forked from Javane-nikan45-2/libfaceid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesting_webcam_livenessdetection.py
251 lines (195 loc) · 9.91 KB
/
testing_webcam_livenessdetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import sys
import argparse
import cv2
from time import time
from libfaceid.detector import FaceDetectorModels, FaceDetector
from libfaceid.encoder import FaceEncoderModels, FaceEncoder
from libfaceid.liveness import FaceLivenessModels, FaceLiveness
# Set the window name
WINDOW_NAME = "Facial_Recognition"
# Set the input directories
INPUT_DIR_DATASET = "datasets"
INPUT_DIR_MODEL_DETECTION = "models/detection/"
INPUT_DIR_MODEL_ENCODING = "models/encoding/"
INPUT_DIR_MODEL_TRAINING = "models/training/"
INPUT_DIR_MODEL_ESTIMATION = "models/estimation/"
INPUT_DIR_MODEL_LIVENESS = "models/liveness/"
# Set width and height
RESOLUTION_QVGA = (320, 240)
RESOLUTION_VGA = (640, 480)
RESOLUTION_HD = (1280, 720)
RESOLUTION_FULLHD = (1920, 1080)
def cam_init(cam_index, width, height):
cap = cv2.VideoCapture(cam_index)
if sys.version_info < (3, 0):
cap.set(cv2.cv.CV_CAP_PROP_FPS, 30)
cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, height)
else:
cap.set(cv2.CAP_PROP_FPS, 30)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
return cap
def label_face(frame, face_rect, face_id, confidence):
(x, y, w, h) = face_rect
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 1)
if face_id is not None:
if confidence is not None:
text = "{} {:.2f}%".format(face_id, confidence)
else:
text = "{}".format(face_id)
cv2.putText(frame, text, (x+5,y+h-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
def monitor_eye_blinking(eyes_close, eyes_ratio, total_eye_blinks, eye_counter, eye_continuous_close):
if eyes_close:
#print("eye less than threshold {:.2f}".format(eyes_ratio))
eye_counter += 1
else:
#print("eye:{:.2f} blinks:{}".format(eyes_ratio, total_eye_blinks))
if eye_counter >= eye_continuous_close:
total_eye_blinks += 1
eye_counter = 0
return total_eye_blinks, eye_counter
def monitor_mouth_opening(mouth_open, mouth_ratio, total_mouth_opens, mouth_counter, mouth_continuous_open):
if mouth_open:
#print("mouth more than threshold {:.2f}".format(mouth_ratio))
mouth_counter += 1
else:
#print("mouth:{:.2f} opens:{}".format(mouth_ratio, total_mouth_opens))
if mouth_counter >= mouth_continuous_open:
total_mouth_opens += 1
mouth_counter = 0
return total_mouth_opens, mouth_counter
# process_livenessdetection is supposed to run before process_facerecognition
def process_livenessdetection(model_detector, model_recognizer, model_liveness, cam_index, cam_resolution):
# Initialize the camera
camera = cam_init(cam_index, cam_resolution[0], cam_resolution[1])
try:
# Initialize face detection
face_detector = FaceDetector(model=model_detector, path=INPUT_DIR_MODEL_DETECTION)
# Initialize face recognizer
face_encoder = FaceEncoder(model=model_recognizer, path=INPUT_DIR_MODEL_ENCODING, path_training=INPUT_DIR_MODEL_TRAINING, training=False)
# Initialize face liveness detection
face_liveness = FaceLiveness(model=FaceLivenessModels.EYESBLINK_MOUTHOPEN, path=INPUT_DIR_MODEL_LIVENESS)
face_liveness2 = FaceLiveness(model=FaceLivenessModels.COLORSPACE_YCRCBLUV, path=INPUT_DIR_MODEL_LIVENESS)
except:
print("Error, check if models and trained dataset models exists!")
return
face_id, confidence = (None, 0)
eyes_close, eyes_ratio = (False, 0)
total_eye_blinks, eye_counter, eye_continuous_close = (0, 0, 1) # eye_continuous_close should depend on frame rate
mouth_open, mouth_ratio = (False, 0)
total_mouth_opens, mouth_counter, mouth_continuous_open = (0, 0, 1) # eye_continuous_close should depend on frame rate
time_start = time()
time_elapsed = 0
frame_count = 0
identified_unique_faces = {} # dictionary
runtime = 10 # monitor for 10 seconds only
is_fake_count_print = 0
print("Note: this will run for {} seconds only".format(runtime))
while (time_elapsed < runtime):
# Capture frame from webcam
ret, frame = camera.read()
if frame is None:
print("Error, check if camera is connected!")
