-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathZeppelin_Python.json
1 lines (1 loc) · 106 KB
/
Zeppelin_Python.json
1
{"paragraphs":[{"text":"%python\n\nimport sys\nsys.path.insert(0, '/opt/ana2/lib/python2.7/site-packages')\n\nimport csv\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport pandas as pd\nfrom scipy import stats as st\nfrom sklearn import preprocessing\nfrom sklearn import metrics\nfrom sklearn import linear_model\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.ensemble import RandomForestClassifier\nfrom sklearn.tree import DecisionTreeClassifier\nfrom sklearn import svm\nfrom sklearn.model_selection import StratifiedKFold\nfrom sklearn.model_selection import GridSearchCV\nfrom sklearn.metrics import roc_curve, auc\nimport statsmodels.api as sm\nimport seaborn as sns\nsns.set(style=\"white\")\nsns.set(style=\"whitegrid\", color_codes=True)","user":"anonymous","dateUpdated":"2019-01-09T18:39:26+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"ERROR","msg":[{"type":"TEXT","data":"java.lang.InterruptedException: sleep interrupted"}]},"apps":[],"jobName":"paragraph_1547055366102_2142605213","id":"20190109-183606_57902720","dateCreated":"2019-01-09T18:36:06+0100","dateStarted":"2019-01-09T18:39:26+0100","dateFinished":"2019-01-09T18:41:01+0100","status":"ABORT","progressUpdateIntervalMs":500,"focus":true,"$$hashKey":"object:261"},{"text":"%python\nimport warnings\nwarnings.filterwarnings(\"ignore\", category=FutureWarning)","user":"anonymous","dateUpdated":"2019-01-09T14:53:27+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547024394395_-1531815304","id":"20190109-095954_1335540854","dateCreated":"2019-01-09T09:59:54+0100","dateStarted":"2019-01-09T14:53:27+0100","dateFinished":"2019-01-09T14:53:27+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:262"},{"text":"%python\ninput1 = z.input(\"Indiquez le chemin de votre fichier d'entrée : \")\n#/home/tp-home008/mfigaro/Downloads/train.txt","user":"anonymous","dateUpdated":"2019-01-09T14:53:27+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{"Indiquez le chemin de votre fichier d'entrée : ":"/home/tp-home008/mfigaro/Downloads/train.txt","Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : ":"","Veuillez entrer tabulation, espace ou ; : ":""},"forms":{"Indiquez le chemin de votre fichier d'entrée : ":{"type":"TextBox","name":"Indiquez le chemin de votre fichier d'entrée : ","displayName":"Indiquez le chemin de votre fichier d'entrée : ","defaultValue":"","hidden":false,"$$hashKey":"object:960"}}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547026890616_26031311","id":"20190109-104130_556657884","dateCreated":"2019-01-09T10:41:30+0100","dateStarted":"2019-01-09T14:53:27+0100","dateFinished":"2019-01-09T14:53:27+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:263"},{"text":"%python\ninput2 = z.input(\"Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : \") # ici espace\n# Passage en minuscule si l'utilisateur écrit en majuscule\ninput2 = input2.lower() ;","user":"anonymous","dateUpdated":"2019-01-09T14:53:27+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python","editorHide":false},"settings":{"params":{"Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : ":"espace","Veuillez entrer tabulation, espace ou ; : ":""},"forms":{"Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : ":{"type":"TextBox","name":"Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : ","displayName":"Indiquez la manière dont sont séparées vos variables (tabulation/espace/;) : ","defaultValue":"","hidden":false,"$$hashKey":"object:972"}}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547028992155_863439300","id":"20190109-111632_933632474","dateCreated":"2019-01-09T11:16:32+0100","dateStarted":"2019-01-09T14:53:27+0100","dateFinished":"2019-01-09T14:53:27+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:264"},{"text":"%python\n# Tant que l'utilisateur n'a pas rentré quelque chose de correct\nwhile not (input2 == 'tabulation' or input2 == 'espace' or input2 == ';') :\n input2 =z.input(\"Veuillez entrer tabulation, espace ou ; : \")\n input2 = input2.lower()","user":"anonymous","dateUpdated":"2019-01-09T14:53:27+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{"Veuillez entrer tabulation, espace ou ; : ":"espace"},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547029077826_-44643690","id":"20190109-111757_665784065","dateCreated":"2019-01-09T11:17:57+0100","dateStarted":"2019-01-09T14:53:27+0100","dateFinished":"2019-01-09T14:53:27+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:265"},{"text":"%python\n# On