From 11df9f0b68d35d3a9424a17e4cefee6cfb9d4c19 Mon Sep 17 00:00:00 2001 From: Christophe Antoniewski Date: Sat, 9 Mar 2024 23:14:30 +0100 Subject: [PATCH] update repenrich tool (and repenrich-edger) (#676) * Update edgeR_repenrich.R * style R code * lint plots and update tests * update test * use macros for both tools * Drop depracted Bio.Alphabet * pipe and fix samtools command line * simplify samtools management * bedtools 2.31.1 is not compatible with repenrich python ! stay at 2.23.0 * Update .shed.yml --- tools/repenrich/.shed.yml | 3 +- tools/repenrich/RepEnrich_setup.py | 3 +- tools/repenrich/edgeR_repenrich.R | 220 ++++----- tools/repenrich/edger-repenrich.xml | 14 +- tools/repenrich/macros.xml | 18 + tools/repenrich/repenrich.xml | 17 +- .../test-data/Normalized_counts_file.tab | 26 +- tools/repenrich/test-data/edgeR_plots.pdf | Bin 15464 -> 35785 bytes .../repenrich/test-data/edgeR_result_file.tab | 421 +++++++++--------- 9 files changed, 348 insertions(+), 374 deletions(-) create mode 100644 tools/repenrich/macros.xml diff --git a/tools/repenrich/.shed.yml b/tools/repenrich/.shed.yml index e2876476e..85a811795 100644 --- a/tools/repenrich/.shed.yml +++ b/tools/repenrich/.shed.yml @@ -9,7 +9,6 @@ categories: - Transcriptomics - Variant Analysis homepage_url: https://github.com/nskvir/RepEnrich -remote_repository_url: https://github.com/ARTbio/tools-artbio/tree/master/tools/repenrich +remote_repository_url: https://github.com/ARTbio/tools-artbio/tree/main/tools/repenrich toolshed: - - testtoolshed - toolshed diff --git a/tools/repenrich/RepEnrich_setup.py b/tools/repenrich/RepEnrich_setup.py index ca189357b..73afe135d 100644 --- a/tools/repenrich/RepEnrich_setup.py +++ b/tools/repenrich/RepEnrich_setup.py @@ -7,7 +7,6 @@ import sys from Bio import SeqIO -from Bio.Alphabet import IUPAC from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord @@ -242,7 +241,7 @@ def import_text(filename, separator): print("Unrecognised Chromosome: "+chr) pass # Convert metagenome to SeqRecord object (required by SeqIO.write) - record = SeqRecord(Seq(metagenome, IUPAC.unambiguous_dna), id="repname", + record = SeqRecord(Seq(metagenome), id="repname", name="", description="") print("saving repgenome " + newname + ".fa" + " (" + str(k) + " of " + str(nrepgenomes) + ")") diff --git a/tools/repenrich/edgeR_repenrich.R b/tools/repenrich/edgeR_repenrich.R index 1be52e9db..065276590 100644 --- a/tools/repenrich/edgeR_repenrich.R +++ b/tools/repenrich/edgeR_repenrich.R @@ -1,228 +1,192 @@ -#!/usr/bin/env Rscript - -# A command-line interface to edgeR for use with Galaxy edger-repenrich -# written by Christophe Antoniewski drosofff@gmail.com 2017.05.30 - - # setup R error handling to go to stderr -options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) +options(show.error.messages = FALSE, error = function() { + cat(geterrmessage(), file = stderr()) + q("no", 1, FALSE) +}) # To not crash galaxy with an UTF8 error with not-US LC settings. loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") +# load libraries library("getopt") library("tools") +library("rjson") +suppressPackageStartupMessages({ + library("edgeR") + library("limma") +}) + options(stringAsFactors = FALSE, useFancyQuotes = FALSE) -args <- commandArgs(trailingOnly = TRUE) # get options, using the spec as defined by the enclosed list. # we read the options from the default: commandArgs(TRUE). -spec <- matrix(c( - "quiet", "q", 0, "logical", - "help", "h", 0, "logical", - "outfile", "o", 1, "character", - "countsfile", "n", 1, "character", - "factorName", "N", 1, "character", - "levelNameA", "A", 1, "character", - "levelNameB", "B", 1, "character", - "levelAfiles", "a", 1, "character", - "levelBfiles", "b", 1, "character", - "alignmentA", "i", 1, "character", - "alignmentB", "j", 1, "character", - "plots" , "p", 1, "character"), - byrow=TRUE, ncol=4) +spec <- matrix( + c( + "quiet", "q", 0, "logical", + "outfile", "o", 1, "character", + "countsfile", "n", 1, "character", + "factorName", "N", 1, "character", + "levelNameA", "A", 1, "character", + "levelNameB", "B", 1, "character", + "levelAfiles", "a", 1, "character", + "levelBfiles", "b", 1, "character", + "alignmentA", "i", 1, "character", + "alignmentB", "j", 1, "character", + "plots", "p", 1, "character" + ), + byrow = TRUE, ncol = 4 +) opt <- getopt(spec) -# if help was asked for print a friendly message -# and exit with a non-zero error code -if (!is.null(opt$help)) { - cat(getopt(spec, usage=TRUE)) - q(status=1) -} - -# enforce the following required arguments -if (is.null(opt$outfile)) { - cat("'outfile' is required\n") - q(status=1) -} -if (is.null(opt$levelAfiles) | is.null(opt$levelBfiles)) { - cat("input count files are required for both levels\n") - q(status=1) -} -if (is.null(opt$alignmentA) | is.null(opt$alignmentB)) { - cat("total aligned read files are required for both levels\n") - q(status=1) -} - -verbose <- if (is.null(opt$quiet)) { - TRUE -} else { - FALSE -} - -suppressPackageStartupMessages({ - library("edgeR") - library("limma") -}) - # build levels A and B file lists - -library("rjson") filesA <- fromJSON(opt$levelAfiles, method = "C", unexpected.escape = "error") filesB <- fromJSON(opt$levelBfiles, method = "C", unexpected.escape = "error") listA <- list() -indice = 0 +indice <- 0 listA[["level"]] <- opt$levelNameA for (file in filesA) { - indice = indice +1 - listA[[paste0(opt$levelNameA,"_",indice)]] <- read.delim(file, header=FALSE) - } + indice <- indice + 1 + listA[[paste0(opt$levelNameA, "_", indice)]] <- read.delim(file, header = FALSE) +} listB <- list() -indice = 0 +indice <- 0 listB[["level"]] <- opt$levelNameB for (file in filesB) { - indice = indice +1 - listB[[paste0(opt$levelNameB,"_",indice)]] <- read.delim(file, header=FALSE) - } + indice <- indice + 1 + listB[[paste0(opt$levelNameB, "_", indice)]] <- read.delim(file, header = FALSE) +} # build a counts table -counts <- data.frame(row.names=listA[[2]][,1]) +counts <- data.frame(row.names = listA[[2]][, 1]) for (element in names(listA[-1])) { - counts<-cbind(counts, listA[[element]][,4]) - } + counts <- cbind(counts, listA[[element]][, 4]) +} for (element in names(listB[-1])) { - counts<-cbind(counts, listB[[element]][,4]) - } -colnames(counts)=c(names(listA[-1]), names(listB[-1])) + counts <- cbind(counts, listB[[element]][, 4]) +} +colnames(counts) <- c(names(listA[-1]), names(listB[-1])) # build aligned counts vector - filesi <- fromJSON(opt$alignmentA, method = "C", unexpected.escape = "error") filesj <- fromJSON(opt$alignmentB, method = "C", unexpected.escape = "error") sizes <- c() for (file in filesi) { - sizes <- c(sizes, read.delim(file, header=TRUE)[1,1]) - } + sizes <- c(sizes, read.delim(file, header = TRUE)[1, 1]) +} for (file in filesj) { - sizes <- c(sizes, read.delim(file, header=TRUE)[1,1]) - } + sizes <- c(sizes, read.delim(file, header = TRUE)[1, 1]) +} # build a meta data object - meta <- data.frame( - row.names=colnames(counts), - condition=c(rep(opt$levelNameA,length(filesA)), rep(opt$levelNameB,length(filesB)) ), - libsize=sizes + row.names = colnames(counts), + condition = c(rep(opt$levelNameA, length(filesA)), rep(opt$levelNameB, length(filesB))), + libsize = sizes ) # Define the library size and conditions for the GLM libsize <- meta$libsize condition <- factor(meta$condition) -design <- model.matrix(~0+condition) -colnames(design) <- levels(meta$condition) - +design <- model.matrix(~ 0 + condition) +colnames(design) <- levels(condition) # Build a DGE object for the GLM -y <- DGEList(counts=counts, lib.size=libsize) +y <- DGEList(counts = counts, lib.size = libsize) # Normalize the data y <- calcNormFactors(y) -y$samples -# plotMDS(y) latter # Estimate the variance y <- estimateGLMCommonDisp(y, design) y <- estimateGLMTrendedDisp(y, design) y <- estimateGLMTagwiseDisp(y, design) -# plotBCV(y) latter # Builds and outputs an object to contain the normalized read abundance in counts per million of reads -cpm <- cpm(y, log=FALSE, lib.size=libsize) +cpm <- cpm(y, log = FALSE, lib.size = libsize) cpm <- as.data.frame(cpm) colnames(cpm) <- colnames(counts) if (!is.null(opt$countsfile)) { - normalizedAbundance <- data.frame(Tag=rownames(cpm)) + normalizedAbundance <- data.frame(Tag = rownames(cpm)) normalizedAbundance <- cbind(normalizedAbundance, cpm) - write.table(normalizedAbundance, file=opt$countsfile, sep="\t", col.names=TRUE, row.names=FALSE, quote=FALSE) + write.table(normalizedAbundance, file = opt$countsfile, sep = "\t", col.names = TRUE, row.names = FALSE, quote = FALSE) } # Conduct fitting of the GLM yfit <- glmFit(y, design) # Initialize result matrices to contain the results of the GLM -results <- matrix(nrow=dim(counts)[1],ncol=0) -logfc <- matrix(nrow=dim(counts)[1],ncol=0) +results <- matrix(nrow = dim(counts)[1], ncol = 0) +logfc <- matrix(nrow = dim(counts)[1], ncol = 0) # Make the comparisons for the GLM my.contrasts <- makeContrasts( - paste0(opt$levelNameA,"_",opt$levelNameB," = ", opt$levelNameA, " - ", opt$levelNameB), + paste0(opt$levelNameA, "_", opt$levelNameB, " = ", opt$levelNameA, " - ", opt$levelNameB), levels = design ) # Define the contrasts used in the comparisons -allcontrasts = paste0(opt$levelNameA," vs ",opt$levelNameB) +allcontrasts <- paste0(opt$levelNameA, " vs ", opt$levelNameB) # Conduct a for loop that will do the fitting of the GLM for each comparison # Put the results into the results objects - lrt <- glmLRT(yfit, contrast=my.contrasts[,1]) - plotSmear(lrt, de.tags=rownames(y)) - title(allcontrasts) - res <- topTags(lrt,n=dim(c)[1],sort.by="none")$table - results <- cbind(results,res[,c(1,5)]) - logfc <- cbind(logfc,res[c(1)]) +lrt <- glmLRT(yfit, contrast = my.contrasts[, 1]) +res <- topTags(lrt, n = dim(c)[1], sort.by = "none")$table +results <- cbind(results, res[, c(1, 5)]) +logfc <- cbind(logfc, res[c(1)]) # Add the repeat types back into the results. # We should still have the same order as the input data -results$class <- listA[[2]][,2] -results$type <- listA[[2]][,3] - +results$class <- listA[[2]][, 2] +results$type <- listA[[2]][, 3] # Sort the results table by the FDR results <- results[with(results, order(FDR)), ] -# Save the results -write.table(results, opt$outfile, quote=FALSE, sep="\t", col.names=FALSE) - # Plot Fold Changes for repeat classes and types # open the device and plots if (!is.null(opt$plots)) { - if (verbose) cat("creating plots\n") pdf(opt$plots) - plotMDS(y, main="Multidimensional Scaling Plot Of Distances Between Samples") - plotBCV(y, xlab="Gene abundance (Average log CPM)", main="Biological Coefficient of Variation Plot") + plotMDS(y, main = "Multidimensional Scaling Plot Of Distances Between Samples") + plotBCV(y, xlab = "Gene abundance (Average log CPM)", main = "Biological Coefficient of Variation Plot") logFC <- results[, "logFC"] # Plot the repeat classes classes <- with(results, reorder(class, -logFC, median)) classes - par(mar=c(6,10,4,1)) - boxplot(logFC ~ classes, data=results, outline=FALSE, horizontal=TRUE, - las=2, xlab="log2(Fold Change)", main=paste0(allcontrasts, ", by Class")) - abline(v=0) + par(mar = c(6, 10, 4, 1)) + boxplot(logFC ~ classes, + data = results, outline = FALSE, horizontal = TRUE, + las = 2, xlab = "log2(Fold Change)", ylab = "", cex.axis = 0.7, main = paste0(allcontrasts, ", by Class") + ) + abline(v = 0) # Plot the repeat types types <- with(results, reorder(type, -logFC, median)) - boxplot(logFC ~ types, data=results, outline=FALSE, horizontal=TRUE, - las=2, xlab="log2(Fold Change)", main=paste0(allcontrasts, ", by Type"), yaxt="n") - axis(2, cex.axis=(1*28)/(length(levels(types))), - at=seq(from=1, to=length(levels(types))), - labels=levels(types), las=2) - abline(v=0) + boxplot(logFC ~ types, + data = results, outline = FALSE, horizontal = TRUE, + las = 2, xlab = "log2(Fold Change)", ylab = "", cex.axis = 0.7, main = paste0(allcontrasts, ", by Type") + ) + abline(v = 0) # volcano plot - TEdata = cbind(rownames(results), as.data.frame(results), score=-log(results$FDR, 10)) - colnames(TEdata) = c("Tag","log2FC", "FDR", "Class", "Type", "score") - color = ifelse(TEdata$FDR<0.05, "red", "black") - s <- subset(TEdata, FDR<0.01) - with(TEdata, plot(log2FC, score, pch=20, col=color, main="Volcano plot (all tag types)", ylab="-log10(FDR)")) - text(s[,2], s[,6], labels = s[,5], pos = seq(from=1, to=3), cex=0.5) + TEdata <- cbind(rownames(results), as.data.frame(results), score = -log(results$FDR, 10)) + colnames(TEdata) <- c("Tag", "log2FC", "FDR", "Class", "Type", "score") + color <- ifelse(TEdata$FDR < 0.05, "red", "black") + s <- subset(TEdata, FDR < 0.01) + with(TEdata, plot(log2FC, score, pch = 20, col = color, main = "Volcano plot (all tag types)", ylab = "-log10(FDR)")) + text(s[, 2], s[, 6], labels = s[, 5], pos = seq(from = 1, to = 3), cex = 0.5) } # close the plot device if (!is.null(opt$plots)) { - cat("closing plot device\n") - dev.off() + cat("closing plot device\n") + dev.off() } -cat("Session information:\n\n") +# Save the results +results <- cbind(TE_item = rownames(results), results) +colnames(results) <- c("TE_item", "log2FC", "FDR", "Class", "Type") +results$log2FC <- format(results$log2FC, digits = 5) +results$FDR <- format(results$FDR, digits = 5) +write.table(results, opt$outfile, quote = FALSE, sep = "\t", col.names = TRUE, row.names = FALSE) +cat("Session information:\n\n") sessionInfo() - diff --git a/tools/repenrich/edger-repenrich.xml b/tools/repenrich/edger-repenrich.xml index 853b2b7ea..e9035401a 100644 --- a/tools/repenrich/edger-repenrich.xml +++ b/tools/repenrich/edger-repenrich.xml @@ -1,11 +1,9 @@ - + Determines differentially expressed features from RepEnrich counts - - bioconductor-edger - bioconductor-limma - r-getopt - r-rjson - + + macros.xml + + - + diff --git a/tools/repenrich/macros.xml b/tools/repenrich/macros.xml new file mode 100644 index 000000000..53718ca97 --- /dev/null +++ b/tools/repenrich/macros.xml @@ -0,0 +1,18 @@ + + 1.83 + 0 + 23.0 + + + + bioconductor-edger + bioconductor-limma + r-getopt + r-rjson + bowtie + samtools + bedtools + biopython + + + diff --git a/tools/repenrich/repenrich.xml b/tools/repenrich/repenrich.xml index 4642bbbc2..c62b44d52 100644 --- a/tools/repenrich/repenrich.xml +++ b/tools/repenrich/repenrich.xml @@ -1,11 +1,9 @@ - + Repeat Element Profiling - - bowtie - samtools - bedtools - biopython - + + macros.xml + + @@ -55,11 +53,8 @@ echo -e "# Total reads aligned to repeated sequences\n" > bowtie_aligned.numb && echo \$((\$TOTAL-\$NONALIGNED)) >> bowtie_aligned.numb && #end if - samtools view -bS ${input_base}_unique.sam > ${input_base}_unique.bam && - samtools sort ${input_base}_unique.bam ${input_base}_unique_sorted && - mv ${input_base}_unique_sorted.bam ${input_base}_unique.bam && + samtools view -@ \${GALAXY_SLOTS:-4} -bS '${input_base}_unique.sam' | samtools sort -@ \${GALAXY_SLOTS:-4} -O bam -o '${input_base}_unique.bam' && samtools index ${input_base}_unique.bam && - rm ${input_base}_unique.sam && #if $seq_method.seq_method_list == "single-read": python $__tool_directory__/RepEnrich.py $repeatmasker ${input_base} ${input_base} setup_folder_${baseReference} ${input_base}_multimap.fastq ${input_base}_unique.bam --cpus "\${GALAXY_SLOTS:-4}" && #else: diff --git a/tools/repenrich/test-data/Normalized_counts_file.tab b/tools/repenrich/test-data/Normalized_counts_file.tab index 7db085d15..2557c3042 100644 --- a/tools/repenrich/test-data/Normalized_counts_file.tab +++ b/tools/repenrich/test-data/Normalized_counts_file.tab @@ -14,18 +14,18 @@ BATUMI_LTR 13.628827735842 14.5170017684226 23.8377562079227 19.5299774884927 BEL_I-int 1148.97283940843 1304.98396962057 1022.22666828812 1059.36800967358 BEL_LTR 36.3043773308206 51.9691483425779 37.6498857074591 41.5799520722748 Bica_I-int 61.1339083208317 53.0858407863027 79.6886723773878 67.3614608163893 -Bica_LTR 4.81708566525451 5.7552610561202 6.02398171319346 6.05768532521486 +Bica_LTR 4.81708566525452 5.7552610561202 6.02398171319346 6.05768532521486 BLASTOPIA_I-int 539.670247700872 1034.65849882041 443.580196295081 462.322544020398 BLASTOPIA_LTR 40.6515034189771 78.9415658294696 23.6656424446886 23.1645886836216 BLOOD_I-int 1071.58616237963 1140.74428097427 960.825083254357 834.603653366803 -BLOOD_LTR 49.6982252781136 46.55748496145 32.1852737247765 36.1522660208823 +BLOOD_LTR 49.6982252781137 46.55748496145 32.1852737247765 36.1522660208823 BS 203.649150075801 355.194096523239 313.935504138996 242.355874491196 BS2 204.197436249082 179.186187508459 240.744126323696 241.871259665179 BS3_DM 33.3279666758666 38.9124366928724 53.871607892273 42.5007202417075 BS4_DM 0.313306384732001 1.97568663120544 1.46296698748984 1.0176911346361 BURDOCK_I-int 203.257517094886 191.727502645676 134.205706881789 161.473660028927 BURDOCK_LTR 21.2656708636846 16.5785878183761 12.3491625120466 17.930748562636 -Chimpo_I-int 53.4970651929892 31.7827849367832 55.4206317613798 51.369171557822 +Chimpo_I-int 53.4970651929892 31.7827849367832 55.4206317613799 51.369171557822 Chimpo_LTR 4.19047289579051 2.83468081868607 4.04467343600132 5.81537791220627 Chouto_I-int 48.2100199506366 44.4958989114965 72.7180649664068 63.1937733126415 Chouto_LTR 6.34445429082302 13.658007580942 12.8655038017489 13.617676611083 @@ -49,9 +49,9 @@ DM297_LTR 239.992690704713 216.122937570126 64.0693483638933 71.6260712853405 DM412 1711.00533031955 2019.32353592946 1036.38302531413 1142.04329899211 DM412B_LTR 219.588612399041 257.784155662936 132.441540808639 141.022914371002 DMCR1A 684.926920322246 693.380108134362 876.919623677734 870.222843079066 -DMLTR5 7.40186333929352 8.07454536231789 6.92757897017248 7.75383721627503 +DMLTR5 7.40186333929352 8.07454536231789 6.92757897017248 7.75383721627502 DMRP1 11.5531729369925 12.369516299721 11.2734514918335 11.0007565505902 -DMRPR 8.65508887822152 11.6823209497365 5.50764042349117 9.06229724652144 +DMRPR 8.65508887822153 11.6823209497365 5.50764042349117 9.06229724652144 DMRT1A 148.703042853426 106.085782153857 191.734732242786 171.553648410085 DMRT1B 352.587172717776 353.476108148278 417.634046487541 344.997294641637 DMRT1C 74.6844094604907 57.552610561202 108.861955245568 101.139114189787 @@ -71,11 +71,11 @@ FUSHI_DM 0 0 0 0 FW2_DM 694.091132075657 761.412447782827 612.466826468541 671.046149586002 FW3_DM 25.3386538652006 32.2981814492716 35.756634311884 44.2453336153694 G_DM 428.759787505743 393.591136703623 383.168265399913 389.388012704811 -G2_DM 48.3666731430026 65.6271559235199 57.1417693937208 54.8583983051458 +G2_DM 48.3666731430027 65.6271559235199 57.1417693937208 54.8583983051458 G3_DM 18.7983830839201 21.4748546870157 34.2936673243942 26.9445843265557 G4_DM 87.0600116574048 105.226787966377 157.828320885669 165.108271224056 G5_DM 106.289191020331 111.669244372481 111.916974542973 123.625242116985 -G5A_DM 61.7996843883872 49.9934617113725 77.6233072185786 77.2960647497417 +G5A_DM 61.7996843883872 49.9934617113725 77.6233072185786 77.2960647497416 G6_DM 112.555318714971 67.5169431359773 207.698283782749 168.30672907577 G7_DM 76.3292679803337 35.9059570366902 6.97060741098101 4.74922529496845 GTWIN_I-int 296.387839956473 251.685296931824 234.418945524843 244.924333069087 @@ -97,7 +97,7 @@ Gypsy2-I_DM 288.790160126722 228.320655032351 198.188998364065 188.805936216297 Gypsy2-LTR_DM 45.2336092956826 33.0712762180041 41.5654738210349 