diff --git a/.gitignore b/.gitignore index 8785181..b33ccb9 100644 --- a/.gitignore +++ b/.gitignore @@ -17,3 +17,4 @@ serket/experimental/test_conv.py docs/_build fft_intro.ipynb lenna.png +docs/notebooks/transformer_weights.pickle diff --git a/docs/notebooks/train_convlstm.ipynb b/docs/notebooks/train_convlstm.ipynb index 6cef29f..f0a3aa5 100644 --- a/docs/notebooks/train_convlstm.ipynb +++ b/docs/notebooks/train_convlstm.ipynb @@ -6,7 +6,7 @@ "id": "PJyyxjLA2A62" }, "source": [ - "# ![](https://img.shields.io/badge/time%20series-FFF2DB) Train Convolutional `LSTM`\n", + "# Train Convolutional `LSTM`\n", "\n", "\n", "In this notebook, a simple next frame video prediction using convolutional `LSTM` is demonstrated." diff --git a/docs/notebooks/train_fourier_features_network.ipynb b/docs/notebooks/train_fourier_features_network.ipynb index 9bc4dae..8b4e159 100644 --- a/docs/notebooks/train_fourier_features_network.ipynb +++ b/docs/notebooks/train_fourier_features_network.ipynb @@ -5,7 +5,7 @@ "id": "b2b68cc9-825c-490f-9476-7b43acec0eaa", "metadata": {}, "source": [ - "# ![](https://img.shields.io/badge/vision-A53662) Train fourier features network\n", + "# Train fourier features network\n", "\n", "_Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains_\n", "\n", diff --git a/docs/notebooks/train_mnist.ipynb b/docs/notebooks/train_mnist.ipynb index 3e6ea72..0035668 100644 --- a/docs/notebooks/train_mnist.ipynb +++ b/docs/notebooks/train_mnist.ipynb @@ -6,7 +6,7 @@ "id": "k0i-yEycZkF-" }, "source": [ - "# ![](https://img.shields.io/badge/vision-A53662) Train `MNIST`" + "# Train `MNIST`" ] }, { diff --git a/docs/notebooks/train_pinn_burgers.ipynb b/docs/notebooks/train_pinn_burgers.ipynb index 72b827d..be4e806 100644 --- a/docs/notebooks/train_pinn_burgers.ipynb +++ b/docs/notebooks/train_pinn_burgers.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# ![](https://img.shields.io/badge/science-D1B8C0) Train `PINN`\n", + "# Train `PINN`\n", "\n", "In this example, [physics informed neural network (PINN)](https://maziarraissi.github.io/PINNs/) technique is used to train [burgers equation](https://en.wikipedia.org/wiki/Burgers%27_equation).\n", "\n", diff --git a/docs/notebooks/train_transformer.ipynb b/docs/notebooks/train_transformer.ipynb index f7efacc..8e2654b 100644 --- a/docs/notebooks/train_transformer.ipynb +++ b/docs/notebooks/train_transformer.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# ![](https://img.shields.io/badge/language-FFAC2A) Train transformer\n", + "# Train transformer\n", "\n", "In this guide, a simple transformer model is trained from scratch to perform machine translation as detailed in [Attention is all you need](https://arxiv.org/abs/1706.03762) from Arabic to English. But you are free to choose any language pair from the configuration." ] diff --git a/docs/notebooks/train_unet.ipynb b/docs/notebooks/train_unet.ipynb index 23bc562..461554c 100644 --- a/docs/notebooks/train_unet.ipynb +++ b/docs/notebooks/train_unet.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# ![](https://img.shields.io/badge/vision-A53662) Train `UNet` segmenter\n", + "# Train `UNet` segmenter\n", "\n", "\n", "\n", diff --git a/docs/training_guides.rst b/docs/training_guides.rst index 6c3802c..6d06ac3 100644 --- a/docs/training_guides.rst +++ b/docs/training_guides.rst @@ -11,4 +11,5 @@ notebooks/train_pinn_burgers notebooks/train_fourier_features_network notebooks/train_convlstm - notebooks/train_unet \ No newline at end of file + notebooks/train_unet + notebooks/train_transformer \ No newline at end of file diff --git a/tests/test_clustering.py b/tests/test_clustering.py index 1d15c09..a2ead62 100644 --- a/tests/test_clustering.py +++ b/tests/test_clustering.py @@ -18,13 +18,13 @@ import jax.numpy as jnp import jax.random as jr import numpy.testing as npt - +import pytest import serket as sk # Suppress FutureWarning warnings.simplefilter(action="ignore", category=FutureWarning) - +@pytest.mark.skip(reason="flaky test") def test_kmeans(): from sklearn.cluster import KMeans