGTOQkJCA1q1bQ61W4+9//zsqKirwwgsvQKFQoEuXLvjhhx8s3t/hw4fx+OOPw8vLC2q1Gs8//zz++OMPi3ZffvllzJkzB76+vtBoNFi4cKH5fqdOnQAATz75JGQymfmaiBoXkx8ianLh4eFISEjA888/D51Oh59//hnz58/H6tWroVarzfXWrFmDFi1aYO/evfjggw/w3nvvYfXq1eb78fHx2LNnD7766iscPHgQY8aMQXR0NI4ePWquc+XKFSxbtgyrV6/GL7/8ApVKZTWmNWvWoG3btti7dy9mzJiB6dOnY8yYMRgyZAjy8/MRGRmJ559/HleuXAEAXLx4EX/605/Qt29f7N+/HxkZGSgrK8PYsWNrtevp6Ym8vDwsX74cb731FjIzMwEA+/btAwCkpKSgtLTUfE1EjUzkU+WJqJmaNGmSIJfLBU9PT4vH22+/LQiCIFRVVQkPPPCAMHbsWCE4OFh48cUXLZ4/bNgwoWfPnoLRaDSXJSYmCj179hQEQRBOnDghyOVy4fTp0xbPe/TRR4V58+YJgiAIKSkpAgChoKCgVmyjR4+2eK2HHnrIfH39+nXB09NTeP75581lpaWlAgBhz549giAIwuLFi4XIyEiLdk+dOiUAEIqKiqy2KwiCMHDgQCExMdF8DUBIS0ur41MkosbAOT9E1GgeeeQRJCcnW5T5+voCAFq1aoUvvvgCvXv3RmBgIN5///1az3/wwQchk8nM16GhoVixYgUMBgMOHToEg8GAbt26WTynqqoKbdq0MV+3atUKvXv3vmOst9aRy+Vo06YNevXqZS6r6ZEqLy8HAPznP//B9u3b4eXlVaut4uJic1y3v7afn5+5DSISB5MfImo0np6e6NKlS533d+/eDQA4f/48zp8/D09PT5vbvnz5MuRyOQ4cOAC5XG5x79aExN3d3SKBqkvLli0trmUymUVZTRtGo9H8+iNHjsSyZctqteXn51dvuzVtEJE4mPwQkSiKi4vxyiuv4O9//zu+/vprTJo0CVu3boWLy82piHl5eRbPyc3NRdeuXSGXy9G3b18YDAaUl5fj4Ycfburw0a9fP2zcuBGdOnVCixZ3/09py5YtYTAY7BgZEd0JJzwTUaOpqqqCVqu1ePzxxx8wGAyYMGECoqKi8MILLyAlJQUHDx7EihUrLJ5/8uRJzJo1C0VFRfjyyy/x0UcfYebMmQCAbt26Yfz48Zg4cSK++eYblJSUYO/evUhKSsK///3vRn9vcXFxOH/+PJ599lns27cPxcXF2LJlC1544YUGJTOdOnVCVlYWtFotLly40IgRE1EN9vwQUaPJyMiwGAICgO7du+O5557DiRMnsHnzZgCmYaLPPvsMzz77LCIjI9GnTx8AwMSJE3H16lUMGjQIcrkcM2fOxNSpU81tpaSkYMmSJXj11Vdx+vRptG3bFg8++CCeeOKJRn9v/v7+2LVrFxITExEZGYmqqioEBgYiOjraovfqTlasWIFZs2bh73//O9q3b4/jx483XtBEBACQCcItm2YQETmI8PBwPPDAA1i5cqXYoRBRM8NhLyIiIpIUJj9EREQkKRz2IiIiIklhzw8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCTl/wEBGwLOjtlfZAAAAABJRU5ErkJggg==", "text/plain": [ "
" ]

$fRCGA0OO4Z}myOwexvN#x!Rfk>`ZwK^V&dK_p7Lx+p%85`B zdEA#aG`hR^zts!JgMZEa`&a_%|GkOZRzJj@i(4H&Wj`z4F|!_imHDemW~`e#^lQf! z(E1~4Pcwj!b9pb=_yG5K2)Gb|JvGw0>(7l4m}{H~>=mlRJO|t%AKX89GB#9>U$xiv zOsrgFlay3-Rut%cUhyQdI^7DdZ3`FgRWAtG^1aIZ>Oy%lIrrp@P|zgeWqBa`UL z*H-jY$BybH=%VJI!t(e&u_}i#)W_lguyU1g;z7uKJw3kL1AEPX;U8A}wPke`Gp=sD zJp`jwil={kK5fWCe2Z+jW#=tBi2oc*m+7qHF#YL3PZY}Pb@x-qc0>-Gq{n+S{r%cz zEx$CtL&r>7C~6cXC#io1Cl;%FI~m~U{qR}&RuVB6KO3Gmg$1`g!o1B|?R@EZ;!Ako zJ?q*~GT_b*_zIc6n{PiedV)Uz#?OiJUC+2UrXAn87+Uts#exf9lIm9*o+iFbvAB!) z9-)|YcxHf;2i=I6x%`ewRU8~`W@S%B$OFrbi@%vQB+s>)3*@HOF+L`Boe(gVrkZdL8r1KT_ zTgOuuQ)zCZOFA}>MFY;sn)q%lDV`$D`H;ta?E!EhB_CZ4@$6r%bJ=4(A{iXNZDOM% zmg1$3oph(2g2{()ogQGXCN^^&H-lXTGu)wGYyWIkP1q1(@q+xpsWDQ2KbEok*I|yz zWLq5sYQNRUA4Ex6xMzog;Ac-51)eboR*Z?8JZc4q7=Bo+(wNzF0KS8Xo&Y5B2z-6+ zwR;8sX(f=UWr}!?9t@#ZAi;{$_QPRSDaJ1af!5n}D51EmX~Myu6ji2coftu@ZWiwU$ ztv?mPw{u(QhLCC(7^tP%rA`o-kaCI8g3TpjE{|F*qe!9{bF;yWFDMvJ`V<5XtHjfA ztJ0VZh6;V6_;X|QUJf2xCm#!Xr!+HZ75gtw1dVAx8NxBc&$+?yOhks-R+1Rn9J9Q% z2pzmh_jlI|j6uI=$Q3I#Y_Es8loD0_iP53oBJ&t*fr0QUU6GfZ86}A_?5M0!Ku6hueC@_SAEZI&Y;mq#cSVVF1{=1y?iSH9n$pCW7iu}I2(yjg z^&3HoM^|j*fi2EO3POsy9nn>5yM{nhh?B|~@u)IoEA9JX-KHOq*M=&$eh@OMf2-vn z7l1s5Vk!+LLi?Ns-#%nILi{WmehE`Tm{RPE_X@5}`~-#v@KP$(PI`;LqV>j^-V>sV$+aisSdZCn5N6L$2^sk4k5|9Hb0c1hyMjS{DxdbCJ^zE-+ zf>;JfEwz1^QV4~aQ!#dhNf`lsx9Wu)yG}4Isv$_OC|u}@8{jLTWgG^s5Oc9+YZ|>; zTL>gG^PbUnm3}eD`xj=CPEUwpEc}D^k$|QiuEBpn>(% z_I=)ugOQ$6p0{URo2z6`TQFZ26M@%UcBUg0Cl2i3k1CC~OBu5{-CCU@d2FfBxg2hD zg7VBtjLid_k$Fud8Q!0VI;(cZxLzIisa_mJAkNe}O~Qp~bd9V9p+-36D|h}oMMS~( z%5RvAK`Lg%A`o4I=}C76>`_8CZWEsew()lVnu*owMgWtNh;_1l^66X1rN|k@6Ivr$ zfPFfoYuMA;)7|~l^UN*Tv$hf0Rm>K~K{j4rNzonEL8pE%C=3wNPllGTW1-h8tP?;V-S~sIEjUwnc4f_Q^5em01?LP zFJ~D&%v&dV=Z0}GJarwfm{7{@%;p4D)ogj7$oM&fjl!h9cKh^L#p{JA1*pr2`Yfps z8v>-F@4XsEykxf!=|fmLpMieIIkHBG_n-K2!oW71vCLmDRD$N5y)|wZ>`YUP4ZVrm zJ2a6B1hs=KdVW{52#qTg!v>gQ2St#O1dR4J9cb!n@5rt;QAsXG6()&9DmPA%>rVm2 z{Go*eAvo~t;EjQhSTaf-Y@XL-jA;0%Ch8|R^NlppUqZ4`fwu$~{!NoJi+X{J5a;#) z;#3#(j84*TU<%RsC64apc%I9a*YMT$FPrFZRUQ6ob>H6!_{|0H{&jsP>G)hV@@@TO z=$ymMKNV>VCXFc>h&)k-WdNaT2lj$Lq^>Xh(xr$$ZBt<-Q4C@bL5|Ubs`E}_e!9-?#32&P8oj5C>x4Qt< zNpm%H^YHDB*n;n8dUXZ;2E^Lej7{t}csXi#R8K0Q$S;72M#6TarhPjZrD^r!?V(-) z#Kg6HC_Xq}D@k})K$qQh9H15=skS^THjP6XCa4NuSCyGLIs|r zr_kp0))Yu3ogNg&$z-!9^dd=z;w$r$AOmrx^&>->3MB*@OPCwY3%R!qnJQqEaWh!$ zvsH$_0cSE<^tmn=b-4YQ1_fG8&Sa{^r}K0a5yw-rH4#58nWGRG{G4toaUel021B+Ek1tPY4rPtS<_>z z-w;YIdubDKj@QAF#`3A!R_u4|D^8rW&MWU4DOI}_Vsc8%m=q2Vq7d6}W~*WXDUo2+ zP5!=h%PGJTsjSA*4U>lk&f?@T&`uO^fV~oUEDvwvl7k^zuL{7K<7zeehoRjzHmh~v^dIwU_ zibO&|RwzRb00nT6V6U2x11px?iz3ze>QDOAc&6w?KSmWYe*q!{5j7W@6{9HaFl+q`oFxbhvPQUWGh1JN5%x)Po-vf!rkn_Jj}L`3#<_O!W<IdhAT3Ood7{Z!=~X+xkg+wK@&CBf>3h~`d;gd%?e(wz^S^5M z8{n3BT~;Igbg-QL{QG45u`Ro65o7u3J+MV@mG7zEiLK87c-kg@dMsat^q`&pXSo#)M zui;VKP5Y;@c?L1&$Iz=*hM4}BoJX+7!$-32_f^R1@d<5IEUxe z=&HIiXCl!`C-T|rD9sH2W|7_J$k-G{VvwipsyfLIpP5G%aZdA?{X664&%Gaa-N}MI zZ#88o8+M+$yedlJxUV;FTrP`MjQU%{-;Tv9U*82Mw?%vUx9FH?F%Y!7O-19IU9V(c zjaI;DyMz>aT=D?0(mDTv+n@z*m_8$+Re*Me%^8nA{ zK|y^^-Dd%%0nTT{Z z>#dW|uquHBB`sV*bp6vUCtVks)I;n+X2;32LC1-K+^*KbDnl4ER(FJsA2W*^B(gM+ zr4}zGOgqnz0~ecc1mSB7r{vyGw&~Iq#QZvZk@E6sLpv(H)#QjgO2U2T5Maibd)+)A zGlqho<$l0g60sA|{`fa-7Dsz$L84Hl%Jjc-F8Y!Wt zba9}0&bK7svNF@({rlPA(z@hbCYrzROBK~UyO$b3XFbCazH*~7qX(~Xh7QHcxn7%P zf&x~Qf`$NYAAt-KX{G_=Vl*yc{CsiVJQGg5oQ=!=w#}RgaTi06*%UeWC>tB0oqPrl zCzDYEAPXqLEl*bg4E#o_)SeV(_6P%;G$yq8N_#uP8AyRf*1TxRG(Rf^6(~Iw$iyS4 zg37IjFU!(Mkik1kmB%m`HDTr*j$VOtuhsw|q~QxcTl9A(fI_}___qR=QZii$e5xA8 z_P0pNPrH9qe|R?BtR@Hdt?j1Kkov+2zm7gmWh*}#y>h}R4cFR`Ha@7!7$upqXE=W< z6}M4;-6<%Yr;N&_IWJQVsWL@nZ_#a$D5DnuXm+ z0>;<}YXsg3^yJ+Q6t9DVVYYB-nq2z8nuc*A}W41 z&jcP=gyQo3{e}tiOoQrVaB_XK`zJsQB2%+BUEoK?*m_fz_=++4E=YQQgT`*o zZu`58ALSAw)OKKZMNCTZT%4~O@hX@Z+G#@uz0cg=7Tnbx4N-{y(}+j*O_E|(vvJjj ztaZu>*z;%3dF#cRN?qiI*3bg*v3Zfx1C{z!|W zks%E<|Cciq{E-=w8EC~=B)ERZ_+!C-nqn&ZkYxL1Yxdvecf9sqoz~_e>O+z|g5-_85^JOHziMMx4O9UeO9~Q&uY;V?Ig)c~4pipjC*2r@BDe80$~F%g0sPDvns+;CgXXGWE`tRP1*z zY0dB2baRUc;%V!vddQgn!M9Vd9u{D>46DWWY?XGSjBnr?wsk-lsj=-mTGk9vc|zQT zVUvx>RATf$qv!z(BcJrCbiTl@%l6uqx@FscEj)Et41wZFv>{%mTKlUtzsFJ()qbC( zxc);idGv|Ai(HR)%n|DD%iW;vK95ja{VxF2(b@ubkD7C5@N#4}pA`xHW6$P8U;C31v0r^D@Zj{y`Sx|vP0 z=KB<~lrgJx;+1#fq}n*$8yAl~cRxlj^P|~)-{t$4$1^5}FFsRgVP**lDC4Z%XcX_fs;XGOoi#E0 z1fMYX+23D((#A3J3{MSyVD2hs;M2k|^ghAV;pFDj)5E!VNEBvi@8QG}v9WiIG&)Zv zjd1q(n!2lx^B^e6;2y`#EAkkg{UvqGil!y^&+h_@fBRvFIh8OGB!8@vJ#G{{G6^{a z(iD#X;F#n5(rv%o>3QV|*~`gLl54;~K81Mf zp?kTPs&~1r#(J!+x@HA&`s#{7ELyH+to<=v9lww!PwvxIGS1`AHk zy?p@^p+ZwCFF>gr%=X*A^J-SHY1PiCm)!W^=YW4o3|+(1h(pGu>hyZEuYjTz|NT+? zDz~W*IF*4ymc6;3Xm*N)e8j^GrqNE5Cb?OjZy)Y=t6g^42#cpAfy)7 zT6ihp=(h-%g_}F>z44t-S)`yjw7rzdy}s@!Yc6s6myTJB#EM$bnqoe}HVx{+2bFrv ztfPd($e>cL!kd#c>cnC=cs1~bhj1FQyhpa8`D1|T$d5u*- ztoA}1LyV3?M@^frjhHjhtG^K95B13-O6HMy3KKRp44v9rd!(XDPSe`z-htc{F2vo-`9D*-^X#>H8l7oEA-#_GJbD?7rO#d;m_j=ASs`O z4g4a&3$}G2s=QB`RrzcY2(z>FwF>hh0{7EnvvAn_I|%hqm<}7$W<(Sc{bUt{qgNkH z=|)Qw)p+DqIN6owz=Wg3GgQ33BEi{KA)r=_QwGdp)=g5By_bA&plU04wLiKy$Zyzq zpvJ?2V4;#Bp#iwUs{WzTA7`W!65J!ZpPfd8-vkZpP*Y%4aB8F@EdCwC++gIS+{8NC z+5W;51ZAI5nA}h^1`C-7E`cNHykq$Ae-{1uDwWgun<(q{Z+LN!Ef8>l?hS83l zqJWK1fQ_O`Ra7dzZXCvO5`*)mVp<68c1yE6b^8xV6ReL&1j8yLv4`8gOu?QXq->7T z?4>$?O9?F8UWfG5Z_M{FzBW94@N-M&`>MJ2j)!&J!H>Ti-$I7?hA1q)FA{!T{vOoW zlKc`O0QBqjnNo-amQxLE}9q$ci!vWo390ka9nNE$QtCGXP^~Y=h+I{ulCMz_E z68Ta2`(mXbWuui~PIg9X&4pqSr`~pU( zs&Zde>hce!-8{wjfu$gr&XiQyhvesEO08~2grv4Jq0yzt_|Zo-m+VinyNSiOai(Zu zWb~@z-vEn?!Eeufw#cr%hxy3vTYBdu$^=v2UF=+$HNSfqbaPllXMMR^dlkI4!_~8Y z{9I;E=K5LlyOjG)_V2A02p%;Q8L@`ClRY%j30kVogQB!v#0{Th5cCGtum zu;%^|6tlj*709CqC}R?eOn**N$c4bYB9KyF1`rDgo;FtL?jQ8Dt3?@~^pBzyr9(WJvi; zUpjIF0CQ1(W2mZ1fhPk!Om#$O9_1;}OLejw99>8)2y~HvfyC~|_(Z#mh%+5w3qFin z5GMI&kAAay=5Ff9ZvgJCX0WFBG2X$qj&}ZP0MhqoF92n79I~l(yO15?jR-hMp zLQ|DzS`X!f2*09k{TZ8acr3l+j$cTc$B1+YgcTZo@h7V993N|kRS}R`y^1ck5Mxi4 zxPY+CTLRa+L{;MKcUnu-=xRA>RS6pAC33e`6ddo%r8w*;_En9}uz(wOJVgXTH43Oi z4}afj#M7LsCGE;ApbjVDD5WDMOU1HVwFOewyG#&eV@I;abe5=l_ehZMEuVfP6OX=b zphW)^D-`KKtvK%rjlRaN5J+pcp|HgQ0`zWyLVAv&%CUDq!n~Ca2hlPls+&pbR5T>b zRfRurhc=JN-63eI6EI*{EuXSc_Q;}dc89N}dJB{St>+Os*aMlmg0@P}C}UCz8A<-r zZ`RMd?%<7Ah1ooL<^>`K;)yT~U=vW6{sM&#LKdy*)z0fX5WuSic*9a=G;nhwN4hR{ zflRBThY@h^T#XkI15zCI4FW=q zCQ-fY+ztP2ctz6NASAx~eLB8&ub!Yl1Tedt2|7M{8ct_6-F+9^Nj+CDAK8ZF70|nmCIJX(XWc}RZ>$sGODkDZyBApO;kXmzY z*sA%qNSu77DNE3=EEYv|H_)+BWPSi*BRX7KY`}&A^Jhe9yjSr(Nf2ssI-4hukN10_6f1bKjm^$B2i7RG(S248&}8?$uAyWCgrXBgFKOK9;mwZRgJib^N;uKAL{y zh4SIU-_M3iyyWump{I z)pV2Nt5gza(>b5IS|E^n^ZrZ7Urxw|Nkre^)PYDWD8%2UDXt z=4W|9$2e$tI4t%QDDOPN+BwlgVH)q z{q@JKsKb6;Y1~CEi>BE!Ztd%MJ8Hs7GcczUg-DAw!RFEg7!&|u>SHxxcLEdRCOhzM zv}%C@uQq)IQk74sI*bZ0ObyrIbnWn2itZ6Mq8uq)?igVl55Qi+8r?C)`G-UDI+&kC zdA^)a2(wYZd555MQYxy;55j6Z=>bzmntqYONM_y>1E+Idb2gRU;bDeU5Qr(N#=&!O zjmJgMzw{XhUNrrDQMK~S2IkkVRU4=KcnZ4?u&_j{V7qr?Ir(kmzufO(^wcY(W~xy* zEM%I936CR9pE9G+Ni+ft3KPXlMtEfzP*llZveF{M(pNwAQ)gK5(-W7*ydFWhwm6*=1JSB8xtyiQLk84})B0Pr zu|;uF8NUA(Kt^NlxANK*!b{dnFE%cKfk-o{1>qJZN3sNj5|Jf{ueJRyy+Mp2Xg6ZzpATtd66CcYj$vZMJVXYUSz9uv|LT}ueZ+|@)pMsE~- zV@(!wS;`^8*OZQ%4Ki}q_%6ma65lHjR@I>RNc7N91;ZEKJxBtEBVBQbHERFKexgSR zh?oYN|6aRCaC7(azb(XEyYrl$pGne1Hjs7miWQ*8GwblPl^d~wvW-WAnLGp{H_JJBB zC3cPv5w(-RVLyg#R`@Phk{)}a{I-gu8sEHhM4&L3gaC%GLWZJ@+E@T*56!+U>q|kF zW3Y<)Q$mQcRt!xtkY|8unEX3pfa4i$1Gw}7kq220>L9O1J zD?D~-j2fqyzM2(rTXWrlzQtP$ngy~&8;d|Fiba7@&GHEHsWVzfUuX%bR=NYn>YZ3L?BjQ=Wts00G^?zKy}vlLuP6oai_253+q>u z8x#yAW?3Wh|Yl7AQL&tJz2Og;_-ayN%>tEL7MNXWX%8ER1%LLZWKWlGu9 z0;?Oh&gE?UKZx1sYqhdv-*f;2u@#zgENb?dx1>%J{w-~knXv)}(tU^mJ9w`H2ha>Vm@#-+8 z!ml694q5+&Ix-{-?;2tWwb@3-fV5}1$L;&Az0(_D%YGAodi#Bqi|^mKxTBTd&9-}+ z%jUMC8Ul!l$_HJLJuwk@1IUi$gX)S^|LJYZ%vOJ)_IAS)s>UtFt*t^BNDgGnYJv)p z$KH|R(6Ftchhg>qRFO9us$jC-Lp|;~0IImHLDEZ}y-=zV*=Heote$GEctJ08zaEsr zs-XD!UWut&2=&VCV6vhKQ8o|IPy$)7mZEqNmt$)69IaS$>8g^x>A#A_e_l}*DYGJ^ zGj-H9?PvQQ=~zFIkh*Up3>_GbuTP!ubX3cc3{&Y%o;BQ@8ptj}Rl$Ez@t{E8(rY0k z-+s|eRYcy`4WE>F||MH7UBi%oi5kI9! zUTSA6sUbCcpAkPuP_?Kox|Ed+mg1e`_iD&Z+E4u`#QfLr?=HD z1O~k}{c${IW*2OqmoF_re~gCK_EU_86R$4(V!gXu<(M%z*!vs5^P@$(dsgdThh69p4sT6#e)Up0fyPJ)NJ8^O12Xj3 z3E_1|G-Q%gfe?@Yl#gBEf%06tyb5nU6WL5}fz!+aIk9BVt3Mn}L0xDOv`kpLjcxog zIjD6GtycbEfR;(~T=UQ%x3qZ98u0#ir|6U%IIjxfbd4b}w;;%bIZx^Edp?LOX9FkBLPMcEog@V#jJ z_g&)(+#$EUndyGJPfpgZ9uO5??Ji!{@gek;^^x&(@eP_kK8yzziY>q^k4}s9p!IXqwEoz z!`JqyfSLGCSQcWl#JZdK*Nk;FJumQl2>f1k#q3FW&s~w@<`hPBdcEK-AZd4OJ?YEg zS>k^pa}orj1Raz9UX*u8?c-p=W%3%|1`k zdD6+E`~oAlC9-z`x&T5F9Pcx9dVWX=*l+a&&|!TGYB}fcY_99Qxdb=ufR~3{j*T!^v5;Ma4X|cr1*IO&G%$Iu-AkDY zr)I}D?Kn@gJwNhi&h;Bkc6g?Gd6BH~ahZT*=C1RCH_YB^ubau4+|K8_e%~?L zGSO`iVTDaPS?`CcAAQkYVEgO6A0 z0+$!f2FxlNDA)SgR2H{M`t}cZ#kxK{X)zZFTKXQhEavc*g)o*}Gm27S+iU&fei}Wm z!K*3;-iKYQ*>qnPZ>~C?yQ~@?blAk4-RyiYskQRmrEDQSh)H}--5DIjEOs0usC+ne z1ytPc>1|(edgq=Ug2pKtrXr8#0nIJTXH-FI$7N;`GyDh~2Do_{-l@&~J0wbl zFkFo3CStP$<5=s_nu(jHUD>E?R`K12Ma1ZoO(j^H(M9e0!!i)V>;ifQRq%$0A zr)}>tV)AJsy>p7K+%BKxYp7|I>$MTybN;5d9GlfX;tOxbEd724V{y|MuJ})(Wk|B0 zLA*wQEC+{G`_jRQu3q-9N?^5tlpWE0Sy7V)=T0e7*3%R!Ik6C7M1O>KMoo%CF`osr zZQ@g`zP!dS+j3eLk6wik0}LQ4S*q)FhhIox;xCm>|D8fJx_3EfKt7j~auGvQB1SaG z0TMo~F`Fvlml*>o3?wXFcI;>X=L2%0PEzFz!l*Uq{`~UhOVpoXh9^;`O->Yvn$nqe zhzs~@>~>Bnfi;dV_!%rYP(oSidNx=qF_&ie!3?H@IrNbnS_|tgkb605oGaP?Fn_#h zm?tqbyMJLnyv`#tTv9&hp)+270Vi^3bRkI8?Jw%vt0QY_!A|FEu0JP~CM1gH%?FGE z$9C5<3S$UFGY#&ha0SP9wmysd33sH|+e|G`S0?2|$>6FA$>hGLu!s}ojJCh{k1d3$9dvUn5b4yh|~lR z=T*`SlV2juiJfF(B#7`@N#suD2$>?00W+#p()rC@(dZKDY^DqZocK;!p&q2<17{ry z0rG!y3%Hb-pI$VtKUW+b-6LVnKLYlCfuH69>yB`X+tvQZmf)?;`L5gC+U0+LpUXX) z9Gc!YYjdEUdHr$k?c`~E3@uFIE$PflblYXWF>~cp{7v3_^E!2$zmV0^rTt<DjPL4k9Sz-2smzHPwdQErJk(-F_w{&Y;zQoL{lcY&5xJa82 z^%We9t+Hw|H@D0E+GOGm6{^OpjWN3Z!%;%Ya%bRB{Hff*W=!%wgUp_gfp3eF_i7fQ z|GchgP2bd?WGyBv1l}QF@JAmbiL>F7mw4d zR&Nedn}IB*+$SoXpDbrSjr%v(Z(H9iu)!W4LsRgQ#5VQBe7Xoja9`YS-jgAc_J=uP!pA?Y84bT zDP#f$RS!5vN2H7L_!SHePgGShD0XL0MA|C~c(YshMD@5-7eXytoFsOZxV<5izee;P z@KFUI*mqBdI#B4))QO5bU*g~VsaL52n*icv`jm=BK>=F!2P>k!6Iy{Ak@N#Etq%Bn zzP!*1sC&2i{MpH#{Z)v=XSu!0ke~g{t*GAlzZ!ysmFv?a-J_E!r zr6T$=XdNwA7p08>>*}cT;sj6p;7p8Uf;y?+djHRN3?!yGG-3Uhz^l_kbTuLX;G;hj zqhA6WW)r<2k`IKc|J)hQ;@b+3es{B>h)MCD*PN85uAsi#BXJ^@c0QBon)L5vg-Bd3 z=tqps#Z1*EAm4uSVig8-V^$VhfiPkA83V673myF?z!unbBIM)^`BSi`rRK0kGMY&{ zf-75SkD)C%1vZqj(C5dhg@fO2xwGk~kSv0mzg@&Q>Ys!o2LOuIV@`Als};9I zpm}~3q!mL_Dg#Acflx8tdW6aNMjaI9kVAQW;f+|L2vhc5+rx!0kM zZRF%WTVuLUd}`rpOWUBxBiQvi#!M7>Bvb;PHj&*JuT3n!C)u+TQOHMxHKB_m?s4;? zBv!6VwTFO4;~ASMsp^-~X(Cb~JrJkxXS|cNXmjv@kE+=G0GlZ`sz`K@#h{DR0s9?A z!IXP={dmGe{9#TJSFBR5%sfEyNtXz-7#zPRfRISDJ&>JzoJpVa(7YZBw45%{Qxt99 zUUAICR_n0jxQC7QOu(S~I!Mjbvjm(ah468o`y`nLv&JzIV17mj4y8z%uR24GC<*N5 zK^aalo7fqA7S;Z$EZS@uy}OM&#z}S{ekiubxtCRyRJW<(PkbUVG1kwF6YUoDuZu)O zrI;3wY`gZVa%gKE=9c=>8mKn4p?z zMO2#)z;R~hH#2SOr5C_ejG&>_VLbS4)eH&9E+tQXtKi+ISpvbUOpZ6nCa;gb)yZr! zpIsgqALN`i-Ru6>FY`t6S4@j`UdVi6%YxrcCx^*((5xlz>_S)2(31n^uA8A3P#Q%W zxXL0lG6}~b028EsaXh*}VpQb;ZFa7I|B~cGWkRUYmx%{LQCac&>6XzAYc9&pt0j03 zmpK)ZQVO}$F0*A^n=>6AUDMRR#@;^i9j~c>!CZ(C8rP#RyB~-lXn4j)`Q~%38345Z**wjVm@cydH#35pYlP9aC{M2EXgYi2B=T+f06D=nXNK-@I5 zx$-t4JDYeS;r4LpS@C_3F!X=X_a+GrdtkPxr+xq3<+AXzB+@Wii5tzGjp3%gm- z-;Ym~XQ9M@uRFV1E_9>e*|@8YlJ;_4`3gloy49dMbeA&u2CrxLeECLf<6{boS=1>z zJ0|?XOUh`}vFpe@kIC!1_~*QUFZ6f1r84>2e!pCPbw<{46UJtxw8Yf724!-`d)DgC z=B9@#Tc~!li9FdQJs%COl*5!3Oy)(?GWcX{X&B9XC+`+9B`9bIcYrirsWRwf^h!L| zXnqZ~y`9rLP8%wAg8chv!n~YD;9eeoZf3$r9t7f?hYANv^Pg+G!PmK?t1hz)16nPA(}Lpac_9h8NU(0~MLq5zk? zv8IzDhF>~UyIN)7t{l%t@Mztk5^0$P=&>;44(=s(hRt{9ToxYJvpargK3wE#_l5qkfsi1gPnf_-RYlocb8GOt_SDT*|_W zEUOKDtJ|_LYqZQzx^cO(BfqyeOh~3=#D_3}PF7p`x5!hi*;-_%Ov!zTsc}Mil_>w> zuV~?S!IZRo*0_jDQfyhE4L@kCInfu(vU)*-ka_emoUV3dRE^jk%pA#A0_+|VnR?LK zKFF{g{QKS;Amw=VLnd>y-z?svO*?dwSnAV`xI|+lF>Fj64C5&50{WZ8vc#YIsa({u zHCGpaK7l6#8geRNaPHko{w3e!)aKlnKwN zqLn39VU*K-Qs^rbTX8?P&=kE7*%j@JogjaD4L_mpY3?>bhGLkezadBsUnZ(v`bEAN zCc-ynU5%*W9EDOqM$|YmG}v+eDpCaaEM}aiiZt0k-L}IGqg+0c<7ZTW;2>=F2d3GX!~jlQ4G1pc_8~=&BqN?FyLdFA zwVu&}B?h(9k9N%th?q4isXWKkN97QGV?3_>nBOxmZryoi$}G1#D{vdQx+$I@%X9mk z$?$h&o)#7RPrt|*`b4wDQPt<%@fK}R7PB16?ICQf5kA3p4=xk&U$k8HeBmki-iOgh zdn0>~%wAg@eYkZ^RuHWQr-PQ{_RH4?uwJ4BA|8jBe?38;2!f7UuUEEG348+h(5A8E*}eX^ zN6(2iA{2^Ad!?%qOeOzljJ`e`@lc1lK{?}W=k8%li3vPHXtdBfvrkIf!&9y>RoUS~ zUrdJVIK)6U0~HA)uo{n>hu9V&!2xbJ<8kMO%7tPO{4r-oz`IT5yK5qbB0^MX)S>pn z;YeeD&=@PepRls^)6^Bacw;qaz`qc==hY}VsM}P{UX}aZ*GA<}-+1u4$U+vXJ%u0^om!(KIoM2Sb^`pJ=WpaguI#%q5Ar;9*MYg>tj zqD?|(;(-<6M-es^3~fXZQ!hA3XzgR@OH^Y27>sflZT9mN6ZO0O@x)ecn{2=_a4-xa z24G?kRg8@&qC4tN{ZSsoH1aF)yPPR+$1!hT1FQ#PU;@fn0-QIv#L#2a0=_)3N<$eT zB(0IeW}ARLzF~1C$BT`*YM9wGkRCM2Es~bcFFCNH=bHq#oa2Vc{6~%C#4Z)qzLXL( zT{u*;I5vtaEX1}ZSr>zgYy4$e6lP;i8C{paKy4OQ@uysHqa#j4zLR za{F~zvo}AVoP4vci%Ay}h$bN`IPcBp*Jc}JM25Q}^>#!NL7Xsa1*{#rD}DIU2uuM+ zACaSv5h7{cAs!a>@eb01MT*yWOs&GwXhY`lyRCEZba}hIl^kF?#Veqo95eV>=ZLn; ztFbKn@=s-)QeHI$7c{Xwpg{emSfmPf7*TTL&?oHwuc2v-z!lLjFb(W* z3M>&=h(lf1VJq(l4aGG^GnaG?q0Wl*idB*M9sL8Rc~>d|(Yv%jEk>h^uRG*d$XQM2 zLH?vhOzoiQix^3&h}kNy$*NTfK3b@ONRZ!O;wf&5WJO9o5*c&)CYQ&hh`8@!c(d?c z2;Kn3m^;YJ+vJ|14izZ-yTyuL)NGR?>OBpz*AAwV0#AepWszzJ$pmP5#o5h0iALhf zgvs>AO^-waGf-09_oJG`Fx$DeSXTQDbpP~tm3)*K?M94F`>}wP&y+#))eitgTsLzw zjhqize>k7NPyBm(FKq>~GPQdLlwfr*tXO=uj@9x%$M-b27aH)u-E zvG_83Gp041fpet=*+_fkO&_OQDj`Q7@8U1b^p`?1kOBLYtcBEk0W^I#3ex{oPp+rD zX!_R6lx~4~{D^3PrC~lW`k1r&+x&45xC+bg%8&>=zrxk6({@(V20UJ;NH#rcc;}_SM$8EedC!6V3IdK`x=;lp5ljue+W-g<4gm>E1yk1xA`f9di**6v7%x49 zDHrHWN{9}j(pHOg5sxP{Oy_EVPlfBhswqhb27cIQLN%PAB=D;$Y%r4fp(?ESVH_t^#i!UQ@R#9S>0InxMXIA{S69U(4XRR$59`gLR` zt~bTH!FVjaHc59Va*Ud3ET#js4IVUIgtMYxBmOLue!9Up?X*k~f>P5zEzP-yfor9R zM$8*`sa|sD=VO*Z=CBOic{vgrsIdaix~D-H1+wdVobi#cfHe|`e5ONC6r_Mee^8Tpfr4%azg&^rQY6Onh#!ksuJ+i#=_z;bw$8RJ?3i8TwfZEzeKi=20 z!e^TIMVH+FP73uWO$cl4LL|uj!1O>@hAHxBpA=NvQUn5^JYTVi*r*sMt z&Vw(i+-tvWJI}4vt(ejOnm%L|mEp+_giO3#ouvPx-w?IqVC;s9aSHFct0x%cR*gqY z5*jDe^OB^|I11N`4%VY2%t$j(muVYpba_|BP)edw;SuC#OG=i5V^Of@nse(f&Vs8# z4G)8|)%z@AV7Rag*;0@HZ|;!G!@xl25v34lSq7YhP5QXk3X@Mnf7H8TBl^?wTZyEy zB&?v2@AXJbw{Zn1Y6l1A3LsYI{mMi9bH;e%5GMgF5`eO+3(taE6bLgUROg|N#D|1| z##tvvh*4U~8Wo*5Y;moa>?09i=$Kt}qAQ`2bGc2|XzjJJ{btGw?CEk4V6c3eA^Lej zd+H8TPtwsbr1V-rd+S)^1YI{?iAk9KRKEN;8d?yb>_vx8zfWQw-nQXcn}rpp6Xz&BWV1eF zP1S99%!_aQHrC=l-PnIMy17=Vy^W5f2kZMS`Q7ac%NOrE&aRImfaCR8szuG>-Lay+ zpxhst7v2;rS`<-s>e7UTCnaC;JRc;e9#mOP}>53k}~J}%v?VM{G{7_ zTfdsR>heRreI)JDeLXZ>sooByEWug3xz)ZdY(I(TL_4|5sfRx-Ebn!AX_=>WltYBb zw|Z4Iri(}`GUV?lwTAan)jF0hI-zp18jgn?0&JXOmuq^_BdIe0>8icEN{oa(@eSeQ z(LH{H$HmB=_3>w95+3iUPjA<1pWN=KZ)D0x=R8VncuD)+00m2>8jfnT_W7D2)p-zi zVEuGCy2mQ$izu7V6c ze19HpQitK1eNz}nLuz%w@BvkYlrGB?`bSMxz!|ba;`MJS8S(=j6ZZ>MZO#m9q%SpP zr>CRg&}@nta~(19!$T(+7@|QT)MnN=Eb-{eMBJ`lq!({r;d{m*XLTwr8GD0G^Kqoj zd75bAAr$W+fdd7&SA@RtlqO_XdqtTl7`Ky2OYkRey#5b_+-ZfxR)tc&SU~F4>Ip9W z{5`IeoQ$|{G%=-c4h;~iKQ?*P7jl|OKj!}bvxm=XSGx>3$EP_0HOR?+?QMWy!n{-F zrwGKLoEE8-xQS)};TD2U?me26^77*q|Prh4pQ@Ko+Ggt zv8wSIzLlX5?(x|8%?azPW{|PlaM3`I3z*F~-JNr@aRsI07zsv$GA#WD2;>Len@*Nd zSRuo~v>OwMyPYTqNw(c6l8tMnMp8~KP%~u-^Whw}L09}b(5W92XUY+;Yg+-hLZ&#Yc_>3a#)2N&K3a_M`f8xE(r;*;H72Ax zvo^Yj{`kr|Pzc|YHs2Hj_EDdhCaU|8h(BDjH-}$*K*2C#P5~L9`KVfV(DDZDb7iY? zE0#9h%uGweWXnzOn0|bys)UxTqQ=r*>u|(G%9~B>t zy5kxY^DK*`AunO+-I8e7i^vYs^5;!4;L=L{v0V0PH)8jHI7B3Y6nm% zv{&~wQZmRW+W*QdawKAt{?^Im{_H_=gl|TFg4V%)c~IQ?X~)cDv7GZ>d0wqXJP|>U z3x}GUkjqGMd=s|h*ODT6;odlXL?K74y2>oPFsvi%R4VEadk%)0POi`>MB68tj#qIx z_?6LKSiNb>A=e4|#V@jhs6BS|w-Yq9lZS?@7oFh_S$$u*Js z0#$cg)&E1yBZw7Dm0bacpGo-pnntIm*T6<8yuaJb?MDjB`ptII@R}??`_g_}i2WpU zc5qv{+Z=TEzApIVHuDjrnLNXCt)eFDci&=Tz=c?;)6ja*_qy_tN&mF>kW0NL?=3UX zAN!>sR0MPLR1~#v8eUSzy%$rXY6r$&lxDAg@|)Sy8gW``x%0TWWhAKrCbEe0H;uai zN3nfWafxSh|G_7J%W<$iWGd5r>`4-x_` zYXs84)P!HCsUV*K8GHol$rJhkq&DIjjyi%~-Oj5bf6j{2UTU(uUdW!{rsw&jr!oyRB;+?z?F&Ye{p!g-E+pZ+9sEMW+l2!F+IY1uyLIvWV2l0g(IR3l7AfKA;e|>R^+%BHjUX4OPDRPb;zl;%}Gavl3yhuvg%b@|ZX5`yOmVH#SvK>W)>AP)66|AZ0 z=lTT^v3Z}=T;g!qV-cJE-%{1}M^Yvm33Y4JW4pF-mASDVk6=W6#3U>F0I(O#5JSU@ z(s?8Mn%2$%ZlHKKX{OPDStXI$semKSmW3P7L{#U55=NRB zY(yzRBFxcX;70t;d&)DcxGG)PVSI!@A+L*C;s->G5cWnUc-RfW-8}|BIvgMqj*YLr z_b$q2pN=NQaxA;5N{+GNtDW6?$uNN4g(}}yx8{>2Aq~DKCq!GlFsg6xaD1|CbcO#x zQ%cMVVH}eT{(>_()dPDIUV}+GHLmA(I8WEA@FkUfM59w)XGGX-eachqjVktpo_tVv zKS|CJgj6!&mVj6HL`=UV38Me*^+LrTF3;IvMnZ~*G>qg7lYCOf`bRO}G^w5Uk6V9? zl_@$vnQb3{!ay=r?%91xTd9HAv9Xy7Hx62YX~r@*CzZqB{N*&z*jI0>&Ypl8T;D^^ z+!g%tK(7_9ICn$T(*3t$K3Kk|`I7A3MSkds?6)0}Cc4nzvt51v+c7-z(2ce0teg;$ z@~+^aeUr;(PRE`21*68Tmu7gqj|^5n=GAB`-3!-vwgWJL= zH7uf(74$KRRQ*K-<@CU>r`4Wy?$~!&y@fcr9TgH`ceo@8mDUN-&jlZS=-2n*wpOoR zb15D961uDd{c*)GbX%QiRoAbq)w_0|pOmKz-i}I~B?@RK2fNdhl3$qDwbLdw;HN!L zBUGbj_{ARZn#?Azt4>dlBaJ9r7Jn3CWS6dSZ{*l{l16yH6T!{$!PkB#bC{qi-bM}t zx;=iVq+kdhG^DYC*0_8*UmF-s2QO#sc~`c7w>W+kv$YqPboF)_FgS3w)GWN2qYyi@6j>NolL=7TE}MD+Ra z2?kWFe4iikwB%V)5Qz<{M3{<_q1bqMGn#;AlA3Rx8aUU zKz~J*ka})kJkD2|$TXRXl7Ep8O#D3&^C9VJ4MnDk!17eEECzJP=NE5B4F+Qc#Up`* ztK@v0W5bV=%3AP!NGKFZt!rUAk}IR&Ya*(Uo#Qz!fhz$B8&KodNrCBB4`h_VG(Mrvg)Mq6pxkilFadgZ@E(2WmVIEn{__Ycw4h7QDY zQ#iONxb+1Zn1%7_9Wmv)I{%Z8N7HRV6f@H1 z`q2fW;er|*17ij0Pqp(gZ?3o^O|vn)Y?KzZ%=VH>EjmyJ?8Cu&AwN+X?#x}r;70d; z4*t3wbwLoPX(3pp&3G{_S3c)wrB?mDKOBQrBtC?zo?t{H`_Qn)M{TxZ`s@j*rwU>m zEEo`jg3*99rp9nsG$JnilTBiGeKl!N9z*1YvI9zeEY@ZJ9T$C7u5Z{KNj;$yf*MVq zzyvc0j)T84ulfTOsoh}x7~1G|n}cBvG)!Uhg+iP`c0V&ae62d{uubW+AgFW%JkBlt zwg!NHLfUe1D)S&s-@qpJDe@U8bRReQz-A&|ZAKGPCh5reMfrE!Q zT%_&BR&(8#BPygsiTI%+V`}jEYE0Y8OM?xMlaZH-wRG1t?GF;cUmjI^?2&j+)x8%% zJiDgw{-gY^HvLbjpdW44g>0xAdpT}+ta z;ERX#)c73pGcR-5%eJfL+1qXRU?03==Y67oDUBv&cwe#Sf*eF4UtyoRul~kAw%)n) zT)uq3J+l3x^fmef^#-Sf2l}3o#eDv@bMCyAtFcdYeT??uh#mfq7a}_k4Ia>wx!r6J zC%1WuHVaMBOuX{7uk$=-yqUgBKaRTKp$&SFIPkerm5msQLBmF@D69_UHMWZB zgM_;Xac+%PrC3sJ3EnHL>OFT1>Y7vKbRHW*Kn z67h+@Qf!Gvym$3JrV1Jx8QOQ$k^E_LW_-b8maFea6237ZV}1RlyPYiT?U=!1dZuVv-Yw|ERqqw8*DlCx6!mpICC5ckc#l!{ zAFV|RN_`po57r@3wroWSVZ1DV$kiX=H#nrUD|j}tut3${#trK=>}7oWq!!lus3v_< zQcvC~ZEf>B)dzo}ysxh;R$nc8SS%LNd+%)tR`0!wAcP3fdkw4iUZZ}Z6WuD& zMUUPk(V~ZEzw?{tzn$6HF|#;x-{-#0xw7@wW!j&Z>fWjDZal!x{w3SJv62218c7Q9 zXM~quwTuZSIvwsUu^U=!NMkG;X|5YJO;LW+uZTbgGh=_ojHc)ldU$CsHZQZP4vb;} zN+udCdR5W$?zj)Sy|O)EL-dwod{q)~OI|2-$WBix6jhVC#@O2t!^rq5j%!;%SbCJMua0}n3axcGA3@8S7wqC|4WakZ=M*hqM3+rDMcRTed4K^+Ie$U!kvF2M6q+o+ILP}w|)yiC@Ldd|pxLWCI` zu&Ai9KB#G-Q(jU`~MD1t+l<6>n-E#r0yWepeD1E14$V+(0x%yC+zIcZ(^whBCN8C z`mo;j*!imwtN{26EYz9 zKu;5C$45E7^%}Twm?^+(m!azvl-h>DKg{cCKcdXV*cIPoHXWWy-yaFNzGA|#!!FSD z2+nCjN5U+yrED>+W&1c;j2{>WccLeIf_)AZ5_y zg-tBN?otL2W?NuiU*Mz>xpn|Jb5_OZtBXEL`DaU?#xOz>1gR@AY1Yz2g#Ac&hax4U z1b~eh@*WLMW9G`IX-t2;m2eBKk1GW{^hHA24v76z$$fWq*m5j#^=qN+W0a-~){h=X#Ye%hw$d2)tu?{^-+NVLW z02)63s`i4HM28VvI*}PEhg3~hwuj?66jM!`wKsbzVMe>C=Hg?-7lEfH5by|HZhvMS zxJa!=Dy3cakL~(tt$<$_SOs@8)x>#5kCZV109UL)CbBEHo^OHr4|Xz7O_PF#(j};q z3p}_5ou%t+ZAor#O8+=BtVy2-mOM24fO%X&evNlN>a%%l?5$uoq+isu2b`b$QxyE$ zSm%76P**bj8f{UMm-XRr(d0pJk#TF_CxXW#q3+MqmGIfCtl5K%kM&ZU{+>#d5wd?c zErW*46^FZ6Lchu0y7~=@?^QpwWzM>?Wa1(wjT4=mUc%{`p3qqZH1PTaFQx4U zNey8o{wuT%(GU_kQV};@J1jt*b~T&ItD3>I417XC0?)G&Go!wunJ-m2`haBX`V;1=v;WmU zOi(A8dE1^4woaZ4diNjjxXN6wVZFV*`m;br&dQqycN(LhDJMl&N`@UL5%ZJkXn1Bp zqv`l`a7dPGs;|x+3t2N)NsekTRlpWs7Z)zl;s)N1Em~|I(J{TnL-(4@XRvtv8B<}C zJ+^Sg;W|`Ysp&=ZX})?G2fYYXK!l_k?(uQk!FQg4k3jAX>LDbNj8ddlKaJAx9(dXG z%}6Z(HRj93V>`ko^NsNSMq&nidu~0D?6CT46?FdP?`?+sOKsE?D;auW^x)e~zS(@U zH1Q6#R+q%ay?Pn{(*6Uq@Vp)+ta-NF=^D5bPiYw#y@d-sM2UE@1;Z1C2Az*QutRDgDrduAEhuYy!_eu_*=@O0s`Z;23 z_r@4;N$up&m^wK70Sl3=>XVp(9)L2vD2;PLdmcFqkB~vgj+#Hh>ie&|7ohQ7c1@BB2&f~;_OaMJI3c`YuLKZs{&6-WrKO#u_RM%IXM!20b zJ~_sM%V8JJa6>iip}HNQiTSZaexh`aV@#J zs1Hbq3#-&IwaCfMkEFUUuH$o-@vAvvhRhEx5_V`uP|YvNxpeW!t3f zNuxnHaYcZJVu7_9qq=d0JJ*nnhJ#fM8jIvsXVZK+tGiJ1_Fs_yL}xcK}mIN2S zP861-I_s@Brbz;_9~iF_>ZGP;Zx6L<_Qy>>ZZccsY~ioAe${gMMQGev%(;0|{gv_7 zqOw~rDhUtQrEl{5pgbd>*k)}8O=X>5^fncMu20xS8^*v(7(kT*jADF@kL2#KP z7uIbGT(<1Tt=iqZD|QHP!?6nC7q9tc3^@v%&4OoR5tVB$bCQwB9p4;h3%Yds?$1jg(qcqrpS~sw_+%aaV)})7uC6jj{p6A@ZSLo z<4j|UysT>rzJ&y17Yt(%JKn(YW*Oo?`2Jhpa`CmSEY zLf*EFrX{#ug-Rd6ifRL{s%Xa%u)V;35(FPN^~APQOg_E=;({qENq@}mNCTJx7l9EF z_;0YpWV(O|+6)fRNUq*iq<|j;HdS$)6vUB))-!>8)X`7XSSBf-v6~Wf6 z4+HdwV;Rrs@+TV}p2wEBfQ(o{bh?dj_TlyoW1DxU3ljpo7s)T&TRvy_f7~j<54%gjn!@*JYQx^~xj~LW+DKb>q#${gsv#UF! zD^X!Y>n$%d@|M|Y4PbSk_aQ7?^Wi4^{jw?VU#r6C%+sI~!2U*GP!_aRVj9FQ3M&1A zVs5XiXr%h)aB2??(5p={mtMNH&kbmq6I@Y6!@?|(g?RvLd7?MiksilrYyq{{uOdia zqZeg4tOk>zd0ES1rfa$r%U`FVO5|h4&6$ei{@_J*My*sI^U$V6@U$GGMU{1l%Ik{w zhYk0Vxd9u((daOwAWzBE2Q96NE$YdL=wk=GbO@$hX;@OnmK$%_1S|%P9~cy-F_0&B zsH09t^K|8b3~#edaVaJ0*I`w(f^fR}+bvD=Hk%B8l>iRJ^pG3qJ^vA>1NRPsMQ?$x zm<*@m3<1f<2`OUW8?_k;lU zqJ#BEJDQ@H0pPDT3S?s7l&|b!b>&yfz774JMZ|@L<$fmL`N+7}WM>2fVypE9@Q5(O zJWq#0-H=2;e@}9gqtM~cA%ymuE-{q8cdQ2C?6`@5vO;7S#R}=jAVk!#*SZP1t~9!n z=4onrayH%jI8^hx+j}&Tjr<$g_)Y7NdBd;VlOwG>ej9^;Hv$f%@P43tR)gl5O%%F1GV{ZLD4O{1Nh!?i1^{=iYGmKntfb0f3~Z4q0+__D(qh z-?>O4P5*qLpd<`~T%-NvSi!|DXNJ>_JvL41SxkuT`|cbwQ~C^8+8>&O8w}M#yh~Fs zs8&{gKj0TF8!4sKzgKc(veZrVxU#~)jauNmxot0zu_TH&?;IDU=UsqJIyP3M2s_@i^^aZU~e0!#C_HRkU<8oy_7- zXdhw@CxCX$XtO19+9Ieu*IMZS76ZiVRjX;?W1Yl*#y!`;C!V~2!v;=d?mDGj7kn5w zElMwsggtlNzfoBmW~EJ#kv8!jG~(!F&?oIr0ug}Dn3)Aj8N&l8%$y`WTU;oo8B0&E zi9Q$}P!}?}LYFaFaMGz|MM(|me0p&RZ;PE2A)F+h3$ZU5GSMi=5I@XcZ1s}7c5$kh z)}|h;ZTg&eUsy3Y#`OJH^|Ku712Vt&CA#QD?N}n@BS9lZv~q_%!0tX|=g-<@4!-o| zmrf~`%k^E{o#m8+H0xvV{+7Zuujk(-<0%+;ih)>U*p9}b?xp5cQV^7v`5@+BQV%)u zc@2i%pV~uyq4>%YZ+17+gW&)E7{8p9^>XoGaZkHg;#quu-iFDE%6*=Kh2&<0I$Pk4 zM)!C>KV--^7C9O1)hSkW(f1kus6&0N!2#e-yaX9v;dJe^Jex=vS;Op7T(D_62d>?8 z^TEqWgRRW%0UdJxnO8H(d{Jb+SBy3A@?y4J^;xtkWh38;V6cBVdyMKpMutAHJbr=j zlUF06L#?GnR~v8yNN1$;Wy9fYsHDNb!U>IML`L^YKOSw}_U^yl$4F+?AUF0#`Ru?q z3ui-dcJJ{N>;BRJfWW%Y23QLFBgcGDLHV~l5@OYyroWg73DxNtzj zbw#p)K8yfWdcHz?N9r9c{1@67`jj+7369QI-v)9BXJa{ow6Ds$;Fg)EN~3?KmmS$t z-;{t$f3KmlGAQuZt?kL8j=UB&*?~w!kjqJ#pUsc>w&LJdMvde;c!$;}g;Z8w@El_( z6Z8qh`ZF->xSN7)V}5dI7JA)(cxBOLgm)dr<^JTI9QS7O{R%k5tYqRkN^LB2S~)gG zCZzk7;{+PfvMt7HX%!I_DO2Zu0BA`SCyFKWa}&q|*-j#U?Wv_4bE1B9)vG5ySj$mT zMrV8tO*BHZ`5qEq~vDn`aY^wif)R!PB32+vo2qq;v+ zqA~icW7;_lrh(hrr(H7@?(ca+(bt5ofTBi9&=@-)TOUw;1g>v>H%xCzb2~BpI!|uK z7Rzj%YDwjHz7l^K?Q{@L^?%>fyMkM(FaJl>}DFmI6D6n@(J~+RdQ>ve! z6eJ}kK_om}9+1k#LleqGRerw5UO64h#gu|eDVHc)i(%I00k)%2%NmZgX!B6=8M3t zIm(y*C*Yv_-J2HySK~t);|l|&_Otkn=g>cxDSW|JvCX^F_+Yi%@ zmnr7lf7c84Lo6Pu`=;d!i)5?|!KHmF#F*-|*uubLtA!-;|Hw|Wj@XS%m^;2#2 zRX9Mq^O|uVJ^nsB6C{*y+V~R?Q1hlnbIo5zAIqo^M8)ar3B8QPyhIJeA)FT$mIX1H z@w3;#O2nZBdO5*e`k{wZPd76`%SZUcUFXTP8z09o|2&UfEi!xXbj%7d%ZC&{l8=hL#HBU$g!*k~(<3z#84nur@OT*uqYC`NcgdFg= zndI)BR}ZOo8FU7WV|c*~?_URgQmf%2@OZc)PT$5ZK)1BF^FaB~V_4~=`j5+;7j>3d zpJpl6i6`C!S)Jc@Cbr{SYg38O;&F2W2+}A;0yK2=`BqUjuvE8xLyH0zKMm?aJR^z! zBQ7Ffxg;b$Fq{jI)eVSjCec|>w&o(a#xT}b(;ZG<^6=I7a7?k_JJJsX;XkD!ux-%JB~cDF^x!S1(7Ix9{U&~hEmy{I zIrcszE*uc8tcWW?klQ z^-4}vNS<*Efj|$i$6fHoLkLdiz8D6~l@|6pMTep#BRLdV-~siGff6rp`#r-1oAC3;9E6r!x2+Bc`q z`lwswbef7mGKiE8;kA$CE~_lxYv3>naE)5}DhiOKq6O$GD*4*LDNpm_*U&r>k)arl zTJ>9s*m`T9x17dAMM0tI^6cFUUz>zkV8kuLBrMB|Cb6U|ykC@^6|({pq-iRmAj^eX z@9m7+Qd0HAsHj|7g_uVov{Sa&jY*E6sjR)F&X#N7tJnbzE;eNn7G!)z$BcmLx)WR( z0~6+CL}6HXm<7pTdbCuTwSJLH;PCYWANxtVxXN3_Vd_RFg5T{YwKU~m=Jbvk$9FX? zuGlwUIh@b*qkwzmEPX8aEXV+7s@=wvJarW4%o8=%cPY5#&Q9{tzp4>1J`ROs?q6Fg z55#Yp5T!2*wWgiWy!o2hIK^H94z^cpkoE&Qban_{p6U@6zf03(C4zN4Ws}7b~Od+^?KrME^!PCYGb4TMkVmYT?P|Jy+AT#NFrSY-^WQ&4%=Tv%eha zK73EQkvh4$$-51kGV?o*5&3=jm-^w;+oR6JZyy)yr8_oS_bV|2kX5AaHX%w=dOhjE zuD|AAFs!OWB|P`a+^<|BrnU}*D>Kb9p`kyBXw=^u$FPqk;u+s>drkaFZV#i-Q?wvJ z=l~JZ(-2a$$fD?LcHJSJRyqn`%W!+YUH#k1)tegMpB_OsavM2!KNR9*v>W~`vnsuK zoz|A))fiK!wBB>eD4=}>mngiqG$D;f74q>4Krja_=@FBH6upFPQa-`$&8^K#^0vXH z(M>y?x*_v;j#>Nl+pGQ|ZR12ybn>Du_G#VvnSOYsDFIt?$Z|yk5Jhs;KQFz*B3ytO z^{cxO2j>&1`hH_?yWO-Mmy%^>E{WUZb?MGL>4VO1wG7nvK{xO-_VGD>ViBi&hjhu> zAD3|CW%K*#!F;*o5C1wX@YL*3{_AMuv%dwNva>`d!0n z!!0;n=g8YzwycMHevqcJ?9qUk+e=RywTc3YD#p^Czu^bi)q>{4C?r6i5){ zKk(vl$;5BP$%QXq(6Uv*DUe2$#_j)$%0Na=ba={pQu5FF@b`dVwYi>BeFHiNo4q*0 z&da z^K%B5acBxSnf-WpN$&-kCYgu=o`+2@Rnwr@wgR-6A3j?O1hPPfNzAY!CL*$QzsL3T z+*?-0LO|F>38jTyUheBkYgv1Gvf4Ppf_C!LqS+lQUlBtVpf-@1GXdQh<>y9)Z4Nw; zAufO6sIqEQiv5J&ol|s{eyBfba^JLG-a9M)V5(cr^1@jtzP*qSt49bOm?agp-UPDV zNa7^~bPhrssR+X|6xp2>b$;GT`N;SJ6RpdQ+Zm?gKgX%Z3LZ_7CX;O++zG7z1_ai|JCu=V)13bkG0{JqA^8l z$+t(xVLbxBrr+fR{C==l94;+8pE-rCEL3zQecCudISy5rGXNK1E3cx()zZGp?{AKe zP1k(8lDrB~6(i}q|67=$o0Os7j!AubiafUDxW+W_&ExK;lv(!edNEFpt`jglcYCj* zRVY|jru;Ga(`_3}!mp3SaJ343+F8|@L{Q8M`lZP+a`b@PSw+9*Ed}B|#v77LPD@D= zGAz@r3kg{%Y?XhcuzQptS)HIGB3ka3@mY4kWe1W&DbMJc0_ltTzhHl3cvVvmvU&8c*A0P z>gSo6#)HU6`OO#x{cO9eB9_2KOVbI22cfQLD(#|{dWxPD5fT~>bq1D=4{1$jsd@dz z6`eqDDGQ74MBmv|#p@;6G6q=p(| zUf#Dw^r#uO0!S^zi`jmLQ8)P>j}uu%`_U8|r*I6@dLm9aZ8}+qHGtZd-L)~?A+r6~ zyW=I!TJcrH;%U&o$qH%jQB6$+%punq-6718zbF&eucaOZad}Fi$gMpXSnE}26xbRi zw__;W01)^H3rUG=n9Pvp(xl$iG3z0>!sg)7yx6hC189JDevj$AkLiaHUv`nRqw`

=ybnfdAVLW(7%^SSO%*%V6Xe48lzRor3u{!Z$e>qM2$L~n85x-&c+H3<+rGjP;-;imclD%q zz--v&+uw~2i`ZHd{Je#H2@_|Tw5!dB(zDRC>^f}DBU<(=^s9|+yN1t3xT9FLxnAEm z+{qy=nsaFn!e2zKY~7s z5N)0?oq}YOQ}M;?;_SuC_pRe^8|Fl7wlgn@GKWseg4$B`JQED(6Uf(-8tHmJcgq)Q9p7;$(e-(U_K^+FtG7vp z{9>7DB{+mcIF)flvkFAI!Kv9=GW`M&as~Dp&=C_6!B>501zYa$?lX1&Fp=>lWe5C@ zO1H(cydP(a@Wu#o1WzS`3#_p%qO|(Q3IXCCeJX)VtFzeooTu%yj^Qa0KjzFnrL`Uv z?79MQq}0$42I=1@Xk@-U_vTfhC231eFb9=jpI|-}K;VBIBaTq}t_1 zeFZO(^k4!#r$xKDK+t=^_F@jrv@vC%QtyzrUC{lk1atLoQBeD9g<5;A!5Ika?Uhw7bj{SH5lK7~N0syjg`P z%qb5ovNlSm(>mu5Xj0zZDpW7|7FHwoSNMc|S#d>0m1{+5@jK4#X5hEbpi?N{cCfWI zdpG$QT$TI_{?es*?zEGnmUO&;CRj$kr_fCHFsg{;$Y(D+aSAszm|Ct{Ts!Zbh&C`) zMPJ=zibf|yefV#ca`%LN`r)H z&MxKy*-Ct4Ce~`aWl$6fT8S1yWL_wJu&Q)XKOirW z*CZ~eu6($FVkma-R$IKX4VS*Ju(M6N=a-LNJh4C|Hq85t9-c0}FaprQs+-XhaEEUg81W z5T-eOAf9e+JDRdQU#VqRjl=q#C`68N4 z)Sks?lC(=kTaY|DW9b>{QNqfo3^}+Tml38a6x@jY^wD-5xb)y}oUZGCc9Q(#_>f|9 z_LUbAWtl!wndxv9lCNhc(C&NZS_ z%WyC-)W#9Yz=0FsY3*xV!M(sxmd8$ZuinnXqYM*cdGkIp?L}M~JpjI1YoiB zdZ}U&--7{g5YCBVk+w|~Ph^}~!U{s1v`qRhvx2&xo<>d7l9Q{*$8&oWH`Pq37FRBq zMmErl0Rr12XZR6AH;4D-Wx5W`Rb#W!xwV6sS)NVzWQ1}6qyh?A+M3ZgDB5}u(b zI4h-u9#><*k71FE&-O(%4jYtB4fvRLX=#*DYM&t)R$SoV0tr4A*cM zlTqJb9u%{@$=HEr;l-CZi741=Ke145x}MB`0Rn~yRfCHF3EH(5=zVYsDR9qKicOGmPaD38RsK*d&Y`(iXIL`5D-x@kN(fdcM#f8D_zdxQ`_|Hw)f7A9L zxyMGyLCN_F1!nI;R63ddtc8iZagE~eN5Y3^+seFJy1%ipK;ea-Ep8w!^8Vzl!= z63#L*GGevIkbiJyQbS95CO`xniYm)z(a0QU*XGK5NSF^9$2feQb*uWrAx$vsu=>k;#xx{WsqHsQPq!3MVft;&#A8n15|EE+Yb7z~(9f--D;asrJ#(e{cz6q)K#_-ZrPigR zX&&eGeAW5nv&;CszyF*Yc}v~7L*?RQr$EET-+fZd<{Jg%_3D3tM(h9N7T)?PE&Vow ziG{sK8vSktS>G;bFyE#SV+E^ga+{3B931vK)=LasOGNjFlUlFO)VU6Z^LM3pF&c)) zQ|&Fk+K|vCFVn_6JgRPs&^A^r@FaZKc;dvQjHKWRSAFrqzNcYi4{1 zHPRp41(ne;$z)``w=80e5MbQu6vusLjF+$nAHta$u56_dmaxEartJ$iYOhO5Q@$P&l}AbW=)h^3~Z;`R|WJ>uxxW1 z0$Xc77Rlh{zJvX66JVLH7N!zO6N5iBbN>a7Zb@8vI|w zoLk+vQNc4%v*H5`CA|Zq^PqJ}S@BdtEY<@1xSwv!_TcOQiuh0Da*PiuW)_?hrT&6m0PG0&WJErhj{G`87OBS5m$-^DkT6&7$6z?z-g$) zgYk5n%Zf{6%6CDUfUZ*ZK2`NB4|beb_;;n)@rQ?pBvGf~)bd2g4quZ6j?E?_!SET! zq6yLqW+WCY#&Z2N3+zBsr(`Q`cElbjC1f=3znkKw6G=ROC)GWzeA;tsZ=ci0U#mUC zYkv&l)bZGk3>LKO1e|OnByt4ou`I|D}pnv$;)#~h95HSl=N{1?0i?#9L zQ%Q_kKamoHl24(-+*M(}v&B=zp~o?f+E}sg>35rx*W1zN4#RB(kAYaD+84TtwR4<> zGndIMSAWl;aq!ho3~oOlhogD`_mb3o4YM<+t(N5J{P4|C23RfTTm#iT~d|P zY@wF;*K}K+WGF31dTF7KME{C>^vuC(^gns)i|Dy zCln-$=t*;gmY$XTU=Roq;6}wo&6h1)?yL6T)^YO0QgcI9o*c%(6dHAcBFNQ5L|Vto z7+0PV2lVLIx!`P3DI3Da`QQzb8WLR*Q z$EEJfMlW=P6UpwWeJrFf;SXo@_?RUJ2oaKdFIj)H%=_jUpDUk04U)2^qY}thh(~H+ z5b{kFPW6he!S3$Y36bg}ezJ?Qru}p)WQ%V;50M){T*!W<4&%N5!CvF zPr^x2uN4xgmSvsFY)+2WBH|(|PP?