33.438422995186 Gypsy3_I-int 225.81557679559 193.960887533126 146.253670308176 133.414461602532 Gypsy3_LTR 26.6702060003116 18.2106767745893 24.354097497625 21.6622827229683 -Gypsy4_I-int 513.587491171932 459.390091464639 521.20350351366 487.328669042885 +Gypsy4_I-int 513.587491171933 459.390091464639 521.20350351366 487.328669042885 Gypsy4_LTR 15.273686255685 18.7260732870777 11.7897927815358 9.40152762473347 Gypsy5_I-int 110.988786791311 88.9917978229929 105.333623099269 105.936800967358 Gypsy5_LTR 19.6599756419331 28.0032105118684 28.0115149663496 21.8561286533752 @@ -106,14 +106,14 @@ Gypsy6_LTR 55.7293731842047 65.2835582485276 18.4161726660486 23.455357579232 Gypsy6A_LTR 31.0564953865596 18.8119727058257 26.5485479788598 27.7684295307849 Gypsy7_I-int 45.5077523823231 63.7373687110625 54.0437216555071 48.8976359451344 Gypsy7_LTR 3.13306384732001 3.35007733117444 4.81918537055477 4.21614898634954 -Gypsy8_I-int 163.545932830104 107.116575178834 206.923771848195 197.868233462818 +Gypsy8_I-int 163.545932830105 107.116575178834 206.923771848195 197.868233462818 Gypsy8_LTR 57.4525583002307 41.7471175115585 56.4102858999759 60.1406999087332 -Gypsy9_I-int 16.8010548812535 16.1490907246358 21.6863341674965 22.9707427532148 +Gypsy9_I-int 16.8010548812536 16.1490907246358 21.6863341674965 22.9707427532148 Gypsy9_LTR 2.42812448167301 0.687195349984501 2.19445048123476 2.03538226927219 HELENA_RT 36.5785204174611 35.7341581991941 28.0975718479666 30.3853495912778 Helitron1_DM 0 0 0.129085322425574 0.290768895610313 HETA 879.568511837001 887.083297411243 990.729849616282 1182.31479103414 -HMSBEAGLE_I-int 307.941012893465 350.383729073348 311.48288301291 286.310439210955 +HMSBEAGLE_I-int 307.941012893465 350.383729073348 311.482883012911 286.310439210955 HOBO 171.339429150313 182.020868327145 216.476085707688 213.42436937797 I_DM 449.55549879233 957.692619622151 343.668156737687 339.860377485855 IDEFIX_I-int 282.837338816814 282.265490006134 266.475133927194 268.815843991735 @@ -134,7 +134,7 @@ IVK_DM 118.468976726788 151.956071765323 144.102248267749 141.555990679621 Jockey2 71.3946924208047 65.2835582485276 76.1603402310888 76.9568343715296 LINEJ1_DM 974.813652795529 1369.15083542537 302.274796679886 306.712723386279 LmeSINE1c 24.5553879033706 56.0923204424849 25.7740360443063 68.5245363988305 -LOOPER1_DM 8.61592558013002 2.66288198118994 35.3263499037988 28.5438132524124 +LOOPER1_DM 8.61592558013003 2.66288198118994 35.3263499037988 28.5438132524124 LSU-rRNA_Cel 14243.5740259843 21618.3926157437 22382.0179984887 15843.270199567 LSU-rRNA_Dme 218650.181450173 354466.098949349 157455.221275418 149201.031867455 LSU-rRNA_Hsa 0.587449471372502 0.944893606228689 0.215142204042624 0 @@ -152,7 +152,7 @@ MINOS 10.6915803789795 7.98864594356983 7.44392025987478 10.9522950679885 MuDR-1_DEl 1.253225538928 0.343597674992251 0.258170644851148 0.43615334341547 NINJA_I-int 143.964283784354 98.4407338852798 226.931996824159 218.22205615554 NINJA_LTR 11.6314995331755 9.79253373727915 21.1269644369856 19.6753619362979 -NOF_FB 8.92923196486203 5.41166338112795 54.7321767084434 46.5230232976501 +NOF_FB 8.92923196486203 5.41166338112795 54.7321767084435 46.5230232976501 NOMAD_I-int 454.842544034682 700.423860471703 708.635391675594 561.862429284329 NOMAD_LTR 29.6466166552656 23.7941389932134 26.6346048604768 39.8353386986129 NTS_DM 2194.82871494194 1868.57005602661 2837.89778508544 1754.54797759523 diff --git a/tools/repenrich/test-data/edgeR_plots.pdf b/tools/repenrich/test-data/edgeR_plots.pdf index e410d15dba22aa98fe61dc9ab10ec0228e90e8ae..1b359cb8fa873cd8c715d0816f6a3926a41092ea 100644 GIT binary patch delta 31627 zcmZU)WmFtn7cF`cf&>kL;7%ZPaJS&@7J|EbaHoP>aCdj_;2NBU0157mySww6ob!!$ z@3?>9M~_{#chy>R%{kYqZ8u2L%V<^_7B(hUCQfE9HV!6s5Hh2jow2BalL;A(C=UzM z|M^>t)<<|Y237{vn6S#1-0X2L7~aJxym$*Ry=mQ}y;LUSHtwcM!q7S3fcGo3v4rDh z6Em2R-WB{ZHYoPH<7hDV-Qd?iBtFUCA*?bEi9~)fWNzQGX6rs}T_jy$C6BNKN`oY! zKXxQ;_UJ#E>2>(}sfvFEjf#k)y{KeK%BxvMW9ddv$J(UsdaLikv_!F`*l)nXjR1`R zB$D6M${GtxgfLOP3T*NquVo^~lNp%6q>x2w6La;HM2d4iH`gFNDc1cmdlQHwvgImB zuqJqCS#x3jT78LNlaPyBWn13hF}f}7C=8=a3h{F@;}+)Wr|gY(?GD|_Hu1f;P2bye zZDz7h`7T15Qc&kwiw-$#9Y3SyV7Zb0mjo(@s`39t!?Yu%c1z0XeG?Ly-Y=fbSk4udo7N zu>UbweYfmSTiqS0DCH#i6}(7)yzAPeQ#F;ATRI&znHw}$kD3LQ00aAX1O0;{-IrmajkSkfY-1NCXr|lK=A~1>>?vqd z@vGz`sYzWtRZ{#rEOMJy;q+idnza&0fFAsU;KkDmxx_TWeuofZiL~CHgR4A=6F0P@ zv~uLl?5>bTR)^ram;g+uh1!~_PGvoi8OFTFH1;WR^QKiQMK{5getK5VGOL0uE)C8F zo|%=4<9{KB1}u6*z;qD%#Yb;3`WD>Qfn?SsVL~a^J)|!RJ#O-hRIy^>lhA0C=4ZG4}V{6Gc570eU`XQJl^Z{eaKSWEE-u8mHdi z8tzpV)Enf|xklO^&%tkb#=uYdz$GxZb9@!m&j@Aw%C#kNfnwSA1oXk9H=t;0kkV^? zZPYm)v)HcIIX<&{kl=s1{@}AtnkC?KGYg%(tM|T}mnb0}S=Q?*NQl~VJ2z=KoFDC1 z>z|GS?0~BcyAH8&K(~JC);>bc<$eQv&_3*F3*M;OZY13>O3>l**z{Dge4@E%Hww7) zJBRRI`Uu@{!5!kJU*u`KzgTe*I_Q_ku=nkL@Y|~`!pD7Mi(AVqpy{&mwdLpJ6#QM) z%+Vhgqes&gy@z&*GbLMTQZF#+h5~=K0AmLb>Bh>xo8=`Ad}*ILGfIzr+PkaTx=$YK zc({0Ih^*<{c)ESOQxcfkIDK&Q9=>n6A3J(ln7*AMn>nhix^v&LKz@w6yP4fSPx5LR z7Vv+(#CP&(neMla;%5YUI&OEj1n$r8vK|kDw_H154}Scr+t!tb~5P-T(7h|U9S|8l0H2zSliPRXn*L{yM!dT&)w>OHZL!)QkMMl+9H=3Zd|qI8u--SbQi_xp${x61d382q zcW^svGf)#_aa#0hg(MB_m+f*U8LIa1i`&%X!yaN%@4)n*i=_-yE9wAw1OEs?#mi4R zFZNg)ClDOcDl2_Ddrc~%tdsyH`Gs$U86SQ(+SxW8*^@cBsNAAF`49_FVa`oW%BPqO zRz@v>ZL*839Bl7@V}o0k9<}-&Xpa!RM~@c)8Re;$%|%fT3wDApQhhUhE>zRJe3czwwcjl|N)uO`1_~>s52`rNg4i-W!kA-BN{t zn=|QI!GfMiR{qrJHoe;f8#q24tn&k}=^+!>wuc6y@xCw*==9jNR_qvIG~XEEFuW7I zFmNSTMo21?7>)K>QyXnCR4mx|=<4k6vx0c7h%hECUR(mMfPeb&m-(iOpYm+)i%wkv2BOqJ8#W#xe2IrZPbcvaLhQuirx<^$4`y zJ?PlL!_zp#s50?ajXr zi})U_>@ux&G*fLm^vAmK(W^k4cpwoNkZ9=asBF0s^uj0{J|TS4^$oPno?Wvns?7u+ ztmz7f%?m0_8xOAs>sEB^R5ZQ4qo40z=y*6waL^IF64f0s?dV7}jGDmQ`e9f#-lxZB z0=FaoVM7-+hz?=RoN#+5Rhv-Y+;6{<6Of@zlH(}QBaJv45^qBMDss7Q=M)J@lp!u5 zQ|yh>90Ur84^UfDRk{o+DdVtO)q3wfM6^Q`+9FR28`>W%WilKvKpqTIHJiC0`7g-1EraHjJ&INYDkuh7?)wrG1@ z-WPTJh-3WGG0r?lVA6W5rZ6kWKWH1zq2iLPL@|fp(M&zvhtW3YH9p^gONeBx<5&gH z6=@Ui8Kb{VBzWbJOPpavP1ZWjS- z(>?hGL%rjiq@hEPEytRpqb2ls{Lx-eMhEor6Q?HPZ@wL#v5ZRk8?-hV4#gB$6c6E? zk+)cP;@iOOG-V$x{};xFadN&pGDZ%{)~$^(2jpKmlRXteFXgf9373vXK0wDYv7RG#|3ROcnWLw4tHa&V1Z+Z@px0fYI4D)p{teVGSO9fLG`hGsjaSG5$}aV`7K zN$G-Dq?iE?feS2q)tc~%W$aC3&j967!3DpV_EcG5uXrz3lQg%Fl#yjc)<(0HaBoW~ zHGr_|@!DTGGTz1m@|!~um8yTlwN0Dj;u2I~fH8ycOFoO&ME{+Ao~NqK0G$nBs)!z7 z@Km@k-qqL9{|geQ) zTl%N$PdDAqR|*~HORqzoDxou4&WEyUW`6d2~Zq?Le6U^%@ap z5QZ>uS`KL>=yWY;8NRiKbyRJ@ncale05t)7rHix;Xx`+b;NN`H=7nCA9?02wQ(%=n zc=ie0H@q)+m)-lWvwAvyjUQ8QEigm;bSnnz8%dz%@0Ubw+=Abo`;5e3)6;)rSD}aQ z2Ztvk;Ud2t2oHx))GmPhM_MsuYhOK=_sYCNtTh>_j6VxEkl(z&PPY3u0_#rxE}gP$ z{2J5-R2&6}buw}U+_?Q*a?8Wt-cg%Bru6Ck{a!=DJWUO;SC<{)^1aNGP|~KsXse}= zA6~Gsx7H<`1}ZI`ZU3-;ef|4W+rB{vic!Y;E3f(FSDw1@ zEx2IQ3H`EH3Tpb9gh_LPw&Rny5l)os4Eh3kpet6p%l2fTZbpHF?WKW%tI9}(z)D!W zHCaa!VSz3vT+F(bcxYq$zxcbLVFGAVF0>K6l&E!YL%DxNN38u=79(4YpiLHu6&Q(k zX6yQv72l-nvP|`Po)Y!?IdFHh?L77x((6M%sm&bw=_f5Mw>xrHC%Nj@^HS;SB~?IU zJ&&xYK9KEYU{NnJ#HTs6R8Qg;@*a&hP4sPW=$H`N&cHE#Dj3c1+Xy0`2Lu>DooVu3 zPK(w;U1nV4>^vPI|5kR#Lb^o4zZFA6?Nnr(8+yJ(0^dGXcdE4T3e~!izW1Bl*DE>N zm(3mCTO*hbuOxixDbC+HAQoEKU4#((UhQa?AU4UV@r7An#n|`-D-cQ5yf_gzGSsrZ z8y&>hOQ2B58{mMA z9>r~53=1lB+|FIUBUE_aXe$p*UV(M@bzZ&igp23Ozi|-2Q&)?hN!ar%GM7Jb^lact4tQMJ_cp*K4Vf|xJ2l#T zixEOK#E!&`oVZ4$wrnp?mJI4J?=8Z^qS3Gq`?6>D8E55Pa~l@N7q|ackP5NgtdCLz zrz*&1<{S-!z5Ib*shhVU89Uh1mla|TFQjb^5jR5}gBE;)w<<^sCQkYNt>zSMr`e0* z#iG6MNTL}QCKJY4DmLeR(1ismj8q+Z z+{GJ`Kp;6OqZBk>hX}w?U-ge!oe;XJq1%LSfEgAhV}Lj?#w_o93V7JG`ER-Y{+!H4 z?K>6I$g~3}B(tNqe%y2PzklE*FCe47I3PG&>eactl#yTNGGa6gKtHP;>Krfo@?yf0 zzO#UXpw-jMTeJjle`8$8`m7V z`TwcoF_by-MwqU(hsF1e8-wiWj^{j014U3J1C-#>*ygIuKyS*Wot|HtLy2z<7KY>K z8rM^~2ghw<&~+Kc!S-!>=sbj}q5BJ37QkDe?`^g>j8&{q$qC2zuRtDYkbNDBvx0@r= zx3Sv4+k8#WI|*Jo%}W{RivicRlpU}QmD!!DsKj~y(Xx+*Z*LAVFB#1k!?z3BvM$z2 zH!A3OiS)1-|Jc=#EC=DStkISa(+GMW{-(mbrPo0N7Ts(x;n6^MM#3Dn9W|efb%-$WTuWa39w)?H7u&nnZTXJAZ9# z&*&n8k%|TfiJsBDu5XIACeuSigr852?&YAKW6*pp27RvPF4Meg!PFvDT}LGGom|8{ zYDC9n)BY#864#4%VQ91vJw9VB$kAcEbEoSeIJ^dX>2gpV<>+rtv~On&CEnewUGAL) z{%%wTYOXD~TF;A?U4o!2VgIlPpp{EDOIN43tQOKexypSI!6lQh@3P*`@^f`t;A zI#iiIbGxJIHj^MzMp!3Eq>Iza3~A7hjd#u$(!#FHeLn=BI5%>Ubo&=7T9$Uof+7%x zB1hE*bA$2l*<~}q%Mig+{xnwlo6Xu7Yalz*H$@)AYEp9^Qg0N4^$Zjr&*bdTy5&0R zTU3}q_3%VrqgHHX$vRwFj^~71_Psie81^I)mh$6M!6DgE^}bH*&j<=Xt7FH#`i4@2 zfMOC>2YDM`XA>0`rT7Uri*>a{VwY4Eu=5jni83gyvMd&PluoS-vl4bfuJzg43B zSZCb5ZKq<(fo!I+%B?@vusiSoR~~^_u9*rh5bG>Zz-ka-j5je}S;b|QSb3gxiTUE- z{x=FtD7Ld@BIR*(mwN(WKR>5f76UFO7KOn~nP;H+#cD$9P%*&~4OEIl*NY0zyvDV}L&NZFQQoUqhpABeJViuP z_$|Bs)daS4C?o%Gsc7^nZmc^ul3wLJKP~tI-2A5dgUm9+CDxxv~ z(^dC=SHwYOuV@$T2M8+qpjQV%;;mo#U4lQ=9LEld|_9P_Pz+%U}9 zrfTFp*9*tioeJg@pJR_6Z4mMTV^DdnpqN+y&$iNs)kbdSsrS%(gji>%9_^HP_riVO zCPf>7lv%Cxc_l0Yc;n3W(b^Gxp!V?a)b9DU+Ja0w^jx-~=H^;>3bA&qO~%B;bM`hc zK8#b=V1DUrgpc^g zI@@M^YJ+1@<@Mvkr9KT_{;{VV;E(KF87Gf$TM8uzKgyvo^h$8B`&|{t9uWUX+2<#8*a5bDM^AcMOKet@kI87SB*+M{^l{ixlLqg05PP8l$-2*ud-pX zS;5R#c=5i>THx-)=s%Z=Z}tD@Fl~^DH|H<<9a_AU5|WDd+lW$?ZH(sCRv_oGr%lv_ zJmZ{0%ak~X(j?|3>0d3iC+)MX+LyMJdR64&sHsKW%fquXb+Wk7RPRl`W$KE909_)0 zAcUy`ek$@bAPwx;(E3qrD!2d6r`1ugEHRBKCL8N#C{Nd~w9?5u0aw#8$W3;A>83oT z)I)~Qo9-DaW~^V^)=TCA9l>ZD^cdG#!^@MCrhfVWZ=(37B0?Db!%+6CRdvVJaJhE) zw~`#ue%Y~x4C)Y;COsRo(~iGY1DMr0l6A*hXdzBHTaNF`M{IFL#I3=hp9t(CUvzEX z`8X@spLp}taI4;OaEvs+eq1NN9VQN%_A6ZvuQ2(Tumj%2hk8)K54nmAZ03ZgNP3>e z-b)A94I!h!lUv986w*<|=N{yc1#H96!a@Lgo_H2XxzgsspOCQ=4+$6m0=?@tR$1U2 z(Q}IQyd%~r!&!`p(KP5d2OE_Wor@=2rb?8dovw1v(L#U_mmV=ElaeYV#Qf6Q$A+lE zb3EE-HDvF*Uvl~SD9l_FP1n(@56v_E(OSInrSj5iPzlwx)YY6It^F&+Ln&-YC4Xk9j$XeLrO@n<7GNu zdA)SLLU}c|-p275Dwb(X9KnP@Z4wzTR##~58NjUg4E7moa&{>?xb>O!