-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
491 lines (443 loc) · 21.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<!-- Meta tags for social media banners, these should be filled in appropriatly as they are your "business card" -->
<!-- Replace the content tag with appropriate information -->
<meta name="description"
content="PreAfford: Universal Affordance-Based Pre-Grasping for Diverse Objects and Environments. Robotic manipulation with two-finger grippers is challenged by objects lacking distinct graspable features. Traditional pre-grasping methods, which typically involve repositioning objects or utilizing external aids like table edges, are limited in their adaptability across different object categories and environments. To overcome these limitations, we introduce PreAfford, a novel pre-grasping planning framework that incorporates a point-level affordance representation and a relay training approach. Our method significantly improves adaptability, allowing effective manipulation across a wide range of environments and object types. When evaluated on the ShapeNet-v2 dataset, PreAfford not only enhances grasping success rates by 69\% but also demonstrates its practicality through successful real-world experiments. These improvements highlight PreAfford's potential to redefine standards for robotic handling of complex manipulation tasks in diverse settings." />
<meta name="keywords"
content="PreAfford: Universal Affordance-Based Pre-Grasping for Diverse Objects and Environments" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>
PreAfford | Project Page
</title>
<link rel="icon" type="image/x-icon" href="static/images/favicon.ico" />
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet" />
<link rel="stylesheet" href="static/css/bulma.min.css" />
<link rel="stylesheet" href="static/css/bulma-carousel.min.css" />
<link rel="stylesheet" href="static/css/bulma-slider.min.css" />
<link rel="stylesheet" href="static/css/fontawesome.all.min.css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css" />
<link rel="stylesheet" href="static/css/index.css" />
<link rel="stylesheet" href="https://unpkg.com/beerslider/dist/BeerSlider.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://documentcloud.adobe.com/view-sdk/main.js"></script>
<script defer src="static/js/fontawesome.all.min.js"></script>
<script src="static/js/bulma-carousel.min.js"></script>
<script src="static/js/bulma-slider.min.js"></script>
<script src="static/js/index.js"></script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h2 class="title is-2 publication-title">
PreAfford: Universal Affordance-Based Pre-Grasping for Diverse Objects and Environments
</h2>
<div class="is-size-5 publication-authors">
<!-- Paper authors -->
<span class="author-block">
<a href="https://robot-k.github.io/" target="_blank">Kairui Ding</a>
<sup>1</sup>
,</span>
<span class="author-block">
Boyuan Chen
<sup>1</sup>
,</span>
<span class="author-block">
<a href="https://warshallrho.github.io/" target="_blank">Ruihai Wu</a>
<sup>2</sup>
,</span>
<span class="author-block">
<a href="https://yuyangli.com/" target="_blank">Yuyang Li</a>
<sup>3</sup>
,</span>
<span class="author-block">
Zongzheng Zhang
<sup>1</sup>
,</span>
<span class="author-block">
<a href="https://c7w.tech/about/" target="_blank">Huan-ang Gao</a>
<sup>1</sup>
,</span>
<span class="author-block">
Siqi Li
<sup>1</sup>
,</span>
<span class="author-block">
<a href="https://yzhu.io/" target="_blank">Yixin Zhu</a>
<sup>3</sup>
,</span>
<span class="author-block">
Guyue Zhou
<sup>1,4</sup>
,</span>
<span class="author-block">
<a href="https://zsdonghao.github.io/" target="_blank">Hao Dong</a>
<sup>2</sup>
,</span>
<span class="author-block">
<a href="https://sites.google.com/view/fromandto" target="_blank">Hao Zhao</a>
<sup>†1</sup>
</span>
</div>
<!-- a margin of 0.5em -->
<div style="margin: 0.5em;"></div>
<div class="is-size-5 publication-authors">
<span class="author-block is-size-6">
<sup>1</sup> Institute for AI Industry Research (AIR), Tsinghua University
<br>
<sup>2</sup> CFCS, School of Computer Science, Peking University
<sup>3</sup> Institute for Artificial Intelligence, Peking University <br/>
<sup>4</sup> School of Vehicle and Mobility, Tsinghua University <br/>
<!-- <div style="margin: 0.1em;"></div> -->
<!-- <span class="eql-cntrb"><small><br /><sup>*</sup>Indicates Equal Contribution</small></span>
<!-- a span of 5em -->
<!-- <span style="margin: 1em;"></span> -->
<span class="eql-cntrb"><small><sup>†</sup>Indicates Corresponding Author</small></span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- Arxiv PDF link -->
<span class="link-block">
