-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
120 lines (86 loc) · 3.48 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from urlextract import URLExtract
from wordcloud import WordCloud
from collections import Counter
import pandas as pd
import emoji
urlextractor = URLExtract()
def fetch_stats(selected_user,df):
if selected_user != "Overall":
df = df[df['user'] == selected_user]
words = []
for word in df['message']:
words.extend(word.split(" "))
#fetch number of media messages
num_media_messages = df[df['message'] == '<Media omitted>\n']
links = []
for message in df['message']:
links.extend(urlextractor.find_urls(message))
return df.shape[0],len(words),len(num_media_messages),len(links)
def most_busy_users(df):
x = df['user'].value_counts().head()
new_df = round(df['user'].value_counts()/df.shape[0]*100,2).reset_index().rename(columns={'index':'name','user':'percent'})
return x,new_df
def create_wordcloud(selected_user,df):
f = open("stop_hinglish.txt",'r')
stop_words = f.read()
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
temp = df[df['message'] != '<Media omitted>\n']
def remove_stop_words(message):
y = []
for word in message.lower().split():
if word not in stop_words:
y.append(word)
return " ".join(y)
wc = WordCloud(width=500,height=500,min_font_size=10,background_color='white')
temp['message'] = temp['message'].apply(remove_stop_words)
df_wc = wc.generate(temp['message'].str.cat(sep=" "))
return df_wc
def most_common_words(selected_user,df):
f = open("stop_hinglish.txt",'r')
stop_words = f.read()
if selected_user != "Overall":
df = df[df['user'] == selected_user]
temp = df[df['message'] != '<Media omitted>\n']
words = []
for message in temp['message']:
for word in message.lower().split():
if word not in stop_words:
words.append(word)
most_common_df = pd.DataFrame(Counter(words).most_common(20))
return most_common_df
def emoji_helper(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
emojis = []
for message in df['message']:
emojis.extend([c for c in message if c in emoji.EMOJI_DATA])
emoji_df = pd.DataFrame(Counter(emojis).most_common(len(Counter(emojis))))
return emoji_df
def monthly_timeline(selected_user,df):
if selected_user != "Overall":
df = df[df['user'] == selected_user]
timeline = df.groupby(['year','month_num','month']).count()['message'].reset_index()
time = []
for i in range(timeline.shape[0]):
time.append(timeline['month'][i] + "-" + str(timeline['year'][i]))
timeline['time'] = time
return timeline
def daily_timeline(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
daily_time = df.groupby(df['only_date']).count()['message'].reset_index()
return daily_time
def weekly_activity(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
return df['day_name'].value_counts()
def monthly_activity(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
return df['month'].value_counts()
def activity_heatmap(selected_user,df):
if selected_user != "Overall":
df = df[df['user'] == selected_user]
user_heatmap = df.pivot_table(index='day_name',columns='period',values='message',aggfunc='count').fillna(0)
return user_heatmap