_LoqKL3nS5 zRC_z)X5DgS3DI$y;h&I(*K**Z*rX+&FDEBPhdf@wXm@t$j z65&8wL@G$*5s6o`jzJesqJ|>KLwHh^vgtuI2Fu{__FZ#N@d%D**njq2Q%P!0e{_m> zSJR+~?C6jA9>h1QiuR0$8MtNFs~)E;k!eV<2Cd}JsKnC+BiCh!gx;dJTOq?3gEzof ztYtQ|u`$o6lzgM2xIUuD%M?8=NN~yb>(@CDxyY@ljuAq-`nS7Ug$SY zXvtK^p>L%QL9+Fw-2ODGH)*%xoqTrW4y6-4NeQBv71fjv>te4mMo9`^a)E5*U;XFR z{wRE9*sJu<@mYdlAQu4+6bLGuo>v!!)e3EhU2^SvLP-miT(To-V_eiUOV2<`9dE?H zre}uKNB{8nRH={h__7EZ_kHrzB}6JAC^3FJTsLQuFyx*J_lrJ=HX#e28xh34`0s8P z+Uh}L<&Pc=LP81E;a7!VX}n8{NSGI$;&t|UDq3!03?N^}mNAQ?bM&8d3B6MDM*O!j z;cvk!JZK|#LTMzW>3)5cICyi72vY}^zcfZ9QkJ99*3l=j_0M0=zJ3ar%M9y{`j12{ z#eT-&FmE$UL6wS(IJKJ3rf0(c$iTGXhkV z&AKM7I~hmG58JOX=3ri9J@@8O_G?=v!8N4(hQhYvgOf&U3hsb(mQPLT;7v}RTpNlu zBid(u2eYMa3Ql8GJ%46ZVLN6odDi(eNNP3WzK`NsCHj5s0RNQUQl7`X3Nv$K!0+S* z>vSj~($5SN=EpVwjEVHz$pGI$VN(9g9D1EgqLEB`=|>0a*= zoy2aKoh;Sc4Om0wwsxMdv<{f~(3CT5-?sbF>M?tIbHb`l=~tSPxkY=-B#1^u>{@=~ z6#P-*ls=Qmg!l&bV`L0?NH@*gbEhs0MixDUU^2nzTt8G(DVhpYKf{N3@CC)E4-1`F z0^B^CpXfE;BFzCrBZEWy=$fN5s=12~@G;q8=_qnpKe=?iG+0iNAgd?&W}m7dJ9OwY z8Xe(f*2{D<{oA*=y<+b_WZO|9U3#<-Vdb?=l8^>HgNDj{S>+rbOT(7*nx*oakB;^x z>p3jntJ=pJE%Dhz;$4_D)4+tv!c8=6(b9>1Ds>rss=&p66ypn3nG>QFd`i3!T=7wi zJb}U}MUMp3So39;Z&557c0o@D%jddZX#8a+^G$xAp`BHKs4CgZ5uS>iT)N4L{7C6I(U`8$}FY zH>!X_gp6#naYgKp`(YSL(LqInl=hnPtOb%9j#=($jZ*ntjNmGc0=xZI#T2lOm zRbS*=j6^_uzJs#jv@&A!jWYxR`A$#KtIhqwyNw&>%UpK-wRorEm0P<8sn$Nee%DD= zkCKY<#h&vk8Y0nsS;cBk#Z>7!lC(98zrL+i679^bXBm}C@)BV7wS;7yLx2+ zg3fUHqVvsRoY3qcK;zq`&gS~~5wuqvyh00N>TR}80&?ic@xw^sY1iBf7v*GrX>K1lp6_ag?e_QUqr-p)a{aSzt`7!?6!dLfe-@=Wiu>6-137zt8lIsS~Z?=X5z zKNpEPrc<&0IAMz_E*mRF|Z&vAzd%$kPUlX#Bdm!{2KqtFG8c zpemlrwV&tihcBfnr{WOE^r;qo7A;*Ikp1H_U7q(=Pf+)*7-Do6B%&c^}YpZ~r>>#JQ2K%F{Ik!<+dQve@jhY4&u zMb5n)R+pzXsgLj7(fM=veIx(5tntjJEpb!N+u2c-Zocm=ZE?E2B1Ge;2ccoFZ69)7}kF{V&)jkV2*D4(z(1pkY6!UiJwv`rNMUZT-c*Y zZCN56ty)-$k7jks3iy{{doJN5K#3rj+Z4<@|`TD8dZD zJj!epf7ds&kzjJ1v%LjZdnzUhTS#b1d;tBr>c-=2E0-oS>Mf0@?2&{uY;LkNw%|04E3NoPbJfe zt^8p~T%Y^KBXL0@>G;!QWqyjo#Mkmyf>cc_4JTfL)G%XT*d)S;y1TXA zZp8&2tyfe6`f4^C287G^7xwJT%b1s3n{zjX3cw&wY>6_qfZ?#oLkPQ_XQ6*%J5lH6 zGr@1@W6pmyBmY~500Djr_)PsK8~jp+A;Xtzim6D-i{K4Rf%Y}MlVW~~HKyHHvTO-z zlZMeJc4F8r4?GQC5T$g-tzM|{q7Xdo7eYTMFc42CG4WlU&gpxiqcpD_v02e*fK=xB&hm%+96DgHF0=X2arB=h;axTiOyT^HCET&emsL!ZYV+Qre2idiGef zAxEeTPP2lg0jb#5>uLMfYNPc(-u?v&SgXSIi(!3~3;F(vW0C%-Kd<{gv&}8w)Yq6t z#KCkY-04!V{QHh{o&P-sj8qm;fjUk{;(7g}*g$GQFU zE&BZq?=g+A1&UAB78HdcZX%FCk25OE5j zcc}P3UC2YW-z>L&SL|Akg!#t~1zb5N0X&238Cc#(pLBc^v@O?QU2As+NLy$%a`#6H zg{}gc8P957r8r!2pr*TX9GA<=df_gpAl;XB>PiTYb^TbmWRex~P1?z~tRg zt)kPdT@))FwtP*T`2F#AP_^w0Dmu9a=3LF$Fam7!K?_)tw$Gjx=hP9m? zVC%~3|7fHMzSD_)=}BoNqab>d*C$4%xrp3mGlF3TG9GuHTeWme)a5fqeCSwuM#B`V zt?sQ=7|FO5)n{)R8Hjf1>Qx>P-2wO`+c2G{k({r^QFf zJa`A7GEDlz%ynv^>vQ|C#*fB`z0@W{{sMhxT5|0{s^)pMdI>@L7J?|3e0&5D2l#- zFIGFLtXsrqc`oSrFJfVUkvY_<&6N(w!}9(l&Bcv?$DMjU`0$pxz8`Z83~Pov0jxt&%hUe6VuRGB z8hd#0VdL}f!@;wEToN?6Z_)YxvMBd&JsYZ%h1ti za+puXW9t_mO36uOwN-p>o+fFN6rs@ezGbg1;a3I?e(ATcd?)eLTv<$SmBiVvNcIN( ze(jKkx27=-cbMj2G`Yq2@@XkK1jB(`t2J zd^pjepBUp4WA&Z2)n8#a+p zkn#mzSiea>BDZ58EVdy>$tOzL>QSsRZ!wOny!x+;puv>A?KL|3UfqKZ!(nyyTg1(6 z**;<*L%bFiZnzQTg*9RzLJlJ&g@So>SFN7So#N|5GExC85ssa=cV z!@r8!!LNEm(eAHTQJN4(xGBLpAil;*n@n>gF~2IF`xU}43CbF(SW?z=Q=Cgy^is7B zF?#YFj|O4vGbQ1>DFkY^UV3+pnkI=#`g8I``A$e$Sr z!kp$3DSEjA$uv+fNq0RiTM`;Th~;AkZAfcOBt0Xy$|MZA8J{bK5^}hXZAyA7Hc<}P zO%W+h;lSyRs%K*l!ZX;}?=xxw2f5mgAAF^fR3Xa`T+~}p7kNNe{|*tEp~?NAx{7%` z$fldKvyncCd$jTx2)*{E*#2;RIOIAjxB^9&P65sDbX?YZ-Zr$sI=8we?K>HP3dlwx zYExWrCd?Tj=(0t=&&=6&P!O! zI0qpr*w)hQP>Q{+DZyHbYmNBMhQJnMxRPC6<=q7EKtx#mXmNAVf4o;qh3^z)c#Ds3 zlLjQ2W+q-t>}LG>{eTbP)DxNlX@LaW44V91`s<8BBmIKJX8OOib$fD0bdruNsNB1R z2n97gsBbGaA&VgTJ;IXoM_p%U)e@mnN;gYsdQ{ocmVslI^BYn4Rfkn)<}X!UiBYDvJZlrM{V$F&q)8%3De0qO%*y-c!6pmHcAot)rAx6Rr_uS& z8QR=azu)dzhc+MfD4QDY2S29-p2fskU4=Tlz)skF)dMe$F2*{!`(6LjQJnU45UeQ% zXi!aypEj#Lq73%>2}|N%4EmHSsWl7&<*79Mv`et@#m|o@(tDu2gooCHiqov;)GNDy zmB87`x}>!n(c{HFb^Cv?(SOZF1$U)rtbW-ySXBr48OhYs&NC}ePuIzCPY<0a_I9vu zHLDc1?v_^h6};jdH1la!_CREj(E@^@?+or#L+lPi-}tVN!unc+A!Q$MKWs_P8c=?% z<@>Bd^S@52M}^yF+wes@R8G1GZOb_Ge7&2_H}moBZC}q#S-y3)n^O8qLX!dXYnO@3 zkXX3?VPFeiUH8%i{YCddi4;B&(V<*ZPOm}fE5G6KFE)(#fTuk2tYEtn@}Muw2qy7R zr-F@Wa&tb9d9*BPh5C;p7-a}!2lT#0G<~#VilO5{)FcwB-RAkqkb%tbA^R-YPf>F~ zwOqe-k{}oZrjH6Z3fgu{xziEzNZBnbK5VRi^2+?!X3%Ly^=3;Wu}Jo@6htU#B&@tE zsX-t<;SvED2t6yM(lxmw?GIgqN`{TnVF!J@qZp0IKUkW0$;Jkc=pbhKRWR(Naw}r0 zR|L~l6xK(5_q_U_4etS#m!&Hbo{;1^A^R}$s#(6G`0yQp@BXW^xyCO^RO^+S6}!rB zom}9kM?J*KXv6B<{{~vyZt6~LgajZ_%vM4J&rql9j)c?j)HX(tvH3#AZ}A#6D5*S; zQaX;>L>n|DJZpIuGM4|hqF?Tgf&^s~Dj6Jpje;opJcx|5U;7<%r| zN=sLPJejPj$`o6?#GW@<0-Gn+=;{EACkY3M3Kdq8r}^SyNLzf;v@&rn?#pZF*{acw zb&j9Ri3JR8ogt^oe03R!XRt}MmcJ7h4FZj)J13E$e&wP>!rdjf!KPnlrSg3zIc8TC zrdyGO z$b`cQIYRnR5b2hpCB^^bPf(g@d=s*%Iv?FbtiQqMfxIlWkt1bhf_U1tep%odU{f64znUK^LG4% z0tWQ;-v$^3IDhGnqAA=`1>$FC&5T6NRc)p6GSi+=T?(Uwx?h{=S2?95gC2ZGPfG&8`~#DsXPb=|od zTA0r~q$SIRzuF+mOPrYz4?6_&6)-o-@e5ds zm^!@*4GzW6Ofou;67fSj8^{b)C4}t*ZZwZUyj`{$oS3Q;cn2J8UK!zukPYU1)qVmHptT@ zGo$VB!vn~eOww?kVRB_c^<(?>QfTcIy4EiorGkfeshNYagyE`*I-?#Ma~b;4sweu0 zsH)bIpc$HJ&WHY>i*t!r46>aGXS8TNeeZ|`N0J~>_->wxV6#&i&D5Yf-3}m7z6j;x za?$BRE!1fwwFNB4p`-$+<<6v}i~Er2fSFB3Qyl_R#ZQzd#IDQS0f_dl`|^rDQ9fkG z2|iya>bv!a?$+wIeu2h`J=ujLJHBIzA@Nro@rautWjVE-+*}I%UR@pO29xwua5GqEt#R|=26l7VUzPd> zuUUZpmo|1np=gXRPIgy&LX4QX*;MZpuvPV6gAJ%1WO4-a}{6x(2Yj?jzzMT;}?BB|z^Y z`Hnm71Ngag!Kj#=sP73)SGAWTk2ldqryoD*e_%#AKq^y@INmD+H5i5zL{_NtuJ9ca z|9A||y61$eI);7Jb9y~=>39&pUWc2xaJ`MVgxL?6!hPt3vzo(xAC%ooWzcIj626kN zB*p#V_k(yEZyum7M*jK8p{KEM93e3R=*S``H2>8&2XZdl?{uTJyBlz$gUyZQsAbrB z%v0ZNL7zXUTCBQWn}_lvgDIn~!y9qSBRzWGpB!whsp)y&)kQ#}s@m@wp6*wopuodk ze?!OhX#@1}oy|Ks^~3u1+s&fU(JY_)+mnN%$5Nbq?BH`w8`u|OQ5~;!9&d)85DHWy zzQ+Z=b%SGN=KAkDNHm~AUCwcy<4xO{+P+e138q)fKT#2BPPZ zH4CPvM=dD(%4AdtwUgloA3D6%KmF744K>}@m+`pH14XaXt*SO?hNi0XMw9)z?9ch^ z1AD8#^M$qJGOMW3Sk7rZ=Ud)OHyQ z!@jxLTpMj;w09?M@S|3D!|p1ad1EPCx@t0Dq8wXAdqlCp@cNrR$(wJ+B5%LtufH(? z`72l2sP=ftBa&{ zU3e37_o;KC-efjb+j8XQDiC%j{DxbLB4xca=fLYyj{KOKNg;eq96LVxlQ*nS)f

^|Fc)_&oZxcnN6Z{{hSm%F6=zRHiKI-NaF4XB`!!_QMS$OgsRey4|B zP%`h!h(EjTr1RJSo>f|CtL$|@`pCUVVhe{dI2YMZ19rWIvKMjH6%KOXPahJPabM(V z&-{BmZ8m$y4|08#O5~_)DHM&_M0U6qc&T8qi)J|j{Bg!O!*mwUubZUxM0dZxynFRy z@R}j27O1k0YsS~ej2lcoIQjgZH*8&1F{tH}m7%?jiu8AXl|Sd~fqyTh#vuP9%IkY+ zjduDQUR#l1rZWt!C6z$mK{xtQr=521g?E#fgVl*!@n28sXjP=!z!T}h?#(*+E7(hp z+J}P;#G4#WZya$2%-t2LrU|VCN zEeWZpwI47w#W>hE8%HFzh=yoIgin${VSq493*cla~l8d?FE z9wzX~^ zKdxqFT6elmu|#{bwn&+^B7wCZKPQ0mpXy6p`;Yg-QI6_9CAxHR*MOLjf{X%bS!=;^ z_^jQYz_hF5J(4MO>I|d$Q(A6ZQ2!N~Zt)3vLV)fth%=dflr+aLp=;T2Rl3fCK|n4m zj9FYPd}x1rTjjV+Z>cqzs6wmxfvZB5SoypPgLC?79C7;ml@r77Bm(Sqw_m`r`x3*l zV|UTE1RZ$>^TIzQMbLG$uRb4Z3YncGVB)UVxzCR%-2e9nCe#YBY&93Nmo18~fmF8L zOJw07_)Y_NT5P<;SLOc%zU=nj;gbA3FuVZbEK*yjyX2_~*%bd6BfNEcgh}8C?k&9K$%iBhtHN zxjL9Zjrwe(31 zYm-mcy}UN!XM*4nz6=!e*VQ+OUMD{@`jJ)RpJI}7*!51*Pk zYK!%6y#+diqpGLG>iDf8QD_Z%8srw;JG&zDh{80#GX;@rHSX_t^HO4rvy7~{t^%te zQ>ZUVk*Y;_wE5ktQNMF%VGxW!FUB4WdY>H|3n!|Kkbiodolz2mCEty!xQ>*c_F8vd zJ!!&xOClA8hS3Fw?H@e2bSG~C6YD%%`p6SVFTJc+Gtc~`XZW;0*~iXufW@pSTo;k9 z%M!Zs74*@7$F)R;2ClW+;SXEeB|5^oQSIE7h+K~Ga2U8jr%3U&HUd*O{^F_$)_%s} zn27_iCO9xuz=C@LuhUGGDp_@tek<4SP!?R&=X9uys1oE>v{Am|Oh_wtoPS0sSGexT z82@m|-R=2vrPDw+|n#8v`g^H)l$Rp#TlpmHwI5c#Pz!JOqgKv&nhcvqP@MwYI-`nlP7A#a*o;mw=xWn-{ zmBvWT%%4==^y?BPnFjTCY9(KfCw2>`Xqa;wd`YSMB)ZrgDq58GGhFcFM+03~G!P5b zv<403kk}8QC_$C4MRKfT#?pO(;0~Q^OzY++k21Mnf&lu1IYOpUeSHF>O$Dtbm>@0< zt114)NcRPBRWv8H&k^-(90+hHMX`VmVwaRD_MxCy)z6(<7)Z@HB;uK~1lr5ZLK#}E z(HO)NyTA0+TG@@geW7BA;)s_9{?w&8_3yJkI{o%%P%2252pfk@LPY-)Q*Mf1(W}&{+DzDUF?=ts+EFz~mf%#xAP3o6{ z_1LLzDM1O{EI$^XScRna z$=`reWmisVNDnS5Rt-|acYI-D&5fnJS|*(fTcR!KUZa!!;%P^}X65gFxLEc1=6$)p z%W06@)<&<#_b02G(g)v_2Fr!y;@CQW{+z(vCN)ZyLg9Q6l4IRuUf6?}>Iag6Rn%Df z=T~g`>cF6F_3x!>A4PzL*)F0!YWgTQq%;*0BiPZ2GG~_!CY2|Ihnfarnfd6db>w22 z>y2o%U>iT_{HHIS3L#Y%Q(Nh>VUH~Zu5-*`=IwrC0&8H(Q~XB4^Wh;Il1YzaZ_fBR zWM)S;LVsq|f0rS(<~G4-QOxVsSmUxb`BjlFMOOg^4I!2Smia7p+!#qX6aSnwjVkvg zvikDcH06&WdZKUiy7-Fk)!eQ8yW-rCf*%WV7xJ;VFT{7+q~{@XjzGpj~nL-aHZ zrGv>Nwq}yHm50g(I=qI(0isju@>;M4h%8$H{)a}z%LWw2v~JMy|9yAMd;pdiXJ0LZ z(3qgMKjKexMqVA(Zp2EH?sLcE&i5)*^L?fHzxMlgyMG)}EWZuKU5&@rY{*8-r!B*_ zi?Ffbl2MpRyw&ok%M%oQ0m@P5%;sk*|W@3@GfA^Kv6#VWJ%JlsQ zl5P8`7Vf(u|1;{+Yun2XEtdpOz^xfXF>gK}p~_aRCeTZ`f9Z}!zeOU)8!+#IAiY0TvG7#OVz8c)w1!TRV|Zh!vp-eyt>PS?%u7} zRl#KD`705wEzwkR?R(26xuM3#scG}|{SkNA9(?;KE3Ft+=+le{ zoWyYU5*%ip=wh-vZzr6bGr9&W4Ot;1uHSN#2nd;74Z-yc`i$=HijE*x!J zAOc)Hy|!jj9dCL(^8?m@KN zt5on7`Yfv`l;Q60>R)On{Co8C6N#N+wm1y=FpJ#PH`%{Odink9cPGFtR$RM|mF#|> zO5A(W0yPzb!fOtI@5Rlvlyr3^4vTHw@H$Cf;wq+jIHTF?#m6Uz&o=;s&))7b&VO$? zR(9w6?x6OiNhqv}ixxQpT@qL47RtMH)zqK= z+$(S@^*uV#mlg`&4K9r*$y*rGEtdImU(LJ78W(Vpe^2ZZF!W}>sf3z7wY-YaU(d9) z`W&wI^{qkBt^U=))Y1uqEfbB8#`>*tog7+FCkOkX}XG+;$`v76JeJ!9pibeSr+yDn(*z z0-9M=$z(SU8I4_EqeZ^ap#1)!nsp3q*uQ#fXt}w5Et+4;g*)w-F=Ib`e6-6AA(sO- zy-UrZssW|O&_4efMYICUv~OFJ#sLjk2J!0p@@Yos#*DUhP#7xfh^H{9`>1pj?`6J0 zDfDG)OW>x+VY7z>^!0^3X{f5tfSI|kKJ-ft=GU{(EwwEcpW5p{ff-*GZB*X=)YqAU2$R=QrXTYwQt4rOSfRG zq!=`OOIZro*BQH~?m~FjeU7rtUpVYHyFn!iwi9^TeE&c3<~ut|)m2!;-*9Wo*&w>qU_g z{=9fwH6N>M+kpvA8nxW-`=DdAp7_xDl@t|~Q8ZF~ysj(8nzZKSvX|8nHwH=B@uESw z^1j$|5KGOAu$o_xcKde8ZYcVY3A}A<&LOD6!KzlTXd2Z;rm_qfJ{O0b*mefaP^z>K zWv8}fOWhE!#cBP2{YM4o^!z?SFXPXm10|1!A8lADMpyJ+=c=og#md@zr2W%TU$lbo zu-RN^1Et@WUFI?td%ZYP0yDQ{rC!<)}<)u!61*9aeLrPscvrA$7 zmA?}Q)Z^k`jc}e^xk`#6){*DL(EUh{Ae~CPs=i;8V#AJ@bD{+s1xDf?yoXylv88qX z=W9npwtOr|ezJA&w7{sGsnV=`cyb5Da>t^wZ($Q$hpZT>lSe}=ZsuSxry%d$!T+LZ3tX~2Cc z?@6cop_}Trvn_oKOZ^{gWL8$Tm`XZOcBcz3qrq67)C;o>$gQJyVVu%V8?2jpV#%KWS*Tg!fcl_IA381nL zI`v^h|3E*>@?f0L#cJ2sXJx*tF&TBa_Oo^b$XIwLr|qUg?<{hNIZ@*Y3Z)R0ZA6N) z%#oY$0wUi1+vb5hOhtWYyDUXz)}p|2WaD1rS=!P zv0CfVK<~#c({(2B^zjYrOp4(?Td_F#;7xAhqmjbiBxVTjXy-X}bN1!N0zTzUl)i6> z(c*x5^~PC33kEZ1{BEOczSI$aJAq%jjmr$8TQ~GWXHGp|QDro&gg*iCiL1Zp11*se zJnYL;cb9N3$-G<@-Y^TCe8O$<4ZCXPs~-wK#I7@fAy!}cP~W&IcvF=Jp4&0RGR7v2 zz9rpSYF_y1{Ahi0CHG2ob&xTZ zHd(%}Qc>w2Jnaf;!DGHM(ShvU?c2>_8wp+h&-b_V zf2b%Yu_oPFGA-#IdgrOmc@>i5iV#+p#M>DLGvwnsx0_GRRcv4mpBY2X6?e^VgB=SL zyh2K;xszjSOyRE1s;Ez9lt;z`12I=F8b)WpY%idt`6P?2lkOV+x$pt?KXV7t%?#os zz{@_8=dBPWVL{nQwbZZ@?5BiZxsuedwQ3itP{d*xFjwEAeYx~4>lWhp0cPJ$NncGg?#O{3rWu*iE= z87^hfNGo{FFUt8{OXBtZpR5^H3XHTn1N^!