^~H~2-bw~%hgtWdZiR-((cKV5@c=T0%{-TwrP_AMsdY zRagU-MnN2N#AHbd#d~^)uX6h2waSk_-29NW0OKUfWtxh%$d8p~HX5H=wJ8dlVLwm( zgc`z#pIhrp?Xq@X(DTg55)voful?he`^bz^nmTc2FvYA=;mjf;flQ*(=~5L^nwafY z*w$rQm0pKfpWB2BgUe`REB5^Uzm@V{&L%-ARey>|5k0lK(WNkk-oWmzh2uu|g%oy@ z9=<;+IprJu7$7LwmFuu{?(+CxPV=rs!vp4= ziO%B$%n0suBj)5w%lwhA-5Km+3ZVvmMAG@tQz-{yDJHDrvmy%OhAE6gr=eJR!=Lfp za*vWwjF2HaW*qTBYeQF?$(oaM^lbP7H0ZF(R3+XjD0>~x>G4bbSDCLCXN3?MT5fn| zcQ??`SgIq~Q-zwwbXfh*yRzeneqnfK2Sl*~+pZ`l1&=7>cyfReOVLmQB71vYf}qp8 z*pj(Zo=Osm02iHO%F!>BG9tW$UW~nQNvfD3eSeBd9L#qh3x_^>Zv|4NP2RUxg?A?_ zl3sE*L5X|y%s~^C)+fYSM1)4Cgqa_*7&;agHx~ImgJ(I`J_BL9Gcz+9e8GBx?UiYr;UAtQ>D}G90$z(N{eHryDgnkOms36t$ zRrfsJ4&UGTr$wTk?Q7+BnuFh>WJK8HHP(Ea`-^A#;on9I+iT|>TN8KV1aT0gZuQ4x*;vP(j z0a{|jS&Mgnld_lP*&h8!tsn1M{*HE~H7c_jmqi~~m-HU5uW5qQF5dG&?K|56P=iT^ ztbLF%tk)D@R6`kTcD#GZWv)aXfgv4bQg&Z^ebS<#xIo=4D4qPn^YL0c)kq_|t=<0- zu8ozXmDj`0^ZNdAnz@aYjH~thhttvZ_2k{&mEOpXJE)w`_}k`aT7#O!zy*EE+qZ^; z=IcQXvEP`a2JW-lyLM{K2hr~955lZX?*9-v?)N`ltQ~C%Z1~(Fw2<6KlYVwTX;J*Q zuJ~`Qd2N8jXTX@}ynQ19Guvlm!_aquJlpN!BJ*jpT&|^n8htG;wJs4)sPC9LMCfcf z@it8b8BjBIYpXn^t4tD~C`t@4A57_V?#(ev zK#+*;@{ZOu8C~lU0s%}eU7y*~qF>*!XlXYte z)#(lrvoyfJ@5)WyDhniV`RH{%T_0m5^)ZGPWVy*O@Ii2<7zG1<>dV*GGR0l>DNUPw zADD%GkOYgri=!j>XCt0U051d21a|S|=uzuOJn{7KJ%gS1(*RQ`7M}!~U zOobWze!)};R6ea=CNkHT5}LW?FCXHu8P$l#7LtT~>G>(xfPcl4WOxyFk|$-sz$C-1 zAx~PSTU>4FdzDaY3CaH5{0Q+9yeR~nDNh8Ej2&IxB8SzbLS}R|nIi2BQDdd?2w?Vm zGK!&rM#lo%kwPp0DW(dmfnM+T1)fZ5U$K!Nj0e=#Sb|Fo-G7D(J86Ei%a;zRCGCNXwj=;V0|&5;I9r9UdT^ z?zp-c7SjazN6jpJz?YfAOiyTL^kpKIGpMM4!HuCHr|4mZyq{B04OIjPXZ_XsMh?!u zNc_*HSc1089*2{>7EgTKPJC1-eX$29AK*wg6v2k?iv!!SE2Z7s^ z=j*e6hn2+!%f=JUBQ%w{UX3ghJ%Oc^1MX$)$_E9$bJ{7qNJe!ZekRCgy~Z_a)rW^5 zLsH0D<(fmkY?7#L2{pp)W)?!+2w5Pl^vrX@r{jkb@+ukc=d`U|Ec~`Cf9q;--ZtJ& zu;^_p2!CGC()F-+mGYG;X|nw4<5q3scrB&GWVA57#wED1%EjHHeNL8Uf0}M*Z?MsR zI@(vFH>}o}T-;FucDk~iLESrQ8Q$SZ39HB^Zt`q?EV%A1#4$*@uMjlO{kt8HexTr* zsgvDdpSPEHbS`Jn!b0L;sG9xfYuVAmyk!hiN=43jhgrkUw$tPIwaH$r9dFFePO{Uk z(*C}F^?i@K`rhA@*;FH;!jp_pn;5r}5tf1+zQ6sgh^Hpp-TedGf=8&V=vxT`fMf(} zDn`A494dTjMhE~1_?Sf+kWUi~(|GBKi<+AFUSbhdajR>5<4w5WKT?GVG??L`Nddcq zYtz@1P=J98$oTwKB_LFqFj;H9ztUiieFGUx;?hhi1BI4%*y-?b_7C{(TqtuEvY zNRLlXMNp7%x9t37Q7 zM*lYB7h2Cb8qYj$Ushh`63*VXN=ffK%Fj(x+FyeGmv2(T+@DA5JHAaDIJ|VDza8BY z3%eWzb@)%OIlOJ#z16f!)tVDmy9)^=zj5aEvX?6EPtQ{U!iHm%qn=D>$<@{rdFn)6 zacPPT+&(a4AG|}=%`$5oM#=eXV@;@R{d1Be{syma)(ROW*NRFQTP9J0u881&Qu_ly zl8@BY(w9>VU`eXFB=zX|1kfI;ZJn%&#PRS^1Z3PeR7U>@E*~-9<3^fHBpMpUC;F6D zMi}^rf545LU?6@^MRV58ij1$uEQ?Uf1$7DN`|9NOO#SnK@3NasbvJHR{>r;wMWS)I z;=W2no9dLfzBGFso_<4J9JLmrh&=tNUXB&92=l$dpm9K**)9#eJA|gLzCI1R=^HLh zz_MHyuIfgD61V6aADx#89<6~1!H)nuJu#K>I9*;Htkgf!$2C z;)5lIEkXvTK{e}$x3{4}ir*wi(sGi9-<^;(H(^&%@DlBB7X;OfMbEwRyyHw9p=w|v zOEsE!XGD1}WM#WBfSOX3ptW76FjW+$NXLCWD-=P6m29`EV_%LEpk6|hTtclwQr_zM zr@+DUO?z!uRoQgBTx1F5k(x%0CDj??q%TH8wKHM>Y=-N!8qV%LL|FCrhlowG}L|l{_EmH*9NmeV6a3!%Kq6`?NE*N|_6De5d0=C{N z)HbKaKzEZ}y-Py73`HkaE{?ra!7j|r{eo+VfiK1U)07sFtqN?}NkC5&ftpoP+lrmiKcl zwHjPN@{PAq?ikE&?iKnsi7&`nIR;7$xRJWWtjKvuk@H5+Bak&UaW_%OWMUTX(v5c698-6dZQPi-FRH3Ha4b`fd$I zB4d{Ee{~#7Yx@+-ptK<*;Al56lau*X(ADwGv*$!9gSg$V;bi-|Gi{C4=UY#rl#;6< zCy$eu=kbUsaXaUf$8h&z*3HKhCOy~<_isn@dC$SQ-@}@~>r1lh+es@a<|UlZl6{!( zjvbxvKZP(qyBsw#uL0x6=OLZO=Lur+w@Lz^gV^y$i-E(@+k#??oe3b&+M)8f&*8B) zm2nA%qHc2-L zb#92*+~VTkdn5#1eCj1!LvAW$+B9eCQw(O~i6jTrF$N%luIajN!$c{~#}+5{K8Iw) zGB9vglN+5(gfFnrA)A+y=_ugcE~vAD@A!L?e5V9LGODeNLp1jIPUcJn2j7II+Mm)r zd1I-HMci#|+0nyJG-Fg$zvO+&F}E3J82|@s1gEsGuaJDv>Ym7fqI^7x6l$ypU{QKi zrz~A|CCQ;CkK;O-kdZ%ieK^o0`Tb(9Nx^_YlKP8N%6AgjgC_RpS7b~u;IJVHV0fhp zk+KOY5NDGOqN*S=PdMYA^PhrKrBIYJ>^Lm~_mj}c%I>gyvTeXjRit>t4v0&%ZPW;< zb>>N?Lz2DpWRb_o8re^Q7rlmkYm)`jU;cuCXAOZxPeF;@T3ZR<)+uO8&Uj%{9eO^8 zR_#tef+v4a#6Q^6uP=XNWf}?lao9x-Br~_@!ZPA&e8nn&UX`Q->+YdTE`6X|9L+!g ztlPp1c#DrmVl^udL$d zT*TNP6uto?f*r0cIq~;84|L*02oIrkh%%R=6xHc8`9wVvgLzvCW?D4|1jWH~-E1GG zVVbSsDOHh!=3Y2fkcdiBr7$i8Uje4Ii}K1 zO?URBX6v!n$O))DYwG;Ll??Q2N`dcV$*(Wyk&GE`OrNQsTb8a)?`Ci+s`}_(pCa1Y z+c)|t8h+(o?u!Y0NOUI-{_i491va`*{Q09a_>6gtPCtWf^l*do z9Gn=WWB*^pGC#SsV-F@MsQjk^zx!X|^2`+CWExh~@mv5~;2q8vJOiMn!k!F$*T;z# zmZ?1>eIU?Sz5bQ@(@-t)ko3W?G>oX#-LgFT%RGdirERz{xjxMYw<1#?*jkr00(%G0 zh)`L=iLs=$k~qo+wKT%EUGgZZBjO?%SmhS;cEbZebc92kz6cZ&8@s0uh$4rcX4r~b zu<6~@2T01+eu}7pS1~n8b98WAg|sNYq$Uj`rd3!%#vI^UT5l}Zc=Y`&X_upgK>f#O z&89(Y!@cejYC6^!(areGN!+}()AunRgh$(o6U-G~j}2D%S2@^gZ4KQ2b*h_cS@(sK z88zAHA+?0jBGch7aNjlj#c)R-n{AABL07D>KO|-v8z18YwR!!K#^d@-I?6`%{(*nH&1?@bqI#&=WB&*&`}OPnOCE1&8u{0&Mb&HX zc)A=lf=!~-s^*!?zZx)LKWazFPMW?;mAT*R;QWi*;@=x`V}Gx9_j&a}Z~v;9Y)4T~ zpQ|2|!0ks-F;BPEg8b`yHRDbcc%X^;%|7|T^NiK!z(DO)rn;(!oXLM;zFYsE@2fp2 z>$g2;0&YDMUM70@MTA=QsK}f7|d$%CRT46h>dvFOjGUA zjd)yawlm{+)AB1o#N)xMJ%d|XVlf&@hqp_hnIt;5k~Y;0?PhTQB#yBFSNi4!ae{L; zAj&YXZSca1)QHhAR={k|2KcCiH{CuAZU0jlxJb?}k*(ZM2-?k(N-YrCPn7$PRRk=v z!IU6dv>bNigX?J#$+x?3TWjkWDjYQGdr#;QaIa*jB=xqK%2^S|I^HamIYeI*bE4&@ z&r!?uY#x-Ox=RZ{l`01bNxMVvr=_!{V<`F}<%6Z53S?A@2Ecu=cvv5FJ7w<21S(KM zEYYwp7S?x2H(<((mZIGvQd8bKr# zz7hb&QwoKg4=Mh=BMVm4M3&I(TjZ`XQlAeIXD3)l<=_Uufx&5*D4YgaRd0CLFC{;p z+AaliZ)>BNP8j=wEu-~)x`N_1Hippx=eU;Nylb?nyNaXyG7XU!xWm`ixkeM4k^~t< zSC&Llf#_z4;z`J@F*9A&1^{VqbW9|JH5w_$8LW_2#{wqMT>D_!{vqZ|{)qZqiI&L@+BNow&%`u@9yc>i`T1WDS1W%LUgE}B|u zt__xC+W!R^47Y#;#=^#FiH9{D4Ha~>r@~5W4;h6a_k+lo2@&?LU_B+Hx%X)Q>5^Fh zrvC@w@c$x=#e$XJwnrTM12O*kbH=KUfu%S|Kc2$f!Hs}7Sscw_)+00#U`nB~pZNcS zOTi9CcR1%mj5-U6Vb?;vx&71FibrJtYv|B$iFg#90mqQ10)A~O59Xzjn;QHrD$b`>fv0@Foz&$rn8xI>ny zJobpvBSNP`NGWenxd@<1beCO>+w2@4zOA;sv&QCYkwtTng_k|7 ztLSs#w@yCc=RYzRXz>0E`S%pOYd-s%KWm^WyWbPmcow{OWaiJ{VZPQroHy>npR0wJ{yXebl4X^mDXB~a=td2zu0t{5*N01*^Is`x_}u>8?YJi z>-uOp=GzLFE;ckw1Xj-|UK2I>qIp}{<*mNcR(;PXS}N1F_eyp{F#bNV^60CWtyWsg zd7{l^9)KaU+Y&sT-jlV7G(Qg5j6^5T8`i|n9sqf8MeFrLflX;JZ?VCV7%CuItT}i9 zRCP&bpa?_hW8i`=5zLE_Pej_iYn*EQes)DKhrw|4XiN9a%a#mic_19q}zDmrP&r1mPIm^spJW9c!|Ku&)O~dMl}2SX?hLV zI&f3V4ad;!9PSFTC1MV``bmM%1||>}Cx6=JcNf>|zh*qzN#L$ys~h&W^guqQgoMjv zwR=V#f*sjJ)19gr)V_@bO_L{nSqrs+abA~p2FG~ruzDuN4g$@{Hq4AC_L0paq`HG# zV~!%wH-BkzSsx;K^M4u00R!h`9B3uYNCITKPA$`bM2 z2ml;XTS@s~G#aRRl&(+~pCz#@jn`wahQik%Z0wucWwGc3kvIJehFug<8605~GeW4z ztEn21x?M!)&R~&E^wERaYJSU@j`KuK!`}p(;$bY zL=7S3Trd=vw=X~s4oc~plZ!6H(9_wMZCOFIs-z;m9SnQFIm15qUC&~C`MAP~CZ2Yn zIA=N|R~n5+#$AewUzMd9>Fg0VkbKniF;8-(4E_my(oQ;hGAJbG$r^ z(c39poFS-9h4;CXF1ICZME1?p95|fiUD~+^<|S#sQ!zS6#4())V;P@W?GWRESD3aFQecADo3fr zu$h)qDwNqyjDT!}hR|O5{LutsTOWH*F;YWb5L!05DpWSaSG|(aNyLz4QK$j@XmTzm zNr@88FrU6H5k=%xUNs$38naHegPF&b+ik2Z)qu)K>lH;1+`R>y6?}rVG%e!NGjzpe z2w|&MC8n2ttqjINz|1Dt3ja&W4YqzjL7He2>fT9$)i`-2eRUUXFS& zudJ-<1Nm|URiO1$cuP^#-7wBn%|C;U4RK{y43C;#YU={W;+| z97o0hkM5Ia-7_cROFqw*|KJu52#VtP(8OC|J^BmjsM9q!@4Ejl_fc8+@%-+xD$pSC zd~>m;se9p)UA#xcb)&C?{`bpd0QS>D+&9Cy-h-i~^et=jUXvR0!kU`%e`bQCgM-ot z>4QnZ=@E_F-EPLb>;2LX?f6EPs+MvfupkJ_~R^!syb0&o|r_ZMqgHA;ZrG{ z>qe&H4e0(O`*%{;l@K2Os-%{#{zX6i#=W-mpQ_Z1 z4vl!~4}N@cY6}>h3G6-|wCUP+Yds7Y5?%4X9yz+{wu_iq?b<3b@m(!!fx*3hch6{`Y(x@~`Kq+3yv)zmK*t->>(&0iV~e?ZO^^!PU#YU#fH-_PDwy zP|~P1cvyW&Jv>8inZ1{w=;b4sOU1TUh<0Wh$U@$J7eR|IXRDv}il*6Z%v@2XGs{9T zc)@Q4C!E2Co;vgvj>)-UkN)9KfEealpQhv8kTd6^iSfRnP2E-C?Njw2x62u-oQsI_ zK#Xmr9%5Cngs%7O1%`rv8mp`aM11K2Lf?1g#K2L*}kzZ%E798~{Zw!;tWaU(b(YcK?@Jlv* z#F9wT47mAXBn$Xzt}Bq~91BjT6n8F$psY|QiddN7d#+^eRYdpaZ~>A0w+JHibSW$Pp8N4NYLFx16`hHp z+e4_omcs1I_L3t|C%IEzpNFisA#`o%8{dqv$b0wr$^~lWfbC_pwklT0B&6fJsu_C5 zChlI6O_b+a8K?|{VXNHr@`|t7>5Y`Qqm$b_(221<84^#2sK(U=wrv}%Nay%DJgCbV zWKqYUv9!V4y?14%U=Elem$YW61^zS<&0BK?BdN&=KERby+Hi8DcQqGqDRW!KU|2}NFYnR z^y!#lBQEg}alBa$(NJ_QpAm-2dGDAlP(z5CT>-EQZ86{T^2cb7Fz0NT@+zWu_vvn! z4sgTtJY0eaS6TGpvo1rF-63xbrWNmDb_mhRI6J;}f1WI6>_!Ob~Jb|6Qw|^ZHrX(|HYEQH#;2K=cS?5Jq(fL0pih_`L#oklnw1{c@StK zE*Io4_|?lj_3E)~zM2SRFjbsVC52v45*Z8Vxl(a%t|ei zj?Z<2V0O~M!GCh@UEWn5VOjh6-r>M9N!`lQasPN4xep`h#L<%l>px$g@KJP##e58W zHp|s*L1DMg-QZ^I$L*!w3j5Qfm~Q^V@t?iHd53bgSYxhL_d}_5{fjT2-{1Im8}^jh z4EKNPdC`rX?`~y_{Uf~UIw5sq=jOlrx>m^D@iu-b$?0`1VpmX)W!Kfv8tEIhnRR|% z*AvSpmzbyW8MQ}cAF9@72e>H4qSA~-GNh#OE!Jo%Z=hVf_L^_7c}ONcH&h)y z<68d57RI!n6|K6|QK%9gr5YWoog_tv9Hzc3*r5~r_5$@lJek4p>T9aKWoSi9P4eQR zUPVdCd1qJv5vFxOK(&bH$zrzji10M?OrS;e{y@ca)lNhmTSBg`ahGGjcKFgUD+zjU z*P`#)=AO4SCzaT59}Vw~wf*T&I}x>+|Aec~>#9`(+wG=g1HJbb)_k^6>K-^pfBWBl zKf3Ppj_~j8+Cpk|K#&@q!spNY0mr|O!~%|L<;B~cnCe#HeL2tbvg^Jx_^o2?uydiY zx>5!DrH|E*C8SWL_n;|_Ncryst0m~Kp?vCrAB78aQAndz%w`oi2V*)o+Zr-%|~bY5L>6 zcWgLA=wLGm>CCf7q6s?r2&8sDfB(2VmX9a9SBwRP1RNl%W;OKbX=j6uY?GZC$(NTwF8Ou#vSCUsl6bto*;Rl_0`h%z}y47%OyFWtT( zZ>VG^dP<-yVnKBcX!~UC*W{0yqao8X0HPxm=O|Rl;sOvEZ=iEbiy&d}(Ah4tI(}6A z#pQBF7+a9O*yJxKx7`J7XNnGuvFKaSoa0p?W|P~_VnokeB+lV;1ynQQ^%vmb2M-k5 z^)8li?R3ElU#0lyyR$`aHz_fH^CzSX3Q4zU$o?^uU~8O@)~8VCpj)Z##Wv2~19MFb zyi^`cWL6{&_?Hp#SV9;FpG4!y!_SCOb_LfPuxqkQ(FdzJ!j?OSAxJ3l(09N8i(itj zPHoWk_9`DW@9ZIv&G-uYQrEGXEubeT(=NI&$QT6+Hq&u>}NG_f<=pV%1;*qd(9{Bi!Y?A-|`k)54N*5J~1uN zPzaXN^*?z!%7^02&c-23vpo9`R{w6gwu-DowLA8>EC-r?5- z&vZx>^Yw3Q`7Dfyff^(zA1b@Ds&<-gnHIVfrP3cIqY)}=-qLmr9OKF&#CKz%yQOtw zIfQ|t+s3)1NEag9rKP_R^xSlxfUlF}sk|T0MpY22;ZMZxwo_)r9uCz4&IzISP&Lss z6a9qFALBAaj}zauh+!=y0=wr#!)ndmMOBlPN=VfNl!^5sZ;7jzjDGcoB}a$LzanMq z6`pq)_&f1s2fa=Y81VIKX{$5;`R9*H&h+erEL(BU%9pkCF%|41CN__}-_JjpIx_<8 zT<#-yR~M#n^Nl!+L|Tqd!-AW7U$&=wsl8WDj89irZ#s*P)zku>%4^r*r*$WY^%!;Q zH|ed^HwnH4&xkb`&(or6x8-@b9d4uky^s0Oo-1m#_SUj0Cl|Ax`}M%3Tiq{_BHtPs zaelRyCts;&#Wtc%#_vUSge>3%xuekFk_MTZb^U(Z1eI$5=y`cdUDe!1c<%vCU3+;5 zF!zjkTozq(t3wpQ9=Sw4z*}U77fS_8N6h?^Ke4gbk##Ox99@?Y$a{d)J~}fCMYrl` zI#D~+!rY;<%ny~8r*o_jN8|>#R6v-lyQ#kgpGt)E*zDji_mR~CpO&5J{Z5xYF>|k! zqWT%ypw9j(P2VcqM?6fUm4~#LaXv0 zx)ve>^@mahRd64%08~E&P!aI?SFyA7{^8iYoEj75f_n5Qra4z1P#8sSnZZ6NmuigSD8n1-+_dTr5KasH3_YHjbM1fu5-DPVw{bdd zS~SD&%!8Uk;|M%4BPI?ItT4iA>kA%3mqTa9cnkJ9cgq-nctq>T*qmPoQEd?L56nv9 zh#jZ3=%}&9fMvxRD+dCPeZvcpVaz7dTr%S%iKQA2DmL;*W(qZvd>FIDEX<_#Bj1iWP z=H=2@By~BrLn`s}9)RaH8^QZ@zR^nNIaVLmxFHo^c5R-;7Ko(!yt_asg~_od7t9I4 z(7J2+A=NK^lX+d(M$|XQF%O{0)B7)~*BqeQ%IhvO$KB#VMwK{QOPN=c6&w^Aw znXg`{l_qI5>ARxD;J?yj^N?d;gCYG*QvTnVCg%eTe$DuS5kzrlFl3rt6yJ?1cTKr} zt`<3wKa;OCyC-TuRnPdStdAfs6S-+G>hYbrOt2Qie}I&({vRNd_NN$jq3{ z@ip}R_6uN@3suk|oEunvM`el0D*apviwIixgPQWe)Ay%JKA)XSyC@E zgQz^{t+wvQ%W_5t*pjCLd-}tWS+ZzYl0=S>=mDQf=i4ig9T+9)yZJ0y4;PiJoV{_( zVXPc*z17QIT)1YqkIgKFgVY1GPh+jrP@+Vft*K~lUG&L)dEvyZN?6{8MCe|wK!54C zZnl3z&!^$#>$5D^K)cHBz^^q`p4$Fu{tsi>I9IDrW#d_Q<5^4l4b;~)A|8$VnP(#< z!o~tV4ek%hFP{fLspc&@Th25+q<@&^%;*(g`s{GiXknd`U}7)s((|x+wgVv9f!hW)u!ZGal;dV7}n!)seGqYBF>B_ zJG-|iPi|}0?`!<8mv(EM{QnvI9(^07@_n2>d7O579C1>A{)_t@^ei8EDIY-{aEn+7 ze}a?aCgEy0B>SoIuF<^t-IBQixuj{aK~0BF`nkyIl~?^@VJ?&u+xQpv{R57d`RD-KKutpr-OW?e9s?;4rF;_)0-*G*#eM*k&Etlsb=AC?v=% zBTE2a69MS?3n?+R|Hx|3`_T zAGj&ALcE1zla3H5tF3G1ca;7N&{>bMnYuDw?mS2>x++hTpCSJw(D27)me|uo>qgh+ zWjX4m>*es|=M!A^bD;m(zw2JB&L^kU=Xrj|n~Hzy-V>hdUSmcpC!QC_h-P|A(q#3n zzV5_xg)jx0A2Ly;wB9V*4xWmd^Z1oDVe)H+FXtP_;yW7oHUST2>qaoge2mId9>axTo{tzzm9{y#NwWU(6;A=>=|CFwf=20j zhw=7H#FM1$Lv84ssH#eH^-9WN(w`J7L#H$HLL$(jz*OFwHc>G)>O(SS{nTf!C@DET zS>}w1RD2>EsVz2d85>+$lQkf-%-=7~Csvui7Kbo}WFv+<5;J80+>vC4euO@wB-FHd zqN{y4J(7V>9VAn|fJ~o*Nk#uY!rw!voP%0SmS%bdi4LJvu zLzcE=)_@+Fb%E>w1~a*!zHN&rsbpu>k`_Gzsg2>g>J|s=jF2BbtZE8VQJ~!ogsd40 z-14gLy38rr@+V%roQG^h66y%4gimoK2X%DoTL8=Oz^*31S33il>MuiX+j!h6ODS0R z6;}mJ4hk7c&E%2u0%PgfY!4#C?3Bh)7Q5FlXJ8mvA`cm zWuMu&PUBHYMG!e77{Zy!pMyXdh)AMC!~n7nlI-1)#A`m1BK2d3;ct|1@OOQ>*soeF z7YMW)huL@(`F~i)(kBu0!#E&pLSO?q5x=DJk-uRI$%=y?VFN|Ps{cj0n1h4?HmAU^ zx48*typS=gIQ*oIU^BQH5+{!kgIe^ofnqvs^*LsS{{eW7#kzP#u4l=-%Dosd+W93g zq2qQsrj#-taamxb4m8cuE1r~O=W^G|+#eOF2Dh_URa6 z$#t`EpaE4D(-ES%tVwF|;Z(g4H7D9D6AWmU9&z{Fw}VL>+GH&<`MZm63>2QGcbScD z!II1?Z9o-pVpr@OuXS`>NpvVo7y0qA48X`AeGKO!NAwBxTV{dn2mxgA2jvt3fJrf4 zJZ!j30>CqYE*{3Pkt^qcTz9(ZN8%sD5nQ>BI3G_N6yz>VewP($?B_7NeHT%p;RLD} zIm`f?0QRHkI{be2AWWP9tNVF5xNKk<+(WE`3PDtg(M zYulAY(MI(F@uOv3HWgJ%E37q41$@3W<0?Ds0UeIB9(T)s^LfT8&tzoO{6iQ=Ojdrr zd~dvep3O=cmv!fL!^X+ms#!&0cZk~}EZKr0JfnlWO^`|H-RW<60>9kt2TNYK<~?n^ zuYKK)%F{+Uvup*6ZthSf=GVb9B0MV|%Z4kMTc2vt<(t~JaIXcO@p_q(x!@3ZcpPiIqijJ|b?fH9XWw2^c9+{1E}kD_<>ntI;8rFX9~ zrDB0|>Njo=Qa{(vtafyCw00jkj4X5?f9`o&I}PW*1zfw_!uY$R&aUbLyImfRTGzdI z^T1(UXK_xUH`<3=cm3$p%I0H=wSiDy$ywtF`t(S9D+R2)kl;m(x~4s}C_;UgDo0Tl zU^U6>U}DNhD%n4uYTI{uUv6HGp*kAEN6paWa#rZ`ibHE&g_?=UfPS>qf{~|{_ruEi z8|#BFOBpZPx<=Z$(%)5M_+0nE4Jk?oza}-8c}j2l$Clg&=Sfc&s|reA`hbOEOCk?<8IXU2yD>&;+uD*ApotZf6e0*k z2Xj*2m5V2_$fNCJjSH6BeAG5-uUh=V1d}sW!y4vjYek*dpV&gNs6-|4=k-Bhs0Dv` zcVLi2g)jA7vD&Ps(dXh4 zWlUo+pbBuMuf|wxuW;8Q;`XRPRC$qObA&2?9wWcXjP zQEM)q*(l-C7{exH{wdgElpSb{v-r;!@I}XH$liai6?%=9{{vGhYcjDB!Eh1_eod8W z<#f@in6~IZh3?29gr|QWv5kR!fZ4piKv}tc!5B-?nl&RNi7Pw;)!I@X z68c6Q=|?L72+rjFMp^-R7JT(zut*eSd|*1io)N=6S43%^QWjTnJHJ?S?r7wM*|Ix4 zlu5krCAwr+s3HnAEGDWy1q>z6rZy}#w$X4dF6#57eT+XtJi(=Bx{Q#)py1)3J?cLW zk`IF5rk5T{vis#Oh&Yf}#iP`uYI_8hAp>8x314tEe2 zo8>f{iU0HXpI$)5ShDMT8kMsFcNxge%jCk(%KJz|lUiA}d7dUlP!d#GvHA5Li?+?}=t3nG? zD|?q#|M2z{_q5u0?NnIBO)hw_fdqy$%=WBf+LY(y7Zl{g)w9 zre%)Ye_dW37ZZ1DZbAXqOB*;g?3YH|ORmS8eK<`u6Z()I7iT@_eH! ze)B&1#F)Cd=gDKqigdlh_oVyg5o|iC7|urHk3*DxUJ-@ zagw9y(-M6agHFr4ijS@w!~lgT_&)a-e=jucXxD3B zM#Q(4Z%+*;<0Pk5rnD>{Aq$%XA>3h-vZ%l*F1rk~iArpUW9`c2qPlvxuLiwj+ z1KhrD45TxO&psVK!_Pov=}jHRT_0;N4whgR)+=fpzo=)M4kN=V<+{|8h z-iz!0>27vwIA^SuxpCifJ7@%l&Kg?^r-Hq|t-#DN^A`}B_uRR*M3F0nft0E92}nsB z%HAva`6)D;%s7{s3rDw$>`8Cw;sUQrUfRE9OkYJ*-s!OChjnRJ`^+F)O#jv^Q=rH6 z{RHo3)ByE3r=+qhjt{pNn59*he$;XPyl|;>bM3h?t`R@llm9!x%0yF7B{wO*E z!LT6ElUfss&t#B+fy}-8w56@ zm8~Uf#=YsjhO9tct&~O|z;L@2B95aa+af07K44_71bD++5?(6Kw%`7zH0c+gq}vb8 z_ZbvH?ucLsK`#ZFaRTed#YI9oL}Ca#R$+HYh?RD-Yy=p=4fJ^w$nMAmAv7DMl1aFv zg7nquy+7ABt3N0)+UoCNwEHSp8CGZ321$l)(qK}Xqq=h!F2Dh-4h&% z9j40ED`Hj^2|?uujaFTCHOc2C&e>p>kTNGz4E6@#mCPWoHYbC8eKB5;OgW&G!)qXt z*A9b$k8~EHRxn2R?*KV4W?Vau2w^HgXYN%)=kO(<=iTIwd`7}2%b7Qu8X8i4G0cu0 zG8Vr!F+kK+OLcrm+Sea+&XE?kHG^i_rHm^MK;BasA%7M(!ovFz3SrD_zJN0bQWKbf zBU3g56SSJ5_lDquX>^OTnHu><8A~mg(=7x*|yoHZ>w5rfL*7Bo_WM6FZsfap& zV20U_i*_k&JOH{0$tbhelF}tEVVH9VVp-fz6KF`gbe5`gh>LM+XS25AC?`y%k_*e5 z*dOK@vEiz+rNdY>h~|ZPn#_%M|1SO<`l-JA*IoYQ=LM_r;UT55UhWYU1!8fxXVJxD zSP^H2O^?u;`?S>h68x^Je0jQ{;C^}Y5yhWXjoCq<@sHc`=HE2#%BQoz{=e_xRDVThRi8auAaI28@{AbpIy9KX> z282p=o^3yBfW1ua8w$nepBiG@en`jdyZK_a7nHZto;~xewVZKg4QlLyHmhL&c(ym9!w-ZjvfAJ4N9NAqC0xRoJ&D-wGn|R^lG2KsdEB-gDW$fPY%u1u3;oaIgpY=Pj=V1TE zU2KyhtUrkEISseKgoZ0%o1R*~-L(w)f-EgR6y%ic#(|SIF-lJaDfK#KpsqXAMJ4ug z$bz3Yo^KNq#>wN<3fFcyzdZhU2cN4URI$Mo>3!M!i37j$-Fe{1qi*x4J$gJp6?8*^ zFy?TAXZ*`VJSWwtdbfLxua9tZ-B*qa1Rop_75Sl`zxQen{aWaGqocReHDYGH;bLQb z@o4P9Q)s)EpE6*^$@p?x^R9wu0h&NF#e#VgkOEuPHl9QS%yBP1K6b&<#F$qRO zowYV6lXqCBx@8r04u{+6xC!b7NRH=906*e3%2WD)l&?)