met les vrais caractères pour pouvoir importer le fichier\nif input2 == 'tabulation' :\n input2 = '\\t'\nelif input2 == 'espace' :\n input2 = ' '\n\n# Importation du fichier\nfile = open(input1, \"r\")\ndataset = pd.read_csv(file, sep=input2)\n\n# Nombre total d'instances\ntotal_rows = len(dataset)\n# Nombre total de variables\ntotal_columns = len(list(dataset))\n\n# Récupération du noms des différentes variables\ntitle = list(dataset.columns)\n\n# Variable d'intérêt\nreponse = z.input(\"Indiquez le nom de la variable d'intérêt : \") # ici : y\n ","user":"anonymous","dateUpdated":"2019-01-09T14:53:27+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{"Indiquez le nom de la variable d'intérêt : ":"y"},"forms":{"Indiquez le nom de la variable d'intérêt : ":{"type":"TextBox","name":"Indiquez le nom de la variable d'intérêt : ","displayName":"Indiquez le nom de la variable d'intérêt : ","defaultValue":"","hidden":false,"$$hashKey":"object:987"}}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547029121265_1307943006","id":"20190109-111841_1062807297","dateCreated":"2019-01-09T11:18:41+0100","dateStarted":"2019-01-09T14:53:27+0100","dateFinished":"2019-01-09T14:53:27+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:266"},{"text":"%python\nwhile (reponse not in title) :\n reponse = z.input(\"Cette variable n'existe pas ! Veuillez vérifier son nom et essayer à nouveau : \")","user":"anonymous","dateUpdated":"2019-01-09T14:53:27+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python","editorHide":false},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547029961002_-1102085814","id":"20190109-113241_1450079534","dateCreated":"2019-01-09T11:32:41+0100","dateStarted":"2019-01-09T14:53:27+0100","dateFinished":"2019-01-09T14:53:28+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:267"},{"text":"%python\n# Vérifier s'il y a une variable identifiant\ninput3 = z.input(\"Vos données ont-elles une variable identifiant pour les individus ? (y/n) : \") # ici : n\n# Passage en minuscule si l'utilisateur rentre Y ou N\ninput3 = input3.lower() ;","user":"anonymous","dateUpdated":"2019-01-09T14:53:28+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{"Vos données ont-elles une variable identifiant pour les individus ? (y/n) : ":"n"},"forms":{"Vos données ont-elles une variable identifiant pour les individus ? (y/n) : ":{"type":"TextBox","name":"Vos données ont-elles une variable identifiant pour les individus ? (y/n) : ","displayName":"Vos données ont-elles une variable identifiant pour les individus ? (y/n) : ","defaultValue":"","hidden":false,"$$hashKey":"object:1002"}}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547029688819_-70320342","id":"20190109-112808_2016985005","dateCreated":"2019-01-09T11:28:08+0100","dateStarted":"2019-01-09T14:53:28+0100","dateFinished":"2019-01-09T14:53:28+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:268"},{"text":"%python\n# Tant que l'utilisateur n'a pas rentré quelque chose de correct\nwhile not (input3 == 'y' or input3 == 'n') :\n input3 = z.input(\"Veuillez entrer y ou n : \")\n input3 = input3.lower()","user":"anonymous","dateUpdated":"2019-01-09T14:53:28+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547030002071_545581735","id":"20190109-113322_248670218","dateCreated":"2019-01-09T11:33:22+0100","dateStarted":"2019-01-09T14:53:28+0100","dateFinished":"2019-01-09T14:53:28+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:269"},{"text":"%python\n# S'il y en a une\nif input3 == 'y' :\n input4 = z.input(\"Indiquez le nom de la variable identifiant : \")","user":"anonymous","dateUpdated":"2019-01-09T14:53:28+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547030030207_315108088","id":"20190109-113350_1916835350","dateCreated":"2019-01-09T11:33:50+0100","dateStarted":"2019-01-09T14:53:28+0100","dateFinished":"2019-01-09T14:53:28+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:270"},{"text":"%python\nif input3 == 'y' :\n while input4 not in title or input4 == reponse :\n if input4 not in title :\n input4 = z.input(\"Cette variable n'existe pas ! Veuillez vérifier son nom et essayer à nouveau : \")\n elif input4 == reponse :\n input4 = z.input(\"Il s'agit de la variable d'intérêt ! Veuillez vérifier et essayer à nouveau : \")\n # On supprime cette variable\n dataset = dataset.drop(input4, 1)","user":"anonymous","dateUpdated":"2019-01-09T14:53:28+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547030081815_-2008879067","id":"20190109-113441_649096659","dateCreated":"2019-01-09T11:34:41+0100","dateStarted":"2019-01-09T14:53:28+0100","dateFinished":"2019-01-09T14:53:28+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:271"},{"text":"%python\n# Suppression des instances ayant des données manquantes\ndataset = dataset.dropna(how = 'any')\n\n# Forme des résultats\ninput6 = z.input(\"Choisissez la forme sous laquelle vous voulez les résultats (erreur test/matrice de confusion/courbe ROC) : \")\n# Passage en minuscule si l'utilisateur écrit en majuscule\ninput6 = input6.lower() ;","user":"anonymous","dateUpdated":"2019-01-09T14:53:28+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{"Choisissez la forme sous laquelle vous voulez les résultats (erreur test/matrice de confusion/courbe ROC) : ":"matrice ROC"},"forms":{"Choisissez la forme sous laquelle vous voulez les résultats (erreur test/matrice de confusion/courbe ROC) : ":{"type":"TextBox","name":"Choisissez la forme sous laquelle vous voulez les résultats (erreur test/matrice de confusion/courbe ROC) : ","displayName":"Choisissez la forme sous laquelle vous voulez les résultats (erreur test/matrice de confusion/courbe ROC) : ","defaultValue":"","hidden":false,"$$hashKey":"object:1023"}}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547030123710_165479693","id":"20190109-113523_1505587717","dateCreated":"2019-01-09T11:35:23+0100","dateStarted":"2019-01-09T14:53:28+0100","dateFinished":"2019-01-09T14:53:28+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:272"},{"text":"%python\n# Tant que l'utilisateur n'a pas rentré quelque chose de correct\nwhile not (input6 == 'erreur test' or input6 == 'matrice de confusion' or input6 == 'courbe roc') :\n input6 = z.input(\"Veuillez entrer erreur test, matrice de confusion ou courbe ROC : \")\n input6 = input6.lower()","user":"anonymous","dateUpdated":"2019-01-09T14:53:28+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{"Veuillez entrer erreur test, matrice de confusion ou courbe ROC : ":""},"forms":{"Veuillez entrer erreur test, matrice de confusion ou courbe ROC : ":{"type":"TextBox","name":"Veuillez entrer erreur test, matrice de confusion ou courbe ROC : ","displayName":"Veuillez entrer erreur test, matrice de confusion ou courbe ROC : ","defaultValue":"","hidden":false,"$$hashKey":"object:1035"}}},"results":{"code":"ERROR","msg":[{"type":"TEXT","data":"Traceback (most recent call last):\n File \"/tmp/zeppelin_python-1652545266603803792.py\", line 320, in <module>\n raise Exception(traceback.format_exc())\nException: Traceback (most recent call last):\n File \"/tmp/zeppelin_python-1652545266603803792.py\", line 313, in <module>\n exec(code, _zcUserQueryNameSpace)\n File \"<stdin>\", line 2, in <module>\n File \"/tmp/zeppelin_python-1652545266603803792.py\", line 67, in input\n return self.z.input(name, defaultValue)\n File \"/home/tp-home008/mfigaro/Documents/zeppelin-0.8.0-bin-all/interpreter/python/py4j-0.9.2/src/py4j/java_gateway.py\", line 827, in __call__\n [get_command_part(arg, self.pool) for arg in new_args])\n File \"/home/tp-home008/mfigaro/Documents/zeppelin-0.8.0-bin-all/interpreter/python/py4j-0.9.2/src/py4j/protocol.py\", line 274, in get_command_part\n command_part = STRING_TYPE + escape_new_line(parameter)\n File \"/home/tp-home008/mfigaro/Documents/zeppelin-0.8.0-bin-all/interpreter/python/py4j-0.9.2/src/py4j/protocol.py\", line 175, in escape_new_line\n return smart_decode(original).replace(\"\\\\\", \"\\\\\\\\\").replace(\"\\r\", \"\\\\r\").\\\n File \"/home/tp-home008/mfigaro/Documents/zeppelin-0.8.0-bin-all/interpreter/python/py4j-0.9.2/src/py4j/protocol.py\", line 198, in smart_decode\n if isinstance(s, unicode):\n File \"/tmp/zeppelin_python-1652545266603803792.py\", line 227, in handler_stop_signals\n sys.exit(\"Got signal : \" + str(sig))\nSystemExit: Got signal : 2\n\n"}]},"apps":[],"jobName":"paragraph_1547030132382_-1600337625","id":"20190109-113532_6047975","dateCreated":"2019-01-09T11:35:32+0100","dateStarted":"2019-01-09T14:53:28+0100","dateFinished":"2019-01-09T14:55:00+0100","status":"ABORT","progressUpdateIntervalMs":500,"$$hashKey":"object:273"},{"text":"%python\ndataset.head()","user":"anonymous","dateUpdated":"2019-01-09T14:47:52+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547030136581_1580371885","id":"20190109-113536_10106922","dateCreated":"2019-01-09T11:35:36+0100","dateStarted":"2019-01-09T14:47:52+0100","dateFinished":"2019-01-09T14:47:52+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:274"},{"text":"%python\ny = dataset[reponse]\ny_values = list(y)","user":"anonymous","dateUpdated":"2019-01-09T14:47:53+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547030899112_-1777762595","id":"20190109-114819_1622450722","dateCreated":"2019-01-09T11:48:19+0100","dateStarted":"2019-01-09T14:47:53+0100","dateFinished":"2019-01-09T14:47:53+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:275"},{"text":"Dimension de votre dataset","user":"anonymous","dateUpdated":"2019-01-09T14:47:53+0100","config":{"colWidth":12,"fontSize":9,"enabled":false,"results":{},"editorSetting":{"language":"scala","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/scala"},"settings":{"params":{},"forms":{}},"apps":[],"jobName":"paragraph_1547031054830_-1599127045","id":"20190109-115054_1749379458","dateCreated":"2019-01-09T11:50:54+0100","status":"READY","progressUpdateIntervalMs":500,"$$hashKey":"object:276"},{"text":"%python\nprint(dataset.shape)","user":"anonymous","dateUpdated":"2019-01-09T14:47:53+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547031517748_-96383452","id":"20190109-115837_1246024645","dateCreated":"2019-01-09T11:58:37+0100","dateStarted":"2019-01-09T14:47:53+0100","dateFinished":"2019-01-09T14:47:53+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:277"},{"text":"Visualisation du résumé de la variable d'intérêt","user":"anonymous","dateUpdated":"2019-01-09T14:47:53+0100","config":{"colWidth":12,"fontSize":9,"enabled":false,"results":{},"editorSetting":{"language":"scala","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/scala"},"settings":{"params":{},"forms":{}},"apps":[],"jobName":"paragraph_1547038449195_-912462683","id":"20190109-135409_654072410","dateCreated":"2019-01-09T13:54:09+0100","status":"READY","progressUpdateIntervalMs":500,"$$hashKey":"object:278"},{"text":"%python\ny.describe()\nclasse = list(set(y))\nnb_classe = len(list(set(y))) # Taille de la liste contenant la variable d'intérêt sans doublon\n\nprint \"Differentes classes de la variable d'interet : \", classe\nprint \"Nombre de classes : \", nb_classe","user":"anonymous","dateUpdated":"2019-01-09T14:47:53+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547031537706_320552697","id":"20190109-115857_105294102","dateCreated":"2019-01-09T11:58:57+0100","dateStarted":"2019-01-09T14:47:53+0100","dateFinished":"2019-01-09T14:47:53+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:279"},{"text":"%python\nsns.countplot(x = reponse, data = dataset, palette = 'hls')\nplt.show()","user":"anonymous","dateUpdated":"2019-01-09T14:47:53+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{"1":{"graph":{"mode":"table","height":300,"optionOpen":false}}},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[{"type":"TEXT","data":" x10006_at x10007_at x100129361_at x100"}]},"apps":[],"jobName":"paragraph_1547031566835_286425925","id":"20190109-115926_420033372","dateCreated":"2019-01-09T11:59:26+0100","dateStarted":"2019-01-09T14:47:53+0100","dateFinished":"2019-01-09T14:47:53+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:280"},{"text":"%python\n# Division du dataset\nxTrain, xTest = train_test_split(dataset, train_size=int(total_rows*(float(2)/3)), test_size=int(total_rows*(float(1)/3)))\n# Vérifications\n\nprint(\"Dimension du dataset d'apprentissage : \" + str(xTrain.shape))\nprint(\"Dimension du dataset de test : \" + str(xTest.shape))\n","user":"anonymous","dateUpdated":"2019-01-09T14:47:53+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547031622603_-639976439","id":"20190109-120022_588468283","dateCreated":"2019-01-09T12:00:22+0100","dateStarted":"2019-01-09T14:47:53+0100","dateFinished":"2019-01-09T14:47:53+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:281"},{"text":"%python\n# Récupération des variables explicatives du dataset apprentissage et du dataset test\nXTrain = xTrain.iloc[:,:total_columns-1]\nXTest = xTest.iloc[:,:total_columns-1]\n# Vérification\nprint(\"Dataset d'apprentissage : \\n\")\nprint(XTrain.shape)\nprint(XTrain.head())\n\nprint(\"\\nDataset test : \\n\")\nprint(XTest.shape)\nprint(XTest.head())","user":"anonymous","dateUpdated":"2019-01-09T14:47:53+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[{"type":"TEXT","data":"4AAgCKI4AAgOIIIACgOAIIACiOAAIAiiOAAIDiCCAAoDgCCAAojgACAIojgACA4gggAKA4AggAKI4AAgCKI4AAgOIIIACgOAIIACiOAAIAiiOAAIDiCCAAoDgCCAAojgACAIojgACA4gggAKA4AggAKI4AAgCKI4AAgOIIIACgOAIIACjO6KoHVOHaa6/NE088kVqtlssvvzyHHHJI1ZMAgB2ouABavXp"}]},"apps":[],"jobName":"paragraph_1547031635136_1330602320","id":"20190109-120035_1547169020","dateCreated":"2019-01-09T12:00:35+0100","dateStarted":"2019-01-09T14:47:53+0100","dateFinished":"2019-01-09T14:47:53+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:282"},{"text":"%python\n# Isolation