-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
216 lines (197 loc) · 12.3 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import numpy as np
import os
import SimpleITK as sitk
import torch
import sys
from torch.utils.data import Dataset, DataLoader
from data_util import Utrecht_preprocessing, GE3T_preprocessing, augmentation, augmentation2, augmentation3, augmentation4
rows_standard = 200
cols_standard = 200
class WMHChallengeDataset(Dataset):
"""Whitem atter hyperintensity challenge dataset"""
def __init__(self, directory, train, test_subject, aug=True, domain_knowledge=True, aging=True, T1=True):
self.dir = directory
ge3t_path = os.path.join(self.dir, "GE3T")
singapore_path = os.path.join(self.dir, "Singapore")
utrecht_path = os.path.join(self.dir, "Utrecht")
self.ge3t = os.listdir(ge3t_path)
self.singapore = os.listdir(singapore_path)
self.utrecht = os.listdir(utrecht_path)
#Get rid of '.DS_Store' file
self.ge3t = [x for x in self.ge3t if '.' not in x]
self.singapore = [x for x in self.singapore if '.' not in x]
self.utrecht = [x for x in self.utrecht if '.' not in x]
self.ge3t.sort()
self.singapore.sort()
self.utrecht.sort()
patient = len(self.ge3t) + len(self.singapore) + len(self.utrecht)
self.framework = []
self.label = []
self.test_subject = test_subject
for idx in range(patient):
if idx < 20:
directoryFlair = os.path.join(self.dir, "GE3T/{}/pre/FLAIR.nii.gz".format(self.ge3t[idx%20]))
directoryT1 = os.path.join(self.dir, "GE3T/{}/pre/T1.nii.gz".format(self.ge3t[idx%20]))
directoryMask = os.path.join(self.dir, "GE3T/{}/wmh.nii.gz".format(self.ge3t[idx%20]))
directoryAtlas = os.path.join(self.dir, "GE3T/{}/pre/result.nii".format(self.ge3t[idx%20]))
directoryAtlas2 = os.path.join(self.dir, "GE3T/{}/pre/result2.nii".format(self.ge3t[idx%20]))
elif idx < 40:
directoryFlair = os.path.join(self.dir, "Singapore/{}/pre/FLAIR.nii.gz".format(self.singapore[idx%20]))
directoryT1 = os.path.join(self.dir, "Singapore/{}/pre/T1.nii.gz".format(self.singapore[idx%20]))
directoryMask = os.path.join(self.dir, "Singapore/{}/wmh.nii.gz".format(self.singapore[idx%20]))
directoryAtlas = os.path.join(self.dir, "Singapore/{}/pre/result.nii".format(self.singapore[idx%20]))
directoryAtlas2 = os.path.join(self.dir, "Singapore/{}/pre/result2.nii".format(self.singapore[idx%20]))
else:
directoryFlair = os.path.join(self.dir, "Utrecht/{}/pre/FLAIR.nii.gz".format(self.utrecht[idx%20]))
directoryT1 = os.path.join(self.dir, "Utrecht/{}/pre/T1.nii.gz".format(self.utrecht[idx%20]))
directoryMask = os.path.join(self.dir, "Utrecht/{}/wmh.nii.gz".format(self.utrecht[idx%20]))
directoryAtlas = os.path.join(self.dir, "Utrecht/{}/pre/result.nii".format(self.utrecht[idx%20]))
directoryAtlas2 = os.path.join(self.dir, "Utrecht/{}/pre/result2.nii".format(self.utrecht[idx%20]))
#Read the data using sitk and convert into array
flair_image = sitk.ReadImage(directoryFlair)
t1_image = sitk.ReadImage(directoryT1)
flair_array = sitk.GetArrayFromImage(flair_image)
t1_array = sitk.GetArrayFromImage(t1_image)
mask_image = sitk.ReadImage(directoryMask)
mask_array = sitk.GetArrayFromImage(mask_image)
if domain_knowledge:
atlas_image = sitk.ReadImage(directoryAtlas)
atlas_array = sitk.GetArrayFromImage(atlas_image)
if aging:
atlas_image = sitk.ReadImage(directoryAtlas2)
atlas_array2 = sitk.GetArrayFromImage(atlas_image)
if idx < 20: sample = GE3T_preprocessing(flair_array, t1_array)