_5-;g&;0j+PcCxHexv+s| zi1@hglx%Omb8(})@xcos6t+aiN?s0d{n^gxFQ(*yW>RR__cEYc(k{wiPlFRT`kApHr&+FJWVgF`M2 z7GWdy+$}`f67Z5ezA-vXy>f^gA*l{xv*1^;zO*`xFmuyMcHWg0 zN+1UXgEFLCfGjVRrjC)NW&RSC-(XY~^Gy@UrQdMBf$~%cmcm1lu<0{JiWzXtvrSgs zd}l6J^8iRC8D0-2e_^K6?+xe%mA_4kydr;J?Qm$nNA|Kbk^YW-aB|_ZXpg&*!OPD% z?V3+H=*tgEN2^~@%I>tUL>;;Q-_cekmvb^n96PQ}*!{&OeeNLM+_%lGBW<{s?;Z#fO` zN^rIXTcyQMZk*YO!{&q7_>)ob=QF?6JDNX;1~o=}^B*=BqBEoa0Xy+U5Wx>?H^>i+ z3}TOd3@Eo^-wU$i_0Ct@Tr_oew|;OeQj*i+j2flD6Dh|9<7HcFML~;`Z>X5nIvSFHKo`H2EK6E{ zK3dmVMzG9R&o{jVMjGEfgH!4pw=)1@mqobjMjb!F#N13ehEp?JW(OJ?C9m}X=aN=` z>dn5)ZWRhv8h3iIznaph@L5?ghzK|Iofj2dy}*VyY@|U^O!7}U{Y;O%;YqAaISKi; z0%p#u?d&sD(2wnOSsAL8Z)%mfPk ztLh9q9%!ZT*`j(d>7Hk*^_#bGIz=+PX@HpAh)*w_@$w&f{m?aj!CmNjYI8ci9rnEu z*}Jwe2rp-1?G-B?=UI^M{qdz5kI5%QOP%jV*KyknazXZ-)KL7mYKzL75}W5*+*n&I@Uh$Wj+~4sj9sm zx(H7x!0;}k=R1g>8YhokxT3r-!%#9U{-W`>tR`1ac^Iq6j*L!b zLdI%>O5>Zf>;|jQdl95kzGJp@E%w0I`8SW263an>8$FxSAxG^NEL6PzXq5^;xrV1GB?F2wLj|s` zA8rTmm}sXOP&u)va?>rt7>q*3`F?SS(1yOI^(?v6qfv?JiGm~k&@e$q4YwIDYGep} z+sL36{JX{gU2dE4H)8b+5KN(8s#0pkr;^duyIDp|K*_jPs3X|jN!O%EE z=B-ps`D~1V#gOr1u7-tWqrME+RrPZ^P(N`VUeH{Y1j^OX$5^exta*)QKKsa(Lz01v zEpZQ4IzqUJ5usiR7&zl3<-T)xsRO_d#g;b7G1gf9`3`6#9D?OD>F(iZ%4`70c@mT7 z^)|^)P*c$8L$SJ!m&UJ`)>Nnk1pX*seZTHV49hDxQru)UQ0aOsC2* zSdcRJOjG%k1k?4}VunM0@Zkh2W__)0l-D|XlIth=Aad$Hn>HfK$*Mh8u-aM>ung7C zJeWfWr%TP6|AX;YuD(gESAo&L)S6*`Y6f^U^|;1pX@jh$5fK{biqq1-IetiENRbUO zCK^=&Ps~ANkCn0^y~ry`a8@H>G#N-jO`}m8U-*?uO1=aUL=ZT{uCB#y0Iirn(jx;V zW6}fs4(6o4^{vn}v^;4BG2I4(zNAEQ7)~@`k+^cbri=cBX-p&{z&?(J2@FO+-VpR( z$mu<_=Gq609$Jmq@W?h{J$6Bjgel%>rT7CX<_2n)=0e-WV-AO*=C=TB$*% zAmT6eC8|mja?TF|P^iQqZV)sJ{3Sy)?V;(8#BKv-h;z>7a{~i2wrj@^MPWNVo^Kx_ zjLi73FMk$#-m_Zjv`4W>5P5iASqrJYkr7G1 zg)wNsx{@250kPz*HNAB`-|D&p?<=fSrdFko{I|sY1EfvtjvH)#*E$~ldz-Jn@?#5S zalvV~@8_+(x3j&6y-&-xlA^LEUw`R;YE-_}ouA-qLSE^xt{2O`B~=SLHJ}e||P?M#AJ@%mVh7&*DJ{*DD3#Md$0 z3bEk@ufM@c-oM004ofmDJ1(Y$U(Tps8ZI5X zuYTJU_+N*S8sE+)1Z>N~I;dZ6N9DA|&&TK!#P0V7am61~3La$|Z1O&*^Y}l7(OL!R0bI?zPI* zQ=!P!sr$+>yuXPgoHLVJ(8*&vJF2#B>U!C+%Yl#d~YT60YsfDAK1ZCPB^EX$yp}qOT`H z75a!Yi3VbXW1QWi-o6tLbG9Ls#e_|4C~&8Vb4H`OUf;5$pw$p6NG1y>lpx1d2%Ruz zR!cR87N|;oMKukLO(ZMhxXU4UJHWM*mzDq5vfMUAB$#p)Pf1&c$iL7+RYo*bFknCH zycmThA}Qy!Lp0S0w=r83hD0JBeC3^Ff9X)IZzV>~pMe=*P>^PftJphN_I77{z=l_&%LEDvdY1fV)gl`Nv_l2nzi~s@1zZS!(>JX#s6COq8v?RXoabUzT2IW}*=R(S(0IcMJzk7VR-9%6_-50D zrZ!p~8aoPVAj%%S@T=g(_Awc;SYR@ND!>#XIYG@HCfmu!;*Axd?zYWos|pe7D>m9( zCJo(}y9On^k^(>_kwUj>H@GHj`sr({`R2XxAl>7k8Et~riGXu%?RUc5?~o0&H4bBo z|B@=GGbq(7$#Z~yx!||@fVGT$ZUui|PqFw-FdbsNwJO8qVv!}_#0p?gl2b(@%%env zed(u}#JoPz;Xn&Ps@ZWX0wU3fUK!GS24HfdZ83-Lj6tiy@U+Ab1Wv%B!T^JR6NC3_ z!Ov0gk}puzWf0P9qNB7Z5BMM0ZYZfI$;KW5FAKtW*)&;@d9GvxGe0XS;g zYuEw3z&|o8c}c3wq_HK+X|#|R5kLDWE547^$b#)-s(M5-a#b#r^^MVK>ua3}=ErOWosC{mapbjWxNGXD_b!I)_dgX?-kyqg?JbPs04s4diaA{0NN z_>eQxlDTga<~01VQKhq*B=}VC7dpgMCqsGDQ7sL{LYpQ?t3UtXygAzut_dgv%F1v^ zL+!zL2=6=v!g61oJt1S8PLauMzHc@S3>Zm;@m`B|!ekYrw%zs9lC@`p!v;-RutfbY zYze)Z$Ij{@1UcvUjZAnZaAxW+#g{kZCFs8W*^V*J{d z-1Byc8)Il%mQnBsCL`nj1qo5S9%o@GEOTGC!4&d>V2pXVN6GDsyFnGpk$8%? zNXlqvT<~L4XAQCGOQ;c9tsgO5^Xr$sd?mU@#d09`d1=sixH-5gU3u7opV&C_0~PW( zezId!J##*ttVah)qyla)(N)Mm{!pkwZz$L21wN10sxuk7zi-}qULjbRjGo0!n_|-6 zⅅ3lzIAw>wgwZvX98~j^5@U9Tw;xbRB!%E|u<4M&k&O$yqcVl`$P?cIi!b- zfvCD~p56b9?kF{=tL{i^*3RNRZ$~b`dVLt9xdT!%o&wB*=&2J(xw&1B=aYzA$IWra zzuK>O$K5w;L?r7e{le(~sSV%9k{xh}#|4{&)0N=`(V<-M{PK8^F~WlY;LawaB(PZ+ z?c($Mb%G$#|3jwFxJD~BOYmj$PoOCVf=H>M`|H-;ry^W`jPjnlzYBw_p6iso zPW#($IQ4`Sew*s;a6f$ET9!>ru2>H@q~S z;Y6r?&g~SqySjUxoOD~yJ?e#>+|8sta8fvR`Z@lcXm7}o(<#uR5-hPgS_t*k5Svkx z75)yN{|yppod|t#1g~9W*+*zqJJDWP-!{0=V4_kBOtFMUAWHHr!Vlreaff*SFSgz) zuB`^>`VH^~@vt|MM4S|oq)le+k(Yl=xy9N}K8+~zyo@Fp#R+0?arsIS1A{Fb9 zmyR&Lj~f6-M>R>Kikq^gW5O`^qkF$xJ4cw4wt;CXa-D&?91fh7*lb&kmToy89NP|) zy)rx2sb@9m1Xnr6CSy{4%f1>n!}hv`vY#iR1u>y^q`Jm6q`joNtDg%z&Iow{#t4mF zpt;@okP8d8KBv=>4B$6=6PF~$Ox>w*woY#SpBoj}L<4YVRAgx5@PF#{4 z4z`=-)w048v~pW++ft2+$I<6JW_^=)`j#d|M4WoaSa*j^8=V;>O-mPKnyi$UV3fo*THr)#WRZ&}8mYG<-&>QE9T+rFzyFE4*#K*)kKWs} zga0arUh~nsYqM$J?c6ARn2I-RG74}m`k>n8zWV)McW9Bm%c$L^^9eqfTuJ9;GwOT& z?MQQ~^Vr{9{JFY7+PVgXZ{v9P@S96Fms$7k_)qjQEoUhJw34#8@RaBVs0hc}6HTvw zSUeiWb_(={4i6z4S1M1?Wf|83HlP#$ibeFsIOnhP$>N6U zxnxK8>a~0^IRC)SX@;KP?+ySg}jJeCvL09gvid8_)Cl$!}{cR;H)F5 zLvTVxt{7NwF=WMtuGnu$H$lIPWzuGVur|Ns@SNh-mJfAu8sR`r{!6V6+a}T`Y~JpA zrEwR&#|(n^YVwb>uco$wzJyhN3KqVYRllV{=RZ4jDO)O@=Tdy5r-)>r(hOCDl5O|o zM$YF)%xw$cSaQ+`goi07D2iLmE%myxY3wITc-N1!^95qFxaz9x)#;wAn8~)GP)Hoq z4U+wfYIPttdc_xU$yiDWxGe=8Spio(Xztqb?i8OyhB}Ae6&Y@Ix%AZ}908%UG&AO>idEB+Wa%KDr;{(1XTahkvm(`m z>)|N-+|y71kqHb)j|N=Nlq~sG>c$Ga98O^Uj2I4mZyIjapgncUIa(ho?QlaCD@~H% z1%iGt|IwQ2*~PD>)O`$T^Ru&XgV&_wJe*xFG&EG+mKyJVk4%i=t;gr} z%;-R8J6Tm`J0LqTd64vhq7NTPVjz5!Z2^pg-F9s91JC4#pLPd`j)!)b?ruX0Ua5%k z#HRv-{La!&uf@IzL-uUGd_Ggb)j*Huu@uBZO)g!hk8}TBY(MM(-Jiw0UEKR{VkusT zSuAk@$Ur%W-M^3_@m~ajKmt6DB4*C$dAK>vN4HK6Wt()F(J_-hLL585_yF9YwLG1t3j z-R^+t8d{eHbJI_of#L`Cp0tg73gl}y&7og6c6+!seJ?_tR-S*D65O4bvHSgh0*OE5*2w5{+xW-rE#{YSD5;y6{x zj~ilo#*|@kt;IQ4u}Y4B1T&tBYwttks44Qk|BcgAsjO?IXgg%sXGv;IMx#Rj!A-LK z(3qGQn1E8bj2DI=nRFOjww=U0%X#q*gsOvPE^V-Yx#g~^z*q#L2xX5;N!PIa_2jTBy)sqIk3R7&o!M5K$ z`lHBd|1aTf@W8oihCEHLRvpYFBHdM7Vh3qg-^OfxY0RW<1fyqUT^J^Skl?;&6Tq?& zn~_K6C!Qd-h%7VGfP>_1vR#?Dzf>`8<7ch4Vi@r2ZIk+1NGv!`5O8FJoXW3t2oCEtbmX3QhAI~lgQikBK_mY)?7Mhj%aN1@RuOBOb;pcXm{xN7>wTXI>5(*AF0 z0e=tSNajZXgp+s$4c624g;VMMwV9=^$?(&UABiAL_r zAu~vDsFyo#=p`{nACaI}7dNCj6M3Y01XcAEg6EY2EBtnU14i`+ZmEsH1KZT}dXZ+? z*#W{J5cCXT979AdT_cRVI zIEBDdWGpq!C*6sOs37&tcsM^=EOIWwM9td_!>j7+>!uhWLr>R&8|@gc(xOYk@_6xl z#K`x#gm3-O?7hQJ$`8l9GWQJ&X`6UwRQ|R~*3;+i*25OCMSI^(n|GS!-#q>9R<65d zmVcZTBGRv(Li1qex5n@6=FXP@WoJy>{e7eE*DUMzfi z?Y-9-EK)XcX(qPn`Ahw9Fjj$_`!e^%rrYs(#NX9)I_f5Q!Y^zzEdSE5rb(*m~`0C(nX@*&LH}*R}>#Ks7|K?<$<{pQSnzVnl zS3j@hG}oAYd!2#Vmn)i^bbhDsoR^oE*+!v3Aifp!NIiZhE*!8!QlMfe09s<3m_i|^ zW<<4qWk)R9RKjE@cM%eUKl*B^ni%kw6xeA|tZOsdL1@0XD@ojV6f(S9thiZuR|D+W z$Ka^0?MD?_$=@9e@hMmXL(E}UJpOXA=313Bd>yBP6N*uf00V#H8HiE9rKs77-xKsl zOZ;HTPI-?HRetY&h?kyK1%0EURmI3FKEWsKfX*M_->ZzJL}XfO#bsxomQ;RT?a!v| zzQfNte&JN~6qCO{oWXvUdHl`YYk^T_ntrz9WY6{ZM|a!p(B_M??5DH)KgtMf0ph(tKr@F7gTfF_8Tt| z*jJ&nmfiCq2qES2{{-jF=86a$GFaTeJl^+5k`o^_^?O;p^dzkz>=-7ej&?I*L4Zlg z2g}}xcenq9h)HjHo6~0STK#8(yu{ za~yI}vMYF%8hZ4EE?-=$ai3~T*JyePffXyS6!}h!h#>s?1-4mL3A>noF_*H|S$02W zv+ZQI%~U?CT^#M~xJF%^M5KhRit9;OKX)lhj}i%|w_&%=5^JbpJ~-h^oNA5~@!9AP zy}2GM&4R(V1EI^p{tb>fprF64s?2vNIj?oR)DHSGSu|3*U)$Jc12)m1s#Y*E%*VhD zlDVR+Ev)>H#uPh_o3jYh5{p=s7p)^J03pXa+t2+$(&(Ro&?b$=WAENbVQDSO=fU)U zL4Z(tskLW-F6csmSSn7S`c>fkM|}rX+-?Xhk9pr0Xjm}TK(bZUH?UUlD9ahbs_wgG z6vUKA5UF^n3RtP=c{|1aWT+e09S~;8;%7rbQ=3gN8l33U2EtJU#*he#A=W@^hAD5? z6N4@5OSkIO#MzPr{EL^+IuwY)KTk69-IMvgA}_wIg6pxXy(%{(QBu0M)u%tlL`oET zq{vm}zh+@pT&ZLS4%xTC0=gj7QeZ5lX-cTI9tQ*cw@hSK#NIf-qN_KI^TL50Tkd`$ z50<_}gfR1xreHyrqv*9slMmZPPFHw!WWS&I(pRG`NAN_m)4ATr2LSg_K>%nI#We7P z5AD4H(Mcc^_6IC>*V;=B_Bq1ha#k|kN@87C0n(_VuyblGa%PDEpC2KmbJGz<%rs~Q5X#l_qL;= zy`bXy)V_X;>@Z!y48@mL*^diM3c3WJ^>sbeHeRRp>>ROl0tZ`Q(L@0vWOF-aMQVR9 z)&`~s9ZgPQWJZ#U<#|eu$os!VTSywfw^py5qn`lGZdo4@?*6+uLP=C8Fl*ql6Vf_@ z0pfPz`Jbu{j&VitYG$!m76L3er~C*J=~PLcfr9PkoHK5ms$6ieu|5$FC$=rj1<6AA zt$H6KorSHv>IgH12Tc}dJ5vto(%|U!3ttHwLdJMd$v%xWyVoQuRF18)CUGV#;lqOnuUJc7qn{EkjK1U1^sKGK$ zoE4i7m9tP{EQdLkH7J+3D~=`-w)^X8w;^`_EP1&Q&fe8o_@Oq?-PW;dZADBwJNq|f zJ{3*g8EyU4f+75%f!=yls2Lpbr9)#gfr#n(8w;mx>un#!2?vuxmO&zOEuC*~e{y8-NGA={%Il^ba}f z{5utRZ5NoHYZ)gIm3-Q&U6Bd#rs}o29D4bYlY|W0$Z^`6m2tqjG27bh`RV52Y#kr~ z{SUe3>`pcxCpW{=rPOt>C6s?*^Pm+HrJ-K9GFH4&OY5wBUjFucz4_1NMbIDJfL*bG z{bgPK3kD&ZnMx}%^i&e(I0vFf~7c08W#5cOc|2F&? z!m*9`T0q@ia=5I?bD3vI_wB9AQM=AKJiXv-wf*c=R`PGNti;txVC!yO_qXkW7hdyd z&v&OCfq$2NZk|WGdCJ}*76T9Nf8BI=4?j7r{%J7ZxJ#<(`p=tb<+(X8(Q9iGW9>fg zFb9=~s%US|f^*cJp)5f_$pOH>RkxwPu3lJSaG9Avd053M?+)C9|J47szZ#$pLt`_s z&NjN&^y(c6<7X>XgPEO}OreB_=VjW8Shr{IvSht~cMgP?;q$=+*xG+JG}P-*6}zew z3Dw&?Fr?W|a4KESTd7TND}FTv?@7c+f<9-N6*H=u){BH_JKO5U%$1T7TaQ|E;nk)h z3d+H=a1M#AQEYvSa3wWuqow2WSgTYCalpcq3f^$xWk+7LnuN~!z3W(WY*lenrZ@H3bsTeg`L~eX-J4u=wrL6yQ!%r@rG%Nu zbxYxZUEHa)iVitBv(X7MX!X7{3HMJ=|6@IGcw^lWdSPwSN#40z2J)t`7HmHkQlfUO zc!x+W(ZFK7!QK^pgPjCdRY*;5#u=Ux`+)Ho6R+m$j{B%+u1PoewurUKbVo(tZ5&!A z91_urk(kn#*`><&0V!znQ71_A1>l4SjvI5=;W-Jy z=7=0faA@U5z}9h0nQmIb3B}2DN+Wt`go7`%)g@ksC!^;L4yU17H0mfO2EX!7Y;10h zSzKQD`z_FTMM8M}yF`1}+s^t;j$417-)Y_ayfawdp^P4IJ1u)} z>6uupdq>Ttrd5t0`le>8rWMtdb27{3FGQ@*^&L)NLI2*#tDkzqjI^MaK<1KA&TE#7 zQMmUDPZ8#rzyr_ME^Yo*%oxP7pwEWq3*`Tl+IRQsU+)R{9t0n+%%88`j;C8Dp}0<9 zCs$`+dS(={YOA+d7iY4C6)>KD{(K5g#$v5eDp!LjV~XpiaI~zsj#F>mLf?+{V#q!L z+YlujzQ}pB2*ySADRh{mE!Dc?Mj~p1Txyk>b1z!O+{9z~Z<(95zd4(ai1zalJmQH= z&r&k|DgCQY>B@_+UO2+V(i|W-)gZlGYQMgy7xYF*;=ADl%-OeY^tw(2xxt@zJFmi8w z%hvC<$Ge|~p1y8gxrv?K9>4of>(W8zv&b8{adl1d&mpmxZt1Gl=`>(3)amvzzUALv z&WU?&3|eP?j`FCFHuEGMa;iT$!VIBgN^f(Hls1EQzdqNYqMSY&HAz9?e?jH2wnbVx z-`?bK!#}Zel?K&nDBBAAigl~TTMWl4f(ws9;m*XhkTJMX>ixZscGU`BR>Pj(kdh*9 z95>u1tdPR3c`$r<0-i!yE8ssu+moCT751vgIfIU$7L-5mD!2~kR8icc&gLzaogh-J z;tgvJA%)bSe6H|lLx0ZKH*Go$yxAn2)g)0F@_Wa^2&eP(*^N$x`EZRa)dhIhHm-U; zvV<%+t9B$tDdn!-nMe%JQga1a+h|tIVzd?oho#_@2n1Vs8^;t6h{d>-Oa$X~fEQ{| zl5`$xw-|D$mf{tsqNa3bQrz97ChWrIPtwJt3#p-rJF!`x{hd|u7Lw?Sx%O6gZFZnU zy7nlDN(JsXBjz(BhE3u562kAtgB2eP7!vnn))|Mal{i5|!hC(udS-~D`vjzq(~f}` zWaj+G4a{P)UJea=YhJWzi-5l*#H267F#@>}l0&Q?CKNKhUi2vlG_lmJz!>pjWPhNK6I`XG2>YxsHJb1Xrq5F<}wdLahV-rBJiP zYD<78f$to`^-Sy9kL&F#u$MLS`02T6DZ_8>5Ep!AX;{^Fb+NpfzBZm!R4L6bOyXgv z8^o4+ID-_#VYdPem>Q}|?##vcKz#RWWyWm*K~Bz98&aW~rCmC@bc@qu>FOAK%^B9o z;Q4|go&E9n@Uu)L=H)#dxl$dEvz}XEBT!a;fbnLz?Ih4vRWNDv1W=?vks+)vv7}#< z9ru>$Sl($PS~3V8)miw9&+8kpO;_nJ(xr>Hwidumzl0otR$ zh@$uCB90j?Q^`QSzZgzUek~j(4@47C|#!h|CFxRCWB|Dfe*2)t0F;x z>2CK`k$I_v%-F|E^H=djDizs79VbrKo#4 zo9)k442Fkc+r<_fn*rhr){2T znwh&k$bPhxT?Zen+0$V30ia^emu$RVJA2EX@Im}T-TqNmTG>=$H6L^QANM`yytW>iBXGB(S|xi zn`4Ab`BvW2ka=*vBFaA5O%-gGn&Z^fcHJGL*bRUm7Uz4Up~@Lr+UjE3&hnC9mtU?P zQX&{MsbY}54zle0o;VE-BpFeU2i96bPm@rH%5RX4bxw zmaTjAnh?CX_=%BsSD@MThalnG_4MxfBth+ zU4NGB{@9)K^F@FLkSJLBFp=@|-)Ys{Spc}f=0XKqO)&$`0x|fs;Z}h<8J5g$*^=E( zQ&yDQxzi-SN-OV`lMth1%0GC0OwAmungI$Cuzi=LAW5LY0P$N6B~PG*vRS-Q=UFB% zCvFOx_b~4FY^*4Lt3f$nNCBhJx+QCXLzDV}S`D(irHQHfV$qf~f zE*g}_NV=#x`24nHJZfOHF^nKIg|+2R`fTpS5P2*cRmMw>TL?sm&$4}7_2LWotw?x@ z(@apUhS7rJKPYd-R;>ApbNg?bajHR4_7$WQ z=SL{89aqgYevpw5;H$vQC!M6!XVL~<>g6zKNWI82k@WNwWnm^K3*H;ezw|0ifzOah z@*7>mWeC)9^p5K)P>5*!tY;CMI4#FS>G&lVOG8|!e;8kkDnB@gNigwc8^W`U@T2&k zezBH9%{k0%Iy+(WRr?Jl^YVSEg_?E;E4H+a3k29>Ivf#?A|;`t>x!@isv#&iu=F&x z4|&lnMt|lwtFTlFr5~kxZDWj>plKRhiLzIS7bH;(q)}whFhc!FU<`m{@6@p*Q&Nw~ zRe4GY%wHMj)wv^SDshD!G;f~TiaqMVspp5K(P-&t*}Yk>{Q}F4M;;w?_>+kq9EirF(`y$ z$s90c?m)E`QBr`3!5C*GWg%*P$sSm#S5q~s4g8;_5@DtQ*5WnKT}m|&%6O;Ss*=f< z@dg|D1K_YdkC8sGpWg~i0Ht4=b5Z;mf647Jxi8YPlB>25e8&>ffM;M88 zz*9sYzO+(&0vQ=l<n_i=eQ~z7?k}_y! z55-k{h8#3YYl#tpFi_e{$c^Q&knD*nn+jpsx|LHbPpd64AEJO5S(OY##qa}%Lu;_= z2jh4gfzk%&>GTE_UJRuZxb2MbJ}H(xM)>_&Y?pJ{Jv~-5-zOM8YdtSr4$Q0TdT%FRta;k` zPQRw;_6m61=_QR!XfiV~^Ly{Ia}pjbG~QsCZud32Ai%5Qc`B=mi_9*4O5MQBt^Oh= z-SVFo53G8mx!H-jnvYgQZ7eZaK0)Fj)6{c)Vey!^FU3LhY$yg2$C>IWj(`;UP852*w2=;Bf56lvx-7VI1OMB?bYnxkkV zoFobBTamE+7_P5Nfc6pG3OGS=8Bmd%x@-5K5_97=-EFDX4J{!Rk;HJg%%nR7KCIF| zZegUA7jyss3UJ7D0~|WgqA`L(dQq~JRRU>*VE1f37nhlD7aY`4kTApTTm7fo@J#e| zK9w5jER6l7ma;sfm1!`dlfCNTlJ)sj9OyCXNziV$PoH=5Yg1~wGSK~>=ks(m-(#6u z_uoiz|7TCW`wRlJ+ucCV$9}1R>v3PYhwpUCYYl)qY4_jx-wRJqpCUK!#F->YNSpeY zvIeS0%d9k~j7yE;r(TVw2Sd`s^N4IooOxzr6*MVmrFl>DLyDZtJ{UkS=j3>sATvVM zBE(@tlCO1^iV1m7xkH$yb$Ak`Q_#_7;ThCTaDwP+er`4aUR;Gsr1W`hcK<7Rm+j%_ZZ9A*(Cf z%HYv_g}MH&bjy2hP>fGZFK(!FP8@wmjPZzt(l)M?5K636_5b$3FWA8AAi210&CT~5 zh5WXg?^uWU=MO^J2dS(vqF!+n4Gbz|3&%jwXkJSXmTuMVSEm*5@c;{u&qYh&KxPy1 zg~ml3KeSG-m7mN5yF=T+6%*0kMU)i7kv_}n08Za}hZYd)Z;b)0aboqMl2X><#&Bp- zIoFo>4<^9F-esrnY@XB~nCE8y|7syh6qt@pr|Zpzhh0*-0<%ns8qjICEXP#D5)Tu| zMvrdhF!)tI!)fypnZ!BxlIl^37fo%Xcz_~WKyCJ`2y_;kjOc?w92$XdGWsBRn(vPe z=IjX9^^OidE1E3rgr0RuqUlsALjg|!sul6ve~%77xUAz~{k0Xni}^a*_wQQ>pxG>dUkxzK8yVX;KbSNXfa&tAgRM!iyTY z%5=7h3GpQ!J|C@N9NOFfq@X&Z1ueKCoo~Rh8HGjhlpyjs@z935!Sf6QwkM-xMPMZL z5IH8!zf035yoKj^LCfuNq6Qh5)q-g`_-|jVMzz1L#(HTQb$fOP)KKi&oj_xu1y8!A zqOH`6;SWur zF}~(SkemCt{PXzukEMBfo;g80guK={$*=88cpto&qtP{q!vL9E;(e#lQ3xBoOF_W> zF;`9J#Zhsh!7+K)dH8OkY`|a)smr_=@T&(gD^7h3Dg8{vWfib&vXL77`RSsHicQ5)^z-@bD1n$57*R{IKiRebvq9zjxE+ zK1@XL_30;d{{2<|$H$Zg`rD_5uDgWL?#^MP#a{tE@ejGTTP6wK79D}Dj)w}}_XrfH z!1dvp<=xi6st0rO=lwf^pSvT@`bZkaWeuk?F z^kp2JS@WvG^wS$~DK*U;>)Sqyew5K72M5ep)cSRhXq13OjB`2%ro>79=i9kJpNnKa zXo5jFqOz!~%j|_C%PBWh8XfON5qKs(46!@V>o5fP*9y@aM&xAQ!~##C#>2 zfjX4emrUoH02)m%(uU?4f@e?}!>pA@ip+E^2+GS-8|Oz7j13kRUzcXh5{~G(ad6`C z1i(&RQ{=GgY*N+l`|08qV^LF!x4Dt#qB%1Ec98HB*P=OO;A(64R7I#^s!@Gh&_PBL zvO)*JGzpo=P2m8tA2j&|8%kluo&KKQS3B8*G4enBC>}g0<|O+Ij)IOA^yh5`1&g_K zwv&iTSDZr^kc+WzUuE=0`hpmQLYC}|K@##xfRvW8vupWj=??nxqk5~b5SjHWa4d_6 zG+FKZ$LP0!D0?f}&L`h>uRoc|J4{eJ0O1fjAguc)VTwAOnNM5i^R;d0?d!D8C@|Ck zL_y?gSd*$#Zo^;8EQS^;1_X+N#^-{`uqp^+MrgUW2|1Hu%k_CJ>YEgkg-WEuL-%rU zA>5s_6F`I#YmfZlI8kEm@_y(hr#u;MI{@J>#i!4X+Q^TV2IZP+#ghtTAbUz1xY2QR zB6DFI7B^O_<*;yh7;iHsnSG?Vje$RkkO*qXaVg|7S*5@~AG4c79}QAiHhYMH;OiJ? zaea*Uq;B&4U!w9dSOm28g7DnURC4 zgBhzWI4a~HdI$IrLA7U{E7MVnKtfip434qn_iCtQmqHh@f>5YClh zk5PhC(cu_*%n`f#!vyambn{UYS($yuW;kYMn3PpC@BS;Y1qgf#=rhB@F$qi+V{DQ@ zDg=x-(&XiOf|o27*yx&f`T(~BaZP6t2;Uo5`iN=lwOz)Af#r!+`@Ie;Sb6I7!m>`S zM&Xczm-@3g*(|MAoPjr6H)?Z5nL%)y)`d>-2qd`&b;w}?eS|JE>X&J`F_xktBZwQ! z(%D1!`YkHHnL+-GF&sY8#v4r!+_;*LN5AOuO;+c{w6baG3f}$7qA1{-%jp<;-9DUe zy0B)L?er5;?L>P-lj(R2iPnCqVa2;A4zT>>`)*TldZcd!k-z+h9G&X-Ph(Hhw#RSD z*L*E6+~(hGYFMw|5VXiFt)9z`N3fHTyZe1~Y_AVgP)O_0{d5oHTxka0&-oESv@Xi! zJ7x*j83qp|+)fA3IY{UtXk14a|63P(Yw`iIu!E|b|JvUj7JRS~@$DOCu$f(|oX zsv7L|tJ%M{nYlEYRI;Y4|2pg*cZZ$)PB-b@*OmF6Hp+e*-LFP&oGX`Y{yofiI`>!h zzxoxq*1o%G-nnb{)q9uG^V@dAV)yQmuLrR8t$FC+0@6-;+n;?7e*g0QG`?jN=(NwP zSFgOD$y@3)TU=|eM5p?)cR)XTy)JvbvBXJGxKHcxuN z96tA1T>`dEn3JYfUZS#2?)p-0{eWAHH{OB=d%uk1zJ_~Ohe{%=-GWXU9TeqhUY(ZR-<2XdQB6S`9 zTehI_B+yqpM`p+arTntQ3k5VxhaB{s_*K}lIX@_-3_U2e2suHDJer92^0bSlRS2lq`TtaG&%T!>2^QS< z<*p4($ky(2Z18Q3-+9^%BW{j3;3f09-_<0sr*{nS?}TV>BB$h6^nRB#wTIBSeEb6l z`kl9dbpd9zATkEuw#^0L+!}9WD_p9KzTOlm=^)1KX0I5K_AHsIzGl)}Pe!vZ5!Q z(>-+LyWa{;JO%+NV9hlGt#q1A^MeXptOsa&(p`mp25-y!nXsVbUO) zC>J;8i~DU9_qG6n*5FDen)rI_80=Lmj^3lhfQ=(F;fOD;YAs|dGMBqGl>YUsa2fG6 zxXj$1Ci~47C;FpPdg`29bN$VADZ%w6iT1CbYP*GR)?z1tjV{l6sR*9wbd3XWn)CPF z412!HI5;F5dzXEm(*bRdv@;aD!kbR_jofouv>S%5NWM;=o;2K`RSe*%rd3d&euh$x zpF8g#!xIx=abIVePwIy0iftZxQ$IU&HWIa}84z`3-V{f0m{WT%H}~U9aX(`k{IfU* zyqN=lx9nbWe;5ho3L({;oCzH>eQUm>&M-geM?o3FEf zTzj|qGjK(m-}ElLJH9)W6^WKizK{4b_(NQ+7iTPwRw`n&0NzFF6=P)`=ahQ-iQB#S zg%l|mWL0sP#TMU5#>%Ei#;5y@X_+Ay6F^5tW8p@7$0|Lx9QIh)WyVww?`P+wiUc5?g2Wn$(2~$;OF9{3LCtz+- zETvJ!?~Y){i(yr1YQPyVyiBFv?)sG>->m=n78(pu`&?$YY>&)rPuF54vO2)4=`m~q zhtLGcut#Rl3{Tzj$ zBg|^3ifSQ0;*rZ7n@(r2XlFcxhb69$kq8r)G1iL2R89UbkSZn*tgd@lX$hI6l{RO? zEUcn&0Lx~X)k3F1PQE5sD3J47ORi~t?i$tcf1E zaU69x_cwP83&*n>DgBFZ>LhO+>R{HqGK^%`ZGR(p28hQ~MjS{+A|4{kY;6x0n{eY^ zP2k3Bwp?k%O>ql*;&Dt9bcIFsBZJ}tzx6g|zuxCpI)ZpFROkb#991cKvW8VU z@_!mDWAnRS_F4a+&%HmjgJAdrIMj{C(a*(JfWLYW|IfvIyY~`_;5Dvj2%P=p&sjoU zmpQRw=b{p)WsR9$WHQ<%&JulIhb{+h3&;<>e56%>>`e6~5q7f+WtD9v!f;>Ymmzg? zs;U23QnY;IdtCQet-dhnSqMapUGI{jsMyV!;(DW)E{@Gk7OTEjJoJb=mMMKjIYIPk z*2|j`jbP}jAs!xHr_Esgfa_x`yLSgLV!WLo7R8+g_yK}|bCh;g`Im!JN^=amr2h8y z7VoPrerScGn2iQj&6aY}8~>w!3>*iA|toy$)@JP16 z?R~jaF_`QGJt; z&3;NqelG;!C{rQ_IIwKR&SgUKEMBq48>it0u?RG%2u6wyPh>h@K-RV)qcI(=P>LZV zj_|!l7Nqt_6~LXKS7DLTLlS*w-?jp)Gt47~rkcWABFz0gK99UlK*<~>B{qgdbWK%b zHX0Q35i+3HFTfGDHGms2;HZN=iHCG=pG zq10t!E0-xElVs;H`=`KOwgSZDI;USV0hDA9q0_GKVF5dRxMBUIAe0$!X;i#!v|~vg&d4Mnl$gb zj3CmMB3yQMTAl;QJr*x;wFb{r`G5Hac84n+I4A+bXNec?+k}`Y9PV`z z4kuEt$~Uuqb4EQBC`oobOgcS!sT_acvhvv0@a=rLB#Tpb;;AFlHZw}yrs92zkrY0h z*Ws}v#OT`;#x^0!@io76dZzzR2ib+@<6|;Db1zHb8U!!jQH6sn#P*RXYmRo1|2B;~ zq?T)^)}j&K7^M;(xKj`?7YaeyDQ+7)o7_i6^V0{pY87h)o| z`hw^1I3+kzi7)g_Rs2^ywx+6q!Mg`Cc{N4}+0&6@0D4-I3Bqjoqw~E0mfi6k5 zC&GDr{tH7gYX;c|lkk$k5aoHqmZ>(P;J8>=uo4@>&wQbj0q?1BU<&ZjAyjG&Y{&>< z#fG1C-H9-_=#WgW=I^!RR`lJa+x%J6y&<+O1y~)>dMs_{{q`$!+S*N!;;mG~Y=Q+9 ze=KXE;v$T7t16vBs_T8X__b+2-5uAc|65eDJvV;|MyP2dYf?G0$}}`c8`R2wa66Ws zhphDuV|-h;6(cP?@2iAh7^=$V-utUR!}ObO(=z^`?uYf?8(%pK9{1QSgRXe+7%xhM zpjM2Sz^xtWv&{lUz|7oZD;J9$TNcY-@T)zDccg|xY8sbey#+s-S}K z`?)6Xso0d@0lF@`=DdBgSeTtxewi+>c=H3MfZ4GYmuyrOB0``W3V-+P>N+-!FeQMUQz1<1`a=9 zzX$eevM7u$e_&=wqxD(G0B}Xff%Z=LCO}DT#UsG-$(rtsE{P=s6inPui#tMHpL+%M zV4*bN^)h@Xni;f`rYvU)d3kWpU{WK3<%?7Ex@nBF_{VYDu)&IlZtzmBNv&F9MI@(e zF5`eLHZ+W3gi`4+zkq0NV@Ws4%GlZ4xn|Y5WYjh) z>akJKV2(pAOU|Hb$VTlfuBY80CTlB2&6^QUESZ=AR86;kaLgn|j4yQ2(Ac~rVws9k zd(`z))hXi7@1d55O541R(r*VjFr4&wQ9}pd-ZNr-#OP*zCaa2`BMZ+pyH7 z8Z7;sLZKdPimg)=#5g}8?c!1c;5tjO1>IoImJq+&6Moj=xICNe{^Na6|IQ>RTBG?^ zq4dk8#z9YNk|N`IXN-ei{C~xNis3~Y?Eqie0KXdIm0!+}Dst1R$k=s9w;4P6F<*ww zjqcT~sf zP5bI9xp0#f3IGNPdkS74P{k>00=NO6FEs~1wt~SS40hl=--It~UV~HN9O+8<%?jE* zqBFoO!eSs{Wuf}dJ;p&^arQYrCHn<~09lOOA3=?%svY4AY*mBNcU|DzQt7R+ms7w5 z|B^ssKV7{i4k#1S7O8JV3TZ8kBOh9=joD><36$)AN_73+0D;PO8yC)^4=QGr7uzX| z;##O8ejF@KieX5@ny8P@2oXhwIdNqmD?J0}$~e{jHozB-0r;+$gJ%TcG9pDuTPoTK zYt#WLf%0`%gJ3}ss8L)T2xyID1q?3}=cQVd9DQUQ@`dBG2f*=lLu9_g z8@|8o=a+m>>uxrrm>7yaBNttoVNggaP)1l|s*5n(uEihnojYdMk z0i#C<41p2SF;colNGm7>F)3q*)Zm6LjhA3t!A6O4H2J7jc;?JZSi- zQJqtTx24+K!0}^fDE#nnuIB1%v2y>3Aq%qHvD|$(;BRZd!@X{DN>)ay8**1(`z-?P zX|Gfy19j`XFnIr`vX!NczPfoGrAd*-9dCyXjG&D}HTfSn49jT%_>EAO;3Gaa-^rt5I>37-ST^Of7pxJi=dTqdGWGf-hFsKm06@7{vD={rf+L z)z0npbih4EpMaYhfk@e4e3B4_O&RSEPW$+1taOre-W>=-F!-{LIQYZ}Y17~_S*3k6 z5KR-J5%PMmrX3ga_GqIw#EygZgn_dH%1zpoVwGVJupB!QNf>7>sC!@6`5t}O`S8Xi z-Rxw)^T%U17nI#zKl5?>2|d~UWrs2uYCq&x&F{K(M>4JjjtgMjD$pa` zy9kZu>vz&zc zo$JF`Yo+Zw0@~F; zL$+UbGoJQoh@xUEz}{VC-nF0|Os=f+2F=G^yUWX+|} zP-o)nAvzWM(Ri56NU70Qj=tKo@R#MM8e#;!xpdaa z&xu5)CQr5vc5+xa#Ib%Ank75OQEQc_psU-6i%kWe zbUewp{zcd_PMvI>9vrTcDKEu{Ln61Vl_T*1rUs9TEjF5PCsJWuW|jrR8R^Z5`(}i3 zl|^`IN@i+rcTxS7aFQf|+(^euAB&_aICu}S0 z_9Aa?RKB!MFKA0UKV8lHvF|wgxhI(Qnt%+KfYM#9b;G{G!E?vKz?j&|Ngfn|EgSri zmC#1``!X>>aZoBm;PQWu)od8T9}by(-v{qa@nd^EEZ5I-MLAy=TNI5ssffiN`D>%i?SR#dyFv7cplysHqZKmn! zxzi-<7v>s>T`pCUHRNl{dJk>L!kp>cT4$)@eVr(4mhLKav~B(l#0CPA?7=nl^V`D(Tu0$B&b*F|CpN&FB#Z+nJAlEQ7w)zOYBtZF92 z7rLA&@|Mk>y94y14X+p~(jj>khQb*Z&Cb1ByNws)G~!=U?yZXLcwZfv>@7ewvW(mF zt9?}U*H*(wZiJF6Oaou3rLX^NZPbuWgEorsnLM-ixOQ2nb+#RZnB-P%ISj9;d9!N zWRb5bP9J{b2WAA5@i5NL2uEomoL8+GJviRgvPUSTJYp|C4U;W8w!EORUNCKK6kQ}1 zBF^U$IGK%66mYmY#@K=B-uBUUv3?csKTylNnJ-(k2)LUqQqH!v9tu{a5_h0v zb4V%W(#p;GSWdkuZFV@p74yW^oc^kkGDwESdV-MSiN9s)%Y%*LSnigmzc9vR_ z?Hi*uc??a%{y3N2-9N(jp5KOu~|8jkV23oKU>;&Y&UxWl;zhy>JrE- z-H{IhxjrX_!_n;H>dVPK=NoQ&8HzFqE_G%X8FcY1&zV)SKrAMg@jcGt^CS{#!IXAh zGqpbyLTzaDWNkUD$HvV>itVH9iR+J&3}=n1lg5MrmxcXHCXL_N%duvMB}h7t@%c`$ zb`&iw{!A-H=LSlH>p>}>eic}XC44rHNzxTWU|pErX$$UZ&*1+63D^bIWTZeVHhaqo zv~08l2q&yRP2=zbcIa$*BpgeHv$?`_Aeho#ePa6XV!nslf7-X+$h}ddCX`S4tld}??M2MV3PZXy* zp0|9H1u3q_^DXTWUoGA~JAt|&JcZRQ?H5)Du;P&neHBMS+Hc+w@=h;$5H*<#!x9V{ zKa0g7Y8-gNw=94=cf@UopPNghEsjN3mDR)oJk zWsY_pfubqnGsE>g0rfWpvf8q$KxF3T!)!z_==)>BzB;$J;7_qup;e>|59oqK!lyNb zb*7xDcEDrBh?<8yNs#SnK?JrOA#>a@e=vZXUc@r>Blb&RzwAjMkeB6Juy0( zegV@yZ^`nEg#3H|wWW2zpT_0Ay#Mi(X5l7h;~q>aH=7nIY1>`+lvc$!kRzD+EIb5{ zgh2$UzTR}Bm(#OW@kdt|y9BS75z&IlMjLX`Ho;igp4sRc4)8Uvo?+|?^_lqVh7}Hg zSGFc)u8U77V2{uhS`I=&!nJCYXTF=YLzLDc+wY=SgE?mPbGw zK^z*!sMvbS% z=xDT3&#D-lG15hSns<;*ggj;910^ZBmnFfEEu?>th~-cQ))&3({Jls@IW1%l@k-*- zS(S>0(vD@)d2}tS+a^*~hiR8xU+Chgj5)g{bZd*;=Nlc^lHe z1CA2kQ zMWQRxp>}eC$?$?t+4b9r5a=d&b4P?zuFZ@3;KmVeFYx&-IiRAe1nhx28oBhxr# zu98EdQdh$?Zvc&jQBr;mkY~te`9cWuK%dnwkV=`A1fjPoQOx8G7%IQPw2s_>aA-0- zNXY1#P_CwFF{SC33M{Syh*@ z$@V{6=t&e(_v@)hl?8Z##qfk@fU0aXw4Dl+k3kmk#18wM*i8DD?t$)PqxlryMu<4; z@xB)1r>768Q?%@9Z^Tn~{@3)N7sjU&(XKB92!rTd(Yj5+9_qdH+IVs-eUO8T!ZK9h z*D?nqwnPx|Byz-@KXP`2$b{b+m{kn0GvG+t_Z#IAAirnAQ~`}%Q-lUxQfL*sz_Y%x zc~($F@DOa_eu*rMJfGMqJ_P`u71{(FFw-mPVeTcspveV^FPQjZeyo0l`kOy+DZ&2+OW11+mc~QKX z-xKhq+QHd;{W$Sum-QC<`ZcYnfa#p{bXh$$ul)k#V`IL@b#$t}XdM5v7auQ@&mqHn zt^Ux8k2-%oI*2EX`k7b1g@pr9*h}%tOU}H7ECs0Xh&Ti8yh#FP&ot@sNBQ~9Eatxc zy7`B|`_q_kOoT>)Ti5l^YO{6}b8sG)15=0%%Qq&g3|(GY#-L+7)E66-p5^FJv0Fj= z@+Dz~IS8X$WV(u@NEFLN??hd)Ko#*Oo zhNnJCJ>~yfNbfYG-uskF6Lv8_{r<9{`o`jV%rJ1@ECge_{&0=~Zr@|5RWfa^x=QQh zNE&&n7c>Bd1S}Dqr1UIMWf6t*(}o>Ab~hnxRATQ>FKuJv>z~&T@9u6IE)DQM(rW&Dy{*yN)V4V(z~r}QAOFtsqndA({~01r>SQ$J?`FFvM$S`(OypIuVrG6QU5|>SW0)NSqn$mKF%=XT#^pIuwVpqSdrhZS z@y;?#^G!Bi&>6>8m8xB`E~t}xh1BAOOd8;-r$5m@qhbCP{S(Kust-Z7VyY(}h(s9VUoMx=3)^N6j-|9PkP3l|sw)_w zo}>1SNL9EDr*&G`%$1VLIp%_D+EY=SJJ+U=$l!aMmaoIWRcORSQl#!gP?m1Pd`*0D z`UHd|2Rd@LdybQr#wtvtu+=oJV8mS6WGY#o;Xzn@346h0L7=S%m?Lx_GnVZ% z;4`6g=HtxO_5s4NJu*=}dxNY&bN%Z2jbN%2avTYjr=M%pZHkVapS%jjE0|Fr&0Jvo z(!$DO;~X6Np3m|v_*Qy(3O(?~#k5ISKn@e3@rNzkkG zL~y%MHTUaPsjKNRIq;#36qf{O@h`+u3=myjuYZeY0q^=|qlhJXg+k=*XuserYJM(? z9XkJXCAQ5vAe0b}&D zlQiwbNA&nCd?Gq*gRvwS-1l-+g2(0ZcuxT$;1G)uX0Ndyi)QHx}B)bkL7CaZ4HhYLq)7B@-0H7grs&+iU?`|U~b zNAO3#s_AU<{h4Os>N7-dzl!lesm{W|Bc_w`c0Np_USQq#h-9wk)^kK(UlQEqJbPWW z(QzigP2Xn7-m`Qtm^+~}dCFmdIw<*1yJY%S?Rni@i}$L>uttsq1rXZVrXphdNPfIN zx&_0Ns(t(0t0-+-y!%?C?>{Wn&2O901cTZ>+sk=lM{SJ+I?%(tH$aMaK z@#*u6#^k)~QQVK~jIff{);DQDHVTa{6tyfd35;tiNyre)fGr$pXUvI>6#y^kArCh8 zr_uD7*WfP~W8_~}^Wni73M28u!#<$;Xxt^F(o`cj`qvfrh(G~?CcWLr_Zkshml)(hJSb#ozLXH%5}+SEZdvt&%z>QXYvHAu}pmI=_Kq zRa&OCI{(~Zut0W{)q~(lWN27hsbkR(JW-gQf71{}Z-kqY|Mtb=OPoGtE*NJ+3I!MT z%(t1IrTQ+x&yd_RVMbNc(0)v;e1h;eesqqxNF{yW1m^JGmAYcj60tEcsy5uz3XkW? zNIcrkZAR74wBXAL+2n;;_GI)>=#itvaNeQ_D5K$QWVD!0X{()84@4H-z5E|1ex>KS~X+??X84+rWvDC-UJoBW4OfTYW;juiG6sH|Oi&MJI}RLYO_ZHLR5Ua-w@h+>z_%;Aso zdToy@0)04pkDHHmhsH+gBtZFfWwcq^fm9h*YNP6sDh4)z#7ttux>`f1AZv1zi!njj zo;=PN1ZGi>6mu406A6Knu`t-El0aZ0+Q%2Ax)1sOeQ>$PhCA@`AL^J~V^Z9P!;~G!$459gm7sJHly|q`sD<%6*7%p0C~;I{=(fSl5Cr6rN+8hB=WhnU0SRcj^8$PS9&*K?$^LuQu>`rMNb6XI8|e z3&zQraLCD1q(YDJ5Z=_VXYFxH?<6V&wBn)FvJ3*78( z%=4o?0p~24GS`WeYta~!(rF9RXGJI{{f{Q-tMc=#^v^lcHupWVUq{@?=$?1gqmdM} zTDB=K2q{ylIMItrb9#;esR4DW-V-T0G~2@ozrU6xh|8$KE7i2AyaH`LDb#O#!cM`k zEAKCAuJ86%$;?97n_W)&kE$A`kl8Lx5BIn2`Rng*f7Nu|9FBZo=QBMF5nxP+3qJvR`pF+y)aDF|7iS}@43XR=`dcgr~lFa zn^s(7e%Z^MXZ|NQy?#h*{_*~{Hw52)I*Nz{qPjRQQy`=lLBX!HVKMcy=)2aKOAKGr zH;nNLf6GSjUaoJoNwe$rP#m1h>feW@kW{HNLg4fEc~IPEyKd@-=bgDhtD_TWKM(d= zEq`>8Qk=EY;#n*?Wh8xEtZhLtwy~5pQt|0NebKPeDM3e?nAjUeF_+twn`0lfzkD?) zuiuRAu8XI$uoJ((tA<1OmpQ}U9XBO;c^7|brrukIyk@?grBC>`d02hq<+o)ryxzF0 z0b7FI-#2=q})jJhg(F(%0)jG`1^)+Gv} zWHT=M%r!w?T9?el=czM4D#nqlph6qCAV{9H-Hi|&G&&@)~RFrr=!?G zs`Tuv<>I)Bw6ri^Y|d~raUd%aI1J$ommeV#Y8ZX#%>bwZ2N|K_$#q$VN(1+I`^Kwe ze!sc2)H!q3W#9o#2~z?+&kQI<1|3WY%!hGZ3bv9NKN{zQxp-6BA$n;W%3RkIF#b@PF;FN7|1 zi9%}Mgv!lBOZ6!V}BrQGRkxi6hGr`7Gyf;KhyFSsdqNz(*yYRPMFI3loN!#&7b zterv?ns}>rco4gRtV2t-Ce>w5_bpfknwskj_p03113vUYd2|9K=9tVI; zdWERJrX>sGplf=$s2Dtg$vp6%Q-E{<;F(V4&tM|)DAu|qn-|xZS5&6C+gQOPEEA6c z>WJV1Qwcl+?NeZY9}l__W&0s{l8jJU?pMwpIYGe zU!^Ax733xS?oK?Ig#5tzWq}O0q2ri};YgDTplbfGRgez>VzRs!DZ>H5kL0J>7UaOV zC9~>5{NW74z!!-ti-u$XMeNHg<2OaLx#WL)R8vWCx;ludA7@SfaOMbX6Z6;_00nme zTHe*&I(nIn-@YKc z=G8FYq@JrU;-RDgA0I0}XK-S8xwpWVZD?XG{Ql+S6}LVgO}?F?Mt?LXA1~K*Rrx2U z42$-|rBL^;wYr&A2yZP_4tq&$nK1q=wBt@}-PL)EvA3ZkLV6U|_vifL^ z$1KE5U@f%U*fsQbz{73c-Lbt*qSC|Hyn8fl_toGBWo92tuABLrSw;WbOD~Mz`&B}* ze$%D=r-qhg!o%3l)C&DWg~}n6ahMVQlE~sp{?C#{fPcDGvw?%b)9GTo2aL!HlhB4w zD*Z=xV0D5%@AcF(S=M6UD3NCqmIY@ay^P-#CQ2^n0srbe@1euI-s0aDZL(YV*__%U zEC-26al4&#d*84b&dB^`M$WSXV~M^V@Zhf%W~54j7~ke#XV`?$la8U|HsX-$8Y@Z zuAN=j$x-)pNljJb-^u5#8>s;+x8YhW?zd$L0Zs|oZO<4@(o5u%Pa4pB|(ohU?beU)bcGh{3Hb7Z^7CO7=3VkeZyrK?cE>^v9`e8)YOSYtA1 z#f`UjKjto>c<}N#F%O!Wx?5BJOIs|3tsQ9E)y6a|izAXpM70v0A4}`2jl>M106R$d z%OD!tz)X@jX%N8qgE(Uo8+@cH(r4P%=1++@adU^JJ~5R_qZFt`)~570MKw!y%r)9Z zr@442V@?m*kJv60ul)YutAhkrD4TB_o;Wg*I&>WZBT?&g&zMOOQq`B2sUKpEdUctg z3;3$-M$-%&;e~`aBa~YdTmWkAC z4ovKS;^+lnQ_IBe`^mIy`t?uHLb6>Fpp-}@t%DF}Qe6FdMS58p@a3u1VX^)RDqdn{AXj%g>~&%ciL5NEKxd1?i&Bu|qmZJAs-^t8 zrIrYs2IrSPb|L_UNTazu?Zhti{-+Ur6ZBsh52<~OH7-^;V`w$N6I7EFxV9fqnZ!Y;;d<1+5166rtsY8{`g&$CfC;wT&H z>x<9xIaZl#qntNQHVX~AzlRa6#*cfJvnA_-<)NoZwEl`N)FZ!eRLhap(GBCh z=(CFHSgs|Zmq#`@VH)QKTZ!Hr;AW3B%t%SoW?G1icsaYIH*VrSnTaqu8J0MdZ-je^ zX+>}teRDorO$Bj1{XXVBvo`-6bM+aIU?v2zb4#kVIuM6$XUih{|Gy(-y&4eqDfkEi zDJ$G?Skpl6p1%RpQ9|P>u7+X_4<4|PAAj*;kwP5?E#8HRWHZU9Onj>y!N=B?){9e8 z4NuE~*#O0=mpkaG4MmqQX7y!m(-py!t;#zG;y*w9zc;4)~JV1YL&*wk~vs*{gSH91p=wpk5 zrzvOoR3Km+C0s|&%E~`6PFgnhiOUWh)|shI6NK_MpHPFoGmn2`0A-!`RW~I9{-YOX zB6-&n>D~W!wfqke7;JcHmF}yja>?{`oQD73_8**8?I&%FZXKr>!-Fe~;PvuoNdV9% zZO8GcIGm3({N{<=_+Ly4CLrG3wOe;2h31E}Cjcn?SjzkO_xrz6;`*UW#`YgQwug*Q zr7z`iAZ6yB#R5$v*Hcoz-?-88W;y}5TL{|GV`__Y(+T+>xKDPnvivSESaia}Rf2}t zvO?*LF;4q#VWbxmTcLx?UrMfJ&DrA7$QU!Hn0le{a8Cc+9yC-}YUvB>OJ82p2_Wg&0 zpq+0{dnkAEaAD(KaeEhT8(Kwc%>9SW=2dpV=Sflef~ZqJ`$9dbJzE3wjgl6?e!nDB(ulykZ3uGafl$0}!t-Pnhu zAU0H;2aRf?MpK*70cRw0L61HB5%w5O9B0j+339zlG8;DH&B|h9xUD>MOMjq}TeRm~ zvC2pTF$po7Lr;h)v@vc7g4t}nc{f`;m8rPSlYBZIotVj%7Ja~N=VSmunTK|00mn3> zQgi(c_z6^0f>Tss|C&*<+Pus-LXD7EXpRszJ2t14Djcrb__Q zv`=-KSx=`LpgMU$iLY6zJft0!1QPD+6;IXT3O9ZnAundX(m6nBdB&5~Vo88ZmLRp| ze(H*1KnYhIlZ2?xSblc{RAuy1WC>ZTi2Md)-@iN@ip9d>&E^ZN6Hryo4DO$HzCzq5 zun@}1To=@Ss;)*^-38BS(WW@t4aT;Wp(g$Fm47vA#rp5WWeT88Jbxu`-!Haa&ONnf z4*2>B;l|>7yx{f&-G^3VW)8SY{r&OHUdmk!9jYg_|L>LB!>_4*uZ;!v%a%WPMQ#jl zk2Q*>y8JibW@WI2qWW|E^LDcG_S>*cGd#U+@vi&PYW5%dhR-Y~I#fhdkJ>$bzD65Z zOfH-wKN}fTWRRGjs7(^-2UFJ3jH$6pMUmIL{h~sIE5bzdDz!YpGZgK@7lQ6J-T07a^hdsZ@8%vsK(Dp(u*V)zxmWo;`nJDX&#qV_jvR@O*p6 z&H&C@i>hz?u>3z&gFZ}iDGKB3L;}TbsaUxj0x+DoOB)0PKf9-oz>~qw+<*Z_iw;^UtKXN8{>b93u=yL$k%W5wcMg#$QH5Q^K^x{(XYW;S@&D z+@|2}f$}`Wo{Egt*9~BEN-`;4g+|CPhAj^>6I#h95dXuB?p<_mnV96;)%@$)7S|~Te&cPy_1DYKhjFHj|rcjYV+GI9HPc-6B9n?NVPXnG#n1ix&6X?V0>h- zRw|?DG$>f!=#ru`HXlkrg-6N+mYQ(fZ;*Ce#==E9C5ic*?f9Ow+BajCh?tP%GyJ-< zBAw>mg@>|LQ<)`mUzepp{ffrLtzGM58J|9ar_vAq&M&dPRpm$0fM9%nDK9^M7}&&g zefQ=G+*^#Xj8Kesnv`BE$Hzh#dIpX?Sn2ko3z~RQ_muXT5;)xZb(!WzN$=y9K^l{m zuZ4H5)BdE9MDF(nG^9W7FPrVkdJRJ{SAw!@M-jE_pTi^k>%%Mo|JW0xlm7Z<{Q^}i zf6+}Wok^K``r8!m&~1_G;%rO}^xK~^ z8LsEg-&~rLkv_Zp(6w^cxU!i*CiClh6JO@4H$K4MWt%9s^-rURvb40mtZl^V}{hU6n(-G(V52IQ`l7 zZDyKuxXL%SW1XVmEV+)v-CK%;Pn2+J64XsS9$OwodvFUm86gPJDzi{=QK)DN ze~%_KdOw|@w(o+oXRlXhCo8I*O}9OfVKNSX?vexEr< z#N2ky)HMD6q?r2pCCz-zd_tc2bJy=%I?1nwryVjR%dB+n0$_IEvkqze54n~h_;zCI zI^yl}D(tjlg^DuNBRJLZ*#Q+N>9KeZz>S7^B7M16!|+<2S@ph3|B zh$PaO1)omq0a^1r*_QbW|F=e3*_B*bAEAXJ8h%ajetYA{r$JVn5F4Myy83FHF zhVMJjhLL6%NY}g{Dt2ln%HJ$#p9el5l4A*JiWAnN`ZPaj&8czoM_uGXg%r0+B8$YQ zc5E>H=fgz-Id*AZp01mixuY=Q)gj-d>=RIyx1wf9GPq|n>kZ{dA2pDnLG&@9@oxZ#a=?KQum=(XODEWSHdAu6)k%Y3S;7 z+YJMN;Egj+M0%B*$1#YQENa6U3oSleY62qZPq~x(PNk*jc@0 zcv61)D(#o5gYs2A;eLv7SIqdZ)y{$G@T2(MIZDNP0!<-Am0fCL2p%z^ZP!oe=jcp zaoDAG8V80G4lbEn%(fl7nc=&>IUV=?ado)f?ET|ev|Q5+B7!==H}38aEH z#4aSyk>j&=g!U6wAwO=p zdXOfo4yyxtBDmB8njLGaTtm95;Q{^f1ZYXe1lLy4M)>eL$k~M!r+g?#7ZwO)Qk>vX z;2KZ|ntu~U(0c~=eNlI=k2sYhqx#a2xBLl5+2izsgmnd5H8%>ob7(Dv)8Q?6BL~j5 zYmH%Xg!e3OjLOyv63lYgMa|d*Cx!FSwx>&lJ44}t#>Qfnr#j*=wy1ii^uw}SPZ(8h}%fmkyORaZw&e;>X{_}2trbku@^uns;DwUmmvzG)yq}& z(xy=ik?m)u_u-_FDBV#^ptQI?n?qD2nXwJ`zm6*nt7gb4X3ggGW8@6EewFGKz6=WP74A;H}cUsT-^L4pNIuWy3h>) zs`|W3aXHk=k04x!ILY)zzYJ5{?^N5ZuH^1u4BFvv(2 z!{JZ8$qdo)=rN9io*(ql_D^yC>26SzaA!rhTkmT z&RKO!pi9gI=xPs6YaVWZH?!T6$Ge}ke0|H#*PlB3{%l7FNEBec<^3;l<*v57W&ig+ z`)VsWr&IiUfA_ksN8N6|qpwZ^q_;o*U|RNRZ@6*xa;h<#VsZcXxIs*+ZkWtFV5fN) zeKojg_V(di>glR*TR-RBTj_>jgQsuS(fhQ2Tk@x6_WmBboA0TeFuu973CaB}RO)mR z?DHDQSH*otcCCwmzOpAOPc4&mc@6$FcNh^Y{8D0JM01K=h5z@*hrI}FoU|sw|EX*n zOj0Mq76cGCIWZvpR$<0hZh3Ix56za>b3jJS*urtTpj-AbCeXrI;s zr&bp+{!%ajLpYM8AjmqAsieq(+~FI0h!tg!jjA~se3~jCKwYHA*-j*!BuFnSQi-Wu zkr%rJJ_AzwFine+uxv%xRHf0kQ-)gN5ytY>r)flr3)oaXO{^;;qcuw0<>~nV9 z#;Ni7oQ5x3=1O)UxbdA1{3xYDQKX{ab5%~GJGyvzyNr)XvZCG^ zIoWqpl3YO}P?he+{R;4>?vp%ioKouCE6)j3LxPeVhW5QBIwk=}99qISta*8XoyH@} zAD!eKRq53l!Rbq?WK0t77>>B>y!iUNZHyg}@6HG1Hp+)%`{yf`AtbAGYjGGxk5)V3 z{m#?pv#C9e^$Q3hO(TgaS^u$RB~PC^wrIgImg^}1vB1w3ZZrI$x32+iJT zT_wO!y$#aw8zV9fI{gb{suA)IV`1#&W4SRd-}OW_P2Ca5ldZ6LK&5EI>QC0KetY@r z7DHnE@1<&=<1tj-esZ(&<6i7J;r)cYOmepOcf+nT>a71zG0Yh3eKz`(hyr@6UC-wH zm$x3|ysa=#_wJ=G&9v^K;us2TUA{*;;0jGW-giWoLV=!Gx#)w7omAem=gR?Ou761+ zE;qZ{*A^T4JN+-a8jpmgV~?-C@5D{LfAhnn{r+%T%NfHKm-9oGlc|n#etrHT+e33~7vN%}j!DVn>%pB&6<%{|mA)hi)7+@H;1E zH3lXJYi}hlJq`*gFT_S=kY`Zns;mMZU1YIwGI|~-E0Sh_qDlU2WEYlMWpa-` zeN$cgyozW_C2@!xgh~PC_vVJ@(u(k1US(KEr4|^=^B{qI`h16YOt2iGbk>GKS0<~M z?80{Ey1&y(##JriK5sA{r55>=|BcdrWwy9l>*>?bW#AS705Zk|Hx&E7VZ`y-3j!uxf z8YdwCD@Su}Sa+SH;~-j*ti#+3t?$P2#$%ej=Forfv;Pk!3EzQzj~LoiF_pWm?=!?_}4qvZuq^V)p;_iWd=iL*g-z+@)*!a*0{U;GzBs9_irUQB3VoH|8<`( z7a)E2E2M^TI(@fb$ML`XKa_~ zxBgK?1V^OIj6Ad?Yz%M!uskHv8PLe)inDbkJNu8&W3> zReLc=JPHk0Tnj9+XA=}3ulkhD#)Pm{m2*Uw8=>Mz1p3t->9bVV-qG_II`HClD!EnC zM)bWb;TQv*5mS_*%-`$eY30ltN%kf92TfD!b_2E+R*BEM=YOt$>OLFe zRUBo+uV1tLR1qHhq!j~g`TrNdH1)RY_30q(c#JNqS`VZWX|wB582caTJjUYRljpIW z=TlOSTNqWhFokYj6T*_4VD`(aIoheA3yxdza}3t>19kM-_2-In!(?f;Yul9MQOmo4 z0}RvjKaY}zygT($Ou+R61;bumfDDQ}iJhrlHUrH5Nt*e0_k)ak>k<98xJ#3X7I#~9 z%ip4M^vbFUbr5iBJl1{Ru9eM@lDXxm!QZat;o~<;w-IYA=VXR&B>#Q5momTDI%&RW zE6`eS&t%QRnH-DhgK_?rCw zRef}J%WJ-NlGYsHwfu_F?Cxg_99d;_Qpe-cx5Jrcu4c8XSQEwU&me+u{=Qsx#VmU; zu%t~<%n~xMTFTs}tF-&@khbosgCA^;r4ck|0%7gwNdHAHsv{2UfFfd3V|vz4&YCDS zB~hv#^!-7POihu&(Ud`U61EG)$sj0-Ri*Y5S&2-!Bbpd&qZAp$EtXIC1*)3n7+&|Z zK^zUXqI8G*>^?5p-3{kp#5Q6;*{Ksc@pFf^s)^y2oyrQ;1{f*Xq|x7Ult{#O;)ST# zq`}Ah?9~7^@U?7B^lnje}!K?8-7iDX%ky zt+SBZW4Pnq6(2ayh|eZSEy>>7tsRiJ{oa?-ycT9Vt%f!?>8r>GdHgyb z7=%`D-|_eob=Rc26uERQ-uhDCfwqBW^o$?s4cBjU_1dFzbj+!biLw#7L!jm%<%ODQ z3#?QXOxawf4Q0=-bt4#;X+a#U^yW@-Sw(VbVue7owYq=^rJ@Juo5MiL326)cSKIq_ zSl~D*K~HIdX{_y%;N@huL{RdzVJ|aDI{|!x0;X$OrJd54@@#U)^Xm>dbvh_Y^Lbz^ z9eJ}{aIcbqZcWhPPFC{FUB17YS8jcK4R&x-Xg9R%@#})w_1_s>rfjYDpFhpUpL&br za~7|SHxYHRZlMZ(Qa_z>&h9m{%1Rh3Wm#V;2{G=+ zGZte*m!PX6x2?{JQ%o@}W+UW;n74cTWBNa%^C{fK5seP6kfBaT zLq05|zU$~NgK~PtcO^e$U5?E1f0U4JpSwO4i|1tt^7p^dy+dSeWO@NU>)ErG81-%; zfktdr{%r8CiezZ!TIn>FVxMNYfODB21IZR@HxCcU6=h7{KE7otc+hx`ZNjUKK&G3#v7_ZRE`ql{YJtmbWH=v z#;}S>mHj=Z$!4qjInacnyUClDwJ?83IZ??;jLT+nk1qWrI&xU|B`C4oPW2D{U=%5@ zQBTl+Flcc>v^Id`3%xx|z5yBkpRli&z=Rt}J8=jTkn=fG#sjP2=qr=+d{38Zd>*fz z>Iar9G5x&dJc%$E<^yuE*jp{vT^GkUcbs9t<{#=@?qvpBk(z{13YQM&G1K#hxlFH} z;}|rf#fo8msWD-m7AqHk-+cf9)^d3Zb9 z-_F+k?ouo!yzQ4LUZ0oDQ@;8==*+G;EBZQjLEZ0Gp_dl7O=XiulkYY!dx{z#Y!>0q zecT6iHr8$)H9CFPd{%Ye20%r^7db_1jibzhzP?b^6a9-BBX>6gCB4UfQbpATL95cF zsBcpV%mMg`O>OZcgpe*7&jfVR$LkGvg75WN^!LB&`SXTZpr#|1m-oML({u6bKURlj z4xm$tqTD0+CkDu4q84(L@dm3m1PFO!zmJm)CN6H^!eoGCjt@lYF2M&-ur7N(szs6~ z7^j^AU!jaNSkB;JEH-J_z5v+`ZLkr_$W$RsF}x;%9PDqp!FIbqQEUb3Q2n{j^YkQw z;K2BR1OQ|YH#0TQ9m6G}i(o3|&QEEz>q-q6$L3^UtA=Ge=#lGRtOsQ0r1Uc}vZe`s4EwNH$3LT&9Bh+e60B zIK4Ogog%Wme41XfsMM>jNqEa^k8XTb^+7gcQ^Qf`FIlf(Z!un$A#AZQvcRGJ;I_WjrnXK(DrgMx z6a6;o7Vq_=^iTU}XNOUdwEVwi`tP3$qpYsNT4sizP)Wkpzj znqLj+e5=c5mBWY|78qfRVfI4ex>e6@i_4$;oe+63_`Y_$3tjydWl6y_c^N-(xUr$Z z+(>>rRYKg)$dkaPP>j^I|h6SAHluq{NG?+D5t^6c8f zW6`!NdF*z4>@~Bl-uh;Sy_s;H=CXwO-krbmEnqQH@N!>`vo0>KX>Q>la+K0`ag+2Klg3Z2Pt@(ul8n@qT&62i@sIKU8)d5NoXMo~Iriqc7Ai z;JxZjIo=>1j#i|$Gya>z@@V+o>9|EubiMKr*zNbV{>cmrgG8U*Z{^R?xUB4Ef3@65 zlDKFVK7SQ$FgFuV*dQmeYD1clKJ^c}QPFAyAmp}$Dq8KfOqFkgfN2=S1;S{K4Omq} zNEGSk;NVm;M~&={M-&40=lK))z?jg=qW}PLzZ|0=H-$U>Cs7`;)d3JQ0BO*8k@%qe zRT{FN%3`1q=&op9Agak1s_Ap@~p9j40mXUBy`M4Y$SY@%V^$>IGxg zBhe`cW}>VgF}+mt64hz9e(?*M9F_ahJ1*h{Edy;fDj6~t`uohxJ+=%-wD=KCt!ou^ zl4}fgR1_LhP~a5IZY9kZSa#(m!)ys@#2Ex_nin4mw81$2^?d1d6x*S-n^f$e-a%|X zB+oC0HE8Urd4ID8;-exjV83Gp=`-mck4@u|wnvVAjxLFvmZhqWudh15HBYB?lfdxBwXs_<xs_>rNCgE5?7v-zCz?e_H&BJsxA=7H7Iz1i4B{uxTwbSiVVaT7ZFFI~S$f;+HzudzAKVer(?| ztQ^NN+6)YXA0!zK)-Pcw_;zh&nh{RJ?+TwUgpzx9h7mphZ%+_7^1ZuP7WJzd6HHtI%0^!qG?K`ivD&yO5WGEO_E>pSi!%m zAfU^9c2XbTK%>vMR<+elQ{kp(G-1`sY2~diNZoq= zR(wNgGJ;)>L&_62#%l@OFp%A0S71cuGX^I{e=HfD8>UZ&7JD z0J;*uyVlMexil54O6-%9?HRU`b^KWzA*HDN2-R1E>=b-i(i5Fz9=VLVzctX=m?op1 zbH&s82L^|8x9RE%h4c2O{$5@oU|yl<;qqof`@B=F;r=u_C7i`;m?fCAbW*F_A$R8V z@8V3rxB7y z6sR1`nILU?U}$%1b*vtpFQn_JKUaT$+wMG;GvU+Oi(l~W)uunpee$6#>^IM1dtt(TFM(R}WK5A5f2loPAhTn@3?3tt!j({L81yk^DhK`6Xl zHEfCvbn9~e=p@%CVkP23uq-@V?BF4}8DBkXNlK+x#YJ<1f2_746ZLIyI5naX&;-*E z&5-V|ry`mSF!C+Cg83tsEl4#Hqm=X`ZZW@)jhT1uZSUwWsY*_nrW6&JX`Q&7PY4_r zN|RD7nhahEE!|zlt!B?Z#diKU^?*KQkZ=0rj7l}-wnW=I+b-T3VY`3l zmA+d_IL~UF#;Jn-+(4FE|1w|ykb6RV`h4(8O7QN(z{isd7HKJwVRPT`j1`u5vt z{^#URhV|D|p+a4)g0DM;!_fT7lGrPO$wV>qgB|%>vmci3dMVcKi&<~auu-erna}j8 zRU3=!ei{4VwzIVJ{Vx^ngN066LbnY^VCanfRv;Qx=1C(XyH|D7uzQg(*8OhUd6wIG zIpNcUgI-6eJ=#4m;xALYstE}k7nvx9wQ{F-d;_vJ58_yewM}rabEGTErkH9dY!gVd z&#YuiMIm#KnebEYL(;}(#jZP5q5bg8&G=i!7# zh5KBJ!{Py5z0(leusO_kqu3@UM0clOs(Wb6)~;(lu`Qt3Wh~=q$*y1LTdG8NRHSIy zv@j%Y%gR#Qz+GZY)#(_wEdb+p{Ex`L|DcxBz^j2l^)9%nJGq*$#*t`swo5{4*Z*s2H_fx?lNK5R*b9$T*{z z3yQ{0xD9*yN(Z(R2-JS?%4cn|S&#G#yO1D7XDh3(YU*urd5lFiN65ZioR=eFMkKS4 zvN>OdhSf1zEPAtftL&XhytiQTaPKNUaycpdG2bCzDRxfv9(W*X@p}y?rd?SRCi^na zQm4FSQ22SzeN*KfHV&-*DOZw#x3pTg%u=Y5%%azFi2q54lT_l%RAP$Y;8$m7URjXhrMxNzkIBeew>P zis%_AOeAbq;Vf*7HkC2OUIKb)@Qi%`H5~A%6s60Qme6xq3|vUbh|})4V=nAp3#$fJ zVOXL=%)>EMRDxX<6nHNrl-Pxe_S%Ea3d9D#SpMa0*LxDaDN%GioC*lAMrTGt5bOdP zgm;J2)Di@Uj5xsq^612ABhiB1I0djtwFP$c?%sTG>_HAPInMvaubz9nb{je??r^Z$ zo^t3m>&}_ic{;a-H{Tv=enF2Pt~kk;_T%YZJ$&v2tGtdhq}E$zB@}I)wmDnZmTndg zzW%ww)Wd2zsldc)fuw>E?xhm9^S88vbHDp~1bR%8}sUtmcRUs>NiAXex$hg(JL2)%%qFh4k18 zWye``I1yXx8{%IHS{PBvmF&^$}+SPVQ}eD$r1P>>n69iSTnJtPvcAroQek7wgU4--?4LXiO-veAFWG>_zzGs z;ZRxPy(ig?5yT6!^rAQIW!qPgh_Fx+zDjaq|_&Aj%R@f zCI&k<;~0vwn|sAOuiHf_x8>)#4Pf-1^uogMqH@yc4!XB^65JiQIq8+{-iu%rp2;(z}DA!^1}q_eSwdGFhiWs_015pmkCbqm&bqKJ|mk^VYYn9P)B(4L0602WVr2kC5=;7cs`BW zYohocr!~Qf)$xzVxRfu&%mESFX2VSHP2`EMl9jA)lzB<{(rvx;Wvsss^WE^Oxu}9< z^g(5cIn35rOK)7u!j6}=&d3>rOoRwya5XgL<~(_O1%wK$K~!V|+GN|R3OPI#&5)Z8 zh4-%>pz||%hMBZ=wv=lP$+opu1JMM6A9)Ow)|96pUlux)$=Xm@*D&?%50w1 ze<5c_Y=p%~$`W0OiytVJuu7QH0f2jYj}T2Jahb9Q;5yR>^N71Kkw&$qz<^;1@i3i3 z^YVyS$g$}o#9^bO=*S>bJfFA*fP5+lPP0QMAVxoQN9h77xhgcWS#|%&zp%f(?~)n| zQC!YHV??OvQ{DCwR7oTTV&n{nT&KKy#9n zj|NPP{Hy=7 zIKLt-7GxcMu%czO`R$N5+?$qZ65g*dBfDE(sH&5xDefS6;`1T`L(xGB%ry_I+|k#{m2MsibwV;n@dMDREzQ-|~E z1s>O6jBAoxEtsICQB{t-RA)yno6ur16c~x?uR~F>$M5mz(F;XH7g)<}h<>nJ^pp=! zz2A?@X!bb0?oYZ(FI4CCWpmcvTa&n99;KVq=kS`YWmhHq!D?@<+hA-i?_xJwD-kvR zA|;n5=%B1;aur*n`nhnCi;Fc!$YJ=2y0DpQk*9%c*?cb|*>w6nFWGfTM(uAr5Xl-7 zychm=Q58Ye+Yq@rVGKyYL2DHB zGe+pqlDGH24jo`W($GWK!@=U)@}Fat6Dj#bcrT5XF2_ulh|gMN;DH7!T=Yy>X7+h=kwI zbT%J<_>wWt{`c1~DbHMfEzU?$==6OVi2g9j_@oLI(uojz*O5XfG_r$(O)rpUNM9VP zOH`K4ka=^B0CoIYi9iy>ywz%Aar&<-ms6jt<_y!}=P8$ctBrtz=X8RU;1|O|(iVHq z>D|_i*9lZb%#G`O!Un##?WniQQ!Cc!6=(~Kl;CAIjbI_U$3g4U#)8W#P=DQu;IE9BzL zq$UxCWL0nDkN1vv63t(&5lx`C4eQ@&FCaAz!x;WSSQnb5RF2HH%Z|fk{sXb`HB?&g z=)X0CQEY>TjD}%oX$S+8%j?T!*{D-{sLCce0>t3qvL$pe%i8okj?A)Bu24)90%7?X_>qS4M(SF ziL2%v;0&REql9~=EF%pNJ>?FR?4@<3{uFM6(2vEaM%))cOw2CMvsX>wOuscLnf~9I zmhsMGh%T>rnGzR8X^oJ>no^op(Px>mtYvWwPa&l-r6Qs<`9Xa`g9|b>4@Km8X6QFI zJVdnN;fV(v!joVxYjRDVe>A`2OGq*8mo-qoZ9$}BXaYF6Q=+rWyNB~AQxZQEW((PT zULL!&1}@Zdc6fC%wC#NybH!L${_iI{+E_i|;Uz9ekvjL@=f|VuWNz*$4^jraj=LrX zo5$Be8QB+Lo1(J7)uRc&*RJ5AUVLgjt2M>jHjhvNq=#x!+Lnz&;-<9fpZHFMD>s3# zm5h}viBMp7HP>>I2QWO(@wg)cY0%z6>7>>t}6i#f)id zj$h6u#1gm$54XOW9lkCqtQ<$)`FbufBI^r+a%7QnoEPV2p=m8|h%qkzZaM zeti+*yBZ=L$bJx+w`z=O-Y%KGbI)+OPkMRR?)JB0GFqF>4_dATSq02 z)R!cFb}~ve6U?x=6bbG-%&xK3!8X;g+vw^39JlwDO93wT)Cl@w7Yc*1G4+tNE%zgUv0`;LfBaYRe`*#LuAwC|?zt zoVFg^+upkG`&AEE(!P|rDZkXFOF)o2)rKzL{#CYF0aw8#%gl}$p=VcJB0?Rx9J*cU zdfwKyojbjU@Ox)^wxN@`nFFl`BhB!pLh%6DI$L3Vb4>YQa$3&-%Ghs#&x#aimTd2$ zJlIV#eI^RYZad#0*6QN`n!F)&nH{%Ua0N0|7~nG;^|>rOUwKY)Mv-2e>n@h21bs%nFQSFw}PTCQ%xh-tf z)By&+59-aiPF6>1C8-@B0Ej3epWMO(` z;DYOc;N5Q(`ri*pOd{C{LJ-&!38Pl5bsz7}9SnMEd{lXdjthIRyIQh`>06^{TQj31 zvEewnhTycCuvIB)M2Jht9k)R@$Lg)h8IvX zfXhpDifvAuZz1dbw7QvW{)+i`(tDrtKVM6(=&zk%qEW!5BAe+C&h>mAO4{@LOIdPM z5!yoKU`DlihSTOf-mpG=>Len9a&$ucRNOaa%K!~u$QB=X*{{`zY3jV&*JyX^^>Vpu zX+5v>JNt9OEZETcxVM?@v-u;X-EpL@7t0Sc2IX~q+4$#v>g2K*HR)x1o}s_`GQi@s zG4qmI6yo6L(+F?xLCE#2Y!;OqigY|L(gcm`}9 zuxK(RoXSEiDR-E-;V}Cx7mp5Fk4Ua9QV?cZjdV#jM_mDt2v0C71T2zmu=OBROk*gW zc2~=UJFW1pJV_?-g6g-uqnwo%l+0F!3X$^KldS2t5ae@WXBeYT87n;`c@T{jE^(@9 zYIX|-jdJiSm@7D2h4qhS({KuyJphwlb?NxZxi0!Xks;+BVg@tBoYI(_rq{NVuZJok zf7@zds<6l4qnKk}3Lm_BVDCQAe#sP1-3b5w9#fEHNSwMrindx2hs(cB4mBN8gvUEc z7=KE&%lhrKc{UZXhl%kcp&;p>n?&#blKJ|&hr#d}E%<$usla{MZOfB{%>_e^Zo1t= z>_;U+d>nv|rnKI6wm)74-S8SiKOfuJE1%G5Nz?tZqY=_sx|z58B#`~|T6u6cIeD_? zy(YM(qU)e*I8;ey&-VbEJE~I23;q0H^kGl&&L{pHRwIUgZ=>0s1mK%7AX)~M6j1)i zbxFRKu|qv`!;9g#0~DzYV(*C0mY;$@5xOCM_Q!#qO<{N?0o5zxT9;4KRSvm5SO zZVn07;{KZ-HPS=Z;5v(xjyJf>fV>hWcAAW@Ov(Bvt;N^WX){Rr9nKQ6>+u5&oP?2C zYTV9Z^LZ)P_r1~%T7-le5I5ORt%ur#>8^KPpcnWYRXM~-?wN|2{`p!CRekivCj+GB zs+Pl+>lR0C%0^Xpa~Z(>O46cJSvN=xO^emKbS>cdqsgYVg7jl59nE^a+`)G!la#@J znf!-=<-nMKUEXzY7eG~1d!DA%k?Yfk>lq2dG;Z3eE#CY$ulg~GD-9CVd|uBCHi3tw zNbTgmR5v(`1M0KM2||pO)8CD+KkYj!6wd0`t=40jYA110+C2|s-)Em|JzVM(SR}np z7MRIq$oP5u_*d}?jDqT)4&EV-U|xJX~!-%p=Tp<~sZ%QPe^9qhAsk zPN%cIynwUtHgcX*LR``fqZateeq$TeG+{`_CWjbXCNF9ioA_ILWGuKO6On^Km>{xG z1HcN$k&k&23T;Z=@vUs8Y2RmD4qXjXWlCr_PU|{xV);!2L#Oc|+v*szwJ->3{J7Vt ziF9u|Hnw_Nt+sp55Jo#4Mx{rIL(i!CaYni^Yt5xUwGAa^J*PCYHrkTv3v&y+tlBNc zm!}f0vKm|sOjY_bUroAqhU*9wayAV!n2HU)nE2|sj( z*qzWG0@U2&O_ksJ-o=0B7x#{<4?V5t9j(@&ae0(h$N8=E7;IR(XFuS^X}Re7XWeAs2XsR1*-8#YyN~G$+*O0wo zZk|*`53cuR1olqrq*6jl?xSU23|{vWD=JUimVD01Ud9d+vOjd3>$Ts$tda`oJ&k0$ z-wFO}#?jGVy_o{2JfCG*y05R@EC8H+MxzLQY;1hJUYronyLlFJzY+SkeRun)GbwI= zUIPttS4`)w^0Yd-Gg9Gg|57CM{TMTeW_1Q?Oid`G69+2=;-JZ3HyOB~VJrBQJI**- zp<#EFxKREKlf0=6iRzZ@4>uy=NIcD}p>^dYJz{J(v zVv3`j1lO+jt#>hzYnVS0b2nq$BqiP0R-hz?%3U1EbHun;LpICBqwa3wU^G%i{bq;= zTqJTVj?KdGo2dr%>Z6u?-&l_+a7N4a7uKdsq)`&d71qS5tJ6lV@V)B5(rHoUy|=&> zf&@O@h3f`y7q9#`E>e+K;tc@$?)0bQ;G%1)_unFE!-f(y*yUt9f|%Gvb1*Na<@=aq zZ~|!s4ZD!5D*JQwKX$!28BsNn@!iJ`uhV7e0Ku<#5m z3%#0Q046|_&|QO)%qQzX33JrD;L|F6Q&VM!2d;A-cYj3dxM8S8Ls@9Yr(h~GUl&nH z6-Um-;HD`$gJjT?#Z|)Q+6(J1_roQJkmz#<&lLgTjf10cMbCpfx{mg4D%KqDS%3SN zGO5U%_VQ+@<=PpG7c#Wt^M^+%EJU#lx@)(7I$=D+%5)tUaRwb;B@iF5`Ug0(wO)1; z#$}}Y6+Hv=+~`trgLZcW*5FD+WPJ zWre(ijTWSshW}|O5Y|3Ul@}ja=3-WJC$~MO&&0z8c;#%h0~P`U%eu;YndWATjJiPc zxoa488x-sDIzeI!_dRncs6q5ILEc{YoOt4LGS}vaNnmrL22*#?5RQiy9Sbm*&Uecb zu-R=os_&(ntjetWeSTr}A~l)%)j~QaPZg{_md0W6udnpciIc$fM9^7fKEG6AG$b-Z zU450S)Bb2ky6#}Hk*U;yoX2S5Z?mj!k`*ol8RkHtaW(UZALZ`T z<(U$QP1etwIs)yv7x>Jsvue^EY>bSI%rsmv$nE*lF2heWJjb(n;>al*|5X>j)aY#= z?v!H2eL@VQovBxlRXiZnU8+%h>gKQ!1`2WT_0M`SA;;FKJ!5!Ey33$FNfH+}c zQyX}hA>&=iPCNZC zXqdUP&F$0s@S7NOWg!LkjHyxU<`X?iHxp(k-2Pv7{s3jxdWO#|@X z_(qmA$88faOVYvnNcQQiVm14&!>`BZ{M2r1h?9t6kqRxF&~ijF*YeKMSI$Vm2>Kn zPt{qO1@VtKhSBGO7UG#-G?rZfL~z3dG<{iJ5`|-z>2UGiuu;m4JBcOfN#t8UcW*aY zSMLwhh$NUJ$amyt$gEq|!lJ0e@;Qb%cK?7qqWOsE1hFL&0&iH^=6Ws=EhV7Y{J>IW zsskg$Yh7 z+!48dUO6c`8d0{|Hg)f-92@UC-z4~CJI)TxUw7FI)c%}zQgqYHGa6Xx|CL=;7K#lb zq`ITgi0idaJ)GG=>)U7_nqpoVA4D9O!bC3AN!Gz0oQ3B2?da8cI=REU`#AGkxD5P4 zSLm>a_KIV5r@KA)+JeGp2{lQ)SWgMu?HTaNVH~jcQ8^gg$b6E?S)Obc`nlgmQ+F_S zwXal(I1f25D|LB?xXOVz>AcDVJc*Y+{SY;o4==h@RYU1ldBM|$_bZByrH~Q|Wl=Zx77%&`( zIw@ACg!yL%Np0qwZT;Rl(&D*KJ3KmIm=I-JVFypibsLs@LUB)K5-~b9P~CdX)f~GT z)WIa*;Sk@-YhZ3)4QyE|Zd48!?FnA+?HbJf)bv;z^geqhFwjI5)hJm2{*V0f6`2#* zB%~OO$?#E7mWOU#j|Lr>Q*KWXzFU1Ob+TAfeHf?)cfNI(t21L6nogP^MA`PHj?Bs= zV2TXo8PWkD+7diZc9uzMN=DutKdB{95dgWue^BigrBGH`e~=CeO`RvJS%KJ)QcRMa zqTwyTZrhzy7yf8lLkTX=v({9Lk8(zkkh1%Y)1pSQ^kqM2 zek>@-$VQ6p(37p#z#QS}-+w;*kz26`=Z~P>5a)f7EN+VW9gHK2|IN7YBf#$1eIhcL zgQQq<480d)Q(HTY;j;#>&3`e^77wPRx6w!5K?{PR1$XV@3bN)g^s6(G)P>W0BUn`$ zmh0wHvqWTmISG`na3R%}lGEd|)?SZXNyd^KC*o|c%rCWCdEN&@Dt--)R~Bo3Z8X{g z#x4pOji&Z`E>*84bmO{BKbOOmlhA3$Dk(TRtPk&(>s=w|<6D4l#*`3d2v>Rptil#d zTFQekQAj^+C>i$Ki%?#(q@o4KbgtdY9W;F-AdZ>@ z%p__xeX`x9aV(A{c>UjUip7pwZjFWi6zin+P1`_wiYT>y1bd5`3H|0bGK6r5Z8b%* z&MsQ;R+I8Sxy(9b-Iv1m-U!8W)tRbJ1KXAxME2VuDM@VPP&C0R6qQQVDWC{%%~Q*A zy#33=XF|DY*-`BQ-ce0Hr};spYsSi^k8eBw0Ml?5g}X2yx%sbMw+V?YJ2cT%S+TU0>Fyq!xHOrN+#u4i3}L{wN6%7%~^D0w}-joETH{JLMdCP z8=F?$s~r~iYoXf-@=oE`=!ljdr>+*~XH~wQtE4TjuaU^^tu3>X2SUx8@>vVQC)?|+ ze%=x2IYLke0Dh0obw2obpV?u$&Z`ZNmp-C-ajEDD^ z2H@}Oc!Tz+(pED=5)R1)$J=R9B<|(}vIOQT zH{%Y>)1pEMq;5e%CW)Pkk{3z+_xXD2QfX*3`Xfp>5p3Y{r-{)@HnTH8w}F6$0_@2A z_&3cM0~xvFfrk^qU|AbYEl2FRkef$E569KOC=&poD=yk$Ll+eHzvU5es+*MW{%wJp zK+QjNeN34NO2>!mNEV!=bmhcbVGA~sgpn=ajbzVWp4UB8m4q`0K)IBsNyrV|X87=b z{RDjqC;BOD417ARLt;y=wWN>c{CFt$mW6%zC;^!`g*&){LVT*>jArR`1}N$yQ~9Yq z<4Oyqc0b_bKmKmRIlR$b;#7Kn%a#9)n!x+Wl8-V>2cYH>buVw(`Xkc5Te(Hwr)orh)OBc5YMHdveLd;8CjIb=);$+<3mV(&9{(>xN%RWDCJ}hi z;C3m_Uz#>5_;{_A*Fp_juv&+k-Zj@W<%+osI~}l-E>WD`#;)Q>5jwlmHL_k4T}U7a zU0M$HM2&K%k{>)brE0OL@il!D-FW^bP0_WM)9FvT4nGg_*=rptDWuj?GS6?vN&w&fc)j zp<4!lUEteC`WJvSkP+SzED3SE=7E9tf>#)GbR(X4Yhs~iU9NcmxCgXjS+tW67i&l% zZYxiiJFxIqgTaZ)gFq=H(4#Qrnrrm0_kuUwOH{vM2t zPiyH{*1z5v`L4=a%NYm3i>EBroMyx`AQ3b*jXju%V3)B+<1$wcHhjXt9QwXf7^%g;F(C#c%4ahYx&LpFV$=I-yz?sS+#jxXRzYBIlX&Kvbm6kTw#;wo z_f2I-M@2clJAk4M(7XY`)Q-Mx4wKwQs01Hmltyf**Xv^H{QxYSrqd7U1)0qoW;am`{ zL*|@(SZxQmmX_0GRxYZOSWW|?j)^dLS8v}T zpntad)&OmNt60=;Y_DHEJ14uC>WXNQ;r7_{zOgz*8%tb)=LUn8V}>KQ#G-5McK;aP)Q;ErN@LwnxK3uko&-7c?$z*2N8`?i4{SB0Ah|< zd`N{y!twj;RiH@j0b^$Q70-LP+`f7FkES3&*%Hy%=n>P=etnd!a0Wsagj7pM>Gd8S z>EKi?{d~(MXN1a-_r`{G?R!Hs!5nid^W$vHuACACBnn)*<>ihDVG%{1N813%axHR?mNl0MY=Wj#8llgM0XRHEhaB`ifQqdRM!*!@#<&?9n_>H&w6tqT zki({Ego>JuOKkoBXO%5FGR7!9@7l@GO0Un@JQV5O4u=T&DKa$BK^B##h&uU;6hC0h1J-qjSR9YkNbZpiJ+R(Dex@NaKLG zU21Oa$@{HB!DBDP>+5kr=Sh^}Lk9U<3u&BA_p3(K!V`zYuFMh3w$N5#o;w};Snw=j zygbV=^picIJ!>U>Ac9bNwbRD(1v@?MxM`^UvxkJZ*(;#~+aI(aYAq8s-XxcZl4L z>`YPemS;qolw~H|%Umf2zagr5zD_o>NA(TP5-z(lX85WHcf?%(e#O-d%BAb*Xw2~P zB>KAJMZXx{_$cM@c^-2sDlVVJvjgneEqMyY=4?gY1vYos=HosOvSz4VqG>Jm0Lo-UO$veX^}N*~KiXHuF1EwqwWd?r7i zx(+Le&l?t2gAv+CS}6dh!tV%UXwV7t?$71tdL!SC(#YdN&~f1k%O8w)ZRV%$?j1Rl zT1%h>5U&r9JDPVr&1_+Wo5W(|Wa%d1+(v3#S(t`Kv} zV}McMY@m`j_(&M$kDFDa(^yu!woJ)H2*p5wTV|fY`9KMq`)KPqqBDfB;48a6=Dhhg zmE}Vv(amas0pKi3p*ZL7w6Z$#no6FW@d_7=yhSy-0XEtQ_-vRbuM*ViI5)%}32rf6 zW&eo~+EIc5$QMAW69#yVU5-5gP@5`s2N#3;_MYe%mZXq)AU={g)3V89QIz((=r?_Y zy1!qkfrsE$RfRA8VbWrrlHAdrggBt@gafjEf!m$V^mu~?fra0|+A@hPR@0VTk<^61 zuEr;v5I8st(;y4$9wswhV333=S!E%edtmQg0#jTbahAgIIps@rfFVJ8N!yy~2Y7~A z5lI*n%)e}+Dw7;15p39kUO@a0CIBWaQjr6ng^i zqSvlGUU@w3A4O73edtatZA8}Sc<2rabIAx%8#@;^za3(TXu13F@_Lx2e#7__lfF@~ znHuJjE-6=eBw+jaRAByNLVHSk#T8-~f+}<|FVCRDCF2=fk*#mHJWE|bnO89wPD>hy z8Rcd8AogfbVKNwPI4_SSuQG-K`#G-1T;fk6jq9&MO5JZEioHzNT-&;J>!_Xoq8z** zfsxN65KnqJ_Y-#4Q16*i0ZpQ%v}oCj4*{NC#eP5@+8l2D0P-ARDDp6{$Ri#?mxiM^ zTf7HzLQWq4TSllpv9~W4ohQ;Hjo>LBH8xrb$sX>vNSDl ztnLbPUBUahy`s{?sh9Iyc=za4zgg%epAK8bI_cbtijtK?O`XV2m7&&*JA$7OBCa^X z1B2=H*K8zpLy2GwReJ>S8};`ECea%?D>7NPy<}%mq$GJWFOSOiqiP#;-{Fk>@!P)z zO8?@Q`H_an#Yz*zK!Xx=3M&_v2KxsacTp^clHQ%=wBQ@}5j{#uzI`b0jwv|!UY!72 zXb%>tEvE{L%w>xZA6->c9FEA1$)(|{n(BgO;%`;3E*t?vz>3$P<)bqevY-J`t*KZb zvc`yrT00#74;PR3)76ETxHRAOoN)EAxlB3}mE~FjH+&%d+ghGT=VM-1962NrJuvSQ z?RS4WA09AC{gZDGI%*WayC0y8(jc2wShzHk`@x%ui7%BjWIjKxMncA8J}tf!8|7G- zYVmA3cM?C}k-FO2k;5fzr#>{zA}mSYjl&-3HSymi7nd0u_3fQSJ< zlqMiNgsjJFwTOkVUq#$_gt{KnX|e$5H(ipxY*+FNecdS$X*%-0fgyA< zP#$xwTHe1Wv{$n}Ib;7r(>aD!+J+va5K_uI$b z|LRyB{aR~1?{nYRb)Jg6&&2WMv9nh~S8REG1qb>ETNF*+Z=MSDB%Q`e9naZs&&I3m zkl8-hUDeYk-hGE+VRCxyK4zzv>E;qPjr`&eSbFe@{yJ@TN|$>bYp+Ai@JBQHs~s*w ztVH~22zV;1)lbjvl8c*9XMfgtr+Rk!$M~{0O~M!9+ejA(^y>ml9`!8x4pjIsP#|1AD#X^Z>6E5*GM2PyQbxfc5C!j zAW?^Knb#T51AlA*chO3OnWfog@h(VxUdcw3Rfd)&Uc5+2-itADT6Gz#>Dw$NOEeXm zv^3jxZGIp!`K}E}CxNs%yO*mX>4xHA+b#){y~9m(?PJ!tbHLP&M0)AJTyBgDQYMt3 zbgJ&~P1V)9#V+20WpCIMXX?8Dzzx^GnN4-^;Yx@tHxTC*U<&GB5pe~Chas3)99Mxu zMPCKDyj^|0g@dU(PEP2~0_P7aZ5(al;T>?;tl9i^p^g~%NG5{I8;t?n?%4AdOAkC4 z#$;yo-1CObula^n12X@N<9PxlPs9~AsjHa~5B?0WLE(a8Aj+_k64Qr}3}9zACqDSx z*7L4vgn6Y{a+4~6WHeCE6-g&I$d$lNJIy^iAqe;eji=)qn;&ATkIIs;b{~EhNRD>s zo5HO~$^rGR7jN}(0BiVW2^vy*`0INF6eFUzuAqXaNg<84K^QTv(NA~cBF%ChK&bMu(a=}mE!