-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdreamer_agent.py
467 lines (352 loc) · 15.4 KB
/
dreamer_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import sys
import time
import argparse
import copy
import os
import numpy as np
import torch
from donkeycar.parts.network import MQTTValuePub, MQTTValueSub
sys.path.insert(1, "/u/95/zhaoy13/unix/ICRA/donkeycar-dreamer")
sys.path.insert(1, "/home/ari/Documents/donkeycar-dreamer")
sys.path.insert(1, "/u/70/viitala1/unix/Documents/Dippa/donkeycar-dreamer")
sys.path.insert(1, "/home/pi/Documents/donkeycar-dreamer")
from agent import Dreamer
import torch
# import wandb
parser = argparse.ArgumentParser()
parser.add_argument("--car_name", help="Name of the car on MQTT-server", default="dreamer")
parser.add_argument("--episode_steps", help="Number of steps per episode", default=1000, type=int)
parser.add_argument("--episodes", help="Number of steps episodes per run", default=100, type=int)
parser.add_argument("--encoder_update", help="Type of encoder to be used", default="aesac")
parser.add_argument("--total_steps", help="Max steps for a run", default=20000, type=int)
parser.add_argument("--runs", help="How many runs to do", default=10, type=int)
parser.add_argument("--load_model", help="Load pretrained model", default="")
parser.add_argument("--save_model", help="File name to save model", default="")
args = parser.parse_args()
if args.save_model and not os.path.isdir("./models"):
os.mkdir("./models")
MODEL_PATH = f"./models/{args.save_model}.pth"
LOAD_MODEL = args.load_model
SAVE_MODEL = args.save_model
# DONKEY_NAME = args.car_name
TRAINING_TIMEOUT = 400
BLOCK_SIZE = 300
class AttrDict(dict):
__setattr__ = dict.__setitem__
__getattr__ = dict.__getitem__
def define_config():
config = AttrDict()
# parameter for dreamer
config.car_name = "dreamer"
config.episodes_steps = 1000
config.episodes = 1000
config.belief_size = 200
config.state_size = 30
config.hidden_size = 300
config.embedding_size = 1024
config.observation_size = (1, 40, 40)
config.action_size = 2
config.device = "cuda" if torch.cuda.is_available() else "cpu"
config.testing_device = "cpu"
config.symbolic = False
config.dense_act = 'elu'
config.cnn_act = 'relu'
config.pcont_scale = 5
config.reward_scale = 5
config.world_lr = 6e-4
config.actor_lr = 8e-5
config.value_lr = 8e-5
config.free_nats = 3
config.experience_size = 300000
config.bit_depth = 5
config.discount = 0.99
config.disclam = 0.95
config.planning_horizon = 15
config.batch_size = 50
config.chunk_size = 50
config.grad_clip_norm = 100.0
config.expl_amount = 0.3 # action noise
# for action constrains
config.throttle_base = 0.6 # fixed throttle base
config.throttle_min = 0.3
config.throttle_max = 0.9
config.angle_min = -1
config.angle_max = 1
# I didn't limit the max steering_diff yet
config.max_steering_diff = 0.25 # Not be used
config.step_length = 0.1
# add prefill episodes
config.prefill_episodes = 5
config.random_episodes = 6
config.gradient_steps = 100
config.skip_initial_steps = 20
config.block_size = 300
config.max_episodes_steps = config.episodes_steps + config.skip_initial_steps
# set up for experiments
config.pcont = True # whether to use a learned pcont
config.with_logprob = True # whether to use the soft actor-critic
config.fix_speed = True # whether to use fixed speed, fixed speed equals to throttle_base
config.auto_temp = False # whether to use fixed speed, fixed speed equals to throttle_base
config.temp = 0.03 # entropy temperature
return config
class RL_Agent():
def __init__(self, alg_type, sim, car_name=args.car_name):
self.config = define_config()
self.agent = Dreamer(self.config)
self.sim = sim
self.image = np.zeros((120, 160, 3))
# self.observation = torch.zeros((1, 1, 40, 40)) # init observation, with batch dim
self.observation = torch.zeros((1, 3, 40, 40)) # init observation, with batch dim
self.belief = torch.zeros(1, self.config.belief_size, device=self.config.device)
self.posterior_state = torch.zeros(1, self.config.state_size, device=self.config.device)
self.action = torch.zeros(1, self.config.action_size, device=self.config.device)
# self.act_history = torch.zeros(1, self.config.action_size*3, device=self.config.device)
self.speed = 0
self.step = 0
self.episode = 0
self.episode_reward = 0
self.replay_buffer = []
self.target_speed = 0
self.steering = 0
self.training = False
self.step_start = 0
self.buffers_sent = False
self.replay_buffer_pub = MQTTValuePub(car_name + "buffer", broker="mqtt.eclipse.org")
self.replay_buffer_sub = MQTTValueSub(car_name + "buffer", broker="mqtt.eclipse.org", def_value=(0, True))
self.replay_buffer_received_pub = MQTTValuePub(car_name + "buffer_received", broker="mqtt.eclipse.org")
self.replay_buffer_received_sub = MQTTValueSub(car_name + "buffer_received", broker="mqtt.eclipse.org", def_value=0)
self.param_pub = MQTTValuePub(car_name + "param", broker="mqtt.eclipse.org")
self.param_sub = MQTTValueSub(car_name + "param", broker="mqtt.eclipse.org")
self.t = 0
def reset(self, image):
self.episode += 1
self.episode_reward = 0
self.replay_buffer = []
self.target_speed = 0
self.steering = 0
# self.command_history = np.zeros(3*COMMAND_HISTORY_LENGTH)
# self.state = np.vstack([image for x in range(FRAME_STACK)])
self.belief = torch.zeros(1, self.config.belief_size, device=self.config.device)
self.posterior_state = torch.zeros(1, self.config.state_size, device=self.config.device)
self.action = torch.zeros(1, self.config.action_size, device=self.config.device)
# self.act_history = torch.zeros(1, self.config.action_size*3, device=self.config.device)
self.buffer_sent = False
self.buffer_received = False
self.params_sent = False
self.params_received = False
def train(self):
# print(f"Training for {int(time.time() - self.training_start)} seconds")
if (time.time() - self.training_start) > TRAINING_TIMEOUT:
"""Temporary fix for when sometimes the replay buffer fails to send"""
self.training_start = time.time()
self.buffers_sent = 0
self.replay_buffer_pub.run((0, False))
return False
if len(self.replay_buffer) > 0:
buffers_received = self.replay_buffer_received_sub.run()
if self.buffers_sent == buffers_received:
self.buffers_sent += 1
self.replay_buffer_pub.run((self.buffers_sent, self.replay_buffer[:BLOCK_SIZE]))
print(f"Sent {len(self.replay_buffer[:BLOCK_SIZE])} observations")
self.replay_buffer = self.replay_buffer[BLOCK_SIZE:]
return True
if self.replay_buffer_received_sub.run() == self.buffers_sent:
self.buffers_sent = 0
self.replay_buffer_received_pub.run(0)
self.replay_buffer_pub.run((0, False))
new_params = self.param_sub.run()
if not new_params:
return True
print("Received new params.")