de la variable d'intérêt\nyTrain = xTrain.iloc[:,total_columns-1]\nyTrain_values = list(yTrain)\n\nyTest = xTest.iloc[:,total_columns-1]\nyTest_values = list(yTest)","user":"anonymous","dateUpdated":"2019-01-09T14:47:54+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547033044863_-1081327947","id":"20190109-122404_1937421188","dateCreated":"2019-01-09T12:24:04+0100","dateStarted":"2019-01-09T14:47:54+0100","dateFinished":"2019-01-09T14:47:54+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:283"},{"text":"%python\n# Vérification que les classes soient bien réparties dans les 2 datasets\n\n# Dataset apprentissage\n # /!\\ Représentation graphique ou juste afficher nb_occ, je sais pas\nsns.countplot(x = reponse, data = xTrain, palette = 'hls')\nplt.show()\nxTrain[reponse].value_counts()\n\n# Dataset test\nsns.countplot(x = reponse, data = xTest, palette = 'hls')\nplt.show()\nxTest[reponse].value_counts()","user":"anonymous","dateUpdated":"2019-01-09T14:47:54+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[{"type":"TEXT","data":" 11.37 3.48 ... \n\n x10224_at x10226_at x10227_at x1022_at x10231_at x10234_at \\\n123 6.35 9.38 9.63 6.72 2.67 2.86 \n84 3.55 8.94 7.20 7.35 4.73 2.35 \n126 4.26 10.10 7.58 7.45 3.05 4.74 \n63 2.68 9.14 8.17 8.75 2.93 4.06 \n0 4.26 10.55 7.82 7.87 2.97 4.48 \n\n x10236_at x10237_at x10240_at x10241_at \n123 9.54 9.47 8.79 7.02 \n84 9.63 9.25 5.81 9.10 \n126 9.42 12.13 7.38 10.10 \n63 9.39 9.57 6.01 9.34 \n0 9.61 12.82 5.62 12.76 \n\n[5 rows x 100 columns]\n"},{"type":"HTML","data":"<div style='width:auto;height:auto'><img src= style='width=auto;height:auto'><div>\n"},{"type":"HTML","data":"<div style='width:auto;height:auto'><img src="}]},"apps":[],"jobName":"paragraph_1547033328232_-899068986","id":"20190109-122848_29715122","dateCreated":"2019-01-09T12:28:48+0100","dateStarted":"2019-01-09T14:47:54+0100","dateFinished":"2019-01-09T14:47:54+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:284"},{"text":"%python\n# Regression logistique\n# Construction d'un objet permettant de réaliser une régression logistique\nlogit_model=linear_model.LogisticRegression()\nlogit_model.fit(XTrain,yTrain)\npred_rl = logit_model.predict(XTest)\n\n# Performance du modèle\nscore_glm = logit_model.score(XTest, yTest)","user":"anonymous","dateUpdated":"2019-01-09T14:47:54+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547033363629_293296651","id":"20190109-122923_1164325700","dateCreated":"2019-01-09T12:29:23+0100","dateStarted":"2019-01-09T14:47:54+0100","dateFinished":"2019-01-09T14:47:54+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:285"},{"text":"%python\n# Random Forest\n# Traitement des données.\n# S'il s'agit de str pour la variable d'intérêt, il faut la convertir en int pour appliquer RandomForestClassifier\nyTrain_ = [0]*len(yTrain_values)\nfor i in range(nb_classe):\n for j in range(len(yTrain_values)):\n if(yTrain_values[j]==classe[i]):\n yTrain_[j]=i\n \nyTest_ = [0]*len(yTest_values)\nfor i in range(nb_classe):\n for j in range(len(yTest_values)):\n if(yTest_values[j]==classe[i]):\n yTest_[j]=i\n \nrf_model = RandomForestClassifier()\n\n# Etablissement des différents paramètres à tester\nparameter_grid = {'n_estimators': [10, 25, 50, 100],\n 'criterion': ['gini', 'entropy'],\n 'max_features': [1, 2, 3, 4]}\n\n# Cross Validation (on fait tourner 10 fois le modele sur differents découpage)\ncross_validation = StratifiedKFold(n_splits=10)\n\n# Sélection des meilleurs paramètres\ngrid_search = GridSearchCV(rf_model,\n param_grid=parameter_grid,\n cv=cross_validation)\n\ngrid_search.fit(XTrain, yTrain_)\n\n# Visualisation des meilleurs paramètres\nprint('Best parameters: {}'.format(grid_search.best_params_))\n\n# Stockage des meilleurs paramètres\nnestim_best = grid_search.best_params_['n_estimators']\ncriterion_best = grid_search.best_params_['criterion']\nmax_features_best = grid_search.best_params_['max_features']\n\n# Mise en place du modèle avec les meilleurs paramètres\nrf_model = RandomForestClassifier(n_estimators = nestim_best, criterion = criterion_best, max_features = max_features_best)\nrf_model.fit(XTrain, yTrain_)\npred_rf = list(rf_model.predict(XTest))\npred_rf = np.array(pred_rf).reshape(-1,1)\nyTest_ = np.array(yTest_).reshape(-1,1)\n\n# Performance du modèle\nscore_rf = float(np.sum(pred_rf==yTest_))/len(pred_rf)","user":"anonymous","dateUpdated":"2019-01-09T14:48:32+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python","lineNumbers":false},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547033380408_1803639707","id":"20190109-122940_479926315","dateCreated":"2019-01-09T12:29:40+0100","dateStarted":"2019-01-09T14:47:54+0100","dateFinished":"2019-01-09T14:48:25+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:286"},{"text":"%python\n# Arbre CART\ncart_model = DecisionTreeClassifier()\n\n# Etablissement des différents paramètres à tester\nparameter_grid = {'max_depth': [1, 2, 3, 4, 5],\n 'max_features': [1, 2, 3, 4]}\n\n# Cross Validation (on fait tourner 10 fois le modele sur differents découpage)\ncross_validation = StratifiedKFold(n_splits=10)\n\n# Sélection des meilleurs paramètres\ngrid_search = GridSearchCV(cart_model,\n param_grid=parameter_grid,\n cv=cross_validation)\ngrid_search.fit(XTrain, yTrain_)\n\n# Visualisation des meilleurs paramètres\nprint('Meilleurs parametres: {}'.format(grid_search.best_params_))\n\n# Stockage des meilleurs paramètres\nmax_depth_best = grid_search.best_params_['max_depth']\nmax_features_best = grid_search.best_params_['max_features']\n\n# Mise en place du modèle avec les meilleurs paramètres\ncart_model = DecisionTreeClassifier(max_depth = max_depth_best, max_features = max_features_best)\ncart_model.fit(XTrain, yTrain_)\npred_cart = list(cart_model.predict(XTest))\npred_cart = np.array(pred_cart).reshape(-1,1)\n\n# Performance du modèle\nscore_cart = float(np.sum(pred_cart==yTest_))/len(pred_cart)","user":"anonymous","dateUpdated":"2019-01-09T14:48:25+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547033407405_1607743568","id":"20190109-123007_101824441","dateCreated":"2019-01-09T12:30:07+0100","dateStarted":"2019-01-09T14:48:25+0100","dateFinished":"2019-01-09T14:48:26+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:287"},{"text":"%python\n# SVM\nsvm_model = svm.SVC()\n\n# Etablissement des différents paramètres à tester\nparameter_grid = {'gamma': [0.1, 1, 10, 100],\n 'kernel': ['linear', 'rbf', 'poly'],\n 'C': [0.1, 1, 10, 100, 1000]}\n\n# Cross Validation (on fait tourner 10 fois le modele sur differents découpage)\ncross_validation = StratifiedKFold(n_splits = 10)\n\n# Sélection des meilleurs paramètres\ngrid_search = GridSearchCV(svm_model,\n param_grid = parameter_grid,\n cv = cross_validation)\ngrid_search.fit(XTrain, yTrain_)\n\n# Visualisation des meilleurs paramètres\nprint('Meilleurs parametres: {}'.format(grid_search.best_params_))\n\n# Stockage des meilleurs paramètres\ngamma_best = grid_search.best_params_['gamma']\nkernel_best = grid_search.best_params_['kernel']\ncs_best = grid_search.best_params_['C']\n\n# Mise en place du modèle avec les meilleurs paramètres\nsvm_model = svm.SVC(gamma = gamma_best, kernel = kernel_best, C = cs_best, probability = True)\nsvm_model.fit(XTrain, yTrain_)\npred_svm = list(svm_model.predict(XTest))\npred_svm = np.array(pred_svm).reshape(-1,1)\n\n# Performance du modèle\nscore_svm = float(np.sum(pred_svm==yTest_))/len(pred_svm)","user":"anonymous","dateUpdated":"2019-01-09T14:48:26+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547033485311_218147936","id":"20190109-123125_175208248","dateCreated":"2019-01-09T12:31:25+0100","dateStarted":"2019-01-09T14:48:26+0100","dateFinished":"2019-01-09T14:48:29+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:288"},{"text":"%python\n# Affichage des résultats\n\nif input6 == 'erreur test' :\n print \"Precision de la Regression Logistique : \", round(score_glm*100,4), \"%\\n\"\n print \"Precision du Random Forest : \", round(score_rf*100,4), \"%\\n\"\n print \"Precision de l'arbre CART : \", round(score_cart*100,4), \"%\\n\"\n print \"Precision de SVM : \", round(score_svm*100,4), \"%\\n\"\n \n err = [round(score_glm*100,4),round(score_rf*100,4),round(score_cart*100,4),round(score_svm*100,4)]\n ind = err.index(max(err))\n ","user":"anonymous","dateUpdated":"2019-01-09T14:48:29+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547033496128_252703743","id":"20190109-123136_1864964957","dateCreated":"2019-01-09T12:31:36+0100","dateStarted":"2019-01-09T14:48:29+0100","dateFinished":"2019-01-09T14:48:29+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:289"},{"text":"%python\n# Affichage des résultats sous forme de matrice de confusion\n\nif input6 == 'matrice de confusion' : \n print(\"Matrice de confusion de la Régression Logistique:\")\n cm_rl = metrics.confusion_matrix(yTest, pred_rl)\n plt.figure(figsize=(nb_classe+2,nb_classe+2))\n sns.heatmap(cm_rl, annot=True, fmt=\".2f\", linewidths=.3, square = True, cmap = \"PiYG\");\n plt.ylabel('Observés');\n plt.xlabel('Prédis');\n title = 'Score de prédiction: {0}'.format(round(score_glm*100,4))\n plt.title(title, size = 13)\n plt.show()\n \n print(\"\\nMatrice de confusion du Random Forest:\")\n cm_rf = metrics.confusion_matrix(yTest_, pred_rf)\n plt.figure(figsize=(nb_classe+2,nb_classe+2))\n sns.heatmap(cm_rf, annot=True, fmt=\".2f\", linewidths=.3, square = True, cmap = \"PiYG\");\n plt.ylabel('Observés');\n plt.xlabel('Prédis');\n title = 'Score de prédiction: {0}'.format(round(score_rf*100,4))\n plt.title(title, size = 13)\n plt.show()\n \n print(\"\\nMatrice de confusion de CART:\")\n cm_cart = metrics.confusion_matrix(yTest_, pred_cart)\n plt.figure(figsize=(nb_classe+2,nb_classe+2))\n sns.heatmap(cm_cart, annot=True, fmt=\".2f\", linewidths=.3, square = True, cmap = \"PiYG\");\n plt.ylabel('Observés');\n plt.xlabel('Prédis');\n title = 'Score de prédiction: {0}'.format(round(score_cart*100,4))\n plt.title(title, size = 13)\n plt.show()\n \n print(\"\\nMatrice de confusion SVM :\")\n cm_svm = metrics.confusion_matrix(yTest_, pred_svm)\n plt.figure(figsize=(nb_classe+2,nb_classe+2))\n sns.heatmap(cm_svm, annot=True, fmt=\".2f\", linewidths=.3, square = True, cmap = \"PiYG\");\n plt.ylabel('Observés');\n plt.xlabel('Prédis');\n title = 'Score de prédiction: {0}'.format(round(score_svm*100,4))\n plt.title(title, size = 13)\n plt.show()\n \n err = [round(score_glm*100,4),round(score_rf*100,4),round(score_cart*100,4),round(score_svm*100,4)]\n ind = err.index(max(err))","user":"anonymous","dateUpdated":"2019-01-09T14:48:29+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{"3":{"graph":{"mode":"table","height":297,"optionOpen":false}}},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[{"type":"TEXT","data":"n59PfepTqdfrOfTQQ3PxxRdXPQsA2ImKC6AkOeqoo3LddddVPQMAqEiRT4HV6/WqJwAAFSoygJ577rmce+65mTNnTh5//PGq5wAAO1lxT4EdfPDB+drXvpYTTzwxf/vb33L66afnwQcfzLBhxf1VAECxivuqP3bs2Jx44olJkoMOOigf//jH09fXl3Hjxr3nbbq7uwd1w/r16wf1fFClnp6e9Pf3Vz1ju7n+aBa72rXXaIoLoJ/97GfZuHFjzjrrrGzcuDEvv/xyxo4d+7636ejoGNQNtVot6+4Z1FNCZdrb29PW1lb1jO1Wq9WS362regZ8ZDvq2hvsO/2NqrgAOvbYY7Nw4cI8/PDD+cc//pHLLrvM018AUJjivvKPGjUqP/rRj6qeAQBUqMjvAgMAyiaAAIDiCCAAoDgCCAAojgACAIojgACA4gggAKA4AggAKI4AAgCKI4AAgOIIIACgOAIIACiOAAIAiiOAAIDiCCAAoDgCCAAojgACAIojgACA4gggAKA4AggAKI4AAgCKI4AAgOIIIACgOAIIACiOAAIAiiOAAIDiCCAAoDgCCAAojgACAIojgACA4gyrekAVrrjiivz+979PS0tLli5dmokTJ1Y9CQDYiYoLoLVr1+avf/1rVq9eneeeey4XXXRRVq9eXfUsAGAnKu4psCeeeCJf/OIXkyRtbW155ZVX8vrrr1e8CgDYmYoLoE2bNmWfffbZ9vnee++dTZs2VbgIANjZinsK7N/V6/VK/ty+1zdX8ufCYOp7fXP+T9Uj/gubX+qregJ8JP/7b3hXvPoaR3EBNGbMmHc84vPSSy9l3333fd/bdHd3D/qOjv930aCfE3a2A5P09/fvkGtkR7rocx1VT4CP5n8O3CWvvUZSXAB9/vOfzw033JCZM2emp6cnY8eOzciRI9/z93d0+B8lADSb4gLo8MMPT3t7e2bNmpWhQ4fm29/+dtWTAICdrKVe1YtgAAAqUtx3gQEACCAAoDgCCAAojgCiaQ0MDGTJkiU57bTTqp4CRXn22Wczbdq0rFq1quop8J4EEE1r+fLl+fSnP52Wlpaqp0AxtmzZkmXLlmXSpElVT4H3JYBoWt/4xje2ve8bsHOMGDEiN998c8aMGVP1FHhfAoim9X4/4BLYMYYMGZLW1taqZ8AHEkAAQHEEEE3ljjvuyLx583LBBRdUPQWABlbcW2HQ3GbPnp3Zs2dv+7xer8cPOwfg33krDJrW+eefnw0bNuQvf/lL2tvb85WvfCVf+tKXqp4FTa2npydXXnllent7M2zYsIwdOzY33HBD9tprr6qnwTsIIACgOF4DBAAURwABAMURQABAcQQQAFAcAQQAFEcAAQDFEUAAQHEEEABQHAEENIzZs2dn7dq12z7/6le/ml//+tcVLgKalQACGsasWbNy9913J0n+/ve/54UXXsgXvvCFilcBzUgAAQ3jxBNPTFdXV7Zs2ZIHH3ww06dPr3oS0KQEENAwWltbM23atPzyl79MZ2dnTjvttKonAU1KAAENZebMmbnjjjuSJOPGjat4DdCsBBDQUNra2rJ169aceuqpVU8BmpgAAhrKiy++mC1btuT444+vegrQxIZVPQDgn3784x/nF7/4RZYtW5ahQ4dWPQdoYi31er1e9QgAgJ3JU2AAQHEEEABQHAEEABRHAAEAxRFAAEBxBBAAUBwBBAAU5/8DLS4FwEzKRmIAAAAASUVORK5CYII= style='width=auto;height:auto'><div>\n-1 36\n 1 25\nName: y, dtype: int64\nBest parameters: {'max_features': 1, 'n_estimators': 50, 'criterion': 'gini'}\nMeilleurs parametres: {'max_features': 2, 'max_depth': 4}\nMeilleurs parametres: {'kernel': 'rbf', 'C': 0.1, 'gamma': 0.1}\nMatrice de confusion de la Régression Logistique:\n<matplotlib.figure.Figure object at 0x7f21f72b3590>\n<matplotlib.axes._subplots.AxesSubplot object at 0x7f21f72e2310>\n<matplotlib.text.Text object at 0x7f21f720e710>\n<matplotlib.text.Text object at 0x7f21f72e2a10>\n<matplotlib.text.Text object at 0x7f21f734c7d0>\n"},{"type":"HTML","data":"<div style='width:auto;height:auto'><img src= style='width=auto;height:auto'><div>\n\nMatrice de confusion du Random Forest:\n<matplotlib.figure.Figure object at 0x7f21f71d1d90>\n<matplotlib.axes._subplots.AxesSubplot object at 0x7f21f746bbd0>\n<matplotlib.text.Text object at 0x7f21f72da850>\n<matplotlib.text.Text object at 0x7f21f72c9110>\n<matplotlib.text.Text object at 0x7f21f72da190>\n"},{"type":"HTML","data":"<div style='width:auto;height:auto'><img src= style='width=auto;height:auto'><div>\n\nMatrice de confusion