break
# Detect and identify faces in the frame
# Indentify face based on trained dataset (note: should run facial_recognition_training.py)
faces = face_detector.detect(frame)
for (index, face) in enumerate(faces):
# Check if eyes are close and if mouth is open
eyes_close, eyes_ratio = face_liveness.is_eyes_close(frame, face)
mouth_open, mouth_ratio = face_liveness.is_mouth_open(frame, face)
print("eyes_close={}, eyes_ratio ={:.2f}".format(mouth_open, mouth_ratio))
print("mouth_open={}, mouth_ratio={:.2f}".format(mouth_open, mouth_ratio))
# Detect if frame is a print attack or replay attack based on colorspace
is_fake_print = face_liveness2.is_fake(frame, face)
#is_fake_replay = face_liveness2.is_fake(frame, face, flag=1)
# Identify face only if it is not fake and eyes are open and mouth is close
if is_fake_print:
is_fake_count_print += 1
face_id, confidence = ("Fake", None)
elif not eyes_close and not mouth_open:
face_id, confidence = face_encoder.identify(frame, face)
if face_id not in identified_unique_faces:
identified_unique_faces[face_id] = 1
else:
identified_unique_faces[face_id] += 1
label_face(frame, face, face_id, confidence) # Set text and bounding box on face
break # Process 1 face only
# Monitor eye blinking and mouth opening for liveness detection
total_eye_blinks, eye_counter = monitor_eye_blinking(eyes_close, eyes_ratio, total_eye_blinks, eye_counter, eye_continuous_close)
total_mouth_opens, mouth_counter = monitor_mouth_opening(mouth_open, mouth_ratio, total_mouth_opens, mouth_counter, mouth_continuous_open)
# Update frame count
frame_count += 1
time_elapsed = time()-time_start
# Display updated frame
cv2.imshow(WINDOW_NAME, frame)
# Check for user actions
if cv2.waitKey(1) & 0xFF == 27: # ESC
break
print("Note: this will run for {} seconds only".format(runtime))
# Determining if face is alive can depend on the following factors and more:
time_elapsed = int(time()-time_start)
print("\n")
print("Face Liveness Data:")
print("time_elapsed = {}".format(time_elapsed)) # recognition will run for specific time (ex. 3 seconds)
print("frame_count = {}".format(frame_count)) # can be used for averaging
print("total_eye_blinks = {}".format(total_eye_blinks)) # fake face if 0
print("total_mouth_opens = {}".format(total_mouth_opens)) # fake face if 0
print("is_fake_count_print = {}".format(is_fake_count_print)) # fake face if not 0
print("identified_unique_faces = {}".format(identified_unique_faces)) # fake face if recognized more than 1 face
print("Todo: determine if face is alive using this data.")
print("\n")
# Release the camera
camera.release()
cv2.destroyAllWindows()
def run(cam_index, cam_resolution):
detector=FaceDetectorModels.HAARCASCADE
# detector=FaceDetectorModels.DLIBHOG
# detector=FaceDetectorModels.DLIBCNN
# detector=FaceDetectorModels.SSDRESNET
# detector=FaceDetectorModels.MTCNN
# detector=FaceDetectorModels.FACENET
encoder=FaceEncoderModels.LBPH
# encoder=FaceEncoderModels.OPENFACE
# encoder=FaceEncoderModels.DLIBRESNET
# encoder=FaceEncoderModels.FACENET
liveness=FaceLivenessModels.EYESBLINK_MOUTHOPEN
# liveness=FaceLivenessModels.COLORSPACE_YCRCBLUV
process_livenessdetection(detector, encoder, liveness, cam_index, cam_resolution)
def main(args):
if sys.version_info < (3, 0):
print("Error: Python2 is slow. Use Python3 for max performance.")
return
cam_index = int(args.webcam)
resolutions = [ RESOLUTION_QVGA, RESOLUTION_VGA, RESOLUTION_HD, RESOLUTION_FULLHD ]
try:
cam_resolution = resolutions[int(args.resolution)]
except:
cam_resolution = RESOLUTION_QVGA
if args.detector and args.encoder and args.liveness:
try:
detector = FaceDetectorModels(int(args.detector))
encoder = FaceEncoderModels(int(args.encoder))
liveness = FaceLivenessModels(int(args.liveness))
print( "Parameters: {} {} {}".format(detector, encoder, liveness) )
process_livenessdetection(detector, encoder, liveness, cam_index, cam_resolution)
except:
print( "Invalid parameter" )
return
run(cam_index, cam_resolution)
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--detector', required=False, default=0,
help='Detector model to use. Options: 0-HAARCASCADE, 1-DLIBHOG, 2-DLIBCNN, 3-SSDRESNET, 4-MTCNN, 5-FACENET')
parser.add_argument('--encoder', required=False, default=0,
help='Encoder model to use. Options: 0-LBPH, 1-OPENFACE, 2-DLIBRESNET, 3-FACENET')
parser.add_argument('--liveness', required=False, default=0,
help='Liveness detection model to use. Options: 0-EYESBLINK_MOUTHOPEN, 1-COLORSPACE_YCRCBLUV')
parser.add_argument('--webcam', required=False, default=0,
help='Camera index to use. Default is 0. Assume only 1 camera connected.)')
parser.add_argument('--resolution', required=False, default=0,
help='Camera resolution to use. Default is 0. Options: 0-QVGA, 1-VGA, 2-HD, 3-FULLHD')
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))