self.agent.import_parameters(new_params)
self.param_pub.run(False)
return False
def run(self, image, speed=None):
if not speed:
self.speed = self.target_speed
else:
self.speed = speed
if image is not None:
self.image = image
self.dead = self.is_dead(self.image) if not self.sim else self.is_dead_sim(self.image)
if self.step > 0 and not self.training:
self.t += 1
"""Save observation to replay buffer"""
reward = 1 + (self.speed - self.config.throttle_min) / (self.config.throttle_max - self.config.throttle_min)
# reward = min(reward, 2) / 2
# reward = self.speed + 1
done = self.dead
reward = reward * -10 if self.dead else reward
# reward = -self.speed - 10 if self.dead else reward
# cv2.imwrite("./obs/img_{t}.png".format(t=self.step), self.image)
next_observation = self.agent.process_im(self.image)
# save_image(next_observation+0.5, '{i}.png'.format(i=self.t))
# self.replay_buffer.append((self.observation,
# self.action.cpu(),
# reward,
# done))
self.replay_buffer.append((next_observation,
self.action.cpu(),
reward,
done))
# next_command_history = np.roll(self.command_history, 3)
# next_command_history[:3] = [self.steering, self.target_speed, self.speed]
# next_state = np.roll(self.state, 1)
# next_state[:1, :, :] = self.agent.process_im(self.image, IMAGE_SIZE, RGB)
# self.replay_buffer.append([ [self.state, self.command_history],
# [self.steering, self.target_speed],
# [reward],
# [next_state, next_command_history],
# [float(not done)]])
self.episode_reward += reward
step_end = time.time()
self.observation = next_observation # obs is a tensor(3, 64, 64), img is a numpy (120, 180, 3)
print(
f"Episode: {self.episode}, Step: {self.step}, Reward: {reward:.2f}, Episode reward: {self.episode_reward:.2f}, Step time: {(self.step_start - step_end):.2f}, Speed: {self.speed:.2f}, Steering, {self.steering:.2f}")
# self.state = next_state
# self.command_history = next_command_history
# print(f"Episode: {self.episode}, Step: {self.step}, Reward: {reward:.2f}, Episode reward: {self.episode_reward:.2f}, Step time: {(self.step_start - step_end):.2f}, Speed: {self.speed:.2f}")
if self.step > self.config.max_episodes_steps or (self.dead and not self.training):
self.training_start = time.time()
self.step = 0
self.steering = 0
self.target_speed = 0
self.training = True
self.replay_buffer = self.replay_buffer[self.config.skip_initial_steps:]
return self.steering, self.target_speed, self.training
if self.training:
self.training = self.train()
self.dead = False
return self.steering, self.target_speed, self.training
if self.step == 0:
if not self.sim:
input("Press Enter to start a new episode.")
self.reset(self.agent.process_im(self.image))
self.step += 1
if self.step < self.config.skip_initial_steps:
return 0.001, 0, False
self.step_start = time.time()
if self.episode <= self.config.random_episodes:
self.steering = np.random.normal(0, 1)
self.target_speed = self.config.throttle_base
self.action = torch.tensor([[self.steering, self.target_speed]], device=self.config.device)
else:
with torch.no_grad():
self.belief, self.posterior_state = self.agent.infer_state(self.observation.to(self.config.device),
action=self.action,
belief=self.belief,
state=self.posterior_state)
self.action = self.agent.select_action((self.belief, self.posterior_state))
# print("before limit", self.action)
# maintain act_history
# self.act_history = torch.roll(act_history, -args.action_size, dims=-1)
# self.act_history[:, -args.action_size:] = action
# to get steering and target_speed as numpy
action = self.action.cpu().numpy() # act dim : [batch_size, act_size]
# action = self.enforce_limits(action[0], self.steering) # size [act_size]
self.steering, self.target_speed = action[0][0], action[0][1]
# self.action[0] = torch.tensor(action).to(self.action)
# print("after limit ", self.action)
## didn't use enforce_limit yet
# self.steering, self.target_speed = self.enforce_limits(action, self.command_history[0]) # TODO: change this
return self.steering, self.target_speed, self.training
# action = self.agent.select_action((self.state, self.command_history))
# self.steering, self.target_speed = self.enforce_limits(action, self.command_history[0])
# return self.steering, self.target_speed, self.training
def is_dead(self, img):
"""
Counts the black pixels from the ground and compares the amount to a threshold value.
If there are not enough black pixels the car is assumed to be off the track.
"""
crop_height = 20
crop_width = 20
threshold = 70
pixels_percentage = 0.10
pixels_required = (img.shape[1] - 2 * crop_width) * crop_height * pixels_percentage
crop = img[-crop_height:, crop_width:-crop_width]
r = crop[:, :, 0] < threshold
g = crop[:, :, 1] < threshold
b = crop[:, :, 2] < threshold
pixels = (r & g & b).sum()
# print("Pixels: {}, Required: {}".format(pixels, pixels_required))
return pixels < pixels_required
def is_dead_sim(self, img):
crop_height = 40
required = 0.8
cropped = img[-crop_height:]
rgb = cropped[:, :, 0] > cropped[:, :, 2]
return rgb.sum() / (crop_height * 160) > required
def enforce_limits(self, action, prev_steering):
"""
Scale the agent actions to environment limits
"""
var = (self.config.throttle_max - self.config.throttle_min) / 2
mu = (self.config.throttle_max + self.config.throttle_min) / 2
steering_min = max(self.config.steer_limit_left, prev_steering - self.config.max_steering_diff)
steering_max = min(self.config.steer_limit_right, prev_steering + self.config.max_steering_diff)
steering = max(steering_min, min(steering_max, action[0]))
return np.array([steering, action[1] * var + mu], dtype=np.float32)
if __name__ == "__main__":
print("Starting as training server")
load_model = args.load_model
config = define_config()
agent = RL_Agent("dreamer", True, args.car_name) # TODO: remember to change to use sim or real car
if args.load_model:
agent.agent = torch.load(args.load_model)
params_sent = False
buffer_received = False
trained = False
training_episodes = 0
buffers_received = 0
prev_buffer = 0
epi = 0 # for recording episode (used for buffer prefilling) # TODO: This is acutally problematic, since the once it receive 200 step, it counts one epi, but since this is only used for prefilling, where the length per episode < 200, so it's fine here
while training_episodes < args.episodes:
new_buffer = agent.replay_buffer_sub.run()
# at beginning, the new_buffer is (0, Ture), when receiving data: (1, data), when training (0, False)
# print(new_buffer)
if (new_buffer[0] - 1) == prev_buffer and not trained:
print("New buffer")
print(f"{len(new_buffer[1])} new buffer observations")
# wandb.log({"step": len(new_buffer[1])})
agent.agent.append_buffer(new_buffer[1])
prev_buffer += 1
agent.replay_buffer_received_pub.run(prev_buffer)
epi += 1
if new_buffer[
1] == False and prev_buffer > 0 and not trained and epi >= config.prefill_episodes: # add flag to prefill data
print("Training")
if not args.load_model:
print("Training")
agent.agent.update_parameters(config.gradient_steps)
if agent.agent.D.steps > args.total_steps:
# finish handling
# ......env, break, save ...
if args.save_model:
print("Saving model")
torch.save({'transition_model': agent.agent.transition_model.state_dict(),
'observation_model': agent.agent.observation_model.state_dict(),
'reward_model': agent.agent.reward_model.state_dict(),
'encoder': agent.agent.encoder.state_dict(),
'actor_model': agent.agent.actor_model.state_dict(),
'value_model': agent.agent.value_model.state_dict(),
'value_model2': agent.agent.value_model2.state_dict(),
},
MODEL_PATH)
break # end the run
params = agent.agent.export_parameters()
trained = True
print("Sending parameters")
agent.param_pub.run(params)
time.sleep(1)
if new_buffer[1] == False and prev_buffer > 0 and not trained and epi < config.prefill_episodes: # prefilling data
print("Prefill random data")
params = agent.agent.export_parameters()
trained = True
agent.param_pub.run(params)
time.sleep(1)
if trained and agent.param_sub.run() == False:
trained = False
prev_buffer = 0
print("Waiting for observations.")
# training_episodes += 1
time.sleep(0.1)