-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path09_other.Rmd
543 lines (433 loc) · 17.1 KB
/
09_other.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
---
title: "Bender et al (2024) -- EMBO"
subtitle: Other experiments and analysis
author:
- name: Alexander Bender
affiliation: Institute of Molecular Tumor Biology, Muenster/Germany
date: "`r paste('Compiled:', format(Sys.time(), '%d-%b-%Y'))`"
output:
rmdformats::readthedown:
code_folding: show
keep_md: false
highlight: tango
toc_float:
collapsed: false
editor_options:
markdown:
wrap: 200
params:
save_final: true
run_homer: false
---
<style>
body {
text-align: justify}
</style>
# Setup
Define root directory that contains the folder with source data. Run script that
loads packages and define document-specific variables.
```{r setup}
# Inside this Docker container we mount the directory with all the source data as "/projectdir/"
rootdir <- "/projectdir/"
source(paste0(rootdir, "/runStartup.R"))
```
# shRNA screen validation
Figure 3D
We later removed the boxes, removed the box dodging and jittered the points a bit horizontally since ggplot messed this up but values are the exact same.
ggplot is poor at jjitterdodge together with color AND shaping.
```{r fig3d}
source_3d <-
openxlsx::read.xlsx(paste0(rootdir, "/source_data/Source_Data_Figure_3/source_data_figure_3d.xlsx"), sheet = "Data") %>%
mutate(
cell_line = factor(cell_line, c("Hox-WT", "Hox-URE")),
target = factor(target, c("Vmp1", "Fbxl8")),
shrna = factor(shrna)
)
# ANOVA stats
lapply(unique(source_3d$target), function(x) {
source_3d %>%
filter(target == x) %>%
aov(data = ., formula = percent_survival ~ cell_line + shrna) %>%
broom::tidy() %>%
filter(term == "cell_line") %>%
mutate(target = x)
}) %>%
bind_rows() %>%
mutate(p.value = format(p.value, scientific = TRUE, digits = 1), fdr = format(p.adjust(p.value, "BH"), scientific = TRUE, digits = 1))
Figure_3D <-
source_3d %>%
ggplot(aes(x = target, y = percent_survival, color = cell_line)) +
geom_boxplot(outlier.shape = NA, show.legend = FALSE) +
geom_point(aes(shape = shrna), position = position_jitterdodge(jitter.width = .2, jitter.height = 0, dodge.width = .1, seed = 1)) +
scale_color_manual(values = list.ggplot$genotype_colors)
Figure_3D
```
Appendix Figure S3F
```{r shrna_val2}
lvl_target_full <- c("NTC", "killing control", "Acss2", "Fbxl8", "Vmp1")
lvl_target <- setdiff(lvl_target_full, "NTC")
# Load source data
shrna_validation_data <-
openxlsx::read.xlsx(paste0(rootdir, "/source_data/Source_Data_Supplemental/source_data_figure_appendix_3f.xlsx"), sheet = "Data") %>%
mutate(
day = factor(day, c("day0", "day2", "day7")),
target = factor(target, c("NTC", "killing control", "Acss2", "Fbxl8", "Vmp1"))
)
# Stats via two-way anova testing the interaction of day and target to answer whether decay in survival
# for targets is stronger than for NTC
shrna_validation_stats <- lapply(lvl_target, function(x) {
shrna_validation_data %>%
filter(target %in% c("NTC", x)) %>%
stats::aov(data = ., formula = percent_survival ~ day + target + day:target) %>%
stats::anova(.) %>%
broom::tidy(.) %>%
filter(term == "day:target") %>%
mutate(target = x)
}) %>%
bind_rows() %>%
mutate(fdr = p.adjust(p.value, "BH"))
shrna_validation_stats
# Plot as lines with jittered dots
shrna_validation_data_mean <-
shrna_validation_data %>%
group_by(target, day) %>%
summarize(percent_survival = mean(percent_survival))
# Stats from above were added in Inkscape
Appendix_Figure_S3F <-
shrna_validation_data %>%
ggplot(aes(x = day, y = percent_survival, color = target)) +
geom_point(position = position_jitter(width = .1, height = 0, seed = 11), size = 3) +
geom_line(data = shrna_validation_data_mean, aes(x = day, y = percent_survival, color = target, group = target), inherit.aes = FALSE, show.legend = FALSE) +
