forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit.cpp
182 lines (158 loc) · 5.7 KB
/
init.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#include <torch/csrc/python_headers.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <ATen/autocast_mode.h>
#include <torch/csrc/autograd/profiler.h>
#include <torch/csrc/autograd/python_function.h>
#include <torch/csrc/autograd/function.h>
PyObject* THPAutograd_initExtension(PyObject* _unused, PyObject *unused) {
using namespace torch::autograd::profiler;
auto tensor_module = THPObjectPtr(PyImport_ImportModule("torch.tensor"));
if (!tensor_module)
throw python_error();
// NOTE: "leaks" THPVariableClass
THPVariableClass = PyObject_GetAttrString(tensor_module, "Tensor");
if (!THPVariableClass)
throw python_error();
auto autograd_module = THPObjectPtr(PyImport_ImportModule("torch.autograd"));
if (!autograd_module)
throw python_error();
// NOTE: "leaks" Function
THPFunctionClass = PyObject_GetAttrString(autograd_module, "Function");
if (!THPFunctionClass)
throw python_error();
auto m = py::handle(autograd_module).cast<py::module>();
py::enum_<ProfilerState>(m, "ProfilerState")
.value("Disabled", ProfilerState::Disabled)
.value("CPU", ProfilerState::CPU)
.value("CUDA", ProfilerState::CUDA)
.value("NVTX", ProfilerState::NVTX);
py::class_<ProfilerConfig>(m, "ProfilerConfig")
.def(py::init<ProfilerState, bool, bool>());
py::class_<Event>(m, "ProfilerEvent")
.def("kind", &Event::kind)
.def("name", [](const Event& e) { return e.name(); })
.def("thread_id", &Event::thread_id)
.def("device", &Event::device)
.def("cpu_elapsed_us", &Event::cpu_elapsed_us)
.def("cuda_elapsed_us", &Event::cuda_elapsed_us)
.def("has_cuda", &Event::has_cuda)
.def("shapes", &Event::shapes)
.def("cpu_memory_usage", &Event::cpu_memory_usage)
.def("cuda_memory_usage", &Event::cuda_memory_usage)
.def("handle", &Event::handle)
.def("node_id", &Event::node_id)
.def("is_remote", &Event::isRemote)
.def("sequence_nr", &Event::sequence_nr);
m.def("_enable_profiler", enableProfiler);
m.def("_disable_profiler", disableProfiler);
m.def("_profiler_enabled", profilerEnabled);
m.def("_enable_record_function", [](bool enable) {
at::enableRecordFunction(enable);
});
m.def("_set_empty_test_observer", [](bool is_global, double sampling_prob) {
auto cb = at::RecordFunctionCallback(
[](const at::RecordFunction&) {},
[](const at::RecordFunction&) {})
.needsInputs(true)
.samplingProb(sampling_prob);
if (is_global) {
at::addGlobalCallback(cb);
} else {
at::addThreadLocalCallback(cb);
}
});
m.def("_clear_callbacks", []() {
at::clearCallbacks();
});
Py_RETURN_TRUE;
}
namespace torch { namespace autograd {
static PyObject * set_autocast_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (!PyBool_Check(arg)) {
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
}
at::autocast::set_enabled(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * is_autocast_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (at::autocast::is_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject * clear_autocast_cache(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
at::autocast::clear_cache();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * autocast_increment_nesting(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
return THPUtils_packInt64(at::autocast::increment_nesting());
END_HANDLE_TH_ERRORS
}
static PyObject * autocast_decrement_nesting(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
return THPUtils_packInt64(at::autocast::decrement_nesting());
END_HANDLE_TH_ERRORS
}
static PyObject * set_grad_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (!PyBool_Check(arg)) {
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
}
GradMode::set_enabled(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * is_grad_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (GradMode::is_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject * set_anomaly_mode_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (!PyBool_Check(arg)) {
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
}
AnomalyMode::set_enabled(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * is_anomaly_mode_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (AnomalyMode::is_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
// autograd methods on torch._C
static PyMethodDef methods[] = { // NOLINT
{"set_grad_enabled", (PyCFunction)set_grad_enabled, METH_O, nullptr},
{"is_grad_enabled", (PyCFunction)is_grad_enabled, METH_NOARGS, nullptr},
{"set_autocast_enabled", (PyCFunction)set_autocast_enabled, METH_O, nullptr},
{"is_autocast_enabled", (PyCFunction)is_autocast_enabled, METH_NOARGS, nullptr},
{"clear_autocast_cache", (PyCFunction)clear_autocast_cache, METH_NOARGS, nullptr},
{"autocast_increment_nesting", (PyCFunction)autocast_increment_nesting, METH_NOARGS, nullptr},
{"autocast_decrement_nesting", (PyCFunction)autocast_decrement_nesting, METH_NOARGS, nullptr},
{"set_anomaly_enabled", (PyCFunction)set_anomaly_mode_enabled, METH_O, nullptr},
{"is_anomaly_enabled", (PyCFunction)is_anomaly_mode_enabled, METH_NOARGS, nullptr},
{nullptr, nullptr, 0, nullptr}
};
PyMethodDef* python_functions() {
return methods;
}
}} // namespace torch::autograd