forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yml
134 lines (133 loc) · 5.1 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
Collections:
- Name: VIG
Metadata:
Training Data: ImageNet-1k
Architecture:
- Vision GNN
Paper:
Title: 'Vision GNN: An Image is Worth Graph of Nodes'
URL: https://arxiv.org/abs/2206.00272
README: configs/vig/README.md
Code:
URL: null
Version: null
Models:
- Name: vig-tiny_3rdparty_in1k
Metadata:
FLOPs: 1309000000
Parameters: 7185000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 74.40
Top 5 Accuracy: 92.34
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/vig-tiny_3rdparty_in1k_20230117-6414c684.pth
Config: configs/vig/vig-tiny_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/vig/vig_ti_74.5.pth
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch
- Name: vig-small_3rdparty_in1k
Metadata:
FLOPs: 4535000000
Parameters: 22748000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 80.61
Top 5 Accuracy: 95.28
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/vig-small_3rdparty_in1k_20230117-5338bf3b.pth
Config: configs/vig/vig-small_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/vig/vig_s_80.6.pth
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch
- Name: vig-base_3rdparty_in1k
Metadata:
FLOPs: 17681000000
Parameters: 20685000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 82.62
Top 5 Accuracy: 96.04
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/vig-base_3rdparty_in1k_20230117-92f6f12f.pth
Config: configs/vig/vig-base_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/vig/vig_b_82.6.pth
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch
- Name: pvig-tiny_3rdparty_in1k
Metadata:
FLOPs: 1714000000
Parameters: 9458000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.38
Top 5 Accuracy: 94.38
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/pvig-tiny_3rdparty_in1k_20230117-eb77347d.pth
Config: configs/vig/pvig-tiny_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/pyramid-vig/pvig_ti_78.5.pth.tar
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch
- Name: pvig-small_3rdparty_in1k
Metadata:
FLOPs: 4572000000
Parameters: 29024000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 82.00
Top 5 Accuracy: 95.97
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/pvig-small_3rdparty_in1k_20230117-9433dc96.pth
Config: configs/vig/pvig-small_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/pyramid-vig/pvig_s_82.1.pth.tar
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch
- Name: pvig-medium_3rdparty_in1k
Metadata:
FLOPs: 8886000000
Parameters: 51682000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.12
Top 5 Accuracy: 96.35
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/pvig-medium_3rdparty_in1k_20230117-21057a6d.pth
Config: configs/vig/pvig-medium_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/pyramid-vig/pvig_m_83.1.pth.tar
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch
- Name: pvig-base_3rdparty_in1k
Metadata:
FLOPs: 16861000000
Parameters: 95213000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.59
Top 5 Accuracy: 96.52
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/pvig-base_3rdparty_in1k_20230117-dbab3c85.pth
Config: configs/vig/pvig-base_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/pyramid-vig/pvig_b_83.66.pth.tar
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch