-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRobotVision.py
executable file
·414 lines (360 loc) · 15.1 KB
/
RobotVision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# import the necessary packages
from collections import deque
from itertools import islice as slice
import numpy as np
import argparse
import cv2
import time
from scipy.interpolate import *
import pandas as pd
from statsmodels.tsa.seasonal import seasonal_decompose
from matplotlib import pyplot as plt
from matplotlib import style
import os
TRANS_ACC = deque(maxlen=10) # Accumulated transforms
class RobotVision():
def __init__(self):
style.use('fivethirtyeight')
self.X_er = 0
self.Y_er = 0
self.X_des = 0
self.Y_des = 0
self.X_pred = 0
self.Y_pred = 0
self.X_traj = 0
self.Y_traj = 0
self.contour = False
## This Code tracks the trajectory based on a polynomial regression
## Custom Functions:
def Get_Traj(self,X,Y, samp, order, Time_vec, pred_len):
x_tr = np.empty((0,1))
y_tr = np.empty((0,1))
X1 = X[-samp:]
Y1= Y[-samp:]
t = np.arange(0,len(X1))
X_Tr_dat, Y_Tr_dat, Time_vec_fin = self.Traj_decompose(X1, Y1, t)
X_Seasonal = X_Tr_dat.seasonal.reshape( (len(X_Tr_dat.seasonal), 1) )
Y_Seasonal = Y_Tr_dat.seasonal.reshape( (len(Y_Tr_dat.seasonal), 1) )
X_Trend = X1 - X_Seasonal
Y_Trend = Y1 - Y_Seasonal
X_resid = X_Tr_dat.resid
Y_resid = Y_Tr_dat.resid
t1 =np.arange(0, pred_len)
t1 = np.array(t1) +t[-1]
f1 = np.polyfit(t, X_Trend, order)
f2 = np.polyfit(t, Y_Trend, order)
f_x = np.polyval(f1, t1)
f_y = np.polyval(f2, t1)
X_Sc = np.array(X_Seasonal[-pred_len:])
Y_Sc = np.array(Y_Seasonal[-pred_len:])
x_tr = np.array(f_x).reshape( (len(f_x), 1) )
y_tr = np.array(f_y).reshape( (len(f_y), 1) )
Sum_X = X_Sc + x_tr
Sum_Y = Y_Sc + y_tr
# print('\n Size of x_sum: ' + repr(np.shape(Sum_X)))
# print('\n Size of y_sum: ' + repr(np.shape(Sum_Y)))
# print(np.array([time.time(), X_las, Y_las]))
return Sum_X, Sum_Y
def Traj_mismatch(self,X_Current, Y_Current, P_X, P_Y):
x_pred = P_X[0]
y_pred = P_Y[0]
x_sq_err = pow(x_pred-X_Current,2)
y_sq_err = pow(y_pred-Y_Current,2)
P_X = P_X[-(len(P_X) - 1) :]
P_Y = P_Y[-(len(P_Y) - 1) :]
err = pow(x_sq_err+y_sq_err, 0.5)
if err <= 20:
return True, err, P_X, P_Y
else:
return False, err, P_X, P_Y
def Traj_decompose(self,X_Current, Y_Current, Time_set):
Tr_l = min(len(X_Current),len(Y_Current))
X_Current = X_Current[-Tr_l:]
Y_Current = Y_Current[-Tr_l:]
Time_set_fin = Time_set[-Tr_l:]
X_Set = seasonal_decompose(X_Current, model='additive', freq = 2)
Y_Set = seasonal_decompose(Y_Current, model='additive', freq = 2)
return X_Set, Y_Set, Time_set_fin
def main(self):
x_sh = 0
y_sh = 0
X_old = 0
Y_old = 0
X_older = 0
Y_older = 0
ct = 0
c = 0
t = 0
dt = 0
net_err = 0
X_traj = np.empty((0,1))
Y_traj = np.empty((0,1))
X_traj_sh = np.empty((0,1))
Y_traj_sh = np.empty((0,1))
Time_Vec = np.empty((0,1))
tim = np.empty((0,1))
X_pr = np.array([])
Y_pr = np.array([])
X_Trend = np.empty((0,1))
Y_Trend = np.empty((0,1))
x_sh = 0
y_sh = 0
x_netsh = 0
y_netsh = 0
X_las = None
Y_las = None
file = open('Image Threshold','r')
line = file.read()
try:
thresh = np.int_(line.strip('[]').rstrip('\n').rstrip(' ').rstrip(']').split(','))
except:
thresh = np.int_(line.strip('[]').rstrip('\n').rstrip(' ').rstrip(']').split())
threshLower = np.array(thresh[0:3])
threshUpper = np.array(thresh[3:6])
Traj_hist = deque()
try:
pts = deque(maxlen=args["buffer"])
except:
pts = deque()
traj = deque(maxlen=30)