&ocVBwJEdRb(kDYzR!eOTzpIVyM@{YJ zharQfcB)ZM_$3`t3{T*nc@j-~!L6lS5NP;NstM26#8*+#ksNH~?K}n2UK~d+2nU&P z37D*8nfcJ%^eKq|-*}D?Wlf*=U4EbA7$x?m$V7xL{BiK6-J}atM3*)d>DJx+89ksI*e!pmu#ps^os8Y zQ@i0|XhEY}jq*(8=~-EjmXMLG=X~uh3>B!qFmSWZJxss4wQb;O9tMoUGhIk=Mr37F z?%v&$#_JoLvtsv2qEhb%46l>=3AMYh@}!@l=S(s8=2j+z5i~IC#`J9ZlW41#&t)F@ z<@l)Zd0wY;c*qd76+73>Gd-sM8q16$Ax`TjvG}v-dIcZIiUYo@g9@!*2@aRMk+70e z5`|1l2Y1vMer>9}yTp&NxuEHXycl8_TM9!kC3uK50Zrw+e3I?|S+TXEN$7sl#^F(4 zcGhZTteIIA4>Sf=FNc-QxK2lc{PM#(lw2`Sk#myRxekLi0uh5h$?)hh*OYO<1xp|f zC8fh;mpS1sr^#CcWJIy=~Jh!ly zzh~25>XxQcs6LeRO0t!5SbX*ImAk@6)!b?&*MlFu$kdBxzmgEcY@*Rx@(1-Q#*&vB zCcI0`HdK0fyNeTDc-ZQOMG%V5SyO*Ba1tSF9FR^4-8Qm8XQ%IMv5KWih zHQ{XW)gfV~KI08wRjWJ%(+TW8RTQa>;Z+cE7!?!cY5PS;W3gsou1Ar0_+* z-rlc<%EscYAy4D-6u1l6Ck4BBG_qFSG)tqgNi<^boC7OB9GR%S{FZ5N9k0i%D z_4JFSdBD$UuY`_y8aeX(N=F{9VH1&i)ARS)6MVfUfJmAN9sUxJT8P(ITnUU{z=|0K z1NwblJc-sN)NSEc|1yE4`$}gq-8m((0#UMIr#LfNA0t?01UtT+kVAaqW4``tECeU4 zG5eKv2gFmAX?7)_iqc_3RYM)=6F$OCycdUsrL>-Q-B$R~m7)1`^@rFD&NbXUt>HfS zYP6e^GJMWKa#*|?Nbfe^XvFU%2pP>F|Gyu8E#@jksdlQ_hC5%>_n> zR2{bt9JuNdOBf0|y;{p$>FZ32pCH!0%Wr&n!z8IAlE=(zG}<<#I+PE1Zs_2`Bw8WS z(O)4IJ%R%<{RqvJ^TWNF_1zl5J}IN)b(}K_{284rWe)BFT;j=>I@>kIwM|Zkn!w+t`+GtX-eW(?+4-ljkb^z(@tAA1L zVP4lY{_5Y{A5IfbiP_h@+N$kr)p;*$BZoBmFAEqi^sPAlDi#6FgfSW5gMOD)wxR`g-~x?>D=aeJ(7H7M_2(e)GD zZBqT%DC&^_>Go7PiM({ff$w*GDw=1?<$BOk3$LxR%duPec_35{^+m$4gW#M;A zpV7O*5dq78bE+RMNMbk|Xm(MV)WF;paNbF<$$EHm&}K6#4_=HeMcaJyLQBYRq zrZ`Aua1d3JqV<>I-h_t>)T&?gPgUHDX^Z<}7~hUY-uCi#D0Hny8mg{RicOL6e@nwn zQJ#)OOd8(4G;W`f^|XuhAC(`$)h*_MvQO+d*`rt`11C{=^M!o+P+L3R>O%DP4dR&iJuiUn%~vF zTEg4rW@tM7#pa4N%zHvxo%1Aj0wOM`#Oo~4t*ZWfyxZGQ({p%Tzk5Z|hqc81w0PGl zfEqW-NQ#Q*ljql({@A82#bu1A19j-$zc+1DR3PKr>#=WBlx4d8y6MoJ*M-g1ScRWc zP9@E*UFqU?bJIi;W7z3GVGJbdpJ)wq;1l_C`iH+nZuazpx_Pn91&&S6M7Zu2Yp&rv zYenTr^=YCXORuuyP!Vdxcoe{HxaXPRXHV#R_;t7vj`~Zl{|Hxde{5bQO8DN{kC2-a z5%0J5Xo@~aBNf#b46o(Qw;Pr(^cnuGtkJS@?k#Ng42ZCV9D&4cbw>wCDeiMqKu;AW zF>ky{J_@z%@U&|D)va;||CcC}P`NSpKfIH;e_Q68NzEewZ4u)yVrt*CB+F z_KRJ~Z_-(2Skvm~v|}%K5DP*jHcS26(W!zLG&(F1sdmZ?^HJr5glMt^T`PsyE$q_7 zdrz6|+oVKq@@Swm`nwQpke{l(z|-m7snf%d?D20QPeufLsKRWraoZcS)g55~Er#n! z1w8EYi@I4eJoq5MC9?DfvFbWU}HQPE`0rbUyvH#T=wNGII} zuY;}gC_P&(=@}wdTgsN)NnVVC7NMNwEKf(=vh6@8EmDfLFC-A##S4b{jfT)jCvJg$ ze5}(83-(ITz#TTLSiTNVsG)@a8IT_};4HJ}nx>l!@jgZ})i(MyqdtN(e0aK8VoHbI zSyGC;lH*_Cld^;41W0Egc@t~4qXEar)6qUbqCYBk)kD*>9J(Cc44?^NkU-kjkfs|& z_9nvbApv6=>bu%X^SRHK8`vVoKjFQFw7pEj9psySt%*8elL8;C4=6~+#yHC-35 z%irIo#7DV`@n`&i3#)TX!WhLnas)fN4jB5EgKB$+!71KE@0S(1W8N=YU87<~1bO-; zL@|LoCU%z9R5F*1&zOu*bflc0j9%gpUs2KFeo}sW{XF?O~BY%HE7@kHDP?}y-X$Xhl~_%q??SAclT`A#)*`JW43?4jF&%= ze`=0RJ|Re$l~ni)i*%bjT!k$6A_1{9P|SY;I)N5ZxlX7ZDZ2Ly?D%z@vubEK%T&{D z&N$d4tqH4-b!l~>HdJPf)r#gSk%!%1a^;g6y>xcvujVq^%AGP*7nN|^ud%9BdN1&u zZ-FY8sty#=u7qExim~Rk#XQmBsK5FUx92`gs#A!-$01T7NHPnim2zIeWG9uk%9E!H zrLGxekmZhPXcS~akcwBp_M!UpSZ&N9NoJW=d%m3YN8nisL0<`5xGDaqH0Owe!gwRA zB_m_oQc%aQB!0yr5pCR=rxh($m}7YOINmn<+1K1tO>4EIlxBwstT6L|ci{(czvZj> zP9<6`iZ-*Bi>3a3=4^U=LWXdtRrlKv5)^OEoffKoFy7~7rQ=Qmi^Jk&Pg{)Z%X54a z6}Un~6EM|DH%}@9JD87{iYz}n!C!}j#Wsgt-~QBYMCl=q1GMF);qWMVWmlFp&ZefI zQc26N$Wt{ImsuO5wPqA=leo$+H7Y@ym*^=(F1|q!EzP+<(GfHsT6`Oh z$^~V2Yt$;yOmF1u@IM`vV*D>v>l=wvfAQ#1yqxG`#hz* z)q&Mq)jLGWJo8$&$F+)Kp?4+MS$}N%$3H6=_fQ=VNqypB7UoLgjV3t*YI`DQMmW6` zj66y2z9bUbS$RkqX91+^qJ9qgMO)S>x#@akLB70NV7A_6&_5y{smqz+4P{8;s`@a-P2{hLUVQ^d5tM zE&7dAMMnsf5L7VrY6WLd7mQr*rpd9nX4LXxM{*9C^81TpvJ@^2P+?#HBjpafLcLvs zYDwT$jr^wZ)^fwupdS9!?0XR_YDFtpBzty!sde)|L&MY&s*lM|CIcyGa?5pez@@jYJ(1I8IS#2@*w&>?Hvvj~jx%Ai*r6ZtC!RxP-$Rdjx6yUr-lKy+^$U zefi5(gFt5TW9hkuJ2}0?%a4FHH*U!nQkmTkRaW?_T3^&|$i(3LicHi8l&w08)HN!N zJWEW}|HV*tT~U{+2zI;jVV|rH!8@x;5r%=5+NQHkVfh3tPZ%?)!ghH z{_6OJQ`$f{JkmPuD?dEy@k(?jcWU=oS{^#jRS@uT0YKU*seYGd@?2I^M;dUJtMH+4 zcG+G3>Ni4rlxbJYg;B6qE$!$tit&3lUxE|!gA54{a>?anX014vpgnn0anE$5Mg=n^ zPc--N!@NE5os$KhRSq+Kd&H#k+jbGe-8&KQtUSnda^eyHM#UYeS+A4L3E)J#Sl78X z+;iRWw+p2g^Tq_<0{MO))01n(E7#eZu zvN#2CgKxjjb1M^X4;>4y3#CWgAdVvA$N#WNoV9Nk1Cdc|sMR1C0h?>pWiwe_S;R#y zT64&K+8_A|6h{aww4>k%7=6Vb(ZBVm4`#_o?6JVXyBrxY>5~|)jzj-3N_%jr!^)25 z%a#fJ)1wJ(Pe$Sw%zV%si8iLR5^Bx96#Kw@tCKV>*YK``*NGN=EWv2&!wJEG5ow0~ zs~vS{>wZjN4U84jjdztjuIsiQ*!5ob!TAHmKuW7ICC6guTh^ivE;E@#)5m#XNS~Be z!-_CuvQ^^hf)5U-wm?Qq9{%!>TPfh<4-rY-^!G)&rb(4qcBDIkxsF>fJ;V4a+=jn0&G;mL;Wd>YB4JGY9Y*ATXfb zeda}e)r!LC;Of??a)ud3rdERko~VX#PHS{ni`nDpN8C25bq-T6msk%|=HXxNnel?7 znnd$5@Od~#uk$4RJ5V&xf@AH&+g_SxKg7TyR{HRBV(+xWs9M{GP}?8M|KY%#4a_7! zo4Z3WET3Gl{u`cvg!NGlkJBN4dZD)Htoly#w*{N(Lgi|8)zA)%5b-CIC2t%_J7&3b zyC@pZZ4eNOZvRt=6}>)@K@o_D;_UV&&=1dl@^;Obh=%2APhT_~#F+|TBazFxd_`B= zh9c5$d%*$T`b3E#)%q2rC%@P2$%k#+2&-&t1U$s%8J0R0J7rvIoh8T^qKKq3|JsB4 zTP)TUG9S)Uf~RH>cOYyIB-&!>V(*0Dvfy)*C;8x%?!7UmJ5syT2qCGHy%RsS+#S!< z^9VJ#Y7sS8`6$6Wy4K9tt~xaW?^mt$TK0UNtL3=BT$(H{`U_Kpxe#D~Y(RJj2l~a`^r@ACCcWDg>xe1AHigQ|r-_nUK+j)I^?$_Ml$(|O8&?#Xlro@gq6w}bowVC>N)0&?Z0 zDaz$iZe@{}u{dE1D$%?46vZ6J|K!ww1SlC;%;&b+HlXVeBtT03g*&oAFw1pQ zsKTn^$uTvBm~AnV6ag9uW~*^VMJachX<{h3FhcEK#p^)AJ>bCJfMl zDZ1%e0}3>2mLP-CSjWja?S3%>;7hsdvMj@<{Ep0qqYE3ZxujALkCAYkefyp&aSkIM zmrQzhS{C>vNiU;Mw3jvUmrkhAhZSCL4VpgH+>6uso%vgx@=swvl4MS+>3X>!`k(&A z`cEARf|?5n@hPiaf;)>Hti4E?Pl(Y*#2JRV&$u2y@XO7*7uWrRYh*N5-^rFVw@C-L zunG3B_iS_Ka;q|*k)9i(=eWSnd3@;SxFvxLZcZtCG3-u_2b2No!p^<%DFrdGX=LSZxdB0#z-bxu#ZkwiK+L>J-C?1nUDt~wIwN{Cknkf z^u8O*0Sm8Vf}&w^_U#RxGZ!?~z5!6j=y>{K&?@0v^*6fN%hw&B6*7sLUzWT_`wFe9!Lde9su6wP2V+%8B_MABV$+YOhd+hno+$$*}W;QAE zqob~ary=VJ_4OfSA{Qa~y-4Fvh@4TpNnI*QjrdK@v`N0AL}5GWp99|SgKT9Yd7xb? z4fBrsOkh+R(Ek2&`kuevvo2Xa(W3c?D z-TY-r7mRH_wZuA#h$_J#KUtBHs*)vi+kI(F0X-6!D#QzMFl>DP|Sa4l9y^rE=4wH>wmvhFSy*%M;E$-)}HrZZl zwuR9f6R-n*c4YPlmU|*+4Qsq&SjPUPkgie=C5?9?SzXWVSCB;=(es73EYG+Z7WT*U zUBKC-TuG-yu<|V8^iy%O>69KkpSpHPcRV1DQ41%!0got0t;cW(%ZEKHo(D-zcK+0e z353Hq{AD+D*B|ZRZ$#jqi*x~Q-jjW;kNZASWXr9Hvy%3j54J^!%F=Q&hN{f~4Q)ba zNl%_B~ctD8ZvPd`)x>#Px%a^ieGvj!tD){e`!H|8+95w>NBB%IIXCU zi+fCuE7vMAOfPlzzef4h*!|gKr!4vmT8_xF6y{31#o|?gzRGmPkWvOJxUR*Ywo3&3zQCv4S_Z?;pu z$#6okQ`kbmp!M)_MZw@?f7$sRx7RZ)OnZDk80wb~Kj$7Iu?$wj#-sSe+#y3jTTH%o zwAeAvhyd`IQ6cwgnv3y6itozzIn6&YFG(ovqa)YDIX35i0#%ZziRU(0=J?*ob)0fU z_*Npvp-lLc(>$!+Q&T+>ng`z{RJOw}l(&QHeG0Cu1n5?{k?P@kZRM~78hwjx_?NUr zJdmn&a?$^UW*|ag*v?Q(Ynzpz`GavUwwk`)twlR=)uEMKOhv%ZW&RA9TIn znQw+|4vjOU8FwtfLPWYhHhJ~F&y2x`eoV+%pnrum0Zpm)-ZlKh55#+*csKoTiV4`AvE;XveRolq2ZIiCO$x^~&EgdAcmy^X~@Kob0ox7kG1J zCHvNsQ>5fCPu#7eXu7$!zj7m0;k;WS#Cndt=!1L+m7R(%`+wP{pXPA1EP8P!Z;-#Z zpoGC7$Vi$&khS}YXI4(h5EW@}mczI=>0Nn{Hy~lscDEGgpe8VJlI4ii&}%MT^{{&9U1C1&~AP_->W>v2g%z(Q5=0T-VUxfBv@N3YSO(2mpF z-%$Z{QP8mr#iN=ZOYiP!%GEy{kU2Y(@M6;DCF1vd!rpj=->AB&Eg<W^@dT8zhJ9w2>I!(jnydIR6Xn&VaL9+pZO%qvc-kxOj6bD3SoDH6KawP<6b(r@Yr=hJay zZ}YUTw%qM@nHoDg{(zHQ;;I6UZ2b*yJ9!-7V5}K&~Vw z`A6u;7rT=^*F?{sr{?#_QJ}r!bgzpe7S`nb0cpFX->RcZaCqr>C0Txv-H|I7un_gh z)R#QtmCiigvu?HE++!mnijhW)SJ7@gZmVh|eUr)7E&I2D*1cUyXs#2IBZ2ni>!PzV@Od)$&NFkNKcRN zKW^~)=F`+!mqnubnEFVLSh;2PM$g-1RgQF~B2VuwHhXRK#QhIUQn9gluPP(a3B5V4 z0co8YwhJ@|i9YBq{;tW|mEdacOSL6kdZQbKPn;d9YM*7P_5)nUxr$#OZsqp~Y+g~F zIN}K_wK9yQOD8Cgnvhk(&4)9%MIX0tt6I&rd%PS5ck`iL)}%!=8#8T&!TN5C{PNV= zq?qy@|7s-ax#}RJO&EGGj|phD5S98Q#`uui+u`Snt$B)H3eWv4HE<_3qbD0=zMtGv z%Q%mtXwb0)!VKoljfbHs&Wo43zh=^Ed%2tXE8|9krMU^y6#9j8(iA!@Xiv^Veo66p z3hq#^#17Z|D?o6q>g5*V85wUtjrO>tIg`+^r&lAY39^vITtsqJH3>?Vmr-A0n6Y=> zeVbB*H-t@0c#sk2rp^=kpK;7BDypuPwuI*w>%hW**iRZ}MJ{P^EB* z+4`hGK8*6ZTce%4EN=Yh_2uvwoQqzCgv?l5r>i<2=6-D5;9vK#NdB4#E}`$Bv#pBU zdc(U%Zr88u9VyW8SzBi<2Ikd2K2b_})=6i?f+OSuDLgsoc#X&@hk}ggG}3hf(r_+9 zK*h4l12PGrr@zj>ikv#n0QuJI=AOP_FCoVG@+MR0HNL&opz|Efu0K{=x-?x%^NHkM zjo^#tO`dUJ?*0mKrgWLIzH6bby6XP?{#mZxP6g84-RN;Gjqlhyeol+(XUw_v1DThW zN95gmJ+6mp8h+zjjD-XYSMreODI1s0+1dhXDJ!4fkLy|s^BR(uHwPPAsJ}Cw|3>G@ z<{q}ty7u)dtFrAY@O+*^u4}Wp>w!j{*=BQ}#8U_~CXX{Izy?*f+ zm~ZqZSdRODlwfO-lHE$Ap80d&F`Ms}r8H3}otk4`=oNLn|G^wOqW*X}8!BCQ01V3Q zK57(6J;WqJj|q{i$NSuJ0iK6z5pWb$PD(xLfhT3HQBKK)5eBm%4D|H~>45Enf0}qr zBz!)rwP~%NdH3r~DGl2TM%Hioj?6#Ep#GP6CIgPCk6Jb&09UkWMB(ucN5^wD)bW=j zFUi2A);wsvtSnKRc(A_BHhIuL4CoL@4<36&7(HVu%gm2yWB9(*Sd2elPp2s|fV*6N z`!#z;_Exz__j#>E{8I4!t6xp6{BMEwjF|n-y834KIDm7e=2e{b1GJVveS zpF0MwnL`At*5hP1s3&ItsxDpGdyx+GJAQ-Fr(VO($o4 zWua#irDctz`$(B=#LvwgyVdTA0{%Z2zbpt3EZm%0^rl-}jt;1UJgs;Bz zGZF#9LV=xKWNV77oeq;1{CwiC_nXF%DTy+s0sEwHGCkhek=&H^#_k7B$K^J$U4}0p zE%8;yN{t~$sUip9EVARh<6ZdiRyy=xC&gdrWeK#0*0WC**eqF_IGXHc8x}hpUE4~j zudjgDREQlyxNJK{(XI7in-@}vW$uG+4pVQVB!NuA7?iZ1o1gMn@#vP9(FUJ28?~mZ z%&StXR(VGB|0Am8h?h{-5@xj~4LRV6~&7dKuvl*QGPjEw~5xS3`f{hjz*Xc41m^6U%*0$2wz3x#JBbD9KJO z2Qwx0%M@Gal)B@_<9?0^@6ju{r^4crH=9MEO0Z1Rw6mZx_V@*GcHQkB5( z9k_J$^&RbP=8~DM%~n%`Y`~I~%ye|S_RzTqhgG-IJRbKHvF2pTdb8DHg#44W4RrX? z@2S?|@D!FF=q*{&cV}&f9B&De&CT*8BozesEB)NCF0F)U?Y@@!5sxc$(dT*8AMrfX z6j)n7;MR?9TA+r4LtwRF?MPI{IG86H^=pE)dhbvtG4s7E%kP-t_ucsnAJ zMdWzSYx3w995`InWRrcq48JHQxpv^~b*(F9rP3~;uM1t^HC6Awxu&sKb1wP|{}&pN zqR1`bd$)vc>D&S-irx~IEO8dNNfkXVDH5G0DHJVxU+#=hbijT2hor|N+!Mbgbn77`cw zpT5H4VqoF_a||ph`oG5{g+;-CjzRu2cVS5pVTu1~C@OYO?Ef4C3k&`2{GYy}U=bnF b=o`|^q_q*3=B5$_iwcQTaB(SUDpLGE;?47? delta 11060 zcmZvBbyytVwq+86OGAL*7BqM_?!g@rB)Gdnpm8V&?!nz5xVts(7J@qs1cF;|oBZy5 zGxO%YsjvPx-#+WCy|z?+r%nwgzxwU|je`Nq3xXAZi`8L7V0zT)ADulVo|C{!D@U;cp6e!%2z3o=S-TbbvwQl+%KtMw-h z&ttcxb);mn`t|PjdUD*HCt);pE;0)zF=n!WZrlbj3i*b{m3r32{&EOZ8z|6J&~ylG2(+V6XKym`#D96o)toA!|7m_ zn8>Vn@2BGdD;geX9o?^T>ZNbn=H3lId51Lhx92&>u)d{&M-+KyoG?Hl09)GdUD~aY z3dQLs3eE)_##9Oj&m#Bm+Qa*+<#E^KDZH3v60=f4|Dchp{Y5NCB# z<4>IKO>5bDM`U21-%DgA310L?bjj}+#CWLkN)PuX&ZQ?~A7k+p5rZYk*Y=jHJTpow z$x+vlP&kbWApRyzu}PixxiX8MXf30kRo&f4o^Z%db9?7co}b3+P9OTI?7;($ zPbU$(z-;Fg@e^F&7-xf{914S5(U?*TpIPT*}6eA^CU6ZVD~+UV5o zzTd0by7BIwzF_tlExJO_$`aW-U3lKRtxMQ8q?uDd|A6$s0#}$ zsFnSR$bquR5QTmPcU~O8$r7TliudreKm8+^*j(u94cl0};H!=q+(lBJbhgtG?g0LZ z;@Wt;UA&nj*tL~}@#_@lMNEJFZ6MdcvbvowaB+JjL@sG8PqCUY*{Ez~3q3qyI}wR$ zZ18!wJ%4fra)mVi8an&xFI$$9Z`5E(!sOvkdD(hbh9Qz|S*?2a=E6buAqGGAeZpSt z7NY+`&|~=CclIumgXq)y`6bi81-)bXi&K1=2dX3VHmS&T#dAyg1TA*6J}F|M=t1+~s0 zAK=$M@ZO)v+;6)wm}`$_DQ)k^8ufK@PQA-_+MfkO!|DTMJ9KdeH{xw2cZH!qdVY(X z#J)A}g}pngO%}(Tg7xZ>BWDc0FbdOxkn;&XtC;bC4yiG2&9;lnQ#9L{|aC4808-< zyKG0Sk9WV98XFVsUFW7qv+7ON?~wL4e(->wa+!A7)vG7>DbC&|Cpx&iF=MqMbieX<*f4sW=zdi{Pv0Drodue^YJJkbph4CRSnUiX`iI zme)l5wmM~hlza2pm+UmCtF$$AT~+eg3WQ48RMn6@f{=15y+gDa8OJ0}k49BXdJ@`q zwb(4U60J6m!v(3w%TK%dfrb-ePB|mSANUtGFAxb-1v@n4=NKyfgkl=|E)YjZ>SAFr z21q21D$tL#W38E4P-jM97{Czx{gA*v%b1qmiLci7uTD?5N!h!jLpE3`sFy8w;JU+F zp2#!|dVIo|8B>CHaY)rrloyGhHeREXYL$V-_kTPADvdi3&TT!O}Z8 zt@Pgsg%-cdM#+NhfL>_YC!)}VW0JNs)Jt$&+T;WynTAU7yMt7Z9ykHb+ClEmq{z=6 zwQo`2hRivxS=}dCl{X8``&L9_>Mb<-9nRz~$63xfG;e{@o@OPE8O?1Z&@ae2|L-Lt zDLRcmOT&9=tGYxZaUXWDJ=>bw_e=101O;<>n00LmTv?^~07&gwTwjw*>yhDfloquH zUSSP|5=@UcpCshL`mKgNuk;8%q@a?4@!~gTi4p-1_OVymY$DqT2Uw9eb-AB06Yqs=c+BQJTE%jOakOL^gd{_D@c60X^v=BB~s-$h-&= zlmhi{kB(VdfCUwWE25EME&uhBw-S;d@iyfxmW0bO#EMafT*YObDKz$kFzOs48_`b< zjmm$EgV6)0WBy7yQGgzeOSjm(`|({_yfICWv9Ly~{2>b1Yedj-gQDbQD*oyN*zza7 z3%OKDP-T#R@yUnp96EHu&sd-c83~?={?Lja4(GI$fcVAKSE(9SsJdNM(r?^JtvF&i zu9LXTm!@Gf^&>I5v}Pmu>YwT5C&(bvM>E>qv9HB=Ne2});^GP@&lOBO-|9=MGyDC) z)+QC4v@EJ3_a78Z5oT4AThwB~%5<|TDL58+S^k*g2fq%??< zH}?I^0*pJJ5<7alHsXzUtjNe5RC6l4u%dro}K3}c4XDhpP|(18IT-Fh@!Id zPiLw8Aq2*FV-c<<9fhLe5mm;3(a;o-p(OZSX|)t0m!hNbutX@UU>-%vYF_)I{zlIB z!=5%qH9o8O;5m6lOB)s^zqqSKjreE&umZ&La^L{tr1)@li@auoD}mIf&~Me-`8-ih zVs5v$qvaJlgGXKrR6RAvkSA|{UL95Qjjh0bsqU_f%18V@Pjrhv(vxf6u~pT zd`3T8PjzrH;=h-gJ8E57Hf;DxlU?$=*Pa1GBNK&j$uTszwK?Yf*jZYU_n$QS^|N7{ ztOH=qfGlU(p|^FgfxU7yvr{RW4RHz*SCa7SNYx!k`Fz(bUT}l`fgF6^|0S9vzkph* z`$(`iXx7Cd1>+#Fn|M-W-QCzNm?__%`ndd~Krdp=FH|N(FUXUqut%^*_eo$PAV^e2 zOkZ<7U%O?`i>o6c=;8CK8D4-&p)(nB)CP2kzEmbJ^IJS2c zp}d<0pM7)|Y`aoOGx7OHxrm=fy~4|7u;$IiINFAka*1X#PP6kPlFg3auCI(P7+}{b zUuR(8dZ8p3)7wy8!#=3dMeJ91)`Wp&O^8?!UIA#bdSxB-d`lJ`bZFN0r1=$8)BwZ; zxsS7TyCd+(r#tKT30#Xe`6LC!nsW#{5Hee^=OARQOm;6>_GUP&h=@cfNG}^?^yleY zp3;zOrcCVNdhqrxIH(El1jSma+8&g+)AW*7{j9K@jPMb@I4uUngA5aH7%H#Ys~Pak z8CW8*YdBI7bz_s_){+HZYHV^7m;=v(;jrCV`!Ns{(+X~NM14&S)h|4-tFRz0&;EcE zdZIBud8VO>X_)&^MvOH9(r`XhQDa1}+6Rcx=b={CfG|fUf!NPq0sr%k`+#)*dP zpmN-W9aV+({RO865_D)q$foJ_{iY^iqRfWBfW2#ym=|KCP8rnT#8|7E`1;nB+<-wT zIAnJE=&Dq+12YY0UgD7jV3vA8hq%o}2U}-_z_IP4gX-YIZp^_g#SAEg^(s)l{J*5`^+ zeYfP1MtXAeWs@G&MPHydl!bKl@9Vmc_Os*S_#7#7%%L$0O!V~wcUA0tU9lG$(a2tu zY6!h4ooT-=VH0O^`Ui!C^!z!}SH5N5FMn-$S{37A?zUGi+>dAREIV*)1z-1`HlNn} z_1>vUz5+hHh$Bd9p;#peenML9cxdB zQfz!PqeBv#O^oUR=}g0wGtLZx0bflrD#zRog*Fk5UKFpF9Fvb4y|NkecTjnvf>jE} z%FkVP=Re0qidJEz`F?_>?X)lhGNL)Q@xttb8L06-&6h>bq4nn%nF!U@!R2&uX;kxIDr06+Z+7+nsF7{1_ zG1lyrwI?5N9sa27YY>UokhfG`>RHH+OA=-{>$w@TeYLEoJev5z;?4QbA1sbF7$0@c z`Nx4IJqnhMfDR5H4PWGYRkO1YD+AV#({WW+gLe$$NIOEyO7{vtQvR@f=J)I_LWf`1 zR4;hi$XnL{WQ^zexd%V0&L~b&_a79LkVEu<>=LaU;diR9gc0lfF1zr>hVD_(FP{U^ zuTKK^Zn6!pfIe5Noxs#a5xD7{Z?vl5VARu2V4FJX3Gei`47ho}oj|aN0HD7#{Y1yJ zj}gy6>Lgn4GWRqJbEF4J^&JR6kcuAE3sE}TFb%BVj+-TV&j!AdpPy^mj--BaxoK>Q zFs(0g4USoFJa0*`83fTd3F}E_mEY3ChNXt2Ze1wj!6tsbqaIpvu!16HU z*qSaxim;L;BYI;%nho2lyO5X4A?`X&)~01&H6bbet11SXHwrb-E7KoPL1ed9n|CG{ zSddbqx)Krg4vZ3masJALk{j;Rqj2oKx zegaHtQtvT(&@!+7FoS5_zl9N5Vq?r7T0?yTUu^I8!zESVE+Od$l9SGSSF^@RYD>x# zoP0S32^H5Yg)UoTv)j5P&KM9(_R~_Zj1Pyr+*uvYVs$bHXeb1$A;t-IAnS8K=Y;xqdQ;(d!w7!Ud2j=;&q{qN&AZCU4)#y7AFjSb#XPqEOTW$;`?d^2-Z{0P;s zXws!At;ujwLi3*!1B8wjecyVGei`55!t7mnUj7jyy8L?=-D!8I8zi3T&o}Jr9NGNx z&eyq_nuEJtYwT-4y=V^FLfk}zRV_}+PDizWJ;Ox2)V1tLE-UViKOh6QnxU9k zUhu_8Q&gjV>eA~ai~a@PBmM?eQ5%9^>T26Ba_JD#BwD8@On-(3{DA~q=6}|@Ub<=# zYH;-}cS`jaRu59HBfP!8d6dBDsDL_%N_(>zA{s3p46qK2U+TLdEquP`mg&up-1r?3 z!^QxXau=~LpTbxY*cinnJ_15wrOZPI`Y4%(=)1R7YfHL@*746doC4-&L~S#t6jvMq zJEo7$eVv8ci9%}+Tx{}^`J#oJxkFJ+B8xVqh}-S&6sVi$?rNlr*_AM+{Do2JvL(dB zVmq0(EjB-cmKt*MXZ8M)qzl`&^*1-r*+Qo^R~zaDHt^p>>$_GQ0|$MlIn7Rd`Jp6M ze*%s-eYfa2TS=sdQ>m1(k#t1=p<}Gc{g)$l z5cdGf;FSDAXNPN)`6-FmVdjz>UJFHhl2flwP|@5IE%{j%nn1M%;i@I#t$mD9f)# zU1~6j1xC#)ALB7VSlv`SEbL$Dn(L*a_<%f%8VS~6IcZ`wwT&PWl9`8_SC@pNT6A3# zAsoM4cyR5UfImtRo2cWgy*3)NYmqWWdHdfIrAC5(?(B5XlWEzaWEi<<4Yqeh5m+&n z0_op5t}d(f-yqpS!f;%XGX&ZUc0aCY0w(2*AE=E+{vrBXz`vT_C5Lc?qL;TE7~}5qz&%lyxsb zG4ZwW*ym9v>b;byc$ZS+BqFmFOQFyBsY3tYM=}2VAN+7LR2&dYR*}UXux%jZaUVul zsZN>dWjSuJA>6XVvym~nA-2!Q`KJt#>WG%6ku5Cq|E&uB+zBbx`TtbGN3;HalN8tI zw*4g$U*SK(G$}t;5PNCrwl?Vk- zvAS(3%{$i;dHvG$SLt4d-~j>8uo{ETerOs8N)lh!6vov*(tG>X2dABEdaqnn=&_ab z&f(3moNjRHNMUC1Nb?l`I8h&YDnhwoj{F3@>Th1Q=JIvjHFjZUpl zsr7Uqtm#l;U5_4aK7j{O@M_C(K=HliQZ&mTIlc z8Pq`4WN-J*fBQV~4f}M=qg})out4qXhyP!>6{L87=CWeDP_DH9x~D{5n3TsS;;i-Y}dG-v-V9MJy{+H^%5r8SBziV?N%FP@O+BW6{fECJTU%-5QvFRj-^ zCV}*SpLMf|F6D20FKn=pY!onRzk2`e6xwvOv5VN62Zfcilz_kDLVfn*K>aLu>5eO; z*9#_*dY=w21Hl9LPPmwy7T6hdh~@r-UxT_K+qfod&W;HTHNe*Gkftxc{o60dx<9fG zUJv}szqx9R(7;rPq!bQMW5^ChPcmN@8q%E_zVNtlR!o9Bzdh?r;(vkhc&7Wb%67@U zBDYeB_P>FG{*O0i=ND65|4Jm$xoq`Vw`^XYAO+EANb}#sY=PZ8mkzOowiNOB(=__~HJfSEo=q2C+rdNRkh>^?%$wrS3MdtsN3l_k8q#B@ z-NdtRd$W()vtY4-gDV9^HcU6uPqJa@LE4AcpSqA++1e{_>6AhfxEHrGNPwAMS=a}4 ze+}{+3e=$ywsv!~1J(sa{N2j9-P&UI52yQ&E@w~Z^Dfud8E&udCKE%p7a%L(KUwTG z@++eRYIi~2A{PEG$|qn_UkiC34vy_(I;nl^)b8nz<^}qpM1t2QQl)pP-MFmg1$RkA zf}=)KrQ0dps_5oGL0S+YWRPBpd(Z;OEpKe-92?xcYb=#E4hd*OH!pZk!_gdVE|t~< z4q%cpFBpCUHVqbwv<>dTsC<!+R~VSAAMqc=d(*8Uv;+#b4sG z^&b7Y?SI@$$DIuvJ-xHPGtWfb%1Nj4MeQ$xUhKHbr!B08RQU@@y~JG9SNdLJMdn!2 z%%7x#pmzjxt~^1#++K}ZUmUpxF$uMgy_}AVnR~eT^9yd(??trfCMVPK%{q^k&A?>t z&Nm1j8)HG`t=QI7_Bdim8bh$Q) z3dsF?N}NvqJWNW>MMd_}1g9-Di)d`_2GC-9|+o72RafeGi>SidJm>+xSX3x7QF( z-hZ}j)PTdxjI&9VS&Z{WFrv_hUv(!m5mKrw!G*Qe{{!TBupGXV=@PF+^|I`4RO%vAVn)EqWx%+k zOb4(U(2-I1^{@ohET|i9%p)=k>iE8$+Imkma*NqQT(GMIcny+!O+rQ_g1n4RrqmCZ zHh$>H?Z;V`I`HyJ?T8BbK`RzV9M`0m!_OL=BHTpz3^-^naFC-Fy{2@G&!+H6UTtLY zU;oHGao0QT4pnqEw(~w~#1$jStmAv%&JN7vR<|$-vX=)`;6^cJz@&LQe@0G5nPkd0 zN(8AwK=KDUPAw|N)Jct-(BMt*>EVnnjnbB}GB?Pb=88O^2^ErET9Gi&-OJwEw7?{R)HuJrvqpp*GDz0mj}v zh==qHi1kBjkkS#e>~e|;W}AzZBj9<~#*8N03WcEkf){L&3x+4}pnk|BbMO_ai>YB` z(GJjlG%iUXas%TE#|*+dNS8SN9@U0ydpsye4ms}>qY8nDe5e#|Rvp?EsyHp!MGZMl zXbIha7qEqK+3xlxT3ukUSH7+iU|OM2A#!5}KOPy-QV8{AhMS#7MZk;*bX48VHbmpO ziKA8Hev??S#WzdzMQRVY8@}!60}&-E~valFrYXjH{v%9Vq~N}$2q6Kn2a9L1nFsC zvBDlVKRJ1IGqO123=f-*XZ4s3Sxq}CRvMDP|1Fxr)>s1(4l(pz< zm54g9Y@UzAb(BV|cFGVycOWKiu_eog48_+~vpRWz-m<~F(cIb4iWCa*E{Q>tdZnkY zCL?EPi{LLeVlhBJbI4PNb^^&tVd8v4DI_#7o@r}fazeLtWb-jcsnGum z@;8m{LiXXF?p98qn<#Nuktu>xw@i_fl>Bq8%CZjgl<`FQ=0I zCsL0+v}W>*UHdn2`pIY+d&*(&ql)7W#&O)y(TYakT6Ne#b&Gwki}FU8eOO))BMLII&(Iy-Vd5c!#njE2m^Z=OFxp0OJt@HxF?p*ZFZ&`KVP0 zTZEG0jbwh=d4_ayz4fnFhtkG(EW>gFs>DkLS|Cf-yCIe7H=K3nhqQ(|{^U$WrPU?M zf<bV1U3JKtLMKZFu6}du9lRa2@%to-N?j(wKr4$X2Z&7`rdb?s!4rg*g+d z%7^J}5=UjEF*HJGNi0fo4 zPOJ_eQhxps%NCYoO=b z3eK)_fTi&)j~>`uT%PxJk=w7QR$XVWuXXV8-7e}1@~KdGB{IDCY>`y6alc^A$Y$BF z1?I8hDOXvybd}C<*E$xno^NTBAdf$ss8i5wRc|ltN4)7457bt-qk#5jZ#Te_BV+@@ z^g~eCwL>Lh<2~J~ru{|5+`Hxs_Y&s@?G5GUvnC3q?8nE4--wiPXIliVB#?{ko&8RF zq&d%fSML>ygs6Z{q>x}j?x74ls%AJBu!zAmg5AB;FCzj2@mmm;^jlt-TH4v~X(73# z`3C3B6OR5W-CKwm(`q#0nY0(~>=exM{Lvxe63iUWR6;{dYVGv>>EW@>?K+07Dq0^P zLsY+cESagZy;td-ApVW_)oVCrEpDgaKzoA?6pRtVm))R6Ot*ql9*?R4J%s85w|M~( zj&&&GrfM}{W7Pm|4C)tu##*R*jshI)I=E2mbai(5qs-dZvV?>LI(TEP5bHX~$bX+t zuigV>RWs8;wy4f%wT=O@UWEJhj^4SN(G!||lUrY`GyT7QyROVn?Tv-435)o@@Tcb) ze3l_`3o2AX^1lDc#%G_2b6A%KFmpToe4y*i^vAg@e}w;hPDb6Y{`9jS@7}xD>;8N( zJBcBjv#J~Rwx@NpI;mVJ*^1L8lQOg>IkjW8csH)%_306(psoSrePnd4Jk9RQ{C7TqO63k1lKgW~+Eb$a zYXAmwas5vlHy`K!!0|wM;$6e}0Z#V+m|_RBL%{!Oq5Ki6`D`FQ>l z#|`26Pf6^&yzKwxGx)#S{~G!JQ_SBGA&~zd1aorp{!bha_y36T?=Bh=?-@b*H($vS TbQoYxK5i~FT3ShEDYX9u*`aTH diff --git a/tools/repenrich/test-data/edgeR_result_file.tab b/tools/repenrich/test-data/edgeR_result_file.tab index 18a8976a1..801e70500 100644 --- a/tools/repenrich/test-data/edgeR_result_file.tab +++ b/tools/repenrich/test-data/edgeR_result_file.tab @@ -1,210 +1,211 @@ -DM297_I-int 2.69047105438237 4.49448726299278e-21 LTR Gypsy -DM297_LTR 1.74961921158059 1.33970311552449e-18 LTR Gypsy -Gypsy1-I_DM 2.37388633230267 4.48026988291108e-16 LTR Gypsy -NOF_FB -2.79644759297337 4.48026988291108e-16 DNA MULE-NOF -G7_DM 3.25987374806405 1.55296802933692e-15 LINE Jockey -Gypsy_I-int 1.74702179622354 4.35250852545265e-12 LTR Gypsy -LINEJ1_DM 1.94429217926762 5.18070558194078e-12 LINE Jockey -TOM_I-int 1.33935222283437 6.6922795621824e-12 LTR Gypsy -GTWIN_LTR 1.89490932455113 8.80590960313784e-12 LTR Gypsy -Gypsy_LTR 1.56024435809038 2.99852403114994e-11 LTR Gypsy -DM1731_I-int 1.53134429520835 6.4920552091728e-10 LTR Copia -Gypsy6_LTR 1.53023046204423 1.07509345482848e-06 LTR Gypsy -LOOPER1_DM -2.46983670012103 1.61917280285007e-06 DNA PiggyBac -TIRANT_LTR 1.12203469288475 1.78012665029166e-06 LTR Gypsy -Gypsy12_I-int -1.12204057066646 2.19485691074579e-06 LTR Gypsy -R2_DM 1.67889583354494 2.73035057005978e-06 LINE R2 -TRANSPAC_LTR 1.49364968145495 2.9021047542613e-06 LTR Gypsy -Copia_LTR 1.66649088148806 1.18604111278586e-05 LTR Copia -ACCORD_LTR 1.3724059468295 1.75953804703817e-05 LTR Gypsy -TIRANT_I-int 1.17728139313168 2.04686461971632e-05 LTR Gypsy -TART_B1 -1.14695345949677 3.09658484730011e-05 LINE Jockey -TRANSIB1 -1.3902119423097 6.16503339250305e-05 DNA CMC-Transib -DM412B_LTR 0.803090050933452 0.00012443453312414 LTR Gypsy -MICROPIA_LTR -1.29556276189806 0.000129852108160169 LTR Gypsy -G6_DM -1.05894868960943 0.000138305097075584 LINE Jockey -NINJA_I-int -0.874264518473233 0.000155536374046075 LTR Pao -R1_DM 0.955905154410719 0.000189845334697796 LINE R1 -Invader6_LTR -1.18865109431199 0.000212988712815497 LTR Gypsy -Copia_I-int 1.9331690527025 0.000223130721644621 LTR Copia -BLASTOPIA_LTR 1.34881958569428 0.000364879309201161 LTR Gypsy -LSU-rRNA_Hsa 2.61189118344978 0.000801598301190925 rRNA rRNA -TRANSPAC_I-int 1.16122217809542 0.000845313292130344 LTR Gypsy -G4_DM -0.74970144243323 0.000914365923267624 LINE Jockey -SSU-rRNA_Hsa 1.12389968473263 0.0010425909765405 rRNA rRNA -DOC5_DM -0.809872869194368 0.00162410751644423 LINE Jockey -Invader1_I-int 0.749727833008358 0.00198920329215702 LTR Gypsy -TRANSIB4 -1.00230688125284 0.00206051807311839 DNA CMC-Transib -MICROPIA_I-int -0.751193028928835 0.00292932704926266 LTR Gypsy -PLACW_DM 1.16310826488548 0.00305178248567248 DNA P -TABOR_I-int 