Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]"GGML_ASSERT: ……llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0 Aborted" assert fail after run kleidiai demo with more thread on SM8650 #141

Open
AndreaChiChengdu opened this issue Aug 2, 2024 · 1 comment

Comments

@AndreaChiChengdu
Copy link

I only modified t6 instead of t4, t4 t5 both work well for this model,but if we set the thread=6,will always trigger the problem on my XIAOMI14Pro(SM8650 8Gen3)
please check it for resolve
thanks~
————————————————————————————————————————————————————
shennong:/data/local/tmp $ ./llama-cli -m phi-2.Q4_0.gguf -p "Write a code in C for bubble sorting" -n 32 -t 6

Log start

main: build = 3147 (6fcd1331)

main: built with Android (12027248, +pgo, +bolt, +lto, +mlgo, based on r522817) clang version 18.0.1 (https://android.googlesource.com/toolchain/llvm-project d8003a456d14a3deb8054cdaa529ffbf02d9b262) for x86_64-unknown-linux-gnu

main: seed = 1722577686

llama_model_loader: loaded meta data with 20 key-value pairs and 325 tensors from phi-2.Q4_0.gguf (version GGUF V3 (latest))

llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.

llama_model_loader: - kv 0: general.architecture str = phi2

llama_model_loader: - kv 1: general.name str = Phi2

llama_model_loader: - kv 2: phi2.context_length u32 = 2048

llama_model_loader: - kv 3: phi2.embedding_length u32 = 2560

llama_model_loader: - kv 4: phi2.feed_forward_length u32 = 10240

llama_model_loader: - kv 5: phi2.block_count u32 = 32

llama_model_loader: - kv 6: phi2.attention.head_count u32 = 32

llama_model_loader: - kv 7: phi2.attention.head_count_kv u32 = 32

llama_model_loader: - kv 8: phi2.attention.layer_norm_epsilon f32 = 0.000010

llama_model_loader: - kv 9: phi2.rope.dimension_count u32 = 32

llama_model_loader: - kv 10: general.file_type u32 = 2

llama_model_loader: - kv 11: tokenizer.ggml.add_bos_token bool = false

llama_model_loader: - kv 12: tokenizer.ggml.model str = gpt2

llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,51200] = ["!", """, "#", "$", "%", "&", "'", ...

llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,51200] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

llama_model_loader: - kv 15: tokenizer.ggml.merges arr[str,50000] = ["Ġ t", "Ġ a", "h e", "i n", "r e",...

llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 50256

llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 50256

llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 50256

llama_model_loader: - kv 19: general.quantization_version u32 = 2

llama_model_loader: - type f32: 195 tensors

llama_model_loader: - type q4_0: 129 tensors

llama_model_loader: - type q6_K: 1 tensors

llama_model_loader: mmap is not supported on this platform

llm_load_vocab: missing pre-tokenizer type, using: 'default'

llm_load_vocab:

llm_load_vocab: ************************************

llm_load_vocab: GENERATION QUALITY WILL BE DEGRADED!

llm_load_vocab: CONSIDER REGENERATING THE MODEL

llm_load_vocab: ************************************

llm_load_vocab:

llm_load_vocab: special tokens cache size = 944

llm_load_vocab: token to piece cache size = 0.3151 MB

llm_load_print_meta: format = GGUF V3 (latest)

llm_load_print_meta: arch = phi2

llm_load_print_meta: vocab type = BPE

llm_load_print_meta: n_vocab = 51200

llm_load_print_meta: n_merges = 50000

llm_load_print_meta: n_ctx_train = 2048

llm_load_print_meta: n_embd = 2560

llm_load_print_meta: n_head = 32

llm_load_print_meta: n_head_kv = 32

llm_load_print_meta: n_layer = 32

llm_load_print_meta: n_rot = 32

llm_load_print_meta: n_embd_head_k = 80

llm_load_print_meta: n_embd_head_v = 80

llm_load_print_meta: n_gqa = 1

llm_load_print_meta: n_embd_k_gqa = 2560

llm_load_print_meta: n_embd_v_gqa = 2560

llm_load_print_meta: f_norm_eps = 1.0e-05

llm_load_print_meta: f_norm_rms_eps = 0.0e+00

llm_load_print_meta: f_clamp_kqv = 0.0e+00

llm_load_print_meta: f_max_alibi_bias = 0.0e+00

llm_load_print_meta: f_logit_scale = 0.0e+00

llm_load_print_meta: n_ff = 10240

llm_load_print_meta: n_expert = 0

llm_load_print_meta: n_expert_used = 0

llm_load_print_meta: causal attn = 1

llm_load_print_meta: pooling type = 0

llm_load_print_meta: rope type = 2

llm_load_print_meta: rope scaling = linear

llm_load_print_meta: freq_base_train = 10000.0

llm_load_print_meta: freq_scale_train = 1

llm_load_print_meta: n_ctx_orig_yarn = 2048

llm_load_print_meta: rope_finetuned = unknown

llm_load_print_meta: ssm_d_conv = 0

llm_load_print_meta: ssm_d_inner = 0

llm_load_print_meta: ssm_d_state = 0

llm_load_print_meta: ssm_dt_rank = 0

llm_load_print_meta: model type = 3B

llm_load_print_meta: model ftype = Q4_0

llm_load_print_meta: model params = 2.78 B

llm_load_print_meta: model size = 1.49 GiB (4.61 BPW)

llm_load_print_meta: general.name = Phi2

llm_load_print_meta: BOS token = 50256 '<|endoftext|>'

llm_load_print_meta: EOS token = 50256 '<|endoftext|>'

llm_load_print_meta: UNK token = 50256 '<|endoftext|>'

llm_load_print_meta: LF token = 128 'Ä'

llm_load_print_meta: EOT token = 50256 '<|endoftext|>'

llm_load_tensors: ggml ctx size = 0.16 MiB

llm_load_tensors: CPU buffer size = 1526.50 MiB

...........................................................................................

llama_new_context_with_model: n_ctx = 2048

llama_new_context_with_model: n_batch = 2048

llama_new_context_with_model: n_ubatch = 512

llama_new_context_with_model: flash_attn = 0

llama_new_context_with_model: freq_base = 10000.0

llama_new_context_with_model: freq_scale = 1

llama_kv_cache_init: CPU KV buffer size = 640.00 MiB

llama_new_context_with_model: KV self size = 640.00 MiB, K (f16): 320.00 MiB, V (f16): 320.00 MiB

llama_new_context_with_model: CPU output buffer size = 0.20 MiB

llama_new_context_with_model: CPU compute buffer size = 167.01 MiB

llama_new_context_with_model: graph nodes = 1225

llama_new_context_with_model: graph splits = 1

GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0

GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0

GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0

GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0

GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0

GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0

Aborted

@kshitij-sisodia-arm
Copy link
Collaborator

Hi @AndreaChiChengdu,

Thanks for bringing this to our attention. This patch was created to demonstrate a possible integration point for KleidiAI in llama.cpp. We will work separately with llama.cpp to provide a proper solution.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants