-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation_on_widerface.py
71 lines (58 loc) · 3.02 KB
/
evaluation_on_widerface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/ python3
# -*- coding: utf-8 -*-
# @Time : 2019-10-17
# @Author : vealocia
# @FileName: evaluation_on_widerface.py
import math
import os
import sys
import cv2
from vision.ssd.config.fd_config import define_img_size
input_img_size = 320 # define input size ,default optional(128/160/320/480/640/1280)
define_img_size(input_img_size) # must put define_img_size() before 'import create_mb_tiny_fd, create_mb_tiny_fd_predictor'
from vision.ssd.mb_tiny_fd import create_mb_tiny_fd, create_mb_tiny_fd_predictor
from vision.ssd.mb_tiny_RFB_fd import create_Mb_Tiny_RFB_fd, create_Mb_Tiny_RFB_fd_predictor
label_path = "./models/voc-model-labels.txt"
# net_type = "mb_tiny_fd" # inference faster,lower precision
net_type = "mb_tiny_RFB_fd" # inference lower,higher precision
class_names = [name.strip() for name in open(label_path).readlines()]
num_classes = len(class_names)
# test_device = "cuda:0"
test_device = "cpu"
candidate_size = 500
threshold = 0.11
val_image_root = "/Users/mui/Desktop/coding/WIDER_val/images/" # path to widerface valuation image root
val_result_txt_save_root = "./widerface_evaluation/" # result directory
if net_type == 'mb_tiny_fd':
model_path = "models/pretrained/Mb_Tiny_FD_train_input_320.pth"
net = create_mb_tiny_fd(len(class_names), is_test=True, device=test_device)
predictor = create_mb_tiny_fd_predictor(net, candidate_size=candidate_size, device=test_device)
elif net_type == 'mb_tiny_RFB_fd':
model_path = "models/pretrained/Mb_Tiny_RFB_FD_train_input_320.pth"
net = create_Mb_Tiny_RFB_fd(len(class_names), is_test=True, device=test_device)
predictor = create_Mb_Tiny_RFB_fd_predictor(net, candidate_size=candidate_size, device=test_device)
else:
print("The net type is wrong!")
sys.exit(1)
net.load(model_path)
counter = 0
for parent, dir_names, file_names in os.walk(val_image_root):
for file_name in file_names:
if not file_name.lower().endswith('jpg'):
continue
im = cv2.imread(os.path.join(parent, file_name), cv2.IMREAD_COLOR)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
boxes, labels, probs = predictor.predict(im, candidate_size / 2, threshold)
event_name = parent.split('/')[-1]
if not os.path.exists(os.path.join(val_result_txt_save_root, event_name)):
os.makedirs(os.path.join(val_result_txt_save_root, event_name))
fout = open(os.path.join(val_result_txt_save_root, event_name, file_name.split('.')[0] + '.txt'), 'w')
fout.write(file_name.split('.')[0] + '\n')
fout.write(str(boxes.size(0)) + '\n')
for i in range(boxes.size(0)):
bbox = boxes[i, :]
fout.write('%d %d %d %d %.03f' % (math.floor(bbox[0]), math.floor(bbox[1]), math.ceil(bbox[2] - bbox[0]), math.ceil(bbox[3] - bbox[1]), probs[i] if probs[i] <= 1 else 1) + '\n')
fout.close()
counter += 1
print('[%d] %s is processed.' % (counter, file_name))
# note: with score_threshold = 0.11 and hard_nms, MAP of 320-input model on widerface val set is: 0.785/0.695/0.431