0.737702190628259 0.00354953953973759 LTR Gypsy -I_DM 1.04141382256571 0.00457151681951996 LINE I -Gypsy3_I-int 0.586594796021762 0.00533147146680179 LTR Gypsy -DOC 0.94015335715084 0.00552118010544697 LINE Jockey -Helitron1_DM -5.10401049101919 0.00636579556275411 RC Helitron -Invader5_I-int -0.973422642391873 0.00666026639838213 LTR Gypsy -ACCORD_I-int 0.593047691019391 0.00701363615971209 LTR Gypsy -LSU-rRNA_Dme 0.902204791675651 0.0102101724391352 rRNA rRNA -DM412 0.775970807845826 0.0108079710929838 LTR Gypsy -NINJA_LTR -0.923408172476265 0.0109563169817133 LTR Pao -BATUMI_I-int -0.562867612987509 0.0148551719821132 LTR Pao -DMRT1C -0.664744166716986 0.0174563775735471 LINE R1 -TAHRE -0.509503033739914 0.0198535740576507 LINE Jockey -Gypsy8_I-int -0.578276897527121 0.0248976847994314 LTR Gypsy -BLASTOPIA_I-int 0.796987753936179 0.0301824235833205 LTR Gypsy -DM176_LTR -0.691384671506076 0.0432538714324547 LTR Gypsy -DMRT1A -0.509608409844153 0.0432538714324547 LINE R1 -Gypsy11_I-int -0.734634622561586 0.0432538714324547 LTR Gypsy -QUASIMODO2-I_DM 0.470057940126177 0.044414105251971 LTR Gypsy -MuDR-1_DEl 1.35524442785064 0.0532319546519159 DNA MULE-NOF -DM1731_LTR 0.752238181600754 0.0540130070646644 LTR Copia -FROGGER_I-int -0.60531971025629 0.0540130070646644 LTR Copia -MAX_I-int -0.516456091983578 0.0643402067819527 LTR Pao -BURDOCK_I-int 0.418223330277469 0.0691214301126813 LTR Gypsy -FROGGER_LTR 0.888326398013863 0.0706362756551064 LTR Copia -DIVER_I-int 0.579052226156673 0.0738156276916979 LTR Pao -Chouto_I-int -0.551029990754245 0.081511593859774 LTR Gypsy -DM176_I-int 0.387008766766431 0.0918637211505497 LTR Gypsy -Invader4_I-int 0.532747054501905 0.0948962153500033 LTR Gypsy -G3_DM -0.607648157164968 0.103160664266056 LINE Jockey -Gypsy4_LTR 0.67676362702008 0.105307005535582 LTR Gypsy -BATUMI_LTR -0.625598883331715 0.112325719453317 LTR Pao -Gypsy2-I_DM 0.418860685191156 0.127538985839499 LTR Gypsy -Invader3_LTR -0.553726127316243 0.130228544874336 LTR Gypsy -MDG3_I-int 0.417195433411295 0.130837858091619 LTR Gypsy -SSU-rRNA_Dme 0.50182621141568 0.130837858091619 rRNA rRNA -G5A_DM -0.468375220785066 0.142388172856184 LINE Jockey -S2_DM -0.576444154651051 0.154380925206633 DNA TcMar-Tc1 -Stalker2_I-int -0.424817076156048 0.157921464286182 LTR Gypsy -BLOOD_LTR 0.494999752604753 0.158635278613665 LTR Gypsy -Invader5_LTR -0.675984091871337 0.158635278613665 LTR Gypsy -R1-2_DM -0.611853226580459 0.158635278613665 LINE R1 -Transib5 -0.51646991193603 0.158635278613665 DNA CMC-Transib -TLD2 -1.24823548505769 0.158665416598185 LTR Gypsy -TC1_DM 0.400572910860442 0.167626897114732 DNA TcMar-Tc1 -BS2 -0.331386491833491 0.185478101135035 LINE Jockey -ROVER-LTR_DM -0.529681787599071 0.188737381603441 LTR Gypsy -ACCORD2_I-int -0.350572607465432 0.191790844708841 LTR Gypsy -Gypsy12A_LTR -0.354465506898828 0.204428444984748 LTR Gypsy -FW3_DM -0.476342557702003 0.216920256528982 LINE Jockey -ROO_LTR 0.400232536676207 0.244465267216066 LTR Pao -STALKER4_LTR 0.383349427659289 0.248258091824749 LTR Gypsy -POGON1 0.482507112501569 0.255779427421414 DNA TcMar-Pogo -HOBO -0.283220815078204 0.273166685685814 DNA hAT-hobo -BS3_DM -0.418041606433149 0.277910060681416 LINE Jockey -Gypsy9_I-int -0.437336296478435 0.280951304168472 LTR Gypsy -P-1_DY 0.969417874734635 0.280951304168472 DNA P -Bica_I-int -0.363151852276854 0.287621291763315 LTR Gypsy -DMCR1A -0.342108879038489 0.320538100201906 LINE CR1 -Mariner2_DM -0.422114252836712 0.320538100201906 DNA TcMar-Tc1 -Gypsy7_LTR -0.484940393339899 0.322658401361327 LTR Gypsy -TRANSIB3 0.344232145502121 0.322658401361327 DNA CMC-Transib -DMRPR 0.474671090698546 0.369600785239272 Unknown Unknown -DIVER2_LTR -0.381362071713278 0.384462351162869 LTR Pao -Gypsy1-LTR_DM 0.341547880045558 0.384860099197221 LTR Gypsy -DOC4_DM 0.362114244909638 0.389414554540185 LINE Jockey -SSU-rRNA_Cel 0.268693361351043 0.389414554540185 rRNA rRNA -ZAM_I-int 0.25296287202699 0.397202788288282 LTR Gypsy -XDMR_DM -0.256211211677393 0.408914532732159 Unknown Unknown -Chimpo_LTR -0.460515218470088 0.409319591327129 LTR Gypsy -5S_DM -0.36064468671157 0.412039231991319 RNA RNA -BLOOD_I-int 0.301193505006723 0.412039231991319 LTR Gypsy -CIRCE -0.21220098912431 0.412039231991319 LTR Gypsy -DOC2_DM -0.219218822289782 0.412039231991319 LINE Jockey -HELENA_RT 0.306716860759321 0.412039231991319 LINE Jockey -HETA -0.298692871636692 0.412039231991319 LINE Jockey -Invader2_LTR -0.349451178427879 0.412039231991319 LTR Gypsy -PROTOP -0.21894181311432 0.412039231991319 DNA P -ACCORD2_LTR -0.373877436518785 0.415323684742582 LTR Gypsy -BARI1 -0.361825471165769 0.439062969216072 DNA TcMar-Tc1 -Copia2_I-int -0.199651272204726 0.454016393978291 LTR Copia -Chouto_LTR -0.42256718750228 0.457631460799645 LTR Gypsy -S_DM 0.193275098711318 0.466588891242574 DNA TcMar-Tc1 -Chimpo_I-int -0.3198026895528 0.469668398060595 LTR Gypsy -Gypsy2_LTR 0.337405927915915 0.469668398060595 LTR Gypsy -Gypsy6_I-int 0.244887845096584 0.469668398060595 LTR Gypsy -NOMAD_LTR -0.310707505731374 0.469668398060595 LTR Gypsy -DIVER2_I-int -0.217400353167491 0.482143273163041 LTR Pao -DOC3_DM -0.226748306440889 0.495640056965812 LINE Jockey -XDMR 0.249633734746355 0.503551868695532 Unknown Unknown -ROO_I-int 0.276608752749181 0.50509162020251 LTR Pao -BURDOCK_LTR 0.32676718204459 0.510777537217992 LTR Gypsy -BEL_I-int 0.237362494177496 0.533794803142695 LTR Pao -Invader6_I-int -0.205266937253198 0.533794803142695 LTR Gypsy -ROOA_I-int -0.194233478923581 0.533794803142695 LTR Pao -DIVER_LTR 0.271030983517942 0.536617484807809 LTR Pao -DOC6_DM 0.222079405295424 0.536617484807809 LINE Jockey -GTWIN_I-int 0.193808394449743 0.536617484807809 LTR Gypsy -MAX_LTR -0.257749452683052 0.540151898310569 LTR Pao -Gypsy10_I-int -0.188834668589015 0.568470618173646 LTR Gypsy -Gypsy11_LTR -0.304519901682671 0.568470618173646 LTR Gypsy -Transib-N1_DM -0.285359544492984 0.568470618173646 DNA CMC-Transib -Gypsy8_LTR -0.22930840819102 0.572155988619062 LTR Gypsy -MDG1_LTR -0.222278232633914 0.598330807400594 LTR Gypsy -ARS406_DM -0.253969785738388 0.616310720408007 Unknown Unknown -TRANSIB2 -0.146222438911029 0.625405183746808 DNA CMC-Transib -Invader3_I-int -0.138005789457227 0.63087021446348 LTR Gypsy -FW2_DM 0.18134923098773 0.631976090641453 LINE Jockey -Gypsy9_LTR -0.341386719736692 0.637388403082853 LTR Gypsy -PROTOP_A 0.129470019526978 0.641582941744779 DNA P -TART-A 0.137000662462686 0.641582941744779 LINE Jockey -Invader2_I-int -0.151224307192946 0.653366733778121 LTR Gypsy -MDG3_LTR -0.188668582948884 0.653366733778121 LTR Gypsy -Jockey2 -0.162959614427421 0.6545684300628 LINE Jockey -POGO -0.150727724968995 0.655487951511946 DNA TcMar-Pogo -Baggins1 -0.134826103211095 0.693165877070164 LINE LOA -Bica_LTR -0.203027970314789 0.707635948527852 LTR Gypsy -HMSBEAGLE_I-int 0.13884460350775 0.707635948527852 LTR Gypsy -Stalker3_LTR -0.174018068430168 0.707635948527852 LTR Gypsy -NTS_DM -0.176552072990723 0.7126900116144 Other Other -TABOR_LTR -0.243243320673685 0.7126900116144 LTR Gypsy -ZAM_LTR 0.185889162361338 0.717882303973929 LTR Gypsy -G5_DM -0.112256553949312 0.728328879400999 LINE Jockey -BEL_LTR 0.152542861711851 0.756425760962704 LTR Pao -FB4_DM -0.114616335459739 0.756425760962704 DNA TcMar-Tc1 -Invader1_LTR 0.141219962488351 0.756425760962704 LTR Gypsy -QUASIMODO_I-int 0.126271255526405 0.756425760962704 LTR Gypsy -DMRT1B -0.111235216287692 0.760051744799183 LINE R1 -NOMAD_I-int -0.137546703453753 0.760051744799183 LTR Gypsy -LmeSINE1c -0.228543531933743 0.760296029745035 SINE tRNA-Deu-L2 -Copia2_LTR_DM 0.147979193864449 0.76240178289376 LTR Copia -Gypsy10_LTR -0.154651074858764 0.76240178289376 LTR Gypsy -QUASIMODO2-LTR_DM -0.155430480903998 0.76240178289376 LTR Gypsy -BS4_DM -0.253251631796478 0.81092436860891 LINE Jockey -G_DM 0.0902785903431559 0.81092436860891 LINE Jockey -IVK_DM -0.0807211765160779 0.818709085450591 LINE I -Gypsy12_LTR -0.0832045482918072 0.835273508731359 LTR Gypsy -Gypsy5_I-int -0.0774807293903186 0.835273508731359 LTR Gypsy -Gypsy6A_LTR -0.116239966704279 0.835273508731359 LTR Gypsy -IDEFIX_I-int 0.0781972363147815 0.835273508731359 LTR Gypsy -DMRP1 0.100504519100353 0.846311908195535 Unknown Unknown -PROTOP_B -0.0745501769371703 0.846311908195535 DNA P -Copia1-LTR_DM -0.0961752276665428 0.850550157756311 LTR Copia -TC1-2_DM 0.0595720035046981 0.853067020850826 DNA TcMar-Tc1 -Gypsy7_I-int 0.0826410967604942 0.861339242519926 LTR Gypsy -LSU-rRNA_Cel -0.0920825033469626 0.861339242519926 rRNA rRNA -DMLTR5 0.0726894766496021 0.905487490633946 LTR Gypsy -Gypsy2-LTR_DM 0.0652192786223383 0.905487490633946 LTR Gypsy -Gypsy4_I-int -0.0516274039610208 0.905487490633946 LTR Gypsy -Gypsy5_LTR -0.0710979993807782 0.905487490633946 LTR Gypsy -QUASIMODO_LTR -0.0643467685962964 0.905487490633946 LTR Gypsy -Stalker2_LTR -0.0523210063310555 0.917308330496379 LTR Gypsy -ROVER-I_DM -0.0408110836395496 0.922716163337686 LTR Gypsy -MDG1_I-int -0.0411424164719924 0.937452811422426 LTR Gypsy -ALA_DM -0.11425480149938 0.942917068804402 Unknown Unknown -DNAREP1_DM 0.039354033592028 0.942917068804402 RC Helitron -BARI_DM 0.0372716083617889 0.949850971355763 DNA TcMar-Tc1 -Gypsy2_I-int -0.0261599267227275 0.951965771983562 LTR Gypsy -DMTOM1_LTR 0.0349640382618226 0.953829042793374 LTR Gypsy -Gypsy3_LTR -0.0298883238815861 0.957715681080923 LTR Gypsy -IDEFIX_LTR 0.0219961145617681 0.957715681080923 LTR Gypsy -MINOS 0.0330479824589295 0.957715681080923 DNA TcMar-Tc1 -STALKER4_I-int 0.0241275307638275 0.957715681080923 LTR Gypsy -G2_DM 0.0226097987515835 0.962242582647045 LINE Jockey -Copia1-I_DM 0.0124236833262227 0.963045943681341 