<a href="https://arxiv.org/pdf/2404.03634" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<!-- ArXiv abstract Link -->
<span class="link-block">
<a href="https://arxiv.org/abs/2404.03634" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Github link -->
<span class="link-block">
<a href="https://github.com/Robot-K/PreAfford" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Teaser video-->
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<video poster="" id="tree" autoplay controls muted loop height="100%">
<!-- Your video here -->
<source src="static/video/output.mp4" type="video/mp4" />
</video>
<!-- centering the image -->
<!-- <div class="columns is-centered">
<!-- <div class="column is-four-fifths"> -->
<!-- <div class="publication-video"> -->
<!-- <img src="static/images/Teaser_cs1.jpg" width="100%" /> -->
<!-- </div> -->
<!-- </div> -->
<!-- </div> -->
<!-- <img src="static/images/Teaser_cs1.jpg" width="100%" /> -->
<h2 class="has-text-centered is-size-6">
Demonstration Video of <b>PreAfford</b>.
</h2>
</div>
</div>
</section>
<!-- End teaser video -->
<!-- Paper abstract -->
<section class="section hero is-light">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Robotic manipulation with two-finger grippers is challenged by objects lacking distinct graspable features. Traditional pre-grasping methods, which typically involve repositioning objects or utilizing external aids like table edges, are limited in their adaptability across different object categories and environments. To overcome these limitations, we introduce PreAfford, a novel pre-grasping planning framework that incorporates a point-level affordance representation and a relay training approach. Our method significantly improves adaptability, allowing effective manipulation across a wide range of environments and object types. When evaluated on the ShapeNet-v2 dataset, PreAfford not only enhances grasping success rates by 69% but also demonstrates its practicality through successful real-world experiments. These improvements highlight PreAfford's potential to redefine standards for robotic handling of complex manipulation tasks in diverse settings.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- End paper abstract -->
<!-- Youtube video -->
<section class="hero is-small">
<div class="hero-body">
<div class="container">
<h2 class="title is-3">Introduction & Method</h2>
<div class="columns is-centered has-text-centered"
style="width: 100%; display: flex; justify-content: center; align-items: center; flex-direction: column">
<div style="width: 70%; display: flex; justify-content: center; align-items: stretch; flex-direction: row">
<div style="width: 100%;">
<img src="static/images/teaser.png" alt="">
</div>
</div>
<div style="width: 70%;">
<b>Illustration of <i>PreAfford</i>, demonstrating the application of a <i>relay training</i> paradigm where two synergistic modules cooperate to facilitate the manipulation of objects typically considered ungraspable.</b> The <i>pre-grasping</i> module assesses environmental features such as edges, slopes, slots, and walls to propose strategic pre-grasping actions that enhance the likelihood of a successful grasp. Simultaneously, the <i>grasping</i> module evaluates these actions and provides feedback in the form of rewards, which are used to refine and optimize the pre-grasping strategies. Two color bars represent the pre-grasping and grasping phases, respectively, with the color intensity reflecting the calculated affordance values; higher values denote more optimal interaction conditions.
</div>
</div>
<br /><br />
<div class="columns is-centered has-text-centered"
style="width: 100%; display: flex; justify-content: center; align-items: center; flex-direction: column">
<div style="width: 70%; display: flex; justify-content: center; align-items: stretch; flex-direction: row">
<div style="width: 100%;">
<img src="static/images/framework.png" alt="">
</div>
</div>
<div style="width: 70%;">
<b>The framework of PreAfford.</b> The framework consists of two main modules, each incorporating three networks: an affordance network, a proposal network, and a critic network. These networks respectively handle tasks of choosing the contact point, generating a proposal, and evaluating the proposal. PointNet++ (PN++) and MLP are employed to process point clouds and facilitate decision-making. During the inference phase, both modules collaborate to develop strategies for pre-grasping and grasping. In contrast, during the training phase, the grasping module generates rewards that are used to train the pre-grasping module, a process we refer to as <i>relay</i>.
