You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I only modified t6 instead of t4, t4 t5 both work well for this model,but if we set the thread=6,will always trigger the problem on my XIAOMI14Pro(SM8650 8Gen3)
please check it for resolve
thanks~
————————————————————————————————————————————————————
shennong:/data/local/tmp $ ./llama-cli -m phi-2.Q4_0.gguf -p "Write a code in C for bubble sorting" -n 32 -t 6
Log start
main: build = 3147 (6fcd1331)
main: built with Android (12027248, +pgo, +bolt, +lto, +mlgo, based on r522817) clang version 18.0.1 (https://android.googlesource.com/toolchain/llvm-project d8003a456d14a3deb8054cdaa529ffbf02d9b262) for x86_64-unknown-linux-gnu
main: seed = 1722577686
llama_model_loader: loaded meta data with 20 key-value pairs and 325 tensors from phi-2.Q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
Thanks for bringing this to our attention. This patch was created to demonstrate a possible integration point for KleidiAI in llama.cpp. We will work separately with llama.cpp to provide a proper solution.
I only modified t6 instead of t4, t4 t5 both work well for this model,but if we set the thread=6,will always trigger the problem on my XIAOMI14Pro(SM8650 8Gen3)
please check it for resolve
thanks~
————————————————————————————————————————————————————
shennong:/data/local/tmp $ ./llama-cli -m phi-2.Q4_0.gguf -p "Write a code in C for bubble sorting" -n 32 -t 6
Log start
main: build = 3147 (6fcd1331)
main: built with Android (12027248, +pgo, +bolt, +lto, +mlgo, based on r522817) clang version 18.0.1 (https://android.googlesource.com/toolchain/llvm-project d8003a456d14a3deb8054cdaa529ffbf02d9b262) for x86_64-unknown-linux-gnu
main: seed = 1722577686
llama_model_loader: loaded meta data with 20 key-value pairs and 325 tensors from phi-2.Q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = phi2
llama_model_loader: - kv 1: general.name str = Phi2
llama_model_loader: - kv 2: phi2.context_length u32 = 2048
llama_model_loader: - kv 3: phi2.embedding_length u32 = 2560
llama_model_loader: - kv 4: phi2.feed_forward_length u32 = 10240
llama_model_loader: - kv 5: phi2.block_count u32 = 32
llama_model_loader: - kv 6: phi2.attention.head_count u32 = 32
llama_model_loader: - kv 7: phi2.attention.head_count_kv u32 = 32
llama_model_loader: - kv 8: phi2.attention.layer_norm_epsilon f32 = 0.000010
llama_model_loader: - kv 9: phi2.rope.dimension_count u32 = 32
llama_model_loader: - kv 10: general.file_type u32 = 2
llama_model_loader: - kv 11: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 12: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,51200] = ["!", """, "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,51200] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 15: tokenizer.ggml.merges arr[str,50000] = ["Ġ t", "Ġ a", "h e", "i n", "r e",...
llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 50256
llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 50256
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 50256
llama_model_loader: - kv 19: general.quantization_version u32 = 2
llama_model_loader: - type f32: 195 tensors
llama_model_loader: - type q4_0: 129 tensors
llama_model_loader: - type q6_K: 1 tensors
llama_model_loader: mmap is not supported on this platform
llm_load_vocab: missing pre-tokenizer type, using: 'default'
llm_load_vocab:
llm_load_vocab: ************************************
llm_load_vocab: GENERATION QUALITY WILL BE DEGRADED!
llm_load_vocab: CONSIDER REGENERATING THE MODEL
llm_load_vocab: ************************************
llm_load_vocab:
llm_load_vocab: special tokens cache size = 944
llm_load_vocab: token to piece cache size = 0.3151 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = phi2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 51200
llm_load_print_meta: n_merges = 50000
llm_load_print_meta: n_ctx_train = 2048
llm_load_print_meta: n_embd = 2560
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 32
llm_load_print_meta: n_embd_head_k = 80
llm_load_print_meta: n_embd_head_v = 80
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 2560
llm_load_print_meta: n_embd_v_gqa = 2560
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 0.0e+00
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 10240
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 2048
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 3B
llm_load_print_meta: model ftype = Q4_0
llm_load_print_meta: model params = 2.78 B
llm_load_print_meta: model size = 1.49 GiB (4.61 BPW)
llm_load_print_meta: general.name = Phi2
llm_load_print_meta: BOS token = 50256 '<|endoftext|>'
llm_load_print_meta: EOS token = 50256 '<|endoftext|>'
llm_load_print_meta: UNK token = 50256 '<|endoftext|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOT token = 50256 '<|endoftext|>'
llm_load_tensors: ggml ctx size = 0.16 MiB
llm_load_tensors: CPU buffer size = 1526.50 MiB
...........................................................................................
llama_new_context_with_model: n_ctx = 2048
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CPU KV buffer size = 640.00 MiB
llama_new_context_with_model: KV self size = 640.00 MiB, K (f16): 320.00 MiB, V (f16): 320.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.20 MiB
llama_new_context_with_model: CPU compute buffer size = 167.01 MiB
llama_new_context_with_model: graph nodes = 1225
llama_new_context_with_model: graph splits = 1
GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0
GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0
GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0
GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0
GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0
GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0
Aborted
The text was updated successfully, but these errors were encountered: