-
Notifications
You must be signed in to change notification settings - Fork 0
/
params.yaml
59 lines (44 loc) · 1.73 KB
/
params.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
data_ingestion:
test_size: 0.20
data_url: './data/Stock Market Dataset.csv'
data_visualization:
file_path: "./data/transformed_data.csv" # Update with the actual path
stock_names: # List of stock names for which you want to visualize distribution and scatter plots
- "Apple"
- "Tesla"
- "Microsoft"
- "Google"
correlation_pairs: # List of stock pairs or one stock vs list of others to analyze correlation
- ["Apple", "Tesla"]
- ["Google", "Microsoft"]
- ["Apple", "Google", "Tesla"] # Apple vs Google and Tesla
feature_engineering:
file_path: './data/transformed_data.csv' # Path to the raw data CSV file
output_path: './data/engineered_data.csv' # Path to save the engineered data CSV file
missing_value_method: 'fill_mean' # Method to handle missing values: 'drop', 'fill_mean', or 'fill_median'
lags: [1, 2, 3] # List of lags for creating lag features
windows: [5, 10] # List of windows for creating rolling statistics
# Windows for rolling statistics
model_building:
data_file: 'data/engineered_data.csv'
save_path: './data'
model_name: 'RandomForestRegressor'
hyperparameters:
n_estimators: 100
max_depth: 10
random_state: 42
model_path: 'models/stock_price_model.pkl'
predictions_file: 'predictions/stock_price_predictions.csv'
test_size: 0.2
model_evaluation:
X_test_path: './data/X_test.csv'
y_test_path: './data/y_test.csv'
X_train_path: './data/X_train.csv'
y_train_path: './data/y_train.csv'
model_path: './models/stock_price_model.pkl'
prediction:
stock_name: 'Bitcoin'
prediction_period: 30 # Number of days to predict
model_path: 'models/stock_price_model.pkl'
output_file: 'predictions/apple_predictions.csv'
X_test_path: './data/X_test.csv'