-
Notifications
You must be signed in to change notification settings - Fork 1
/
reid_export.py
224 lines (194 loc) · 8.05 KB
/
reid_export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import os
# limit the number of cpus used by high performance libraries
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import sys
import numpy as np
from pathlib import Path
import torch
import pandas as pd
import subprocess
import torch.backends.cudnn as cudnn
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # yolov5 strongsort root directory
WEIGHTS = ROOT / 'weights'
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if str(ROOT / 'yolov5') not in sys.path:
sys.path.append(str(ROOT / 'yolov5')) # add yolov5 ROOT to PATH
if str(ROOT / 'strong_sort') not in sys.path:
sys.path.append(str(ROOT / 'strong_sort')) # add strong_sort ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
import logging
from yolov5.models.common import DetectMultiBackend
from yolov5.utils.general import LOGGER, colorstr, check_requirements
from strong_sort.deep.reid.torchreid.utils.feature_extractor import FeatureExtractor
from strong_sort.deep.reid.torchreid.models import build_model
from strong_sort.deep.reid_model_factory import get_model_name
# remove duplicated stream handler to avoid duplicated logging
logging.getLogger().removeHandler(logging.getLogger().handlers[0])
def file_size(path):
# Return file/dir size (MB)
path = Path(path)
if path.is_file():
return path.stat().st_size / 1E6
elif path.is_dir():
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / 1E6
else:
return 0.0
def export_formats():
# YOLOv5 export formats
x = [
['PyTorch', '-', '.pt', True, True],
['ONNX', 'onnx', '.onnx', True, True],
['OpenVINO', 'openvino', '_openvino_model', True, False],
['TensorFlow Lite', 'tflite', '.tflite', True, False],
]
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
def export_onnx(model, im, file, opset, train=False, dynamic=True, simplify=False):
# ONNX export
try:
check_requirements(('onnx',))
import onnx
f = file.with_suffix('.onnx')
LOGGER.info(f'\nstarting export with onnx {onnx.__version__}...')
torch.onnx.export(
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
im.cpu() if dynamic else im,
f,
verbose=False,
opset_version=opset,
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
do_constant_folding=not train,
input_names=['images'],
output_names=['output'],
dynamic_axes={
'images': {
0: 'batch',
}, # shape(x,3,256,128)
'output': {
0: 'batch',
} # shape(x,2048)
} if dynamic else None
)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
onnx.save(model_onnx, f)
# Simplify
if simplify:
try:
cuda = torch.cuda.is_available()
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
import onnxsim
LOGGER.info(f'simplifying with onnx-simplifier {onnxsim.__version__}...')
model_onnx, check = onnxsim.simplify(
model_onnx,
dynamic_input_shape=dynamic,
input_shapes={'t0': list(im.shape)} if dynamic else None)
assert check, 'assert check failed'
onnx.save(model_onnx, f)
except Exception as e:
LOGGER.info(f'simplifier failure: {e}')
LOGGER.info(f'export success, saved as {f} ({file_size(f):.1f} MB)')
LOGGER.info(f"run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
except Exception as e:
LOGGER.info(f'export failure: {e}')
return f
def export_openvino(file, dynamic, half, prefix=colorstr('OpenVINO:')):
f = str(file).replace('.onnx', f'_openvino_model{os.sep}')
# YOLOv5 OpenVINO export
try:
check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.inference_engine as ie
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
f = str(file).replace('.onnx', f'_openvino_model{os.sep}')
dyn_shape = [-1,3,256,128] if dynamic else None
cmd = f"mo \
--input_model {file} \
--output_dir {f} \
--data_type {'FP16' if half else 'FP32'}"
if dyn_shape is not None:
cmd + f"--input_shape {dyn_shape}"
subprocess.check_output(cmd.split()) # export
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
return f
except Exception as e:
LOGGER.info(f'\n{prefix} export failure: {e}')
return f
def export_tflite(file, half, prefix=colorstr('TFLite:')):
# YOLOv5 OpenVINO export
try:
check_requirements(('openvino2tensorflow', 'tensorflow', 'tensorflow_datasets')) # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.inference_engine as ie
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
output = Path(str(file).replace(f'_openvino_model{os.sep}', f'_tflite_model{os.sep}'))
modelxml = list(Path(file).glob('*.xml'))[0]
cmd = f"openvino2tensorflow \
--model_path {modelxml} \
--model_output_path {output} \
--output_pb \
--output_saved_model \
--output_no_quant_float32_tflite \
--output_dynamic_range_quant_tflite"
subprocess.check_output(cmd.split()) # export
LOGGER.info(f'{prefix} export success, results saved in {output} ({file_size(f):.1f} MB)')
return f
except Exception as e:
LOGGER.info(f'\n{prefix} export failure: {e}')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="CPHD train")
parser.add_argument(
"-d",
"--dynamic",
action="store_true",
help="dynamic model input",
)
parser.add_argument(
"-p",
"--weights",
type=Path,
default="./weight/mobilenetv2_x1_0_msmt17.pt",
help="Path to weights",
)
parser.add_argument(
"-hp",
"--half_precision",
action="store_true",
help="transform model to half precision",
)
parser.add_argument(
'--imgsz', '--img', '--img-size',
nargs='+',
type=int,
default=[256, 128],
help='image (h, w)'
)
parser.add_argument('--include',
nargs='+',
default=['onnx', 'openvino', 'tflite'],
help='onnx, openvino, tflite')
args = parser.parse_args()
# Build model
extractor = FeatureExtractor(
# get rid of dataset information DeepSort model name
model_name=get_model_name(args.weights),
model_path=args.weights,
device=str('cpu')
)
include = [x.lower() for x in args.include] # to lowercase
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
flags = [x in include for x in fmts]
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
onnx, openvino, tflite = flags # export booleans
im = torch.zeros(1, 3, args.imgsz[0], args.imgsz[1]).to('cpu') # image size(1,3,640,480) BCHW iDetection
if onnx:
f = export_onnx(extractor.model.eval(), im, args.weights, 12, train=False, dynamic=args.dynamic, simplify=True) # opset 12
if openvino:
f = export_openvino(f, dynamic=args.dynamic, half=False)
if tflite:
export_tflite(f, False)