de CART:\n<matplotlib.figure.Figure object at 0x7f21f70797d0>\n<matplotlib.axes._subplots.AxesSubplot object at 0x7f21f72c9b90>\n<matplotlib.text.Text object at 0x7f21f70a3e10>\n<matplotlib.text.Text object at 0x7f21f7097590>\n<matplotlib.text.Text object at 0x7f21f7057850>\n"},{"type":"HTML","data":"<div style='width:auto;height:auto'><img src= style='width=auto;height:auto'><div>\n\nMatrice de confusion SVM :\n<matplotlib.figure.Figure object at 0x7f21f70ca150>\n<matplotlib.axes._subplots.AxesSubplot object at 0x7f21f71734d0>\n<matplotlib.text.Text object at 0x7f21f731e890>\n<matplotlib.text.Text object at 0x7f21f7330610>\n<matplotlib.text.Text object at 0x7f21f7153a50>\n"},{"type":"HTML","data":"<div style='width:auto;height:auto'><img src="}]},"apps":[],"jobName":"paragraph_1547033508751_419358345","id":"20190109-123148_816961333","dateCreated":"2019-01-09T12:31:48+0100","dateStarted":"2019-01-09T14:48:29+0100","dateFinished":"2019-01-09T14:48:31+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:290"},{"text":"%python\n# Affichage des résultats sous forme de courbe ROC\n\nif input6 == 'courbe roc' :\n probas_rl = logit_model.predict_proba(XTest)\n # probas est une matrice de deux colonnes avec la proabilités d'appartenance à chaque classe\n fpr_rl, tpr_rl, thresholds_rl = roc_curve(yTest, probas_rl[:, 1])\n roc_auc_rl = auc(fpr_rl, tpr_rl)\n plt.plot(fpr_rl, tpr_rl, label='RL (aire = %0.2f)' % roc_auc_rl)\n \n probas_rf = rf_model.predict_proba(XTest)\n fpr_rf, tpr_rf, thresholds_rf = roc_curve(yTest, probas_rf[:, 1])\n roc_auc_rf = auc(fpr_rf, tpr_rf)\n plt.plot(fpr_rf, tpr_rf, label='RF (aire = %0.2f)' % roc_auc_rf)\n \n probas_cart = cart_model.predict_proba(XTest)\n fpr_cart, tpr_cart, thresholds_cart = roc_curve(yTest, probas_cart[:, 1])\n roc_auc_cart = auc(fpr_cart, tpr_cart)\n plt.plot(fpr_cart, tpr_cart, label='CART (aire = %0.2f)' % roc_auc_cart)\n \n probas_svm = svm_model.predict_proba(XTest)\n fpr_svm, tpr_svm, thresholds_svm = roc_curve(yTest, probas_svm[:, 1])\n roc_auc_svm = auc(fpr_svm, tpr_svm)\n plt.plot(fpr_svm, tpr_svm, label='SVM (aire = %0.2f)' % roc_auc_svm)\n \n plt.plot([0, 1], [0, 1], 'k--')\n plt.xlim([0.0, 1.0])\n plt.ylim([0.0, 1.0])\n plt.xlabel('Taux de faux positifs')\n plt.ylabel('Taux de vrais positifs')\n plt.title('Courbe ROC ')\n plt.legend(loc=\"lower right\")\n \n plt.show()\n \n err = [round(roc_auc_rl*100,4),round(roc_auc_rf*100,4),round(roc_auc_cart*100,4),round(roc_auc_svm*100,4)]\n ind = err.index(max(err))","user":"anonymous","dateUpdated":"2019-01-09T14:48:31+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547033523812_512047809","id":"20190109-123203_1695114759","dateCreated":"2019-01-09T12:32:03+0100","dateStarted":"2019-01-09T14:48:31+0100","dateFinished":"2019-01-09T14:48:31+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:291"},{"text":"%python\nif ind == 0 :\n print \"La methode utilisee pour la prediction de votre dataset sera la Regression Logistique avec une precision de \", round(score_glm*100,2), \"% !\\n\"\nelif ind == 1 :\n print \"La methode utilisee pour la prediction de votre dataset sera Random Forest avec une precision de \", round(score_rf*100,2), \"% !\\n\"\nelif ind == 2 : \n print \"La methode utilisee pour la prediction de votre dataset sera CART avec une precision de \", round(score_cart*100,2), \"% !\\n\"\nelse :\n print \"La methode utilisee pour la prediction de votre dataset sera SVM avec une precision de \", round(score_svm*100,2), \"% !\\n\"","user":"anonymous","dateUpdated":"2019-01-09T14:48:32+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[]},"apps":[],"jobName":"paragraph_1547033533964_-699271228","id":"20190109-123213_1333759728","dateCreated":"2019-01-09T12:32:13+0100","dateStarted":"2019-01-09T14:48:32+0100","dateFinished":"2019-01-09T14:48:32+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:292"},{"text":"%python\n","user":"anonymous","dateUpdated":"2019-01-09T14:48:32+0100","config":{"colWidth":12,"fontSize":9,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false,"completionKey":"TAB","completionSupport":true},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"apps":[],"jobName":"paragraph_1547033549134_1438036247","id":"20190109-123229_329787350","dateCreated":"2019-01-09T12:32:29+0100","status":"FINISHED","progressUpdateIntervalMs":500,"$$hashKey":"object:293"}],"name":"BD","id":"2E1JAB7HV","noteParams":{},"noteForms":{},"angularObjects":{"python:shared_process":[]},"config":{"isZeppelinNotebookCronEnable":false,"looknfeel":"default","personalizedMode":"false"},"info":{}}