From 3fcf63ede78486d5012c719accf203ff07178e8c Mon Sep 17 00:00:00 2001 From: ASEM000 Date: Sat, 15 Jul 2023 19:58:06 +0900 Subject: [PATCH] remove experimental features --- serket/experimental/__init__.py | 4 - serket/experimental/lazy_class.py | 195 ------------------------- serket/experimental/test_lazy_class.py | 56 ------- serket/nn/recurrent.py | 1 - 4 files changed, 256 deletions(-) delete mode 100644 serket/experimental/lazy_class.py delete mode 100644 serket/experimental/test_lazy_class.py diff --git a/serket/experimental/__init__.py b/serket/experimental/__init__.py index 87a58e4..afa43b8 100644 --- a/serket/experimental/__init__.py +++ b/serket/experimental/__init__.py @@ -11,7 +11,3 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - -from .lazy_class import lazy_class - -__all__ = ["lazy_class"] diff --git a/serket/experimental/lazy_class.py b/serket/experimental/lazy_class.py deleted file mode 100644 index 30dccf0..0000000 --- a/serket/experimental/lazy_class.py +++ /dev/null @@ -1,195 +0,0 @@ -# Copyright 2023 Serket authors -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# https://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import annotations - -import functools as ft -import inspect -from typing import Any, Callable, TypeVar - -import jax.tree_util as jtu -from jax.core import concrete_or_error -from pytreeclass._src.tree_base import _mutable_context - -T = TypeVar("T") - - -class Lazy: - def __repr__(self): - return "Lazy" - - -LAZY = Lazy() - -LAZY_KW = "_lazy_init" -_lazy_init_registry: dict[int, Callable] = {} - - -class LazyPartial(ft.partial): - def __call__(self, *args, **keywords) -> Callable: - # https://stackoverflow.com/a/7811270 - keywords = {**self.keywords, **keywords} - iargs = iter(args) - args = (next(iargs) if arg is LAZY else arg for arg in self.args) # type: ignore - return self.func(*args, *iargs, **keywords) - - -def is_lazy(x: Any) -> bool: - return id(x) in _lazy_init_registry - - -def get_lazy_init_entry(id: Any) -> Callable: - return _lazy_init_registry.get(id, None) - - -def lazy_class( - klass: type[T], - *, - is_lazy: Callable[[str, Any], bool], - infer_func: Callable, - hook_name: str = "__call__", -) -> type[T]: - """a decorator that allows for lazy initialization of a class by wrapping the init method - to allow for partialization of the lazy arguments, and wrapping the call method to allow for - inference of the lazy arguments at call time. - - Args: - klass: the class to wrap - is_lazy: a function that takes the name of the argument and the value of the argument and - returns True if the argument is lazy - infer_func: the function that is applied to the input of `infer_method` to infer the lazy arguments - should return a tuple of the same length as `lazy_keywords` - hook_name: the method name in which `infer_func` is applied to infer the lazy arguments - """ - # in essence we are trying to infer some value from the input of the call method to fully initialize the class - # till then, we store the partialized init function and call it in the call method once we have - # the input to infer the lazy arguments. However, this apporach must respect the jax transformations, so we - # make sure that the initialized class does not undergo any transformations before the the class is fully - # initialized. This is done by checking that the input to the call method is not a Tracer. - - init_sig = inspect.signature(klass.__init__) - params = list(init_sig.parameters.values())[1:] # skip self - - def lazy_init(init_func: Callable) -> Callable: - @ft.wraps(init_func) - def wrapper(self, *args, **kwargs): - margs, mkwargs = list(), dict() - - for i, param in enumerate(params): - # mask args and kwargs for partialization of the init function - name, default, kind = param.name, param.default, param.kind - - if kind == param.POSITIONAL_ONLY: - value = args[i] if len(args) > i else default - margs += [LAZY] if is_lazy(name, value) else [value] - elif kind == param.POSITIONAL_OR_KEYWORD and len(args) > i: - value = args[i] if len(args) > i else kwargs.get(name, default) - margs += [LAZY] if is_lazy(name, value) else [value] - else: - value = kwargs.get(name, default) - mkwargs[name] = LAZY if is_lazy(name, value) else value - - if LAZY in margs or LAZY in mkwargs.values(): - for key in self._fields: - # temporarily populate missing fields to the instance to - # avoid AttributeError: Uninitialized fields - vars(self)[key] = LAZY - - partial_init = LazyPartial(init_func, self, *margs, **mkwargs) - _lazy_init_registry[id(self)] = partial_init - return - - return init_func(self, *args, **kwargs) - - return wrapper - - def lazy_call(call_func): - @ft.wraps(call_func) - def wrapper(self, *args, **kwargs): - if id(self) not in _lazy_init_registry: - return call_func(self, *args, **kwargs) - - msg = ( - f"Using Tracers as input to a lazy layer is not supported. " - "Use non-Tracer input to initialize the layer.