-
Notifications
You must be signed in to change notification settings - Fork 391
/
regression.py
36 lines (25 loc) · 938 Bytes
/
regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
dataset = pd.read_csv('')
dataset.plot(x='', y='', style='o')
plt.title(' vs ')
plt.xlabel('')
plt.ylabel('')
plt.show()
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
regressor = LinearRegression()
regressor.fit(X_train, y_train)
print(regressor.intercept_)
print(regressor.coef_)
y_pred = regressor.predict(X_test)
df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
print (df)
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))