forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReduceMinMaxKernel.cu
137 lines (121 loc) · 4.98 KB
/
ReduceMinMaxKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cuda/Reduce.cuh>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/SharedReduceOps.h>
#include <ATen/Dispatch.h>
#include <ATen/cuda/NumericLimits.cuh>
#include <THC/THCNumerics.cuh>
#include <ATen/native/ReduceOps.h>
#include<ATen/native/ReduceAllOps.h>
#include <ATen/native/ReduceOpsUtils.h>
#include <ATen/native/TensorCompare.h>
namespace at { namespace native {
template <typename scalar_t, typename acc_t=scalar_t>
void max_values_kernel_cuda_impl(TensorIterator& iter) {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter, func_wrapper<acc_t> ([]GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
return (THCNumerics<acc_t>::isnan(a) || a > b) ? a : b;
}), at::numeric_limits<acc_t>::lower_bound());
}
template <typename scalar_t, typename acc_t=scalar_t>
void min_values_kernel_cuda_impl(TensorIterator& iter) {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter, func_wrapper<acc_t> ([]GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
return (THCNumerics<acc_t>::isnan(a) || a < b) ? a : b;
}), at::numeric_limits<acc_t>::upper_bound());
}
void max_values_kernel_cuda(TensorIterator& iter) {
if (iter.dtype(1) == kHalf) {
max_values_kernel_cuda_impl<at::Half, float>(iter);
} else {
AT_DISPATCH_ALL_TYPES(iter.dtype(), "max_values_cuda", [&]() {
max_values_kernel_cuda_impl<scalar_t>(iter);
});
}
}
void min_values_kernel_cuda(TensorIterator& iter) {
if (iter.dtype(1) == kHalf) {
min_values_kernel_cuda_impl<at::Half, float>(iter);
} else {
AT_DISPATCH_ALL_TYPES(iter.dtype(), "min_values_cuda", [&]() {
min_values_kernel_cuda_impl<scalar_t>(iter);
});
}
}
template <typename scalar_t, typename acc_t=scalar_t>
void argmax_kernel_cuda_impl(TensorIterator& iter) {
gpu_reduce_kernel<scalar_t, int64_t>(
iter,
ArgMaxOps<acc_t>{},
thrust::pair<acc_t, int64_t>(at::numeric_limits<acc_t>::lower_bound(), 0));
};
template <typename scalar_t, typename acc_t=scalar_t>
void argmin_kernel_cuda_impl(TensorIterator& iter) {
gpu_reduce_kernel<scalar_t, int64_t>(
iter,
ArgMinOps<acc_t>{},
thrust::pair<acc_t, int64_t>(at::numeric_limits<acc_t>::upper_bound(), 0));
};
void argmax_kernel_cuda(TensorIterator& iter) {
if (iter.dtype(1) == kHalf) {
// Instead of implementing is_nan and warp_shfl_down
// we can convert halves to float and do all the operations in float
argmax_kernel_cuda_impl<at::Half, float>(iter);
} else {
AT_DISPATCH_ALL_TYPES(iter.dtype(1), "argmax_cuda", [&]() {
argmax_kernel_cuda_impl<scalar_t>(iter);
});
}
}
void argmin_kernel_cuda(TensorIterator& iter) {
if (iter.dtype(1) == kHalf) {
// Instead of implementing is_nan and warp_shfl_down
// we can convert halves to float and do all the operations in float
argmin_kernel_cuda_impl<at::Half, float>(iter);
} else {
AT_DISPATCH_ALL_TYPES(iter.dtype(1), "argmin_cuda", [&]() {
argmin_kernel_cuda_impl<scalar_t>(iter);
});
}
}
static void min_kernel_impl(Tensor& result, Tensor& indice, const Tensor& self, int64_t dim, bool keepdim) {
at::TensorIterator iter = make_reduction("min", result, indice, self, dim, keepdim, self.scalar_type(), kLong);
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBool, iter.dtype(2), "min_cuda", [&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MinOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(at::numeric_limits<scalar_t>::upper_bound(), 0));
});
}
static void max_kernel_impl(Tensor& result, Tensor& indice, const Tensor& self, int64_t dim, bool keepdim) {
at::TensorIterator iter = make_reduction("max", result, indice, self, dim, keepdim, self.scalar_type(), kLong);
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBool, iter.dtype(2), "max_cuda", [&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MaxOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(at::numeric_limits<scalar_t>::lower_bound(), 0));
});
}
static void min_all_kernel_impl(Tensor& result, const Tensor& input) {
auto dtype = input.scalar_type();
auto iter = make_reduction("min_all", result, input, std::vector<int64_t>{}, false, dtype);
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBool, dtype, "min_all_cuda", [&] {
min_values_kernel_cuda_impl<scalar_t>(iter);
});
}
static void max_all_kernel_impl(Tensor& result, const Tensor& input) {
auto dtype = input.scalar_type();
auto iter = make_reduction("min_all", result, input, std::vector<int64_t>{}, false, dtype);
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBool, dtype, "max_all_cuda", [&] {
max_values_kernel_cuda_impl<scalar_t>(iter);
});
}
REGISTER_DISPATCH(max_values_stub, &max_values_kernel_cuda);
REGISTER_DISPATCH(min_values_stub, &min_values_kernel_cuda);
REGISTER_DISPATCH(argmax_stub, &argmax_kernel_cuda);
REGISTER_DISPATCH(argmin_stub, &argmin_kernel_cuda);
REGISTER_DISPATCH(min_stub, &min_kernel_impl);
REGISTER_DISPATCH(max_stub, &max_kernel_impl);
REGISTER_DISPATCH(min_all_stub, &min_all_kernel_impl);
REGISTER_DISPATCH(max_all_stub, &max_all_kernel_impl);
}} // namespace at::native