else: sample = Utrecht_preprocessing(flair_array, t1_array)
#Take only Flair if T1 is not specified
if not T1:
sample = sample[..., 0]
sample = sample[..., np.newaxis]
image_rows_Dataset, image_cols_Dataset = mask_array.shape[1], mask_array.shape[2]
start_cut = 46
if idx < 20:
label = mask_array.copy()
mask_array = np.ndarray((np.shape(label)[0], rows_standard, cols_standard), dtype=np.float32)
mask_array[...] = 0
mask_array[:, :, (cols_standard-image_cols_Dataset)//2:(cols_standard+image_cols_Dataset)//2] = label[:, start_cut:start_cut+rows_standard, :]
if domain_knowledge:
#preprocess for atlas
atlas = atlas_array.copy()
atlas_array = np.ndarray((np.shape(atlas)[0], rows_standard, cols_standard), dtype=np.float32)
atlas_array[...] = 0
atlas_array[:, :, (cols_standard-image_cols_Dataset)//2:(cols_standard+image_cols_Dataset)//2] = atlas[:, start_cut:start_cut+rows_standard, :]
if aging:
#more atlas processing
atlas2 = atlas_array2.copy()
atlas_array2 = np.ndarray((np.shape(atlas2)[0], rows_standard, cols_standard), dtype=np.float32)
atlas_array2[...] = 0
atlas_array2[:, :, (cols_standard-image_cols_Dataset)//2:(cols_standard+image_cols_Dataset)//2] = atlas2[:, start_cut:start_cut+rows_standard, :]
else:
mask_array = mask_array[:, (image_rows_Dataset//2-rows_standard//2):(image_rows_Dataset//2+rows_standard//2), (image_cols_Dataset//2-cols_standard//2):(image_cols_Dataset//2+cols_standard//2)]
#preprocess for atlas
if domain_knowledge:
atlas_array = atlas_array[:, (image_rows_Dataset//2-rows_standard//2):(image_rows_Dataset//2+rows_standard//2), (image_cols_Dataset//2-cols_standard//2):(image_cols_Dataset//2+cols_standard//2)]
if aging:
atlas_array2 = atlas_array2[:, (image_rows_Dataset//2-rows_standard//2):(image_rows_Dataset//2+rows_standard//2), (image_cols_Dataset//2-cols_standard//2):(image_cols_Dataset//2+cols_standard//2)]
mask_array = mask_array[..., np.newaxis]
if domain_knowledge:
atlas_array = atlas_array[..., np.newaxis]
sample = np.concatenate((sample, atlas_array), axis = -1)
if aging:
atlas_array2 = atlas_array2[..., np.newaxis]
sample = np.concatenate((sample, atlas_array2), axis = -1)
#set the test subject
if not train and idx == test_subject:
self.eval_sample = sample
if len(self.framework) == 0:
self.framework = sample[10:-10]
self.label = mask_array[10:-10]
continue
if idx < 20:
self.framework = np.concatenate((self.framework, sample[10:-10]), axis=0)
self.label = np.concatenate((self.label, mask_array[10:-10]), axis=0)
else:
self.framework = np.concatenate((self.framework, sample[5:-5]), axis=0)
self.label = np.concatenate((self.label, mask_array[5:-5]), axis=0)
#save the processed results
#np.save('image.npy', self.framework)
#np.save('label.npy', self.label)
if train:
if isinstance(test_subject, int):
if test_subject < 20:
self.framework = np.delete(self.framework, range(test_subject*63, (test_subject+1)*63), axis=0)
self.label = np.delete(self.label, range(test_subject*63, (test_subject+1)*63), axis=0)
else:
self.framework = np.delete(self.framework, range(1260+(test_subject-20)*38, 1260+(test_subject-19)*38), axis=0)
self.label = np.delete(self.label, range(1260+(test_subject-20)*38, 1260+(test_subject-19)*38), axis=0)
elif isinstance(test_subject, list):
test_subject = [int(x) for x in test_subject]
trainset = []
for i in range(60):
if i in test_subject:
continue
if i < 20:
image = self.framework[i*63:(i+1)*63, ...]