</div>
</div>
</div>
</div>
</section>
<!-- End youtube video -->
<!-- Youtube video -->
<section class="hero is-small is-light">
<div class="hero-body">
<div class="container">
<!-- Paper video. -->
<h2 class="title is-3">Results</h2>
<div class="columns is-centered has-text-centered"
style="width: 100%; display: flex; justify-content: center; align-items: center; flex-direction: column">
<div style="width: 70%; display: flex; justify-content: center; align-items: stretch; flex-direction: row">
<div style="width: 100%;">
<img src="static/images/main.png" alt="">
</div>
</div>
<div style="width: 70%;">
<b>Qualitative Results.</b> Here we demonstrate pre-grasping manipulation on training and testing categories in four scenarios—edge, slot, slope, and wall. Affordance maps highlight effective interaction areas, showing \method’s capability to devise suitable pre-grasping and grasping strategies for various object categories and scenes, including both seen and unseen objects.
</div>
<div style="margin: 1em;"></div>
<div style="width: 50%; display: flex; justify-content: center; align-items: stretch; flex-direction: row">
<div style="width: 100%;">
<img src="static/images/multiple.png" alt="">
</div>
</div>
<div style="width: 70%;">
<b>Multi-feature scenario:</b>} PreAfford effectively addresses scenarios where multiple environmental features are present simultaneously. (a) A complex environment, (b) Affordance heatmap.
</div>
<div style="margin: 1em;"></div>
<div style="width: 85%;">
<b>Comparison with baselines.</b> Pre-grasping increases grasping success rates by 52.9%. A closed-loop strategy further enhances this improvement by 16.4% across all categories.
</div>
<!-- Table with training and testing object categories -->
<table border="1">
<tr>
<th rowspan="2"><strong>Setting</strong></th>
<th colspan="6"><strong>Train object categories</strong></th>
<th colspan="6"><strong>Test object categories</strong></th>
</tr>
<tr>
<td><strong>Edge</strong></td>
<td><strong>Wall</strong></td>
<td><strong>Slope</strong></td>
<td><strong>Slot</strong></td>
<td><strong>Multi</strong></td>
<td><strong>Avg.</strong></td>
<td><strong>Edge</strong></td>
<td><strong>Wall</strong></td>
<td><strong>Slope</strong></td>
<td><strong>Slot</strong></td>
<td><strong>Multi</strong></td>
<td><strong>Avg.</strong></td>
</tr>
<tr>
<td>W/o pre-grasping</td>
<td>2.3</td>
<td>3.8</td>
<td>4.3</td>
<td>3.4</td>
<td>4.0</td>
<td>3.6</td>
<td>6.1</td>
<td>2.3</td>
<td>2.9</td>
<td>5.7</td>
<td>6.0</td>
<td>4.6</td>
</tr>
<tr>
<td>Random-direction Push</td>
<td>21.6</td>
<td>10.3</td>
<td>6.4</td>
<td>16.8</td>
<td>18.1</td>
<td>14.6</td>
<td>24.9</td>
<td>17.2</td>
<td>12.1</td>
<td>18.4</td>
<td>23.0</td>
<td>19.1</td>
</tr>
<tr>
<td>Center-point Push</td>
<td>32.5</td>
<td>23.7</td>
<td>40.5</td>
<td>39.2</td>
<td>39.0</td>
<td>35.0</td>
<td>25.1</td>
<td>17.4</td>
<td>28.0</td>
<td>30.2</td>
<td>21.5</td>
<td>24.4</td>
</tr>
<tr>
<td>Ours w/o closed-loop</td>
<td>67.2</td>
<td>41.5</td>
<td>58.3</td>
<td>76.9</td>
<td>63.6</td>
<td>61.5</td>
<td>56.4</td>
<td>37.3</td>
<td>62.6</td>
<td>75.8</td>
<td>55.4</td>
<td>57.5</td>
</tr>
<tr>
<td><strong>Ours</strong></td>
<td><strong>81.4</strong></td>
<td><strong>43.4</strong></td>
<td><strong>73.1</strong></td>
<td><strong>83.5</strong></td>
<td><strong>74.1</strong></td>
<td><strong>71.1</strong></td>
<td><strong>83.7</strong></td>
<td><strong>47.6</strong></td>
<td><strong>80.5</strong></td>
<td><strong>83.0</strong></td>
<td><strong>74.6</strong></td>
<td><strong>73.9</strong></td>
</tr>
</table>
<div style="margin: 1em;"></div>
<div style="width: 70%; display: flex; justify-content: center; align-items: stretch; flex-direction: row">
<div style="width: 100%;">
<img src="static/images/experiment.png" alt="">
</div>
</div>
<div style="width: 70%;">
<b>Real world pre-grasping manipulations with affordance maps.</b> Red areas in the maps indicate optimal pushing locations. Point clouds are captured by Femto Bolt. (a) move a tablet to table edge, (b) push a plate towards a wall, (c) push a keyboard up a slope, and (d) slide a tablet into a slot.