scale_color_manual(values = list.ggplot$colorblind_cols[c(1, 3, 5, 6, 7)]) +
scale_y_continuous(limits = c(0, 110), breaks = seq(0, 100, 25)) +
xlab("timepoint") +
ylab("percent survival")
Appendix_Figure_S3F
```
# Venetoclax
Figure 5F
```{r veneto}
venetoclax <- openxlsx::read.xlsx(paste0(rootdir, "/source_data/Source_Data_Figure_5/source_data_figure_5f.xlsx"), sheet = "Data")
# Kaplan-Meier style, showing percent survival relative to DMSO
venetoclax_mod <-
venetoclax %>%
reshape2::melt(variable.name = "timepoint", value.name = "cells_count", measure.vars = grep("^time_", colnames(.), value = TRUE)) %>%
mutate(
timepoint = factor(paste0(gsub("time_", "", timepoint), "h"), c("0h", "24h", "48h", "72h", "96h")),
cell_line = factor(cell_line, c("Hox-WT", "Hox-URE")),
treatment = factor(treatment, c("DMSO", "500nM", "1000nM"))
) %>%
group_by(cell_line, replicate, timepoint) %>%
summarize(percent_survival = 100 * cells_count / cells_count[treatment == "DMSO"], treatment) %>%
filter(!treatment %in% "DMSO")
venetoclax_anova <-
lapply(c("500nM", "1000nM"), function(conc) {
venetoclax_mod %>%
filter(treatment %in% conc) %>%
aov(data = ., formula = percent_survival ~ cell_line + timepoint + cell_line:timepoint) %>%
anova() %>%
broom::tidy(.) %>%
mutate(treatment = conc) %>%
filter(term == "cell_line:timepoint")
}) %>%
bind_rows() %>%
mutate(p.adj = p.adjust(p.value, "BH"))
venetoclax_anova
venetoclax_plotdata <-
venetoclax_mod %>%
group_by(cell_line, timepoint, treatment) %>%
summarize(mean = mean(percent_survival), sd = sd(percent_survival)) %>%
mutate(group = paste(cell_line, treatment)) %>%
left_join(x = ., y = venetoclax_anova, by = "treatment") %>%
mutate(concentration = paste0(treatment, " \n(p.adj = ", round(p.adj, 3), ")\n"))
venetoclax_plotdata$concentration <- factor(
venetoclax_plotdata$concentration,
unique(venetoclax_plotdata$concentration)
)
Figure_5F <-
venetoclax_plotdata %>%
ggplot(aes(x = timepoint, y = mean, color = cell_line, group = group, shape = concentration)) +
geom_line(size = 1) +
geom_point(size = 4, position = position_jitter(width = .1, seed = 1, height = 0)) +
geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd), width = .05, position = position_jitter(width = .1, seed = 1, height = 0)) +
scale_color_manual(name = "cell line", values = list.ggplot$genotype_colors) +
ylab("% survival relative to vehicle") +
scale_y_continuous(limits = c(0, 120), breaks = c(0, 25, 50, 75, 100, 120), labels = c(seq(0, 100, 25), ""))
Figure_5F
```
# dnRunx survival in Hox cells
Figure 7G. The source data is called "source_data_figure_7h.xlsx" - we apparently have some hickup here.
```{r dnrunx}
dnrunx_survival <-
openxlsx::read.xlsx(paste0(rootdir, "/source_data/Source_Data_Figure_7/source_data_figure_7h.xlsx"), sheet = "Data") %>%
mutate(cell_line = factor(cell_line, c("Hox-WT", "Hox-URE")))
dnrunx_survival_anova <- aov(percent_survival ~ cell_line + day, dnrunx_survival)
dnrunx_survival_p <-
broom::tidy(dnrunx_survival_anova) %>%
filter(term == "cell_line") %>%
pull(p.value) %>%
round(., 5)
# The p-value
format(dnrunx_survival_p, scientific = FALSE)
Figure_7G <-
dnrunx_survival %>%
group_by(day, cell_line) %>%
summarize(mean_percent_survival = mean(percent_survival)) %>%
ggplot(aes(x = day, y = mean_percent_survival, color = cell_line, group = cell_line)) +
geom_point(data = dnrunx_survival, aes(x = day, y = percent_survival, color = cell_line), size = 3, position = position_jitter(width = .1, height = 0, seed = 1)) +
ggtitle(paste0("two-way anova: p=", dnrunx_survival_p)) +
xlab("timepoint") +
ylab("% survival\nrelative to empty vector") +
scale_color_manual(values = list.ggplot$genotype_colors, name = "")
Figure_7G
```
# dnRunx in URE-AML
This is Figure 7F, source data is called "source_data_figure_7g.xlsx", again sorry for this hickup during submission.
