forked from PaddlePaddle/PaddleMIX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_images.py
214 lines (203 loc) · 7.2 KB
/
generate_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import random
import paddle
import pandas as pd
from paddle.utils.download import get_path_from_url
from paddlenlp.transformers import CLIPTextModel
from tqdm.auto import tqdm
from ppdiffusers import (
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from ppdiffusers.utils import DOWNLOAD_SERVER, PPDIFFUSERS_CACHE
base_url = DOWNLOAD_SERVER + "/CompVis/data/"
cache_path = os.path.join(PPDIFFUSERS_CACHE, "data")
def batchify(data, batch_size=16):
one_batch = []
for example in data:
one_batch.append(example)
if len(one_batch) == batch_size:
yield one_batch
one_batch = []
if one_batch:
yield one_batch
def generate_images(
unet_model_name_or_path,
text_encoder_model_name_or_path=None,
batch_size=16,
file="coco30k.csv",
save_path="output",
seed=42,
scheduler_type="ddim",
eta=0.0,
num_inference_steps=50,
guidance_scales=[3, 4, 5, 6, 7, 8],
height=256,
width=256,
device="gpu",
variant="bf16",
):
paddle.set_device(device)
if variant == "fp32":
variant = None
unet = UNet2DConditionModel.from_pretrained(unet_model_name_or_path, variant=variant)
kwargs = {"safety_checker": None, "unet": unet}
if text_encoder_model_name_or_path is not None:
text_encoder = CLIPTextModel.from_pretrained(text_encoder_model_name_or_path, variant=variant)
kwargs["text_encoder"] = text_encoder
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", **kwargs)
pipe.set_progress_bar_config(disable=True)
beta_start = pipe.scheduler.beta_start
beta_end = pipe.scheduler.beta_end
if scheduler_type == "pndm":
scheduler = PNDMScheduler(
beta_start=beta_start,
beta_end=beta_end,
beta_schedule="scaled_linear",
set_alpha_to_one=False,
steps_offset=1,
# Make sure the scheduler compatible with PNDM
skip_prk_steps=True,
)
elif scheduler_type == "lms":
scheduler = LMSDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear")
elif scheduler_type == "euler-ancestral":
scheduler = EulerAncestralDiscreteScheduler(
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear"
)
elif scheduler_type == "ddim":
scheduler = DDIMScheduler(
beta_start=beta_start,
beta_end=beta_end,
beta_schedule="scaled_linear",
# Make sure the scheduler compatible with DDIM
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
else:
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
pipe.scheduler = scheduler
# read file
df = pd.read_csv(file, sep="\t")
all_prompt = df["caption_en"].tolist()
for cfg in guidance_scales:
new_save_path = os.path.join(save_path, f"mscoco.en_g{cfg}")
os.makedirs(new_save_path, exist_ok=True)
if seed is not None and seed > 0:
seed = seed + int(float(cfg))
random.seed(seed)
i = 0
for batch_prompt in tqdm(batchify(all_prompt, batch_size=batch_size)):
sd = random.randint(0, 2**32)
paddle.seed(sd)
images = pipe(
batch_prompt,
guidance_scale=float(cfg),
eta=eta,
height=height,
width=width,
num_inference_steps=num_inference_steps,
)[0]
for image in images:
path = os.path.join(new_save_path, "{:05d}_000.png".format(i))
image.save(path)
i += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--unet_model_name_or_path",
default=None,
type=str,
required=True,
help="unet_model_name_or_path.",
)
parser.add_argument(
"--text_encoder_model_name_or_path",
default=None,
type=str,
help="text_encoder_model_name_or_path.",
)
parser.add_argument(
"--file",
default="coco30k",
type=str,
help="eval file.",
)
parser.add_argument(
"--variant",
default="fp32",
type=str,
choices=["fp32", "bf16"],
help="eval file.",
)
parser.add_argument(
"--seed",
default=42,
type=int,
help="random seed.",
)
parser.add_argument(
"--scheduler_type",
default="ddim",
type=str,
choices=["ddim", "lms", "pndm", "euler-ancest"],
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler-ancest']",
)
parser.add_argument("--device", default="gpu", type=str, help="device")
parser.add_argument("--batch_size", default=16, type=int, help="batch_size")
parser.add_argument("--num_inference_steps", default=50, type=int, help="num_inference_steps")
parser.add_argument("--save_path", default="outputs", type=str, help="Path to the output file.")
parser.add_argument(
"--guidance_scales",
default=[1.5, 2, 3, 4, 5, 6, 7, 8],
nargs="+",
type=str,
help="guidance_scales list.",
)
parser.add_argument("--height", default=256, type=int, help="height.")
parser.add_argument("--width", default=256, type=int, help="width.")
args = parser.parse_args()
print("----------- Configuration Arguments -----------")
for arg, value in sorted(vars(args).items()):
print("%s: %s" % (arg, value))
print("------------------------------------------------")
if not os.path.exists(args.file):
if args.file.replace(".tsv", "") in ["coco1k", "coco10k", "coco30k"]:
file = args.file.replace(".tsv", "")
args.file = get_path_from_url(base_url + file + ".tsv", cache_path)
else:
raise FileNotFoundError(f"{args.file} file doesn't exist!")
generate_images(
unet_model_name_or_path=args.unet_model_name_or_path,
text_encoder_model_name_or_path=args.text_encoder_model_name_or_path,
batch_size=args.batch_size,
file=args.file,
save_path=args.save_path,
seed=args.seed,
guidance_scales=args.guidance_scales,
num_inference_steps=args.num_inference_steps,
scheduler_type=args.scheduler_type,
height=args.height,
width=args.width,
device=args.device,
variant=args.variant,
)