</div>
<div style="margin: 1em;"></div>
<div style="width: 85%;">
<b>Real-world experiment results.</b> Experiments were conducted twice for each object in every scene, comparing direct grasping (without pre-grasping) to grasping after pre-grasping. Success rates are presented as percentages.
</div>
<!-- Table with seen and unseen categories -->
<table border="1">
<tr>
<th rowspan="2"><strong>Setting</strong></th>
<th colspan="6"><strong>Seen categories</strong></th>
<th colspan="6"><strong>Unseen categories</strong></th>
</tr>
<tr>
<td><strong>Edge</strong></td>
<td><strong>Wall</strong></td>
<td><strong>Slope</strong></td>
<td><strong>Slot</strong></td>
<td><strong>Multi</strong></td>
<td><strong>Avg.</strong></td>
<td><strong>Edge</strong></td>
<td><strong>Wall</strong></td>
<td><strong>Slope</strong></td>
<td><strong>Slot</strong></td>
<td><strong>Multi</strong></td>
<td><strong>Avg.</strong></td>
</tr>
<tr>
<td>W/o pre-grasping</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>With pre-grasping</td>
<td>70</td>
<td>45</td>
<td>80</td>
<td>90</td>
<td>85</td>
<td>74</td>
<td>80</td>
<td>30</td>
<td>75</td>
<td>90</td>
<td>85</td>
<td>72</td>
</tr>
</table>
</div>
</div>
</div>
</section>
<!-- End youtube video -->
<!--BibTex citation -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
If you find our work useful in your research, please consider citing:
<div style="margin: 0.5em;"></div>
<pre><code>@misc{ding2024preafford,
title={PreAfford: Universal Affordance-Based Pre-Grasping for Diverse Objects and Environments},
author={Kairui Ding and Boyuan Chen and Ruihai Wu and Yuyang Li and Zongzheng Zhang and Huan-ang Gao and Siqi Li and Yixin Zhu and Guyue Zhou and Hao Dong and Hao Zhao},
year={2024},
eprint={2404.03634},
archivePrefix={arXiv},
primaryClass={cs.RO}
}</code></pre>
</div>
</section>
<!--End BibTex citation -->
<!-- Statcounter tracking code -->
<!-- You can add a tracker to track page visits by creating an account at statcounter.com -->
<!-- End of Statcounter Code -->
<script src="https://unpkg.com/beerslider/dist/BeerSlider.js"></script>
<script>
new BeerSlider(document.getElementById('slider1'), { start: '40' });
new BeerSlider(document.getElementById('slider2'), { start: '40' });
new BeerSlider(document.getElementById('slider3'), { start: '40' });
new BeerSlider(document.getElementById('slider4'), { start: '40' });
new BeerSlider(document.getElementById('slider5'), { start: '40' });
new BeerSlider(document.getElementById('slider6'), { start: '40' });
new BeerSlider(document.getElementById('slider7'), { start: '40' });
new BeerSlider(document.getElementById('slider8'), { start: '40' });
new BeerSlider(document.getElementById('slider9'), { start: '40' });
new BeerSlider(document.getElementById('slider10'), { start: '40' });
</script>
</body>
</html>