```{r qpcr_dnrunx}
# Read data and bring to common naming scheme
qpcr_dnrunx_ureaml <-
openxlsx::read.xlsx(paste0(rootdir, "/source_data/Source_Data_Figure_7/source_data_figure_7g.xlsx"), sheet = "Data")
# Stats by ANOVA
qpcr_dnrunx_stats <-
lapply(unique(qpcr_dnrunx_ureaml$target), function(x) {
d <- qpcr_dnrunx_ureaml %>% filter(target == x)
aov(relative_expression ~ sample, d) %>%
broom::tidy(.) %>%
filter(term == "sample") %>%
mutate(target = x) %>%
dplyr::select(target, p.value)
}) %>%
bind_rows() %>%
mutate(fdr = round(p.adjust(p.value, "BH"), 4)) %>%
knitr::kable(.)
qpcr_dnrunx_stats
qpcr_dnrunx_ureaml_mean <- qpcr_dnrunx_ureaml %>%
group_by(target, sample) %>%
summarize(relative_expression = mean(relative_expression))
Figure_7F <-
qpcr_dnrunx_ureaml_mean %>%
ggplot(aes(x = target, y = relative_expression, fill = sample)) +
geom_bar(stat = "identity", position = "dodge") +
geom_point(data = qpcr_dnrunx_ureaml, aes(y = relative_expression), size = 1, position = position_jitterdodge(seed = 1, jitter.width = .1), show.legend = FALSE) +
xlab("") +
ylab("relative expression") +
guides(x = guide_axis(angle = 90)) +
scale_y_continuous(breaks = c(0, .5, 1)) +
theme(legend.position = "top", legend.justification = "left") +
scale_fill_manual(name = "", values = list.ggplot$colorblind_cols[c(5, 6)])
Figure_7F
```
# qPCR in THP-1 cells with PU.1 knockdown
```{r qpcr_thp1}
# Read data and bring to common naming scheme
qpcr_thp1_essential <-
openxlsx::read.xlsx(paste0(rootdir, "/source_data/Source_Data_Figure_4/source_data_figure_4c.xlsx"), sheet = "Data") %>%
mutate(sample = factor(sample, c("PU.1 KD", "NTC")))
# Get stats by ANOVA, testing the dCT ~ "sample" (dnRunx vs control) blocking for "batch"
qpcr_thp1_essential_stats <-
lapply(unique(qpcr_thp1_essential$target), function(x) {
d <- qpcr_thp1_essential %>% filter(target == x)
one.way <- aov(relative_expression ~ sample + round, data = d)
data.frame(target = x, broom::tidy(one.way) %>% filter(term == "sample"))
}) %>%
bind_rows() %>%
mutate(fdr = p.adjust(p.value, "BH")) %>%
arrange(target)
qpcr_thp1_essential_stats
Figure_4C <-
qpcr_thp1_essential %>%
ggplot(aes(x = sample, y = relative_expression)) +
geom_boxplot(outlier.shape = NA) +
geom_point(position = position_jitter(width = .2, seed = 1), size = 1) +
facet_wrap(~target) +
xlab("") +
ylab("relative expression") +
scale_y_continuous(breaks = c(0, .5, 1), limits = c(0, 1))
Figure_4C
```
# Autophagy genes
Figure 5B
```{r autophagyMice}
raw_mice <- read.delim(paste0(rootdir, "/source_data/GSE250622_rnaseq_exVivo_rawCounts.tsv.gz"))
rownames(raw_mice) <- raw_mice$gene
raw_mice$gene <- NULL
