diff --git a/configs/_base_/datasets/flickr30k_caption.py b/configs/_base_/datasets/flickr30k_caption.py new file mode 100644 index 00000000000..a902b5291f1 --- /dev/null +++ b/configs/_base_/datasets/flickr30k_caption.py @@ -0,0 +1,92 @@ +# data settings + +data_preprocessor = dict( + type='MultiModalDataPreprocessor', + mean=[122.770938, 116.7460125, 104.09373615], + std=[68.5005327, 66.6321579, 70.32316305], + to_rgb=True, +) + +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='RandomResizedCrop', + scale=384, + interpolation='bicubic', + backend='pillow'), + dict(type='RandomFlip', prob=0.5, direction='horizontal'), + dict(type='CleanCaption', keys='gt_caption'), + dict( + type='PackInputs', + algorithm_keys=['gt_caption'], + meta_keys=['image_id'], + ), +] + +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='Resize', + scale=(384, 384), + interpolation='bicubic', + backend='pillow'), + dict(type='PackInputs', meta_keys=['image_id']), +] + +train_dataloader = dict( + batch_size=32, + num_workers=5, + dataset=dict( + type='Flickr30kCaption', + data_root='data/flickr30k', + ann_file='annotations/dataset_flickr30k.json', + data_prefix='images', + split='train', + pipeline=train_pipeline), + sampler=dict(type='DefaultSampler', shuffle=True), + persistent_workers=True, + drop_last=True, +) + +val_dataloader = dict( + batch_size=16, + num_workers=5, + dataset=dict( + type='Flickr30kCaption', + data_root='data/flickr30k', + ann_file='annotations/dataset_flickr30k.json', + data_prefix='images', + split='val', + pipeline=test_pipeline, + ), + sampler=dict(type='DefaultSampler', shuffle=False), + persistent_workers=True, +) + +# refer tools/dataset_converters/convert_flickr30k_ann.py +val_evaluator = dict( + type='COCOCaption', + ann_file='data/flickr30k_val_gt.json', +) + +# # If you want standard test, please manually configure the test dataset +test_dataloader = dict( + batch_size=16, + num_workers=5, + dataset=dict( + type='Flickr30kCaption', + data_root='data/flickr30k', + ann_file='annotations/dataset_flickr30k.json', + data_prefix='images', + split='test', + pipeline=test_pipeline, + ), + sampler=dict(type='DefaultSampler', shuffle=False), + persistent_workers=True, +) + +# refer tools/dataset_converters/convert_flickr30k_ann.py +test_evaluator = dict( + type='COCOCaption', + ann_file='data/flickr30k_test_gt.json', +) diff --git a/configs/_base_/datasets/flickr30k_retrieval.py b/configs/_base_/datasets/flickr30k_retrieval.py new file mode 100644 index 00000000000..acbc645b922 --- /dev/null +++ b/configs/_base_/datasets/flickr30k_retrieval.py @@ -0,0 +1,112 @@ +# data settings +data_preprocessor = dict( + type='MultiModalDataPreprocessor', + mean=[122.770938, 116.7460125, 104.09373615], + std=[68.5005327, 66.6321579, 70.32316305], + to_rgb=True, +) + +rand_increasing_policies = [ + dict(type='AutoContrast'), + dict(type='Equalize'), + dict(type='Rotate', magnitude_key='angle', magnitude_range=(0, 30)), + dict( + type='Brightness', magnitude_key='magnitude', + magnitude_range=(0, 0.0)), + dict(type='Sharpness', magnitude_key='magnitude', magnitude_range=(0, 0)), + dict( + type='Shear', + magnitude_key='magnitude', + magnitude_range=(0, 0.3), + direction='horizontal'), + dict( + type='Shear', + magnitude_key='magnitude', + magnitude_range=(0, 0.3), + direction='vertical'), +] + +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='RandomResizedCrop', + scale=384, + crop_ratio_range=(0.5, 1.0), + interpolation='bicubic'), + dict(type='RandomFlip', prob=0.5, direction='horizontal'), + dict( + type='RandAugment', + policies=rand_increasing_policies, + num_policies=2, + magnitude_level=5), + dict(type='CleanCaption', keys='text'), + dict( + type='PackInputs', + algorithm_keys=['text', 'is_matched'], + meta_keys=['image_id']), +] + +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='Resize', + scale=(384, 384), + interpolation='bicubic', + backend='pillow'), + dict(type='CleanCaption', keys='text'), + dict( + type='PackInputs', + algorithm_keys=['text', 'gt_text_id', 'gt_image_id'], + meta_keys=['image_id']), +] + +train_dataloader = dict( + batch_size=32, + num_workers=16, + dataset=dict( + type='Flickr30kRetrieval', + data_root='data/flickr30k', + ann_file='annotations/dataset_flickr30k.json', + data_prefix='images', + split='train', + pipeline=train_pipeline), + sampler=dict(type='DefaultSampler', shuffle=True), + persistent_workers=True, + drop_last=True, +) + +val_dataloader = dict( + batch_size=64, + num_workers=16, + dataset=dict( + type='Flickr30kRetrieval', + data_root='data/flickr30k', + ann_file='annotations/dataset_flickr30k.json', + data_prefix='images', + split='val', + pipeline=test_pipeline, + test_mode=True, # This is required for evaluation + ), + sampler=dict(type='SequentialSampler', subsample_type='sequential'), + persistent_workers=True, +) + +val_evaluator = dict(type='RetrievalRecall', topk=(1, 5, 10)) + +# If you want standard test, please manually configure the test dataset +test_dataloader = dict( + batch_size=64, + num_workers=16, + dataset=dict( + type='Flickr30kRetrieval', + data_root='data/flickr30k', + ann_file='annotations/dataset_flickr30k.json', + data_prefix='images', + split='test', + pipeline=test_pipeline, + test_mode=True, # This is required for evaluation + ), + sampler=dict(type='SequentialSampler', subsample_type='sequential'), + persistent_workers=True, +) +test_evaluator = val_evaluator diff --git a/configs/blip/README.md b/configs/blip/README.md index c64a1bdc56e..d1ec3df0850 100644 --- a/configs/blip/README.md +++ b/configs/blip/README.md @@ -52,6 +52,12 @@ python tools/test.py configs/blip/blip-base_8xb32_caption.py https://download.op | :----------------------------- | :--------: | :---: | :----: | :-----------------------------------: | :--------------------------------------------------------------------------------------------------------------: | | `blip-base_3rdparty_caption`\* | 223.97 | 14.69 | 109.12 | [config](./blip-base_8xb32_nocaps.py) | [model](https://download.openmmlab.com/mmclassification/v1/blip/blip-base_3rdparty_coco-caption_20230419-a5b71af3.pth) | +### Image Caption on Flickr30k + +| Model | Params (M) | SPICE | CIDER | Config | Download | +| :----------------------------- | :--------: | :---: | :---: | :----------------------------------------------: | :----------------------------------------------------------------------------------------------------: | +| `blip-base_3rdparty_caption`\* | 223.97 | 15.58 | 68.89 | [config](./blip-base_8xb32_caption_flickr30k.py) | [model](https://download.openmmlab.com/mmclassification/v1/blip/blip-base_3rdparty_coco-caption_20230419-a5b71af3.pth) | + ### Visual Grounding on RefCOCO | Model | Params (M) | Accuracy (testA) | Accuracy (testB) | Config | Download | @@ -88,6 +94,18 @@ python tools/test.py configs/blip/blip-base_8xb32_caption.py https://download.op | :------------------------------- | :--------: | :------: | :------: | :--------------------------------------: | :----------------------------------------------------------------------------------------------------: | | `blip-base_3rdparty_retrieval`\* | 447.49 | 64.82 | 86.28 | [config](./blip-base_8xb32_retrieval.py) | [model](https://download.openmmlab.com/mmclassification/v1/blip/blip-base_3rdparty_coco-retrieval_20230419-a1804d2c.pth) | +### Image-To-Text Retrieval on Flickr30k + +| Model | Params (M) | Recall@1 | Recall@5 | Config | Download | +| :------------------------------- | :--------: | :------: | :------: | :------------------------------------------------: | :------------------------------------------------------------------------------------------: | +| `blip-base_3rdparty_retrieval`\* | 447.49 | 95.10# | 99.60# | [config](./blip-base_8xb32_retrieval_flickr30k.py) | [model](https://download.openmmlab.com/mmclassification/v1/blip/blip-base_3rdparty_coco-retrieval_20230419-a1804d2c.pth) | + +### Text-To-Image Retrieval on Flickr30k + +| Model | Params (M) | Recall@1 | Recall@5 | Config | Download | +| :------------------------------- | :--------: | :------: | :------: | :------------------------------------------------: | :------------------------------------------------------------------------------------------: | +| `blip-base_3rdparty_retrieval`\* | 447.49 | 85.26# | 96.58# | [config](./blip-base_8xb32_retrieval_flickr30k.py) | [model](https://download.openmmlab.com/mmclassification/v1/blip/blip-base_3rdparty_coco-retrieval_20230419-a1804d2c.pth) | + ### NLVR on NLVR2 | Model | Params (M) | Top-1 (%) | Config | Download | diff --git a/configs/blip/blip-base_8xb32_caption_flickr30k.py b/configs/blip/blip-base_8xb32_caption_flickr30k.py new file mode 100644 index 00000000000..9fe6ec561d6 --- /dev/null +++ b/configs/blip/blip-base_8xb32_caption_flickr30k.py @@ -0,0 +1,59 @@ +_base_ = [ + '../_base_/datasets/flickr30k_caption.py', + '../_base_/default_runtime.py', +] + +# model settings +model = dict( + type='BlipCaption', + vision_encoder=dict( + type='VisionTransformer', + arch='b', + img_size=384, + patch_size=16, + out_type='raw', + ), + tokenizer=dict(type='BlipTokenizer', name_or_path='bert-base-uncased'), + decoder_head=dict( + type='SeqGenerationHead', + decoder=dict( + type='XBertLMHeadDecoder', + med_config=dict( + architectures=['BertModel'], + attention_probs_dropout_prob=0.1, + hidden_act='gelu', + hidden_dropout_prob=0.1, + hidden_size=768, + initializer_range=0.02, + intermediate_size=3072, + layer_norm_eps=1e-12, + max_position_embeddings=512, + model_type='bert', + num_attention_heads=12, + num_hidden_layers=12, + pad_token_id=0, + add_type_embeddings=False, + vocab_size=30524, + encoder_width=768, + add_cross_attention=True), + ), + ), + prompt='a picture of ', + max_txt_len=20, +) + +# schedule settings +optim_wrapper = dict(optimizer=dict(type='AdamW', lr=1e-5, weight_decay=0.05)) + +param_scheduler = [ + dict( + type='CosineAnnealingLR', + by_epoch=True, + begin=0, + end=10, + ) +] + +train_cfg = dict(max_epochs=10) +val_cfg = dict() +test_cfg = dict() diff --git a/configs/blip/blip-base_8xb32_retrieval_flickr30k.py b/configs/blip/blip-base_8xb32_retrieval_flickr30k.py new file mode 100644 index 00000000000..0d2e78e9431 --- /dev/null +++ b/configs/blip/blip-base_8xb32_retrieval_flickr30k.py @@ -0,0 +1,83 @@ +_base_ = [ + '../_base_/datasets/flickr30k_retrieval.py', + '../_base_/default_runtime.py', +] + +# model settings +model = dict( + type='BlipRetrieval', + tokenizer=dict(type='BlipTokenizer', name_or_path='bert-base-uncased'), + vision_backbone=dict( + type='VisionTransformer', + arch='b', + img_size=384, + patch_size=16, + out_type='raw', + ), + text_backbone=dict( + type='XBertEncoder', + med_config=dict( + architectures=['BertModel'], + attention_probs_dropout_prob=0.1, + hidden_act='gelu', + hidden_dropout_prob=0.1, + hidden_size=768, + initializer_range=0.02, + intermediate_size=3072, + layer_norm_eps=1e-12, + max_position_embeddings=512, + model_type='bert', + num_attention_heads=12, + num_hidden_layers=12, + pad_token_id=0, + add_type_embeddings=False, + vocab_size=30524, + encoder_width=768, + add_cross_attention=True), + ), + vision_neck=dict( + type='Linear', + in_features=768, + out_features=256, + ), + text_neck=dict( + type='Linear', + in_features=768, + out_features=256, + ), + head=dict( + type='ITCHead', + embed_dim=256, + ), + multimodal_head=dict( + type='ITMHead', + hidden_size=768, + with_pooler=False, + ), + topk=256, + max_txt_len=35, +) + +# optimizer +optimizer = dict(type='AdamW', lr=2e-5, weight_decay=0.04) +optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer) + +# learning rate scheduler +param_scheduler = [dict(type='CosineAnnealingLR', by_epoch=True)] + +# runtime settings +train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=6) +val_cfg = dict(type='RetrievalValLoop') +test_cfg = dict(type='RetrievalTestLoop') + +randomness = dict(seed=42) + +default_hooks = dict(logger=dict(interval=1)) + +custom_hooks = [ + dict( + type='WarmupParamHook', + param_name='alpha', + module_name='head', + warmup_epochs=2) +] diff --git a/mmpretrain/datasets/__init__.py b/mmpretrain/datasets/__init__.py index dd522325a2f..b7b6be47dce 100644 --- a/mmpretrain/datasets/__init__.py +++ b/mmpretrain/datasets/__init__.py @@ -38,6 +38,8 @@ from .coco_retrieval import COCORetrieval from .coco_vqa import COCOVQA from .flamingo import FlamingoEvalCOCOCaption, FlamingoEvalCOCOVQA + from .flickr30k_caption import Flickr30kCaption + from .flickr30k_retrieval import Flickr30kRetrieval from .gqa_dataset import GQA from .nocaps import NoCaps from .ocr_vqa import OCRVQA @@ -50,6 +52,7 @@ __all__.extend([ 'COCOCaption', 'COCORetrieval', 'COCOVQA', 'FlamingoEvalCOCOCaption', - 'FlamingoEvalCOCOVQA', 'OCRVQA', 'RefCOCO', 'VisualGenomeQA', - 'ScienceQA', 'NoCaps', 'GQA', 'TextVQA', 'VSR', 'VizWiz' + 'FlamingoEvalCOCOVQA', 'Flickr30kCaption', 'Flickr30kRetrieval', + 'RefCOCO', 'VisualGenomeQA', 'ScienceQA', 'NoCaps', 'GQA', 'TextVQA', + 'VSR', 'VizWiz', 'OCRVQA' ]) diff --git a/mmpretrain/datasets/flickr30k_caption.py b/mmpretrain/datasets/flickr30k_caption.py new file mode 100644 index 00000000000..f0f6841a2c8 --- /dev/null +++ b/mmpretrain/datasets/flickr30k_caption.py @@ -0,0 +1,77 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from typing import List + +import mmengine +from mmengine.dataset import BaseDataset +from mmengine.fileio import get_file_backend + +from mmpretrain.registry import DATASETS + + +@DATASETS.register_module() +class Flickr30kCaption(BaseDataset): + """Flickr30k Caption dataset. To generate coco-style GT annotation for + evaluation, please refer to + tools/dataset_converters/convert_flickr30k_ann.py. + + Args: + data_root (str): The root directory for ``data_prefix``, ``ann_file`` + and ``question_file``. + data_prefix (str): The directory of images. + ann_file (str): Annotation file path for training and validation. + split (str): 'train', 'val' or 'test'. + **kwargs: Other keyword arguments in :class:`BaseDataset`. + """ + + def __init__(self, data_root: str, data_prefix: str, ann_file: str, + split: str, **kwarg): + + assert split in ['train', 'val', 'test'], \ + '`split` must be train, val or test' + self.split = split + super().__init__( + data_root=data_root, + data_prefix=dict(img_path=data_prefix), + ann_file=ann_file, + **kwarg, + ) + + def load_data_list(self) -> List[dict]: + """Load data list.""" + img_prefix = self.data_prefix['img_path'] + annotations = mmengine.load(self.ann_file) + file_backend = get_file_backend(img_prefix) + + data_list = [] + + for img in annotations['images']: + + # img_example={ + # "sentids": [0, 1, 2], + # "imgid": 0, + # "sentences": [ + # {"raw": "Two men in green shirts standing in a yard.", + # "imgid": 0, "sentid": 0}, + # {"raw": "A man in a blue shirt standing in a garden.", + # "imgid": 0, "sentid": 1}, + # {"raw": "Two friends enjoy time spent together.", + # "imgid": 0, "sentid": 2} + # ], + # "split": "train", + # "filename": "1000092795.jpg" + # }, + + if img['split'] != self.split: + continue + + for sentence in img['sentences']: + data_info = { + 'image_id': img['imgid'], + 'img_path': file_backend.join_path(img_prefix, + img['filename']), + 'gt_caption': sentence['raw'] + } + + data_list.append(data_info) + + return data_list diff --git a/mmpretrain/datasets/flickr30k_retrieval.py b/mmpretrain/datasets/flickr30k_retrieval.py new file mode 100644 index 00000000000..9f43c151b20 --- /dev/null +++ b/mmpretrain/datasets/flickr30k_retrieval.py @@ -0,0 +1,110 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from collections import OrderedDict +from typing import List + +import mmengine +from mmengine import get_file_backend + +from mmpretrain.registry import DATASETS +from .base_dataset import BaseDataset + + +@DATASETS.register_module() +class Flickr30kRetrieval(BaseDataset): + """Flickr30k Retrieval dataset. + + Args: + data_root (str): The root directory for ``data_prefix``, ``ann_file`` + and ``question_file``. + data_prefix (str): The directory of images. + ann_file (str): Annotation file path for training and validation. + split (str): 'train', 'val' or 'test'. + **kwargs: Other keyword arguments in :class:`BaseDataset`. + """ + + def __init__(self, data_root: str, data_prefix: str, ann_file: str, + split: str, **kwarg): + + assert split in ['train', 'val', 'test'], \ + '`split` must be train, val or test' + self.split = split + super().__init__( + data_root=data_root, + data_prefix=dict(img_path=data_prefix), + ann_file=ann_file, + **kwarg, + ) + + def load_data_list(self) -> List[dict]: + """Load data list.""" + # get file backend + img_prefix = self.data_prefix['img_path'] + file_backend = get_file_backend(img_prefix) + + annotations = mmengine.load(self.ann_file) + + # mapping img_id to img filename + img_dict = OrderedDict() + img_idx = 0 + sentence_idx = 0 + train_list = [] + for img in annotations['images']: + + # img_example={ + # "sentids": [0, 1, 2], + # "imgid": 0, + # "sentences": [ + # {"raw": "Two men in green shirts standing in a yard.", + # "imgid": 0, "sentid": 0}, + # {"raw": "A man in a blue shirt standing in a garden.", + # "imgid": 0, "sentid": 1}, + # {"raw": "Two friends enjoy time spent together.", + # "imgid": 0, "sentid": 2} + # ], + # "split": "train", + # "filename": "1000092795.jpg" + # }, + + if img['split'] != self.split: + continue + + # create new idx for image + train_image = dict( + ori_id=img['imgid'], + image_id=img_idx, # used for evaluation + img_path=file_backend.join_path(img_prefix, img['filename']), + text=[], + gt_text_id=[], + gt_image_id=[], + ) + + for sentence in img['sentences']: + ann = {} + ann['text'] = sentence['raw'] + ann['ori_id'] = sentence['sentid'] + ann['text_id'] = sentence_idx # used for evaluation + + ann['image_ori_id'] = train_image['ori_id'] + ann['image_id'] = train_image['image_id'] + ann['img_path'] = train_image['img_path'] + ann['is_matched'] = True + + # 1. prepare train data list item + train_list.append(ann) + # 2. prepare eval data list item based on img dict + train_image['text'].append(ann['text']) + train_image['gt_text_id'].append(ann['text_id']) + train_image['gt_image_id'].append(ann['image_id']) + + sentence_idx += 1 + + img_dict[img['imgid']] = train_image + img_idx += 1 + + self.img_size = len(img_dict) + self.text_size = len(train_list) + + # return needed format data list + if self.test_mode: + return list(img_dict.values()) + return train_list diff --git a/tools/dataset_converters/convert_flickr30k_ann.py b/tools/dataset_converters/convert_flickr30k_ann.py new file mode 100644 index 00000000000..eebd079b115 --- /dev/null +++ b/tools/dataset_converters/convert_flickr30k_ann.py @@ -0,0 +1,56 @@ +# Copyright (c) OpenMMLab. All rights reserved. +"""Create COCO-Style GT annotations based on raw annotation of Flickr30k. + +GT annotations are used for evaluation in image caption task. +""" + +import json + + +def main(): + with open('dataset_flickr30k.json', 'r') as f: + annotations = json.load(f) + ann_list = [] + img_list = [] + splits = ['train', 'val', 'test'] + for split in splits: + for img in annotations['images']: + + # img_example={ + # "sentids": [0, 1, 2], + # "imgid": 0, + # "sentences": [ + # {"raw": "Two men in green shirts standing in a yard.", + # "imgid": 0, "sentid": 0}, + # {"raw": "A man in a blue shirt standing in a garden.", + # "imgid": 0, "sentid": 1}, + # {"raw": "Two friends enjoy time spent together.", + # "imgid": 0, "sentid": 2} + # ], + # "split": "train", + # "filename": "1000092795.jpg" + # }, + + if img['split'] != split: + continue + + img_list.append({'id': img['imgid']}) + + for sentence in img['sentences']: + ann_info = { + 'image_id': img['imgid'], + 'id': sentence['sentid'], + 'caption': sentence['raw'] + } + ann_list.append(ann_info) + + json_file = {'annotations': ann_list, 'images': img_list} + + # generate flickr30k_train_gt.json, flickr30k_val_gt.json + # and flickr30k_test_gt.json + with open(f'flickr30k_{split}_gt.json', 'w') as f: + json.dump(json_file, f) + + +if __name__ == '__main__': + main()