label = self.label[i*63:(i+1)*63, ...]
else:
image = self.framework[1260+(i-20)*38:1260+(i-19)*38, ...]
label = self.label[1260+(i-20)*38:1260+(i-19)*38, ...]
if len(trainset) == 0:
trainset = image
trainset_label = label
continue
trainset = np.concatenate((trainset, image), axis=0)
trainset_label = np.concatenate((trainset_label, label), axis=0)
self.framework = np.asarray(trainset)
self.label = np.asarray(trainset_label)
else:
print(f"test subject type: {test_subject} unknown: int or list accepted.")
sys.exit(1)
if aug:
#mirror
self.framework = np.concatenate((self.framework, self.framework[..., ::-1, :]), axis=0)
self.label = np.concatenate((self.label, self.label[..., ::-1, :]), axis=0)
#scale, shear, rotate
images_aug = np.zeros(self.framework.shape, dtype=np.float32)
masks_aug = np.zeros(self.label.shape, dtype=np.float32)
for i in range(self.framework.shape[0]):
variants = T1 + domain_knowledge + aging + 1
if variants == 1:
images_aug[i, ..., 0], masks_aug[i, ..., 0] = \
augmentation4(self.framework[i, ..., 0], self.label[i, ..., 0])
elif variants == 2:
images_aug[i, ..., 0], images_aug[i, ..., 1], masks_aug[i, ..., 0] = \
augmentation(self.framework[i, ..., 0], self.framework[i, ..., 1], self.label[i, ..., 0])
elif variants == 3:
images_aug[i, ..., 0], images_aug[i, ..., 1], images_aug[i, ..., 2], masks_aug[i, ..., 0] = \
augmentation2(self.framework[i, ..., 0], self.framework[i, ..., 1], self.framework[i, ..., 2], self.label[i, ..., 0])
else:
images_aug[i, ..., 0], images_aug[i, ..., 1], images_aug[i, ..., 2], images_aug[i, ..., 3], masks_aug[i, ..., 0] = \
augmentation3(self.framework[i, ..., 0], self.framework[i, ..., 1], self.framework[i, ..., 2], self.framework[i, ..., 3], self.label[i, ..., 0])
self.framework = np.concatenate((self.framework, images_aug), axis=0)
self.label = np.concatenate((self.label, masks_aug), axis=0)
else:
self.framework = self.eval_sample
self.label = np.zeros(self.framework.shape)
#Set up the directory for evaluation
if test_subject < 20:
self.eval_dir = self.dir + "/GE3T/{}/wmh.nii.gz".format(self.ge3t[test_subject%20])
elif test_subject < 40:
self.eval_dir = self.dir + "/Singapore/{}/wmh.nii.gz".format(self.singapore[test_subject%20])
else:
self.eval_dir = self.dir + "/Utrecht/{}/wmh.nii.gz".format(self.utrecht[test_subject%20])
eval_mask = sitk.ReadImage(self.eval_dir)
self.eval_mask = sitk.GetArrayFromImage(eval_mask)
self.framework = np.transpose(self.framework, (0, 3, 1, 2))
self.label = np.transpose(self.label, (0, 3, 1, 2))
def __len__(self):
return len(self.framework)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
return {'image': self.framework[idx], 'mask': self.label[idx]}
if __name__ == "__main__":
wmh_dataset = WMHChallengeDataset(directory="../raw", train=True, test_subject=[0,1,2,3], aug=True, domain_knowledge=True, aging=False, T1=True)
dataloader = DataLoader(wmh_dataset, batch_size=4, shuffle=True, num_workers=4)
assert len(wmh_dataset.framework) == len(wmh_dataset.label)
print(wmh_dataset.framework.shape)
print(wmh_dataset.label.shape)