cd <- data.frame(group = gsub("_rep.*", "", colnames(raw_mice)), stringsAsFactors = TRUE)
dds_mice_exvivo <- DESeqDataSetFromMatrix(countData = round(raw_mice), colData = cd, design = ~group)
levels(dds_mice_exvivo$group) <- c("WT_LSK", "URE_LSK", "WT_GMP", "URE_GMP")
vsd <- DESeq2::vst(dds_mice_exvivo, blind = FALSE)
p1 <- DESeq2::plotPCA(vsd, "group", returnData = TRUE)
# THis is only to motivate the batch correction
pcaMiceRNA <-
DESeq2::plotPCA(vsd, "group", ntop = 1000) +
scale_color_manual(name = "", values = list.ggplot$colorblind_cols) +
ggrepel::geom_label_repel(aes(label = name), show.legend = FALSE) +
theme(legend.position = "top") +
scale_color_manual(values = list.ggplot$colorblind_cols[c(1, 2, 3, 6)])
pcaMiceRNA
# Correct batch effect rep1/4 and rep2/3 along PC2
dds_mice_exvivo$batch <- "NA"
dds_mice_exvivo$batch[grepl("_rep1$|_rep4$", colnames(dds_mice_exvivo))] <- "batch1"
dds_mice_exvivo$batch[grepl("_rep2$|_rep3$", colnames(dds_mice_exvivo))] <- "batch2"
dds_mice_exvivo$batch <- factor(dds_mice_exvivo$batch)
knitr::kable(colData(dds_mice_exvivo))
assay(dds_mice_exvivo, "vsdCorrected") <- limma::removeBatchEffect(assay(vsd), batch = dds_mice_exvivo$batch)
design(dds_mice_exvivo) <- ~ batch + group
dds_mice_exvivo <- DESeq(dds_mice_exvivo, quiet = TRUE)
auto_genes <- c("Foxo3", "Prkaa2", "Dapk1", "Ulk1", "Ulk2")
# Test against a LFC of 1 -- very stringent!
resMiceRNA_LSK <- DESeq2::results(object = dds_mice_exvivo, contrast = c("group", "URE_LSK", "WT_LSK"), alpha = 0.05, lfcThreshold = log2(1)) %>%
as.data.frame() %>%
rownames_to_column("Gene")
resMiceRNA_GMP <- DESeq2::results(object = dds_mice_exvivo, contrast = c("group", "URE_GMP", "WT_GMP"), alpha = 0.05, lfcThreshold = log2(1)) %>%
as.data.frame() %>%
rownames_to_column("Gene")
Figure_5B <-
data.frame(resMiceRNA_LSK, comparison = "URE vs WT LSK") %>%
mutate(Gene = gsub(".*_", "", Gene)) %>%
filter(Gene %in% auto_genes & log2FoldChange > 0 & padj < 0.05) %>%
mutate(
Gene = factor(Gene, auto_genes),
signif = factor(case_when(
padj < 0.05 ~ "yes",
padj >= 0.05 ~ "no",
is.na(padj) ~ "lowly/not expressed",
TRUE ~ "NA"
),
levels = c("yes", "no", "lowly/not expressed", "NA")
),
comparison = factor(comparison, levels = c("URE vs WT LSK", "URE vs WT GMP", "URE vs WT Hox"))
) %>%
ggplot(aes(x = 2^log2FoldChange, y = fct_rev(Gene), fill = signif)) +
geom_bar(stat = "identity") +
scale_fill_manual(values = "black") +
xlab("fold change") +
ylab("") +
facet_wrap(~comparison, nrow = 1) +
theme(legend.position = "none")
Figure_5B
```
# Western blot
Plot the blot (it's funny, I know...), run t-test for the quantified bands of the n=3.
```{r wb}
source_data_5c <- openxlsx::read.xlsx(
paste0(rootdir, "/source_data/Source_Data_Figure_5/source_Data_figure_5c_values.xlsx"),
sheet = "Data"
) %>%
mutate(cell_line = factor(cell_line, c("Hox-WT", "Hox-URE")))
# Western Blot quantification from the Licor software
Figure_5C <-
source_data_5c %>%
group_by(cell_line) %>%
mutate(mean = mean(value)) %>%
ggplot(aes(x = cell_line, y = mean)) +
geom_bar(stat = "identity", position = "dodge") +
geom_point(aes(y = value)) +
geom_signif(aes(y = value),
test = t.test,
comparisons = list(c("Hox-WT", "Hox-URE")),
map_signif_level = FALSE
) +
xlab("") +
ylab("normalized intensity") +
guides(x = guide_axis(angle = 45)) +
ylim(c(0, 60000))
Figure_5C
```
# Cyto-IDs
Figure 5D
```{r cytoID}
source_data_5d <- openxlsx::read.xlsx(
paste0(rootdir, "/source_data/Source_Data_Figure_5/source_data_figure_5d.xlsx"),
sheet = "Data"
) %>%
mutate(cell_line = factor(cell_line, c("Hox-WT", "Hox-URE")))
Figure_5D <-
source_data_5d %>%
group_by(cell_line) %>%
summarize(normalized_intensity = mean(normalized_intensity)) %>%
ggplot(aes(x = cell_line, y = normalized_intensity)) +
geom_bar(stat = "identity", position = "dodge") +
geom_point(data = source_data_5d) +
geom_signif(
data = source_data_5d,
test = t.test,
comparisons = list(c("Hox-WT", "Hox-URE")),
map_signif_level = FALSE
) +
xlab("") +
ylab("normalized intensity") +
guides(x = guide_axis(angle = 45)) +
ylim(c(0, 120))
Figure_5D
```
Figure 5E
```{r 5e}
source_data_5e <- openxlsx::read.xlsx(
paste0(rootdir, "/source_data/Source_Data_Figure_5/source_data_figure_5e.xlsx"),
sheet = "Data", startRow = 2
) %>%
mutate(cell_line = factor(cell_line, c("Hox-WT", "Hox-URE")))
# Two-way ANOVA p-value
source_data_5e %>%
aov(data = ., formula = mean_fluorescence ~ cell_line + target + cell_line:target) %>%
broom::tidy() %>%
filter(term == "cell_line:target")
Figure_5E <-
source_data_5e %>%
ggplot(aes(x = cell_line, y = mean_fluorescence, color = target)) +
geom_boxplot(outlier.shape = NA, show.legend = FALSE) +
geom_point(position = position_dodge(width = .7), size = 3) +
scale_color_manual(values = c("black", "brown")) +
xlab("") +
ylab("normalized intensity")
Figure_5E
```
# Flt3 reconstitution CytoID
Figure 5G
```{r}
# The Flt3 reconstitution experiment
source_data_5g <- openxlsx::read.xlsx(
paste0(rootdir, "/source_data/Source_Data_Figure_5/source_data_figure_5g.xlsx"),
sheet = "Data"
) %>%
mutate(group = factor(group, c("pMIG-control", "pMIG-Flt3")), biol_rep = factor(biol_rep)) %>%
rename(batch = biol_rep)
# Here is the pvalue, technical replicates averaged and batch as a covariate
source_data_5g %>%
group_by(batch, group) %>%
summarize(mean_fluorescence = mean(mean_fluorescence)) %>%
aov(data = ., formula = mean_fluorescence ~ group + batch) %>%
broom::tidy() %>%
filter(term == "group")
Figure_5G <-
source_data_5g %>%
ggplot(aes(x = group, y = mean_fluorescence)) +
geom_boxplot() +
geom_point(aes(color = batch), position = position_jitter(seed = 1, width = .15), size = 2) +
# we later change the pvalue in inkscape to the one from the anova, the geom_signif is only to draw the horizontal bar
geom_signif(test = t.test, comparisons = list(c("pMIG-control", "pMIG-Flt3")), map_signif_level = TRUE) +
scale_color_manual(values = list.ggplot$colorblind_cols) +
xlab("") +
ylab("normalized intensity") +
ylim(c(0, 70)) +
theme(legend.position = "right") +
guides(x = guide_axis(angle = 45))
Figure_5G
```
# Autophagy upon PU.1 reexpression in Hox-URE
```{r auto_ure}
source_data_5h <- openxlsx::read.xlsx(
paste0(rootdir, "/source_data/Source_Data_Figure_5/source_data_figure_5h.xlsx"),
sheet = "Data"
) %>%
mutate(
treatment = if_else(treatment == "empty vector", "control", treatment),
treatment = factor(treatment, c("PU.1", "control"))
)
Figure_5H <-
source_data_5h %>%
ggplot(aes(x = treatment, y = normalized_intensity)) +
geom_point(position = position_jitter(width = .2, seed = 1)) +
geom_signif(test = t.test, comparisons = list(c("PU.1", "control")), map_signif_level = FALSE)
Figure_5H
```