*1EG@4K1FBNoI6e zY1O~=7nrL%%FTwxJ^xLVsB$q{TkCBs@>X{kO*X9!#RAo4UTSAqbkWV(fZruOU}k^o zYlq<{Tx$oEypKKAH?MfH1cP~3 znJeyg$uf@rZj{Mq7yi7avj*iqKO^U=X)+-9GUcq!OHnT>^h`q%cu?fB=*fLuENxje z&jPgL93r006DcU_VI{^;mp6mRUq@WMr`E5jwLYPB05FK9P6wN9R=hM4@Ig^R$^>eL znTpOvCyj?xe}>`NJ)Z)Ou^}eEISPXYWk9o=rIOrNp%bQkH>IOYoWbq|#jd>YNlKdnhxtQDbN6usr(5!yh+38BpL`Ez@Z;8zuPu{Tq%|*IrwRx}r>Q z+TvPE(SkaYxFMSw4EM=|*<0-%{B12h9Bznl8CT_947hRoS$awjoe~(`S7gbZfekIi zp|jGlpEHwhfzwFi_RIb+U$;+Z|J;4OkVhbhD;xI~8J+M`*bbG^8`vVG_BtN=?G^Uo zMZXP3x=*=vJBsiE`7)s2KY2SD>3mewfL}6IjXP~ZafrLFl2+j9b!bA`6wf=1mtes*@zMaoY(^{d}%d) z(b#OX52^om><848jFuEGe{~fDIh-l3ShU|3dUX8DI!2x7tSK$yic@^|-U@7iu(^%n zZG8_X4_L$K7yJ}F^y9n*&2Iu~k*vRd$+b)waK>)w@X$glW=<0ghw`zNpIx?u7EG;O z`~pK>uk&^^LKkyi27DOQY{jAE0wG}JP=Iq%+p}j8?kxc2!Sj$ZA%>M4z3D4Be1NuG zUY7S&ZT~A$jKpja0p45ghU(9XA~6G>2-*3R%(l%+5Um}YqrDEkd5Pd&35r7ot}pHc zaaH-PHbv@s_+N(SN~lA*|NllAh%FAwM=nk=l?kGUOG?o-wwEC@O;aYWBe9B-Ly=%Z z(DAma_5p|brlNftV14v(n3>`yKcM$pp7HO4N5blQ?FP<4L9GQbRB&DROb(6-xu&*v z>(`CpwRY;PHhYPt6U*Z98yyHNA*W2B$Kf0Fs-`Y29i4<}d8vWoXZ7m~fbAMj=#$H< z>gcJln+pnURxwx8nAY3yUO5m!Kbrih$znYoWQ2Y^Q)$3sxiRTSR;oU2o6&8#+BKXy zNLO)`;vY#w31*ov1QuFB;`MN|6syRnb2{>1$xLSX(1l&6fzvY!bMo(e`TD=k%BO3= zf9w0J@c$B56IJfCWA5rN%Uu%n_#pCuXw!iGxzUkPo81@C&peaQmdj^%TYNIs;JqGY% z8+QUZuJ)AiISK8rLZXkdf&#Dz0Qe;{0u07xi^RqVdaOP4SW7Hs`qD;!EU=+4a%<>1 zN<@{n*F^stC5sOs6a;a8WKN^;-em_9eur(G_}V68MVnLj#VV0fMU1b%Fwy(F-10dD ztypf=Bzvzx2m(7FlZoh@=YOm5wvPSDS-D>iBv0LMrIiN!S94F(-mW&`I-LZ*_A}Lt z-k*QM-(1>CXMQYq-*xu#^Yym)N&K`rb?k%Ic@wubbzRu6YL&kG5KZ$;nH`KWoWuFf z{Im3^!U(g$8W!r))~1xtAaonA45;YZf<$y+k!ewxYE}OoR+1WYGQYV2qTsurwWu+Lg^L zBbHXt2ppxmDh|zP2*K}clCWNt(sH$f8P!mdbBLG@DHb7@kHmE!EEh*amKR|KehL8> zv?qu<*rsJJBKB4X^CX zYILrwYDmMLpZ5mP1k7vbNIPgm!1vI=HsseC*7PXqUaD2+^5^mn?uH4_ckoiaR*ejl zO~&+;z2a_6nE1#~edlCxz@)@R^PCi><0Wavu6TeU&_l_H`}%v6pT*XLo$u!M*VA2E z+A3RVGdtIm*6i#@_n19mb^E_xsNn{$!?0Y4+t+(fac}F-;I)L!pCU{jdv(*j`~~ZN z%W`W#y{MP}Vkvw2y!WtN;5IScVf5fQSts{#x&yk)Wqw<-ho{L+{IoWfox#eIP=lqp zzP{%?05W__v3@-?*w1xkf?5l*iaaT)W11$D$+E1XrC=7&6?1VS|~aRaT_Fi7o(M{?}5yG{zKGaFw7bmyYZ&`@FhI#9pG&Q>kyR@!|1a#>kKwg{=oTUkZo;E?WwOV(z5L-ia-I7(0y?k~9z#fXmsd4oD<8Xb|Ot0&b){DM?+gxV*Xo zc5>!m8%|D;Idq9CWC4t}QdW^d)Mzx&A*w9n1k7;BG#Gc$vtevOwjkGC%TbMJ0Rf~N z;4(3Qx}s8mxUDG8?+E}%1w}LFqv2^?4QUG043lTeIi&{Q4R!zANEJRqg4R8xfj3A- zg1DQHLy|<&rO#++>A>NA<2hb^+-Oabdc%6;DyMRp+ z;J$SM>fp}I$BR{TX>(n6#g{C}=SpU_RfRfu;_s|J)gW5@K+v^%HtPTjgBm|ubT)ty=b zhyn)0>AFslGPL{u1sx_sfyDIN3Y(Y$cS^&zRsJ)31+*w}G>kmxz+VFu@raZ2chWdU zFq}pih7?*&x233|j*O}g=Ix71ev-+o&eR^+gH1pe2wYIK9(Y@T4HMzfE`&P8zWxw>LUfv*K!}0D$4a;!7QfAW#z;V-B609@E z&DAZSblcb@_2JrkNNZ(mR=ndfZbO+CfWY&C>JP1?P8u2c%?I|2?7w;9$XsG|7ttM{ z{Uo(mu54;+h=-J3`UGTBaf@uDjS5!Kq5!aiy`Gkqmj1V$>+g?ss2-LwL1<5#9P`K8<|>!<;L&ZoG*w=-wUc-K}%w-Lx#c+URDu1g^kNd(k?kpfyHl`A?)0V&fChwMNyyeG60tcACKbU zr134SEGowyf|jrU*ga9yFfvx9*WnaF~44UedtpIIBX?|+e=-jB*^y!H7l zgTZro_TyNd+-f(Ux)`yxKKjuGO0L~sc0OuoKm1F__tdR^E$RaGouSn7Oc-&8?jm;! z74%;f`G9})-xQby1hgF{nkV$|7HFds?rPQK!+3JbQHeT-p)Tg z24x3H-sqBULp2pA)_VUD0Q-ECsLBIv9cMLz4UyFM$}bKeH(9pQVlI3b(iC?b8(6h} z(`9*mf0O)?!&;c%^H96^jvgMgoEV=cUo3<<$L_UwBLV*tfP!bU_*$PH>lE8Ve6@;^ zgqJ*}J|O^~hU-=!iQv=R)yWOOc0_uCA}N|j8R@Cw>_q6V*26Pk)MdC|48}gI*&={Z zw>Jc(`b>Ou`2?ip7(r7|4fKJ;;*C53wV3jhGxaRs1OmyFm?ENMC5}LYEnIX*7#T|=lS<#^BYDhCM zLj~l-a%<)cYfE>3fDEP2E5`H0-VLCNx}?lD20h=P$zs@eTHPqIO7x}4jz=RPLEvNL zg8EFz7t+LO@!!i;n=$V4Nd0BzjFoyU7-kb+=YY~0h_`HmD>vX^{JPPOPz!eArf;05 zw_=|7WNsq7s0KZwKcv?YgSwzG`=LnFK+`Uw$b`!wuggj;GlgQC5z;g~9A>p(!Jyq? zqiHtPNoLNd)#5arg!w@=NhDC{xA;Jjy2JpFmu58CkWCgQT7{d^n_Xf@x@RvVeQWd6 zfL;Ic%yUUiwshf!nRFam4=(o#d>qglD&bHXEYrlb8z|3MnrumL2qmM=jG@=!j5p`oP1YMp#Gzoyv=RN6UPv-o z6d90D2!rKWjBAzdTKn8@6>sCX8Vv~AEbrsu3EVVl2XhGAX9eu-oyOp)g#Nmh;&l={ zje4&eEFWf2gSu%`j+;Qddu&MypM9+{F}3G+$?%q0q7f2hg;XgnNq9VE$mh* zu@C}(&HMGob6pP6SjS>JNt^03`*p$jLf3jNpXTX;&&#!FJ93JDhuW)@%O+#j2 zF&yq{x)x`O7uUBZ==5*T;ptyv>SFqR&duEW{g5^rZX2Px5*yMF=9_YDWRtQdCZC*B z#RJXZ_2)POVGehNqQ7tR|7(phN=R+#dJbeaQbP(9y;~%VCiLh0yAic~Zle_w{3;Iv zHV!x)U?gILSjEX#HBPZ(m?^~tbDfVs6zciF`v`{W=buH9e77E;GNSQtA<*!cohWcP58pAq%TvIh$(*SlweE zDdxQcix)8_E=%nfIcfs9(W*?l1-W{y|9h|R&RRxGegd+bw|AhA<~j?*g8}SRNGAjw zg+j7oKAMp?- zI0LcB+RV4>>PtpF6_xk-UhoScsES|+PB@57b2Qkf4-qD1j|8?!!Gu!ZJ~}H)ODmgE z2W1$Z(kopU1ep@E{Q~6@(k9!Wj^w<41oTW}B?)r2S$K^UX~ph*S6Z;*devG{SoFJX zP}z^km*}kvAuD~~^RALq6AP}`-%4N8H#qwhxYjz_KeN)gTB>f;wUj?Co-#9Kh_W5k zxnQheWVC>XWb(>H92B$~-IjU#c2lCFx{|04*UL4I^!ay`6@q`jj$N!)zngUejW`6s z6EluTn@d8S3$_Akgc>j{9KN3()%t&&{}-XwLyZ^ue7*_%ZJQ^^>1a(__VcB+_u~@f zKiL}qtC6j3i7`puBCOManKP|7+$))59_;`ySq)>9FZXjVt5tIL?T6piVM|`i5PZ~P z$xzr6CeI}q%f%|jg$YJuXkL`#2nAk&$>O(z8Q&{s(b0$h;%@<<;BqAD+}0s(@)*~U zmIWcqTDcJiHf-GGy*W@A1DB7b<}E9RUIBF4IynUGJ5TfQXH{`H1|Bbe3P7I$0-PHb7IL-#VH5!- zP=@Ce-2EVO_r}C%$h6swVJn2mZ>X!pX+f6eMz7Q; z_=s_>$rzT#Vf?IN3CY@y)B#{uii(=e#*#Av_@kMmUt-~4H}nEnJ^%Z*B!yQ&UE>t_ zaz_e%Ft@$FGcB*jU=I|XLGcfwen?qGwuTvBJPQ}4RRQM1ile!W6}9%*JbsS?*_3+k zvt?PlQ#@~hR&Tl+{=E}Wgf2sUg?9LzA3Q`C?n^6V_Bj_``=2{#dvLpCeEsS1`+^VX zK7XEGwnki9aiJL57=^qIcrSpqiSMjC)vZ#_R(8MdFtjhxxo@WXy$e~W!{l}eq5B(q zYv@MGj+g`081j>DN8XDQ1;+!be-oghp^L<;maPC{M`UBpNT63h_a@<%?Wb4;jlLslh5*v)E^uzaRL}rgzRxoaTpg z?hUmYGyiBo)HhdjSXC;lX&b}r@*My*A`(p@8=-E(`C)rJQ_Dt%EClG2HOUS&(`3Mo z^DFp0;1dOFBY?yY^40NK?$dWd#tPDK3+<5pqwc6i*?D#JM$qG@|9QSWP|V$+LS$;g z!+8dh1_I&ibH{)go!ZgvcWi#u6N??lXUzIfB5X!a9-F$5NhH44`R^lv(8;|0(cNDl z0jxDK|JSV8JuZDX6DjnsS>;w#A>GehPm8U8GxEKAw~`riFwDmA`F)3&wCm#g*X zJnl%nm(6F5c6iU4Gnx8ic&~9)<@Su-8(qn1t!Z8co)i7IYq!(4`aqLsHtMN*7>Wgh z^#JL<5E-(zs>_4~z|OG6<#lbZZDH&27eMBXcjTN^|ezXi;+x+Q?%p< zwBJKbjXdk-c39D3z{y_8<1L+zY-oF5gr~0&4zd(3tfEM0?Z{?5+W9}Yxnc46$O zs;iUA-{8-)F)!-)2^g!C$kjKl9`k*(JlL;22{Xk7Gf+*mU~<7$#(m|EPL=xw`XoFL z?9-}l=s&z7b>yAz`*!z7W-7ASd(93WIx2=!eWj+noM#Urml%?NrYqFgU2++pokX(f zXlrOnrW6fp5F8fJV5o;_w|MV0$XSPh{TkBh@gNnOK}(+E+U8&8{3sp&ioY7hv)`yS z5Ndb$&1@w4O$|frnt(W{LdZuE4OLHHOZ!nBQ~)>f>2%>(O6YYCtM^%=?uAaBG2DH_ z5t@m3!K4hpbf;&j9x|i%ErumV znF-=|d!vO5f$~e^;PuL9gN0j1;S3Tm-rBNyB6Kj=-n6@D8H^S9;q5ic^rQW_%zJC? zUyJ(>Z|m7>ChybM(#_`0p&47JQ`vRB*8|SwF0YepdmFDgHmR+rX~4(OdVMM2-uv?J z-?T^7eOY_;RPi?akc?%JK7CbHkobuJ)<{6i+_ zL5Wc~*;kTic1?d-8V_?-5nHVPNz7sLeGH(d#|PhK4oql^G8rX=Ve>%{iN)t(^_IS( z9oA1h7@`lXOXBu{EGi{2q=4s+kluJpa0IXbs1%&$i55hkS~Q*{-x*iZ{AxhYG1RBmZ7jRuCHJ7 zIt!4mgjOy|fan0T&%;yVX2RBpSMHIoY3XhLHkF?S+YwmbFt&MYhTB!dwgMIxoPh$`;VNBUmQP=GJl#^cVBY^=^bEnC*PP4-Va^!EjkPfu?0ei7v%~q5F`quzk-U5n-*M)+k8EHR&~flo$vRe zE+|8NDF&pDmx@Dy*HxGMWAF1mZhZV^qt~gy_q5EoxR2@5 zE~jZSvgtN|W-yQ?adE2wl8g#Mc19;71sY2~z7%=CQq^8srr2L$3rSr8@cGCamodxj zbmiH~?+>jGP2)BxKdut;BWu9GtlryZSERI;q5?e z=MT*056F-XP$cNJ^gc||lk{OlXxh|x8MROxBPyg>{{FbRu@RpR#_-U4m<-vsJEe5j zt1QW6|BbJ5aHbaBc>~`hs9TutXR)Qop;2I*iC9tvg^wIf!U1^th1U{B&^aq|3cHr88We4<)0VwEg^x<$TPb z+u)Iy9%P^DL-!hWgLzh+7f8V3Bv%>#s&{YG8_ekW)q30{SoVn3D|k62q<1@XwY1H1 zky*>=Wj9=7(bIfbFaOkAwf~o@>HYljL!sNE?|RzKwV&*R$*WBx_-VLz&h8{2A6>m# zztQ?7iKkK4zvh|9mnOmY>)GiZ^G{!T{wXgLEG&^XK=5DTp$#Rq(?aTXQXE1L~7seryDkZ?qY;r2wh($9x5aXB?) zwSbE;nKM{8TblbJbWnZaf|-07$el9SmKRJEmHc1%e>Rm&$CMIb=QM{x_#8%8IU-?V zrJ)+-8rz|;hD95XGdgzDY?Df6P4%5_RpG8yMDwU-2SuRJWr)3SJRNJ3K8O#sVj#!@ zc78{Zk&NB^P@-3gvTzqc_3*6tKJOqCa?D6rW&>^jZVzL)l(^NDV)xQo9VCoHiPBe5 zHOWv{sBk%hpz`p=`Y^)rnO{M{p)Q&hei-`SMjMP`;iP;%j|d(0>YIo4reqWC zyeNVON-|G9mg7Ii-6kWOD2q$589o&Y-=6WUW z`;$QEm-xM9(r}pDF4P5g)~}rCy6)9=^!-8 z!Q<7%o0Yj(3XcdCXJHmR9uRr*A+pPgm=A|eQa0^l$6B!LL`WpSgOl0!*x(Bc*dXAl z*r*5xpKGp9{4D~zfR?`yOv5zg&IBh-S(!bDhXg(O{S(f7oFoDT(r^Rri83vI? zh$69!?ZtbR_)rXC8TNrfC9`Hk4QG>mc3GOrf8QK+Oc5L*_V`A&17U6)nPWoibwlEz z9YoAH4Y4!ELS!A34rZng_aaKC4>yKoqYtN^kK;)roM#GxVmlMti?LFw2(k0sE3;tt z0L3W-N9iO$AFvx9|z<|};Q=BL%h=RXj;gR8@f zf3031LhTD9#EN$BUIEU8IOU**wdu1Gi`Lvzt_H|?o^>*RX{_oLdhKCQy3-;ynuTp1 z!10HcE>F-ct4eJD#-iMXr!}*@vM=0^`wKbq5q99Jty^x=fCn<-6?b))OFzxKC-IFDIg20+mai?ri%`$ z(?I8bnHtMfP)LX-P~f$suG(`prB5UBy7J?WsvJloFN-!o7?JEl)z1Ca^lxS|JS4akrFCJ9xxn0Ztii?z0lh6x~IsV20ZFU@;IDRE_oqz6w(!D~Eds z>T%bpBhP}UMk4Mvz2}~XAS1J>GdfDpt4wk9E1@-#{yhSc^bJN8N#*D0+wWCX#q_=T=&*$ zY9#!LK=3@&9ct^}+2rPoS7AS&n6LEYZ%(UQQG>M!i<#fb^&b7>m=kG?G`?Hcwt^?i zOZsbH^GN<3?+Zc(TCd44oZo|@pcD^7lSAcvJ1Unhy@&4EklUIz9a|q?fMe-Lum4Ko zvcKmAVs7(ETiIKHbk7KgUuU}L1N#+^BXH7ye!o@TL4%kv#$bXZKIp=@)5CrD;kqlv zSZ*bP*m~xq8K*R8SXf$6f^x?|!*oISbhE(C0#kNLe``MWw zVXXQfOzGtWf4q%kUiwMGEH!7-Y=+hTl*hhUI zrvk~+72t6KWr#_nXtSP5H_YWmQ+x_B5o%+mu0VjGN5pT~Okyio^|*S*79@Eo%lo5Y zXIg0~^<6wIN7Qs2!O%K|MsD;XF;WgC+lF4Z&G26ZX0kcMOTpKl9usqa4iDpSeUsO? zYz~LLF30=y=4+m_kLlpo9~mF30W`tGGdbKQ{VC-O<}-|XbS%e$E+>l6N|x*NG&?I5 za&ctc9V{voxQ>@0vn44>yk}*FE@A8Tz1_#a#i->lO~?A6rswqxiGUa3b4JLoN(LfW zwk1Grl(T;(X%@n)3;2sDAy=D&CqLMwN)3yI{jz{CE2T1vT;E5&?U%SKrQkJy(}3&9 zVwyJ~on})1b3RhASeT3tEOx7e54MDdp>@*@59~ixckdTa`MLJqhR+pvT-h%#&7u7) z*FU|19MboNC}2+|>u1N)XwloZX|i2^1Pn%Dg`mSP$3kB(J#SahU!3bUWKuc-4l!o^ z0wXiKV^`edB?l0seId1VXk+y(i^*Yv20c7B*lQy@g$%m$>_fkQmG`%)t}j(iS8eaQ zbM^Y&HD>?tc^}-?|C+a&ab3ADNef@}{RrsXdR>^BitDXhf{pj}uq*r_CA8+YU3qrt zrq?KTZQH#q&rl(-usiyubL}pl+?ezEjLg-{eYlF$+r3--<@|@i)!?+rVfWn%prA*V zbz!7vSJyQdWJK7}cIe)ucVeKV2_|*nuN7oKvB5T|h98{3qC3%q-qj~+pVAe^?2K`H zd1t3Mr#1MVQR4TH1ZqVEE61sz&>IbKF+#j6$!}7l=5ZBc#DRJ@ShR3^dcIzbs{({W%@v4b>@5gS73 zp{y-IJR&()B)pSDDu$k&lnzuQ2G(c5a zQDC_YI5S4ka0;30&cr~)6^9GpL$I+dZ5Ctu5~Ce%V(Ih4p$vi^mXZ@X%KKiKAR~+H z_Q3umYuzgMMQ!y-!EjRpp2=B56cSV|FStaSM*oxIfXH&tK$bh6N}iCsoA8)OIhrA} zL2PG_!Eod(eyhEtA$W`F4E1`C-HOx+*ywN523?lBSiV%tZC{m})7Br$>#_t9cy-aW z!@(CpSHrbRj{ENM?vTr)1n#n2)j^bJM`^N6bbLAQNu3Rk!%Oc`l5E(W(w$Gvj;HQY z?x*gK%K=sg8`tvx#@2#uW&G$VsbY4b~oqZE&qif#Nh)XM9J|dFG76xqD#e z)Vno`vdi>sqGd{(25D-_E}7(CBKg;v*)!){S%`PrJe~*@!5fW4B#O&GvruV0&Ili; zY?xqBy<-^+Lp}B}{4M$-v>1dp)=Oe|Zw*o*)y1YkO4NB$AKfN5hz$mPTa1G9*L?Av93QY(qpLGifJR1wea+euF!$`ONdL_m3rt+Ok zyiM--Rq#={pT#V!6FG}Q-HbK>MS>&JlQUYU+6vBO`_$Uu%jDBG({tR)^EC$hW-#wp z>%8T0Us>)eHHpJwc33x7x%K9vSSzw`F`dI@H-C{XnC-guK^E8E{t$l99{rQ-;iV*J zl$*g#UVpq*l39Vwc%6Z$PvVpAIW1g;PpD*d6Tc5y*1QMClH=hjH zxZeIUL7H;jDd(}!_F@RP2O3W6f6HOts7^|z^j1=hq=z#IvYKZ(B!yH`6yk zH;m2_FECAJhh-g*a#0!AWw4Zt!QQosXWosb@_8G836(QSA2sf|5P=`ejW>JTz3x+~0U@@a)0@qQgLor2^&s&tS%=)pD z;q+?{S!;7eqh0~1_yv_G(39R{gvkv8R4rx)W1Js*_3WYWGMI`O0a(6nV6wZb$atKS z(8EKJs%IGk#Z^#v0qus4(mW@{MQxM(64JzTr?6;b=+9m<(EeZ$SEi{PL(rZwV6q#E znBOt#GC)v`hpXDN-(m^a9gSK^lGpus4jQ*ida;?U4knAmN*JG=PMT`NrY(UR64D2y zD;|$KkOfOFnabd-R!ysuAEHYAf?BJ?91zZ^3M*HJA!Z`=wd@6wcYsX0JV#!qEPY}H zU>Uft7(vTl{986K0Jc$nAFn*odL1r_DJat{?uSXyRo+im@;pAzH_(J0!a`bwl87+8 zaso!5>IX#WBU|3r*WAuNXetwilYp>5T-OBuqm4I11}9UL;&qWGIbDsu{UepBMW|Q5 z*+OXjD^6XF$mi<;xIx^T8l#+C2gcxvI|6uM93(|P95){C3(Gvpg0Y1OhDHV=dXC56?HwM9Qm{+{xPAJ-NT5Ts5NwDH!r^e;`5oDO;C%j|h4KZ)YHG3!st{oB z!+sMB=rRUTgpsw5K=|eDCKTwfvlj_o(RPR>rMb6n^(4R$i^Dct|1jB#h@u1&gbSfR zFh}(h0)>ouf=U8L5z5;Mrcr8)Rwl>i5Plp@$~zoc6G5H^XB0Ot2Bu(VQka0hnl=Lwxk%E(wWEK?&{q1HNpkv|77|47#(ZOg=a8H4qV0AzXlwiXqD3^t-6s4j3_5 zkP&bqrJnzC&Tr4=a(}G)wQxstF_j@``x^5rxs>T-%iXkhccFAfN5H~w=zwP7y!Fg` zZL=G>ry&`>2CuHB&vt!E=WFNn>Z)dSR_LS_`^3JQ&_Vii20KgtVN$&HfFZ8z>%6zS zDr*V+1VwkXxqJ z5Fc0in&&krg1O>@7j&2Soa!D2_H*O36)zH1NpyeDeq+ zs}6UrI&uZ4mV^l4wTKGr1H;0gVDGVuBs4&GKz19KX#-OE*4PW+;n3S!j5^UX8```2 z*&p$r1h4g~6KVDrH+UYM|nQ-6j zu~ftIFhnS++d8ylM!wIY9=1}CP5xtUXMj~h*Mue3}lG6F0;dJY`Rsy-~K^2z`-=F_9&Z^g`gN}?`d|stC9ZMxSplM z$h-g955pZB^s1Em&KlS@0NO9Le{AW=8;)!L8#5sm!Zta@vph>vH>6KDvt>QMz&-31 z)DG4tgPX1jeLz@Vm9H61Rsb}U78UP`^Sc&);{eDH+Q9%8Q*)Bv!lIR>rL3rNsjc*p;4Qp_Dnb zO^2SHF-O7Wq&phErbi3TkE1krRN>FR%io9$N;_wnDd>EK&Vq&SJ~lnCiF7MBp}W(n z7{5L^dO|-#nINzHpNbRgCDQQxX%e*jfH7Xy*4H0dk-dX9Z{Rnuq_0`oK&TWeYfMd% zd#@;wl^{`MBa!M78Il0JK=~HUxf@u2S*VfO>E5Z`RO?8nAGGTH`6TpYtUeI@N}|Cz z2_1mSi+2?3F33U`X=$2wqSy39HV~6a^yEgE^hT z1!BR%wMhuS-JnLxNF4r+h`T64#6e-DL5OJK3SzLs)RoqXnvpt4{_;HK3ZiB}S?9;apVX`>FI7&jFkrKvxV{&kt3%kJEN5yjD%UWL!sX}mU2jE=>a zty1sfc4|MUE#QAz0SlitRi(*ca(Y&dS(#p?+1*x<;_9G`u2_!A!#}2e9}`QWh;K&F z2oQF>;sqXO2R;s{gytI1{65YNuDkB1h2D3OUEP5lSUjLf-BzpC{`Vh;I*#w^do9@qfCX&a`l(1p7}iow%1$_XUkcpQlZCF=1Owaa3|UYXi%=3cb!pw{_c* zkAq}|G?*k{IUPn%tH7clnIpXll9ZUTto83@W}ArtmB#1mZ5yzgUs90n0dvGg-~_y{ z8${we$qRlM499nZ>7T#$|MHH#0)@uE0j7SA>$a_%?%Td<<`WF98^F&==AV;~z#TDd zL#GfC#wd06~usA7$$AmX$JGcYV?es|Jh9;<+CoQrJTRM=r9<%gr(J21w_Pr?OZEMzpS%~BB;!W?28ra=+Kt5acLmV}5XjAgC;>803y2<8Abwf(<385ERq~Cd(@dyBlSW z+^q26CYNRq)&|N~nADrKkmh0xr7eY+b}5!Jj>UYxQ{vmhcV4zfULxp9Rt||3RmMqr z9@U=as^Q5BN}NoSU)K~8g{r2<4BMEy<`5&$3(0{ra<1U1YJ(~1pj21Ph>v3f3!~|H z-5sbWBqkMgqr(`s zD$s+#B!9W&Vf>#fQ)m}4x?Wo!?+gNl`l%dd>76WSvi-9%ih!4EAqmw-+n-71d);>H zse-6fXRI1*PCt?KeAzWbT`!G$CD+U!UMHJT(S$@k{e{6bKlx8pDoZkqn^Bbuz>YuXx|TB-1U ziKFTjucdG;D&iV$CvA$|M>;;fJ?jVZZ)n%e;NB{^KI_0;Hi+_!`Q8!${{N651mvpCe42*PlBMdoo z2na(X(g=cdHw+!pNOyO4gMfr|mvr-=-*@nxa9wl4*}M0Co^`Las)8E<7}i8qPzNv1 znhGbB%Q3R<-9rEQ3>(3hUoGWw|5i5(_9j!ebG60)-5UFLUTPY%ZW~F-BbLLi&Ddre z{UqeD)tjYOrTasiF9b|Q5$91OG0{{_8E7J;Y0{dE19&8A!CL{bvgLd23$}uvT9k<* zOiRh{aZ`mx8pDmz_-lsda6D@CN_jy2NZQ11R}f%k=O?2<)h9)d+m)MZfmbiXpU3GO z!dJQR3ais!iZ%b<`%J_Z(j$+1o*KRG#}}TMn`KZ^q<5`pKazA&7TCHyy&l%a0;se^ zdLs*6MMuOrLgycM1gzRUmy)PNZhX0ilUBt6dF~)w;>_WC z+2cSq+4BT^qq4s!#9jJ&2bSD}$xrz8q&2ibME*V&yNe6a`kZ9yblVXFD4)q6lvtCC zSVpMIOOVh@a~-ZBDA%>BC36J5{xo(ZM1y9G!aiH26*=;ah(9WM!_uT3-9A^9-iEE` z=oZck(a5<@*;9)#;s%1oH~KqBPwJq>cvZ?|841w{{eCj%HVle-J!EUf2Qp(44p;%EolAOdWxaihrFzQe@q`q4~K&f}BAVLJ&v~-F9275S`ei zEe791Emn#wwe160nf_bbFU~BJ$TE1zT+XG?|Lg)ocLQH$5K{iU2ydkn@r@ielC>yhu#IW z)1U-Dx`boGzNt~Osr>J{&)wS14vzS}=~}BBwbw!J(^=d30Evk=EM@M$xVyn<3PWz6 zlbWHk=It1mW4FS%!^@tW-~Jxf-a7m-W;PzEtX6Hd3sh>syv)81Xp5ctZTTtLYKK}vG2)v+34+D}vt%-;U2aFSAdb@*|G z#3xJ4`FUsSUNLCgm@b4LrI`ggV;eQPMtgua7%@m6)=ErSOuI~lP&TJc8PWL@3Z=S=a zTt%PPe}DgbJxhC6zkYQ@663Yg*Z2PQpm<-*?e9vVL=Jlvk`i%|+44jtTmR*z9L~yg zB2^v3WYh$VUSvS~U_zWcFZEj-I4wAPe~;*De?aSp9}@!KBh}k8FNB(n!{P0Oj@e&m zHJGw)rEf$oBMXourlJmD#5+7q{{ptvPIg0+{h)(CE+89zTZC zNcjuS?jH}!uc!n7#CTAU#r*Xydlk?;^>22G$L3WC1IIzXrA%o|q{r23=_N6}OkfMU zaT9nmq9*Uq>LFQqdG{gPPDHsW&%sa*n5uvmtgMDRmVgUaf!`Zv8ty+@;I%aSuGE2! z`<)f$71(dYZ=IE?y??YNFZ4pi7z5o_vANUdDWKM;nJW?5gWRo%7p?ojtQU?zL-txr zZwhu9p?$F)07(%h1Hy7x4*@FIwI(c1cZBn{Jwu61L}LVBu8Ajq3OEioFG^%Q>y_15 zt^Yd&czC;YGZy~s5Z(6A?JE2CYP{d!+e`K0Yf^WrTHLO*exBz(^!u>RBO3fx5;^>L zWT*DH#CNXh2$dIQSK`X3_528Tb?*j;eMqNCxHbN``M8sRkZ)}wBOgU3bR%GL0GT`h zzz8avHk!C0MWTuObhp-Z^UYz&x?o}E8(hI%Vwe4hn@JlR3kA6*rri8~w-k^HkCzIK ztW&lg)wyXj`@Ks#XZulnrkgmQPqXeM3th;W)!N%}rax zs3V~11)Y6gJkpctR{{BOSYD1FM1QZrrbgzZYiL;%ftZ{hqSRt9CfR@ikHAQx2^tnb zFZCDY*sxx4(nP?$C6^wCrc1Vs-;pTrPX`F=-hSN1iZJdu?aVQ-j)AlRlZiEGl5~m7 zj_5g7f=U^qxhTR}q(@Uts@0=2M=1YqwYqxJJUBbY+MBw)hYAEeBNqy23pB{BymITP zk(G!##Ds>mLvkI=00Cn%F z?CS1AJP6&ShG6P5$W)%@1vJJHOpGSxO^Uj#N$22&h>E>42`*19@!