\n" - "This error can occur if jax transformations are applied to a layer before " - "calling it with a non Tracer input.\n" - "Example: \n" - ">>> # This will fail\n" - ">>> x = jax.numpy.ones(...)\n" - f">>> layer = {type(self).__name__}(None, ...)\n" - ">>> layer = jax.jit(layer)\n" - ">>> layer(x) \n" - ">>> # Instead, first initialize the layer with a non Tracer input\n" - ">>> # and then apply jax transformations\n" - f">>> layer = {type(self).__name__}(None, ...)\n" - ">>> layer(x) # dry run to initialize the layer\n" - ">>> layer = jax.jit(layer)\n" - ) - - # per: https://github.com/google/jax/issues/15625 - # prevent jax transformations from being applied to the layer - # before the layer is fully initialized, otherwise tracer leaks will occur - jtu.tree_map(lambda arg: concrete_or_error(None, arg, msg), (args, kwargs)) - - # we are lazy, so we can call the original call function - # we are forwarded from the init method, so we need - # to infer the lazy arguments and call the init method - # the self input here is the self path - partial_func = _lazy_init_registry.pop(id(self)) - - # get the inferred arguments - output = infer_func(self, *args, **kwargs) - - # in essence, we need to decide how to merge the output with the masked args and kwargs - fargs, fkwargs = partial_func.args, partial_func.keywords - lazy_args = [None for arg in fargs if arg is LAZY] - lazy_kwargs = {k: None for k in fkwargs if fkwargs[k] is LAZY} - - keys = list(lazy_kwargs.keys()) - - for i, item in enumerate(output): - # the output of infer func should be a tuple for each lazy arg - # merge the output with the masked args and kwargs - if i < len(lazy_args): - lazy_args[i] = item # handle args first - - elif (index := i - len(lazy_args)) < len(keys): - lazy_kwargs[keys[index]] = item # handle kwargs next - - with _mutable_context(self): - # since we are calling the init method, we need to be within the mutable context - # to allow the init method to mutate the instance - partial_func(*lazy_args, **lazy_kwargs) - return call_func(self, *args, **kwargs) - - return wrapper - - for name, wrapper in (("__init__", lazy_init), (hook_name, lazy_call)): - setattr(klass, name, wrapper(getattr(klass, name))) - - return klass - - -class LazyInFeatures: - """A lazy layer that infers the in_features argument from the input shape at call time""" - - def __init_subclass__(klass: type[T]) -> None: - super().__init_subclass__() - lazy_class( - klass, - hook_name="__call__", - infer_func=lambda _, x, *a, **k: (x.shape[0],), - is_lazy=lambda name, value: (name == "in_features" and value is None), - ) diff --git a/serket/experimental/test_lazy_class.py b/serket/experimental/test_lazy_class.py deleted file mode 100644 index 9d32ad5..0000000 --- a/serket/experimental/test_lazy_class.py +++ /dev/null @@ -1,56 +0,0 @@ -# Copyright 2023 Serket authors -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# https://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import functools as ft - -import jax -import jax.numpy as jnp -import pytest - -import serket as sk -from serket.experimental import lazy_class - - -def test_lazy_class(): - @ft.partial( - lazy_class, - lazy_keywords=["in_features"], # -> `in_features` is lazy evaluated - infer_func=lambda self, x: (x.shape[-1],), - infer_method_name="__call__", # -> `infer_func` is applied to `__call__` method - lazy_marker=None, # -> `None` is used to indicate a lazy argument - ) - class LazyLinear(sk.TreeClass): - weight: jax.Array - bias: jax.Array - - def __init__(self, in_features: int, out_features: int): - self.in_features = in_features - self.out_features = out_features - self.weight = jax.random.normal( - jax.random.PRNGKey(0), (in_features, out_features) - ) - self.bias = jax.random.normal(jax.random.PRNGKey(0), (out_features,)) - - def __call__(self, x): - return x @ self.weight + self.bias - - layer = LazyLinear(None, 20) - x = jnp.ones([10, 1]) - - assert layer(x).shape == (10, 20) - - layer = LazyLinear(None, 20) - - with pytest.raises(ValueError): - jax.vmap(layer)(jnp.ones([10, 1, 1])) diff --git a/serket/nn/recurrent.py b/serket/nn/recurrent.py index f662405..84832a9 100644 --- a/serket/nn/recurrent.py +++ b/serket/nn/recurrent.py @@ -977,7 +977,6 @@ def __init__( backward_cell: RNNCell | None = None, *, return_sequences: bool = False, - return_state: bool = False, ): if not isinstance(cell, RNNCell): raise TypeError(f"Expected {cell=} to be an instance of RNNCell.")