# Plotting Parameters
thickness = 3
## Regression Parameters
Tr_len= 6 #35
Pred_len = 6 #15
poly_ord = 1
# Should you track ?
tr_fl = False
min_Tr_len = Tr_len/3
## Decomposition
X_T = pd.Series()
Y_T = pd.Series()
# pts = deque(maxlen=args["buffer"])
camera = cv2.VideoCapture(1)
if camera.isOpened() == False: # check if VideoCapture object was associated to webcam successfully
print "error: camera not accessed successfully\n\n" # if not, print error message to std out
os.system("pause") # pause until user presses a key so user can see error message
# end if
cv2.namedWindow('Frame')
cv2.namedWindow('Mask')
# cv2.startWindowThread()
stabilizer=VidStabilizer()
# _,prev = camera.read()
first = 1
while ((cv2.getWindowProperty('Frame', 0) != -1) or (cv2.getWindowProperty('Mask', 0) != -1)) and cv2.waitKey(1) & 0xFF != ord("q") and camera.isOpened():
# grab the current frame
grabbed, frame = camera.read()
# resize the frame, blur it, and convert it to the HSV
# color space
#frame = imutils.resize(frame, width=600)
# blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
height, width, channels = frame.shape
im_x = width/2
im_y = height/2
ma_ln=5
cv2.line(frame, (im_x-ma_ln,im_y-ma_ln), (im_x+ma_ln,im_y+ma_ln), (0,0,255),4)
cv2.line(frame, (im_x+ma_ln,im_y-ma_ln), (im_x-ma_ln,im_y+ma_ln), (0,0,255),4)
# construct a mask for the color "green", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, threshLower, threshUpper)
mask = cv2.erode(mask, None, iterations=3)
mask = cv2.dilate(mask, None, iterations=5)
if first==1:
prev = mask
first = 2
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
ct = 0
cen2 = None
if len(cnts) is 0:
pts.clear()
traj.clear()
ct = 0
cen2 = None
X_las = None
Y_las = None
X_old = 0
Y_old = 0
X_older = 0
Y_older = 0
X_off = 0
Y_off = 0
net_err = 0
X_traj = np.empty((0,1))
Y_traj = np.empty((0,1))
X_traj_sh = np.empty((0,1))
Y_traj_sh = np.empty((0,1))
Time_Vec = np.empty((0,1))
X_Trend = np.empty((0,1))
Y_Trend = np.empty((0,1))
Traj_hist = None
X_pr = np.empty((0,1))
Y_pr = np.empty((0,1))
x_sh = 0
y_sh = 0
x_netsh = 0
y_netsh = 0
tim = None
tr_fl = False
# Did not detect any contours, then set error to 0
self.contour = False
self.X_er = 0
self.Y_er = 0
# only proceed if at least one contour was found
t0 = time.time()
if len(cnts) > 0:
self.contour = True
c = max(cnts, key=cv2.contourArea)
#for c in cnts:
(x,y,w,h) = cv2.boundingRect(c)
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2)
X_des = x+(w/2)
Y_des = y+(h/2)
cen = (X_des, Y_des)
m_r=1
cv2.circle(frame,cen, m_r, (0,255,0), -1)
#pts.appendleft(cen)
# loop over the set of tracked points
pts.appendleft(cen)
#for i in xrange(1, len(pts)):
# if pts[i] is not None:
# cv2.line(frame, pts[i - 1], pts[i], (0,255, 0), thickness)
#cv2.line(frame, pts[i - 1], pts[i], (0,255, 0), thickness)
if X_des is not None and Y_des is not None:
t = time.time() - t0
Time_Vec = np.vstack([Time_Vec, t])
if len(X_traj) > 2:
X_old = X_traj[len(X_traj)-1]
Y_old = Y_traj[len(Y_traj)-1]
X_older = X_traj[len(X_traj)-2]
Y_older = Y_traj[len(Y_traj)-2]
x_sh= X_old-X_older
y_sh= Y_old-Y_older
x_netsh= x_netsh + x_sh
y_netsh= y_netsh + y_sh
X_off= X_des + x_netsh
Y_off= Y_des + y_netsh
X_traj = np.vstack( [X_traj, X_des] )
Y_traj = np.vstack( [Y_traj, Y_des] )
X_traj_sh = np.vstack( [X_traj_sh, X_off] )
Y_traj_sh = np.vstack( [Y_traj_sh, Y_off] )
if len(X_traj) > Tr_len:
#print(' Acquiring trajectory...')
if tr_fl is False:
#X_pr, Y_pr = self.Get_Traj(X_traj_sh,Y_traj_sh, Tr_len, poly_ord, Time_Vec, Pred_len)
X_pr, Y_pr = self.Get_Traj(X_traj,Y_traj, Tr_len, poly_ord, Time_Vec, Pred_len)
#print(' Trajectory acquired.')
for c in np.arange(1,len(X_traj_sh)):
#cv2.line(frame, (int(X_traj_sh[c - 1]), int(Y_traj_sh[c - 1])), (int(X_traj_sh[c]), int(Y_traj_sh[c])), (0,255, 0), thickness)
cv2.line(frame, (int(X_traj[c - 1]), int(Y_traj[c - 1])), (int(X_traj[c]), int(Y_traj[c])), (0,255, 0), thickness)
#cv2.line(frame, (int(X_traj_sh[len(X_traj_sh)-1]), int(Y_traj_sh[len(Y_traj_sh)-1])), (int(X_pr[0]), int(Y_pr[0])), (0,0, 255), thickness)
cv2.line(frame, (int(X_traj[len(X_traj)-1]), int(Y_traj[len(Y_traj)-1])), (int(X_pr[0]), int(Y_pr[0])), (0,0, 255), thickness)
for c in np.arange(1,len(X_pr)):
cv2.line(frame, (int(X_pr[c - 1]), int(Y_pr[c - 1])), (int(X_pr[c]), int(Y_pr[c])), (0,0, 255), thickness)
tr_fl = False
self.X_er = X_des - im_x
self.Y_er = Y_des - im_y
self.X_des = X_des
self.Y_des = Y_des
try:
self.X_pred = float(X_pr[0])
self.Y_pred = float(Y_pr[0])
except:
self.X_pred = 0
self.Y_pred = 0
try:
self.X_hist = float(X_traj[len(X_traj)])
self.Y_hist = float(Y_traj[len(Y_traj)])
except:
self.X_hist = 0
self.Y_hist = 0
# print(self.X_er,self.Y_er)
# Stabilize the video
#frame = stabilizer.stabilize(prev,mask,frame)
#prev = mask
dt = time.time()-t
try:
# show the frame to our screen
if(cv2.getWindowProperty('Frame', 0) != -1) or (cv2.getWindowProperty('Mask', 0) !=-1):
cv2.imshow("Frame", frame)
cv2.imshow("Mask", mask)
else:
print('No frames')
break
except:
break
print("Releasing camera")
# cleanup the camera and close any open windows
camera.release()
plt.close()
self.__del__()
def __del__(self):
cv2.destroyAllWindows()
print('Exiting RobotVision!')
def getError(self):
er = [self.X_er,self.Y_er,self.contour]
# print er
return np.array(er)
def getObjPos(self):
pos = [self.X_des,self.Y_des,self.contour]
# print pos
return np.array(pos)
def getPredTraj(self):
pos = [self.X_pred,self.Y_pred,self.contour]
# print pos
return np.array(pos)
def getTrajHist(self):
pos = [self.X_traj,self.Y_traj,self.contour]
# print pos
return np.array(pos)
class VidStabilizer():
def stabilize(self,old, frame,color_frame):
# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 100,qualityLevel = 0.3,minDistance = 7,blockSize = 7 )
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
hsv = np.zeros_like(frame)
# prev = cv2.cvtColor(old, cv2.COLOR_BGR2GRAY)
prev = old
p0 = cv2.goodFeaturesToTrack(prev, mask = None, **feature_params)
# next = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
next = frame
# d = np.ones(3)*4e-3
# n = np.ones(3)*0.25
try:
# calculate optical flow
p1,st,_ = cv2.calcOpticalFlowPyrLK(prev, next, p0, None, **lk_params)
# Select good points
good_new = p1[st==1]
good_old = p0[st==1]
# print 'Good points old :-\n',good_old
# print 'Good points new :-\n',good_new
# Get transformation matrix from the optical flow
transform = cv2.findHomography(good_old,good_new)
TRANS_ACC.append(transform[0])
len_trans = len(TRANS_ACC)
# print len_trans,'\n\n'
# print deque(slice(TRANS_ACC,1, len_trans))
# value1 = deque(slice(TRANS_ACC,1, len_trans))-deque(slice(TRANS_ACC,0, len_trans-1))
TRANS_DIFF = deque(slice(TRANS_ACC,1, len_trans))-deque(slice(TRANS_ACC,0, len_trans-1)) if len_trans>2 else np.zeros(shape=(3,3)) if len_trans==1 else TRANS_ACC[1]-TRANS_ACC[0]
transform_mean = sum(TRANS_ACC)/len_trans
#print transform_mean
except:
transform = np.eye(3) #np.zeros(shape=(3,3))
#print('<4 Good points found')
try:
result=cv2.warpPerspective(color_frame,transform_mean, (frame.shape[1],frame.shape[0]))
except Exception as e:
#print('wrap failed due to <4 Good points found. No worries')
result = color_frame
return result
if __name__=='__main__':
vision = RobotVision()
vision.main()