-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkinetic_allfiles.py
80 lines (68 loc) · 3.14 KB
/
kinetic_allfiles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# -*- coding: utf-8 -*-
"""
Created on Thu May 17 16:51:58 2018
@author: VICON
"""
import numpy as np
from extraction_enf import extraction_enf as extraction_enf
from kinetic import kinetic as kinetic
def kinetic_allfiles(filenames, extension):
valid_file = []
for ind_file, filename in enumerate(filenames):
if extraction_enf(filename) != ['invalid', 'invalid']:
valid_file.append(filename)
# initialisation
for ind_file, filename in enumerate(valid_file):
filename_str = str(filename)
print filename
if ind_file == 0:
left_kinematic, left_kinetic = kinetic(filename_str, "left", extension)
right_kinematic, right_kinetic = kinetic(filename_str, "right", extension)
else:
left_kinematic_temp, left_kinetic_temp = kinetic(filename_str, "left", extension)
right_kinematic_temp, right_kinetic_temp = kinetic(filename_str, "right", extension)
for key in left_kinematic:
left_kinematic[key] = np.concatenate(
(left_kinematic[key], left_kinematic_temp[key]), axis=1)
right_kinematic[key] = np.concatenate(
(right_kinematic[key], right_kinematic_temp[key]), axis=1)
for key in left_kinetic:
left_kinetic[key] = np.concatenate(
(left_kinetic[key], left_kinetic_temp[key]), axis=1)
right_kinetic[key] = np.concatenate(
(right_kinetic[key], right_kinetic_temp[key]), axis=1)
left_mean_kinematic = {}
right_mean_kinematic = {}
left_std_kinematic = {}
right_std_kinematic = {}
for key in left_kinematic:
left_mean_kinematic[key] = np.mean(left_kinematic[key], axis=1)
left_std_kinematic[key] = np.std(left_kinematic[key], axis=1)
right_mean_kinematic[key] = np.mean(right_kinematic[key], axis=1)
right_std_kinematic[key] = np.std(right_kinematic[key], axis=1)
left_kinematic = {"mean": left_mean_kinematic,
"std": left_std_kinematic,
"all": left_kinematic}
right_kinematic = {"mean": right_mean_kinematic,
"std": right_std_kinematic,
"all": right_kinematic}
subject_kinematic = {"left": left_kinematic,
"right": right_kinematic}
left_mean_kinetic = {}
right_mean_kinetic = {}
left_std_kinetic = {}
right_std_kinetic = {}
for key in left_kinetic:
left_mean_kinetic[key] = np.mean(left_kinetic[key], axis=1)
left_std_kinetic[key] = np.std(left_kinetic[key], axis=1)
right_mean_kinetic[key] = np.mean(right_kinetic[key], axis=1)
right_std_kinetic[key] = np.std(right_kinetic[key], axis=1)
left_kinetic = {"mean": left_mean_kinetic,
"std": left_std_kinetic,
"all": left_kinetic}
right_kinetic = {"mean": right_mean_kinetic,
"std": right_std_kinetic,
"all": right_kinetic}
subject_kinetic = {"left": left_kinetic,
"right": right_kinetic}
return [subject_kinematic, subject_kinetic]