diff --git a/README.md b/README.md index a7c1755..579ff5d 100644 --- a/README.md +++ b/README.md @@ -38,15 +38,19 @@ accelerate launch train.py \ --text_encoder_name="google/flan-t5-large" \ --scheduler_name="stabilityai/stable-diffusion-2-1" \ --unet_model_config="configs/diffusion_model_config_munet.json" \ ---freeze_text_encoder --uncondition_all --uncondition_single \ +--model_type Mustango --freeze_text_encoder --uncondition_all --uncondition_single \ --drop_sentences --random_pick_text_column --snr_gamma 5 \ ``` +The `--model_type` flag allows to choose either Mustango, or Tango to be trained with the same code. However, do note that you also need to change `--unet_model_config` to the relevant config: diffusion_model_config_munet for Mustango; diffusion_model_config for Tango. + The arguments `--uncondition_all`, `--uncondition_single`, `--drop_sentences` control the dropout functions as per Section 5.2 in our paper. The argument of `--random_pick_text_column` allows to randomly pick between two input text prompts - in the case of MusicBench, we pick between ChatGPT rephrased captions and original enhanced MusicCaps prompts, as depicted in Figure 1 in our paper. Recommended training time from scratch on MusicBench is at least 40 epochs. +## Inference +Coming soon ## Citation