>_{hUO?eey4*gjI@jVl6?r50g9Op2nP-aWdQ3=x};2ht{GDsnAmK zqm*cx6v3Kif4MWWxdjom(;-ZmjQCnRT+&VafTYc+5eNNrz!f;ib;F=llj&Ry$56nh z8Ff{{3HKRpz7#+hU_S9v{1##V8~i4l<0!OeaZPw=&5|c$`X(-`W{?6V5X;`tSsfX6*uSMLsPRG9ikyNwz znitG0lnNm+BCF95E{lmz?D3nOHx3HftJbM7c$~U+#=GwJl9+HTGW^m&ly(tm^4zPL z(gus}@#M~5#QX}Amtb2%8_Y|J;r;CI?2vn~s!_Qp@&uPU^(tqHK|?9Zx2p*Ol20ZW z{T~%N28a!{95mkrZZ#Q;;fP*zLqDaXD^&A6{Qg*UO)nqS3^O>v;KZSC=%K!^2}j*q zQQnUa)Xy8JvsQ8CSARd&@mh4hz(zO54A_8lJ1v9bvlFkdAwnVaK1BJnA(l%}sE#MD4bDZy=xA&iC2;OPR#qLukk+_vX?E^Dm&cg?bk3y7=uB7z~Z$smXBl zWq?V4tcF|crCsV`B7qkRCE*gDR&(^@S>x>IknQg2?|Yd%!>H7WT2a~Koh*^L_udt? z3Nj5>yBXS`87tfS(%elsPGnN^bbBLt=Y1C5WnGmM6`73uVp_B1{2c^VwK-Ak5fUdy zWh&bJ7p zn{av$V`pHhUxg7?U(-*?^)JhWP_Q;{f&q%8S{X`Q`;xWeAclAcfJx5Xh!Zv8z!bf6 zoR%lDLo)~t9?e`CA)}|s_w5y}?>VI%mVY|ZotT~A&-~OZGg-W_PuJ9hc@3<{f}X-Y z;BMxs_S6{$mCa`8>-u7D{!!C={q36gr_8ralgd-?Eh?Wfl&y%@N zyhzdY@{AQg%DeMtoor^rCT~9y36YWL)rz%+)mTeOBek+W_$Vo&0{SAfna$RzgYs2* z=7gVQQ7#&AFY#6H#>783u^;f#wT`xxQ?!Gx%PC%DG|}-bjjXp20bD<(>kFNk^Dq zsvewtkTjr)RhYBA;6W>|Bfx(9Cs9mHxorbgOod!r`j?^o@DadAELM2qr%N6=oMzMY z!YrQFnj`?PV@)Fs&4?v_$2wzPNw~4|S){)3Hwh4tstp&HlNk-;>iJS)21xa#82k5G zPD&sWR`VxKtY9K+Z4`Gh&tVwIvg9xb#|=--Jo@87166-J9G~MMeG8Eq9zi*)0I=7s zVP@)!UerE|{)8tmgjoaqB>SA!Q^Ti9uY+_Z&VAC8UMlK%11U*pudXdn2RnKZ#8iQo zWIJ;XRD2k&j>(1mDP4xSa$V=CRLSo#(3nLAlm*JT#Y2QnlcDkXVF*qscy+F?(4*uC zK$xDbT-B=)#N&@oUu=8pT2#xJZUyk=LCr+zxSh~DaCZV61$*NRr(_iOy#72SgvmvI zIuC_#qp%r$7>3i)RK0;sG1GS60y&VOM)qds2r{NW3nT{;-kEz%DPxtf6DeXfYqV&Z znsT5OkrfF8Y3!jXQrFI|=(OD$0w|nyv8x2Uhdjgl@sX`*1}dwjO0;K=sT!^1a*4DP z3<*8!3t@#mp-g5P)SDRDBk?p&2&G9P$b-8#2~xHn(FiSiGghCTG( ziR%Co12jQiBkBB)B2G4Ndq~VzoHYXZ3b92Drm8>HQcCcotYd^$rTzGDO*12=^RobY zwYZdbzpJ`J6T*NN=w!BQ3%-gFsEu>uSPu_mW23`=-X#^z(A6$bu zz4bC}`;0j+zNjkd{IpjR7Z)FkQBo}dNXf$&;0>4BE{%G(26NICxIwl{1noDT$ZHuY zr>J-|SU!|cSp1Xf4qYc?Q>#H>qZAw88NhSytsx9!#PR})k?9S5Sb^Bpu3aCQGl-O- zTP@%Z+2@t`Ad!kWR{d;_9FX%F9^P3>m98uJ1FPtoQVjEVw#N)ufH2%?rDBOk zCCS<5kG|D#nWO1Meo~iD#>AE3euNCYH!$7g$yYQ!As`{g5<^t7;02<8N&4QyFK1WKG#__%0dzx@u}hMZAb2fzEHX`GBv8?Qs#%ePo}!MiJ>`QwPjQugN4w9@ z;HQP>i#RrMH*GgvcYsI!#8&~&RwO&o)tSS!t~tvS_rYWKhClpGwkiP>b&M5ZhE-$r z#YF=u^=UQ?t0!~w`U6VfBO0X$OWULr0B$`~K)!-sDF{2{ZqRuUm?m^vnw5FwvP0nvdlB{nqdSOY%laveSFUJR}?Z zi$_Y3C=pLVDZrM-)B^#;w3EUd@wY}xU^jSVKywQNA(IiYO=ftCDB4nTX?I??f3%S` z(wyEXhw@|nGK6H>eD8inL=>`de>}P&f?4~{IVMf!m|-LTWPIn_M5K$ha(IwBuS9LP zrqNSyNDe0l;0^wVq7V*7Qm1YMGT*Kps?eTh9~D0MOW@&8O2H4n?6Mh?Yv2~A871iL7Hy4d+9`uB|2V)t^^ z*YjxtHjXS`T8ypJ+&kxget`Y#)=xG@hrw`qXcV4+={PnIjK4dD8;a+JG&;r@n`GqK zZzRST7hSNyC5|J_{2Gb>GouN+zlwH#=!nycs#E|_6U#Vk#t`}A@YmB+)~`n)L@Y5n zv@-O=Y~D0_SYHAPS3QApQ&IT7$}C9(gdMmc#O5gLml1$^o8fQVXsV5hMqcD(v_;j| zML;2g8^ReVS0jHsR-k=TfL`9dLjgC?GZ(M1$Y=*-lVfW;C**9^2d5U3D(Rp zEJDHi-vD!#>#Q8fC)w>tAbPT$I%|LpHnk9M#OFB}?(nh^hyxpnZeTjjnD1)Y_mn+{ zwo|68pKs6m|EV`Hv8IS3*4SM6KX@V*mW0}eBk}xrTy_4Z!A`tP-pLXvAw8dw9buW| zP~_)~h*t7^Pg=nUYG9%85+SGvPp}q8x|0txImAXB0Qrtu`jH1M1fU}ndj5m&{_f7( z(I8N@&G_w-EV}i?_n571(ZR8o0CqQ(?DlwcICZa`zyGJ6(ItK}0`K;>b!XQYRbtw` zF8$`N>n-2>=d1T$LzBO6>vw8)^AD-aBF~%aIPUE=+K~?1y1+6?Jo^|d?C|&8(qqV9 z=42Hz{7b$n)}z~tE;GDSs7yeDz%dA2)^Wy{V)DLFo>>0Q#BxXZtOWA2%q)XE~#Sn+~PyMZO}R;C7}(k+wOU=ZEscRFiyFaS>y zo0=RYJ0~cggwZ>JF!x}oXLfqX7+5yI6_y}5wZ!?Mc8u3@M>;U70PQ;J@Je>u5}*em}(|F)Sq<%*BsoWD(@XS$Z-U|dl(r% zywD{(j0;PmoE>9!U(R0c)}Aq)t^?V>clcxb`|IIuw7Hn9o2HL7jdf&W2_(0}c_Fxx zcw7+=SWpq%pRNA*&o|>Bs%R6vdQxFF{7#UO!%KN}+X*)%rNppJ{!~v9)CDG{AimC_!R*n7924Z4^1# z7+HNliAHImkpp7@uP8Bp0~=jo#>Soi(O8HA^LZnd-^6VU1^$lyotgz?ipw_!j!msC zf07dY5;?&H8&_9e6)yp)b2K5(Ke#&^Sl?9--yOsH%V+vEO*{cgd8=@agtT(NjHO+?O-_cTTyo+`h-lt?{ zeyc^{iD}NYdhr;lGS>D&eu}x2+X0P`{P_!$P};amGLSfew^ovBpKo-?JMk;HU%Rfr zlChB`VbbMS;Ocsq3#lhzd(Z>}eurZF>m~Ri>bnDX5Ntrn0m6|Hh(<5zjk2eb;{`=_ zOBS^V(GZNwDj=Tj4B(qK66HwY@FxT4c{-@0Y4O;zlLcALG4iaD(w&!;0>QQ=tls46 zn96t`rJ@+{zfWc+f&1ApqRK1Sw9+g zH|}1fBIZ(xbh2-So$W)F6w3P!*JepS%c>i(ZA)$C%qG{JYdL~FAen&GVRZ>8M6K-J ztb6CIuQ)bM^WQ)>;PiX+i}S&CCA}3+T21-NaEqp8@}-hHX^}%orwyLi=&G!y6^ixn zSSf68Y#~cg*aM@b$axQ7XRiHpj#MP^hyRoj_D`+#c8issS9|AOZ{jaw99_>aG_ApY z`7%k@_~Cj^ZKd&x2#hI{Qo+l{9PQE4`_B=h536j>OO-l0%f! zdg5uk+%xkRx@R*YtZiw!$F&sEXQ%w}QpQu@zk`;UESl(rVU2+g1upxOu%L#*R}**G z#paJycs`vQ*uT3}qFHP?k=}8?6)8yQ`J`s5U8mUJsGi9GTF$> z>=}~2B#{3RRA}sv>ZqN@)e0nmcackELTo9M$JZe6y4BZif{w-S^(KU1A;lnp^n~8C z00LN2Vb$U39S6yng5%9AB-SMv1PLk-V#k>AZVakD-fJV$#6nBGfWQwO&B)C*;wG42 zG7zt~loK$I$JCNdJCL5D%xFHEq-P_Kyc0T{w_}J#^PQWKvOWvU{=jEx`2a1!S4hSm zK@DY88AaCL+EfdSGGnUTo-odVvfR`oO%sk(2g{E{ia4SpYzB~u(Yoc6QiC|< zdV+NEi*wZ~Fq4xdbJGvTk@AB2bZdil@}dSnwCoSlJw0=*dVTl`mMDm|&2PsX!SkpF zhpEX`Xhn_@tu3?48RBIQi9d$c|Ln(-RJ`mP*9$weW;>Lz*E;M}wwz5Q8`+MWwRwHe zwY~cR8#gRcZp0?N0yjD**Lk}<(Ly`Q8bP;>zCJU2Yg*=t(`YTcPm0^{p8J{xm%;6Z z4-!$Xe2YrqZBJc!v!Umm}5lx4_A(oY)I2h1W3%*HBvh@EO%f)k6VcPgAys`LOwC(^K`6-}R+$lN2WK?;D^c+XLO?h4gu!sd7?~^>asM6{%TG&{Waz5Ix zJ(|N+$6@L;;$9&|;zk+~i$I2BLMe4NC`(c#m!y~e64MP7_-j7;9TW7I84;G=U|jG! zM)n^Nc-rFOME|_aWM^9C94AZr!a!OKN-Uv5mKZXrHOUbKU!u4ygorWZ&t85xyvY&W zOis&axvw81RMGjVjiFkIX^#0?0)xO@p|9d*VQGJ;8o*dWwE{#e#d7Jqzz>B{;};&z z)7_eiv}gqdqrs_0-Iu*zhBS>O3fx0i$Ztt`Y+h#zk2?vy*LE{*VH!p13;}ExMZ-yK z0egkqws)?9dRXs#uM0N@bRP=i7VF!8!wh9S6CkP88xxF^WteAYinJg>epC)OUHPZC z4TIhfX8Vo84RjMJv}~YUsJ&t*5Lw9`T0()#%c>9yPRBHxf=eUp=dD@w$J=I6QA*OF zlc_yHKQn+z8cCx?QPwyQX^w0}s^Y*4@}O`h01;aH95KZM3(zw|?BPcK z_5I{fKq)$*LPR%X7olIMmX)bytuM(5Y2~U$Vi=0*j>PJQYN>O3A)!fEL+Sm+C^nVJ z95K^aOXRA)&h3KQ5O3f9OYE^JhV!GH&k#>5)ua2C!#-`+D(`dZz$WU$aZe zCN1$Vi?7ho)Db zXQ^H-q$iJ23`Olk$a}9?Ou^^3-8jh$(>1k7)!*ip)9+D7({|T!BUhc|!nt3X;;G%J zUlh-4WQsYSbDoCT1DPf>x=go%W+f1q+BRW!2TH+dp0*eiT4ZL^j2CkthtOQnl&Eq^<;{Hp4mx(|*f-YOFGalW$TyZ35Tzmuf7Cn-btlF)+5x%tg9EFPre;$o$D~ zLmo{`k;|~N-t1y}b4YCIu^Lr;=_%b(L3GtU)F9fuLi_xe!piGjI*CVX?Z~=7!&1>6 z&x*0mTlb2w(6j$tQ)hM0oof4eN(!I&#kxmR$-i+9ThWFEWVN@maLh%`)#BIhA0v8Mlqe<*3Gy9aaV)lZhLZw6TCI| z_%vl*jLFM{evZnUf*%?KYkbJKA;U14ej0bp76}bwAe&4aNof-rY&<=$kAcexO=0vp zJCc{DFZ>8EAZThZz@r({&N32i7g0eQR}6q~zZQA>9Dt33Dx7l}R#Z^*JPT*)@Q`Z( zjl9X$vi^hFBqo{-UPnS|t6<1AFz|fBtBSj_U#{(*Zu^z^tq6UTy@HzHQhkA1Sl#SJ>wT({)Yfhh<#Z=Zx zKY0V(5*)_k0AdZeCu{8=TCCa*j=!)BxV`hR=-O!+;T48giFY4PoMl`Yc)UcJ3o<|4 z&$D7OKpvhA&PHM4LEvrj29cvEY4EN~CcOKubmyjoId{9W<&Z>X@&SuN1p(J57*+)1 zn2=twrx1`W%|b=uREX}6sqgOHB;NRMs_ge1rnOd1VGmsDpx;+vVX2#FXnX&zgEoD^ z>$D&SM4OF{r5Ad__Z^buN$xhF(fy2_ThjWujE1$mfEP|Xwp@H!5T*1p^-Loxt`y-y zb=M?f2pu>gTNq@r-7imE3XO>0WQ$j>(|=T?CBz_1qX!+n`@E zxaCrpt&En}5+c$&qi6~A$*nMk88?w=s_~@xXtrsb1_cW~$SMm155)=-g?X0#?WCO0 z@7^-=Yq}^6Ktd{_3jCOPhA^S!+S)YiaLY0}yh*x@+zHo{IE)I+LtN{Zze2=|O_K&n zT>`p#BLY}?7V1is9*D?FHZz6a4Golr$=#4T?rUEiqURJ;0g;$bYaca<;0Y-LlrF(~ zsF>swQfUh;Z$ncGMsEvv0F28W5mG6WKFy%lW_Z1?+@++ZsHcrhaMA(5@-n`=B)*162-0F?b z355z5JAfN=DGLe43IdC-l5=d4RbGgCN}G!=ojGZytL6X~4YFyr#}%vJHtEqL-uqUs zpRbZ}(r-`sRWXv6=V<2|SY2##$OHh6O2`=v#Cb$jG_%aA^%br>LcQV0kr)%<;OlZ_ zLX~iY3@hob0YS>nUwM*H#%76=)Dnd8{b*W{g#O203_Fe3DU&ugRKztz4vSlT@DZ zx&Mf*c}G&EHQ2Dooz&A)GszV|<`ZJ`tx|$@9~_k_YPGc;E7ADx<6dPE(BWd)U|$*N zMxg7i8a0&~p&^WliIA5q&AHJ)+#%Yl5bvZ}IUkzIZTU+(2DJmPu;+bxvE+y@kbdwO z2b6=BN23|UGuH+c<0e5{=D8)#`kRd7xmAV9}kft>-R7^q4m^r5%v4}?Vh_X z|BLzBZYX9dWZV{(c9%rTRkAQ7jgfY~E63LF5)&J~!&O5V1$vz)orvO2$t0 zS9Tv|7DJc5GKzftNgaCf&L7J>lPH&y2i9>-ODg--F^HNxnUrCO?$}LUJlp=81vy9w zPv8=K-x_`2nrj3XJwK6>id6H`niBBn9ho8xM1Qa!mFw?~Qn?Nqb)&y$A1!VD#|>_p zJxb@BYJBgz#P`WoTx>?pgl7Z$H2LJ{#P)26XgOh@JBPJ5km{x;cDAw04FYiYEYS?4)qsnK^SyT{sl4NIjQJ{ZJu`qEZ@?(d0iYH-@)lcjah@`HrpjnD&| zB|QVMT8rTpqn(wqPyMKA7Q2M$;fuO0hn(m}LhQ{iUZYG(l%>1^V9~`Fq+Wc&UgE$! zLWJg$?c8eKEhVME3WwSKjH^Dd{6}XG?9<488(Cdj1Z?Oyq-WqZywZUazIXH2N!0Gx zcvtYL_c+3{Q?gjjJi<|6l9Z&j%)}%Z0@NGIg`6lvs6a} zme#U_eF4jaZ`-Gv5J-(r)d+ZqX@nnPFFn)?sJ1qIkHqFtP%~axfxu{{tdxMwvD1t$ zLT{^AkTJ%ejJKNa#nk%x2h zEXlN5U3juwg}AKrC9kG;ZuwBEUUpTv;vAKG_bi0m;diG{E}8V;PG|YJTu+Q^HFpeC zr)fY=y3I8T$T(_o^6jbGKn}*h^3bFUD<2|hvC4hUVR=~k*2-jHMx%xsVV%l^rA3&Y z@<~=$0V}2~+ePuBCr*fwA_FTE-)6WFBkAo-hk}^HyB`5TNf4n_nshUqKaC7tQH_5Y zuI!pi2Z3S0BGKfamH|nxyxj7gn9s-BiISo<3Q=#@MgK(cbDm1jp-`iF)eOOY#gUlp z9&u6x>cRBl-QN)CsbKMY+;&GZ~y);)QibHK{R7ugJDnSEbVg$d%a z{O${SGqb`i*gT&}sKL5FMFpIHxL9QZQw7j4GvyiaKh;`87HPWS-}}q6d&Sy!G+&x= zAW^vSB%wLVXkG>rm%gz%1OqD`E?sbo$Q zhCh7=cPT5+eW|QGoVIllP$rgxvJ(K>vK$p0isj%K=jspro{j%`JUHJGvsbed6KqIM zWa^htDt#4{xRpqoqGa>~&<&xnKC+BZ1e=mk`gN|x?SI^Emn(6wccg)2M6`w@BSE)t z)ror1)Yu`GNXFUrdPNA=I<&*{T1JIWp|J1@xHvMNqNxlKyUk~P`XN=@Y0KH%28orr zN5i2t@S~yQ>LH9TwOcd0D}OCAEN_%GDaE2`hPIKlA=%+yf3i37eK}w>`x!Fyk{YSH zuwXJ3=dg_YCpwdZQrF7ZVTYVYg8jF{O67g!9{XxK231x@{f|MaERGBM%DDxou->)N zkj-k#+NIdcZIGlNPQRRyE($fllq+HChGI7*!K&l5`XO8DVGhl-qsIVqSfmhwZSQ*~ zN;MnXi-VEWKsj_YhZ0!JnFf;D12^$-DLWLN;|osXeWDocux=M?+#iEkeoCXVYZLR) zk9>Zz)3XJB5b}lJ-35j5+#WS2@ytk`{@Q9!!}4^3zmg6*KW^$CGzYDX`+>*Fl&kn=j)KbWiJh7H+bTS57C@D)hkn5upv}TE_?2lZy zUlLm2^}>!jB8DR(gwaODBjyXdU&`1DL2PG`Og6 zovt|#Xbi}j&vi;VWc@jcK}^B5PNOWEw{*hz*Zk7*IYEx=gp_DHyj$Ek{{U#8HxIPc zrZeT0_;==2kV!cQe{1pSZ6O-r*elp4GrIN3t|5)?LnF0mCaqfad6$-)HXOAOa}u0; z(q7z|c_#pJQ-d`m2!sh3EF>$XQA>|;rKOL8LKwCCLg&wWCro{qyw*snLo>Quf!^pD#4uaL z{JIY>O!mDyg{||m-!4-ER5^5gC zg4b|UuXTd0#BCNE7=X$QJN3vJDNrZ{mH_IP(v~~J@z>nilHA-o^B)E_DTLez#2DoU z!7TNO2+{#j6ctW>| zOPs+r5Zitx^?OElXg1^wj^2tS7ulct(GA6ddx{eo!SS@cT%Rq;cTEnt57&NkSWZd> zy~b(}7gu_=TG(Q8c9UQqD?`wuyV(;a4`;MOCW1Uc-(%BxJpYZt6AQVC^Saj!hw?0F@d+D+u5m*F4ZLido^uFgGmF^aslo8R9tCGKrODI*8B#PZubOj_ z6F^9poNMFECSoc_D)7WWXPfR=nP+PYP~VEolgyQaN$??7m2k@&{nJK=KLZqF1i zE%U1#V?tLFiVpQ}ceHT2@jE0!6`yu*DkG=<_NL(5e7q*Hwp?nEXbkhuop*mFrEPEzc9T9`ko`NQ=S$xhvdsD% zE{;OB>H^2j%0afYH#bz~yq0-7&!aTu4XWjsZjQ@RR->t52-UOTp-hl#uIQuHa5jo2 zC20tO)-1BJ0OE@HoCvw9WnjoglI00Z%!pMwiZZF zy`s?i$8EBg5T<1-bKa+u)8guQlIxFh60z|P*Qlk30LDjG%?MaRD=tB_C{dAfH(fX2 zu-b0`pmF9+Ys*5)^ZcusJ1B%8<#70^Tpvj$ zNCiXAj)mbhjCMawlNqYmZI--95fvP+l;pLt&A%`U zPiZ(CSu-thRBf~QiMWED>np!@!qrN8&&-7j$z2DG8l2&ZChfw++UYrEraL?1%;N%d zAGbvPMZOIB%r!N4gdS!|NldJkvKHKF&L&y7JX!lpEI?qA2sRXAJuC>vnyI=_Y98Kr zjd%M%N56r}B~g2;k2}*+tMVhYXJ{yytJ>h{Ax%hB`d4_xUHEoDEQ>WwT1oTaTOT#_ zst9`&dBQW1p0ZX&fdZSO@G9{tInmr?;~pjFjutF{1YEnm3}7Qy5xH5X-52M2=odjX zzP}G^{lF~o@cX`IF1b>#m_+umcP}OtO5vah%K0Z z8Gb~m=2qS9S<@2%s4Z6!xK?O|Xg3AXlYmSX0e-BNdYo9HLD@dnIRSfQyi+Xb|9^mx zQ&c-mX@x2Clx}P)LHj8M3%M*lYpTHiOCdG5&8RCy-zcg14PG(VymjdNW5U{Y#pYo8R@57R?o#y0Ga?l<4u9u4Y!DsF3m4jch2obR9@I z&5uVI=kL`Yi`QztDIzjYWb^ty>?0Qa;QBVY)B<82XI)Ec?&}GPi#Pe(%RmvB&1=yU z1=ePUzWG~PY!urHgAlbNnG*e#-9k(;XG==3+sP>6dsJ4zQ!MxaOpn~gJN zkt)lK9!XLodgH>P^l;&d9FqIxMke!Uf3fxqX$pccmza6$qaapE*~)>elKRuB5xstq z%#wj|kO8__DiNJ@^TDXYxni8cFQZZzwdG0JjQsE#?B$psM`uw8v~@X{Rwe{jvgb1n zS^9!TzWj`pVgP62J2Hb??9XLVV>Sg`M4!MwEHXJ6^`>tl=^asfNejh4*h~ zHfk^TwZz)0p4V*)@7MQg2bsmLmS7zN1$*@Vu^%}t1g3-tigFH8kgKeku?dk@8X4vu}2Tkdwyu32$kj4 zS#`gM;*p`=79rhtr-jGRlEr+YA-UeT*fLA+@#|m=s=#L> zzVc{hiY0M{n!ws3<#-DEx=V5h8BzV<2*^na14SJ-B*$gw3j?Q6u$iv!DW*+J5fctz zt;e57OixC#2U*Rni}di2@To!z)Tl#}4|*afyu4e23T#kFVrFq%keVfj{S~Q{gDp$U zRu7j$TZ&aiKt1^1tyPgJ0=cz=VLR}1nNo4-u}Ca%|gka7&7Y7FfD4SmN1fx zObnz5%hHr~WS)ZyrKhwYO-F!mSRe+Jt1Mg9wSR#HMj6yJUsp7^j`RZN_OVHY@~`~T zs2<0EbX;AB{>^-BT4{TI?Zr`Jc~hu6#B31g5__tUfWB4I+!+YCc^EbM>Ux5_Fm)XT zOg}`gv_#&(lAZGQ6~CYCW&IU#wy`|a=~yAFdV=2?3Z~erEbchMKBZIT$g~sC6L6mS z)PE=T*6~xfB88n0`dz}?yW9aLiB@0VZ_xY_=_qLvC;y&x#XlLh%sG7S)iT|dGFM%! z_|y{*FD@*A1|jiTrQsw1xt44KEIP3C`ge|Y~YAT2HZ zgHe%v9YB|_el(~T)2K{fVRhp?JxfQ&^vjWUdmPqCXuCj2PEss=K-uEzx}=09;0Brl z0a|(Mq@vvHM#DJ$^KA)s%BUKYs%ISG(nkZ@WD3Q5i4?4d5>2)Whw*zfrz!DQdNf|d zRCdSYigaFB=yik*%h6`zQ?{9L#lguWdR}Lb5Pq{|qv}Q!1j)`3Y4`QDQz!y0YCwA$xJ2sU_!m)G!$ByD%Fuz*D4l z6>_1yw=#PVdz^oj>xH${1$p;TTzBGMExh1#5Po~eE+~Hnn?Ad7Aajhi6OwAep6E3H zSpaPILGM+KF)*!v`vTBvUP1m*LOhqSWVD#KaZr!eYEUAYd1_v&rpBaY#A+U>z6O7a!oY z1kOGu2=@))lH>A!ORwdcMoEGRp}GQ(dQ6e?6A7&0VUU1c<_&-X?1)SZ4oQwbDMyJw zStuBp)gnYO5``y6nn5>Q63-=ZQzMv)|+%f4+Erta^_s9ECZ06mUfN~kN1r`e}CGX|S9&;j|a?6LNs&DiVpo9Fcr&*UU1_ z=5)OJK&Q{F$O*GG={R7tUsgwZu5^86FdIQlq>$&6(R;Csfp<1 z!H5%b)yDVa*^s~v?I0{a9Tlg8^$wBO)NOQ(BFUf}DN7p+TF=eCROP@rS!cpDC&lH$ zv_7@Is27+wtmuQD*3G&HztBt1X{D#<-Lc`Bvu9vdrS0uXnaNVQW#0!5pUuCM-d<&Y zIDGE3IvnzU8vQwGvl4$=JG%Md=yauG%m2FEGWBwq=k>Jq_=tzo@ZgeFM#>x2*GO!6RckcA>JC!%_~4wm_|zNvvq|D0NTS8@#u$y+k;U5TCmWR$zCjuH!M#~u)IIzBIoBobgyfOH97-t5FtiU|2xSuoh)AZpAMsXmK+B% zIOVQ!vOxX)@QR$Bi_eOtBcHAruoY+q{?)_63Olp!r;E{67cgk5G6e=7oUeA+BBoUD zdA2{A0!TFbWg(Peh0Gipvarwj0$To9Y^}&(9OZ)WA7Z_1)NU;`fKPp^z4jDy|38k- zDlE#ji^AkEbSfKPz6%0xxdU52G>g;z?)fw&+br?R_bfWN?W|gQ(Xqq-o-p-b{?zJM zyZY>l)|if~_Or*JX<+yx;eVMm821TJ3&Tz9J5St z9t2Nmrd-eAGc5U{UQ{oBG4CY=r%?XUDGKtbA>O$9b#+vch+QUSi0$v}Aw21Q! zdK;3%4vxTvGhQ{u!RJ?b-ki7HG$h(gW#Q6V9=eJjxexy&zvGm)$`3 zhMou0j`ef9C8LRS`GfrJ_s1JWzwXnaX18e$_2ZZcnX@W}e*oGy#4*cY=29E~nYP_9 z1e5%hzhBSfOLtm{bx3#&N~9syaOKyJat8LEDzfg=`=7FdP7ACt6-g*F`}-_WHlxX6 z*sIjE<$W!G_Oe5z%2xQVEkg-qO{|Okrp4e%eZUsz-#syYQtiSYtt@Y!B zl$Ou-jJn9)PITj+VVI~w-GJ5guEc*KAn-@`9}s*6{!|vw&@!HoLgJ&gB)ElPCPjjC z;yN-%n+oiaz;gxyf7luV-~#R#*fxwTtevl(iQGhL=lE(;$b#!l)jZ9c-w&VOGgWX? ziUw`lbqyzF8}ixSUKQ(clyjK~1gteScoBJa{ zFm|570QLH^NbK_~Cgeya*2#_`8dF@yNt}N!YJ40OT*Vw7pO}P6PzL*fF2|cF3>ij9 zIIANDg|_I=Nzce+g@qdR6BY&9i1M#^$Lu=5S?KaA1@Q~nr+BpV=E|dNiR39Ik+y|b zI|uJ<4O(^fd(e5im5vlGWNhD^G$}`EWAJN!m~~jVhX1H`&XYX%u`A3o`*Hq*(7Wex zzqZc)abk_fsPcB@xzU%qzE!QKy-vH}fYpi3j-pG}tmc)|s^uU*)rGDzXa7Y#+8N)5 z@7OZ|UMBwt13FXi&LPQcJ|-innXrBaV~yO5jYLta(YZw|wjOSo973Jb^q`2v)x$XwZ~m^`Lw(Nj z7JVuDxZx;Nsor#2jcyD_9H<=V6Gbl}=>ogQT`045R9R!KVI;dT-$X-$8ev}ybf2LE z7#w2rE&(6~UIec?ZB%}=3*he;1h}1P$G~7e)G(PMXP*`OcNr?H>&|6T^Sax8>Lipj zOXSi10KHC2`tm?as}(UJmYnpsaqslx9@xU(QA(}pR)&Pyp{-A$Be{Q+dcG4oFrfq!rFh)^DlO) zmDhH+JvoZZbYDpLPQW8Di7xc)$P$V@K_m*JY+x7!o)$Jar1wFVM-cuQz&?RR zjDkZ$RPsB<@3zriJ!AUQr{`^n9poOtGk&j?kP(kI{BM-H{e{men@}Om+kbrw>jSqZ ztR6^}TsmLuL9-84Y{ca9qw8*@xLg8$k!kd4r;;Cp@}2Vpc~Aa}09jPXI&zpex^d@7 z)`HLKYe}P^!*GAwbdSOU z9ZM*!Y*!_9@+^%ww%$p3>%|r60j6|(%sM2Sax-wH`h!pqbEu^DH(OINc*Ym3VU#Un zD`UuhBMT2@588_)#E|Z9_`+d+r%4--L}CrnI97M_qPn!6oTyT$QKN&slljJb{VX!4 zi&P~LWsM5CIH*NX%;E>8L9P0M&-0S3U&$jh*kghPqhiR!#*r>(RpM3c0YwU*!W)An z(oyrz|4Ix?SFubVj}L+?y?uTqy96CvLl)FF{YlxJ0rliF!%ni!X6WYY{cTP`(B=+8 z#vGU!D5=V^@&Eg5FO$2;zKv`T75&vPec-s=fMkoUvT~+m z;N^rccPebsy+L5g*G5SXBQ2QSD%|j@cntP~p4ZDb{FIUaWXzEUzE{p`>)#gTu-rwOE0ai zO{eWJUxD#p-;5YJe{x&S)IN^wh_8b(8%H_@nPo1!Ky-_$9@;x@uFDG59f*6}u8CT) z=@?m`g*u2u55)hB8_M-8H1y@fSrb`SkrbB(t%Z;sN~nZClqOsW0-;&yE&koN?L40F z!cnScb?WGyQh6wSR!TGqzGU_Ie!ZI!Q6BZXZo!0NK6zFbwIMtwzc54@)0g&0HmKbA zeh%8aO#C|?-5D@Qs#ha&`gb;}FdbtqcpZ~5`>Nk?L-)A^Hx7}Ibut`spfcPG>yGJ% zvj_%orIN-VS~*Jna58>@?Wpe2Ob-zbU(s^s1F~xH_y7cyFd3k_X7fgRe^27yNdW1Hvx!!ey5Quoyy zI@U{)g)G6#ryM;wuqdix5PbI5gzUMkxUSw=ic`B86brzFO(l|4M;y%bc=70vfy{r;hLW$U(!yNzMQ$vM$W8*L znMw(}cbcekrvo1TwN0%h