LTR Copia -Invader4_LTR 0.016495431966038 0.963045943681341 LTR Gypsy -M4DM -0.0173659751457427 0.963045943681341 DNA CMC-Transib -BS 0.00565217021634194 0.997858051773989 LINE Jockey -FTZ_DM 0 1 Unknown Unknown -FUSHI_DM 0 1 Unknown Unknown -ROOA_LTR -0.0005425128837839 1 LTR Pao +TE_item log2FC FDR Class Type +DM297_I-int 2.69047105 4.4945e-21 LTR Gypsy +DM297_LTR 1.74961921 1.3397e-18 LTR Gypsy +Gypsy1-I_DM 2.37388633 4.4803e-16 LTR Gypsy +NOF_FB -2.79644759 4.4803e-16 DNA MULE-NOF +G7_DM 3.25987375 1.5530e-15 LINE Jockey +Gypsy_I-int 1.74702180 4.3525e-12 LTR Gypsy +LINEJ1_DM 1.94429218 5.1807e-12 LINE Jockey +TOM_I-int 1.33935222 6.6923e-12 LTR Gypsy +GTWIN_LTR 1.89490932 8.8059e-12 LTR Gypsy +Gypsy_LTR 1.56024436 2.9985e-11 LTR Gypsy +DM1731_I-int 1.53134430 6.4921e-10 LTR Copia +Gypsy6_LTR 1.53023046 1.0751e-06 LTR Gypsy +LOOPER1_DM -2.46983670 1.6192e-06 DNA PiggyBac +TIRANT_LTR 1.12203469 1.7801e-06 LTR Gypsy +Gypsy12_I-int -1.12204057 2.1949e-06 LTR Gypsy +R2_DM 1.67889583 2.7304e-06 LINE R2 +TRANSPAC_LTR 1.49364968 2.9021e-06 LTR Gypsy +Copia_LTR 1.66649088 1.1860e-05 LTR Copia +ACCORD_LTR 1.37240595 1.7595e-05 LTR Gypsy +TIRANT_I-int 1.17728139 2.0469e-05 LTR Gypsy +TART_B1 -1.14695346 3.0966e-05 LINE Jockey +TRANSIB1 -1.39021194 6.1650e-05 DNA CMC-Transib +DM412B_LTR 0.80309005 1.2443e-04 LTR Gypsy +MICROPIA_LTR -1.29556276 1.2985e-04 LTR Gypsy +G6_DM -1.05894869 1.3831e-04 LINE Jockey +NINJA_I-int -0.87426452 1.5554e-04 LTR Pao +R1_DM 0.95590515 1.8985e-04 LINE R1 +Invader6_LTR -1.18865109 2.1299e-04 LTR Gypsy +Copia_I-int 1.93316905 2.2313e-04 LTR Copia +BLASTOPIA_LTR 1.34881959 3.6488e-04 LTR Gypsy +LSU-rRNA_Hsa 2.61189118 8.0160e-04 rRNA rRNA +TRANSPAC_I-int 1.16122218 8.4531e-04 LTR Gypsy +G4_DM -0.74970144 9.1437e-04 LINE Jockey +SSU-rRNA_Hsa 1.12389968 1.0426e-03 rRNA rRNA +DOC5_DM -0.80987287 1.6241e-03 LINE Jockey +Invader1_I-int 0.74972783 1.9892e-03 LTR Gypsy +TRANSIB4 -1.00230688 2.0605e-03 DNA CMC-Transib +MICROPIA_I-int -0.75119303 2.9293e-03 LTR Gypsy +PLACW_DM 1.16310826 3.0518e-03 DNA P +TABOR_I-int 0.73770219 3.5495e-03 LTR Gypsy +I_DM 1.04141382 4.5715e-03 LINE I +Gypsy3_I-int 0.58659480 5.3315e-03 LTR Gypsy +DOC 0.94015336 5.5212e-03 LINE Jockey +Helitron1_DM -5.10401049 6.3658e-03 RC Helitron +Invader5_I-int -0.97342264 6.6603e-03 LTR Gypsy +ACCORD_I-int 0.59304769 7.0136e-03 LTR Gypsy +LSU-rRNA_Dme 0.90220479 1.0210e-02 rRNA rRNA +DM412 0.77597081 1.0808e-02 LTR Gypsy +NINJA_LTR -0.92340817 1.0956e-02 LTR Pao +BATUMI_I-int -0.56286761 1.4855e-02 LTR Pao +DMRT1C -0.66474417 1.7456e-02 LINE R1 +TAHRE -0.50950303 1.9854e-02 LINE Jockey +Gypsy8_I-int -0.57827690 2.4898e-02 LTR Gypsy +BLASTOPIA_I-int 0.79698775 3.0182e-02 LTR Gypsy +DM176_LTR -0.69138467 4.3254e-02 LTR Gypsy +DMRT1A -0.50960841 4.3254e-02 LINE R1 +Gypsy11_I-int -0.73463462 4.3254e-02 LTR Gypsy +QUASIMODO2-I_DM 0.47005794 4.4414e-02 LTR Gypsy +MuDR-1_DEl 1.35524443 5.3232e-02 DNA MULE-NOF +DM1731_LTR 0.75223818 5.4013e-02 LTR Copia +FROGGER_I-int -0.60531971 5.4013e-02 LTR Copia +MAX_I-int -0.51645609 6.4340e-02 LTR Pao +BURDOCK_I-int 0.41822333 6.9121e-02 LTR Gypsy +FROGGER_LTR 0.88832640 7.0636e-02 LTR Copia +DIVER_I-int 0.57905223 7.3816e-02 LTR Pao +Chouto_I-int -0.55102999 8.1512e-02 LTR Gypsy +DM176_I-int 0.38700877 9.1864e-02 LTR Gypsy +Invader4_I-int 0.53274705 9.4896e-02 LTR Gypsy +G3_DM -0.60764816 1.0316e-01 LINE Jockey +Gypsy4_LTR 0.67676363 1.0531e-01 LTR Gypsy +BATUMI_LTR -0.62559888 1.1233e-01 LTR Pao +Gypsy2-I_DM 0.41886069 1.2754e-01 LTR Gypsy +Invader3_LTR -0.55372613 1.3023e-01 LTR Gypsy +MDG3_I-int 0.41719543 1.3084e-01 LTR Gypsy +SSU-rRNA_Dme 0.50182621 1.3084e-01 rRNA rRNA +G5A_DM -0.46837522 1.4239e-01 LINE Jockey +S2_DM -0.57644415 1.5438e-01 DNA TcMar-Tc1 +Stalker2_I-int -0.42481708 1.5792e-01 LTR Gypsy +BLOOD_LTR 0.49499975 1.5864e-01 LTR Gypsy +Invader5_LTR -0.67598409 1.5864e-01 LTR Gypsy +R1-2_DM -0.61185323 1.5864e-01 LINE R1 +Transib5 -0.51646991 1.5864e-01 DNA CMC-Transib +TLD2 -1.24823549 1.5867e-01 LTR Gypsy +TC1_DM 0.40057291 1.6763e-01 DNA TcMar-Tc1 +BS2 -0.33138649 1.8548e-01 LINE Jockey +ROVER-LTR_DM -0.52968179 1.8874e-01 LTR Gypsy +ACCORD2_I-int -0.35057261 1.9179e-01 LTR Gypsy +Gypsy12A_LTR -0.35446551 2.0443e-01 LTR Gypsy +FW3_DM -0.47634256 2.1692e-01 LINE Jockey +ROO_LTR 0.40023254 2.4447e-01 LTR Pao +STALKER4_LTR 0.38334943 2.4826e-01 LTR Gypsy +POGON1 0.48250711 2.5578e-01 DNA TcMar-Pogo +HOBO -0.28322082 2.7317e-01 DNA hAT-hobo +BS3_DM -0.41804161 2.7791e-01 LINE Jockey +Gypsy9_I-int -0.43733630 2.8095e-01 LTR Gypsy +P-1_DY 0.96941787 2.8095e-01 DNA P +Bica_I-int -0.36315185 2.8762e-01 LTR Gypsy +DMCR1A -0.34210888 3.2054e-01 LINE CR1 +Mariner2_DM -0.42211425 3.2054e-01 DNA TcMar-Tc1 +Gypsy7_LTR -0.48494039 3.2266e-01 LTR Gypsy +TRANSIB3 0.34423215 3.2266e-01 DNA CMC-Transib +DMRPR 0.47467109 3.6960e-01 Unknown Unknown +DIVER2_LTR -0.38136207 3.8446e-01 LTR Pao +Gypsy1-LTR_DM 0.34154788 3.8486e-01 LTR Gypsy +DOC4_DM 0.36211424 3.8941e-01 LINE Jockey +SSU-rRNA_Cel 0.26869336 3.8941e-01 rRNA rRNA +ZAM_I-int 0.25296287 3.9720e-01 LTR Gypsy +XDMR_DM -0.25621121 4.0891e-01 Unknown Unknown +Chimpo_LTR -0.46051522 4.0932e-01 LTR Gypsy +5S_DM -0.36064469 4.1204e-01 RNA RNA +BLOOD_I-int 0.30119351 4.1204e-01 LTR Gypsy +CIRCE -0.21220099 4.1204e-01 LTR Gypsy +DOC2_DM -0.21921882 4.1204e-01 LINE Jockey +HELENA_RT 0.30671686 4.1204e-01 LINE Jockey +HETA -0.29869287 4.1204e-01 LINE Jockey +Invader2_LTR -0.34945118 4.1204e-01 LTR Gypsy +PROTOP -0.21894181 4.1204e-01 DNA P +ACCORD2_LTR -0.37387744 4.1532e-01 LTR Gypsy +BARI1 -0.36182547 4.3906e-01 DNA TcMar-Tc1 +Copia2_I-int -0.19965127 4.5402e-01 LTR Copia +Chouto_LTR -0.42256719 4.5763e-01 LTR Gypsy +S_DM 0.19327510 4.6659e-01 DNA TcMar-Tc1 +Chimpo_I-int -0.31980269 4.6967e-01 LTR Gypsy +Gypsy2_LTR 0.33740593 4.6967e-01 LTR Gypsy +Gypsy6_I-int 0.24488785 4.6967e-01 LTR Gypsy +NOMAD_LTR -0.31070751 4.6967e-01 LTR Gypsy +DIVER2_I-int -0.21740035 4.8214e-01 LTR Pao +DOC3_DM -0.22674831 4.9564e-01 LINE Jockey +XDMR 0.24963373 5.0355e-01 Unknown Unknown +ROO_I-int 0.27660875 5.0509e-01 LTR Pao +BURDOCK_LTR 0.32676718 5.1078e-01 LTR Gypsy +BEL_I-int 0.23736249 5.3379e-01 LTR Pao +Invader6_I-int -0.20526694 5.3379e-01 LTR Gypsy +ROOA_I-int -0.19423348 5.3379e-01 LTR Pao +DIVER_LTR 0.27103098 5.3662e-01 LTR Pao +DOC6_DM 0.22207941 5.3662e-01 LINE Jockey +GTWIN_I-int 0.19380839 5.3662e-01 LTR Gypsy +MAX_LTR -0.25774945 5.4015e-01 LTR Pao +Gypsy10_I-int -0.18883467 5.6847e-01 LTR Gypsy +Gypsy11_LTR -0.30451990 5.6847e-01 LTR Gypsy +Transib-N1_DM -0.28535954 5.6847e-01 DNA CMC-Transib +Gypsy8_LTR -0.22930841 5.7216e-01 LTR Gypsy +MDG1_LTR -0.22227823 5.9833e-01 LTR Gypsy +ARS406_DM -0.25396979 6.1631e-01 Unknown Unknown +TRANSIB2 -0.14622244 6.2541e-01 DNA CMC-Transib +Invader3_I-int -0.13800579 6.3087e-01 LTR Gypsy +FW2_DM 0.18134923 6.3198e-01 LINE Jockey +Gypsy9_LTR -0.34138672 6.3739e-01 LTR Gypsy +PROTOP_A 0.12947002 6.4158e-01 DNA P +TART-A 0.13700066 6.4158e-01 LINE Jockey +Invader2_I-int -0.15122431 6.5337e-01 LTR Gypsy +MDG3_LTR -0.18866858 6.5337e-01 LTR Gypsy +Jockey2 -0.16295961 6.5457e-01 LINE Jockey +POGO -0.15072772 6.5549e-01 DNA TcMar-Pogo +Baggins1 -0.13482610 6.9317e-01 LINE LOA +Bica_LTR -0.20302797 7.0764e-01 LTR Gypsy +HMSBEAGLE_I-int 0.13884460 7.0764e-01 LTR Gypsy +Stalker3_LTR -0.17401807 7.0764e-01 LTR Gypsy +NTS_DM -0.17655207 7.1269e-01 Other Other +TABOR_LTR -0.24324332 7.1269e-01 LTR Gypsy +ZAM_LTR 0.18588916 7.1788e-01 LTR Gypsy +G5_DM -0.11225655 7.2833e-01 LINE Jockey +BEL_LTR 0.15254286 7.5643e-01 LTR Pao +FB4_DM -0.11461634 7.5643e-01 DNA TcMar-Tc1 +Invader1_LTR 0.14121996 7.5643e-01 LTR Gypsy +QUASIMODO_I-int 0.12627126 7.5643e-01 LTR Gypsy +DMRT1B -0.11123522 7.6005e-01 LINE R1 +NOMAD_I-int -0.13754670 7.6005e-01 LTR Gypsy +LmeSINE1c -0.22854353 7.6030e-01 SINE tRNA-Deu-L2 +Copia2_LTR_DM 0.14797919 7.6240e-01 LTR Copia +Gypsy10_LTR -0.15465107 7.6240e-01 LTR Gypsy +QUASIMODO2-LTR_DM -0.15543048 7.6240e-01 LTR Gypsy +BS4_DM -0.25325163 8.1092e-01 LINE Jockey +G_DM 0.09027859 8.1092e-01 LINE Jockey +IVK_DM -0.08072118 8.1871e-01 LINE I +Gypsy12_LTR -0.08320455 8.3527e-01 LTR Gypsy +Gypsy5_I-int -0.07748073 8.3527e-01 LTR Gypsy +Gypsy6A_LTR -0.11623997 8.3527e-01 LTR Gypsy +IDEFIX_I-int 0.07819724 8.3527e-01 LTR Gypsy +DMRP1 0.10050452 8.4631e-01 Unknown Unknown +PROTOP_B -0.07455018 8.4631e-01 DNA P +Copia1-LTR_DM -0.09617523 8.5055e-01 LTR Copia +TC1-2_DM 0.05957200 8.5307e-01 DNA TcMar-Tc1 +Gypsy7_I-int 0.08264110 8.6134e-01 LTR Gypsy +LSU-rRNA_Cel -0.09208250 8.6134e-01 rRNA rRNA +DMLTR5 0.07268948 9.0549e-01 LTR Gypsy +Gypsy2-LTR_DM 0.06521928 9.0549e-01 LTR Gypsy +Gypsy4_I-int -0.05162740 9.0549e-01 LTR Gypsy +Gypsy5_LTR -0.07109800 9.0549e-01 LTR Gypsy +QUASIMODO_LTR -0.06434677 9.0549e-01 LTR Gypsy +Stalker2_LTR -0.05232101 9.1731e-01 LTR Gypsy +ROVER-I_DM -0.04081108 9.2272e-01 LTR Gypsy +MDG1_I-int -0.04114242 9.3745e-01 LTR Gypsy +ALA_DM -0.11425480 9.4292e-01 Unknown Unknown +DNAREP1_DM 0.03935403 9.4292e-01 RC Helitron +BARI_DM 0.03727161 9.4985e-01 DNA TcMar-Tc1 +Gypsy2_I-int -0.02615993 9.5197e-01 LTR Gypsy +DMTOM1_LTR 0.03496404 9.5383e-01 LTR Gypsy +Gypsy3_LTR -0.02988832 9.5772e-01 LTR Gypsy +IDEFIX_LTR 0.02199611 9.5772e-01 LTR Gypsy +MINOS 0.03304798 9.5772e-01 DNA TcMar-Tc1 +STALKER4_I-int 0.02412753 9.5772e-01 LTR Gypsy +G2_DM 0.02260980 9.6224e-01 LINE Jockey +Copia1-I_DM 0.01242368 9.6305e-01 LTR Copia +Invader4_LTR 0.01649543 9.6305e-01 LTR Gypsy +M4DM -0.01736598 9.6305e-01 DNA CMC-Transib +BS 0.00565217 9.9786e-01 LINE Jockey +FTZ_DM 0.00000000 1.0000e+00 Unknown Unknown +FUSHI_DM 0.00000000 1.0000e+00 Unknown Unknown +ROOA_LTR -0.00054251 1.0000e+00 LTR Pao